1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * drivers/of/property.c - Procedures for accessing and interpreting
4 * Devicetree properties and graphs.
5 *
6 * Initially created by copying procedures from drivers/of/base.c. This
7 * file contains the OF property as well as the OF graph interface
8 * functions.
9 *
10 * Paul Mackerras August 1996.
11 * Copyright (C) 1996-2005 Paul Mackerras.
12 *
13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14 * {engebret|bergner}@us.ibm.com
15 *
16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17 *
18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19 * Grant Likely.
20 */
21
22 #define pr_fmt(fmt) "OF: " fmt
23
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/of_irq.h>
28 #include <linux/string.h>
29 #include <linux/moduleparam.h>
30
31 #include "of_private.h"
32
33 /**
34 * of_graph_is_present() - check graph's presence
35 * @node: pointer to device_node containing graph port
36 *
37 * Return: True if @node has a port or ports (with a port) sub-node,
38 * false otherwise.
39 */
of_graph_is_present(const struct device_node * node)40 bool of_graph_is_present(const struct device_node *node)
41 {
42 struct device_node *ports, *port;
43
44 ports = of_get_child_by_name(node, "ports");
45 if (ports)
46 node = ports;
47
48 port = of_get_child_by_name(node, "port");
49 of_node_put(ports);
50 of_node_put(port);
51
52 return !!port;
53 }
54 EXPORT_SYMBOL(of_graph_is_present);
55
56 /**
57 * of_property_count_elems_of_size - Count the number of elements in a property
58 *
59 * @np: device node from which the property value is to be read.
60 * @propname: name of the property to be searched.
61 * @elem_size: size of the individual element
62 *
63 * Search for a property in a device node and count the number of elements of
64 * size elem_size in it.
65 *
66 * Return: The number of elements on sucess, -EINVAL if the property does not
67 * exist or its length does not match a multiple of elem_size and -ENODATA if
68 * the property does not have a value.
69 */
of_property_count_elems_of_size(const struct device_node * np,const char * propname,int elem_size)70 int of_property_count_elems_of_size(const struct device_node *np,
71 const char *propname, int elem_size)
72 {
73 struct property *prop = of_find_property(np, propname, NULL);
74
75 if (!prop)
76 return -EINVAL;
77 if (!prop->value)
78 return -ENODATA;
79
80 if (prop->length % elem_size != 0) {
81 pr_err("size of %s in node %pOF is not a multiple of %d\n",
82 propname, np, elem_size);
83 return -EINVAL;
84 }
85
86 return prop->length / elem_size;
87 }
88 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
89
90 /**
91 * of_find_property_value_of_size
92 *
93 * @np: device node from which the property value is to be read.
94 * @propname: name of the property to be searched.
95 * @min: minimum allowed length of property value
96 * @max: maximum allowed length of property value (0 means unlimited)
97 * @len: if !=NULL, actual length is written to here
98 *
99 * Search for a property in a device node and valid the requested size.
100 *
101 * Return: The property value on success, -EINVAL if the property does not
102 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
103 * property data is too small or too large.
104 *
105 */
of_find_property_value_of_size(const struct device_node * np,const char * propname,u32 min,u32 max,size_t * len)106 static void *of_find_property_value_of_size(const struct device_node *np,
107 const char *propname, u32 min, u32 max, size_t *len)
108 {
109 struct property *prop = of_find_property(np, propname, NULL);
110
111 if (!prop)
112 return ERR_PTR(-EINVAL);
113 if (!prop->value)
114 return ERR_PTR(-ENODATA);
115 if (prop->length < min)
116 return ERR_PTR(-EOVERFLOW);
117 if (max && prop->length > max)
118 return ERR_PTR(-EOVERFLOW);
119
120 if (len)
121 *len = prop->length;
122
123 return prop->value;
124 }
125
126 /**
127 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
128 *
129 * @np: device node from which the property value is to be read.
130 * @propname: name of the property to be searched.
131 * @index: index of the u32 in the list of values
132 * @out_value: pointer to return value, modified only if no error.
133 *
134 * Search for a property in a device node and read nth 32-bit value from
135 * it.
136 *
137 * Return: 0 on success, -EINVAL if the property does not exist,
138 * -ENODATA if property does not have a value, and -EOVERFLOW if the
139 * property data isn't large enough.
140 *
141 * The out_value is modified only if a valid u32 value can be decoded.
142 */
of_property_read_u32_index(const struct device_node * np,const char * propname,u32 index,u32 * out_value)143 int of_property_read_u32_index(const struct device_node *np,
144 const char *propname,
145 u32 index, u32 *out_value)
146 {
147 const u32 *val = of_find_property_value_of_size(np, propname,
148 ((index + 1) * sizeof(*out_value)),
149 0,
150 NULL);
151
152 if (IS_ERR(val))
153 return PTR_ERR(val);
154
155 *out_value = be32_to_cpup(((__be32 *)val) + index);
156 return 0;
157 }
158 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
159
160 /**
161 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
162 *
163 * @np: device node from which the property value is to be read.
164 * @propname: name of the property to be searched.
165 * @index: index of the u64 in the list of values
166 * @out_value: pointer to return value, modified only if no error.
167 *
168 * Search for a property in a device node and read nth 64-bit value from
169 * it.
170 *
171 * Return: 0 on success, -EINVAL if the property does not exist,
172 * -ENODATA if property does not have a value, and -EOVERFLOW if the
173 * property data isn't large enough.
174 *
175 * The out_value is modified only if a valid u64 value can be decoded.
176 */
of_property_read_u64_index(const struct device_node * np,const char * propname,u32 index,u64 * out_value)177 int of_property_read_u64_index(const struct device_node *np,
178 const char *propname,
179 u32 index, u64 *out_value)
180 {
181 const u64 *val = of_find_property_value_of_size(np, propname,
182 ((index + 1) * sizeof(*out_value)),
183 0, NULL);
184
185 if (IS_ERR(val))
186 return PTR_ERR(val);
187
188 *out_value = be64_to_cpup(((__be64 *)val) + index);
189 return 0;
190 }
191 EXPORT_SYMBOL_GPL(of_property_read_u64_index);
192
193 /**
194 * of_property_read_variable_u8_array - Find and read an array of u8 from a
195 * property, with bounds on the minimum and maximum array size.
196 *
197 * @np: device node from which the property value is to be read.
198 * @propname: name of the property to be searched.
199 * @out_values: pointer to found values.
200 * @sz_min: minimum number of array elements to read
201 * @sz_max: maximum number of array elements to read, if zero there is no
202 * upper limit on the number of elements in the dts entry but only
203 * sz_min will be read.
204 *
205 * Search for a property in a device node and read 8-bit value(s) from
206 * it.
207 *
208 * dts entry of array should be like:
209 * ``property = /bits/ 8 <0x50 0x60 0x70>;``
210 *
211 * Return: The number of elements read on success, -EINVAL if the property
212 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
213 * if the property data is smaller than sz_min or longer than sz_max.
214 *
215 * The out_values is modified only if a valid u8 value can be decoded.
216 */
of_property_read_variable_u8_array(const struct device_node * np,const char * propname,u8 * out_values,size_t sz_min,size_t sz_max)217 int of_property_read_variable_u8_array(const struct device_node *np,
218 const char *propname, u8 *out_values,
219 size_t sz_min, size_t sz_max)
220 {
221 size_t sz, count;
222 const u8 *val = of_find_property_value_of_size(np, propname,
223 (sz_min * sizeof(*out_values)),
224 (sz_max * sizeof(*out_values)),
225 &sz);
226
227 if (IS_ERR(val))
228 return PTR_ERR(val);
229
230 if (!sz_max)
231 sz = sz_min;
232 else
233 sz /= sizeof(*out_values);
234
235 count = sz;
236 while (count--)
237 *out_values++ = *val++;
238
239 return sz;
240 }
241 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
242
243 /**
244 * of_property_read_variable_u16_array - Find and read an array of u16 from a
245 * property, with bounds on the minimum and maximum array size.
246 *
247 * @np: device node from which the property value is to be read.
248 * @propname: name of the property to be searched.
249 * @out_values: pointer to found values.
250 * @sz_min: minimum number of array elements to read
251 * @sz_max: maximum number of array elements to read, if zero there is no
252 * upper limit on the number of elements in the dts entry but only
253 * sz_min will be read.
254 *
255 * Search for a property in a device node and read 16-bit value(s) from
256 * it.
257 *
258 * dts entry of array should be like:
259 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
260 *
261 * Return: The number of elements read on success, -EINVAL if the property
262 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
263 * if the property data is smaller than sz_min or longer than sz_max.
264 *
265 * The out_values is modified only if a valid u16 value can be decoded.
266 */
of_property_read_variable_u16_array(const struct device_node * np,const char * propname,u16 * out_values,size_t sz_min,size_t sz_max)267 int of_property_read_variable_u16_array(const struct device_node *np,
268 const char *propname, u16 *out_values,
269 size_t sz_min, size_t sz_max)
270 {
271 size_t sz, count;
272 const __be16 *val = of_find_property_value_of_size(np, propname,
273 (sz_min * sizeof(*out_values)),
274 (sz_max * sizeof(*out_values)),
275 &sz);
276
277 if (IS_ERR(val))
278 return PTR_ERR(val);
279
280 if (!sz_max)
281 sz = sz_min;
282 else
283 sz /= sizeof(*out_values);
284
285 count = sz;
286 while (count--)
287 *out_values++ = be16_to_cpup(val++);
288
289 return sz;
290 }
291 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
292
293 /**
294 * of_property_read_variable_u32_array - Find and read an array of 32 bit
295 * integers from a property, with bounds on the minimum and maximum array size.
296 *
297 * @np: device node from which the property value is to be read.
298 * @propname: name of the property to be searched.
299 * @out_values: pointer to return found values.
300 * @sz_min: minimum number of array elements to read
301 * @sz_max: maximum number of array elements to read, if zero there is no
302 * upper limit on the number of elements in the dts entry but only
303 * sz_min will be read.
304 *
305 * Search for a property in a device node and read 32-bit value(s) from
306 * it.
307 *
308 * Return: The number of elements read on success, -EINVAL if the property
309 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
310 * if the property data is smaller than sz_min or longer than sz_max.
311 *
312 * The out_values is modified only if a valid u32 value can be decoded.
313 */
of_property_read_variable_u32_array(const struct device_node * np,const char * propname,u32 * out_values,size_t sz_min,size_t sz_max)314 int of_property_read_variable_u32_array(const struct device_node *np,
315 const char *propname, u32 *out_values,
316 size_t sz_min, size_t sz_max)
317 {
318 size_t sz, count;
319 const __be32 *val = of_find_property_value_of_size(np, propname,
320 (sz_min * sizeof(*out_values)),
321 (sz_max * sizeof(*out_values)),
322 &sz);
323
324 if (IS_ERR(val))
325 return PTR_ERR(val);
326
327 if (!sz_max)
328 sz = sz_min;
329 else
330 sz /= sizeof(*out_values);
331
332 count = sz;
333 while (count--)
334 *out_values++ = be32_to_cpup(val++);
335
336 return sz;
337 }
338 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
339
340 /**
341 * of_property_read_u64 - Find and read a 64 bit integer from a property
342 * @np: device node from which the property value is to be read.
343 * @propname: name of the property to be searched.
344 * @out_value: pointer to return value, modified only if return value is 0.
345 *
346 * Search for a property in a device node and read a 64-bit value from
347 * it.
348 *
349 * Return: 0 on success, -EINVAL if the property does not exist,
350 * -ENODATA if property does not have a value, and -EOVERFLOW if the
351 * property data isn't large enough.
352 *
353 * The out_value is modified only if a valid u64 value can be decoded.
354 */
of_property_read_u64(const struct device_node * np,const char * propname,u64 * out_value)355 int of_property_read_u64(const struct device_node *np, const char *propname,
356 u64 *out_value)
357 {
358 const __be32 *val = of_find_property_value_of_size(np, propname,
359 sizeof(*out_value),
360 0,
361 NULL);
362
363 if (IS_ERR(val))
364 return PTR_ERR(val);
365
366 *out_value = of_read_number(val, 2);
367 return 0;
368 }
369 EXPORT_SYMBOL_GPL(of_property_read_u64);
370
371 /**
372 * of_property_read_variable_u64_array - Find and read an array of 64 bit
373 * integers from a property, with bounds on the minimum and maximum array size.
374 *
375 * @np: device node from which the property value is to be read.
376 * @propname: name of the property to be searched.
377 * @out_values: pointer to found values.
378 * @sz_min: minimum number of array elements to read
379 * @sz_max: maximum number of array elements to read, if zero there is no
380 * upper limit on the number of elements in the dts entry but only
381 * sz_min will be read.
382 *
383 * Search for a property in a device node and read 64-bit value(s) from
384 * it.
385 *
386 * Return: The number of elements read on success, -EINVAL if the property
387 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
388 * if the property data is smaller than sz_min or longer than sz_max.
389 *
390 * The out_values is modified only if a valid u64 value can be decoded.
391 */
of_property_read_variable_u64_array(const struct device_node * np,const char * propname,u64 * out_values,size_t sz_min,size_t sz_max)392 int of_property_read_variable_u64_array(const struct device_node *np,
393 const char *propname, u64 *out_values,
394 size_t sz_min, size_t sz_max)
395 {
396 size_t sz, count;
397 const __be32 *val = of_find_property_value_of_size(np, propname,
398 (sz_min * sizeof(*out_values)),
399 (sz_max * sizeof(*out_values)),
400 &sz);
401
402 if (IS_ERR(val))
403 return PTR_ERR(val);
404
405 if (!sz_max)
406 sz = sz_min;
407 else
408 sz /= sizeof(*out_values);
409
410 count = sz;
411 while (count--) {
412 *out_values++ = of_read_number(val, 2);
413 val += 2;
414 }
415
416 return sz;
417 }
418 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
419
420 /**
421 * of_property_read_string - Find and read a string from a property
422 * @np: device node from which the property value is to be read.
423 * @propname: name of the property to be searched.
424 * @out_string: pointer to null terminated return string, modified only if
425 * return value is 0.
426 *
427 * Search for a property in a device tree node and retrieve a null
428 * terminated string value (pointer to data, not a copy).
429 *
430 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
431 * property does not have a value, and -EILSEQ if the string is not
432 * null-terminated within the length of the property data.
433 *
434 * The out_string pointer is modified only if a valid string can be decoded.
435 */
of_property_read_string(const struct device_node * np,const char * propname,const char ** out_string)436 int of_property_read_string(const struct device_node *np, const char *propname,
437 const char **out_string)
438 {
439 const struct property *prop = of_find_property(np, propname, NULL);
440 if (!prop)
441 return -EINVAL;
442 if (!prop->value)
443 return -ENODATA;
444 if (strnlen(prop->value, prop->length) >= prop->length)
445 return -EILSEQ;
446 *out_string = prop->value;
447 return 0;
448 }
449 EXPORT_SYMBOL_GPL(of_property_read_string);
450
451 /**
452 * of_property_match_string() - Find string in a list and return index
453 * @np: pointer to node containing string list property
454 * @propname: string list property name
455 * @string: pointer to string to search for in string list
456 *
457 * This function searches a string list property and returns the index
458 * of a specific string value.
459 */
of_property_match_string(const struct device_node * np,const char * propname,const char * string)460 int of_property_match_string(const struct device_node *np, const char *propname,
461 const char *string)
462 {
463 const struct property *prop = of_find_property(np, propname, NULL);
464 size_t l;
465 int i;
466 const char *p, *end;
467
468 if (!prop)
469 return -EINVAL;
470 if (!prop->value)
471 return -ENODATA;
472
473 p = prop->value;
474 end = p + prop->length;
475
476 for (i = 0; p < end; i++, p += l) {
477 l = strnlen(p, end - p) + 1;
478 if (p + l > end)
479 return -EILSEQ;
480 pr_debug("comparing %s with %s\n", string, p);
481 if (strcmp(string, p) == 0)
482 return i; /* Found it; return index */
483 }
484 return -ENODATA;
485 }
486 EXPORT_SYMBOL_GPL(of_property_match_string);
487
488 /**
489 * of_property_read_string_helper() - Utility helper for parsing string properties
490 * @np: device node from which the property value is to be read.
491 * @propname: name of the property to be searched.
492 * @out_strs: output array of string pointers.
493 * @sz: number of array elements to read.
494 * @skip: Number of strings to skip over at beginning of list.
495 *
496 * Don't call this function directly. It is a utility helper for the
497 * of_property_read_string*() family of functions.
498 */
of_property_read_string_helper(const struct device_node * np,const char * propname,const char ** out_strs,size_t sz,int skip)499 int of_property_read_string_helper(const struct device_node *np,
500 const char *propname, const char **out_strs,
501 size_t sz, int skip)
502 {
503 const struct property *prop = of_find_property(np, propname, NULL);
504 int l = 0, i = 0;
505 const char *p, *end;
506
507 if (!prop)
508 return -EINVAL;
509 if (!prop->value)
510 return -ENODATA;
511 p = prop->value;
512 end = p + prop->length;
513
514 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
515 l = strnlen(p, end - p) + 1;
516 if (p + l > end)
517 return -EILSEQ;
518 if (out_strs && i >= skip)
519 *out_strs++ = p;
520 }
521 i -= skip;
522 return i <= 0 ? -ENODATA : i;
523 }
524 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
525
of_prop_next_u32(struct property * prop,const __be32 * cur,u32 * pu)526 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
527 u32 *pu)
528 {
529 const void *curv = cur;
530
531 if (!prop)
532 return NULL;
533
534 if (!cur) {
535 curv = prop->value;
536 goto out_val;
537 }
538
539 curv += sizeof(*cur);
540 if (curv >= prop->value + prop->length)
541 return NULL;
542
543 out_val:
544 *pu = be32_to_cpup(curv);
545 return curv;
546 }
547 EXPORT_SYMBOL_GPL(of_prop_next_u32);
548
of_prop_next_string(struct property * prop,const char * cur)549 const char *of_prop_next_string(struct property *prop, const char *cur)
550 {
551 const void *curv = cur;
552
553 if (!prop)
554 return NULL;
555
556 if (!cur)
557 return prop->value;
558
559 curv += strlen(cur) + 1;
560 if (curv >= prop->value + prop->length)
561 return NULL;
562
563 return curv;
564 }
565 EXPORT_SYMBOL_GPL(of_prop_next_string);
566
567 /**
568 * of_graph_parse_endpoint() - parse common endpoint node properties
569 * @node: pointer to endpoint device_node
570 * @endpoint: pointer to the OF endpoint data structure
571 *
572 * The caller should hold a reference to @node.
573 */
of_graph_parse_endpoint(const struct device_node * node,struct of_endpoint * endpoint)574 int of_graph_parse_endpoint(const struct device_node *node,
575 struct of_endpoint *endpoint)
576 {
577 struct device_node *port_node = of_get_parent(node);
578
579 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
580 __func__, node);
581
582 memset(endpoint, 0, sizeof(*endpoint));
583
584 endpoint->local_node = node;
585 /*
586 * It doesn't matter whether the two calls below succeed.
587 * If they don't then the default value 0 is used.
588 */
589 of_property_read_u32(port_node, "reg", &endpoint->port);
590 of_property_read_u32(node, "reg", &endpoint->id);
591
592 of_node_put(port_node);
593
594 return 0;
595 }
596 EXPORT_SYMBOL(of_graph_parse_endpoint);
597
598 /**
599 * of_graph_get_port_by_id() - get the port matching a given id
600 * @parent: pointer to the parent device node
601 * @id: id of the port
602 *
603 * Return: A 'port' node pointer with refcount incremented. The caller
604 * has to use of_node_put() on it when done.
605 */
of_graph_get_port_by_id(struct device_node * parent,u32 id)606 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
607 {
608 struct device_node *node, *port;
609
610 node = of_get_child_by_name(parent, "ports");
611 if (node)
612 parent = node;
613
614 for_each_child_of_node(parent, port) {
615 u32 port_id = 0;
616
617 if (!of_node_name_eq(port, "port"))
618 continue;
619 of_property_read_u32(port, "reg", &port_id);
620 if (id == port_id)
621 break;
622 }
623
624 of_node_put(node);
625
626 return port;
627 }
628 EXPORT_SYMBOL(of_graph_get_port_by_id);
629
630 /**
631 * of_graph_get_next_endpoint() - get next endpoint node
632 * @parent: pointer to the parent device node
633 * @prev: previous endpoint node, or NULL to get first
634 *
635 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
636 * of the passed @prev node is decremented.
637 */
of_graph_get_next_endpoint(const struct device_node * parent,struct device_node * prev)638 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
639 struct device_node *prev)
640 {
641 struct device_node *endpoint;
642 struct device_node *port;
643
644 if (!parent)
645 return NULL;
646
647 /*
648 * Start by locating the port node. If no previous endpoint is specified
649 * search for the first port node, otherwise get the previous endpoint
650 * parent port node.
651 */
652 if (!prev) {
653 struct device_node *node;
654
655 node = of_get_child_by_name(parent, "ports");
656 if (node)
657 parent = node;
658
659 port = of_get_child_by_name(parent, "port");
660 of_node_put(node);
661
662 if (!port) {
663 pr_err("graph: no port node found in %pOF\n", parent);
664 return NULL;
665 }
666 } else {
667 port = of_get_parent(prev);
668 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
669 __func__, prev))
670 return NULL;
671 }
672
673 while (1) {
674 /*
675 * Now that we have a port node, get the next endpoint by
676 * getting the next child. If the previous endpoint is NULL this
677 * will return the first child.
678 */
679 endpoint = of_get_next_child(port, prev);
680 if (endpoint) {
681 of_node_put(port);
682 return endpoint;
683 }
684
685 /* No more endpoints under this port, try the next one. */
686 prev = NULL;
687
688 do {
689 port = of_get_next_child(parent, port);
690 if (!port)
691 return NULL;
692 } while (!of_node_name_eq(port, "port"));
693 }
694 }
695 EXPORT_SYMBOL(of_graph_get_next_endpoint);
696
697 /**
698 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
699 * @parent: pointer to the parent device node
700 * @port_reg: identifier (value of reg property) of the parent port node
701 * @reg: identifier (value of reg property) of the endpoint node
702 *
703 * Return: An 'endpoint' node pointer which is identified by reg and at the same
704 * is the child of a port node identified by port_reg. reg and port_reg are
705 * ignored when they are -1. Use of_node_put() on the pointer when done.
706 */
of_graph_get_endpoint_by_regs(const struct device_node * parent,int port_reg,int reg)707 struct device_node *of_graph_get_endpoint_by_regs(
708 const struct device_node *parent, int port_reg, int reg)
709 {
710 struct of_endpoint endpoint;
711 struct device_node *node = NULL;
712
713 for_each_endpoint_of_node(parent, node) {
714 of_graph_parse_endpoint(node, &endpoint);
715 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
716 ((reg == -1) || (endpoint.id == reg)))
717 return node;
718 }
719
720 return NULL;
721 }
722 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
723
724 /**
725 * of_graph_get_remote_endpoint() - get remote endpoint node
726 * @node: pointer to a local endpoint device_node
727 *
728 * Return: Remote endpoint node associated with remote endpoint node linked
729 * to @node. Use of_node_put() on it when done.
730 */
of_graph_get_remote_endpoint(const struct device_node * node)731 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
732 {
733 /* Get remote endpoint node. */
734 return of_parse_phandle(node, "remote-endpoint", 0);
735 }
736 EXPORT_SYMBOL(of_graph_get_remote_endpoint);
737
738 /**
739 * of_graph_get_port_parent() - get port's parent node
740 * @node: pointer to a local endpoint device_node
741 *
742 * Return: device node associated with endpoint node linked
743 * to @node. Use of_node_put() on it when done.
744 */
of_graph_get_port_parent(struct device_node * node)745 struct device_node *of_graph_get_port_parent(struct device_node *node)
746 {
747 unsigned int depth;
748
749 if (!node)
750 return NULL;
751
752 /*
753 * Preserve usecount for passed in node as of_get_next_parent()
754 * will do of_node_put() on it.
755 */
756 of_node_get(node);
757
758 /* Walk 3 levels up only if there is 'ports' node. */
759 for (depth = 3; depth && node; depth--) {
760 node = of_get_next_parent(node);
761 if (depth == 2 && !of_node_name_eq(node, "ports"))
762 break;
763 }
764 return node;
765 }
766 EXPORT_SYMBOL(of_graph_get_port_parent);
767
768 /**
769 * of_graph_get_remote_port_parent() - get remote port's parent node
770 * @node: pointer to a local endpoint device_node
771 *
772 * Return: Remote device node associated with remote endpoint node linked
773 * to @node. Use of_node_put() on it when done.
774 */
of_graph_get_remote_port_parent(const struct device_node * node)775 struct device_node *of_graph_get_remote_port_parent(
776 const struct device_node *node)
777 {
778 struct device_node *np, *pp;
779
780 /* Get remote endpoint node. */
781 np = of_graph_get_remote_endpoint(node);
782
783 pp = of_graph_get_port_parent(np);
784
785 of_node_put(np);
786
787 return pp;
788 }
789 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
790
791 /**
792 * of_graph_get_remote_port() - get remote port node
793 * @node: pointer to a local endpoint device_node
794 *
795 * Return: Remote port node associated with remote endpoint node linked
796 * to @node. Use of_node_put() on it when done.
797 */
of_graph_get_remote_port(const struct device_node * node)798 struct device_node *of_graph_get_remote_port(const struct device_node *node)
799 {
800 struct device_node *np;
801
802 /* Get remote endpoint node. */
803 np = of_graph_get_remote_endpoint(node);
804 if (!np)
805 return NULL;
806 return of_get_next_parent(np);
807 }
808 EXPORT_SYMBOL(of_graph_get_remote_port);
809
of_graph_get_endpoint_count(const struct device_node * np)810 int of_graph_get_endpoint_count(const struct device_node *np)
811 {
812 struct device_node *endpoint;
813 int num = 0;
814
815 for_each_endpoint_of_node(np, endpoint)
816 num++;
817
818 return num;
819 }
820 EXPORT_SYMBOL(of_graph_get_endpoint_count);
821
822 /**
823 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
824 * @node: pointer to parent device_node containing graph port/endpoint
825 * @port: identifier (value of reg property) of the parent port node
826 * @endpoint: identifier (value of reg property) of the endpoint node
827 *
828 * Return: Remote device node associated with remote endpoint node linked
829 * to @node. Use of_node_put() on it when done.
830 */
of_graph_get_remote_node(const struct device_node * node,u32 port,u32 endpoint)831 struct device_node *of_graph_get_remote_node(const struct device_node *node,
832 u32 port, u32 endpoint)
833 {
834 struct device_node *endpoint_node, *remote;
835
836 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
837 if (!endpoint_node) {
838 pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
839 port, endpoint, node);
840 return NULL;
841 }
842
843 remote = of_graph_get_remote_port_parent(endpoint_node);
844 of_node_put(endpoint_node);
845 if (!remote) {
846 pr_debug("no valid remote node\n");
847 return NULL;
848 }
849
850 if (!of_device_is_available(remote)) {
851 pr_debug("not available for remote node\n");
852 of_node_put(remote);
853 return NULL;
854 }
855
856 return remote;
857 }
858 EXPORT_SYMBOL(of_graph_get_remote_node);
859
of_fwnode_get(struct fwnode_handle * fwnode)860 static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
861 {
862 return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
863 }
864
of_fwnode_put(struct fwnode_handle * fwnode)865 static void of_fwnode_put(struct fwnode_handle *fwnode)
866 {
867 of_node_put(to_of_node(fwnode));
868 }
869
of_fwnode_device_is_available(const struct fwnode_handle * fwnode)870 static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
871 {
872 return of_device_is_available(to_of_node(fwnode));
873 }
874
of_fwnode_property_present(const struct fwnode_handle * fwnode,const char * propname)875 static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
876 const char *propname)
877 {
878 return of_property_read_bool(to_of_node(fwnode), propname);
879 }
880
of_fwnode_property_read_int_array(const struct fwnode_handle * fwnode,const char * propname,unsigned int elem_size,void * val,size_t nval)881 static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
882 const char *propname,
883 unsigned int elem_size, void *val,
884 size_t nval)
885 {
886 const struct device_node *node = to_of_node(fwnode);
887
888 if (!val)
889 return of_property_count_elems_of_size(node, propname,
890 elem_size);
891
892 switch (elem_size) {
893 case sizeof(u8):
894 return of_property_read_u8_array(node, propname, val, nval);
895 case sizeof(u16):
896 return of_property_read_u16_array(node, propname, val, nval);
897 case sizeof(u32):
898 return of_property_read_u32_array(node, propname, val, nval);
899 case sizeof(u64):
900 return of_property_read_u64_array(node, propname, val, nval);
901 }
902
903 return -ENXIO;
904 }
905
906 static int
of_fwnode_property_read_string_array(const struct fwnode_handle * fwnode,const char * propname,const char ** val,size_t nval)907 of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
908 const char *propname, const char **val,
909 size_t nval)
910 {
911 const struct device_node *node = to_of_node(fwnode);
912
913 return val ?
914 of_property_read_string_array(node, propname, val, nval) :
915 of_property_count_strings(node, propname);
916 }
917
of_fwnode_get_name(const struct fwnode_handle * fwnode)918 static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
919 {
920 return kbasename(to_of_node(fwnode)->full_name);
921 }
922
of_fwnode_get_name_prefix(const struct fwnode_handle * fwnode)923 static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
924 {
925 /* Root needs no prefix here (its name is "/"). */
926 if (!to_of_node(fwnode)->parent)
927 return "";
928
929 return "/";
930 }
931
932 static struct fwnode_handle *
of_fwnode_get_parent(const struct fwnode_handle * fwnode)933 of_fwnode_get_parent(const struct fwnode_handle *fwnode)
934 {
935 return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
936 }
937
938 static struct fwnode_handle *
of_fwnode_get_next_child_node(const struct fwnode_handle * fwnode,struct fwnode_handle * child)939 of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
940 struct fwnode_handle *child)
941 {
942 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
943 to_of_node(child)));
944 }
945
946 static struct fwnode_handle *
of_fwnode_get_named_child_node(const struct fwnode_handle * fwnode,const char * childname)947 of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
948 const char *childname)
949 {
950 const struct device_node *node = to_of_node(fwnode);
951 struct device_node *child;
952
953 for_each_available_child_of_node(node, child)
954 if (of_node_name_eq(child, childname))
955 return of_fwnode_handle(child);
956
957 return NULL;
958 }
959
960 static int
of_fwnode_get_reference_args(const struct fwnode_handle * fwnode,const char * prop,const char * nargs_prop,unsigned int nargs,unsigned int index,struct fwnode_reference_args * args)961 of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
962 const char *prop, const char *nargs_prop,
963 unsigned int nargs, unsigned int index,
964 struct fwnode_reference_args *args)
965 {
966 struct of_phandle_args of_args;
967 unsigned int i;
968 int ret;
969
970 if (nargs_prop)
971 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
972 nargs_prop, index, &of_args);
973 else
974 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
975 nargs, index, &of_args);
976 if (ret < 0)
977 return ret;
978 if (!args) {
979 of_node_put(of_args.np);
980 return 0;
981 }
982
983 args->nargs = of_args.args_count;
984 args->fwnode = of_fwnode_handle(of_args.np);
985
986 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
987 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
988
989 return 0;
990 }
991
992 static struct fwnode_handle *
of_fwnode_graph_get_next_endpoint(const struct fwnode_handle * fwnode,struct fwnode_handle * prev)993 of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
994 struct fwnode_handle *prev)
995 {
996 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
997 to_of_node(prev)));
998 }
999
1000 static struct fwnode_handle *
of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle * fwnode)1001 of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1002 {
1003 return of_fwnode_handle(
1004 of_graph_get_remote_endpoint(to_of_node(fwnode)));
1005 }
1006
1007 static struct fwnode_handle *
of_fwnode_graph_get_port_parent(struct fwnode_handle * fwnode)1008 of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1009 {
1010 struct device_node *np;
1011
1012 /* Get the parent of the port */
1013 np = of_get_parent(to_of_node(fwnode));
1014 if (!np)
1015 return NULL;
1016
1017 /* Is this the "ports" node? If not, it's the port parent. */
1018 if (!of_node_name_eq(np, "ports"))
1019 return of_fwnode_handle(np);
1020
1021 return of_fwnode_handle(of_get_next_parent(np));
1022 }
1023
of_fwnode_graph_parse_endpoint(const struct fwnode_handle * fwnode,struct fwnode_endpoint * endpoint)1024 static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1025 struct fwnode_endpoint *endpoint)
1026 {
1027 const struct device_node *node = to_of_node(fwnode);
1028 struct device_node *port_node = of_get_parent(node);
1029
1030 endpoint->local_fwnode = fwnode;
1031
1032 of_property_read_u32(port_node, "reg", &endpoint->port);
1033 of_property_read_u32(node, "reg", &endpoint->id);
1034
1035 of_node_put(port_node);
1036
1037 return 0;
1038 }
1039
1040 static const void *
of_fwnode_device_get_match_data(const struct fwnode_handle * fwnode,const struct device * dev)1041 of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1042 const struct device *dev)
1043 {
1044 return of_device_get_match_data(dev);
1045 }
1046
of_is_ancestor_of(struct device_node * test_ancestor,struct device_node * child)1047 static bool of_is_ancestor_of(struct device_node *test_ancestor,
1048 struct device_node *child)
1049 {
1050 of_node_get(child);
1051 while (child) {
1052 if (child == test_ancestor) {
1053 of_node_put(child);
1054 return true;
1055 }
1056 child = of_get_next_parent(child);
1057 }
1058 return false;
1059 }
1060
1061 /**
1062 * of_link_to_phandle - Add fwnode link to supplier from supplier phandle
1063 * @con_np: consumer device tree node
1064 * @sup_np: supplier device tree node
1065 *
1066 * Given a phandle to a supplier device tree node (@sup_np), this function
1067 * finds the device that owns the supplier device tree node and creates a
1068 * device link from @dev consumer device to the supplier device. This function
1069 * doesn't create device links for invalid scenarios such as trying to create a
1070 * link with a parent device as the consumer of its child device. In such
1071 * cases, it returns an error.
1072 *
1073 * Returns:
1074 * - 0 if fwnode link successfully created to supplier
1075 * - -EINVAL if the supplier link is invalid and should not be created
1076 * - -ENODEV if struct device will never be create for supplier
1077 */
of_link_to_phandle(struct device_node * con_np,struct device_node * sup_np)1078 static int of_link_to_phandle(struct device_node *con_np,
1079 struct device_node *sup_np)
1080 {
1081 struct device *sup_dev;
1082 struct device_node *tmp_np = sup_np;
1083
1084 of_node_get(sup_np);
1085 /*
1086 * Find the device node that contains the supplier phandle. It may be
1087 * @sup_np or it may be an ancestor of @sup_np.
1088 */
1089 while (sup_np) {
1090
1091 /* Don't allow linking to a disabled supplier */
1092 if (!of_device_is_available(sup_np)) {
1093 of_node_put(sup_np);
1094 sup_np = NULL;
1095 }
1096
1097 if (of_find_property(sup_np, "compatible", NULL))
1098 break;
1099
1100 sup_np = of_get_next_parent(sup_np);
1101 }
1102
1103 if (!sup_np) {
1104 pr_debug("Not linking %pOFP to %pOFP - No device\n",
1105 con_np, tmp_np);
1106 return -ENODEV;
1107 }
1108
1109 /*
1110 * Don't allow linking a device node as a consumer of one of its
1111 * descendant nodes. By definition, a child node can't be a functional
1112 * dependency for the parent node.
1113 */
1114 if (of_is_ancestor_of(con_np, sup_np)) {
1115 pr_debug("Not linking %pOFP to %pOFP - is descendant\n",
1116 con_np, sup_np);
1117 of_node_put(sup_np);
1118 return -EINVAL;
1119 }
1120
1121 /*
1122 * Don't create links to "early devices" that won't have struct devices
1123 * created for them.
1124 */
1125 sup_dev = get_dev_from_fwnode(&sup_np->fwnode);
1126 if (!sup_dev &&
1127 (of_node_check_flag(sup_np, OF_POPULATED) ||
1128 sup_np->fwnode.flags & FWNODE_FLAG_NOT_DEVICE)) {
1129 pr_debug("Not linking %pOFP to %pOFP - No struct device\n",
1130 con_np, sup_np);
1131 of_node_put(sup_np);
1132 return -ENODEV;
1133 }
1134 put_device(sup_dev);
1135
1136 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np));
1137 of_node_put(sup_np);
1138
1139 return 0;
1140 }
1141
1142 /**
1143 * parse_prop_cells - Property parsing function for suppliers
1144 *
1145 * @np: Pointer to device tree node containing a list
1146 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1147 * @index: For properties holding a list of phandles, this is the index
1148 * into the list.
1149 * @list_name: Property name that is known to contain list of phandle(s) to
1150 * supplier(s)
1151 * @cells_name: property name that specifies phandles' arguments count
1152 *
1153 * This is a helper function to parse properties that have a known fixed name
1154 * and are a list of phandles and phandle arguments.
1155 *
1156 * Returns:
1157 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1158 * on it when done.
1159 * - NULL if no phandle found at index
1160 */
parse_prop_cells(struct device_node * np,const char * prop_name,int index,const char * list_name,const char * cells_name)1161 static struct device_node *parse_prop_cells(struct device_node *np,
1162 const char *prop_name, int index,
1163 const char *list_name,
1164 const char *cells_name)
1165 {
1166 struct of_phandle_args sup_args;
1167
1168 if (strcmp(prop_name, list_name))
1169 return NULL;
1170
1171 if (of_parse_phandle_with_args(np, list_name, cells_name, index,
1172 &sup_args))
1173 return NULL;
1174
1175 return sup_args.np;
1176 }
1177
1178 #define DEFINE_SIMPLE_PROP(fname, name, cells) \
1179 static struct device_node *parse_##fname(struct device_node *np, \
1180 const char *prop_name, int index) \
1181 { \
1182 return parse_prop_cells(np, prop_name, index, name, cells); \
1183 }
1184
strcmp_suffix(const char * str,const char * suffix)1185 static int strcmp_suffix(const char *str, const char *suffix)
1186 {
1187 unsigned int len, suffix_len;
1188
1189 len = strlen(str);
1190 suffix_len = strlen(suffix);
1191 if (len <= suffix_len)
1192 return -1;
1193 return strcmp(str + len - suffix_len, suffix);
1194 }
1195
1196 /**
1197 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1198 *
1199 * @np: Pointer to device tree node containing a list
1200 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1201 * @index: For properties holding a list of phandles, this is the index
1202 * into the list.
1203 * @suffix: Property suffix that is known to contain list of phandle(s) to
1204 * supplier(s)
1205 * @cells_name: property name that specifies phandles' arguments count
1206 *
1207 * This is a helper function to parse properties that have a known fixed suffix
1208 * and are a list of phandles and phandle arguments.
1209 *
1210 * Returns:
1211 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1212 * on it when done.
1213 * - NULL if no phandle found at index
1214 */
parse_suffix_prop_cells(struct device_node * np,const char * prop_name,int index,const char * suffix,const char * cells_name)1215 static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1216 const char *prop_name, int index,
1217 const char *suffix,
1218 const char *cells_name)
1219 {
1220 struct of_phandle_args sup_args;
1221
1222 if (strcmp_suffix(prop_name, suffix))
1223 return NULL;
1224
1225 if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1226 &sup_args))
1227 return NULL;
1228
1229 return sup_args.np;
1230 }
1231
1232 #define DEFINE_SUFFIX_PROP(fname, suffix, cells) \
1233 static struct device_node *parse_##fname(struct device_node *np, \
1234 const char *prop_name, int index) \
1235 { \
1236 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1237 }
1238
1239 /**
1240 * struct supplier_bindings - Property parsing functions for suppliers
1241 *
1242 * @parse_prop: function name
1243 * parse_prop() finds the node corresponding to a supplier phandle
1244 * @parse_prop.np: Pointer to device node holding supplier phandle property
1245 * @parse_prop.prop_name: Name of property holding a phandle value
1246 * @parse_prop.index: For properties holding a list of phandles, this is the
1247 * index into the list
1248 *
1249 * Returns:
1250 * parse_prop() return values are
1251 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1252 * on it when done.
1253 * - NULL if no phandle found at index
1254 */
1255 struct supplier_bindings {
1256 struct device_node *(*parse_prop)(struct device_node *np,
1257 const char *prop_name, int index);
1258 bool optional;
1259 };
1260
1261 DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1262 DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1263 DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1264 DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1265 DEFINE_SIMPLE_PROP(io_channels, "io-channels", "#io-channel-cells")
1266 DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1267 DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1268 DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1269 DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1270 DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1271 DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", NULL)
1272 DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1273 DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1274 DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1275 DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1276 DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1277 DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1278 DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1279 DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1280 DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1281 DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1282 DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1283 DEFINE_SIMPLE_PROP(leds, "leds", NULL)
1284 DEFINE_SIMPLE_PROP(backlight, "backlight", NULL)
1285 DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1286 DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1287
parse_gpios(struct device_node * np,const char * prop_name,int index)1288 static struct device_node *parse_gpios(struct device_node *np,
1289 const char *prop_name, int index)
1290 {
1291 if (!strcmp_suffix(prop_name, ",nr-gpios"))
1292 return NULL;
1293
1294 return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1295 "#gpio-cells");
1296 }
1297
parse_iommu_maps(struct device_node * np,const char * prop_name,int index)1298 static struct device_node *parse_iommu_maps(struct device_node *np,
1299 const char *prop_name, int index)
1300 {
1301 if (strcmp(prop_name, "iommu-map"))
1302 return NULL;
1303
1304 return of_parse_phandle(np, prop_name, (index * 4) + 1);
1305 }
1306
parse_gpio_compat(struct device_node * np,const char * prop_name,int index)1307 static struct device_node *parse_gpio_compat(struct device_node *np,
1308 const char *prop_name, int index)
1309 {
1310 struct of_phandle_args sup_args;
1311
1312 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
1313 return NULL;
1314
1315 /*
1316 * Ignore node with gpio-hog property since its gpios are all provided
1317 * by its parent.
1318 */
1319 if (of_find_property(np, "gpio-hog", NULL))
1320 return NULL;
1321
1322 if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index,
1323 &sup_args))
1324 return NULL;
1325
1326 return sup_args.np;
1327 }
1328
parse_interrupts(struct device_node * np,const char * prop_name,int index)1329 static struct device_node *parse_interrupts(struct device_node *np,
1330 const char *prop_name, int index)
1331 {
1332 struct of_phandle_args sup_args;
1333
1334 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC))
1335 return NULL;
1336
1337 if (strcmp(prop_name, "interrupts") &&
1338 strcmp(prop_name, "interrupts-extended"))
1339 return NULL;
1340
1341 return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np;
1342 }
1343
1344 static const struct supplier_bindings of_supplier_bindings[] = {
1345 { .parse_prop = parse_clocks, },
1346 { .parse_prop = parse_interconnects, },
1347 { .parse_prop = parse_iommus, .optional = true, },
1348 { .parse_prop = parse_iommu_maps, .optional = true, },
1349 { .parse_prop = parse_mboxes, },
1350 { .parse_prop = parse_io_channels, },
1351 { .parse_prop = parse_interrupt_parent, },
1352 { .parse_prop = parse_dmas, .optional = true, },
1353 { .parse_prop = parse_power_domains, },
1354 { .parse_prop = parse_hwlocks, },
1355 { .parse_prop = parse_extcon, },
1356 { .parse_prop = parse_nvmem_cells, },
1357 { .parse_prop = parse_phys, },
1358 { .parse_prop = parse_wakeup_parent, },
1359 { .parse_prop = parse_pinctrl0, },
1360 { .parse_prop = parse_pinctrl1, },
1361 { .parse_prop = parse_pinctrl2, },
1362 { .parse_prop = parse_pinctrl3, },
1363 { .parse_prop = parse_pinctrl4, },
1364 { .parse_prop = parse_pinctrl5, },
1365 { .parse_prop = parse_pinctrl6, },
1366 { .parse_prop = parse_pinctrl7, },
1367 { .parse_prop = parse_pinctrl8, },
1368 { .parse_prop = parse_leds, },
1369 { .parse_prop = parse_backlight, },
1370 { .parse_prop = parse_gpio_compat, },
1371 { .parse_prop = parse_interrupts, },
1372 { .parse_prop = parse_regulators, },
1373 { .parse_prop = parse_gpio, },
1374 { .parse_prop = parse_gpios, },
1375 {}
1376 };
1377
1378 /**
1379 * of_link_property - Create device links to suppliers listed in a property
1380 * @dev: Consumer device
1381 * @con_np: The consumer device tree node which contains the property
1382 * @prop_name: Name of property to be parsed
1383 *
1384 * This function checks if the property @prop_name that is present in the
1385 * @con_np device tree node is one of the known common device tree bindings
1386 * that list phandles to suppliers. If @prop_name isn't one, this function
1387 * doesn't do anything.
1388 *
1389 * If @prop_name is one, this function attempts to create fwnode links from the
1390 * consumer device tree node @con_np to all the suppliers device tree nodes
1391 * listed in @prop_name.
1392 *
1393 * Any failed attempt to create a fwnode link will NOT result in an immediate
1394 * return. of_link_property() must create links to all the available supplier
1395 * device tree nodes even when attempts to create a link to one or more
1396 * suppliers fail.
1397 */
of_link_property(struct device_node * con_np,const char * prop_name)1398 static int of_link_property(struct device_node *con_np, const char *prop_name)
1399 {
1400 struct device_node *phandle;
1401 const struct supplier_bindings *s = of_supplier_bindings;
1402 unsigned int i = 0;
1403 bool matched = false;
1404 int ret = 0;
1405
1406 /* Do not stop at first failed link, link all available suppliers. */
1407 while (!matched && s->parse_prop) {
1408 if (s->optional && !fw_devlink_is_strict()) {
1409 s++;
1410 continue;
1411 }
1412
1413 while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1414 matched = true;
1415 i++;
1416 of_link_to_phandle(con_np, phandle);
1417 of_node_put(phandle);
1418 }
1419 s++;
1420 }
1421 return ret;
1422 }
1423
of_fwnode_add_links(struct fwnode_handle * fwnode)1424 static int of_fwnode_add_links(struct fwnode_handle *fwnode)
1425 {
1426 struct property *p;
1427 struct device_node *con_np = to_of_node(fwnode);
1428
1429 if (!con_np)
1430 return -EINVAL;
1431
1432 for_each_property_of_node(con_np, p)
1433 of_link_property(con_np, p->name);
1434
1435 return 0;
1436 }
1437
1438 const struct fwnode_operations of_fwnode_ops = {
1439 .get = of_fwnode_get,
1440 .put = of_fwnode_put,
1441 .device_is_available = of_fwnode_device_is_available,
1442 .device_get_match_data = of_fwnode_device_get_match_data,
1443 .property_present = of_fwnode_property_present,
1444 .property_read_int_array = of_fwnode_property_read_int_array,
1445 .property_read_string_array = of_fwnode_property_read_string_array,
1446 .get_name = of_fwnode_get_name,
1447 .get_name_prefix = of_fwnode_get_name_prefix,
1448 .get_parent = of_fwnode_get_parent,
1449 .get_next_child_node = of_fwnode_get_next_child_node,
1450 .get_named_child_node = of_fwnode_get_named_child_node,
1451 .get_reference_args = of_fwnode_get_reference_args,
1452 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1453 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1454 .graph_get_port_parent = of_fwnode_graph_get_port_parent,
1455 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1456 .add_links = of_fwnode_add_links,
1457 };
1458 EXPORT_SYMBOL_GPL(of_fwnode_ops);
1459