• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * isp.c
4  *
5  * TI OMAP3 ISP - Core
6  *
7  * Copyright (C) 2006-2010 Nokia Corporation
8  * Copyright (C) 2007-2009 Texas Instruments, Inc.
9  *
10  * Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
11  *	     Sakari Ailus <sakari.ailus@iki.fi>
12  *
13  * Contributors:
14  *	Laurent Pinchart <laurent.pinchart@ideasonboard.com>
15  *	Sakari Ailus <sakari.ailus@iki.fi>
16  *	David Cohen <dacohen@gmail.com>
17  *	Stanimir Varbanov <svarbanov@mm-sol.com>
18  *	Vimarsh Zutshi <vimarsh.zutshi@gmail.com>
19  *	Tuukka Toivonen <tuukkat76@gmail.com>
20  *	Sergio Aguirre <saaguirre@ti.com>
21  *	Antti Koskipaa <akoskipa@gmail.com>
22  *	Ivan T. Ivanov <iivanov@mm-sol.com>
23  *	RaniSuneela <r-m@ti.com>
24  *	Atanas Filipov <afilipov@mm-sol.com>
25  *	Gjorgji Rosikopulos <grosikopulos@mm-sol.com>
26  *	Hiroshi DOYU <hiroshi.doyu@nokia.com>
27  *	Nayden Kanchev <nkanchev@mm-sol.com>
28  *	Phil Carmody <ext-phil.2.carmody@nokia.com>
29  *	Artem Bityutskiy <artem.bityutskiy@nokia.com>
30  *	Dominic Curran <dcurran@ti.com>
31  *	Ilkka Myllyperkio <ilkka.myllyperkio@sofica.fi>
32  *	Pallavi Kulkarni <p-kulkarni@ti.com>
33  *	Vaibhav Hiremath <hvaibhav@ti.com>
34  *	Mohit Jalori <mjalori@ti.com>
35  *	Sameer Venkatraman <sameerv@ti.com>
36  *	Senthilvadivu Guruswamy <svadivu@ti.com>
37  *	Thara Gopinath <thara@ti.com>
38  *	Toni Leinonen <toni.leinonen@nokia.com>
39  *	Troy Laramy <t-laramy@ti.com>
40  */
41 
42 #include <linux/clk.h>
43 #include <linux/clkdev.h>
44 #include <linux/delay.h>
45 #include <linux/device.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/i2c.h>
48 #include <linux/interrupt.h>
49 #include <linux/mfd/syscon.h>
50 #include <linux/module.h>
51 #include <linux/omap-iommu.h>
52 #include <linux/platform_device.h>
53 #include <linux/property.h>
54 #include <linux/regulator/consumer.h>
55 #include <linux/slab.h>
56 #include <linux/sched.h>
57 #include <linux/vmalloc.h>
58 
59 #ifdef CONFIG_ARM_DMA_USE_IOMMU
60 #include <asm/dma-iommu.h>
61 #endif
62 
63 #include <media/v4l2-common.h>
64 #include <media/v4l2-fwnode.h>
65 #include <media/v4l2-device.h>
66 #include <media/v4l2-mc.h>
67 
68 #include "isp.h"
69 #include "ispreg.h"
70 #include "ispccdc.h"
71 #include "isppreview.h"
72 #include "ispresizer.h"
73 #include "ispcsi2.h"
74 #include "ispccp2.h"
75 #include "isph3a.h"
76 #include "isphist.h"
77 
78 static unsigned int autoidle;
79 module_param(autoidle, int, 0444);
80 MODULE_PARM_DESC(autoidle, "Enable OMAP3ISP AUTOIDLE support");
81 
82 static void isp_save_ctx(struct isp_device *isp);
83 
84 static void isp_restore_ctx(struct isp_device *isp);
85 
86 static const struct isp_res_mapping isp_res_maps[] = {
87 	{
88 		.isp_rev = ISP_REVISION_2_0,
89 		.offset = {
90 			/* first MMIO area */
91 			0x0000, /* base, len 0x0070 */
92 			0x0400, /* ccp2, len 0x01f0 */
93 			0x0600, /* ccdc, len 0x00a8 */
94 			0x0a00, /* hist, len 0x0048 */
95 			0x0c00, /* h3a, len 0x0060 */
96 			0x0e00, /* preview, len 0x00a0 */
97 			0x1000, /* resizer, len 0x00ac */
98 			0x1200, /* sbl, len 0x00fc */
99 			/* second MMIO area */
100 			0x0000, /* csi2a, len 0x0170 */
101 			0x0170, /* csiphy2, len 0x000c */
102 		},
103 		.phy_type = ISP_PHY_TYPE_3430,
104 	},
105 	{
106 		.isp_rev = ISP_REVISION_15_0,
107 		.offset = {
108 			/* first MMIO area */
109 			0x0000, /* base, len 0x0070 */
110 			0x0400, /* ccp2, len 0x01f0 */
111 			0x0600, /* ccdc, len 0x00a8 */
112 			0x0a00, /* hist, len 0x0048 */
113 			0x0c00, /* h3a, len 0x0060 */
114 			0x0e00, /* preview, len 0x00a0 */
115 			0x1000, /* resizer, len 0x00ac */
116 			0x1200, /* sbl, len 0x00fc */
117 			/* second MMIO area */
118 			0x0000, /* csi2a, len 0x0170 (1st area) */
119 			0x0170, /* csiphy2, len 0x000c */
120 			0x01c0, /* csi2a, len 0x0040 (2nd area) */
121 			0x0400, /* csi2c, len 0x0170 (1st area) */
122 			0x0570, /* csiphy1, len 0x000c */
123 			0x05c0, /* csi2c, len 0x0040 (2nd area) */
124 		},
125 		.phy_type = ISP_PHY_TYPE_3630,
126 	},
127 };
128 
129 /* Structure for saving/restoring ISP module registers */
130 static struct isp_reg isp_reg_list[] = {
131 	{OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG, 0},
132 	{OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, 0},
133 	{OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL, 0},
134 	{0, ISP_TOK_TERM, 0}
135 };
136 
137 /*
138  * omap3isp_flush - Post pending L3 bus writes by doing a register readback
139  * @isp: OMAP3 ISP device
140  *
141  * In order to force posting of pending writes, we need to write and
142  * readback the same register, in this case the revision register.
143  *
144  * See this link for reference:
145  *   https://www.mail-archive.com/linux-omap@vger.kernel.org/msg08149.html
146  */
omap3isp_flush(struct isp_device * isp)147 void omap3isp_flush(struct isp_device *isp)
148 {
149 	isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
150 	isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
151 }
152 
153 /* -----------------------------------------------------------------------------
154  * XCLK
155  */
156 
157 #define to_isp_xclk(_hw)	container_of(_hw, struct isp_xclk, hw)
158 
isp_xclk_update(struct isp_xclk * xclk,u32 divider)159 static void isp_xclk_update(struct isp_xclk *xclk, u32 divider)
160 {
161 	switch (xclk->id) {
162 	case ISP_XCLK_A:
163 		isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
164 				ISPTCTRL_CTRL_DIVA_MASK,
165 				divider << ISPTCTRL_CTRL_DIVA_SHIFT);
166 		break;
167 	case ISP_XCLK_B:
168 		isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
169 				ISPTCTRL_CTRL_DIVB_MASK,
170 				divider << ISPTCTRL_CTRL_DIVB_SHIFT);
171 		break;
172 	}
173 }
174 
isp_xclk_prepare(struct clk_hw * hw)175 static int isp_xclk_prepare(struct clk_hw *hw)
176 {
177 	struct isp_xclk *xclk = to_isp_xclk(hw);
178 
179 	omap3isp_get(xclk->isp);
180 
181 	return 0;
182 }
183 
isp_xclk_unprepare(struct clk_hw * hw)184 static void isp_xclk_unprepare(struct clk_hw *hw)
185 {
186 	struct isp_xclk *xclk = to_isp_xclk(hw);
187 
188 	omap3isp_put(xclk->isp);
189 }
190 
isp_xclk_enable(struct clk_hw * hw)191 static int isp_xclk_enable(struct clk_hw *hw)
192 {
193 	struct isp_xclk *xclk = to_isp_xclk(hw);
194 	unsigned long flags;
195 
196 	spin_lock_irqsave(&xclk->lock, flags);
197 	isp_xclk_update(xclk, xclk->divider);
198 	xclk->enabled = true;
199 	spin_unlock_irqrestore(&xclk->lock, flags);
200 
201 	return 0;
202 }
203 
isp_xclk_disable(struct clk_hw * hw)204 static void isp_xclk_disable(struct clk_hw *hw)
205 {
206 	struct isp_xclk *xclk = to_isp_xclk(hw);
207 	unsigned long flags;
208 
209 	spin_lock_irqsave(&xclk->lock, flags);
210 	isp_xclk_update(xclk, 0);
211 	xclk->enabled = false;
212 	spin_unlock_irqrestore(&xclk->lock, flags);
213 }
214 
isp_xclk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)215 static unsigned long isp_xclk_recalc_rate(struct clk_hw *hw,
216 					  unsigned long parent_rate)
217 {
218 	struct isp_xclk *xclk = to_isp_xclk(hw);
219 
220 	return parent_rate / xclk->divider;
221 }
222 
isp_xclk_calc_divider(unsigned long * rate,unsigned long parent_rate)223 static u32 isp_xclk_calc_divider(unsigned long *rate, unsigned long parent_rate)
224 {
225 	u32 divider;
226 
227 	if (*rate >= parent_rate) {
228 		*rate = parent_rate;
229 		return ISPTCTRL_CTRL_DIV_BYPASS;
230 	}
231 
232 	if (*rate == 0)
233 		*rate = 1;
234 
235 	divider = DIV_ROUND_CLOSEST(parent_rate, *rate);
236 	if (divider >= ISPTCTRL_CTRL_DIV_BYPASS)
237 		divider = ISPTCTRL_CTRL_DIV_BYPASS - 1;
238 
239 	*rate = parent_rate / divider;
240 	return divider;
241 }
242 
isp_xclk_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)243 static long isp_xclk_round_rate(struct clk_hw *hw, unsigned long rate,
244 				unsigned long *parent_rate)
245 {
246 	isp_xclk_calc_divider(&rate, *parent_rate);
247 	return rate;
248 }
249 
isp_xclk_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)250 static int isp_xclk_set_rate(struct clk_hw *hw, unsigned long rate,
251 			     unsigned long parent_rate)
252 {
253 	struct isp_xclk *xclk = to_isp_xclk(hw);
254 	unsigned long flags;
255 	u32 divider;
256 
257 	divider = isp_xclk_calc_divider(&rate, parent_rate);
258 
259 	spin_lock_irqsave(&xclk->lock, flags);
260 
261 	xclk->divider = divider;
262 	if (xclk->enabled)
263 		isp_xclk_update(xclk, divider);
264 
265 	spin_unlock_irqrestore(&xclk->lock, flags);
266 
267 	dev_dbg(xclk->isp->dev, "%s: cam_xclk%c set to %lu Hz (div %u)\n",
268 		__func__, xclk->id == ISP_XCLK_A ? 'a' : 'b', rate, divider);
269 	return 0;
270 }
271 
272 static const struct clk_ops isp_xclk_ops = {
273 	.prepare = isp_xclk_prepare,
274 	.unprepare = isp_xclk_unprepare,
275 	.enable = isp_xclk_enable,
276 	.disable = isp_xclk_disable,
277 	.recalc_rate = isp_xclk_recalc_rate,
278 	.round_rate = isp_xclk_round_rate,
279 	.set_rate = isp_xclk_set_rate,
280 };
281 
282 static const char *isp_xclk_parent_name = "cam_mclk";
283 
isp_xclk_src_get(struct of_phandle_args * clkspec,void * data)284 static struct clk *isp_xclk_src_get(struct of_phandle_args *clkspec, void *data)
285 {
286 	unsigned int idx = clkspec->args[0];
287 	struct isp_device *isp = data;
288 
289 	if (idx >= ARRAY_SIZE(isp->xclks))
290 		return ERR_PTR(-ENOENT);
291 
292 	return isp->xclks[idx].clk;
293 }
294 
isp_xclk_init(struct isp_device * isp)295 static int isp_xclk_init(struct isp_device *isp)
296 {
297 	struct device_node *np = isp->dev->of_node;
298 	struct clk_init_data init = {};
299 	unsigned int i;
300 
301 	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i)
302 		isp->xclks[i].clk = ERR_PTR(-EINVAL);
303 
304 	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
305 		struct isp_xclk *xclk = &isp->xclks[i];
306 
307 		xclk->isp = isp;
308 		xclk->id = i == 0 ? ISP_XCLK_A : ISP_XCLK_B;
309 		xclk->divider = 1;
310 		spin_lock_init(&xclk->lock);
311 
312 		init.name = i == 0 ? "cam_xclka" : "cam_xclkb";
313 		init.ops = &isp_xclk_ops;
314 		init.parent_names = &isp_xclk_parent_name;
315 		init.num_parents = 1;
316 
317 		xclk->hw.init = &init;
318 		/*
319 		 * The first argument is NULL in order to avoid circular
320 		 * reference, as this driver takes reference on the
321 		 * sensor subdevice modules and the sensors would take
322 		 * reference on this module through clk_get().
323 		 */
324 		xclk->clk = clk_register(NULL, &xclk->hw);
325 		if (IS_ERR(xclk->clk))
326 			return PTR_ERR(xclk->clk);
327 	}
328 
329 	if (np)
330 		of_clk_add_provider(np, isp_xclk_src_get, isp);
331 
332 	return 0;
333 }
334 
isp_xclk_cleanup(struct isp_device * isp)335 static void isp_xclk_cleanup(struct isp_device *isp)
336 {
337 	struct device_node *np = isp->dev->of_node;
338 	unsigned int i;
339 
340 	if (np)
341 		of_clk_del_provider(np);
342 
343 	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
344 		struct isp_xclk *xclk = &isp->xclks[i];
345 
346 		if (!IS_ERR(xclk->clk))
347 			clk_unregister(xclk->clk);
348 	}
349 }
350 
351 /* -----------------------------------------------------------------------------
352  * Interrupts
353  */
354 
355 /*
356  * isp_enable_interrupts - Enable ISP interrupts.
357  * @isp: OMAP3 ISP device
358  */
isp_enable_interrupts(struct isp_device * isp)359 static void isp_enable_interrupts(struct isp_device *isp)
360 {
361 	static const u32 irq = IRQ0ENABLE_CSIA_IRQ
362 			     | IRQ0ENABLE_CSIB_IRQ
363 			     | IRQ0ENABLE_CCDC_LSC_PREF_ERR_IRQ
364 			     | IRQ0ENABLE_CCDC_LSC_DONE_IRQ
365 			     | IRQ0ENABLE_CCDC_VD0_IRQ
366 			     | IRQ0ENABLE_CCDC_VD1_IRQ
367 			     | IRQ0ENABLE_HS_VS_IRQ
368 			     | IRQ0ENABLE_HIST_DONE_IRQ
369 			     | IRQ0ENABLE_H3A_AWB_DONE_IRQ
370 			     | IRQ0ENABLE_H3A_AF_DONE_IRQ
371 			     | IRQ0ENABLE_PRV_DONE_IRQ
372 			     | IRQ0ENABLE_RSZ_DONE_IRQ;
373 
374 	isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
375 	isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
376 }
377 
378 /*
379  * isp_disable_interrupts - Disable ISP interrupts.
380  * @isp: OMAP3 ISP device
381  */
isp_disable_interrupts(struct isp_device * isp)382 static void isp_disable_interrupts(struct isp_device *isp)
383 {
384 	isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
385 }
386 
387 /*
388  * isp_core_init - ISP core settings
389  * @isp: OMAP3 ISP device
390  * @idle: Consider idle state.
391  *
392  * Set the power settings for the ISP and SBL bus and configure the HS/VS
393  * interrupt source.
394  *
395  * We need to configure the HS/VS interrupt source before interrupts get
396  * enabled, as the sensor might be free-running and the ISP default setting
397  * (HS edge) would put an unnecessary burden on the CPU.
398  */
isp_core_init(struct isp_device * isp,int idle)399 static void isp_core_init(struct isp_device *isp, int idle)
400 {
401 	isp_reg_writel(isp,
402 		       ((idle ? ISP_SYSCONFIG_MIDLEMODE_SMARTSTANDBY :
403 				ISP_SYSCONFIG_MIDLEMODE_FORCESTANDBY) <<
404 			ISP_SYSCONFIG_MIDLEMODE_SHIFT) |
405 			((isp->revision == ISP_REVISION_15_0) ?
406 			  ISP_SYSCONFIG_AUTOIDLE : 0),
407 		       OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
408 
409 	isp_reg_writel(isp,
410 		       (isp->autoidle ? ISPCTRL_SBL_AUTOIDLE : 0) |
411 		       ISPCTRL_SYNC_DETECT_VSRISE,
412 		       OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
413 }
414 
415 /*
416  * Configure the bridge and lane shifter. Valid inputs are
417  *
418  * CCDC_INPUT_PARALLEL: Parallel interface
419  * CCDC_INPUT_CSI2A: CSI2a receiver
420  * CCDC_INPUT_CCP2B: CCP2b receiver
421  * CCDC_INPUT_CSI2C: CSI2c receiver
422  *
423  * The bridge and lane shifter are configured according to the selected input
424  * and the ISP platform data.
425  */
omap3isp_configure_bridge(struct isp_device * isp,enum ccdc_input_entity input,const struct isp_parallel_cfg * parcfg,unsigned int shift,unsigned int bridge)426 void omap3isp_configure_bridge(struct isp_device *isp,
427 			       enum ccdc_input_entity input,
428 			       const struct isp_parallel_cfg *parcfg,
429 			       unsigned int shift, unsigned int bridge)
430 {
431 	u32 ispctrl_val;
432 
433 	ispctrl_val  = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
434 	ispctrl_val &= ~ISPCTRL_SHIFT_MASK;
435 	ispctrl_val &= ~ISPCTRL_PAR_CLK_POL_INV;
436 	ispctrl_val &= ~ISPCTRL_PAR_SER_CLK_SEL_MASK;
437 	ispctrl_val &= ~ISPCTRL_PAR_BRIDGE_MASK;
438 	ispctrl_val |= bridge;
439 
440 	switch (input) {
441 	case CCDC_INPUT_PARALLEL:
442 		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_PARALLEL;
443 		ispctrl_val |= parcfg->clk_pol << ISPCTRL_PAR_CLK_POL_SHIFT;
444 		shift += parcfg->data_lane_shift;
445 		break;
446 
447 	case CCDC_INPUT_CSI2A:
448 		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIA;
449 		break;
450 
451 	case CCDC_INPUT_CCP2B:
452 		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIB;
453 		break;
454 
455 	case CCDC_INPUT_CSI2C:
456 		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIC;
457 		break;
458 
459 	default:
460 		return;
461 	}
462 
463 	ispctrl_val |= ((shift/2) << ISPCTRL_SHIFT_SHIFT) & ISPCTRL_SHIFT_MASK;
464 
465 	isp_reg_writel(isp, ispctrl_val, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
466 }
467 
omap3isp_hist_dma_done(struct isp_device * isp)468 void omap3isp_hist_dma_done(struct isp_device *isp)
469 {
470 	if (omap3isp_ccdc_busy(&isp->isp_ccdc) ||
471 	    omap3isp_stat_pcr_busy(&isp->isp_hist)) {
472 		/* Histogram cannot be enabled in this frame anymore */
473 		atomic_set(&isp->isp_hist.buf_err, 1);
474 		dev_dbg(isp->dev,
475 			"hist: Out of synchronization with CCDC. Ignoring next buffer.\n");
476 	}
477 }
478 
isp_isr_dbg(struct isp_device * isp,u32 irqstatus)479 static inline void isp_isr_dbg(struct isp_device *isp, u32 irqstatus)
480 {
481 	static const char *name[] = {
482 		"CSIA_IRQ",
483 		"res1",
484 		"res2",
485 		"CSIB_LCM_IRQ",
486 		"CSIB_IRQ",
487 		"res5",
488 		"res6",
489 		"res7",
490 		"CCDC_VD0_IRQ",
491 		"CCDC_VD1_IRQ",
492 		"CCDC_VD2_IRQ",
493 		"CCDC_ERR_IRQ",
494 		"H3A_AF_DONE_IRQ",
495 		"H3A_AWB_DONE_IRQ",
496 		"res14",
497 		"res15",
498 		"HIST_DONE_IRQ",
499 		"CCDC_LSC_DONE",
500 		"CCDC_LSC_PREFETCH_COMPLETED",
501 		"CCDC_LSC_PREFETCH_ERROR",
502 		"PRV_DONE_IRQ",
503 		"CBUFF_IRQ",
504 		"res22",
505 		"res23",
506 		"RSZ_DONE_IRQ",
507 		"OVF_IRQ",
508 		"res26",
509 		"res27",
510 		"MMU_ERR_IRQ",
511 		"OCP_ERR_IRQ",
512 		"SEC_ERR_IRQ",
513 		"HS_VS_IRQ",
514 	};
515 	int i;
516 
517 	dev_dbg(isp->dev, "ISP IRQ: ");
518 
519 	for (i = 0; i < ARRAY_SIZE(name); i++) {
520 		if ((1 << i) & irqstatus)
521 			printk(KERN_CONT "%s ", name[i]);
522 	}
523 	printk(KERN_CONT "\n");
524 }
525 
isp_isr_sbl(struct isp_device * isp)526 static void isp_isr_sbl(struct isp_device *isp)
527 {
528 	struct device *dev = isp->dev;
529 	struct isp_pipeline *pipe;
530 	u32 sbl_pcr;
531 
532 	/*
533 	 * Handle shared buffer logic overflows for video buffers.
534 	 * ISPSBL_PCR_CCDCPRV_2_RSZ_OVF can be safely ignored.
535 	 */
536 	sbl_pcr = isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
537 	isp_reg_writel(isp, sbl_pcr, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
538 	sbl_pcr &= ~ISPSBL_PCR_CCDCPRV_2_RSZ_OVF;
539 
540 	if (sbl_pcr)
541 		dev_dbg(dev, "SBL overflow (PCR = 0x%08x)\n", sbl_pcr);
542 
543 	if (sbl_pcr & ISPSBL_PCR_CSIB_WBL_OVF) {
544 		pipe = to_isp_pipeline(&isp->isp_ccp2.subdev.entity);
545 		if (pipe != NULL)
546 			pipe->error = true;
547 	}
548 
549 	if (sbl_pcr & ISPSBL_PCR_CSIA_WBL_OVF) {
550 		pipe = to_isp_pipeline(&isp->isp_csi2a.subdev.entity);
551 		if (pipe != NULL)
552 			pipe->error = true;
553 	}
554 
555 	if (sbl_pcr & ISPSBL_PCR_CCDC_WBL_OVF) {
556 		pipe = to_isp_pipeline(&isp->isp_ccdc.subdev.entity);
557 		if (pipe != NULL)
558 			pipe->error = true;
559 	}
560 
561 	if (sbl_pcr & ISPSBL_PCR_PRV_WBL_OVF) {
562 		pipe = to_isp_pipeline(&isp->isp_prev.subdev.entity);
563 		if (pipe != NULL)
564 			pipe->error = true;
565 	}
566 
567 	if (sbl_pcr & (ISPSBL_PCR_RSZ1_WBL_OVF
568 		       | ISPSBL_PCR_RSZ2_WBL_OVF
569 		       | ISPSBL_PCR_RSZ3_WBL_OVF
570 		       | ISPSBL_PCR_RSZ4_WBL_OVF)) {
571 		pipe = to_isp_pipeline(&isp->isp_res.subdev.entity);
572 		if (pipe != NULL)
573 			pipe->error = true;
574 	}
575 
576 	if (sbl_pcr & ISPSBL_PCR_H3A_AF_WBL_OVF)
577 		omap3isp_stat_sbl_overflow(&isp->isp_af);
578 
579 	if (sbl_pcr & ISPSBL_PCR_H3A_AEAWB_WBL_OVF)
580 		omap3isp_stat_sbl_overflow(&isp->isp_aewb);
581 }
582 
583 /*
584  * isp_isr - Interrupt Service Routine for Camera ISP module.
585  * @irq: Not used currently.
586  * @_isp: Pointer to the OMAP3 ISP device
587  *
588  * Handles the corresponding callback if plugged in.
589  */
isp_isr(int irq,void * _isp)590 static irqreturn_t isp_isr(int irq, void *_isp)
591 {
592 	static const u32 ccdc_events = IRQ0STATUS_CCDC_LSC_PREF_ERR_IRQ |
593 				       IRQ0STATUS_CCDC_LSC_DONE_IRQ |
594 				       IRQ0STATUS_CCDC_VD0_IRQ |
595 				       IRQ0STATUS_CCDC_VD1_IRQ |
596 				       IRQ0STATUS_HS_VS_IRQ;
597 	struct isp_device *isp = _isp;
598 	u32 irqstatus;
599 
600 	irqstatus = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
601 	isp_reg_writel(isp, irqstatus, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
602 
603 	isp_isr_sbl(isp);
604 
605 	if (irqstatus & IRQ0STATUS_CSIA_IRQ)
606 		omap3isp_csi2_isr(&isp->isp_csi2a);
607 
608 	if (irqstatus & IRQ0STATUS_CSIB_IRQ)
609 		omap3isp_ccp2_isr(&isp->isp_ccp2);
610 
611 	if (irqstatus & IRQ0STATUS_CCDC_VD0_IRQ) {
612 		if (isp->isp_ccdc.output & CCDC_OUTPUT_PREVIEW)
613 			omap3isp_preview_isr_frame_sync(&isp->isp_prev);
614 		if (isp->isp_ccdc.output & CCDC_OUTPUT_RESIZER)
615 			omap3isp_resizer_isr_frame_sync(&isp->isp_res);
616 		omap3isp_stat_isr_frame_sync(&isp->isp_aewb);
617 		omap3isp_stat_isr_frame_sync(&isp->isp_af);
618 		omap3isp_stat_isr_frame_sync(&isp->isp_hist);
619 	}
620 
621 	if (irqstatus & ccdc_events)
622 		omap3isp_ccdc_isr(&isp->isp_ccdc, irqstatus & ccdc_events);
623 
624 	if (irqstatus & IRQ0STATUS_PRV_DONE_IRQ) {
625 		if (isp->isp_prev.output & PREVIEW_OUTPUT_RESIZER)
626 			omap3isp_resizer_isr_frame_sync(&isp->isp_res);
627 		omap3isp_preview_isr(&isp->isp_prev);
628 	}
629 
630 	if (irqstatus & IRQ0STATUS_RSZ_DONE_IRQ)
631 		omap3isp_resizer_isr(&isp->isp_res);
632 
633 	if (irqstatus & IRQ0STATUS_H3A_AWB_DONE_IRQ)
634 		omap3isp_stat_isr(&isp->isp_aewb);
635 
636 	if (irqstatus & IRQ0STATUS_H3A_AF_DONE_IRQ)
637 		omap3isp_stat_isr(&isp->isp_af);
638 
639 	if (irqstatus & IRQ0STATUS_HIST_DONE_IRQ)
640 		omap3isp_stat_isr(&isp->isp_hist);
641 
642 	omap3isp_flush(isp);
643 
644 #if defined(DEBUG) && defined(ISP_ISR_DEBUG)
645 	isp_isr_dbg(isp, irqstatus);
646 #endif
647 
648 	return IRQ_HANDLED;
649 }
650 
651 static const struct media_device_ops isp_media_ops = {
652 	.link_notify = v4l2_pipeline_link_notify,
653 };
654 
655 /* -----------------------------------------------------------------------------
656  * Pipeline stream management
657  */
658 
659 /*
660  * isp_pipeline_enable - Enable streaming on a pipeline
661  * @pipe: ISP pipeline
662  * @mode: Stream mode (single shot or continuous)
663  *
664  * Walk the entities chain starting at the pipeline output video node and start
665  * all modules in the chain in the given mode.
666  *
667  * Return 0 if successful, or the return value of the failed video::s_stream
668  * operation otherwise.
669  */
isp_pipeline_enable(struct isp_pipeline * pipe,enum isp_pipeline_stream_state mode)670 static int isp_pipeline_enable(struct isp_pipeline *pipe,
671 			       enum isp_pipeline_stream_state mode)
672 {
673 	struct isp_device *isp = pipe->output->isp;
674 	struct media_entity *entity;
675 	struct media_pad *pad;
676 	struct v4l2_subdev *subdev;
677 	unsigned long flags;
678 	int ret;
679 
680 	/* Refuse to start streaming if an entity included in the pipeline has
681 	 * crashed. This check must be performed before the loop below to avoid
682 	 * starting entities if the pipeline won't start anyway (those entities
683 	 * would then likely fail to stop, making the problem worse).
684 	 */
685 	if (media_entity_enum_intersects(&pipe->ent_enum, &isp->crashed))
686 		return -EIO;
687 
688 	spin_lock_irqsave(&pipe->lock, flags);
689 	pipe->state &= ~(ISP_PIPELINE_IDLE_INPUT | ISP_PIPELINE_IDLE_OUTPUT);
690 	spin_unlock_irqrestore(&pipe->lock, flags);
691 
692 	pipe->do_propagation = false;
693 
694 	entity = &pipe->output->video.entity;
695 	while (1) {
696 		pad = &entity->pads[0];
697 		if (!(pad->flags & MEDIA_PAD_FL_SINK))
698 			break;
699 
700 		pad = media_entity_remote_pad(pad);
701 		if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
702 			break;
703 
704 		entity = pad->entity;
705 		subdev = media_entity_to_v4l2_subdev(entity);
706 
707 		ret = v4l2_subdev_call(subdev, video, s_stream, mode);
708 		if (ret < 0 && ret != -ENOIOCTLCMD)
709 			return ret;
710 
711 		if (subdev == &isp->isp_ccdc.subdev) {
712 			v4l2_subdev_call(&isp->isp_aewb.subdev, video,
713 					s_stream, mode);
714 			v4l2_subdev_call(&isp->isp_af.subdev, video,
715 					s_stream, mode);
716 			v4l2_subdev_call(&isp->isp_hist.subdev, video,
717 					s_stream, mode);
718 			pipe->do_propagation = true;
719 		}
720 
721 		/* Stop at the first external sub-device. */
722 		if (subdev->dev != isp->dev)
723 			break;
724 	}
725 
726 	return 0;
727 }
728 
isp_pipeline_wait_resizer(struct isp_device * isp)729 static int isp_pipeline_wait_resizer(struct isp_device *isp)
730 {
731 	return omap3isp_resizer_busy(&isp->isp_res);
732 }
733 
isp_pipeline_wait_preview(struct isp_device * isp)734 static int isp_pipeline_wait_preview(struct isp_device *isp)
735 {
736 	return omap3isp_preview_busy(&isp->isp_prev);
737 }
738 
isp_pipeline_wait_ccdc(struct isp_device * isp)739 static int isp_pipeline_wait_ccdc(struct isp_device *isp)
740 {
741 	return omap3isp_stat_busy(&isp->isp_af)
742 	    || omap3isp_stat_busy(&isp->isp_aewb)
743 	    || omap3isp_stat_busy(&isp->isp_hist)
744 	    || omap3isp_ccdc_busy(&isp->isp_ccdc);
745 }
746 
747 #define ISP_STOP_TIMEOUT	msecs_to_jiffies(1000)
748 
isp_pipeline_wait(struct isp_device * isp,int (* busy)(struct isp_device * isp))749 static int isp_pipeline_wait(struct isp_device *isp,
750 			     int(*busy)(struct isp_device *isp))
751 {
752 	unsigned long timeout = jiffies + ISP_STOP_TIMEOUT;
753 
754 	while (!time_after(jiffies, timeout)) {
755 		if (!busy(isp))
756 			return 0;
757 	}
758 
759 	return 1;
760 }
761 
762 /*
763  * isp_pipeline_disable - Disable streaming on a pipeline
764  * @pipe: ISP pipeline
765  *
766  * Walk the entities chain starting at the pipeline output video node and stop
767  * all modules in the chain. Wait synchronously for the modules to be stopped if
768  * necessary.
769  *
770  * Return 0 if all modules have been properly stopped, or -ETIMEDOUT if a module
771  * can't be stopped (in which case a software reset of the ISP is probably
772  * necessary).
773  */
isp_pipeline_disable(struct isp_pipeline * pipe)774 static int isp_pipeline_disable(struct isp_pipeline *pipe)
775 {
776 	struct isp_device *isp = pipe->output->isp;
777 	struct media_entity *entity;
778 	struct media_pad *pad;
779 	struct v4l2_subdev *subdev;
780 	int failure = 0;
781 	int ret;
782 
783 	/*
784 	 * We need to stop all the modules after CCDC first or they'll
785 	 * never stop since they may not get a full frame from CCDC.
786 	 */
787 	entity = &pipe->output->video.entity;
788 	while (1) {
789 		pad = &entity->pads[0];
790 		if (!(pad->flags & MEDIA_PAD_FL_SINK))
791 			break;
792 
793 		pad = media_entity_remote_pad(pad);
794 		if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
795 			break;
796 
797 		entity = pad->entity;
798 		subdev = media_entity_to_v4l2_subdev(entity);
799 
800 		if (subdev == &isp->isp_ccdc.subdev) {
801 			v4l2_subdev_call(&isp->isp_aewb.subdev,
802 					 video, s_stream, 0);
803 			v4l2_subdev_call(&isp->isp_af.subdev,
804 					 video, s_stream, 0);
805 			v4l2_subdev_call(&isp->isp_hist.subdev,
806 					 video, s_stream, 0);
807 		}
808 
809 		ret = v4l2_subdev_call(subdev, video, s_stream, 0);
810 
811 		/* Stop at the first external sub-device. */
812 		if (subdev->dev != isp->dev)
813 			break;
814 
815 		if (subdev == &isp->isp_res.subdev)
816 			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_resizer);
817 		else if (subdev == &isp->isp_prev.subdev)
818 			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_preview);
819 		else if (subdev == &isp->isp_ccdc.subdev)
820 			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_ccdc);
821 
822 		/* Handle stop failures. An entity that fails to stop can
823 		 * usually just be restarted. Flag the stop failure nonetheless
824 		 * to trigger an ISP reset the next time the device is released,
825 		 * just in case.
826 		 *
827 		 * The preview engine is a special case. A failure to stop can
828 		 * mean a hardware crash. When that happens the preview engine
829 		 * won't respond to read/write operations on the L4 bus anymore,
830 		 * resulting in a bus fault and a kernel oops next time it gets
831 		 * accessed. Mark it as crashed to prevent pipelines including
832 		 * it from being started.
833 		 */
834 		if (ret) {
835 			dev_info(isp->dev, "Unable to stop %s\n", subdev->name);
836 			isp->stop_failure = true;
837 			if (subdev == &isp->isp_prev.subdev)
838 				media_entity_enum_set(&isp->crashed,
839 						      &subdev->entity);
840 			failure = -ETIMEDOUT;
841 		}
842 	}
843 
844 	return failure;
845 }
846 
847 /*
848  * omap3isp_pipeline_set_stream - Enable/disable streaming on a pipeline
849  * @pipe: ISP pipeline
850  * @state: Stream state (stopped, single shot or continuous)
851  *
852  * Set the pipeline to the given stream state. Pipelines can be started in
853  * single-shot or continuous mode.
854  *
855  * Return 0 if successful, or the return value of the failed video::s_stream
856  * operation otherwise. The pipeline state is not updated when the operation
857  * fails, except when stopping the pipeline.
858  */
omap3isp_pipeline_set_stream(struct isp_pipeline * pipe,enum isp_pipeline_stream_state state)859 int omap3isp_pipeline_set_stream(struct isp_pipeline *pipe,
860 				 enum isp_pipeline_stream_state state)
861 {
862 	int ret;
863 
864 	if (state == ISP_PIPELINE_STREAM_STOPPED)
865 		ret = isp_pipeline_disable(pipe);
866 	else
867 		ret = isp_pipeline_enable(pipe, state);
868 
869 	if (ret == 0 || state == ISP_PIPELINE_STREAM_STOPPED)
870 		pipe->stream_state = state;
871 
872 	return ret;
873 }
874 
875 /*
876  * omap3isp_pipeline_cancel_stream - Cancel stream on a pipeline
877  * @pipe: ISP pipeline
878  *
879  * Cancelling a stream mark all buffers on all video nodes in the pipeline as
880  * erroneous and makes sure no new buffer can be queued. This function is called
881  * when a fatal error that prevents any further operation on the pipeline
882  * occurs.
883  */
omap3isp_pipeline_cancel_stream(struct isp_pipeline * pipe)884 void omap3isp_pipeline_cancel_stream(struct isp_pipeline *pipe)
885 {
886 	if (pipe->input)
887 		omap3isp_video_cancel_stream(pipe->input);
888 	if (pipe->output)
889 		omap3isp_video_cancel_stream(pipe->output);
890 }
891 
892 /*
893  * isp_pipeline_resume - Resume streaming on a pipeline
894  * @pipe: ISP pipeline
895  *
896  * Resume video output and input and re-enable pipeline.
897  */
isp_pipeline_resume(struct isp_pipeline * pipe)898 static void isp_pipeline_resume(struct isp_pipeline *pipe)
899 {
900 	int singleshot = pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT;
901 
902 	omap3isp_video_resume(pipe->output, !singleshot);
903 	if (singleshot)
904 		omap3isp_video_resume(pipe->input, 0);
905 	isp_pipeline_enable(pipe, pipe->stream_state);
906 }
907 
908 /*
909  * isp_pipeline_suspend - Suspend streaming on a pipeline
910  * @pipe: ISP pipeline
911  *
912  * Suspend pipeline.
913  */
isp_pipeline_suspend(struct isp_pipeline * pipe)914 static void isp_pipeline_suspend(struct isp_pipeline *pipe)
915 {
916 	isp_pipeline_disable(pipe);
917 }
918 
919 /*
920  * isp_pipeline_is_last - Verify if entity has an enabled link to the output
921  *			  video node
922  * @me: ISP module's media entity
923  *
924  * Returns 1 if the entity has an enabled link to the output video node or 0
925  * otherwise. It's true only while pipeline can have no more than one output
926  * node.
927  */
isp_pipeline_is_last(struct media_entity * me)928 static int isp_pipeline_is_last(struct media_entity *me)
929 {
930 	struct isp_pipeline *pipe;
931 	struct media_pad *pad;
932 
933 	if (!me->pipe)
934 		return 0;
935 	pipe = to_isp_pipeline(me);
936 	if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED)
937 		return 0;
938 	pad = media_entity_remote_pad(&pipe->output->pad);
939 	return pad->entity == me;
940 }
941 
942 /*
943  * isp_suspend_module_pipeline - Suspend pipeline to which belongs the module
944  * @me: ISP module's media entity
945  *
946  * Suspend the whole pipeline if module's entity has an enabled link to the
947  * output video node. It works only while pipeline can have no more than one
948  * output node.
949  */
isp_suspend_module_pipeline(struct media_entity * me)950 static void isp_suspend_module_pipeline(struct media_entity *me)
951 {
952 	if (isp_pipeline_is_last(me))
953 		isp_pipeline_suspend(to_isp_pipeline(me));
954 }
955 
956 /*
957  * isp_resume_module_pipeline - Resume pipeline to which belongs the module
958  * @me: ISP module's media entity
959  *
960  * Resume the whole pipeline if module's entity has an enabled link to the
961  * output video node. It works only while pipeline can have no more than one
962  * output node.
963  */
isp_resume_module_pipeline(struct media_entity * me)964 static void isp_resume_module_pipeline(struct media_entity *me)
965 {
966 	if (isp_pipeline_is_last(me))
967 		isp_pipeline_resume(to_isp_pipeline(me));
968 }
969 
970 /*
971  * isp_suspend_modules - Suspend ISP submodules.
972  * @isp: OMAP3 ISP device
973  *
974  * Returns 0 if suspend left in idle state all the submodules properly,
975  * or returns 1 if a general Reset is required to suspend the submodules.
976  */
isp_suspend_modules(struct isp_device * isp)977 static int __maybe_unused isp_suspend_modules(struct isp_device *isp)
978 {
979 	unsigned long timeout;
980 
981 	omap3isp_stat_suspend(&isp->isp_aewb);
982 	omap3isp_stat_suspend(&isp->isp_af);
983 	omap3isp_stat_suspend(&isp->isp_hist);
984 	isp_suspend_module_pipeline(&isp->isp_res.subdev.entity);
985 	isp_suspend_module_pipeline(&isp->isp_prev.subdev.entity);
986 	isp_suspend_module_pipeline(&isp->isp_ccdc.subdev.entity);
987 	isp_suspend_module_pipeline(&isp->isp_csi2a.subdev.entity);
988 	isp_suspend_module_pipeline(&isp->isp_ccp2.subdev.entity);
989 
990 	timeout = jiffies + ISP_STOP_TIMEOUT;
991 	while (omap3isp_stat_busy(&isp->isp_af)
992 	    || omap3isp_stat_busy(&isp->isp_aewb)
993 	    || omap3isp_stat_busy(&isp->isp_hist)
994 	    || omap3isp_preview_busy(&isp->isp_prev)
995 	    || omap3isp_resizer_busy(&isp->isp_res)
996 	    || omap3isp_ccdc_busy(&isp->isp_ccdc)) {
997 		if (time_after(jiffies, timeout)) {
998 			dev_info(isp->dev, "can't stop modules.\n");
999 			return 1;
1000 		}
1001 		msleep(1);
1002 	}
1003 
1004 	return 0;
1005 }
1006 
1007 /*
1008  * isp_resume_modules - Resume ISP submodules.
1009  * @isp: OMAP3 ISP device
1010  */
isp_resume_modules(struct isp_device * isp)1011 static void __maybe_unused isp_resume_modules(struct isp_device *isp)
1012 {
1013 	omap3isp_stat_resume(&isp->isp_aewb);
1014 	omap3isp_stat_resume(&isp->isp_af);
1015 	omap3isp_stat_resume(&isp->isp_hist);
1016 	isp_resume_module_pipeline(&isp->isp_res.subdev.entity);
1017 	isp_resume_module_pipeline(&isp->isp_prev.subdev.entity);
1018 	isp_resume_module_pipeline(&isp->isp_ccdc.subdev.entity);
1019 	isp_resume_module_pipeline(&isp->isp_csi2a.subdev.entity);
1020 	isp_resume_module_pipeline(&isp->isp_ccp2.subdev.entity);
1021 }
1022 
1023 /*
1024  * isp_reset - Reset ISP with a timeout wait for idle.
1025  * @isp: OMAP3 ISP device
1026  */
isp_reset(struct isp_device * isp)1027 static int isp_reset(struct isp_device *isp)
1028 {
1029 	unsigned long timeout = 0;
1030 
1031 	isp_reg_writel(isp,
1032 		       isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG)
1033 		       | ISP_SYSCONFIG_SOFTRESET,
1034 		       OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
1035 	while (!(isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN,
1036 			       ISP_SYSSTATUS) & 0x1)) {
1037 		if (timeout++ > 10000) {
1038 			dev_alert(isp->dev, "cannot reset ISP\n");
1039 			return -ETIMEDOUT;
1040 		}
1041 		udelay(1);
1042 	}
1043 
1044 	isp->stop_failure = false;
1045 	media_entity_enum_zero(&isp->crashed);
1046 	return 0;
1047 }
1048 
1049 /*
1050  * isp_save_context - Saves the values of the ISP module registers.
1051  * @isp: OMAP3 ISP device
1052  * @reg_list: Structure containing pairs of register address and value to
1053  *            modify on OMAP.
1054  */
1055 static void
isp_save_context(struct isp_device * isp,struct isp_reg * reg_list)1056 isp_save_context(struct isp_device *isp, struct isp_reg *reg_list)
1057 {
1058 	struct isp_reg *next = reg_list;
1059 
1060 	for (; next->reg != ISP_TOK_TERM; next++)
1061 		next->val = isp_reg_readl(isp, next->mmio_range, next->reg);
1062 }
1063 
1064 /*
1065  * isp_restore_context - Restores the values of the ISP module registers.
1066  * @isp: OMAP3 ISP device
1067  * @reg_list: Structure containing pairs of register address and value to
1068  *            modify on OMAP.
1069  */
1070 static void
isp_restore_context(struct isp_device * isp,struct isp_reg * reg_list)1071 isp_restore_context(struct isp_device *isp, struct isp_reg *reg_list)
1072 {
1073 	struct isp_reg *next = reg_list;
1074 
1075 	for (; next->reg != ISP_TOK_TERM; next++)
1076 		isp_reg_writel(isp, next->val, next->mmio_range, next->reg);
1077 }
1078 
1079 /*
1080  * isp_save_ctx - Saves ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1081  * @isp: OMAP3 ISP device
1082  *
1083  * Routine for saving the context of each module in the ISP.
1084  * CCDC, HIST, H3A, PREV, RESZ and MMU.
1085  */
isp_save_ctx(struct isp_device * isp)1086 static void isp_save_ctx(struct isp_device *isp)
1087 {
1088 	isp_save_context(isp, isp_reg_list);
1089 	omap_iommu_save_ctx(isp->dev);
1090 }
1091 
1092 /*
1093  * isp_restore_ctx - Restores ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1094  * @isp: OMAP3 ISP device
1095  *
1096  * Routine for restoring the context of each module in the ISP.
1097  * CCDC, HIST, H3A, PREV, RESZ and MMU.
1098  */
isp_restore_ctx(struct isp_device * isp)1099 static void isp_restore_ctx(struct isp_device *isp)
1100 {
1101 	isp_restore_context(isp, isp_reg_list);
1102 	omap_iommu_restore_ctx(isp->dev);
1103 	omap3isp_ccdc_restore_context(isp);
1104 	omap3isp_preview_restore_context(isp);
1105 }
1106 
1107 /* -----------------------------------------------------------------------------
1108  * SBL resources management
1109  */
1110 #define OMAP3_ISP_SBL_READ	(OMAP3_ISP_SBL_CSI1_READ | \
1111 				 OMAP3_ISP_SBL_CCDC_LSC_READ | \
1112 				 OMAP3_ISP_SBL_PREVIEW_READ | \
1113 				 OMAP3_ISP_SBL_RESIZER_READ)
1114 #define OMAP3_ISP_SBL_WRITE	(OMAP3_ISP_SBL_CSI1_WRITE | \
1115 				 OMAP3_ISP_SBL_CSI2A_WRITE | \
1116 				 OMAP3_ISP_SBL_CSI2C_WRITE | \
1117 				 OMAP3_ISP_SBL_CCDC_WRITE | \
1118 				 OMAP3_ISP_SBL_PREVIEW_WRITE)
1119 
omap3isp_sbl_enable(struct isp_device * isp,enum isp_sbl_resource res)1120 void omap3isp_sbl_enable(struct isp_device *isp, enum isp_sbl_resource res)
1121 {
1122 	u32 sbl = 0;
1123 
1124 	isp->sbl_resources |= res;
1125 
1126 	if (isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ)
1127 		sbl |= ISPCTRL_SBL_SHARED_RPORTA;
1128 
1129 	if (isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ)
1130 		sbl |= ISPCTRL_SBL_SHARED_RPORTB;
1131 
1132 	if (isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE)
1133 		sbl |= ISPCTRL_SBL_SHARED_WPORTC;
1134 
1135 	if (isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE)
1136 		sbl |= ISPCTRL_SBL_WR0_RAM_EN;
1137 
1138 	if (isp->sbl_resources & OMAP3_ISP_SBL_WRITE)
1139 		sbl |= ISPCTRL_SBL_WR1_RAM_EN;
1140 
1141 	if (isp->sbl_resources & OMAP3_ISP_SBL_READ)
1142 		sbl |= ISPCTRL_SBL_RD_RAM_EN;
1143 
1144 	isp_reg_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
1145 }
1146 
omap3isp_sbl_disable(struct isp_device * isp,enum isp_sbl_resource res)1147 void omap3isp_sbl_disable(struct isp_device *isp, enum isp_sbl_resource res)
1148 {
1149 	u32 sbl = 0;
1150 
1151 	isp->sbl_resources &= ~res;
1152 
1153 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ))
1154 		sbl |= ISPCTRL_SBL_SHARED_RPORTA;
1155 
1156 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ))
1157 		sbl |= ISPCTRL_SBL_SHARED_RPORTB;
1158 
1159 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE))
1160 		sbl |= ISPCTRL_SBL_SHARED_WPORTC;
1161 
1162 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE))
1163 		sbl |= ISPCTRL_SBL_WR0_RAM_EN;
1164 
1165 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_WRITE))
1166 		sbl |= ISPCTRL_SBL_WR1_RAM_EN;
1167 
1168 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_READ))
1169 		sbl |= ISPCTRL_SBL_RD_RAM_EN;
1170 
1171 	isp_reg_clr(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
1172 }
1173 
1174 /*
1175  * isp_module_sync_idle - Helper to sync module with its idle state
1176  * @me: ISP submodule's media entity
1177  * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1178  * @stopping: flag which tells module wants to stop
1179  *
1180  * This function checks if ISP submodule needs to wait for next interrupt. If
1181  * yes, makes the caller to sleep while waiting for such event.
1182  */
omap3isp_module_sync_idle(struct media_entity * me,wait_queue_head_t * wait,atomic_t * stopping)1183 int omap3isp_module_sync_idle(struct media_entity *me, wait_queue_head_t *wait,
1184 			      atomic_t *stopping)
1185 {
1186 	struct isp_pipeline *pipe = to_isp_pipeline(me);
1187 
1188 	if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED ||
1189 	    (pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT &&
1190 	     !isp_pipeline_ready(pipe)))
1191 		return 0;
1192 
1193 	/*
1194 	 * atomic_set() doesn't include memory barrier on ARM platform for SMP
1195 	 * scenario. We'll call it here to avoid race conditions.
1196 	 */
1197 	atomic_set(stopping, 1);
1198 	smp_mb();
1199 
1200 	/*
1201 	 * If module is the last one, it's writing to memory. In this case,
1202 	 * it's necessary to check if the module is already paused due to
1203 	 * DMA queue underrun or if it has to wait for next interrupt to be
1204 	 * idle.
1205 	 * If it isn't the last one, the function won't sleep but *stopping
1206 	 * will still be set to warn next submodule caller's interrupt the
1207 	 * module wants to be idle.
1208 	 */
1209 	if (isp_pipeline_is_last(me)) {
1210 		struct isp_video *video = pipe->output;
1211 		unsigned long flags;
1212 		spin_lock_irqsave(&video->irqlock, flags);
1213 		if (video->dmaqueue_flags & ISP_VIDEO_DMAQUEUE_UNDERRUN) {
1214 			spin_unlock_irqrestore(&video->irqlock, flags);
1215 			atomic_set(stopping, 0);
1216 			smp_mb();
1217 			return 0;
1218 		}
1219 		spin_unlock_irqrestore(&video->irqlock, flags);
1220 		if (!wait_event_timeout(*wait, !atomic_read(stopping),
1221 					msecs_to_jiffies(1000))) {
1222 			atomic_set(stopping, 0);
1223 			smp_mb();
1224 			return -ETIMEDOUT;
1225 		}
1226 	}
1227 
1228 	return 0;
1229 }
1230 
1231 /*
1232  * omap3isp_module_sync_is_stopping - Helper to verify if module was stopping
1233  * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1234  * @stopping: flag which tells module wants to stop
1235  *
1236  * This function checks if ISP submodule was stopping. In case of yes, it
1237  * notices the caller by setting stopping to 0 and waking up the wait queue.
1238  * Returns 1 if it was stopping or 0 otherwise.
1239  */
omap3isp_module_sync_is_stopping(wait_queue_head_t * wait,atomic_t * stopping)1240 int omap3isp_module_sync_is_stopping(wait_queue_head_t *wait,
1241 				     atomic_t *stopping)
1242 {
1243 	if (atomic_cmpxchg(stopping, 1, 0)) {
1244 		wake_up(wait);
1245 		return 1;
1246 	}
1247 
1248 	return 0;
1249 }
1250 
1251 /* --------------------------------------------------------------------------
1252  * Clock management
1253  */
1254 
1255 #define ISPCTRL_CLKS_MASK	(ISPCTRL_H3A_CLK_EN | \
1256 				 ISPCTRL_HIST_CLK_EN | \
1257 				 ISPCTRL_RSZ_CLK_EN | \
1258 				 (ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN) | \
1259 				 (ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN))
1260 
__isp_subclk_update(struct isp_device * isp)1261 static void __isp_subclk_update(struct isp_device *isp)
1262 {
1263 	u32 clk = 0;
1264 
1265 	/* AEWB and AF share the same clock. */
1266 	if (isp->subclk_resources &
1267 	    (OMAP3_ISP_SUBCLK_AEWB | OMAP3_ISP_SUBCLK_AF))
1268 		clk |= ISPCTRL_H3A_CLK_EN;
1269 
1270 	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_HIST)
1271 		clk |= ISPCTRL_HIST_CLK_EN;
1272 
1273 	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_RESIZER)
1274 		clk |= ISPCTRL_RSZ_CLK_EN;
1275 
1276 	/* NOTE: For CCDC & Preview submodules, we need to affect internal
1277 	 *       RAM as well.
1278 	 */
1279 	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_CCDC)
1280 		clk |= ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN;
1281 
1282 	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_PREVIEW)
1283 		clk |= ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN;
1284 
1285 	isp_reg_clr_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL,
1286 			ISPCTRL_CLKS_MASK, clk);
1287 }
1288 
omap3isp_subclk_enable(struct isp_device * isp,enum isp_subclk_resource res)1289 void omap3isp_subclk_enable(struct isp_device *isp,
1290 			    enum isp_subclk_resource res)
1291 {
1292 	isp->subclk_resources |= res;
1293 
1294 	__isp_subclk_update(isp);
1295 }
1296 
omap3isp_subclk_disable(struct isp_device * isp,enum isp_subclk_resource res)1297 void omap3isp_subclk_disable(struct isp_device *isp,
1298 			     enum isp_subclk_resource res)
1299 {
1300 	isp->subclk_resources &= ~res;
1301 
1302 	__isp_subclk_update(isp);
1303 }
1304 
1305 /*
1306  * isp_enable_clocks - Enable ISP clocks
1307  * @isp: OMAP3 ISP device
1308  *
1309  * Return 0 if successful, or clk_prepare_enable return value if any of them
1310  * fails.
1311  */
isp_enable_clocks(struct isp_device * isp)1312 static int isp_enable_clocks(struct isp_device *isp)
1313 {
1314 	int r;
1315 	unsigned long rate;
1316 
1317 	r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_ICK]);
1318 	if (r) {
1319 		dev_err(isp->dev, "failed to enable cam_ick clock\n");
1320 		goto out_clk_enable_ick;
1321 	}
1322 	r = clk_set_rate(isp->clock[ISP_CLK_CAM_MCLK], CM_CAM_MCLK_HZ);
1323 	if (r) {
1324 		dev_err(isp->dev, "clk_set_rate for cam_mclk failed\n");
1325 		goto out_clk_enable_mclk;
1326 	}
1327 	r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_MCLK]);
1328 	if (r) {
1329 		dev_err(isp->dev, "failed to enable cam_mclk clock\n");
1330 		goto out_clk_enable_mclk;
1331 	}
1332 	rate = clk_get_rate(isp->clock[ISP_CLK_CAM_MCLK]);
1333 	if (rate != CM_CAM_MCLK_HZ)
1334 		dev_warn(isp->dev, "unexpected cam_mclk rate:\n"
1335 				   " expected : %d\n"
1336 				   " actual   : %ld\n", CM_CAM_MCLK_HZ, rate);
1337 	r = clk_prepare_enable(isp->clock[ISP_CLK_CSI2_FCK]);
1338 	if (r) {
1339 		dev_err(isp->dev, "failed to enable csi2_fck clock\n");
1340 		goto out_clk_enable_csi2_fclk;
1341 	}
1342 	return 0;
1343 
1344 out_clk_enable_csi2_fclk:
1345 	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
1346 out_clk_enable_mclk:
1347 	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
1348 out_clk_enable_ick:
1349 	return r;
1350 }
1351 
1352 /*
1353  * isp_disable_clocks - Disable ISP clocks
1354  * @isp: OMAP3 ISP device
1355  */
isp_disable_clocks(struct isp_device * isp)1356 static void isp_disable_clocks(struct isp_device *isp)
1357 {
1358 	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
1359 	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
1360 	clk_disable_unprepare(isp->clock[ISP_CLK_CSI2_FCK]);
1361 }
1362 
1363 static const char *isp_clocks[] = {
1364 	"cam_ick",
1365 	"cam_mclk",
1366 	"csi2_96m_fck",
1367 	"l3_ick",
1368 };
1369 
isp_get_clocks(struct isp_device * isp)1370 static int isp_get_clocks(struct isp_device *isp)
1371 {
1372 	struct clk *clk;
1373 	unsigned int i;
1374 
1375 	for (i = 0; i < ARRAY_SIZE(isp_clocks); ++i) {
1376 		clk = devm_clk_get(isp->dev, isp_clocks[i]);
1377 		if (IS_ERR(clk)) {
1378 			dev_err(isp->dev, "clk_get %s failed\n", isp_clocks[i]);
1379 			return PTR_ERR(clk);
1380 		}
1381 
1382 		isp->clock[i] = clk;
1383 	}
1384 
1385 	return 0;
1386 }
1387 
1388 /*
1389  * omap3isp_get - Acquire the ISP resource.
1390  *
1391  * Initializes the clocks for the first acquire.
1392  *
1393  * Increment the reference count on the ISP. If the first reference is taken,
1394  * enable clocks and power-up all submodules.
1395  *
1396  * Return a pointer to the ISP device structure, or NULL if an error occurred.
1397  */
__omap3isp_get(struct isp_device * isp,bool irq)1398 static struct isp_device *__omap3isp_get(struct isp_device *isp, bool irq)
1399 {
1400 	struct isp_device *__isp = isp;
1401 
1402 	if (isp == NULL)
1403 		return NULL;
1404 
1405 	mutex_lock(&isp->isp_mutex);
1406 	if (isp->ref_count > 0)
1407 		goto out;
1408 
1409 	if (isp_enable_clocks(isp) < 0) {
1410 		__isp = NULL;
1411 		goto out;
1412 	}
1413 
1414 	/* We don't want to restore context before saving it! */
1415 	if (isp->has_context)
1416 		isp_restore_ctx(isp);
1417 
1418 	if (irq)
1419 		isp_enable_interrupts(isp);
1420 
1421 out:
1422 	if (__isp != NULL)
1423 		isp->ref_count++;
1424 	mutex_unlock(&isp->isp_mutex);
1425 
1426 	return __isp;
1427 }
1428 
omap3isp_get(struct isp_device * isp)1429 struct isp_device *omap3isp_get(struct isp_device *isp)
1430 {
1431 	return __omap3isp_get(isp, true);
1432 }
1433 
1434 /*
1435  * omap3isp_put - Release the ISP
1436  *
1437  * Decrement the reference count on the ISP. If the last reference is released,
1438  * power-down all submodules, disable clocks and free temporary buffers.
1439  */
__omap3isp_put(struct isp_device * isp,bool save_ctx)1440 static void __omap3isp_put(struct isp_device *isp, bool save_ctx)
1441 {
1442 	if (isp == NULL)
1443 		return;
1444 
1445 	mutex_lock(&isp->isp_mutex);
1446 	BUG_ON(isp->ref_count == 0);
1447 	if (--isp->ref_count == 0) {
1448 		isp_disable_interrupts(isp);
1449 		if (save_ctx) {
1450 			isp_save_ctx(isp);
1451 			isp->has_context = 1;
1452 		}
1453 		/* Reset the ISP if an entity has failed to stop. This is the
1454 		 * only way to recover from such conditions.
1455 		 */
1456 		if (!media_entity_enum_empty(&isp->crashed) ||
1457 		    isp->stop_failure)
1458 			isp_reset(isp);
1459 		isp_disable_clocks(isp);
1460 	}
1461 	mutex_unlock(&isp->isp_mutex);
1462 }
1463 
omap3isp_put(struct isp_device * isp)1464 void omap3isp_put(struct isp_device *isp)
1465 {
1466 	__omap3isp_put(isp, true);
1467 }
1468 
1469 /* --------------------------------------------------------------------------
1470  * Platform device driver
1471  */
1472 
1473 /*
1474  * omap3isp_print_status - Prints the values of the ISP Control Module registers
1475  * @isp: OMAP3 ISP device
1476  */
1477 #define ISP_PRINT_REGISTER(isp, name)\
1478 	dev_dbg(isp->dev, "###ISP " #name "=0x%08x\n", \
1479 		isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_##name))
1480 #define SBL_PRINT_REGISTER(isp, name)\
1481 	dev_dbg(isp->dev, "###SBL " #name "=0x%08x\n", \
1482 		isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_##name))
1483 
omap3isp_print_status(struct isp_device * isp)1484 void omap3isp_print_status(struct isp_device *isp)
1485 {
1486 	dev_dbg(isp->dev, "-------------ISP Register dump--------------\n");
1487 
1488 	ISP_PRINT_REGISTER(isp, SYSCONFIG);
1489 	ISP_PRINT_REGISTER(isp, SYSSTATUS);
1490 	ISP_PRINT_REGISTER(isp, IRQ0ENABLE);
1491 	ISP_PRINT_REGISTER(isp, IRQ0STATUS);
1492 	ISP_PRINT_REGISTER(isp, TCTRL_GRESET_LENGTH);
1493 	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_REPLAY);
1494 	ISP_PRINT_REGISTER(isp, CTRL);
1495 	ISP_PRINT_REGISTER(isp, TCTRL_CTRL);
1496 	ISP_PRINT_REGISTER(isp, TCTRL_FRAME);
1497 	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_DELAY);
1498 	ISP_PRINT_REGISTER(isp, TCTRL_STRB_DELAY);
1499 	ISP_PRINT_REGISTER(isp, TCTRL_SHUT_DELAY);
1500 	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_LENGTH);
1501 	ISP_PRINT_REGISTER(isp, TCTRL_STRB_LENGTH);
1502 	ISP_PRINT_REGISTER(isp, TCTRL_SHUT_LENGTH);
1503 
1504 	SBL_PRINT_REGISTER(isp, PCR);
1505 	SBL_PRINT_REGISTER(isp, SDR_REQ_EXP);
1506 
1507 	dev_dbg(isp->dev, "--------------------------------------------\n");
1508 }
1509 
1510 #ifdef CONFIG_PM
1511 
1512 /*
1513  * Power management support.
1514  *
1515  * As the ISP can't properly handle an input video stream interruption on a non
1516  * frame boundary, the ISP pipelines need to be stopped before sensors get
1517  * suspended. However, as suspending the sensors can require a running clock,
1518  * which can be provided by the ISP, the ISP can't be completely suspended
1519  * before the sensor.
1520  *
1521  * To solve this problem power management support is split into prepare/complete
1522  * and suspend/resume operations. The pipelines are stopped in prepare() and the
1523  * ISP clocks get disabled in suspend(). Similarly, the clocks are re-enabled in
1524  * resume(), and the the pipelines are restarted in complete().
1525  *
1526  * TODO: PM dependencies between the ISP and sensors are not modelled explicitly
1527  * yet.
1528  */
isp_pm_prepare(struct device * dev)1529 static int isp_pm_prepare(struct device *dev)
1530 {
1531 	struct isp_device *isp = dev_get_drvdata(dev);
1532 	int reset;
1533 
1534 	WARN_ON(mutex_is_locked(&isp->isp_mutex));
1535 
1536 	if (isp->ref_count == 0)
1537 		return 0;
1538 
1539 	reset = isp_suspend_modules(isp);
1540 	isp_disable_interrupts(isp);
1541 	isp_save_ctx(isp);
1542 	if (reset)
1543 		isp_reset(isp);
1544 
1545 	return 0;
1546 }
1547 
isp_pm_suspend(struct device * dev)1548 static int isp_pm_suspend(struct device *dev)
1549 {
1550 	struct isp_device *isp = dev_get_drvdata(dev);
1551 
1552 	WARN_ON(mutex_is_locked(&isp->isp_mutex));
1553 
1554 	if (isp->ref_count)
1555 		isp_disable_clocks(isp);
1556 
1557 	return 0;
1558 }
1559 
isp_pm_resume(struct device * dev)1560 static int isp_pm_resume(struct device *dev)
1561 {
1562 	struct isp_device *isp = dev_get_drvdata(dev);
1563 
1564 	if (isp->ref_count == 0)
1565 		return 0;
1566 
1567 	return isp_enable_clocks(isp);
1568 }
1569 
isp_pm_complete(struct device * dev)1570 static void isp_pm_complete(struct device *dev)
1571 {
1572 	struct isp_device *isp = dev_get_drvdata(dev);
1573 
1574 	if (isp->ref_count == 0)
1575 		return;
1576 
1577 	isp_restore_ctx(isp);
1578 	isp_enable_interrupts(isp);
1579 	isp_resume_modules(isp);
1580 }
1581 
1582 #else
1583 
1584 #define isp_pm_prepare	NULL
1585 #define isp_pm_suspend	NULL
1586 #define isp_pm_resume	NULL
1587 #define isp_pm_complete	NULL
1588 
1589 #endif /* CONFIG_PM */
1590 
isp_unregister_entities(struct isp_device * isp)1591 static void isp_unregister_entities(struct isp_device *isp)
1592 {
1593 	media_device_unregister(&isp->media_dev);
1594 
1595 	omap3isp_csi2_unregister_entities(&isp->isp_csi2a);
1596 	omap3isp_ccp2_unregister_entities(&isp->isp_ccp2);
1597 	omap3isp_ccdc_unregister_entities(&isp->isp_ccdc);
1598 	omap3isp_preview_unregister_entities(&isp->isp_prev);
1599 	omap3isp_resizer_unregister_entities(&isp->isp_res);
1600 	omap3isp_stat_unregister_entities(&isp->isp_aewb);
1601 	omap3isp_stat_unregister_entities(&isp->isp_af);
1602 	omap3isp_stat_unregister_entities(&isp->isp_hist);
1603 
1604 	v4l2_device_unregister(&isp->v4l2_dev);
1605 	media_device_cleanup(&isp->media_dev);
1606 }
1607 
isp_link_entity(struct isp_device * isp,struct media_entity * entity,enum isp_interface_type interface)1608 static int isp_link_entity(
1609 	struct isp_device *isp, struct media_entity *entity,
1610 	enum isp_interface_type interface)
1611 {
1612 	struct media_entity *input;
1613 	unsigned int flags;
1614 	unsigned int pad;
1615 	unsigned int i;
1616 
1617 	/* Connect the sensor to the correct interface module.
1618 	 * Parallel sensors are connected directly to the CCDC, while
1619 	 * serial sensors are connected to the CSI2a, CCP2b or CSI2c
1620 	 * receiver through CSIPHY1 or CSIPHY2.
1621 	 */
1622 	switch (interface) {
1623 	case ISP_INTERFACE_PARALLEL:
1624 		input = &isp->isp_ccdc.subdev.entity;
1625 		pad = CCDC_PAD_SINK;
1626 		flags = 0;
1627 		break;
1628 
1629 	case ISP_INTERFACE_CSI2A_PHY2:
1630 		input = &isp->isp_csi2a.subdev.entity;
1631 		pad = CSI2_PAD_SINK;
1632 		flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
1633 		break;
1634 
1635 	case ISP_INTERFACE_CCP2B_PHY1:
1636 	case ISP_INTERFACE_CCP2B_PHY2:
1637 		input = &isp->isp_ccp2.subdev.entity;
1638 		pad = CCP2_PAD_SINK;
1639 		flags = 0;
1640 		break;
1641 
1642 	case ISP_INTERFACE_CSI2C_PHY1:
1643 		input = &isp->isp_csi2c.subdev.entity;
1644 		pad = CSI2_PAD_SINK;
1645 		flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
1646 		break;
1647 
1648 	default:
1649 		dev_err(isp->dev, "%s: invalid interface type %u\n", __func__,
1650 			interface);
1651 		return -EINVAL;
1652 	}
1653 
1654 	/*
1655 	 * Not all interfaces are available on all revisions of the
1656 	 * ISP. The sub-devices of those interfaces aren't initialised
1657 	 * in such a case. Check this by ensuring the num_pads is
1658 	 * non-zero.
1659 	 */
1660 	if (!input->num_pads) {
1661 		dev_err(isp->dev, "%s: invalid input %u\n", entity->name,
1662 			interface);
1663 		return -EINVAL;
1664 	}
1665 
1666 	for (i = 0; i < entity->num_pads; i++) {
1667 		if (entity->pads[i].flags & MEDIA_PAD_FL_SOURCE)
1668 			break;
1669 	}
1670 	if (i == entity->num_pads) {
1671 		dev_err(isp->dev, "%s: no source pad in external entity %s\n",
1672 			__func__, entity->name);
1673 		return -EINVAL;
1674 	}
1675 
1676 	return media_create_pad_link(entity, i, input, pad, flags);
1677 }
1678 
isp_register_entities(struct isp_device * isp)1679 static int isp_register_entities(struct isp_device *isp)
1680 {
1681 	int ret;
1682 
1683 	isp->media_dev.dev = isp->dev;
1684 	strscpy(isp->media_dev.model, "TI OMAP3 ISP",
1685 		sizeof(isp->media_dev.model));
1686 	isp->media_dev.hw_revision = isp->revision;
1687 	isp->media_dev.ops = &isp_media_ops;
1688 	media_device_init(&isp->media_dev);
1689 
1690 	isp->v4l2_dev.mdev = &isp->media_dev;
1691 	ret = v4l2_device_register(isp->dev, &isp->v4l2_dev);
1692 	if (ret < 0) {
1693 		dev_err(isp->dev, "%s: V4L2 device registration failed (%d)\n",
1694 			__func__, ret);
1695 		goto done;
1696 	}
1697 
1698 	/* Register internal entities */
1699 	ret = omap3isp_ccp2_register_entities(&isp->isp_ccp2, &isp->v4l2_dev);
1700 	if (ret < 0)
1701 		goto done;
1702 
1703 	ret = omap3isp_csi2_register_entities(&isp->isp_csi2a, &isp->v4l2_dev);
1704 	if (ret < 0)
1705 		goto done;
1706 
1707 	ret = omap3isp_ccdc_register_entities(&isp->isp_ccdc, &isp->v4l2_dev);
1708 	if (ret < 0)
1709 		goto done;
1710 
1711 	ret = omap3isp_preview_register_entities(&isp->isp_prev,
1712 						 &isp->v4l2_dev);
1713 	if (ret < 0)
1714 		goto done;
1715 
1716 	ret = omap3isp_resizer_register_entities(&isp->isp_res, &isp->v4l2_dev);
1717 	if (ret < 0)
1718 		goto done;
1719 
1720 	ret = omap3isp_stat_register_entities(&isp->isp_aewb, &isp->v4l2_dev);
1721 	if (ret < 0)
1722 		goto done;
1723 
1724 	ret = omap3isp_stat_register_entities(&isp->isp_af, &isp->v4l2_dev);
1725 	if (ret < 0)
1726 		goto done;
1727 
1728 	ret = omap3isp_stat_register_entities(&isp->isp_hist, &isp->v4l2_dev);
1729 	if (ret < 0)
1730 		goto done;
1731 
1732 done:
1733 	if (ret < 0)
1734 		isp_unregister_entities(isp);
1735 
1736 	return ret;
1737 }
1738 
1739 /*
1740  * isp_create_links() - Create links for internal and external ISP entities
1741  * @isp : Pointer to ISP device
1742  *
1743  * This function creates all links between ISP internal and external entities.
1744  *
1745  * Return: A negative error code on failure or zero on success. Possible error
1746  * codes are those returned by media_create_pad_link().
1747  */
isp_create_links(struct isp_device * isp)1748 static int isp_create_links(struct isp_device *isp)
1749 {
1750 	int ret;
1751 
1752 	/* Create links between entities and video nodes. */
1753 	ret = media_create_pad_link(
1754 			&isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE,
1755 			&isp->isp_csi2a.video_out.video.entity, 0, 0);
1756 	if (ret < 0)
1757 		return ret;
1758 
1759 	ret = media_create_pad_link(
1760 			&isp->isp_ccp2.video_in.video.entity, 0,
1761 			&isp->isp_ccp2.subdev.entity, CCP2_PAD_SINK, 0);
1762 	if (ret < 0)
1763 		return ret;
1764 
1765 	ret = media_create_pad_link(
1766 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF,
1767 			&isp->isp_ccdc.video_out.video.entity, 0, 0);
1768 	if (ret < 0)
1769 		return ret;
1770 
1771 	ret = media_create_pad_link(
1772 			&isp->isp_prev.video_in.video.entity, 0,
1773 			&isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0);
1774 	if (ret < 0)
1775 		return ret;
1776 
1777 	ret = media_create_pad_link(
1778 			&isp->isp_prev.subdev.entity, PREV_PAD_SOURCE,
1779 			&isp->isp_prev.video_out.video.entity, 0, 0);
1780 	if (ret < 0)
1781 		return ret;
1782 
1783 	ret = media_create_pad_link(
1784 			&isp->isp_res.video_in.video.entity, 0,
1785 			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1786 	if (ret < 0)
1787 		return ret;
1788 
1789 	ret = media_create_pad_link(
1790 			&isp->isp_res.subdev.entity, RESZ_PAD_SOURCE,
1791 			&isp->isp_res.video_out.video.entity, 0, 0);
1792 
1793 	if (ret < 0)
1794 		return ret;
1795 
1796 	/* Create links between entities. */
1797 	ret = media_create_pad_link(
1798 			&isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE,
1799 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
1800 	if (ret < 0)
1801 		return ret;
1802 
1803 	ret = media_create_pad_link(
1804 			&isp->isp_ccp2.subdev.entity, CCP2_PAD_SOURCE,
1805 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
1806 	if (ret < 0)
1807 		return ret;
1808 
1809 	ret = media_create_pad_link(
1810 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1811 			&isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0);
1812 	if (ret < 0)
1813 		return ret;
1814 
1815 	ret = media_create_pad_link(
1816 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF,
1817 			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1818 	if (ret < 0)
1819 		return ret;
1820 
1821 	ret = media_create_pad_link(
1822 			&isp->isp_prev.subdev.entity, PREV_PAD_SOURCE,
1823 			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1824 	if (ret < 0)
1825 		return ret;
1826 
1827 	ret = media_create_pad_link(
1828 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1829 			&isp->isp_aewb.subdev.entity, 0,
1830 			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1831 	if (ret < 0)
1832 		return ret;
1833 
1834 	ret = media_create_pad_link(
1835 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1836 			&isp->isp_af.subdev.entity, 0,
1837 			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1838 	if (ret < 0)
1839 		return ret;
1840 
1841 	ret = media_create_pad_link(
1842 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1843 			&isp->isp_hist.subdev.entity, 0,
1844 			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1845 	if (ret < 0)
1846 		return ret;
1847 
1848 	return 0;
1849 }
1850 
isp_cleanup_modules(struct isp_device * isp)1851 static void isp_cleanup_modules(struct isp_device *isp)
1852 {
1853 	omap3isp_h3a_aewb_cleanup(isp);
1854 	omap3isp_h3a_af_cleanup(isp);
1855 	omap3isp_hist_cleanup(isp);
1856 	omap3isp_resizer_cleanup(isp);
1857 	omap3isp_preview_cleanup(isp);
1858 	omap3isp_ccdc_cleanup(isp);
1859 	omap3isp_ccp2_cleanup(isp);
1860 	omap3isp_csi2_cleanup(isp);
1861 	omap3isp_csiphy_cleanup(isp);
1862 }
1863 
isp_initialize_modules(struct isp_device * isp)1864 static int isp_initialize_modules(struct isp_device *isp)
1865 {
1866 	int ret;
1867 
1868 	ret = omap3isp_csiphy_init(isp);
1869 	if (ret < 0) {
1870 		dev_err(isp->dev, "CSI PHY initialization failed\n");
1871 		return ret;
1872 	}
1873 
1874 	ret = omap3isp_csi2_init(isp);
1875 	if (ret < 0) {
1876 		dev_err(isp->dev, "CSI2 initialization failed\n");
1877 		goto error_csi2;
1878 	}
1879 
1880 	ret = omap3isp_ccp2_init(isp);
1881 	if (ret < 0) {
1882 		if (ret != -EPROBE_DEFER)
1883 			dev_err(isp->dev, "CCP2 initialization failed\n");
1884 		goto error_ccp2;
1885 	}
1886 
1887 	ret = omap3isp_ccdc_init(isp);
1888 	if (ret < 0) {
1889 		dev_err(isp->dev, "CCDC initialization failed\n");
1890 		goto error_ccdc;
1891 	}
1892 
1893 	ret = omap3isp_preview_init(isp);
1894 	if (ret < 0) {
1895 		dev_err(isp->dev, "Preview initialization failed\n");
1896 		goto error_preview;
1897 	}
1898 
1899 	ret = omap3isp_resizer_init(isp);
1900 	if (ret < 0) {
1901 		dev_err(isp->dev, "Resizer initialization failed\n");
1902 		goto error_resizer;
1903 	}
1904 
1905 	ret = omap3isp_hist_init(isp);
1906 	if (ret < 0) {
1907 		dev_err(isp->dev, "Histogram initialization failed\n");
1908 		goto error_hist;
1909 	}
1910 
1911 	ret = omap3isp_h3a_aewb_init(isp);
1912 	if (ret < 0) {
1913 		dev_err(isp->dev, "H3A AEWB initialization failed\n");
1914 		goto error_h3a_aewb;
1915 	}
1916 
1917 	ret = omap3isp_h3a_af_init(isp);
1918 	if (ret < 0) {
1919 		dev_err(isp->dev, "H3A AF initialization failed\n");
1920 		goto error_h3a_af;
1921 	}
1922 
1923 	return 0;
1924 
1925 error_h3a_af:
1926 	omap3isp_h3a_aewb_cleanup(isp);
1927 error_h3a_aewb:
1928 	omap3isp_hist_cleanup(isp);
1929 error_hist:
1930 	omap3isp_resizer_cleanup(isp);
1931 error_resizer:
1932 	omap3isp_preview_cleanup(isp);
1933 error_preview:
1934 	omap3isp_ccdc_cleanup(isp);
1935 error_ccdc:
1936 	omap3isp_ccp2_cleanup(isp);
1937 error_ccp2:
1938 	omap3isp_csi2_cleanup(isp);
1939 error_csi2:
1940 	omap3isp_csiphy_cleanup(isp);
1941 
1942 	return ret;
1943 }
1944 
isp_detach_iommu(struct isp_device * isp)1945 static void isp_detach_iommu(struct isp_device *isp)
1946 {
1947 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1948 	arm_iommu_detach_device(isp->dev);
1949 	arm_iommu_release_mapping(isp->mapping);
1950 	isp->mapping = NULL;
1951 #endif
1952 }
1953 
isp_attach_iommu(struct isp_device * isp)1954 static int isp_attach_iommu(struct isp_device *isp)
1955 {
1956 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1957 	struct dma_iommu_mapping *mapping;
1958 	int ret;
1959 
1960 	/*
1961 	 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
1962 	 * VAs. This will allocate a corresponding IOMMU domain.
1963 	 */
1964 	mapping = arm_iommu_create_mapping(&platform_bus_type, SZ_1G, SZ_2G);
1965 	if (IS_ERR(mapping)) {
1966 		dev_err(isp->dev, "failed to create ARM IOMMU mapping\n");
1967 		return PTR_ERR(mapping);
1968 	}
1969 
1970 	isp->mapping = mapping;
1971 
1972 	/* Attach the ARM VA mapping to the device. */
1973 	ret = arm_iommu_attach_device(isp->dev, mapping);
1974 	if (ret < 0) {
1975 		dev_err(isp->dev, "failed to attach device to VA mapping\n");
1976 		goto error;
1977 	}
1978 
1979 	return 0;
1980 
1981 error:
1982 	arm_iommu_release_mapping(isp->mapping);
1983 	isp->mapping = NULL;
1984 	return ret;
1985 #else
1986 	return -ENODEV;
1987 #endif
1988 }
1989 
1990 /*
1991  * isp_remove - Remove ISP platform device
1992  * @pdev: Pointer to ISP platform device
1993  *
1994  * Always returns 0.
1995  */
isp_remove(struct platform_device * pdev)1996 static int isp_remove(struct platform_device *pdev)
1997 {
1998 	struct isp_device *isp = platform_get_drvdata(pdev);
1999 
2000 	v4l2_async_notifier_unregister(&isp->notifier);
2001 	isp_unregister_entities(isp);
2002 	isp_cleanup_modules(isp);
2003 	isp_xclk_cleanup(isp);
2004 
2005 	__omap3isp_get(isp, false);
2006 	isp_detach_iommu(isp);
2007 	__omap3isp_put(isp, false);
2008 
2009 	media_entity_enum_cleanup(&isp->crashed);
2010 	v4l2_async_notifier_cleanup(&isp->notifier);
2011 
2012 	kfree(isp);
2013 
2014 	return 0;
2015 }
2016 
2017 enum isp_of_phy {
2018 	ISP_OF_PHY_PARALLEL = 0,
2019 	ISP_OF_PHY_CSIPHY1,
2020 	ISP_OF_PHY_CSIPHY2,
2021 };
2022 
isp_subdev_notifier_complete(struct v4l2_async_notifier * async)2023 static int isp_subdev_notifier_complete(struct v4l2_async_notifier *async)
2024 {
2025 	struct isp_device *isp = container_of(async, struct isp_device,
2026 					      notifier);
2027 	struct v4l2_device *v4l2_dev = &isp->v4l2_dev;
2028 	struct v4l2_subdev *sd;
2029 	int ret;
2030 
2031 	ret = media_entity_enum_init(&isp->crashed, &isp->media_dev);
2032 	if (ret)
2033 		return ret;
2034 
2035 	list_for_each_entry(sd, &v4l2_dev->subdevs, list) {
2036 		if (sd->notifier != &isp->notifier)
2037 			continue;
2038 
2039 		ret = isp_link_entity(isp, &sd->entity,
2040 				      v4l2_subdev_to_bus_cfg(sd)->interface);
2041 		if (ret < 0)
2042 			return ret;
2043 	}
2044 
2045 	ret = v4l2_device_register_subdev_nodes(&isp->v4l2_dev);
2046 	if (ret < 0)
2047 		return ret;
2048 
2049 	return media_device_register(&isp->media_dev);
2050 }
2051 
isp_parse_of_parallel_endpoint(struct device * dev,struct v4l2_fwnode_endpoint * vep,struct isp_bus_cfg * buscfg)2052 static void isp_parse_of_parallel_endpoint(struct device *dev,
2053 					   struct v4l2_fwnode_endpoint *vep,
2054 					   struct isp_bus_cfg *buscfg)
2055 {
2056 	buscfg->interface = ISP_INTERFACE_PARALLEL;
2057 	buscfg->bus.parallel.data_lane_shift = vep->bus.parallel.data_shift;
2058 	buscfg->bus.parallel.clk_pol =
2059 		!!(vep->bus.parallel.flags & V4L2_MBUS_PCLK_SAMPLE_FALLING);
2060 	buscfg->bus.parallel.hs_pol =
2061 		!!(vep->bus.parallel.flags & V4L2_MBUS_VSYNC_ACTIVE_LOW);
2062 	buscfg->bus.parallel.vs_pol =
2063 		!!(vep->bus.parallel.flags & V4L2_MBUS_HSYNC_ACTIVE_LOW);
2064 	buscfg->bus.parallel.fld_pol =
2065 		!!(vep->bus.parallel.flags & V4L2_MBUS_FIELD_EVEN_LOW);
2066 	buscfg->bus.parallel.data_pol =
2067 		!!(vep->bus.parallel.flags & V4L2_MBUS_DATA_ACTIVE_LOW);
2068 	buscfg->bus.parallel.bt656 = vep->bus_type == V4L2_MBUS_BT656;
2069 }
2070 
isp_parse_of_csi2_endpoint(struct device * dev,struct v4l2_fwnode_endpoint * vep,struct isp_bus_cfg * buscfg)2071 static void isp_parse_of_csi2_endpoint(struct device *dev,
2072 				       struct v4l2_fwnode_endpoint *vep,
2073 				       struct isp_bus_cfg *buscfg)
2074 {
2075 	unsigned int i;
2076 
2077 	buscfg->bus.csi2.lanecfg.clk.pos = vep->bus.mipi_csi2.clock_lane;
2078 	buscfg->bus.csi2.lanecfg.clk.pol =
2079 		vep->bus.mipi_csi2.lane_polarities[0];
2080 	dev_dbg(dev, "clock lane polarity %u, pos %u\n",
2081 		buscfg->bus.csi2.lanecfg.clk.pol,
2082 		buscfg->bus.csi2.lanecfg.clk.pos);
2083 
2084 	buscfg->bus.csi2.num_data_lanes = vep->bus.mipi_csi2.num_data_lanes;
2085 
2086 	for (i = 0; i < buscfg->bus.csi2.num_data_lanes; i++) {
2087 		buscfg->bus.csi2.lanecfg.data[i].pos =
2088 			vep->bus.mipi_csi2.data_lanes[i];
2089 		buscfg->bus.csi2.lanecfg.data[i].pol =
2090 			vep->bus.mipi_csi2.lane_polarities[i + 1];
2091 		dev_dbg(dev,
2092 			"data lane %u polarity %u, pos %u\n", i,
2093 			buscfg->bus.csi2.lanecfg.data[i].pol,
2094 			buscfg->bus.csi2.lanecfg.data[i].pos);
2095 	}
2096 	/*
2097 	 * FIXME: now we assume the CRC is always there. Implement a way to
2098 	 * obtain this information from the sensor. Frame descriptors, perhaps?
2099 	 */
2100 	buscfg->bus.csi2.crc = 1;
2101 }
2102 
isp_parse_of_csi1_endpoint(struct device * dev,struct v4l2_fwnode_endpoint * vep,struct isp_bus_cfg * buscfg)2103 static void isp_parse_of_csi1_endpoint(struct device *dev,
2104 				       struct v4l2_fwnode_endpoint *vep,
2105 				       struct isp_bus_cfg *buscfg)
2106 {
2107 	buscfg->bus.ccp2.lanecfg.clk.pos = vep->bus.mipi_csi1.clock_lane;
2108 	buscfg->bus.ccp2.lanecfg.clk.pol = vep->bus.mipi_csi1.lane_polarity[0];
2109 	dev_dbg(dev, "clock lane polarity %u, pos %u\n",
2110 		buscfg->bus.ccp2.lanecfg.clk.pol,
2111 	buscfg->bus.ccp2.lanecfg.clk.pos);
2112 
2113 	buscfg->bus.ccp2.lanecfg.data[0].pos = vep->bus.mipi_csi1.data_lane;
2114 	buscfg->bus.ccp2.lanecfg.data[0].pol =
2115 		vep->bus.mipi_csi1.lane_polarity[1];
2116 
2117 	dev_dbg(dev, "data lane polarity %u, pos %u\n",
2118 		buscfg->bus.ccp2.lanecfg.data[0].pol,
2119 		buscfg->bus.ccp2.lanecfg.data[0].pos);
2120 
2121 	buscfg->bus.ccp2.strobe_clk_pol = vep->bus.mipi_csi1.clock_inv;
2122 	buscfg->bus.ccp2.phy_layer = vep->bus.mipi_csi1.strobe;
2123 	buscfg->bus.ccp2.ccp2_mode = vep->bus_type == V4L2_MBUS_CCP2;
2124 	buscfg->bus.ccp2.vp_clk_pol = 1;
2125 
2126 	buscfg->bus.ccp2.crc = 1;
2127 }
2128 
2129 static struct {
2130 	u32 phy;
2131 	u32 csi2_if;
2132 	u32 csi1_if;
2133 } isp_bus_interfaces[2] = {
2134 	{ ISP_OF_PHY_CSIPHY1,
2135 	  ISP_INTERFACE_CSI2C_PHY1, ISP_INTERFACE_CCP2B_PHY1 },
2136 	{ ISP_OF_PHY_CSIPHY2,
2137 	  ISP_INTERFACE_CSI2A_PHY2, ISP_INTERFACE_CCP2B_PHY2 },
2138 };
2139 
isp_parse_of_endpoints(struct isp_device * isp)2140 static int isp_parse_of_endpoints(struct isp_device *isp)
2141 {
2142 	struct fwnode_handle *ep;
2143 	struct isp_async_subdev *isd = NULL;
2144 	struct v4l2_async_subdev *asd;
2145 	unsigned int i;
2146 
2147 	ep = fwnode_graph_get_endpoint_by_id(
2148 		dev_fwnode(isp->dev), ISP_OF_PHY_PARALLEL, 0,
2149 		FWNODE_GRAPH_ENDPOINT_NEXT);
2150 
2151 	if (ep) {
2152 		struct v4l2_fwnode_endpoint vep = {
2153 			.bus_type = V4L2_MBUS_PARALLEL
2154 		};
2155 		int ret;
2156 
2157 		dev_dbg(isp->dev, "parsing parallel interface\n");
2158 
2159 		ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2160 
2161 		if (!ret) {
2162 			asd = v4l2_async_notifier_add_fwnode_remote_subdev(
2163 				&isp->notifier, ep, sizeof(*isd));
2164 			if (!IS_ERR(asd)) {
2165 				isd = container_of(asd, struct isp_async_subdev, asd);
2166 				isp_parse_of_parallel_endpoint(isp->dev, &vep, &isd->bus);
2167 			}
2168 		}
2169 
2170 		fwnode_handle_put(ep);
2171 	}
2172 
2173 	for (i = 0; i < ARRAY_SIZE(isp_bus_interfaces); i++) {
2174 		struct v4l2_fwnode_endpoint vep = {
2175 			.bus_type = V4L2_MBUS_CSI2_DPHY
2176 		};
2177 		int ret;
2178 
2179 		ep = fwnode_graph_get_endpoint_by_id(
2180 			dev_fwnode(isp->dev), isp_bus_interfaces[i].phy, 0,
2181 			FWNODE_GRAPH_ENDPOINT_NEXT);
2182 
2183 		if (!ep)
2184 			continue;
2185 
2186 		dev_dbg(isp->dev, "parsing serial interface %u, node %pOF\n", i,
2187 			to_of_node(ep));
2188 
2189 		ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2190 		if (ret == -ENXIO) {
2191 			vep = (struct v4l2_fwnode_endpoint)
2192 				{ .bus_type = V4L2_MBUS_CSI1 };
2193 			ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2194 
2195 			if (ret == -ENXIO) {
2196 				vep = (struct v4l2_fwnode_endpoint)
2197 					{ .bus_type = V4L2_MBUS_CCP2 };
2198 				ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2199 			}
2200 		}
2201 
2202 		if (!ret) {
2203 			asd = v4l2_async_notifier_add_fwnode_remote_subdev(
2204 				&isp->notifier, ep, sizeof(*isd));
2205 
2206 			if (!IS_ERR(asd)) {
2207 				isd = container_of(asd, struct isp_async_subdev, asd);
2208 
2209 				switch (vep.bus_type) {
2210 				case V4L2_MBUS_CSI2_DPHY:
2211 					isd->bus.interface =
2212 						isp_bus_interfaces[i].csi2_if;
2213 					isp_parse_of_csi2_endpoint(isp->dev, &vep, &isd->bus);
2214 					break;
2215 				case V4L2_MBUS_CSI1:
2216 				case V4L2_MBUS_CCP2:
2217 					isd->bus.interface =
2218 						isp_bus_interfaces[i].csi1_if;
2219 					isp_parse_of_csi1_endpoint(isp->dev, &vep,
2220 								   &isd->bus);
2221 					break;
2222 				default:
2223 					break;
2224 				}
2225 			}
2226 		}
2227 
2228 		fwnode_handle_put(ep);
2229 	}
2230 
2231 	return 0;
2232 }
2233 
2234 static const struct v4l2_async_notifier_operations isp_subdev_notifier_ops = {
2235 	.complete = isp_subdev_notifier_complete,
2236 };
2237 
2238 /*
2239  * isp_probe - Probe ISP platform device
2240  * @pdev: Pointer to ISP platform device
2241  *
2242  * Returns 0 if successful,
2243  *   -ENOMEM if no memory available,
2244  *   -ENODEV if no platform device resources found
2245  *     or no space for remapping registers,
2246  *   -EINVAL if couldn't install ISR,
2247  *   or clk_get return error value.
2248  */
isp_probe(struct platform_device * pdev)2249 static int isp_probe(struct platform_device *pdev)
2250 {
2251 	struct isp_device *isp;
2252 	struct resource *mem;
2253 	int ret;
2254 	int i, m;
2255 
2256 	isp = kzalloc(sizeof(*isp), GFP_KERNEL);
2257 	if (!isp) {
2258 		dev_err(&pdev->dev, "could not allocate memory\n");
2259 		return -ENOMEM;
2260 	}
2261 
2262 	ret = fwnode_property_read_u32(of_fwnode_handle(pdev->dev.of_node),
2263 				       "ti,phy-type", &isp->phy_type);
2264 	if (ret)
2265 		goto error_release_isp;
2266 
2267 	isp->syscon = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
2268 						      "syscon");
2269 	if (IS_ERR(isp->syscon)) {
2270 		ret = PTR_ERR(isp->syscon);
2271 		goto error_release_isp;
2272 	}
2273 
2274 	ret = of_property_read_u32_index(pdev->dev.of_node,
2275 					 "syscon", 1, &isp->syscon_offset);
2276 	if (ret)
2277 		goto error_release_isp;
2278 
2279 	isp->autoidle = autoidle;
2280 
2281 	mutex_init(&isp->isp_mutex);
2282 	spin_lock_init(&isp->stat_lock);
2283 	v4l2_async_notifier_init(&isp->notifier);
2284 	isp->dev = &pdev->dev;
2285 
2286 	ret = isp_parse_of_endpoints(isp);
2287 	if (ret < 0)
2288 		goto error;
2289 
2290 	isp->ref_count = 0;
2291 
2292 	ret = dma_coerce_mask_and_coherent(isp->dev, DMA_BIT_MASK(32));
2293 	if (ret)
2294 		goto error;
2295 
2296 	platform_set_drvdata(pdev, isp);
2297 
2298 	/* Regulators */
2299 	isp->isp_csiphy1.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy1");
2300 	if (IS_ERR(isp->isp_csiphy1.vdd)) {
2301 		ret = PTR_ERR(isp->isp_csiphy1.vdd);
2302 		goto error;
2303 	}
2304 
2305 	isp->isp_csiphy2.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy2");
2306 	if (IS_ERR(isp->isp_csiphy2.vdd)) {
2307 		ret = PTR_ERR(isp->isp_csiphy2.vdd);
2308 		goto error;
2309 	}
2310 
2311 	/* Clocks
2312 	 *
2313 	 * The ISP clock tree is revision-dependent. We thus need to enable ICLK
2314 	 * manually to read the revision before calling __omap3isp_get().
2315 	 *
2316 	 * Start by mapping the ISP MMIO area, which is in two pieces.
2317 	 * The ISP IOMMU is in between. Map both now, and fill in the
2318 	 * ISP revision specific portions a little later in the
2319 	 * function.
2320 	 */
2321 	for (i = 0; i < 2; i++) {
2322 		unsigned int map_idx = i ? OMAP3_ISP_IOMEM_CSI2A_REGS1 : 0;
2323 
2324 		mem = platform_get_resource(pdev, IORESOURCE_MEM, i);
2325 		isp->mmio_base[map_idx] =
2326 			devm_ioremap_resource(isp->dev, mem);
2327 		if (IS_ERR(isp->mmio_base[map_idx])) {
2328 			ret = PTR_ERR(isp->mmio_base[map_idx]);
2329 			goto error;
2330 		}
2331 	}
2332 
2333 	ret = isp_get_clocks(isp);
2334 	if (ret < 0)
2335 		goto error;
2336 
2337 	ret = clk_enable(isp->clock[ISP_CLK_CAM_ICK]);
2338 	if (ret < 0)
2339 		goto error;
2340 
2341 	isp->revision = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
2342 	dev_info(isp->dev, "Revision %d.%d found\n",
2343 		 (isp->revision & 0xf0) >> 4, isp->revision & 0x0f);
2344 
2345 	clk_disable(isp->clock[ISP_CLK_CAM_ICK]);
2346 
2347 	if (__omap3isp_get(isp, false) == NULL) {
2348 		ret = -ENODEV;
2349 		goto error;
2350 	}
2351 
2352 	ret = isp_reset(isp);
2353 	if (ret < 0)
2354 		goto error_isp;
2355 
2356 	ret = isp_xclk_init(isp);
2357 	if (ret < 0)
2358 		goto error_isp;
2359 
2360 	/* Memory resources */
2361 	for (m = 0; m < ARRAY_SIZE(isp_res_maps); m++)
2362 		if (isp->revision == isp_res_maps[m].isp_rev)
2363 			break;
2364 
2365 	if (m == ARRAY_SIZE(isp_res_maps)) {
2366 		dev_err(isp->dev, "No resource map found for ISP rev %d.%d\n",
2367 			(isp->revision & 0xf0) >> 4, isp->revision & 0xf);
2368 		ret = -ENODEV;
2369 		goto error_isp;
2370 	}
2371 
2372 	for (i = 1; i < OMAP3_ISP_IOMEM_CSI2A_REGS1; i++)
2373 		isp->mmio_base[i] =
2374 			isp->mmio_base[0] + isp_res_maps[m].offset[i];
2375 
2376 	for (i = OMAP3_ISP_IOMEM_CSIPHY2; i < OMAP3_ISP_IOMEM_LAST; i++)
2377 		isp->mmio_base[i] =
2378 			isp->mmio_base[OMAP3_ISP_IOMEM_CSI2A_REGS1]
2379 			+ isp_res_maps[m].offset[i];
2380 
2381 	isp->mmio_hist_base_phys =
2382 		mem->start + isp_res_maps[m].offset[OMAP3_ISP_IOMEM_HIST];
2383 
2384 	/* IOMMU */
2385 	ret = isp_attach_iommu(isp);
2386 	if (ret < 0) {
2387 		dev_err(&pdev->dev, "unable to attach to IOMMU\n");
2388 		goto error_isp;
2389 	}
2390 
2391 	/* Interrupt */
2392 	ret = platform_get_irq(pdev, 0);
2393 	if (ret <= 0) {
2394 		ret = -ENODEV;
2395 		goto error_iommu;
2396 	}
2397 	isp->irq_num = ret;
2398 
2399 	if (devm_request_irq(isp->dev, isp->irq_num, isp_isr, IRQF_SHARED,
2400 			     "OMAP3 ISP", isp)) {
2401 		dev_err(isp->dev, "Unable to request IRQ\n");
2402 		ret = -EINVAL;
2403 		goto error_iommu;
2404 	}
2405 
2406 	/* Entities */
2407 	ret = isp_initialize_modules(isp);
2408 	if (ret < 0)
2409 		goto error_iommu;
2410 
2411 	ret = isp_register_entities(isp);
2412 	if (ret < 0)
2413 		goto error_modules;
2414 
2415 	ret = isp_create_links(isp);
2416 	if (ret < 0)
2417 		goto error_register_entities;
2418 
2419 	isp->notifier.ops = &isp_subdev_notifier_ops;
2420 
2421 	ret = v4l2_async_notifier_register(&isp->v4l2_dev, &isp->notifier);
2422 	if (ret)
2423 		goto error_register_entities;
2424 
2425 	isp_core_init(isp, 1);
2426 	omap3isp_put(isp);
2427 
2428 	return 0;
2429 
2430 error_register_entities:
2431 	isp_unregister_entities(isp);
2432 error_modules:
2433 	isp_cleanup_modules(isp);
2434 error_iommu:
2435 	isp_detach_iommu(isp);
2436 error_isp:
2437 	isp_xclk_cleanup(isp);
2438 	__omap3isp_put(isp, false);
2439 error:
2440 	v4l2_async_notifier_cleanup(&isp->notifier);
2441 	mutex_destroy(&isp->isp_mutex);
2442 error_release_isp:
2443 	kfree(isp);
2444 
2445 	return ret;
2446 }
2447 
2448 static const struct dev_pm_ops omap3isp_pm_ops = {
2449 	.prepare = isp_pm_prepare,
2450 	.suspend = isp_pm_suspend,
2451 	.resume = isp_pm_resume,
2452 	.complete = isp_pm_complete,
2453 };
2454 
2455 static const struct platform_device_id omap3isp_id_table[] = {
2456 	{ "omap3isp", 0 },
2457 	{ },
2458 };
2459 MODULE_DEVICE_TABLE(platform, omap3isp_id_table);
2460 
2461 static const struct of_device_id omap3isp_of_table[] = {
2462 	{ .compatible = "ti,omap3-isp" },
2463 	{ },
2464 };
2465 MODULE_DEVICE_TABLE(of, omap3isp_of_table);
2466 
2467 static struct platform_driver omap3isp_driver = {
2468 	.probe = isp_probe,
2469 	.remove = isp_remove,
2470 	.id_table = omap3isp_id_table,
2471 	.driver = {
2472 		.name = "omap3isp",
2473 		.pm	= &omap3isp_pm_ops,
2474 		.of_match_table = omap3isp_of_table,
2475 	},
2476 };
2477 
2478 module_platform_driver(omap3isp_driver);
2479 
2480 MODULE_AUTHOR("Nokia Corporation");
2481 MODULE_DESCRIPTION("TI OMAP3 ISP driver");
2482 MODULE_LICENSE("GPL");
2483 MODULE_VERSION(ISP_VIDEO_DRIVER_VERSION);
2484