1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <trace/hooks/pci.h>
35 #include "pci.h"
36
37 DEFINE_MUTEX(pci_slot_mutex);
38
39 const char *pci_power_names[] = {
40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46
47 int pci_pci_problems;
48 EXPORT_SYMBOL(pci_pci_problems);
49
50 unsigned int pci_pm_d3hot_delay;
51
52 static void pci_pme_list_scan(struct work_struct *work);
53
54 static LIST_HEAD(pci_pme_list);
55 static DEFINE_MUTEX(pci_pme_list_mutex);
56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
57
58 struct pci_pme_device {
59 struct list_head list;
60 struct pci_dev *dev;
61 };
62
63 #define PME_TIMEOUT 1000 /* How long between PME checks */
64
pci_dev_d3_sleep(struct pci_dev * dev)65 static void pci_dev_d3_sleep(struct pci_dev *dev)
66 {
67 unsigned int delay = dev->d3hot_delay;
68
69 if (delay < pci_pm_d3hot_delay)
70 delay = pci_pm_d3hot_delay;
71
72 if (delay) {
73 trace_android_rvh_pci_d3_sleep(dev, &delay);
74 if (delay)
75 msleep(delay);
76 }
77 }
78
79 #ifdef CONFIG_PCI_DOMAINS
80 int pci_domains_supported = 1;
81 #endif
82
83 #define DEFAULT_CARDBUS_IO_SIZE (256)
84 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
85 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
86 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
87 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
88
89 #define DEFAULT_HOTPLUG_IO_SIZE (256)
90 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
91 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
92 /* hpiosize=nn can override this */
93 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
94 /*
95 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
96 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
97 * pci=hpmemsize=nnM overrides both
98 */
99 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
100 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
101
102 #define DEFAULT_HOTPLUG_BUS_SIZE 1
103 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
104
105
106 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
107 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
108 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
109 #elif defined CONFIG_PCIE_BUS_SAFE
110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
111 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
113 #elif defined CONFIG_PCIE_BUS_PEER2PEER
114 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
115 #else
116 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
117 #endif
118
119 /*
120 * The default CLS is used if arch didn't set CLS explicitly and not
121 * all pci devices agree on the same value. Arch can override either
122 * the dfl or actual value as it sees fit. Don't forget this is
123 * measured in 32-bit words, not bytes.
124 */
125 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
126 u8 pci_cache_line_size;
127
128 /*
129 * If we set up a device for bus mastering, we need to check the latency
130 * timer as certain BIOSes forget to set it properly.
131 */
132 unsigned int pcibios_max_latency = 255;
133
134 /* If set, the PCIe ARI capability will not be used. */
135 static bool pcie_ari_disabled;
136
137 /* If set, the PCIe ATS capability will not be used. */
138 static bool pcie_ats_disabled;
139
140 /* If set, the PCI config space of each device is printed during boot. */
141 bool pci_early_dump;
142
pci_ats_disabled(void)143 bool pci_ats_disabled(void)
144 {
145 return pcie_ats_disabled;
146 }
147 EXPORT_SYMBOL_GPL(pci_ats_disabled);
148
149 /* Disable bridge_d3 for all PCIe ports */
150 static bool pci_bridge_d3_disable;
151 /* Force bridge_d3 for all PCIe ports */
152 static bool pci_bridge_d3_force;
153
pcie_port_pm_setup(char * str)154 static int __init pcie_port_pm_setup(char *str)
155 {
156 if (!strcmp(str, "off"))
157 pci_bridge_d3_disable = true;
158 else if (!strcmp(str, "force"))
159 pci_bridge_d3_force = true;
160 return 1;
161 }
162 __setup("pcie_port_pm=", pcie_port_pm_setup);
163
164 /**
165 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
166 * @bus: pointer to PCI bus structure to search
167 *
168 * Given a PCI bus, returns the highest PCI bus number present in the set
169 * including the given PCI bus and its list of child PCI buses.
170 */
pci_bus_max_busnr(struct pci_bus * bus)171 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
172 {
173 struct pci_bus *tmp;
174 unsigned char max, n;
175
176 max = bus->busn_res.end;
177 list_for_each_entry(tmp, &bus->children, node) {
178 n = pci_bus_max_busnr(tmp);
179 if (n > max)
180 max = n;
181 }
182 return max;
183 }
184 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
185
186 /**
187 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
188 * @pdev: the PCI device
189 *
190 * Returns error bits set in PCI_STATUS and clears them.
191 */
pci_status_get_and_clear_errors(struct pci_dev * pdev)192 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
193 {
194 u16 status;
195 int ret;
196
197 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
198 if (ret != PCIBIOS_SUCCESSFUL)
199 return -EIO;
200
201 status &= PCI_STATUS_ERROR_BITS;
202 if (status)
203 pci_write_config_word(pdev, PCI_STATUS, status);
204
205 return status;
206 }
207 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
208
209 #ifdef CONFIG_HAS_IOMEM
pci_ioremap_bar(struct pci_dev * pdev,int bar)210 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
211 {
212 struct resource *res = &pdev->resource[bar];
213
214 /*
215 * Make sure the BAR is actually a memory resource, not an IO resource
216 */
217 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
218 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
219 return NULL;
220 }
221 return ioremap(res->start, resource_size(res));
222 }
223 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
224
pci_ioremap_wc_bar(struct pci_dev * pdev,int bar)225 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
226 {
227 /*
228 * Make sure the BAR is actually a memory resource, not an IO resource
229 */
230 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
231 WARN_ON(1);
232 return NULL;
233 }
234 return ioremap_wc(pci_resource_start(pdev, bar),
235 pci_resource_len(pdev, bar));
236 }
237 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
238 #endif
239
240 /**
241 * pci_dev_str_match_path - test if a path string matches a device
242 * @dev: the PCI device to test
243 * @path: string to match the device against
244 * @endptr: pointer to the string after the match
245 *
246 * Test if a string (typically from a kernel parameter) formatted as a
247 * path of device/function addresses matches a PCI device. The string must
248 * be of the form:
249 *
250 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
251 *
252 * A path for a device can be obtained using 'lspci -t'. Using a path
253 * is more robust against bus renumbering than using only a single bus,
254 * device and function address.
255 *
256 * Returns 1 if the string matches the device, 0 if it does not and
257 * a negative error code if it fails to parse the string.
258 */
pci_dev_str_match_path(struct pci_dev * dev,const char * path,const char ** endptr)259 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
260 const char **endptr)
261 {
262 int ret;
263 int seg, bus, slot, func;
264 char *wpath, *p;
265 char end;
266
267 *endptr = strchrnul(path, ';');
268
269 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
270 if (!wpath)
271 return -ENOMEM;
272
273 while (1) {
274 p = strrchr(wpath, '/');
275 if (!p)
276 break;
277 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
278 if (ret != 2) {
279 ret = -EINVAL;
280 goto free_and_exit;
281 }
282
283 if (dev->devfn != PCI_DEVFN(slot, func)) {
284 ret = 0;
285 goto free_and_exit;
286 }
287
288 /*
289 * Note: we don't need to get a reference to the upstream
290 * bridge because we hold a reference to the top level
291 * device which should hold a reference to the bridge,
292 * and so on.
293 */
294 dev = pci_upstream_bridge(dev);
295 if (!dev) {
296 ret = 0;
297 goto free_and_exit;
298 }
299
300 *p = 0;
301 }
302
303 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
304 &func, &end);
305 if (ret != 4) {
306 seg = 0;
307 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
308 if (ret != 3) {
309 ret = -EINVAL;
310 goto free_and_exit;
311 }
312 }
313
314 ret = (seg == pci_domain_nr(dev->bus) &&
315 bus == dev->bus->number &&
316 dev->devfn == PCI_DEVFN(slot, func));
317
318 free_and_exit:
319 kfree(wpath);
320 return ret;
321 }
322
323 /**
324 * pci_dev_str_match - test if a string matches a device
325 * @dev: the PCI device to test
326 * @p: string to match the device against
327 * @endptr: pointer to the string after the match
328 *
329 * Test if a string (typically from a kernel parameter) matches a specified
330 * PCI device. The string may be of one of the following formats:
331 *
332 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
333 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
334 *
335 * The first format specifies a PCI bus/device/function address which
336 * may change if new hardware is inserted, if motherboard firmware changes,
337 * or due to changes caused in kernel parameters. If the domain is
338 * left unspecified, it is taken to be 0. In order to be robust against
339 * bus renumbering issues, a path of PCI device/function numbers may be used
340 * to address the specific device. The path for a device can be determined
341 * through the use of 'lspci -t'.
342 *
343 * The second format matches devices using IDs in the configuration
344 * space which may match multiple devices in the system. A value of 0
345 * for any field will match all devices. (Note: this differs from
346 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
347 * legacy reasons and convenience so users don't have to specify
348 * FFFFFFFFs on the command line.)
349 *
350 * Returns 1 if the string matches the device, 0 if it does not and
351 * a negative error code if the string cannot be parsed.
352 */
pci_dev_str_match(struct pci_dev * dev,const char * p,const char ** endptr)353 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
354 const char **endptr)
355 {
356 int ret;
357 int count;
358 unsigned short vendor, device, subsystem_vendor, subsystem_device;
359
360 if (strncmp(p, "pci:", 4) == 0) {
361 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
362 p += 4;
363 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
364 &subsystem_vendor, &subsystem_device, &count);
365 if (ret != 4) {
366 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
367 if (ret != 2)
368 return -EINVAL;
369
370 subsystem_vendor = 0;
371 subsystem_device = 0;
372 }
373
374 p += count;
375
376 if ((!vendor || vendor == dev->vendor) &&
377 (!device || device == dev->device) &&
378 (!subsystem_vendor ||
379 subsystem_vendor == dev->subsystem_vendor) &&
380 (!subsystem_device ||
381 subsystem_device == dev->subsystem_device))
382 goto found;
383 } else {
384 /*
385 * PCI Bus, Device, Function IDs are specified
386 * (optionally, may include a path of devfns following it)
387 */
388 ret = pci_dev_str_match_path(dev, p, &p);
389 if (ret < 0)
390 return ret;
391 else if (ret)
392 goto found;
393 }
394
395 *endptr = p;
396 return 0;
397
398 found:
399 *endptr = p;
400 return 1;
401 }
402
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)403 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
404 u8 pos, int cap, int *ttl)
405 {
406 u8 id;
407 u16 ent;
408
409 pci_bus_read_config_byte(bus, devfn, pos, &pos);
410
411 while ((*ttl)--) {
412 if (pos < 0x40)
413 break;
414 pos &= ~3;
415 pci_bus_read_config_word(bus, devfn, pos, &ent);
416
417 id = ent & 0xff;
418 if (id == 0xff)
419 break;
420 if (id == cap)
421 return pos;
422 pos = (ent >> 8);
423 }
424 return 0;
425 }
426
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)427 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
428 u8 pos, int cap)
429 {
430 int ttl = PCI_FIND_CAP_TTL;
431
432 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
433 }
434
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)435 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
436 {
437 return __pci_find_next_cap(dev->bus, dev->devfn,
438 pos + PCI_CAP_LIST_NEXT, cap);
439 }
440 EXPORT_SYMBOL_GPL(pci_find_next_capability);
441
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)442 static int __pci_bus_find_cap_start(struct pci_bus *bus,
443 unsigned int devfn, u8 hdr_type)
444 {
445 u16 status;
446
447 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
448 if (!(status & PCI_STATUS_CAP_LIST))
449 return 0;
450
451 switch (hdr_type) {
452 case PCI_HEADER_TYPE_NORMAL:
453 case PCI_HEADER_TYPE_BRIDGE:
454 return PCI_CAPABILITY_LIST;
455 case PCI_HEADER_TYPE_CARDBUS:
456 return PCI_CB_CAPABILITY_LIST;
457 }
458
459 return 0;
460 }
461
462 /**
463 * pci_find_capability - query for devices' capabilities
464 * @dev: PCI device to query
465 * @cap: capability code
466 *
467 * Tell if a device supports a given PCI capability.
468 * Returns the address of the requested capability structure within the
469 * device's PCI configuration space or 0 in case the device does not
470 * support it. Possible values for @cap include:
471 *
472 * %PCI_CAP_ID_PM Power Management
473 * %PCI_CAP_ID_AGP Accelerated Graphics Port
474 * %PCI_CAP_ID_VPD Vital Product Data
475 * %PCI_CAP_ID_SLOTID Slot Identification
476 * %PCI_CAP_ID_MSI Message Signalled Interrupts
477 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
478 * %PCI_CAP_ID_PCIX PCI-X
479 * %PCI_CAP_ID_EXP PCI Express
480 */
pci_find_capability(struct pci_dev * dev,int cap)481 int pci_find_capability(struct pci_dev *dev, int cap)
482 {
483 int pos;
484
485 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
486 if (pos)
487 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
488
489 return pos;
490 }
491 EXPORT_SYMBOL(pci_find_capability);
492
493 /**
494 * pci_bus_find_capability - query for devices' capabilities
495 * @bus: the PCI bus to query
496 * @devfn: PCI device to query
497 * @cap: capability code
498 *
499 * Like pci_find_capability() but works for PCI devices that do not have a
500 * pci_dev structure set up yet.
501 *
502 * Returns the address of the requested capability structure within the
503 * device's PCI configuration space or 0 in case the device does not
504 * support it.
505 */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)506 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
507 {
508 int pos;
509 u8 hdr_type;
510
511 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
512
513 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
514 if (pos)
515 pos = __pci_find_next_cap(bus, devfn, pos, cap);
516
517 return pos;
518 }
519 EXPORT_SYMBOL(pci_bus_find_capability);
520
521 /**
522 * pci_find_next_ext_capability - Find an extended capability
523 * @dev: PCI device to query
524 * @start: address at which to start looking (0 to start at beginning of list)
525 * @cap: capability code
526 *
527 * Returns the address of the next matching extended capability structure
528 * within the device's PCI configuration space or 0 if the device does
529 * not support it. Some capabilities can occur several times, e.g., the
530 * vendor-specific capability, and this provides a way to find them all.
531 */
pci_find_next_ext_capability(struct pci_dev * dev,int start,int cap)532 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
533 {
534 u32 header;
535 int ttl;
536 int pos = PCI_CFG_SPACE_SIZE;
537
538 /* minimum 8 bytes per capability */
539 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
540
541 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
542 return 0;
543
544 if (start)
545 pos = start;
546
547 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
548 return 0;
549
550 /*
551 * If we have no capabilities, this is indicated by cap ID,
552 * cap version and next pointer all being 0.
553 */
554 if (header == 0)
555 return 0;
556
557 while (ttl-- > 0) {
558 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
559 return pos;
560
561 pos = PCI_EXT_CAP_NEXT(header);
562 if (pos < PCI_CFG_SPACE_SIZE)
563 break;
564
565 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
566 break;
567 }
568
569 return 0;
570 }
571 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
572
573 /**
574 * pci_find_ext_capability - Find an extended capability
575 * @dev: PCI device to query
576 * @cap: capability code
577 *
578 * Returns the address of the requested extended capability structure
579 * within the device's PCI configuration space or 0 if the device does
580 * not support it. Possible values for @cap include:
581 *
582 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
583 * %PCI_EXT_CAP_ID_VC Virtual Channel
584 * %PCI_EXT_CAP_ID_DSN Device Serial Number
585 * %PCI_EXT_CAP_ID_PWR Power Budgeting
586 */
pci_find_ext_capability(struct pci_dev * dev,int cap)587 int pci_find_ext_capability(struct pci_dev *dev, int cap)
588 {
589 return pci_find_next_ext_capability(dev, 0, cap);
590 }
591 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
592
593 /**
594 * pci_get_dsn - Read and return the 8-byte Device Serial Number
595 * @dev: PCI device to query
596 *
597 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
598 * Number.
599 *
600 * Returns the DSN, or zero if the capability does not exist.
601 */
pci_get_dsn(struct pci_dev * dev)602 u64 pci_get_dsn(struct pci_dev *dev)
603 {
604 u32 dword;
605 u64 dsn;
606 int pos;
607
608 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
609 if (!pos)
610 return 0;
611
612 /*
613 * The Device Serial Number is two dwords offset 4 bytes from the
614 * capability position. The specification says that the first dword is
615 * the lower half, and the second dword is the upper half.
616 */
617 pos += 4;
618 pci_read_config_dword(dev, pos, &dword);
619 dsn = (u64)dword;
620 pci_read_config_dword(dev, pos + 4, &dword);
621 dsn |= ((u64)dword) << 32;
622
623 return dsn;
624 }
625 EXPORT_SYMBOL_GPL(pci_get_dsn);
626
__pci_find_next_ht_cap(struct pci_dev * dev,int pos,int ht_cap)627 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
628 {
629 int rc, ttl = PCI_FIND_CAP_TTL;
630 u8 cap, mask;
631
632 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
633 mask = HT_3BIT_CAP_MASK;
634 else
635 mask = HT_5BIT_CAP_MASK;
636
637 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
638 PCI_CAP_ID_HT, &ttl);
639 while (pos) {
640 rc = pci_read_config_byte(dev, pos + 3, &cap);
641 if (rc != PCIBIOS_SUCCESSFUL)
642 return 0;
643
644 if ((cap & mask) == ht_cap)
645 return pos;
646
647 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
648 pos + PCI_CAP_LIST_NEXT,
649 PCI_CAP_ID_HT, &ttl);
650 }
651
652 return 0;
653 }
654 /**
655 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
656 * @dev: PCI device to query
657 * @pos: Position from which to continue searching
658 * @ht_cap: Hypertransport capability code
659 *
660 * To be used in conjunction with pci_find_ht_capability() to search for
661 * all capabilities matching @ht_cap. @pos should always be a value returned
662 * from pci_find_ht_capability().
663 *
664 * NB. To be 100% safe against broken PCI devices, the caller should take
665 * steps to avoid an infinite loop.
666 */
pci_find_next_ht_capability(struct pci_dev * dev,int pos,int ht_cap)667 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
668 {
669 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
670 }
671 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
672
673 /**
674 * pci_find_ht_capability - query a device's Hypertransport capabilities
675 * @dev: PCI device to query
676 * @ht_cap: Hypertransport capability code
677 *
678 * Tell if a device supports a given Hypertransport capability.
679 * Returns an address within the device's PCI configuration space
680 * or 0 in case the device does not support the request capability.
681 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
682 * which has a Hypertransport capability matching @ht_cap.
683 */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)684 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
685 {
686 int pos;
687
688 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
689 if (pos)
690 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
691
692 return pos;
693 }
694 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
695
696 /**
697 * pci_find_parent_resource - return resource region of parent bus of given
698 * region
699 * @dev: PCI device structure contains resources to be searched
700 * @res: child resource record for which parent is sought
701 *
702 * For given resource region of given device, return the resource region of
703 * parent bus the given region is contained in.
704 */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)705 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
706 struct resource *res)
707 {
708 const struct pci_bus *bus = dev->bus;
709 struct resource *r;
710 int i;
711
712 pci_bus_for_each_resource(bus, r, i) {
713 if (!r)
714 continue;
715 if (resource_contains(r, res)) {
716
717 /*
718 * If the window is prefetchable but the BAR is
719 * not, the allocator made a mistake.
720 */
721 if (r->flags & IORESOURCE_PREFETCH &&
722 !(res->flags & IORESOURCE_PREFETCH))
723 return NULL;
724
725 /*
726 * If we're below a transparent bridge, there may
727 * be both a positively-decoded aperture and a
728 * subtractively-decoded region that contain the BAR.
729 * We want the positively-decoded one, so this depends
730 * on pci_bus_for_each_resource() giving us those
731 * first.
732 */
733 return r;
734 }
735 }
736 return NULL;
737 }
738 EXPORT_SYMBOL(pci_find_parent_resource);
739
740 /**
741 * pci_find_resource - Return matching PCI device resource
742 * @dev: PCI device to query
743 * @res: Resource to look for
744 *
745 * Goes over standard PCI resources (BARs) and checks if the given resource
746 * is partially or fully contained in any of them. In that case the
747 * matching resource is returned, %NULL otherwise.
748 */
pci_find_resource(struct pci_dev * dev,struct resource * res)749 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
750 {
751 int i;
752
753 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
754 struct resource *r = &dev->resource[i];
755
756 if (r->start && resource_contains(r, res))
757 return r;
758 }
759
760 return NULL;
761 }
762 EXPORT_SYMBOL(pci_find_resource);
763
764 /**
765 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
766 * @dev: the PCI device to operate on
767 * @pos: config space offset of status word
768 * @mask: mask of bit(s) to care about in status word
769 *
770 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
771 */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)772 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
773 {
774 int i;
775
776 /* Wait for Transaction Pending bit clean */
777 for (i = 0; i < 4; i++) {
778 u16 status;
779 if (i)
780 msleep((1 << (i - 1)) * 100);
781
782 pci_read_config_word(dev, pos, &status);
783 if (!(status & mask))
784 return 1;
785 }
786
787 return 0;
788 }
789
790 static int pci_acs_enable;
791
792 /**
793 * pci_request_acs - ask for ACS to be enabled if supported
794 */
pci_request_acs(void)795 void pci_request_acs(void)
796 {
797 pci_acs_enable = 1;
798 }
799
800 static const char *disable_acs_redir_param;
801
802 /**
803 * pci_disable_acs_redir - disable ACS redirect capabilities
804 * @dev: the PCI device
805 *
806 * For only devices specified in the disable_acs_redir parameter.
807 */
pci_disable_acs_redir(struct pci_dev * dev)808 static void pci_disable_acs_redir(struct pci_dev *dev)
809 {
810 int ret = 0;
811 const char *p;
812 int pos;
813 u16 ctrl;
814
815 if (!disable_acs_redir_param)
816 return;
817
818 p = disable_acs_redir_param;
819 while (*p) {
820 ret = pci_dev_str_match(dev, p, &p);
821 if (ret < 0) {
822 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
823 disable_acs_redir_param);
824
825 break;
826 } else if (ret == 1) {
827 /* Found a match */
828 break;
829 }
830
831 if (*p != ';' && *p != ',') {
832 /* End of param or invalid format */
833 break;
834 }
835 p++;
836 }
837
838 if (ret != 1)
839 return;
840
841 if (!pci_dev_specific_disable_acs_redir(dev))
842 return;
843
844 pos = dev->acs_cap;
845 if (!pos) {
846 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
847 return;
848 }
849
850 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
851
852 /* P2P Request & Completion Redirect */
853 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
854
855 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
856
857 pci_info(dev, "disabled ACS redirect\n");
858 }
859
860 /**
861 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
862 * @dev: the PCI device
863 */
pci_std_enable_acs(struct pci_dev * dev)864 static void pci_std_enable_acs(struct pci_dev *dev)
865 {
866 int pos;
867 u16 cap;
868 u16 ctrl;
869
870 pos = dev->acs_cap;
871 if (!pos)
872 return;
873
874 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
875 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
876
877 /* Source Validation */
878 ctrl |= (cap & PCI_ACS_SV);
879
880 /* P2P Request Redirect */
881 ctrl |= (cap & PCI_ACS_RR);
882
883 /* P2P Completion Redirect */
884 ctrl |= (cap & PCI_ACS_CR);
885
886 /* Upstream Forwarding */
887 ctrl |= (cap & PCI_ACS_UF);
888
889 /* Enable Translation Blocking for external devices */
890 if (dev->external_facing || dev->untrusted)
891 ctrl |= (cap & PCI_ACS_TB);
892
893 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
894 }
895
896 /**
897 * pci_enable_acs - enable ACS if hardware support it
898 * @dev: the PCI device
899 */
pci_enable_acs(struct pci_dev * dev)900 static void pci_enable_acs(struct pci_dev *dev)
901 {
902 if (!pci_acs_enable)
903 goto disable_acs_redir;
904
905 if (!pci_dev_specific_enable_acs(dev))
906 goto disable_acs_redir;
907
908 pci_std_enable_acs(dev);
909
910 disable_acs_redir:
911 /*
912 * Note: pci_disable_acs_redir() must be called even if ACS was not
913 * enabled by the kernel because it may have been enabled by
914 * platform firmware. So if we are told to disable it, we should
915 * always disable it after setting the kernel's default
916 * preferences.
917 */
918 pci_disable_acs_redir(dev);
919 }
920
921 /**
922 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
923 * @dev: PCI device to have its BARs restored
924 *
925 * Restore the BAR values for a given device, so as to make it
926 * accessible by its driver.
927 */
pci_restore_bars(struct pci_dev * dev)928 static void pci_restore_bars(struct pci_dev *dev)
929 {
930 int i;
931
932 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
933 pci_update_resource(dev, i);
934 }
935
936 static const struct pci_platform_pm_ops *pci_platform_pm;
937
pci_set_platform_pm(const struct pci_platform_pm_ops * ops)938 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
939 {
940 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
941 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
942 return -EINVAL;
943 pci_platform_pm = ops;
944 return 0;
945 }
946
platform_pci_power_manageable(struct pci_dev * dev)947 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
948 {
949 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
950 }
951
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)952 static inline int platform_pci_set_power_state(struct pci_dev *dev,
953 pci_power_t t)
954 {
955 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
956 }
957
platform_pci_get_power_state(struct pci_dev * dev)958 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
959 {
960 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
961 }
962
platform_pci_refresh_power_state(struct pci_dev * dev)963 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
964 {
965 if (pci_platform_pm && pci_platform_pm->refresh_state)
966 pci_platform_pm->refresh_state(dev);
967 }
968
platform_pci_choose_state(struct pci_dev * dev)969 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
970 {
971 return pci_platform_pm ?
972 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
973 }
974
platform_pci_set_wakeup(struct pci_dev * dev,bool enable)975 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
976 {
977 return pci_platform_pm ?
978 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
979 }
980
platform_pci_need_resume(struct pci_dev * dev)981 static inline bool platform_pci_need_resume(struct pci_dev *dev)
982 {
983 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
984 }
985
platform_pci_bridge_d3(struct pci_dev * dev)986 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
987 {
988 if (pci_platform_pm && pci_platform_pm->bridge_d3)
989 return pci_platform_pm->bridge_d3(dev);
990 return false;
991 }
992
993 /**
994 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
995 * given PCI device
996 * @dev: PCI device to handle.
997 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
998 *
999 * RETURN VALUE:
1000 * -EINVAL if the requested state is invalid.
1001 * -EIO if device does not support PCI PM or its PM capabilities register has a
1002 * wrong version, or device doesn't support the requested state.
1003 * 0 if device already is in the requested state.
1004 * 0 if device's power state has been successfully changed.
1005 */
pci_raw_set_power_state(struct pci_dev * dev,pci_power_t state)1006 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1007 {
1008 u16 pmcsr;
1009 bool need_restore = false;
1010
1011 /* Check if we're already there */
1012 if (dev->current_state == state)
1013 return 0;
1014
1015 if (!dev->pm_cap)
1016 return -EIO;
1017
1018 if (state < PCI_D0 || state > PCI_D3hot)
1019 return -EINVAL;
1020
1021 /*
1022 * Validate transition: We can enter D0 from any state, but if
1023 * we're already in a low-power state, we can only go deeper. E.g.,
1024 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1025 * we'd have to go from D3 to D0, then to D1.
1026 */
1027 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1028 && dev->current_state > state) {
1029 pci_err(dev, "invalid power transition (from %s to %s)\n",
1030 pci_power_name(dev->current_state),
1031 pci_power_name(state));
1032 return -EINVAL;
1033 }
1034
1035 /* Check if this device supports the desired state */
1036 if ((state == PCI_D1 && !dev->d1_support)
1037 || (state == PCI_D2 && !dev->d2_support))
1038 return -EIO;
1039
1040 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1041 if (pmcsr == (u16) ~0) {
1042 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1043 pci_power_name(dev->current_state),
1044 pci_power_name(state));
1045 return -EIO;
1046 }
1047
1048 /*
1049 * If we're (effectively) in D3, force entire word to 0.
1050 * This doesn't affect PME_Status, disables PME_En, and
1051 * sets PowerState to 0.
1052 */
1053 switch (dev->current_state) {
1054 case PCI_D0:
1055 case PCI_D1:
1056 case PCI_D2:
1057 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1058 pmcsr |= state;
1059 break;
1060 case PCI_D3hot:
1061 case PCI_D3cold:
1062 case PCI_UNKNOWN: /* Boot-up */
1063 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1064 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1065 need_restore = true;
1066 fallthrough; /* force to D0 */
1067 default:
1068 pmcsr = 0;
1069 break;
1070 }
1071
1072 /* Enter specified state */
1073 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1074
1075 /*
1076 * Mandatory power management transition delays; see PCI PM 1.1
1077 * 5.6.1 table 18
1078 */
1079 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1080 pci_dev_d3_sleep(dev);
1081 else if (state == PCI_D2 || dev->current_state == PCI_D2)
1082 udelay(PCI_PM_D2_DELAY);
1083
1084 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1085 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1086 if (dev->current_state != state)
1087 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1088 pci_power_name(dev->current_state),
1089 pci_power_name(state));
1090
1091 /*
1092 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1093 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1094 * from D3hot to D0 _may_ perform an internal reset, thereby
1095 * going to "D0 Uninitialized" rather than "D0 Initialized".
1096 * For example, at least some versions of the 3c905B and the
1097 * 3c556B exhibit this behaviour.
1098 *
1099 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1100 * devices in a D3hot state at boot. Consequently, we need to
1101 * restore at least the BARs so that the device will be
1102 * accessible to its driver.
1103 */
1104 if (need_restore)
1105 pci_restore_bars(dev);
1106
1107 if (dev->bus->self)
1108 pcie_aspm_pm_state_change(dev->bus->self);
1109
1110 return 0;
1111 }
1112
1113 /**
1114 * pci_update_current_state - Read power state of given device and cache it
1115 * @dev: PCI device to handle.
1116 * @state: State to cache in case the device doesn't have the PM capability
1117 *
1118 * The power state is read from the PMCSR register, which however is
1119 * inaccessible in D3cold. The platform firmware is therefore queried first
1120 * to detect accessibility of the register. In case the platform firmware
1121 * reports an incorrect state or the device isn't power manageable by the
1122 * platform at all, we try to detect D3cold by testing accessibility of the
1123 * vendor ID in config space.
1124 */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)1125 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1126 {
1127 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1128 !pci_device_is_present(dev)) {
1129 dev->current_state = PCI_D3cold;
1130 } else if (dev->pm_cap) {
1131 u16 pmcsr;
1132
1133 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1134 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1135 } else {
1136 dev->current_state = state;
1137 }
1138 }
1139
1140 /**
1141 * pci_refresh_power_state - Refresh the given device's power state data
1142 * @dev: Target PCI device.
1143 *
1144 * Ask the platform to refresh the devices power state information and invoke
1145 * pci_update_current_state() to update its current PCI power state.
1146 */
pci_refresh_power_state(struct pci_dev * dev)1147 void pci_refresh_power_state(struct pci_dev *dev)
1148 {
1149 if (platform_pci_power_manageable(dev))
1150 platform_pci_refresh_power_state(dev);
1151
1152 pci_update_current_state(dev, dev->current_state);
1153 }
1154
1155 /**
1156 * pci_platform_power_transition - Use platform to change device power state
1157 * @dev: PCI device to handle.
1158 * @state: State to put the device into.
1159 */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)1160 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1161 {
1162 int error;
1163
1164 if (platform_pci_power_manageable(dev)) {
1165 error = platform_pci_set_power_state(dev, state);
1166 if (!error)
1167 pci_update_current_state(dev, state);
1168 } else
1169 error = -ENODEV;
1170
1171 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1172 dev->current_state = PCI_D0;
1173
1174 return error;
1175 }
1176 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1177
1178 /**
1179 * pci_wakeup - Wake up a PCI device
1180 * @pci_dev: Device to handle.
1181 * @ign: ignored parameter
1182 */
pci_wakeup(struct pci_dev * pci_dev,void * ign)1183 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1184 {
1185 pci_wakeup_event(pci_dev);
1186 pm_request_resume(&pci_dev->dev);
1187 return 0;
1188 }
1189
1190 /**
1191 * pci_wakeup_bus - Walk given bus and wake up devices on it
1192 * @bus: Top bus of the subtree to walk.
1193 */
pci_wakeup_bus(struct pci_bus * bus)1194 void pci_wakeup_bus(struct pci_bus *bus)
1195 {
1196 if (bus)
1197 pci_walk_bus(bus, pci_wakeup, NULL);
1198 }
1199
pci_dev_wait(struct pci_dev * dev,char * reset_type,int timeout)1200 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1201 {
1202 int delay = 1;
1203 u32 id;
1204
1205 /*
1206 * After reset, the device should not silently discard config
1207 * requests, but it may still indicate that it needs more time by
1208 * responding to them with CRS completions. The Root Port will
1209 * generally synthesize ~0 data to complete the read (except when
1210 * CRS SV is enabled and the read was for the Vendor ID; in that
1211 * case it synthesizes 0x0001 data).
1212 *
1213 * Wait for the device to return a non-CRS completion. Read the
1214 * Command register instead of Vendor ID so we don't have to
1215 * contend with the CRS SV value.
1216 */
1217 pci_read_config_dword(dev, PCI_COMMAND, &id);
1218 while (id == ~0) {
1219 if (delay > timeout) {
1220 pci_warn(dev, "not ready %dms after %s; giving up\n",
1221 delay - 1, reset_type);
1222 return -ENOTTY;
1223 }
1224
1225 if (delay > PCI_RESET_WAIT)
1226 pci_info(dev, "not ready %dms after %s; waiting\n",
1227 delay - 1, reset_type);
1228
1229 msleep(delay);
1230 delay *= 2;
1231 pci_read_config_dword(dev, PCI_COMMAND, &id);
1232 }
1233
1234 if (delay > PCI_RESET_WAIT)
1235 pci_info(dev, "ready %dms after %s\n", delay - 1,
1236 reset_type);
1237
1238 return 0;
1239 }
1240
1241 /**
1242 * pci_power_up - Put the given device into D0
1243 * @dev: PCI device to power up
1244 */
pci_power_up(struct pci_dev * dev)1245 int pci_power_up(struct pci_dev *dev)
1246 {
1247 pci_platform_power_transition(dev, PCI_D0);
1248
1249 /*
1250 * Mandatory power management transition delays are handled in
1251 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1252 * corresponding bridge.
1253 */
1254 if (dev->runtime_d3cold) {
1255 /*
1256 * When powering on a bridge from D3cold, the whole hierarchy
1257 * may be powered on into D0uninitialized state, resume them to
1258 * give them a chance to suspend again
1259 */
1260 pci_wakeup_bus(dev->subordinate);
1261 }
1262
1263 return pci_raw_set_power_state(dev, PCI_D0);
1264 }
1265
1266 /**
1267 * __pci_dev_set_current_state - Set current state of a PCI device
1268 * @dev: Device to handle
1269 * @data: pointer to state to be set
1270 */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)1271 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1272 {
1273 pci_power_t state = *(pci_power_t *)data;
1274
1275 dev->current_state = state;
1276 return 0;
1277 }
1278
1279 /**
1280 * pci_bus_set_current_state - Walk given bus and set current state of devices
1281 * @bus: Top bus of the subtree to walk.
1282 * @state: state to be set
1283 */
pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)1284 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1285 {
1286 if (bus)
1287 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1288 }
1289
1290 /**
1291 * pci_set_power_state - Set the power state of a PCI device
1292 * @dev: PCI device to handle.
1293 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1294 *
1295 * Transition a device to a new power state, using the platform firmware and/or
1296 * the device's PCI PM registers.
1297 *
1298 * RETURN VALUE:
1299 * -EINVAL if the requested state is invalid.
1300 * -EIO if device does not support PCI PM or its PM capabilities register has a
1301 * wrong version, or device doesn't support the requested state.
1302 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1303 * 0 if device already is in the requested state.
1304 * 0 if the transition is to D3 but D3 is not supported.
1305 * 0 if device's power state has been successfully changed.
1306 */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)1307 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1308 {
1309 int error;
1310
1311 /* Bound the state we're entering */
1312 if (state > PCI_D3cold)
1313 state = PCI_D3cold;
1314 else if (state < PCI_D0)
1315 state = PCI_D0;
1316 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1317
1318 /*
1319 * If the device or the parent bridge do not support PCI
1320 * PM, ignore the request if we're doing anything other
1321 * than putting it into D0 (which would only happen on
1322 * boot).
1323 */
1324 return 0;
1325
1326 /* Check if we're already there */
1327 if (dev->current_state == state)
1328 return 0;
1329
1330 if (state == PCI_D0)
1331 return pci_power_up(dev);
1332
1333 /*
1334 * This device is quirked not to be put into D3, so don't put it in
1335 * D3
1336 */
1337 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1338 return 0;
1339
1340 /*
1341 * To put device in D3cold, we put device into D3hot in native
1342 * way, then put device into D3cold with platform ops
1343 */
1344 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1345 PCI_D3hot : state);
1346
1347 if (pci_platform_power_transition(dev, state))
1348 return error;
1349
1350 /* Powering off a bridge may power off the whole hierarchy */
1351 if (state == PCI_D3cold)
1352 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1353
1354 return 0;
1355 }
1356 EXPORT_SYMBOL(pci_set_power_state);
1357
1358 /**
1359 * pci_choose_state - Choose the power state of a PCI device
1360 * @dev: PCI device to be suspended
1361 * @state: target sleep state for the whole system. This is the value
1362 * that is passed to suspend() function.
1363 *
1364 * Returns PCI power state suitable for given device and given system
1365 * message.
1366 */
pci_choose_state(struct pci_dev * dev,pm_message_t state)1367 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1368 {
1369 pci_power_t ret;
1370
1371 if (!dev->pm_cap)
1372 return PCI_D0;
1373
1374 ret = platform_pci_choose_state(dev);
1375 if (ret != PCI_POWER_ERROR)
1376 return ret;
1377
1378 switch (state.event) {
1379 case PM_EVENT_ON:
1380 return PCI_D0;
1381 case PM_EVENT_FREEZE:
1382 case PM_EVENT_PRETHAW:
1383 /* REVISIT both freeze and pre-thaw "should" use D0 */
1384 case PM_EVENT_SUSPEND:
1385 case PM_EVENT_HIBERNATE:
1386 return PCI_D3hot;
1387 default:
1388 pci_info(dev, "unrecognized suspend event %d\n",
1389 state.event);
1390 BUG();
1391 }
1392 return PCI_D0;
1393 }
1394 EXPORT_SYMBOL(pci_choose_state);
1395
1396 #define PCI_EXP_SAVE_REGS 7
1397
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)1398 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1399 u16 cap, bool extended)
1400 {
1401 struct pci_cap_saved_state *tmp;
1402
1403 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1404 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1405 return tmp;
1406 }
1407 return NULL;
1408 }
1409
pci_find_saved_cap(struct pci_dev * dev,char cap)1410 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1411 {
1412 return _pci_find_saved_cap(dev, cap, false);
1413 }
1414
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)1415 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1416 {
1417 return _pci_find_saved_cap(dev, cap, true);
1418 }
1419
pci_save_pcie_state(struct pci_dev * dev)1420 static int pci_save_pcie_state(struct pci_dev *dev)
1421 {
1422 int i = 0;
1423 struct pci_cap_saved_state *save_state;
1424 u16 *cap;
1425
1426 if (!pci_is_pcie(dev))
1427 return 0;
1428
1429 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1430 if (!save_state) {
1431 pci_err(dev, "buffer not found in %s\n", __func__);
1432 return -ENOMEM;
1433 }
1434
1435 cap = (u16 *)&save_state->cap.data[0];
1436 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1437 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1438 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1439 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1440 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1441 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1442 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1443
1444 return 0;
1445 }
1446
pci_restore_pcie_state(struct pci_dev * dev)1447 static void pci_restore_pcie_state(struct pci_dev *dev)
1448 {
1449 int i = 0;
1450 struct pci_cap_saved_state *save_state;
1451 u16 *cap;
1452
1453 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1454 if (!save_state)
1455 return;
1456
1457 cap = (u16 *)&save_state->cap.data[0];
1458 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1459 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1460 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1461 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1462 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1463 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1464 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1465 }
1466
pci_save_pcix_state(struct pci_dev * dev)1467 static int pci_save_pcix_state(struct pci_dev *dev)
1468 {
1469 int pos;
1470 struct pci_cap_saved_state *save_state;
1471
1472 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1473 if (!pos)
1474 return 0;
1475
1476 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1477 if (!save_state) {
1478 pci_err(dev, "buffer not found in %s\n", __func__);
1479 return -ENOMEM;
1480 }
1481
1482 pci_read_config_word(dev, pos + PCI_X_CMD,
1483 (u16 *)save_state->cap.data);
1484
1485 return 0;
1486 }
1487
pci_restore_pcix_state(struct pci_dev * dev)1488 static void pci_restore_pcix_state(struct pci_dev *dev)
1489 {
1490 int i = 0, pos;
1491 struct pci_cap_saved_state *save_state;
1492 u16 *cap;
1493
1494 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1495 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1496 if (!save_state || !pos)
1497 return;
1498 cap = (u16 *)&save_state->cap.data[0];
1499
1500 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1501 }
1502
pci_save_ltr_state(struct pci_dev * dev)1503 static void pci_save_ltr_state(struct pci_dev *dev)
1504 {
1505 int ltr;
1506 struct pci_cap_saved_state *save_state;
1507 u16 *cap;
1508
1509 if (!pci_is_pcie(dev))
1510 return;
1511
1512 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1513 if (!ltr)
1514 return;
1515
1516 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1517 if (!save_state) {
1518 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1519 return;
1520 }
1521
1522 cap = (u16 *)&save_state->cap.data[0];
1523 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1524 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1525 }
1526
pci_restore_ltr_state(struct pci_dev * dev)1527 static void pci_restore_ltr_state(struct pci_dev *dev)
1528 {
1529 struct pci_cap_saved_state *save_state;
1530 int ltr;
1531 u16 *cap;
1532
1533 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1534 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1535 if (!save_state || !ltr)
1536 return;
1537
1538 cap = (u16 *)&save_state->cap.data[0];
1539 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1540 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1541 }
1542
1543 /**
1544 * pci_save_state - save the PCI configuration space of a device before
1545 * suspending
1546 * @dev: PCI device that we're dealing with
1547 */
pci_save_state(struct pci_dev * dev)1548 int pci_save_state(struct pci_dev *dev)
1549 {
1550 int i;
1551 /* XXX: 100% dword access ok here? */
1552 for (i = 0; i < 16; i++) {
1553 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1554 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1555 i * 4, dev->saved_config_space[i]);
1556 }
1557 dev->state_saved = true;
1558
1559 i = pci_save_pcie_state(dev);
1560 if (i != 0)
1561 return i;
1562
1563 i = pci_save_pcix_state(dev);
1564 if (i != 0)
1565 return i;
1566
1567 pci_save_ltr_state(dev);
1568 pci_save_dpc_state(dev);
1569 pci_save_aer_state(dev);
1570 return pci_save_vc_state(dev);
1571 }
1572 EXPORT_SYMBOL(pci_save_state);
1573
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry,bool force)1574 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1575 u32 saved_val, int retry, bool force)
1576 {
1577 u32 val;
1578
1579 pci_read_config_dword(pdev, offset, &val);
1580 if (!force && val == saved_val)
1581 return;
1582
1583 for (;;) {
1584 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1585 offset, val, saved_val);
1586 pci_write_config_dword(pdev, offset, saved_val);
1587 if (retry-- <= 0)
1588 return;
1589
1590 pci_read_config_dword(pdev, offset, &val);
1591 if (val == saved_val)
1592 return;
1593
1594 mdelay(1);
1595 }
1596 }
1597
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry,bool force)1598 static void pci_restore_config_space_range(struct pci_dev *pdev,
1599 int start, int end, int retry,
1600 bool force)
1601 {
1602 int index;
1603
1604 for (index = end; index >= start; index--)
1605 pci_restore_config_dword(pdev, 4 * index,
1606 pdev->saved_config_space[index],
1607 retry, force);
1608 }
1609
pci_restore_config_space(struct pci_dev * pdev)1610 static void pci_restore_config_space(struct pci_dev *pdev)
1611 {
1612 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1613 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1614 /* Restore BARs before the command register. */
1615 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1616 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1617 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1618 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1619
1620 /*
1621 * Force rewriting of prefetch registers to avoid S3 resume
1622 * issues on Intel PCI bridges that occur when these
1623 * registers are not explicitly written.
1624 */
1625 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1626 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1627 } else {
1628 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1629 }
1630 }
1631
pci_restore_rebar_state(struct pci_dev * pdev)1632 static void pci_restore_rebar_state(struct pci_dev *pdev)
1633 {
1634 unsigned int pos, nbars, i;
1635 u32 ctrl;
1636
1637 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1638 if (!pos)
1639 return;
1640
1641 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1642 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1643 PCI_REBAR_CTRL_NBAR_SHIFT;
1644
1645 for (i = 0; i < nbars; i++, pos += 8) {
1646 struct resource *res;
1647 int bar_idx, size;
1648
1649 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1650 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1651 res = pdev->resource + bar_idx;
1652 size = ilog2(resource_size(res)) - 20;
1653 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1654 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1655 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1656 }
1657 }
1658
1659 /**
1660 * pci_restore_state - Restore the saved state of a PCI device
1661 * @dev: PCI device that we're dealing with
1662 */
pci_restore_state(struct pci_dev * dev)1663 void pci_restore_state(struct pci_dev *dev)
1664 {
1665 if (!dev->state_saved)
1666 return;
1667
1668 /*
1669 * Restore max latencies (in the LTR capability) before enabling
1670 * LTR itself (in the PCIe capability).
1671 */
1672 pci_restore_ltr_state(dev);
1673
1674 pci_restore_pcie_state(dev);
1675 pci_restore_pasid_state(dev);
1676 pci_restore_pri_state(dev);
1677 pci_restore_ats_state(dev);
1678 pci_restore_vc_state(dev);
1679 pci_restore_rebar_state(dev);
1680 pci_restore_dpc_state(dev);
1681
1682 pci_aer_clear_status(dev);
1683 pci_restore_aer_state(dev);
1684
1685 pci_restore_config_space(dev);
1686
1687 pci_restore_pcix_state(dev);
1688 pci_restore_msi_state(dev);
1689
1690 /* Restore ACS and IOV configuration state */
1691 pci_enable_acs(dev);
1692 pci_restore_iov_state(dev);
1693
1694 dev->state_saved = false;
1695 }
1696 EXPORT_SYMBOL(pci_restore_state);
1697
1698 struct pci_saved_state {
1699 u32 config_space[16];
1700 struct pci_cap_saved_data cap[];
1701 };
1702
1703 /**
1704 * pci_store_saved_state - Allocate and return an opaque struct containing
1705 * the device saved state.
1706 * @dev: PCI device that we're dealing with
1707 *
1708 * Return NULL if no state or error.
1709 */
pci_store_saved_state(struct pci_dev * dev)1710 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1711 {
1712 struct pci_saved_state *state;
1713 struct pci_cap_saved_state *tmp;
1714 struct pci_cap_saved_data *cap;
1715 size_t size;
1716
1717 if (!dev->state_saved)
1718 return NULL;
1719
1720 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1721
1722 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1723 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1724
1725 state = kzalloc(size, GFP_KERNEL);
1726 if (!state)
1727 return NULL;
1728
1729 memcpy(state->config_space, dev->saved_config_space,
1730 sizeof(state->config_space));
1731
1732 cap = state->cap;
1733 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1734 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1735 memcpy(cap, &tmp->cap, len);
1736 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1737 }
1738 /* Empty cap_save terminates list */
1739
1740 return state;
1741 }
1742 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1743
1744 /**
1745 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1746 * @dev: PCI device that we're dealing with
1747 * @state: Saved state returned from pci_store_saved_state()
1748 */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)1749 int pci_load_saved_state(struct pci_dev *dev,
1750 struct pci_saved_state *state)
1751 {
1752 struct pci_cap_saved_data *cap;
1753
1754 dev->state_saved = false;
1755
1756 if (!state)
1757 return 0;
1758
1759 memcpy(dev->saved_config_space, state->config_space,
1760 sizeof(state->config_space));
1761
1762 cap = state->cap;
1763 while (cap->size) {
1764 struct pci_cap_saved_state *tmp;
1765
1766 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1767 if (!tmp || tmp->cap.size != cap->size)
1768 return -EINVAL;
1769
1770 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1771 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1772 sizeof(struct pci_cap_saved_data) + cap->size);
1773 }
1774
1775 dev->state_saved = true;
1776 return 0;
1777 }
1778 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1779
1780 /**
1781 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1782 * and free the memory allocated for it.
1783 * @dev: PCI device that we're dealing with
1784 * @state: Pointer to saved state returned from pci_store_saved_state()
1785 */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)1786 int pci_load_and_free_saved_state(struct pci_dev *dev,
1787 struct pci_saved_state **state)
1788 {
1789 int ret = pci_load_saved_state(dev, *state);
1790 kfree(*state);
1791 *state = NULL;
1792 return ret;
1793 }
1794 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1795
pcibios_enable_device(struct pci_dev * dev,int bars)1796 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1797 {
1798 return pci_enable_resources(dev, bars);
1799 }
1800
do_pci_enable_device(struct pci_dev * dev,int bars)1801 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1802 {
1803 int err;
1804 struct pci_dev *bridge;
1805 u16 cmd;
1806 u8 pin;
1807
1808 err = pci_set_power_state(dev, PCI_D0);
1809 if (err < 0 && err != -EIO)
1810 return err;
1811
1812 bridge = pci_upstream_bridge(dev);
1813 if (bridge)
1814 pcie_aspm_powersave_config_link(bridge);
1815
1816 err = pcibios_enable_device(dev, bars);
1817 if (err < 0)
1818 return err;
1819 pci_fixup_device(pci_fixup_enable, dev);
1820
1821 if (dev->msi_enabled || dev->msix_enabled)
1822 return 0;
1823
1824 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1825 if (pin) {
1826 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1827 if (cmd & PCI_COMMAND_INTX_DISABLE)
1828 pci_write_config_word(dev, PCI_COMMAND,
1829 cmd & ~PCI_COMMAND_INTX_DISABLE);
1830 }
1831
1832 return 0;
1833 }
1834
1835 /**
1836 * pci_reenable_device - Resume abandoned device
1837 * @dev: PCI device to be resumed
1838 *
1839 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1840 * to be called by normal code, write proper resume handler and use it instead.
1841 */
pci_reenable_device(struct pci_dev * dev)1842 int pci_reenable_device(struct pci_dev *dev)
1843 {
1844 if (pci_is_enabled(dev))
1845 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1846 return 0;
1847 }
1848 EXPORT_SYMBOL(pci_reenable_device);
1849
pci_enable_bridge(struct pci_dev * dev)1850 static void pci_enable_bridge(struct pci_dev *dev)
1851 {
1852 struct pci_dev *bridge;
1853 int retval;
1854
1855 bridge = pci_upstream_bridge(dev);
1856 if (bridge)
1857 pci_enable_bridge(bridge);
1858
1859 if (pci_is_enabled(dev)) {
1860 if (!dev->is_busmaster)
1861 pci_set_master(dev);
1862 return;
1863 }
1864
1865 retval = pci_enable_device(dev);
1866 if (retval)
1867 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1868 retval);
1869 pci_set_master(dev);
1870 }
1871
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)1872 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1873 {
1874 struct pci_dev *bridge;
1875 int err;
1876 int i, bars = 0;
1877
1878 /*
1879 * Power state could be unknown at this point, either due to a fresh
1880 * boot or a device removal call. So get the current power state
1881 * so that things like MSI message writing will behave as expected
1882 * (e.g. if the device really is in D0 at enable time).
1883 */
1884 pci_update_current_state(dev, dev->current_state);
1885
1886 if (atomic_inc_return(&dev->enable_cnt) > 1)
1887 return 0; /* already enabled */
1888
1889 bridge = pci_upstream_bridge(dev);
1890 if (bridge)
1891 pci_enable_bridge(bridge);
1892
1893 /* only skip sriov related */
1894 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1895 if (dev->resource[i].flags & flags)
1896 bars |= (1 << i);
1897 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1898 if (dev->resource[i].flags & flags)
1899 bars |= (1 << i);
1900
1901 err = do_pci_enable_device(dev, bars);
1902 if (err < 0)
1903 atomic_dec(&dev->enable_cnt);
1904 return err;
1905 }
1906
1907 /**
1908 * pci_enable_device_io - Initialize a device for use with IO space
1909 * @dev: PCI device to be initialized
1910 *
1911 * Initialize device before it's used by a driver. Ask low-level code
1912 * to enable I/O resources. Wake up the device if it was suspended.
1913 * Beware, this function can fail.
1914 */
pci_enable_device_io(struct pci_dev * dev)1915 int pci_enable_device_io(struct pci_dev *dev)
1916 {
1917 return pci_enable_device_flags(dev, IORESOURCE_IO);
1918 }
1919 EXPORT_SYMBOL(pci_enable_device_io);
1920
1921 /**
1922 * pci_enable_device_mem - Initialize a device for use with Memory space
1923 * @dev: PCI device to be initialized
1924 *
1925 * Initialize device before it's used by a driver. Ask low-level code
1926 * to enable Memory resources. Wake up the device if it was suspended.
1927 * Beware, this function can fail.
1928 */
pci_enable_device_mem(struct pci_dev * dev)1929 int pci_enable_device_mem(struct pci_dev *dev)
1930 {
1931 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1932 }
1933 EXPORT_SYMBOL(pci_enable_device_mem);
1934
1935 /**
1936 * pci_enable_device - Initialize device before it's used by a driver.
1937 * @dev: PCI device to be initialized
1938 *
1939 * Initialize device before it's used by a driver. Ask low-level code
1940 * to enable I/O and memory. Wake up the device if it was suspended.
1941 * Beware, this function can fail.
1942 *
1943 * Note we don't actually enable the device many times if we call
1944 * this function repeatedly (we just increment the count).
1945 */
pci_enable_device(struct pci_dev * dev)1946 int pci_enable_device(struct pci_dev *dev)
1947 {
1948 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1949 }
1950 EXPORT_SYMBOL(pci_enable_device);
1951
1952 /*
1953 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1954 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1955 * there's no need to track it separately. pci_devres is initialized
1956 * when a device is enabled using managed PCI device enable interface.
1957 */
1958 struct pci_devres {
1959 unsigned int enabled:1;
1960 unsigned int pinned:1;
1961 unsigned int orig_intx:1;
1962 unsigned int restore_intx:1;
1963 unsigned int mwi:1;
1964 u32 region_mask;
1965 };
1966
pcim_release(struct device * gendev,void * res)1967 static void pcim_release(struct device *gendev, void *res)
1968 {
1969 struct pci_dev *dev = to_pci_dev(gendev);
1970 struct pci_devres *this = res;
1971 int i;
1972
1973 if (dev->msi_enabled)
1974 pci_disable_msi(dev);
1975 if (dev->msix_enabled)
1976 pci_disable_msix(dev);
1977
1978 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1979 if (this->region_mask & (1 << i))
1980 pci_release_region(dev, i);
1981
1982 if (this->mwi)
1983 pci_clear_mwi(dev);
1984
1985 if (this->restore_intx)
1986 pci_intx(dev, this->orig_intx);
1987
1988 if (this->enabled && !this->pinned)
1989 pci_disable_device(dev);
1990 }
1991
get_pci_dr(struct pci_dev * pdev)1992 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1993 {
1994 struct pci_devres *dr, *new_dr;
1995
1996 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1997 if (dr)
1998 return dr;
1999
2000 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2001 if (!new_dr)
2002 return NULL;
2003 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2004 }
2005
find_pci_dr(struct pci_dev * pdev)2006 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2007 {
2008 if (pci_is_managed(pdev))
2009 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2010 return NULL;
2011 }
2012
2013 /**
2014 * pcim_enable_device - Managed pci_enable_device()
2015 * @pdev: PCI device to be initialized
2016 *
2017 * Managed pci_enable_device().
2018 */
pcim_enable_device(struct pci_dev * pdev)2019 int pcim_enable_device(struct pci_dev *pdev)
2020 {
2021 struct pci_devres *dr;
2022 int rc;
2023
2024 dr = get_pci_dr(pdev);
2025 if (unlikely(!dr))
2026 return -ENOMEM;
2027 if (dr->enabled)
2028 return 0;
2029
2030 rc = pci_enable_device(pdev);
2031 if (!rc) {
2032 pdev->is_managed = 1;
2033 dr->enabled = 1;
2034 }
2035 return rc;
2036 }
2037 EXPORT_SYMBOL(pcim_enable_device);
2038
2039 /**
2040 * pcim_pin_device - Pin managed PCI device
2041 * @pdev: PCI device to pin
2042 *
2043 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2044 * driver detach. @pdev must have been enabled with
2045 * pcim_enable_device().
2046 */
pcim_pin_device(struct pci_dev * pdev)2047 void pcim_pin_device(struct pci_dev *pdev)
2048 {
2049 struct pci_devres *dr;
2050
2051 dr = find_pci_dr(pdev);
2052 WARN_ON(!dr || !dr->enabled);
2053 if (dr)
2054 dr->pinned = 1;
2055 }
2056 EXPORT_SYMBOL(pcim_pin_device);
2057
2058 /*
2059 * pcibios_add_device - provide arch specific hooks when adding device dev
2060 * @dev: the PCI device being added
2061 *
2062 * Permits the platform to provide architecture specific functionality when
2063 * devices are added. This is the default implementation. Architecture
2064 * implementations can override this.
2065 */
pcibios_add_device(struct pci_dev * dev)2066 int __weak pcibios_add_device(struct pci_dev *dev)
2067 {
2068 return 0;
2069 }
2070
2071 /**
2072 * pcibios_release_device - provide arch specific hooks when releasing
2073 * device dev
2074 * @dev: the PCI device being released
2075 *
2076 * Permits the platform to provide architecture specific functionality when
2077 * devices are released. This is the default implementation. Architecture
2078 * implementations can override this.
2079 */
pcibios_release_device(struct pci_dev * dev)2080 void __weak pcibios_release_device(struct pci_dev *dev) {}
2081
2082 /**
2083 * pcibios_disable_device - disable arch specific PCI resources for device dev
2084 * @dev: the PCI device to disable
2085 *
2086 * Disables architecture specific PCI resources for the device. This
2087 * is the default implementation. Architecture implementations can
2088 * override this.
2089 */
pcibios_disable_device(struct pci_dev * dev)2090 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2091
2092 /**
2093 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2094 * @irq: ISA IRQ to penalize
2095 * @active: IRQ active or not
2096 *
2097 * Permits the platform to provide architecture-specific functionality when
2098 * penalizing ISA IRQs. This is the default implementation. Architecture
2099 * implementations can override this.
2100 */
pcibios_penalize_isa_irq(int irq,int active)2101 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2102
do_pci_disable_device(struct pci_dev * dev)2103 static void do_pci_disable_device(struct pci_dev *dev)
2104 {
2105 u16 pci_command;
2106
2107 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2108 if (pci_command & PCI_COMMAND_MASTER) {
2109 pci_command &= ~PCI_COMMAND_MASTER;
2110 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2111 }
2112
2113 pcibios_disable_device(dev);
2114 }
2115
2116 /**
2117 * pci_disable_enabled_device - Disable device without updating enable_cnt
2118 * @dev: PCI device to disable
2119 *
2120 * NOTE: This function is a backend of PCI power management routines and is
2121 * not supposed to be called drivers.
2122 */
pci_disable_enabled_device(struct pci_dev * dev)2123 void pci_disable_enabled_device(struct pci_dev *dev)
2124 {
2125 if (pci_is_enabled(dev))
2126 do_pci_disable_device(dev);
2127 }
2128
2129 /**
2130 * pci_disable_device - Disable PCI device after use
2131 * @dev: PCI device to be disabled
2132 *
2133 * Signal to the system that the PCI device is not in use by the system
2134 * anymore. This only involves disabling PCI bus-mastering, if active.
2135 *
2136 * Note we don't actually disable the device until all callers of
2137 * pci_enable_device() have called pci_disable_device().
2138 */
pci_disable_device(struct pci_dev * dev)2139 void pci_disable_device(struct pci_dev *dev)
2140 {
2141 struct pci_devres *dr;
2142
2143 dr = find_pci_dr(dev);
2144 if (dr)
2145 dr->enabled = 0;
2146
2147 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2148 "disabling already-disabled device");
2149
2150 if (atomic_dec_return(&dev->enable_cnt) != 0)
2151 return;
2152
2153 do_pci_disable_device(dev);
2154
2155 dev->is_busmaster = 0;
2156 }
2157 EXPORT_SYMBOL(pci_disable_device);
2158
2159 /**
2160 * pcibios_set_pcie_reset_state - set reset state for device dev
2161 * @dev: the PCIe device reset
2162 * @state: Reset state to enter into
2163 *
2164 * Set the PCIe reset state for the device. This is the default
2165 * implementation. Architecture implementations can override this.
2166 */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2167 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2168 enum pcie_reset_state state)
2169 {
2170 return -EINVAL;
2171 }
2172
2173 /**
2174 * pci_set_pcie_reset_state - set reset state for device dev
2175 * @dev: the PCIe device reset
2176 * @state: Reset state to enter into
2177 *
2178 * Sets the PCI reset state for the device.
2179 */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2180 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2181 {
2182 return pcibios_set_pcie_reset_state(dev, state);
2183 }
2184 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2185
pcie_clear_device_status(struct pci_dev * dev)2186 void pcie_clear_device_status(struct pci_dev *dev)
2187 {
2188 u16 sta;
2189
2190 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2191 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2192 }
2193
2194 /**
2195 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2196 * @dev: PCIe root port or event collector.
2197 */
pcie_clear_root_pme_status(struct pci_dev * dev)2198 void pcie_clear_root_pme_status(struct pci_dev *dev)
2199 {
2200 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2201 }
2202
2203 /**
2204 * pci_check_pme_status - Check if given device has generated PME.
2205 * @dev: Device to check.
2206 *
2207 * Check the PME status of the device and if set, clear it and clear PME enable
2208 * (if set). Return 'true' if PME status and PME enable were both set or
2209 * 'false' otherwise.
2210 */
pci_check_pme_status(struct pci_dev * dev)2211 bool pci_check_pme_status(struct pci_dev *dev)
2212 {
2213 int pmcsr_pos;
2214 u16 pmcsr;
2215 bool ret = false;
2216
2217 if (!dev->pm_cap)
2218 return false;
2219
2220 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2221 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2222 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2223 return false;
2224
2225 /* Clear PME status. */
2226 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2227 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2228 /* Disable PME to avoid interrupt flood. */
2229 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2230 ret = true;
2231 }
2232
2233 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2234
2235 return ret;
2236 }
2237
2238 /**
2239 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2240 * @dev: Device to handle.
2241 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2242 *
2243 * Check if @dev has generated PME and queue a resume request for it in that
2244 * case.
2245 */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)2246 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2247 {
2248 if (pme_poll_reset && dev->pme_poll)
2249 dev->pme_poll = false;
2250
2251 if (pci_check_pme_status(dev)) {
2252 pci_wakeup_event(dev);
2253 pm_request_resume(&dev->dev);
2254 }
2255 return 0;
2256 }
2257
2258 /**
2259 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2260 * @bus: Top bus of the subtree to walk.
2261 */
pci_pme_wakeup_bus(struct pci_bus * bus)2262 void pci_pme_wakeup_bus(struct pci_bus *bus)
2263 {
2264 if (bus)
2265 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2266 }
2267
2268
2269 /**
2270 * pci_pme_capable - check the capability of PCI device to generate PME#
2271 * @dev: PCI device to handle.
2272 * @state: PCI state from which device will issue PME#.
2273 */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)2274 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2275 {
2276 if (!dev->pm_cap)
2277 return false;
2278
2279 return !!(dev->pme_support & (1 << state));
2280 }
2281 EXPORT_SYMBOL(pci_pme_capable);
2282
pci_pme_list_scan(struct work_struct * work)2283 static void pci_pme_list_scan(struct work_struct *work)
2284 {
2285 struct pci_pme_device *pme_dev, *n;
2286
2287 mutex_lock(&pci_pme_list_mutex);
2288 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2289 if (pme_dev->dev->pme_poll) {
2290 struct pci_dev *bridge;
2291
2292 bridge = pme_dev->dev->bus->self;
2293 /*
2294 * If bridge is in low power state, the
2295 * configuration space of subordinate devices
2296 * may be not accessible
2297 */
2298 if (bridge && bridge->current_state != PCI_D0)
2299 continue;
2300 /*
2301 * If the device is in D3cold it should not be
2302 * polled either.
2303 */
2304 if (pme_dev->dev->current_state == PCI_D3cold)
2305 continue;
2306
2307 pci_pme_wakeup(pme_dev->dev, NULL);
2308 } else {
2309 list_del(&pme_dev->list);
2310 kfree(pme_dev);
2311 }
2312 }
2313 if (!list_empty(&pci_pme_list))
2314 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2315 msecs_to_jiffies(PME_TIMEOUT));
2316 mutex_unlock(&pci_pme_list_mutex);
2317 }
2318
__pci_pme_active(struct pci_dev * dev,bool enable)2319 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2320 {
2321 u16 pmcsr;
2322
2323 if (!dev->pme_support)
2324 return;
2325
2326 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2327 /* Clear PME_Status by writing 1 to it and enable PME# */
2328 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2329 if (!enable)
2330 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2331
2332 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2333 }
2334
2335 /**
2336 * pci_pme_restore - Restore PME configuration after config space restore.
2337 * @dev: PCI device to update.
2338 */
pci_pme_restore(struct pci_dev * dev)2339 void pci_pme_restore(struct pci_dev *dev)
2340 {
2341 u16 pmcsr;
2342
2343 if (!dev->pme_support)
2344 return;
2345
2346 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2347 if (dev->wakeup_prepared) {
2348 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2349 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2350 } else {
2351 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2352 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2353 }
2354 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2355 }
2356
2357 /**
2358 * pci_pme_active - enable or disable PCI device's PME# function
2359 * @dev: PCI device to handle.
2360 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2361 *
2362 * The caller must verify that the device is capable of generating PME# before
2363 * calling this function with @enable equal to 'true'.
2364 */
pci_pme_active(struct pci_dev * dev,bool enable)2365 void pci_pme_active(struct pci_dev *dev, bool enable)
2366 {
2367 __pci_pme_active(dev, enable);
2368
2369 /*
2370 * PCI (as opposed to PCIe) PME requires that the device have
2371 * its PME# line hooked up correctly. Not all hardware vendors
2372 * do this, so the PME never gets delivered and the device
2373 * remains asleep. The easiest way around this is to
2374 * periodically walk the list of suspended devices and check
2375 * whether any have their PME flag set. The assumption is that
2376 * we'll wake up often enough anyway that this won't be a huge
2377 * hit, and the power savings from the devices will still be a
2378 * win.
2379 *
2380 * Although PCIe uses in-band PME message instead of PME# line
2381 * to report PME, PME does not work for some PCIe devices in
2382 * reality. For example, there are devices that set their PME
2383 * status bits, but don't really bother to send a PME message;
2384 * there are PCI Express Root Ports that don't bother to
2385 * trigger interrupts when they receive PME messages from the
2386 * devices below. So PME poll is used for PCIe devices too.
2387 */
2388
2389 if (dev->pme_poll) {
2390 struct pci_pme_device *pme_dev;
2391 if (enable) {
2392 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2393 GFP_KERNEL);
2394 if (!pme_dev) {
2395 pci_warn(dev, "can't enable PME#\n");
2396 return;
2397 }
2398 pme_dev->dev = dev;
2399 mutex_lock(&pci_pme_list_mutex);
2400 list_add(&pme_dev->list, &pci_pme_list);
2401 if (list_is_singular(&pci_pme_list))
2402 queue_delayed_work(system_freezable_wq,
2403 &pci_pme_work,
2404 msecs_to_jiffies(PME_TIMEOUT));
2405 mutex_unlock(&pci_pme_list_mutex);
2406 } else {
2407 mutex_lock(&pci_pme_list_mutex);
2408 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2409 if (pme_dev->dev == dev) {
2410 list_del(&pme_dev->list);
2411 kfree(pme_dev);
2412 break;
2413 }
2414 }
2415 mutex_unlock(&pci_pme_list_mutex);
2416 }
2417 }
2418
2419 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2420 }
2421 EXPORT_SYMBOL(pci_pme_active);
2422
2423 /**
2424 * __pci_enable_wake - enable PCI device as wakeup event source
2425 * @dev: PCI device affected
2426 * @state: PCI state from which device will issue wakeup events
2427 * @enable: True to enable event generation; false to disable
2428 *
2429 * This enables the device as a wakeup event source, or disables it.
2430 * When such events involves platform-specific hooks, those hooks are
2431 * called automatically by this routine.
2432 *
2433 * Devices with legacy power management (no standard PCI PM capabilities)
2434 * always require such platform hooks.
2435 *
2436 * RETURN VALUE:
2437 * 0 is returned on success
2438 * -EINVAL is returned if device is not supposed to wake up the system
2439 * Error code depending on the platform is returned if both the platform and
2440 * the native mechanism fail to enable the generation of wake-up events
2441 */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool enable)2442 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2443 {
2444 int ret = 0;
2445
2446 /*
2447 * Bridges that are not power-manageable directly only signal
2448 * wakeup on behalf of subordinate devices which is set up
2449 * elsewhere, so skip them. However, bridges that are
2450 * power-manageable may signal wakeup for themselves (for example,
2451 * on a hotplug event) and they need to be covered here.
2452 */
2453 if (!pci_power_manageable(dev))
2454 return 0;
2455
2456 /* Don't do the same thing twice in a row for one device. */
2457 if (!!enable == !!dev->wakeup_prepared)
2458 return 0;
2459
2460 /*
2461 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2462 * Anderson we should be doing PME# wake enable followed by ACPI wake
2463 * enable. To disable wake-up we call the platform first, for symmetry.
2464 */
2465
2466 if (enable) {
2467 int error;
2468
2469 /*
2470 * Enable PME signaling if the device can signal PME from
2471 * D3cold regardless of whether or not it can signal PME from
2472 * the current target state, because that will allow it to
2473 * signal PME when the hierarchy above it goes into D3cold and
2474 * the device itself ends up in D3cold as a result of that.
2475 */
2476 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2477 pci_pme_active(dev, true);
2478 else
2479 ret = 1;
2480 error = platform_pci_set_wakeup(dev, true);
2481 if (ret)
2482 ret = error;
2483 if (!ret)
2484 dev->wakeup_prepared = true;
2485 } else {
2486 platform_pci_set_wakeup(dev, false);
2487 pci_pme_active(dev, false);
2488 dev->wakeup_prepared = false;
2489 }
2490
2491 return ret;
2492 }
2493
2494 /**
2495 * pci_enable_wake - change wakeup settings for a PCI device
2496 * @pci_dev: Target device
2497 * @state: PCI state from which device will issue wakeup events
2498 * @enable: Whether or not to enable event generation
2499 *
2500 * If @enable is set, check device_may_wakeup() for the device before calling
2501 * __pci_enable_wake() for it.
2502 */
pci_enable_wake(struct pci_dev * pci_dev,pci_power_t state,bool enable)2503 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2504 {
2505 if (enable && !device_may_wakeup(&pci_dev->dev))
2506 return -EINVAL;
2507
2508 return __pci_enable_wake(pci_dev, state, enable);
2509 }
2510 EXPORT_SYMBOL(pci_enable_wake);
2511
2512 /**
2513 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2514 * @dev: PCI device to prepare
2515 * @enable: True to enable wake-up event generation; false to disable
2516 *
2517 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2518 * and this function allows them to set that up cleanly - pci_enable_wake()
2519 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2520 * ordering constraints.
2521 *
2522 * This function only returns error code if the device is not allowed to wake
2523 * up the system from sleep or it is not capable of generating PME# from both
2524 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2525 */
pci_wake_from_d3(struct pci_dev * dev,bool enable)2526 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2527 {
2528 return pci_pme_capable(dev, PCI_D3cold) ?
2529 pci_enable_wake(dev, PCI_D3cold, enable) :
2530 pci_enable_wake(dev, PCI_D3hot, enable);
2531 }
2532 EXPORT_SYMBOL(pci_wake_from_d3);
2533
2534 /**
2535 * pci_target_state - find an appropriate low power state for a given PCI dev
2536 * @dev: PCI device
2537 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2538 *
2539 * Use underlying platform code to find a supported low power state for @dev.
2540 * If the platform can't manage @dev, return the deepest state from which it
2541 * can generate wake events, based on any available PME info.
2542 */
pci_target_state(struct pci_dev * dev,bool wakeup)2543 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2544 {
2545 pci_power_t target_state = PCI_D3hot;
2546
2547 if (platform_pci_power_manageable(dev)) {
2548 /*
2549 * Call the platform to find the target state for the device.
2550 */
2551 pci_power_t state = platform_pci_choose_state(dev);
2552
2553 switch (state) {
2554 case PCI_POWER_ERROR:
2555 case PCI_UNKNOWN:
2556 break;
2557 case PCI_D1:
2558 case PCI_D2:
2559 if (pci_no_d1d2(dev))
2560 break;
2561 fallthrough;
2562 default:
2563 target_state = state;
2564 }
2565
2566 return target_state;
2567 }
2568
2569 if (!dev->pm_cap)
2570 target_state = PCI_D0;
2571
2572 /*
2573 * If the device is in D3cold even though it's not power-manageable by
2574 * the platform, it may have been powered down by non-standard means.
2575 * Best to let it slumber.
2576 */
2577 if (dev->current_state == PCI_D3cold)
2578 target_state = PCI_D3cold;
2579
2580 if (wakeup && dev->pme_support) {
2581 pci_power_t state = target_state;
2582
2583 /*
2584 * Find the deepest state from which the device can generate
2585 * PME#.
2586 */
2587 while (state && !(dev->pme_support & (1 << state)))
2588 state--;
2589
2590 if (state)
2591 return state;
2592 else if (dev->pme_support & 1)
2593 return PCI_D0;
2594 }
2595
2596 return target_state;
2597 }
2598
2599 /**
2600 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2601 * into a sleep state
2602 * @dev: Device to handle.
2603 *
2604 * Choose the power state appropriate for the device depending on whether
2605 * it can wake up the system and/or is power manageable by the platform
2606 * (PCI_D3hot is the default) and put the device into that state.
2607 */
pci_prepare_to_sleep(struct pci_dev * dev)2608 int pci_prepare_to_sleep(struct pci_dev *dev)
2609 {
2610 bool wakeup = device_may_wakeup(&dev->dev);
2611 pci_power_t target_state = pci_target_state(dev, wakeup);
2612 int error;
2613
2614 if (target_state == PCI_POWER_ERROR)
2615 return -EIO;
2616
2617 pci_enable_wake(dev, target_state, wakeup);
2618
2619 error = pci_set_power_state(dev, target_state);
2620
2621 if (error)
2622 pci_enable_wake(dev, target_state, false);
2623
2624 return error;
2625 }
2626 EXPORT_SYMBOL(pci_prepare_to_sleep);
2627
2628 /**
2629 * pci_back_from_sleep - turn PCI device on during system-wide transition
2630 * into working state
2631 * @dev: Device to handle.
2632 *
2633 * Disable device's system wake-up capability and put it into D0.
2634 */
pci_back_from_sleep(struct pci_dev * dev)2635 int pci_back_from_sleep(struct pci_dev *dev)
2636 {
2637 pci_enable_wake(dev, PCI_D0, false);
2638 return pci_set_power_state(dev, PCI_D0);
2639 }
2640 EXPORT_SYMBOL(pci_back_from_sleep);
2641
2642 /**
2643 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2644 * @dev: PCI device being suspended.
2645 *
2646 * Prepare @dev to generate wake-up events at run time and put it into a low
2647 * power state.
2648 */
pci_finish_runtime_suspend(struct pci_dev * dev)2649 int pci_finish_runtime_suspend(struct pci_dev *dev)
2650 {
2651 pci_power_t target_state;
2652 int error;
2653
2654 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2655 if (target_state == PCI_POWER_ERROR)
2656 return -EIO;
2657
2658 dev->runtime_d3cold = target_state == PCI_D3cold;
2659
2660 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2661
2662 error = pci_set_power_state(dev, target_state);
2663
2664 if (error) {
2665 pci_enable_wake(dev, target_state, false);
2666 dev->runtime_d3cold = false;
2667 }
2668
2669 return error;
2670 }
2671
2672 /**
2673 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2674 * @dev: Device to check.
2675 *
2676 * Return true if the device itself is capable of generating wake-up events
2677 * (through the platform or using the native PCIe PME) or if the device supports
2678 * PME and one of its upstream bridges can generate wake-up events.
2679 */
pci_dev_run_wake(struct pci_dev * dev)2680 bool pci_dev_run_wake(struct pci_dev *dev)
2681 {
2682 struct pci_bus *bus = dev->bus;
2683
2684 if (!dev->pme_support)
2685 return false;
2686
2687 /* PME-capable in principle, but not from the target power state */
2688 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2689 return false;
2690
2691 if (device_can_wakeup(&dev->dev))
2692 return true;
2693
2694 while (bus->parent) {
2695 struct pci_dev *bridge = bus->self;
2696
2697 if (device_can_wakeup(&bridge->dev))
2698 return true;
2699
2700 bus = bus->parent;
2701 }
2702
2703 /* We have reached the root bus. */
2704 if (bus->bridge)
2705 return device_can_wakeup(bus->bridge);
2706
2707 return false;
2708 }
2709 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2710
2711 /**
2712 * pci_dev_need_resume - Check if it is necessary to resume the device.
2713 * @pci_dev: Device to check.
2714 *
2715 * Return 'true' if the device is not runtime-suspended or it has to be
2716 * reconfigured due to wakeup settings difference between system and runtime
2717 * suspend, or the current power state of it is not suitable for the upcoming
2718 * (system-wide) transition.
2719 */
pci_dev_need_resume(struct pci_dev * pci_dev)2720 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2721 {
2722 struct device *dev = &pci_dev->dev;
2723 pci_power_t target_state;
2724
2725 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2726 return true;
2727
2728 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2729
2730 /*
2731 * If the earlier platform check has not triggered, D3cold is just power
2732 * removal on top of D3hot, so no need to resume the device in that
2733 * case.
2734 */
2735 return target_state != pci_dev->current_state &&
2736 target_state != PCI_D3cold &&
2737 pci_dev->current_state != PCI_D3hot;
2738 }
2739
2740 /**
2741 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2742 * @pci_dev: Device to check.
2743 *
2744 * If the device is suspended and it is not configured for system wakeup,
2745 * disable PME for it to prevent it from waking up the system unnecessarily.
2746 *
2747 * Note that if the device's power state is D3cold and the platform check in
2748 * pci_dev_need_resume() has not triggered, the device's configuration need not
2749 * be changed.
2750 */
pci_dev_adjust_pme(struct pci_dev * pci_dev)2751 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2752 {
2753 struct device *dev = &pci_dev->dev;
2754
2755 spin_lock_irq(&dev->power.lock);
2756
2757 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2758 pci_dev->current_state < PCI_D3cold)
2759 __pci_pme_active(pci_dev, false);
2760
2761 spin_unlock_irq(&dev->power.lock);
2762 }
2763
2764 /**
2765 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2766 * @pci_dev: Device to handle.
2767 *
2768 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2769 * it might have been disabled during the prepare phase of system suspend if
2770 * the device was not configured for system wakeup.
2771 */
pci_dev_complete_resume(struct pci_dev * pci_dev)2772 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2773 {
2774 struct device *dev = &pci_dev->dev;
2775
2776 if (!pci_dev_run_wake(pci_dev))
2777 return;
2778
2779 spin_lock_irq(&dev->power.lock);
2780
2781 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2782 __pci_pme_active(pci_dev, true);
2783
2784 spin_unlock_irq(&dev->power.lock);
2785 }
2786
pci_config_pm_runtime_get(struct pci_dev * pdev)2787 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2788 {
2789 struct device *dev = &pdev->dev;
2790 struct device *parent = dev->parent;
2791
2792 if (parent)
2793 pm_runtime_get_sync(parent);
2794 pm_runtime_get_noresume(dev);
2795 /*
2796 * pdev->current_state is set to PCI_D3cold during suspending,
2797 * so wait until suspending completes
2798 */
2799 pm_runtime_barrier(dev);
2800 /*
2801 * Only need to resume devices in D3cold, because config
2802 * registers are still accessible for devices suspended but
2803 * not in D3cold.
2804 */
2805 if (pdev->current_state == PCI_D3cold)
2806 pm_runtime_resume(dev);
2807 }
2808
pci_config_pm_runtime_put(struct pci_dev * pdev)2809 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2810 {
2811 struct device *dev = &pdev->dev;
2812 struct device *parent = dev->parent;
2813
2814 pm_runtime_put(dev);
2815 if (parent)
2816 pm_runtime_put_sync(parent);
2817 }
2818
2819 static const struct dmi_system_id bridge_d3_blacklist[] = {
2820 #ifdef CONFIG_X86
2821 {
2822 /*
2823 * Gigabyte X299 root port is not marked as hotplug capable
2824 * which allows Linux to power manage it. However, this
2825 * confuses the BIOS SMI handler so don't power manage root
2826 * ports on that system.
2827 */
2828 .ident = "X299 DESIGNARE EX-CF",
2829 .matches = {
2830 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2831 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2832 },
2833 },
2834 {
2835 /*
2836 * Downstream device is not accessible after putting a root port
2837 * into D3cold and back into D0 on Elo Continental Z2 board
2838 */
2839 .ident = "Elo Continental Z2",
2840 .matches = {
2841 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2842 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2843 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2844 },
2845 },
2846 #endif
2847 { }
2848 };
2849
2850 /**
2851 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2852 * @bridge: Bridge to check
2853 *
2854 * This function checks if it is possible to move the bridge to D3.
2855 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2856 */
pci_bridge_d3_possible(struct pci_dev * bridge)2857 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2858 {
2859 if (!pci_is_pcie(bridge))
2860 return false;
2861
2862 switch (pci_pcie_type(bridge)) {
2863 case PCI_EXP_TYPE_ROOT_PORT:
2864 case PCI_EXP_TYPE_UPSTREAM:
2865 case PCI_EXP_TYPE_DOWNSTREAM:
2866 if (pci_bridge_d3_disable)
2867 return false;
2868
2869 /*
2870 * Hotplug ports handled by firmware in System Management Mode
2871 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2872 */
2873 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2874 return false;
2875
2876 if (pci_bridge_d3_force)
2877 return true;
2878
2879 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2880 if (bridge->is_thunderbolt)
2881 return true;
2882
2883 /* Platform might know better if the bridge supports D3 */
2884 if (platform_pci_bridge_d3(bridge))
2885 return true;
2886
2887 /*
2888 * Hotplug ports handled natively by the OS were not validated
2889 * by vendors for runtime D3 at least until 2018 because there
2890 * was no OS support.
2891 */
2892 if (bridge->is_hotplug_bridge)
2893 return false;
2894
2895 if (dmi_check_system(bridge_d3_blacklist))
2896 return false;
2897
2898 /*
2899 * It should be safe to put PCIe ports from 2015 or newer
2900 * to D3.
2901 */
2902 if (dmi_get_bios_year() >= 2015)
2903 return true;
2904 break;
2905 }
2906
2907 return false;
2908 }
2909
pci_dev_check_d3cold(struct pci_dev * dev,void * data)2910 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2911 {
2912 bool *d3cold_ok = data;
2913
2914 if (/* The device needs to be allowed to go D3cold ... */
2915 dev->no_d3cold || !dev->d3cold_allowed ||
2916
2917 /* ... and if it is wakeup capable to do so from D3cold. */
2918 (device_may_wakeup(&dev->dev) &&
2919 !pci_pme_capable(dev, PCI_D3cold)) ||
2920
2921 /* If it is a bridge it must be allowed to go to D3. */
2922 !pci_power_manageable(dev))
2923
2924 *d3cold_ok = false;
2925
2926 return !*d3cold_ok;
2927 }
2928
2929 /*
2930 * pci_bridge_d3_update - Update bridge D3 capabilities
2931 * @dev: PCI device which is changed
2932 *
2933 * Update upstream bridge PM capabilities accordingly depending on if the
2934 * device PM configuration was changed or the device is being removed. The
2935 * change is also propagated upstream.
2936 */
pci_bridge_d3_update(struct pci_dev * dev)2937 void pci_bridge_d3_update(struct pci_dev *dev)
2938 {
2939 bool remove = !device_is_registered(&dev->dev);
2940 struct pci_dev *bridge;
2941 bool d3cold_ok = true;
2942
2943 bridge = pci_upstream_bridge(dev);
2944 if (!bridge || !pci_bridge_d3_possible(bridge))
2945 return;
2946
2947 /*
2948 * If D3 is currently allowed for the bridge, removing one of its
2949 * children won't change that.
2950 */
2951 if (remove && bridge->bridge_d3)
2952 return;
2953
2954 /*
2955 * If D3 is currently allowed for the bridge and a child is added or
2956 * changed, disallowance of D3 can only be caused by that child, so
2957 * we only need to check that single device, not any of its siblings.
2958 *
2959 * If D3 is currently not allowed for the bridge, checking the device
2960 * first may allow us to skip checking its siblings.
2961 */
2962 if (!remove)
2963 pci_dev_check_d3cold(dev, &d3cold_ok);
2964
2965 /*
2966 * If D3 is currently not allowed for the bridge, this may be caused
2967 * either by the device being changed/removed or any of its siblings,
2968 * so we need to go through all children to find out if one of them
2969 * continues to block D3.
2970 */
2971 if (d3cold_ok && !bridge->bridge_d3)
2972 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2973 &d3cold_ok);
2974
2975 if (bridge->bridge_d3 != d3cold_ok) {
2976 bridge->bridge_d3 = d3cold_ok;
2977 /* Propagate change to upstream bridges */
2978 pci_bridge_d3_update(bridge);
2979 }
2980 }
2981
2982 /**
2983 * pci_d3cold_enable - Enable D3cold for device
2984 * @dev: PCI device to handle
2985 *
2986 * This function can be used in drivers to enable D3cold from the device
2987 * they handle. It also updates upstream PCI bridge PM capabilities
2988 * accordingly.
2989 */
pci_d3cold_enable(struct pci_dev * dev)2990 void pci_d3cold_enable(struct pci_dev *dev)
2991 {
2992 if (dev->no_d3cold) {
2993 dev->no_d3cold = false;
2994 pci_bridge_d3_update(dev);
2995 }
2996 }
2997 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2998
2999 /**
3000 * pci_d3cold_disable - Disable D3cold for device
3001 * @dev: PCI device to handle
3002 *
3003 * This function can be used in drivers to disable D3cold from the device
3004 * they handle. It also updates upstream PCI bridge PM capabilities
3005 * accordingly.
3006 */
pci_d3cold_disable(struct pci_dev * dev)3007 void pci_d3cold_disable(struct pci_dev *dev)
3008 {
3009 if (!dev->no_d3cold) {
3010 dev->no_d3cold = true;
3011 pci_bridge_d3_update(dev);
3012 }
3013 }
3014 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3015
3016 /**
3017 * pci_pm_init - Initialize PM functions of given PCI device
3018 * @dev: PCI device to handle.
3019 */
pci_pm_init(struct pci_dev * dev)3020 void pci_pm_init(struct pci_dev *dev)
3021 {
3022 int pm;
3023 u16 status;
3024 u16 pmc;
3025
3026 pm_runtime_forbid(&dev->dev);
3027 pm_runtime_set_active(&dev->dev);
3028 pm_runtime_enable(&dev->dev);
3029 device_enable_async_suspend(&dev->dev);
3030 dev->wakeup_prepared = false;
3031
3032 dev->pm_cap = 0;
3033 dev->pme_support = 0;
3034
3035 /* find PCI PM capability in list */
3036 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3037 if (!pm)
3038 return;
3039 /* Check device's ability to generate PME# */
3040 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3041
3042 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3043 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3044 pmc & PCI_PM_CAP_VER_MASK);
3045 return;
3046 }
3047
3048 dev->pm_cap = pm;
3049 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3050 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3051 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3052 dev->d3cold_allowed = true;
3053
3054 dev->d1_support = false;
3055 dev->d2_support = false;
3056 if (!pci_no_d1d2(dev)) {
3057 if (pmc & PCI_PM_CAP_D1)
3058 dev->d1_support = true;
3059 if (pmc & PCI_PM_CAP_D2)
3060 dev->d2_support = true;
3061
3062 if (dev->d1_support || dev->d2_support)
3063 pci_info(dev, "supports%s%s\n",
3064 dev->d1_support ? " D1" : "",
3065 dev->d2_support ? " D2" : "");
3066 }
3067
3068 pmc &= PCI_PM_CAP_PME_MASK;
3069 if (pmc) {
3070 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3071 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3072 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3073 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3074 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3075 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3076 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3077 dev->pme_poll = true;
3078 /*
3079 * Make device's PM flags reflect the wake-up capability, but
3080 * let the user space enable it to wake up the system as needed.
3081 */
3082 device_set_wakeup_capable(&dev->dev, true);
3083 /* Disable the PME# generation functionality */
3084 pci_pme_active(dev, false);
3085 }
3086
3087 pci_read_config_word(dev, PCI_STATUS, &status);
3088 if (status & PCI_STATUS_IMM_READY)
3089 dev->imm_ready = 1;
3090 }
3091
pci_ea_flags(struct pci_dev * dev,u8 prop)3092 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3093 {
3094 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3095
3096 switch (prop) {
3097 case PCI_EA_P_MEM:
3098 case PCI_EA_P_VF_MEM:
3099 flags |= IORESOURCE_MEM;
3100 break;
3101 case PCI_EA_P_MEM_PREFETCH:
3102 case PCI_EA_P_VF_MEM_PREFETCH:
3103 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3104 break;
3105 case PCI_EA_P_IO:
3106 flags |= IORESOURCE_IO;
3107 break;
3108 default:
3109 return 0;
3110 }
3111
3112 return flags;
3113 }
3114
pci_ea_get_resource(struct pci_dev * dev,u8 bei,u8 prop)3115 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3116 u8 prop)
3117 {
3118 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3119 return &dev->resource[bei];
3120 #ifdef CONFIG_PCI_IOV
3121 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3122 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3123 return &dev->resource[PCI_IOV_RESOURCES +
3124 bei - PCI_EA_BEI_VF_BAR0];
3125 #endif
3126 else if (bei == PCI_EA_BEI_ROM)
3127 return &dev->resource[PCI_ROM_RESOURCE];
3128 else
3129 return NULL;
3130 }
3131
3132 /* Read an Enhanced Allocation (EA) entry */
pci_ea_read(struct pci_dev * dev,int offset)3133 static int pci_ea_read(struct pci_dev *dev, int offset)
3134 {
3135 struct resource *res;
3136 int ent_size, ent_offset = offset;
3137 resource_size_t start, end;
3138 unsigned long flags;
3139 u32 dw0, bei, base, max_offset;
3140 u8 prop;
3141 bool support_64 = (sizeof(resource_size_t) >= 8);
3142
3143 pci_read_config_dword(dev, ent_offset, &dw0);
3144 ent_offset += 4;
3145
3146 /* Entry size field indicates DWORDs after 1st */
3147 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3148
3149 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3150 goto out;
3151
3152 bei = (dw0 & PCI_EA_BEI) >> 4;
3153 prop = (dw0 & PCI_EA_PP) >> 8;
3154
3155 /*
3156 * If the Property is in the reserved range, try the Secondary
3157 * Property instead.
3158 */
3159 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3160 prop = (dw0 & PCI_EA_SP) >> 16;
3161 if (prop > PCI_EA_P_BRIDGE_IO)
3162 goto out;
3163
3164 res = pci_ea_get_resource(dev, bei, prop);
3165 if (!res) {
3166 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3167 goto out;
3168 }
3169
3170 flags = pci_ea_flags(dev, prop);
3171 if (!flags) {
3172 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3173 goto out;
3174 }
3175
3176 /* Read Base */
3177 pci_read_config_dword(dev, ent_offset, &base);
3178 start = (base & PCI_EA_FIELD_MASK);
3179 ent_offset += 4;
3180
3181 /* Read MaxOffset */
3182 pci_read_config_dword(dev, ent_offset, &max_offset);
3183 ent_offset += 4;
3184
3185 /* Read Base MSBs (if 64-bit entry) */
3186 if (base & PCI_EA_IS_64) {
3187 u32 base_upper;
3188
3189 pci_read_config_dword(dev, ent_offset, &base_upper);
3190 ent_offset += 4;
3191
3192 flags |= IORESOURCE_MEM_64;
3193
3194 /* entry starts above 32-bit boundary, can't use */
3195 if (!support_64 && base_upper)
3196 goto out;
3197
3198 if (support_64)
3199 start |= ((u64)base_upper << 32);
3200 }
3201
3202 end = start + (max_offset | 0x03);
3203
3204 /* Read MaxOffset MSBs (if 64-bit entry) */
3205 if (max_offset & PCI_EA_IS_64) {
3206 u32 max_offset_upper;
3207
3208 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3209 ent_offset += 4;
3210
3211 flags |= IORESOURCE_MEM_64;
3212
3213 /* entry too big, can't use */
3214 if (!support_64 && max_offset_upper)
3215 goto out;
3216
3217 if (support_64)
3218 end += ((u64)max_offset_upper << 32);
3219 }
3220
3221 if (end < start) {
3222 pci_err(dev, "EA Entry crosses address boundary\n");
3223 goto out;
3224 }
3225
3226 if (ent_size != ent_offset - offset) {
3227 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3228 ent_size, ent_offset - offset);
3229 goto out;
3230 }
3231
3232 res->name = pci_name(dev);
3233 res->start = start;
3234 res->end = end;
3235 res->flags = flags;
3236
3237 if (bei <= PCI_EA_BEI_BAR5)
3238 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3239 bei, res, prop);
3240 else if (bei == PCI_EA_BEI_ROM)
3241 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3242 res, prop);
3243 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3244 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3245 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3246 else
3247 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3248 bei, res, prop);
3249
3250 out:
3251 return offset + ent_size;
3252 }
3253
3254 /* Enhanced Allocation Initialization */
pci_ea_init(struct pci_dev * dev)3255 void pci_ea_init(struct pci_dev *dev)
3256 {
3257 int ea;
3258 u8 num_ent;
3259 int offset;
3260 int i;
3261
3262 /* find PCI EA capability in list */
3263 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3264 if (!ea)
3265 return;
3266
3267 /* determine the number of entries */
3268 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3269 &num_ent);
3270 num_ent &= PCI_EA_NUM_ENT_MASK;
3271
3272 offset = ea + PCI_EA_FIRST_ENT;
3273
3274 /* Skip DWORD 2 for type 1 functions */
3275 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3276 offset += 4;
3277
3278 /* parse each EA entry */
3279 for (i = 0; i < num_ent; ++i)
3280 offset = pci_ea_read(dev, offset);
3281 }
3282
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)3283 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3284 struct pci_cap_saved_state *new_cap)
3285 {
3286 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3287 }
3288
3289 /**
3290 * _pci_add_cap_save_buffer - allocate buffer for saving given
3291 * capability registers
3292 * @dev: the PCI device
3293 * @cap: the capability to allocate the buffer for
3294 * @extended: Standard or Extended capability ID
3295 * @size: requested size of the buffer
3296 */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)3297 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3298 bool extended, unsigned int size)
3299 {
3300 int pos;
3301 struct pci_cap_saved_state *save_state;
3302
3303 if (extended)
3304 pos = pci_find_ext_capability(dev, cap);
3305 else
3306 pos = pci_find_capability(dev, cap);
3307
3308 if (!pos)
3309 return 0;
3310
3311 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3312 if (!save_state)
3313 return -ENOMEM;
3314
3315 save_state->cap.cap_nr = cap;
3316 save_state->cap.cap_extended = extended;
3317 save_state->cap.size = size;
3318 pci_add_saved_cap(dev, save_state);
3319
3320 return 0;
3321 }
3322
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)3323 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3324 {
3325 return _pci_add_cap_save_buffer(dev, cap, false, size);
3326 }
3327
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)3328 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3329 {
3330 return _pci_add_cap_save_buffer(dev, cap, true, size);
3331 }
3332
3333 /**
3334 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3335 * @dev: the PCI device
3336 */
pci_allocate_cap_save_buffers(struct pci_dev * dev)3337 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3338 {
3339 int error;
3340
3341 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3342 PCI_EXP_SAVE_REGS * sizeof(u16));
3343 if (error)
3344 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3345
3346 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3347 if (error)
3348 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3349
3350 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3351 2 * sizeof(u16));
3352 if (error)
3353 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3354
3355 pci_allocate_vc_save_buffers(dev);
3356 }
3357
pci_free_cap_save_buffers(struct pci_dev * dev)3358 void pci_free_cap_save_buffers(struct pci_dev *dev)
3359 {
3360 struct pci_cap_saved_state *tmp;
3361 struct hlist_node *n;
3362
3363 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3364 kfree(tmp);
3365 }
3366
3367 /**
3368 * pci_configure_ari - enable or disable ARI forwarding
3369 * @dev: the PCI device
3370 *
3371 * If @dev and its upstream bridge both support ARI, enable ARI in the
3372 * bridge. Otherwise, disable ARI in the bridge.
3373 */
pci_configure_ari(struct pci_dev * dev)3374 void pci_configure_ari(struct pci_dev *dev)
3375 {
3376 u32 cap;
3377 struct pci_dev *bridge;
3378
3379 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3380 return;
3381
3382 bridge = dev->bus->self;
3383 if (!bridge)
3384 return;
3385
3386 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3387 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3388 return;
3389
3390 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3391 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3392 PCI_EXP_DEVCTL2_ARI);
3393 bridge->ari_enabled = 1;
3394 } else {
3395 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3396 PCI_EXP_DEVCTL2_ARI);
3397 bridge->ari_enabled = 0;
3398 }
3399 }
3400
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)3401 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3402 {
3403 int pos;
3404 u16 cap, ctrl;
3405
3406 pos = pdev->acs_cap;
3407 if (!pos)
3408 return false;
3409
3410 /*
3411 * Except for egress control, capabilities are either required
3412 * or only required if controllable. Features missing from the
3413 * capability field can therefore be assumed as hard-wired enabled.
3414 */
3415 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3416 acs_flags &= (cap | PCI_ACS_EC);
3417
3418 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3419 return (ctrl & acs_flags) == acs_flags;
3420 }
3421
3422 /**
3423 * pci_acs_enabled - test ACS against required flags for a given device
3424 * @pdev: device to test
3425 * @acs_flags: required PCI ACS flags
3426 *
3427 * Return true if the device supports the provided flags. Automatically
3428 * filters out flags that are not implemented on multifunction devices.
3429 *
3430 * Note that this interface checks the effective ACS capabilities of the
3431 * device rather than the actual capabilities. For instance, most single
3432 * function endpoints are not required to support ACS because they have no
3433 * opportunity for peer-to-peer access. We therefore return 'true'
3434 * regardless of whether the device exposes an ACS capability. This makes
3435 * it much easier for callers of this function to ignore the actual type
3436 * or topology of the device when testing ACS support.
3437 */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)3438 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3439 {
3440 int ret;
3441
3442 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3443 if (ret >= 0)
3444 return ret > 0;
3445
3446 /*
3447 * Conventional PCI and PCI-X devices never support ACS, either
3448 * effectively or actually. The shared bus topology implies that
3449 * any device on the bus can receive or snoop DMA.
3450 */
3451 if (!pci_is_pcie(pdev))
3452 return false;
3453
3454 switch (pci_pcie_type(pdev)) {
3455 /*
3456 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3457 * but since their primary interface is PCI/X, we conservatively
3458 * handle them as we would a non-PCIe device.
3459 */
3460 case PCI_EXP_TYPE_PCIE_BRIDGE:
3461 /*
3462 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3463 * applicable... must never implement an ACS Extended Capability...".
3464 * This seems arbitrary, but we take a conservative interpretation
3465 * of this statement.
3466 */
3467 case PCI_EXP_TYPE_PCI_BRIDGE:
3468 case PCI_EXP_TYPE_RC_EC:
3469 return false;
3470 /*
3471 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3472 * implement ACS in order to indicate their peer-to-peer capabilities,
3473 * regardless of whether they are single- or multi-function devices.
3474 */
3475 case PCI_EXP_TYPE_DOWNSTREAM:
3476 case PCI_EXP_TYPE_ROOT_PORT:
3477 return pci_acs_flags_enabled(pdev, acs_flags);
3478 /*
3479 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3480 * implemented by the remaining PCIe types to indicate peer-to-peer
3481 * capabilities, but only when they are part of a multifunction
3482 * device. The footnote for section 6.12 indicates the specific
3483 * PCIe types included here.
3484 */
3485 case PCI_EXP_TYPE_ENDPOINT:
3486 case PCI_EXP_TYPE_UPSTREAM:
3487 case PCI_EXP_TYPE_LEG_END:
3488 case PCI_EXP_TYPE_RC_END:
3489 if (!pdev->multifunction)
3490 break;
3491
3492 return pci_acs_flags_enabled(pdev, acs_flags);
3493 }
3494
3495 /*
3496 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3497 * to single function devices with the exception of downstream ports.
3498 */
3499 return true;
3500 }
3501
3502 /**
3503 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3504 * @start: starting downstream device
3505 * @end: ending upstream device or NULL to search to the root bus
3506 * @acs_flags: required flags
3507 *
3508 * Walk up a device tree from start to end testing PCI ACS support. If
3509 * any step along the way does not support the required flags, return false.
3510 */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)3511 bool pci_acs_path_enabled(struct pci_dev *start,
3512 struct pci_dev *end, u16 acs_flags)
3513 {
3514 struct pci_dev *pdev, *parent = start;
3515
3516 do {
3517 pdev = parent;
3518
3519 if (!pci_acs_enabled(pdev, acs_flags))
3520 return false;
3521
3522 if (pci_is_root_bus(pdev->bus))
3523 return (end == NULL);
3524
3525 parent = pdev->bus->self;
3526 } while (pdev != end);
3527
3528 return true;
3529 }
3530
3531 /**
3532 * pci_acs_init - Initialize ACS if hardware supports it
3533 * @dev: the PCI device
3534 */
pci_acs_init(struct pci_dev * dev)3535 void pci_acs_init(struct pci_dev *dev)
3536 {
3537 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3538
3539 /*
3540 * Attempt to enable ACS regardless of capability because some Root
3541 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3542 * the standard ACS capability but still support ACS via those
3543 * quirks.
3544 */
3545 pci_enable_acs(dev);
3546 }
3547
3548 /**
3549 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3550 * @pdev: PCI device
3551 * @bar: BAR to find
3552 *
3553 * Helper to find the position of the ctrl register for a BAR.
3554 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3555 * Returns -ENOENT if no ctrl register for the BAR could be found.
3556 */
pci_rebar_find_pos(struct pci_dev * pdev,int bar)3557 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3558 {
3559 unsigned int pos, nbars, i;
3560 u32 ctrl;
3561
3562 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3563 if (!pos)
3564 return -ENOTSUPP;
3565
3566 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3567 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3568 PCI_REBAR_CTRL_NBAR_SHIFT;
3569
3570 for (i = 0; i < nbars; i++, pos += 8) {
3571 int bar_idx;
3572
3573 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3574 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3575 if (bar_idx == bar)
3576 return pos;
3577 }
3578
3579 return -ENOENT;
3580 }
3581
3582 /**
3583 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3584 * @pdev: PCI device
3585 * @bar: BAR to query
3586 *
3587 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3588 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3589 */
pci_rebar_get_possible_sizes(struct pci_dev * pdev,int bar)3590 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3591 {
3592 int pos;
3593 u32 cap;
3594
3595 pos = pci_rebar_find_pos(pdev, bar);
3596 if (pos < 0)
3597 return 0;
3598
3599 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3600 cap &= PCI_REBAR_CAP_SIZES;
3601
3602 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3603 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3604 bar == 0 && cap == 0x7000)
3605 cap = 0x3f000;
3606
3607 return cap >> 4;
3608 }
3609
3610 /**
3611 * pci_rebar_get_current_size - get the current size of a BAR
3612 * @pdev: PCI device
3613 * @bar: BAR to set size to
3614 *
3615 * Read the size of a BAR from the resizable BAR config.
3616 * Returns size if found or negative error code.
3617 */
pci_rebar_get_current_size(struct pci_dev * pdev,int bar)3618 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3619 {
3620 int pos;
3621 u32 ctrl;
3622
3623 pos = pci_rebar_find_pos(pdev, bar);
3624 if (pos < 0)
3625 return pos;
3626
3627 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3628 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3629 }
3630
3631 /**
3632 * pci_rebar_set_size - set a new size for a BAR
3633 * @pdev: PCI device
3634 * @bar: BAR to set size to
3635 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3636 *
3637 * Set the new size of a BAR as defined in the spec.
3638 * Returns zero if resizing was successful, error code otherwise.
3639 */
pci_rebar_set_size(struct pci_dev * pdev,int bar,int size)3640 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3641 {
3642 int pos;
3643 u32 ctrl;
3644
3645 pos = pci_rebar_find_pos(pdev, bar);
3646 if (pos < 0)
3647 return pos;
3648
3649 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3650 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3651 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3652 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3653 return 0;
3654 }
3655
3656 /**
3657 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3658 * @dev: the PCI device
3659 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3660 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3661 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3662 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3663 *
3664 * Return 0 if all upstream bridges support AtomicOp routing, egress
3665 * blocking is disabled on all upstream ports, and the root port supports
3666 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3667 * AtomicOp completion), or negative otherwise.
3668 */
pci_enable_atomic_ops_to_root(struct pci_dev * dev,u32 cap_mask)3669 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3670 {
3671 struct pci_bus *bus = dev->bus;
3672 struct pci_dev *bridge;
3673 u32 cap, ctl2;
3674
3675 if (!pci_is_pcie(dev))
3676 return -EINVAL;
3677
3678 /*
3679 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3680 * AtomicOp requesters. For now, we only support endpoints as
3681 * requesters and root ports as completers. No endpoints as
3682 * completers, and no peer-to-peer.
3683 */
3684
3685 switch (pci_pcie_type(dev)) {
3686 case PCI_EXP_TYPE_ENDPOINT:
3687 case PCI_EXP_TYPE_LEG_END:
3688 case PCI_EXP_TYPE_RC_END:
3689 break;
3690 default:
3691 return -EINVAL;
3692 }
3693
3694 while (bus->parent) {
3695 bridge = bus->self;
3696
3697 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3698
3699 switch (pci_pcie_type(bridge)) {
3700 /* Ensure switch ports support AtomicOp routing */
3701 case PCI_EXP_TYPE_UPSTREAM:
3702 case PCI_EXP_TYPE_DOWNSTREAM:
3703 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3704 return -EINVAL;
3705 break;
3706
3707 /* Ensure root port supports all the sizes we care about */
3708 case PCI_EXP_TYPE_ROOT_PORT:
3709 if ((cap & cap_mask) != cap_mask)
3710 return -EINVAL;
3711 break;
3712 }
3713
3714 /* Ensure upstream ports don't block AtomicOps on egress */
3715 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3716 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3717 &ctl2);
3718 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3719 return -EINVAL;
3720 }
3721
3722 bus = bus->parent;
3723 }
3724
3725 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3726 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3727 return 0;
3728 }
3729 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3730
3731 /**
3732 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3733 * @dev: the PCI device
3734 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3735 *
3736 * Perform INTx swizzling for a device behind one level of bridge. This is
3737 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3738 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3739 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3740 * the PCI Express Base Specification, Revision 2.1)
3741 */
pci_swizzle_interrupt_pin(const struct pci_dev * dev,u8 pin)3742 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3743 {
3744 int slot;
3745
3746 if (pci_ari_enabled(dev->bus))
3747 slot = 0;
3748 else
3749 slot = PCI_SLOT(dev->devfn);
3750
3751 return (((pin - 1) + slot) % 4) + 1;
3752 }
3753
pci_get_interrupt_pin(struct pci_dev * dev,struct pci_dev ** bridge)3754 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3755 {
3756 u8 pin;
3757
3758 pin = dev->pin;
3759 if (!pin)
3760 return -1;
3761
3762 while (!pci_is_root_bus(dev->bus)) {
3763 pin = pci_swizzle_interrupt_pin(dev, pin);
3764 dev = dev->bus->self;
3765 }
3766 *bridge = dev;
3767 return pin;
3768 }
3769
3770 /**
3771 * pci_common_swizzle - swizzle INTx all the way to root bridge
3772 * @dev: the PCI device
3773 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3774 *
3775 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3776 * bridges all the way up to a PCI root bus.
3777 */
pci_common_swizzle(struct pci_dev * dev,u8 * pinp)3778 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3779 {
3780 u8 pin = *pinp;
3781
3782 while (!pci_is_root_bus(dev->bus)) {
3783 pin = pci_swizzle_interrupt_pin(dev, pin);
3784 dev = dev->bus->self;
3785 }
3786 *pinp = pin;
3787 return PCI_SLOT(dev->devfn);
3788 }
3789 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3790
3791 /**
3792 * pci_release_region - Release a PCI bar
3793 * @pdev: PCI device whose resources were previously reserved by
3794 * pci_request_region()
3795 * @bar: BAR to release
3796 *
3797 * Releases the PCI I/O and memory resources previously reserved by a
3798 * successful call to pci_request_region(). Call this function only
3799 * after all use of the PCI regions has ceased.
3800 */
pci_release_region(struct pci_dev * pdev,int bar)3801 void pci_release_region(struct pci_dev *pdev, int bar)
3802 {
3803 struct pci_devres *dr;
3804
3805 if (pci_resource_len(pdev, bar) == 0)
3806 return;
3807 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3808 release_region(pci_resource_start(pdev, bar),
3809 pci_resource_len(pdev, bar));
3810 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3811 release_mem_region(pci_resource_start(pdev, bar),
3812 pci_resource_len(pdev, bar));
3813
3814 dr = find_pci_dr(pdev);
3815 if (dr)
3816 dr->region_mask &= ~(1 << bar);
3817 }
3818 EXPORT_SYMBOL(pci_release_region);
3819
3820 /**
3821 * __pci_request_region - Reserved PCI I/O and memory resource
3822 * @pdev: PCI device whose resources are to be reserved
3823 * @bar: BAR to be reserved
3824 * @res_name: Name to be associated with resource.
3825 * @exclusive: whether the region access is exclusive or not
3826 *
3827 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3828 * being reserved by owner @res_name. Do not access any
3829 * address inside the PCI regions unless this call returns
3830 * successfully.
3831 *
3832 * If @exclusive is set, then the region is marked so that userspace
3833 * is explicitly not allowed to map the resource via /dev/mem or
3834 * sysfs MMIO access.
3835 *
3836 * Returns 0 on success, or %EBUSY on error. A warning
3837 * message is also printed on failure.
3838 */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)3839 static int __pci_request_region(struct pci_dev *pdev, int bar,
3840 const char *res_name, int exclusive)
3841 {
3842 struct pci_devres *dr;
3843
3844 if (pci_resource_len(pdev, bar) == 0)
3845 return 0;
3846
3847 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3848 if (!request_region(pci_resource_start(pdev, bar),
3849 pci_resource_len(pdev, bar), res_name))
3850 goto err_out;
3851 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3852 if (!__request_mem_region(pci_resource_start(pdev, bar),
3853 pci_resource_len(pdev, bar), res_name,
3854 exclusive))
3855 goto err_out;
3856 }
3857
3858 dr = find_pci_dr(pdev);
3859 if (dr)
3860 dr->region_mask |= 1 << bar;
3861
3862 return 0;
3863
3864 err_out:
3865 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3866 &pdev->resource[bar]);
3867 return -EBUSY;
3868 }
3869
3870 /**
3871 * pci_request_region - Reserve PCI I/O and memory resource
3872 * @pdev: PCI device whose resources are to be reserved
3873 * @bar: BAR to be reserved
3874 * @res_name: Name to be associated with resource
3875 *
3876 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3877 * being reserved by owner @res_name. Do not access any
3878 * address inside the PCI regions unless this call returns
3879 * successfully.
3880 *
3881 * Returns 0 on success, or %EBUSY on error. A warning
3882 * message is also printed on failure.
3883 */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)3884 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3885 {
3886 return __pci_request_region(pdev, bar, res_name, 0);
3887 }
3888 EXPORT_SYMBOL(pci_request_region);
3889
3890 /**
3891 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3892 * @pdev: PCI device whose resources were previously reserved
3893 * @bars: Bitmask of BARs to be released
3894 *
3895 * Release selected PCI I/O and memory resources previously reserved.
3896 * Call this function only after all use of the PCI regions has ceased.
3897 */
pci_release_selected_regions(struct pci_dev * pdev,int bars)3898 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3899 {
3900 int i;
3901
3902 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3903 if (bars & (1 << i))
3904 pci_release_region(pdev, i);
3905 }
3906 EXPORT_SYMBOL(pci_release_selected_regions);
3907
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)3908 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3909 const char *res_name, int excl)
3910 {
3911 int i;
3912
3913 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3914 if (bars & (1 << i))
3915 if (__pci_request_region(pdev, i, res_name, excl))
3916 goto err_out;
3917 return 0;
3918
3919 err_out:
3920 while (--i >= 0)
3921 if (bars & (1 << i))
3922 pci_release_region(pdev, i);
3923
3924 return -EBUSY;
3925 }
3926
3927
3928 /**
3929 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3930 * @pdev: PCI device whose resources are to be reserved
3931 * @bars: Bitmask of BARs to be requested
3932 * @res_name: Name to be associated with resource
3933 */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)3934 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3935 const char *res_name)
3936 {
3937 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3938 }
3939 EXPORT_SYMBOL(pci_request_selected_regions);
3940
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)3941 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3942 const char *res_name)
3943 {
3944 return __pci_request_selected_regions(pdev, bars, res_name,
3945 IORESOURCE_EXCLUSIVE);
3946 }
3947 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3948
3949 /**
3950 * pci_release_regions - Release reserved PCI I/O and memory resources
3951 * @pdev: PCI device whose resources were previously reserved by
3952 * pci_request_regions()
3953 *
3954 * Releases all PCI I/O and memory resources previously reserved by a
3955 * successful call to pci_request_regions(). Call this function only
3956 * after all use of the PCI regions has ceased.
3957 */
3958
pci_release_regions(struct pci_dev * pdev)3959 void pci_release_regions(struct pci_dev *pdev)
3960 {
3961 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3962 }
3963 EXPORT_SYMBOL(pci_release_regions);
3964
3965 /**
3966 * pci_request_regions - Reserve PCI I/O and memory resources
3967 * @pdev: PCI device whose resources are to be reserved
3968 * @res_name: Name to be associated with resource.
3969 *
3970 * Mark all PCI regions associated with PCI device @pdev as
3971 * being reserved by owner @res_name. Do not access any
3972 * address inside the PCI regions unless this call returns
3973 * successfully.
3974 *
3975 * Returns 0 on success, or %EBUSY on error. A warning
3976 * message is also printed on failure.
3977 */
pci_request_regions(struct pci_dev * pdev,const char * res_name)3978 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3979 {
3980 return pci_request_selected_regions(pdev,
3981 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3982 }
3983 EXPORT_SYMBOL(pci_request_regions);
3984
3985 /**
3986 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3987 * @pdev: PCI device whose resources are to be reserved
3988 * @res_name: Name to be associated with resource.
3989 *
3990 * Mark all PCI regions associated with PCI device @pdev as being reserved
3991 * by owner @res_name. Do not access any address inside the PCI regions
3992 * unless this call returns successfully.
3993 *
3994 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3995 * and the sysfs MMIO access will not be allowed.
3996 *
3997 * Returns 0 on success, or %EBUSY on error. A warning message is also
3998 * printed on failure.
3999 */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)4000 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4001 {
4002 return pci_request_selected_regions_exclusive(pdev,
4003 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4004 }
4005 EXPORT_SYMBOL(pci_request_regions_exclusive);
4006
4007 /*
4008 * Record the PCI IO range (expressed as CPU physical address + size).
4009 * Return a negative value if an error has occurred, zero otherwise
4010 */
pci_register_io_range(struct fwnode_handle * fwnode,phys_addr_t addr,resource_size_t size)4011 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4012 resource_size_t size)
4013 {
4014 int ret = 0;
4015 #ifdef PCI_IOBASE
4016 struct logic_pio_hwaddr *range;
4017
4018 if (!size || addr + size < addr)
4019 return -EINVAL;
4020
4021 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4022 if (!range)
4023 return -ENOMEM;
4024
4025 range->fwnode = fwnode;
4026 range->size = size;
4027 range->hw_start = addr;
4028 range->flags = LOGIC_PIO_CPU_MMIO;
4029
4030 ret = logic_pio_register_range(range);
4031 if (ret)
4032 kfree(range);
4033
4034 /* Ignore duplicates due to deferred probing */
4035 if (ret == -EEXIST)
4036 ret = 0;
4037 #endif
4038
4039 return ret;
4040 }
4041
pci_pio_to_address(unsigned long pio)4042 phys_addr_t pci_pio_to_address(unsigned long pio)
4043 {
4044 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4045
4046 #ifdef PCI_IOBASE
4047 if (pio >= MMIO_UPPER_LIMIT)
4048 return address;
4049
4050 address = logic_pio_to_hwaddr(pio);
4051 #endif
4052
4053 return address;
4054 }
4055 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4056
pci_address_to_pio(phys_addr_t address)4057 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4058 {
4059 #ifdef PCI_IOBASE
4060 return logic_pio_trans_cpuaddr(address);
4061 #else
4062 if (address > IO_SPACE_LIMIT)
4063 return (unsigned long)-1;
4064
4065 return (unsigned long) address;
4066 #endif
4067 }
4068
4069 /**
4070 * pci_remap_iospace - Remap the memory mapped I/O space
4071 * @res: Resource describing the I/O space
4072 * @phys_addr: physical address of range to be mapped
4073 *
4074 * Remap the memory mapped I/O space described by the @res and the CPU
4075 * physical address @phys_addr into virtual address space. Only
4076 * architectures that have memory mapped IO functions defined (and the
4077 * PCI_IOBASE value defined) should call this function.
4078 */
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)4079 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4080 {
4081 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4082 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4083
4084 if (!(res->flags & IORESOURCE_IO))
4085 return -EINVAL;
4086
4087 if (res->end > IO_SPACE_LIMIT)
4088 return -EINVAL;
4089
4090 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4091 pgprot_device(PAGE_KERNEL));
4092 #else
4093 /*
4094 * This architecture does not have memory mapped I/O space,
4095 * so this function should never be called
4096 */
4097 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4098 return -ENODEV;
4099 #endif
4100 }
4101 EXPORT_SYMBOL(pci_remap_iospace);
4102
4103 /**
4104 * pci_unmap_iospace - Unmap the memory mapped I/O space
4105 * @res: resource to be unmapped
4106 *
4107 * Unmap the CPU virtual address @res from virtual address space. Only
4108 * architectures that have memory mapped IO functions defined (and the
4109 * PCI_IOBASE value defined) should call this function.
4110 */
pci_unmap_iospace(struct resource * res)4111 void pci_unmap_iospace(struct resource *res)
4112 {
4113 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4114 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4115
4116 unmap_kernel_range(vaddr, resource_size(res));
4117 #endif
4118 }
4119 EXPORT_SYMBOL(pci_unmap_iospace);
4120
devm_pci_unmap_iospace(struct device * dev,void * ptr)4121 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4122 {
4123 struct resource **res = ptr;
4124
4125 pci_unmap_iospace(*res);
4126 }
4127
4128 /**
4129 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4130 * @dev: Generic device to remap IO address for
4131 * @res: Resource describing the I/O space
4132 * @phys_addr: physical address of range to be mapped
4133 *
4134 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4135 * detach.
4136 */
devm_pci_remap_iospace(struct device * dev,const struct resource * res,phys_addr_t phys_addr)4137 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4138 phys_addr_t phys_addr)
4139 {
4140 const struct resource **ptr;
4141 int error;
4142
4143 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4144 if (!ptr)
4145 return -ENOMEM;
4146
4147 error = pci_remap_iospace(res, phys_addr);
4148 if (error) {
4149 devres_free(ptr);
4150 } else {
4151 *ptr = res;
4152 devres_add(dev, ptr);
4153 }
4154
4155 return error;
4156 }
4157 EXPORT_SYMBOL(devm_pci_remap_iospace);
4158
4159 /**
4160 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4161 * @dev: Generic device to remap IO address for
4162 * @offset: Resource address to map
4163 * @size: Size of map
4164 *
4165 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4166 * detach.
4167 */
devm_pci_remap_cfgspace(struct device * dev,resource_size_t offset,resource_size_t size)4168 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4169 resource_size_t offset,
4170 resource_size_t size)
4171 {
4172 void __iomem **ptr, *addr;
4173
4174 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4175 if (!ptr)
4176 return NULL;
4177
4178 addr = pci_remap_cfgspace(offset, size);
4179 if (addr) {
4180 *ptr = addr;
4181 devres_add(dev, ptr);
4182 } else
4183 devres_free(ptr);
4184
4185 return addr;
4186 }
4187 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4188
4189 /**
4190 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4191 * @dev: generic device to handle the resource for
4192 * @res: configuration space resource to be handled
4193 *
4194 * Checks that a resource is a valid memory region, requests the memory
4195 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4196 * proper PCI configuration space memory attributes are guaranteed.
4197 *
4198 * All operations are managed and will be undone on driver detach.
4199 *
4200 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4201 * on failure. Usage example::
4202 *
4203 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4204 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4205 * if (IS_ERR(base))
4206 * return PTR_ERR(base);
4207 */
devm_pci_remap_cfg_resource(struct device * dev,struct resource * res)4208 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4209 struct resource *res)
4210 {
4211 resource_size_t size;
4212 const char *name;
4213 void __iomem *dest_ptr;
4214
4215 BUG_ON(!dev);
4216
4217 if (!res || resource_type(res) != IORESOURCE_MEM) {
4218 dev_err(dev, "invalid resource\n");
4219 return IOMEM_ERR_PTR(-EINVAL);
4220 }
4221
4222 size = resource_size(res);
4223 name = res->name ?: dev_name(dev);
4224
4225 if (!devm_request_mem_region(dev, res->start, size, name)) {
4226 dev_err(dev, "can't request region for resource %pR\n", res);
4227 return IOMEM_ERR_PTR(-EBUSY);
4228 }
4229
4230 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4231 if (!dest_ptr) {
4232 dev_err(dev, "ioremap failed for resource %pR\n", res);
4233 devm_release_mem_region(dev, res->start, size);
4234 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4235 }
4236
4237 return dest_ptr;
4238 }
4239 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4240
__pci_set_master(struct pci_dev * dev,bool enable)4241 static void __pci_set_master(struct pci_dev *dev, bool enable)
4242 {
4243 u16 old_cmd, cmd;
4244
4245 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4246 if (enable)
4247 cmd = old_cmd | PCI_COMMAND_MASTER;
4248 else
4249 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4250 if (cmd != old_cmd) {
4251 pci_dbg(dev, "%s bus mastering\n",
4252 enable ? "enabling" : "disabling");
4253 pci_write_config_word(dev, PCI_COMMAND, cmd);
4254 }
4255 dev->is_busmaster = enable;
4256 }
4257
4258 /**
4259 * pcibios_setup - process "pci=" kernel boot arguments
4260 * @str: string used to pass in "pci=" kernel boot arguments
4261 *
4262 * Process kernel boot arguments. This is the default implementation.
4263 * Architecture specific implementations can override this as necessary.
4264 */
pcibios_setup(char * str)4265 char * __weak __init pcibios_setup(char *str)
4266 {
4267 return str;
4268 }
4269
4270 /**
4271 * pcibios_set_master - enable PCI bus-mastering for device dev
4272 * @dev: the PCI device to enable
4273 *
4274 * Enables PCI bus-mastering for the device. This is the default
4275 * implementation. Architecture specific implementations can override
4276 * this if necessary.
4277 */
pcibios_set_master(struct pci_dev * dev)4278 void __weak pcibios_set_master(struct pci_dev *dev)
4279 {
4280 u8 lat;
4281
4282 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4283 if (pci_is_pcie(dev))
4284 return;
4285
4286 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4287 if (lat < 16)
4288 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4289 else if (lat > pcibios_max_latency)
4290 lat = pcibios_max_latency;
4291 else
4292 return;
4293
4294 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4295 }
4296
4297 /**
4298 * pci_set_master - enables bus-mastering for device dev
4299 * @dev: the PCI device to enable
4300 *
4301 * Enables bus-mastering on the device and calls pcibios_set_master()
4302 * to do the needed arch specific settings.
4303 */
pci_set_master(struct pci_dev * dev)4304 void pci_set_master(struct pci_dev *dev)
4305 {
4306 __pci_set_master(dev, true);
4307 pcibios_set_master(dev);
4308 }
4309 EXPORT_SYMBOL(pci_set_master);
4310
4311 /**
4312 * pci_clear_master - disables bus-mastering for device dev
4313 * @dev: the PCI device to disable
4314 */
pci_clear_master(struct pci_dev * dev)4315 void pci_clear_master(struct pci_dev *dev)
4316 {
4317 __pci_set_master(dev, false);
4318 }
4319 EXPORT_SYMBOL(pci_clear_master);
4320
4321 /**
4322 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4323 * @dev: the PCI device for which MWI is to be enabled
4324 *
4325 * Helper function for pci_set_mwi.
4326 * Originally copied from drivers/net/acenic.c.
4327 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4328 *
4329 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4330 */
pci_set_cacheline_size(struct pci_dev * dev)4331 int pci_set_cacheline_size(struct pci_dev *dev)
4332 {
4333 u8 cacheline_size;
4334
4335 if (!pci_cache_line_size)
4336 return -EINVAL;
4337
4338 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4339 equal to or multiple of the right value. */
4340 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4341 if (cacheline_size >= pci_cache_line_size &&
4342 (cacheline_size % pci_cache_line_size) == 0)
4343 return 0;
4344
4345 /* Write the correct value. */
4346 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4347 /* Read it back. */
4348 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4349 if (cacheline_size == pci_cache_line_size)
4350 return 0;
4351
4352 pci_info(dev, "cache line size of %d is not supported\n",
4353 pci_cache_line_size << 2);
4354
4355 return -EINVAL;
4356 }
4357 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4358
4359 /**
4360 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4361 * @dev: the PCI device for which MWI is enabled
4362 *
4363 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4364 *
4365 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4366 */
pci_set_mwi(struct pci_dev * dev)4367 int pci_set_mwi(struct pci_dev *dev)
4368 {
4369 #ifdef PCI_DISABLE_MWI
4370 return 0;
4371 #else
4372 int rc;
4373 u16 cmd;
4374
4375 rc = pci_set_cacheline_size(dev);
4376 if (rc)
4377 return rc;
4378
4379 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4380 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4381 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4382 cmd |= PCI_COMMAND_INVALIDATE;
4383 pci_write_config_word(dev, PCI_COMMAND, cmd);
4384 }
4385 return 0;
4386 #endif
4387 }
4388 EXPORT_SYMBOL(pci_set_mwi);
4389
4390 /**
4391 * pcim_set_mwi - a device-managed pci_set_mwi()
4392 * @dev: the PCI device for which MWI is enabled
4393 *
4394 * Managed pci_set_mwi().
4395 *
4396 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4397 */
pcim_set_mwi(struct pci_dev * dev)4398 int pcim_set_mwi(struct pci_dev *dev)
4399 {
4400 struct pci_devres *dr;
4401
4402 dr = find_pci_dr(dev);
4403 if (!dr)
4404 return -ENOMEM;
4405
4406 dr->mwi = 1;
4407 return pci_set_mwi(dev);
4408 }
4409 EXPORT_SYMBOL(pcim_set_mwi);
4410
4411 /**
4412 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4413 * @dev: the PCI device for which MWI is enabled
4414 *
4415 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4416 * Callers are not required to check the return value.
4417 *
4418 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4419 */
pci_try_set_mwi(struct pci_dev * dev)4420 int pci_try_set_mwi(struct pci_dev *dev)
4421 {
4422 #ifdef PCI_DISABLE_MWI
4423 return 0;
4424 #else
4425 return pci_set_mwi(dev);
4426 #endif
4427 }
4428 EXPORT_SYMBOL(pci_try_set_mwi);
4429
4430 /**
4431 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4432 * @dev: the PCI device to disable
4433 *
4434 * Disables PCI Memory-Write-Invalidate transaction on the device
4435 */
pci_clear_mwi(struct pci_dev * dev)4436 void pci_clear_mwi(struct pci_dev *dev)
4437 {
4438 #ifndef PCI_DISABLE_MWI
4439 u16 cmd;
4440
4441 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4442 if (cmd & PCI_COMMAND_INVALIDATE) {
4443 cmd &= ~PCI_COMMAND_INVALIDATE;
4444 pci_write_config_word(dev, PCI_COMMAND, cmd);
4445 }
4446 #endif
4447 }
4448 EXPORT_SYMBOL(pci_clear_mwi);
4449
4450 /**
4451 * pci_intx - enables/disables PCI INTx for device dev
4452 * @pdev: the PCI device to operate on
4453 * @enable: boolean: whether to enable or disable PCI INTx
4454 *
4455 * Enables/disables PCI INTx for device @pdev
4456 */
pci_intx(struct pci_dev * pdev,int enable)4457 void pci_intx(struct pci_dev *pdev, int enable)
4458 {
4459 u16 pci_command, new;
4460
4461 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4462
4463 if (enable)
4464 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4465 else
4466 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4467
4468 if (new != pci_command) {
4469 struct pci_devres *dr;
4470
4471 pci_write_config_word(pdev, PCI_COMMAND, new);
4472
4473 dr = find_pci_dr(pdev);
4474 if (dr && !dr->restore_intx) {
4475 dr->restore_intx = 1;
4476 dr->orig_intx = !enable;
4477 }
4478 }
4479 }
4480 EXPORT_SYMBOL_GPL(pci_intx);
4481
pci_check_and_set_intx_mask(struct pci_dev * dev,bool mask)4482 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4483 {
4484 struct pci_bus *bus = dev->bus;
4485 bool mask_updated = true;
4486 u32 cmd_status_dword;
4487 u16 origcmd, newcmd;
4488 unsigned long flags;
4489 bool irq_pending;
4490
4491 /*
4492 * We do a single dword read to retrieve both command and status.
4493 * Document assumptions that make this possible.
4494 */
4495 BUILD_BUG_ON(PCI_COMMAND % 4);
4496 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4497
4498 raw_spin_lock_irqsave(&pci_lock, flags);
4499
4500 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4501
4502 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4503
4504 /*
4505 * Check interrupt status register to see whether our device
4506 * triggered the interrupt (when masking) or the next IRQ is
4507 * already pending (when unmasking).
4508 */
4509 if (mask != irq_pending) {
4510 mask_updated = false;
4511 goto done;
4512 }
4513
4514 origcmd = cmd_status_dword;
4515 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4516 if (mask)
4517 newcmd |= PCI_COMMAND_INTX_DISABLE;
4518 if (newcmd != origcmd)
4519 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4520
4521 done:
4522 raw_spin_unlock_irqrestore(&pci_lock, flags);
4523
4524 return mask_updated;
4525 }
4526
4527 /**
4528 * pci_check_and_mask_intx - mask INTx on pending interrupt
4529 * @dev: the PCI device to operate on
4530 *
4531 * Check if the device dev has its INTx line asserted, mask it and return
4532 * true in that case. False is returned if no interrupt was pending.
4533 */
pci_check_and_mask_intx(struct pci_dev * dev)4534 bool pci_check_and_mask_intx(struct pci_dev *dev)
4535 {
4536 return pci_check_and_set_intx_mask(dev, true);
4537 }
4538 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4539
4540 /**
4541 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4542 * @dev: the PCI device to operate on
4543 *
4544 * Check if the device dev has its INTx line asserted, unmask it if not and
4545 * return true. False is returned and the mask remains active if there was
4546 * still an interrupt pending.
4547 */
pci_check_and_unmask_intx(struct pci_dev * dev)4548 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4549 {
4550 return pci_check_and_set_intx_mask(dev, false);
4551 }
4552 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4553
4554 /**
4555 * pci_wait_for_pending_transaction - wait for pending transaction
4556 * @dev: the PCI device to operate on
4557 *
4558 * Return 0 if transaction is pending 1 otherwise.
4559 */
pci_wait_for_pending_transaction(struct pci_dev * dev)4560 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4561 {
4562 if (!pci_is_pcie(dev))
4563 return 1;
4564
4565 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4566 PCI_EXP_DEVSTA_TRPND);
4567 }
4568 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4569
4570 /**
4571 * pcie_has_flr - check if a device supports function level resets
4572 * @dev: device to check
4573 *
4574 * Returns true if the device advertises support for PCIe function level
4575 * resets.
4576 */
pcie_has_flr(struct pci_dev * dev)4577 bool pcie_has_flr(struct pci_dev *dev)
4578 {
4579 u32 cap;
4580
4581 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4582 return false;
4583
4584 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4585 return cap & PCI_EXP_DEVCAP_FLR;
4586 }
4587 EXPORT_SYMBOL_GPL(pcie_has_flr);
4588
4589 /**
4590 * pcie_flr - initiate a PCIe function level reset
4591 * @dev: device to reset
4592 *
4593 * Initiate a function level reset on @dev. The caller should ensure the
4594 * device supports FLR before calling this function, e.g. by using the
4595 * pcie_has_flr() helper.
4596 */
pcie_flr(struct pci_dev * dev)4597 int pcie_flr(struct pci_dev *dev)
4598 {
4599 if (!pci_wait_for_pending_transaction(dev))
4600 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4601
4602 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4603
4604 if (dev->imm_ready)
4605 return 0;
4606
4607 /*
4608 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4609 * 100ms, but may silently discard requests while the FLR is in
4610 * progress. Wait 100ms before trying to access the device.
4611 */
4612 msleep(100);
4613
4614 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4615 }
4616 EXPORT_SYMBOL_GPL(pcie_flr);
4617
pci_af_flr(struct pci_dev * dev,int probe)4618 static int pci_af_flr(struct pci_dev *dev, int probe)
4619 {
4620 int pos;
4621 u8 cap;
4622
4623 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4624 if (!pos)
4625 return -ENOTTY;
4626
4627 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4628 return -ENOTTY;
4629
4630 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4631 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4632 return -ENOTTY;
4633
4634 if (probe)
4635 return 0;
4636
4637 /*
4638 * Wait for Transaction Pending bit to clear. A word-aligned test
4639 * is used, so we use the control offset rather than status and shift
4640 * the test bit to match.
4641 */
4642 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4643 PCI_AF_STATUS_TP << 8))
4644 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4645
4646 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4647
4648 if (dev->imm_ready)
4649 return 0;
4650
4651 /*
4652 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4653 * updated 27 July 2006; a device must complete an FLR within
4654 * 100ms, but may silently discard requests while the FLR is in
4655 * progress. Wait 100ms before trying to access the device.
4656 */
4657 msleep(100);
4658
4659 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4660 }
4661
4662 /**
4663 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4664 * @dev: Device to reset.
4665 * @probe: If set, only check if the device can be reset this way.
4666 *
4667 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4668 * unset, it will be reinitialized internally when going from PCI_D3hot to
4669 * PCI_D0. If that's the case and the device is not in a low-power state
4670 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4671 *
4672 * NOTE: This causes the caller to sleep for twice the device power transition
4673 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4674 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4675 * Moreover, only devices in D0 can be reset by this function.
4676 */
pci_pm_reset(struct pci_dev * dev,int probe)4677 static int pci_pm_reset(struct pci_dev *dev, int probe)
4678 {
4679 u16 csr;
4680
4681 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4682 return -ENOTTY;
4683
4684 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4685 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4686 return -ENOTTY;
4687
4688 if (probe)
4689 return 0;
4690
4691 if (dev->current_state != PCI_D0)
4692 return -EINVAL;
4693
4694 csr &= ~PCI_PM_CTRL_STATE_MASK;
4695 csr |= PCI_D3hot;
4696 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4697 pci_dev_d3_sleep(dev);
4698
4699 csr &= ~PCI_PM_CTRL_STATE_MASK;
4700 csr |= PCI_D0;
4701 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4702 pci_dev_d3_sleep(dev);
4703
4704 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4705 }
4706
4707 /**
4708 * pcie_wait_for_link_delay - Wait until link is active or inactive
4709 * @pdev: Bridge device
4710 * @active: waiting for active or inactive?
4711 * @delay: Delay to wait after link has become active (in ms)
4712 *
4713 * Use this to wait till link becomes active or inactive.
4714 */
pcie_wait_for_link_delay(struct pci_dev * pdev,bool active,int delay)4715 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4716 int delay)
4717 {
4718 int timeout = 1000;
4719 bool ret;
4720 u16 lnk_status;
4721
4722 /*
4723 * Some controllers might not implement link active reporting. In this
4724 * case, we wait for 1000 ms + any delay requested by the caller.
4725 */
4726 if (!pdev->link_active_reporting) {
4727 msleep(timeout + delay);
4728 return true;
4729 }
4730
4731 /*
4732 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4733 * after which we should expect an link active if the reset was
4734 * successful. If so, software must wait a minimum 100ms before sending
4735 * configuration requests to devices downstream this port.
4736 *
4737 * If the link fails to activate, either the device was physically
4738 * removed or the link is permanently failed.
4739 */
4740 if (active)
4741 msleep(20);
4742 for (;;) {
4743 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4744 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4745 if (ret == active)
4746 break;
4747 if (timeout <= 0)
4748 break;
4749 msleep(10);
4750 timeout -= 10;
4751 }
4752 if (active && ret)
4753 msleep(delay);
4754
4755 return ret == active;
4756 }
4757
4758 /**
4759 * pcie_wait_for_link - Wait until link is active or inactive
4760 * @pdev: Bridge device
4761 * @active: waiting for active or inactive?
4762 *
4763 * Use this to wait till link becomes active or inactive.
4764 */
pcie_wait_for_link(struct pci_dev * pdev,bool active)4765 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4766 {
4767 return pcie_wait_for_link_delay(pdev, active, 100);
4768 }
4769
4770 /*
4771 * Find maximum D3cold delay required by all the devices on the bus. The
4772 * spec says 100 ms, but firmware can lower it and we allow drivers to
4773 * increase it as well.
4774 *
4775 * Called with @pci_bus_sem locked for reading.
4776 */
pci_bus_max_d3cold_delay(const struct pci_bus * bus)4777 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4778 {
4779 const struct pci_dev *pdev;
4780 int min_delay = 100;
4781 int max_delay = 0;
4782
4783 list_for_each_entry(pdev, &bus->devices, bus_list) {
4784 if (pdev->d3cold_delay < min_delay)
4785 min_delay = pdev->d3cold_delay;
4786 if (pdev->d3cold_delay > max_delay)
4787 max_delay = pdev->d3cold_delay;
4788 }
4789
4790 return max(min_delay, max_delay);
4791 }
4792
4793 /**
4794 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4795 * @dev: PCI bridge
4796 * @reset_type: reset type in human-readable form
4797 * @timeout: maximum time to wait for devices on secondary bus (milliseconds)
4798 *
4799 * Handle necessary delays before access to the devices on the secondary
4800 * side of the bridge are permitted after D3cold to D0 transition
4801 * or Conventional Reset.
4802 *
4803 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4804 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4805 * 4.3.2.
4806 *
4807 * Return 0 on success or -ENOTTY if the first device on the secondary bus
4808 * failed to become accessible.
4809 */
pci_bridge_wait_for_secondary_bus(struct pci_dev * dev,char * reset_type,int timeout)4810 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type,
4811 int timeout)
4812 {
4813 struct pci_dev *child;
4814 int delay;
4815
4816 if (pci_dev_is_disconnected(dev))
4817 return 0;
4818
4819 if (!pci_is_bridge(dev))
4820 return 0;
4821
4822 down_read(&pci_bus_sem);
4823
4824 /*
4825 * We only deal with devices that are present currently on the bus.
4826 * For any hot-added devices the access delay is handled in pciehp
4827 * board_added(). In case of ACPI hotplug the firmware is expected
4828 * to configure the devices before OS is notified.
4829 */
4830 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4831 up_read(&pci_bus_sem);
4832 return 0;
4833 }
4834
4835 /* Take d3cold_delay requirements into account */
4836 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4837 if (!delay) {
4838 up_read(&pci_bus_sem);
4839 return 0;
4840 }
4841
4842 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4843 bus_list);
4844 up_read(&pci_bus_sem);
4845
4846 /*
4847 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4848 * accessing the device after reset (that is 1000 ms + 100 ms).
4849 */
4850 if (!pci_is_pcie(dev)) {
4851 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4852 msleep(1000 + delay);
4853 return 0;
4854 }
4855
4856 /*
4857 * For PCIe downstream and root ports that do not support speeds
4858 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4859 * speeds (gen3) we need to wait first for the data link layer to
4860 * become active.
4861 *
4862 * However, 100 ms is the minimum and the PCIe spec says the
4863 * software must allow at least 1s before it can determine that the
4864 * device that did not respond is a broken device. There is
4865 * evidence that 100 ms is not always enough, for example certain
4866 * Titan Ridge xHCI controller does not always respond to
4867 * configuration requests if we only wait for 100 ms (see
4868 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4869 *
4870 * Therefore we wait for 100 ms and check for the device presence
4871 * until the timeout expires.
4872 */
4873 if (!pcie_downstream_port(dev))
4874 return 0;
4875
4876 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4877 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4878 msleep(delay);
4879 } else {
4880 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4881 delay);
4882 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4883 /* Did not train, no need to wait any further */
4884 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4885 return -ENOTTY;
4886 }
4887 }
4888
4889 return pci_dev_wait(child, reset_type, timeout - delay);
4890 }
4891
pci_reset_secondary_bus(struct pci_dev * dev)4892 void pci_reset_secondary_bus(struct pci_dev *dev)
4893 {
4894 u16 ctrl;
4895
4896 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4897 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4898 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4899
4900 /*
4901 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4902 * this to 2ms to ensure that we meet the minimum requirement.
4903 */
4904 msleep(2);
4905
4906 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4907 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4908 }
4909
pcibios_reset_secondary_bus(struct pci_dev * dev)4910 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4911 {
4912 pci_reset_secondary_bus(dev);
4913 }
4914
4915 /**
4916 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4917 * @dev: Bridge device
4918 *
4919 * Use the bridge control register to assert reset on the secondary bus.
4920 * Devices on the secondary bus are left in power-on state.
4921 */
pci_bridge_secondary_bus_reset(struct pci_dev * dev)4922 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4923 {
4924 pcibios_reset_secondary_bus(dev);
4925
4926 return pci_bridge_wait_for_secondary_bus(dev, "bus reset",
4927 PCIE_RESET_READY_POLL_MS);
4928 }
4929 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4930
pci_parent_bus_reset(struct pci_dev * dev,int probe)4931 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4932 {
4933 struct pci_dev *pdev;
4934
4935 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4936 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4937 return -ENOTTY;
4938
4939 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4940 if (pdev != dev)
4941 return -ENOTTY;
4942
4943 if (probe)
4944 return 0;
4945
4946 return pci_bridge_secondary_bus_reset(dev->bus->self);
4947 }
4948
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,int probe)4949 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4950 {
4951 int rc = -ENOTTY;
4952
4953 if (!hotplug || !try_module_get(hotplug->owner))
4954 return rc;
4955
4956 if (hotplug->ops->reset_slot)
4957 rc = hotplug->ops->reset_slot(hotplug, probe);
4958
4959 module_put(hotplug->owner);
4960
4961 return rc;
4962 }
4963
pci_dev_reset_slot_function(struct pci_dev * dev,int probe)4964 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4965 {
4966 if (dev->multifunction || dev->subordinate || !dev->slot ||
4967 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4968 return -ENOTTY;
4969
4970 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4971 }
4972
pci_dev_lock(struct pci_dev * dev)4973 static void pci_dev_lock(struct pci_dev *dev)
4974 {
4975 /* block PM suspend, driver probe, etc. */
4976 device_lock(&dev->dev);
4977 pci_cfg_access_lock(dev);
4978 }
4979
4980 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)4981 static int pci_dev_trylock(struct pci_dev *dev)
4982 {
4983 if (device_trylock(&dev->dev)) {
4984 if (pci_cfg_access_trylock(dev))
4985 return 1;
4986 device_unlock(&dev->dev);
4987 }
4988
4989 return 0;
4990 }
4991
pci_dev_unlock(struct pci_dev * dev)4992 static void pci_dev_unlock(struct pci_dev *dev)
4993 {
4994 pci_cfg_access_unlock(dev);
4995 device_unlock(&dev->dev);
4996 }
4997
pci_dev_save_and_disable(struct pci_dev * dev)4998 static void pci_dev_save_and_disable(struct pci_dev *dev)
4999 {
5000 const struct pci_error_handlers *err_handler =
5001 dev->driver ? dev->driver->err_handler : NULL;
5002
5003 /*
5004 * dev->driver->err_handler->reset_prepare() is protected against
5005 * races with ->remove() by the device lock, which must be held by
5006 * the caller.
5007 */
5008 if (err_handler && err_handler->reset_prepare)
5009 err_handler->reset_prepare(dev);
5010
5011 /*
5012 * Wake-up device prior to save. PM registers default to D0 after
5013 * reset and a simple register restore doesn't reliably return
5014 * to a non-D0 state anyway.
5015 */
5016 pci_set_power_state(dev, PCI_D0);
5017
5018 pci_save_state(dev);
5019 /*
5020 * Disable the device by clearing the Command register, except for
5021 * INTx-disable which is set. This not only disables MMIO and I/O port
5022 * BARs, but also prevents the device from being Bus Master, preventing
5023 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5024 * compliant devices, INTx-disable prevents legacy interrupts.
5025 */
5026 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5027 }
5028
pci_dev_restore(struct pci_dev * dev)5029 static void pci_dev_restore(struct pci_dev *dev)
5030 {
5031 const struct pci_error_handlers *err_handler =
5032 dev->driver ? dev->driver->err_handler : NULL;
5033
5034 pci_restore_state(dev);
5035
5036 /*
5037 * dev->driver->err_handler->reset_done() is protected against
5038 * races with ->remove() by the device lock, which must be held by
5039 * the caller.
5040 */
5041 if (err_handler && err_handler->reset_done)
5042 err_handler->reset_done(dev);
5043 }
5044
5045 /**
5046 * __pci_reset_function_locked - reset a PCI device function while holding
5047 * the @dev mutex lock.
5048 * @dev: PCI device to reset
5049 *
5050 * Some devices allow an individual function to be reset without affecting
5051 * other functions in the same device. The PCI device must be responsive
5052 * to PCI config space in order to use this function.
5053 *
5054 * The device function is presumed to be unused and the caller is holding
5055 * the device mutex lock when this function is called.
5056 *
5057 * Resetting the device will make the contents of PCI configuration space
5058 * random, so any caller of this must be prepared to reinitialise the
5059 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5060 * etc.
5061 *
5062 * Returns 0 if the device function was successfully reset or negative if the
5063 * device doesn't support resetting a single function.
5064 */
__pci_reset_function_locked(struct pci_dev * dev)5065 int __pci_reset_function_locked(struct pci_dev *dev)
5066 {
5067 int rc;
5068
5069 might_sleep();
5070
5071 /*
5072 * A reset method returns -ENOTTY if it doesn't support this device
5073 * and we should try the next method.
5074 *
5075 * If it returns 0 (success), we're finished. If it returns any
5076 * other error, we're also finished: this indicates that further
5077 * reset mechanisms might be broken on the device.
5078 */
5079 rc = pci_dev_specific_reset(dev, 0);
5080 if (rc != -ENOTTY)
5081 return rc;
5082 if (pcie_has_flr(dev)) {
5083 rc = pcie_flr(dev);
5084 if (rc != -ENOTTY)
5085 return rc;
5086 }
5087 rc = pci_af_flr(dev, 0);
5088 if (rc != -ENOTTY)
5089 return rc;
5090 rc = pci_pm_reset(dev, 0);
5091 if (rc != -ENOTTY)
5092 return rc;
5093 rc = pci_dev_reset_slot_function(dev, 0);
5094 if (rc != -ENOTTY)
5095 return rc;
5096 return pci_parent_bus_reset(dev, 0);
5097 }
5098 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5099
5100 /**
5101 * pci_probe_reset_function - check whether the device can be safely reset
5102 * @dev: PCI device to reset
5103 *
5104 * Some devices allow an individual function to be reset without affecting
5105 * other functions in the same device. The PCI device must be responsive
5106 * to PCI config space in order to use this function.
5107 *
5108 * Returns 0 if the device function can be reset or negative if the
5109 * device doesn't support resetting a single function.
5110 */
pci_probe_reset_function(struct pci_dev * dev)5111 int pci_probe_reset_function(struct pci_dev *dev)
5112 {
5113 int rc;
5114
5115 might_sleep();
5116
5117 rc = pci_dev_specific_reset(dev, 1);
5118 if (rc != -ENOTTY)
5119 return rc;
5120 if (pcie_has_flr(dev))
5121 return 0;
5122 rc = pci_af_flr(dev, 1);
5123 if (rc != -ENOTTY)
5124 return rc;
5125 rc = pci_pm_reset(dev, 1);
5126 if (rc != -ENOTTY)
5127 return rc;
5128 rc = pci_dev_reset_slot_function(dev, 1);
5129 if (rc != -ENOTTY)
5130 return rc;
5131
5132 return pci_parent_bus_reset(dev, 1);
5133 }
5134
5135 /**
5136 * pci_reset_function - quiesce and reset a PCI device function
5137 * @dev: PCI device to reset
5138 *
5139 * Some devices allow an individual function to be reset without affecting
5140 * other functions in the same device. The PCI device must be responsive
5141 * to PCI config space in order to use this function.
5142 *
5143 * This function does not just reset the PCI portion of a device, but
5144 * clears all the state associated with the device. This function differs
5145 * from __pci_reset_function_locked() in that it saves and restores device state
5146 * over the reset and takes the PCI device lock.
5147 *
5148 * Returns 0 if the device function was successfully reset or negative if the
5149 * device doesn't support resetting a single function.
5150 */
pci_reset_function(struct pci_dev * dev)5151 int pci_reset_function(struct pci_dev *dev)
5152 {
5153 int rc;
5154
5155 if (!dev->reset_fn)
5156 return -ENOTTY;
5157
5158 pci_dev_lock(dev);
5159 pci_dev_save_and_disable(dev);
5160
5161 rc = __pci_reset_function_locked(dev);
5162
5163 pci_dev_restore(dev);
5164 pci_dev_unlock(dev);
5165
5166 return rc;
5167 }
5168 EXPORT_SYMBOL_GPL(pci_reset_function);
5169
5170 /**
5171 * pci_reset_function_locked - quiesce and reset a PCI device function
5172 * @dev: PCI device to reset
5173 *
5174 * Some devices allow an individual function to be reset without affecting
5175 * other functions in the same device. The PCI device must be responsive
5176 * to PCI config space in order to use this function.
5177 *
5178 * This function does not just reset the PCI portion of a device, but
5179 * clears all the state associated with the device. This function differs
5180 * from __pci_reset_function_locked() in that it saves and restores device state
5181 * over the reset. It also differs from pci_reset_function() in that it
5182 * requires the PCI device lock to be held.
5183 *
5184 * Returns 0 if the device function was successfully reset or negative if the
5185 * device doesn't support resetting a single function.
5186 */
pci_reset_function_locked(struct pci_dev * dev)5187 int pci_reset_function_locked(struct pci_dev *dev)
5188 {
5189 int rc;
5190
5191 if (!dev->reset_fn)
5192 return -ENOTTY;
5193
5194 pci_dev_save_and_disable(dev);
5195
5196 rc = __pci_reset_function_locked(dev);
5197
5198 pci_dev_restore(dev);
5199
5200 return rc;
5201 }
5202 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5203
5204 /**
5205 * pci_try_reset_function - quiesce and reset a PCI device function
5206 * @dev: PCI device to reset
5207 *
5208 * Same as above, except return -EAGAIN if unable to lock device.
5209 */
pci_try_reset_function(struct pci_dev * dev)5210 int pci_try_reset_function(struct pci_dev *dev)
5211 {
5212 int rc;
5213
5214 if (!dev->reset_fn)
5215 return -ENOTTY;
5216
5217 if (!pci_dev_trylock(dev))
5218 return -EAGAIN;
5219
5220 pci_dev_save_and_disable(dev);
5221 rc = __pci_reset_function_locked(dev);
5222 pci_dev_restore(dev);
5223 pci_dev_unlock(dev);
5224
5225 return rc;
5226 }
5227 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5228
5229 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resetable(struct pci_bus * bus)5230 static bool pci_bus_resetable(struct pci_bus *bus)
5231 {
5232 struct pci_dev *dev;
5233
5234
5235 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5236 return false;
5237
5238 list_for_each_entry(dev, &bus->devices, bus_list) {
5239 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5240 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5241 return false;
5242 }
5243
5244 return true;
5245 }
5246
5247 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)5248 static void pci_bus_lock(struct pci_bus *bus)
5249 {
5250 struct pci_dev *dev;
5251
5252 list_for_each_entry(dev, &bus->devices, bus_list) {
5253 pci_dev_lock(dev);
5254 if (dev->subordinate)
5255 pci_bus_lock(dev->subordinate);
5256 }
5257 }
5258
5259 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)5260 static void pci_bus_unlock(struct pci_bus *bus)
5261 {
5262 struct pci_dev *dev;
5263
5264 list_for_each_entry(dev, &bus->devices, bus_list) {
5265 if (dev->subordinate)
5266 pci_bus_unlock(dev->subordinate);
5267 pci_dev_unlock(dev);
5268 }
5269 }
5270
5271 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)5272 static int pci_bus_trylock(struct pci_bus *bus)
5273 {
5274 struct pci_dev *dev;
5275
5276 list_for_each_entry(dev, &bus->devices, bus_list) {
5277 if (!pci_dev_trylock(dev))
5278 goto unlock;
5279 if (dev->subordinate) {
5280 if (!pci_bus_trylock(dev->subordinate)) {
5281 pci_dev_unlock(dev);
5282 goto unlock;
5283 }
5284 }
5285 }
5286 return 1;
5287
5288 unlock:
5289 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5290 if (dev->subordinate)
5291 pci_bus_unlock(dev->subordinate);
5292 pci_dev_unlock(dev);
5293 }
5294 return 0;
5295 }
5296
5297 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resetable(struct pci_slot * slot)5298 static bool pci_slot_resetable(struct pci_slot *slot)
5299 {
5300 struct pci_dev *dev;
5301
5302 if (slot->bus->self &&
5303 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5304 return false;
5305
5306 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5307 if (!dev->slot || dev->slot != slot)
5308 continue;
5309 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5310 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5311 return false;
5312 }
5313
5314 return true;
5315 }
5316
5317 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)5318 static void pci_slot_lock(struct pci_slot *slot)
5319 {
5320 struct pci_dev *dev;
5321
5322 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5323 if (!dev->slot || dev->slot != slot)
5324 continue;
5325 pci_dev_lock(dev);
5326 if (dev->subordinate)
5327 pci_bus_lock(dev->subordinate);
5328 }
5329 }
5330
5331 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)5332 static void pci_slot_unlock(struct pci_slot *slot)
5333 {
5334 struct pci_dev *dev;
5335
5336 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5337 if (!dev->slot || dev->slot != slot)
5338 continue;
5339 if (dev->subordinate)
5340 pci_bus_unlock(dev->subordinate);
5341 pci_dev_unlock(dev);
5342 }
5343 }
5344
5345 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)5346 static int pci_slot_trylock(struct pci_slot *slot)
5347 {
5348 struct pci_dev *dev;
5349
5350 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5351 if (!dev->slot || dev->slot != slot)
5352 continue;
5353 if (!pci_dev_trylock(dev))
5354 goto unlock;
5355 if (dev->subordinate) {
5356 if (!pci_bus_trylock(dev->subordinate)) {
5357 pci_dev_unlock(dev);
5358 goto unlock;
5359 }
5360 }
5361 }
5362 return 1;
5363
5364 unlock:
5365 list_for_each_entry_continue_reverse(dev,
5366 &slot->bus->devices, bus_list) {
5367 if (!dev->slot || dev->slot != slot)
5368 continue;
5369 if (dev->subordinate)
5370 pci_bus_unlock(dev->subordinate);
5371 pci_dev_unlock(dev);
5372 }
5373 return 0;
5374 }
5375
5376 /*
5377 * Save and disable devices from the top of the tree down while holding
5378 * the @dev mutex lock for the entire tree.
5379 */
pci_bus_save_and_disable_locked(struct pci_bus * bus)5380 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5381 {
5382 struct pci_dev *dev;
5383
5384 list_for_each_entry(dev, &bus->devices, bus_list) {
5385 pci_dev_save_and_disable(dev);
5386 if (dev->subordinate)
5387 pci_bus_save_and_disable_locked(dev->subordinate);
5388 }
5389 }
5390
5391 /*
5392 * Restore devices from top of the tree down while holding @dev mutex lock
5393 * for the entire tree. Parent bridges need to be restored before we can
5394 * get to subordinate devices.
5395 */
pci_bus_restore_locked(struct pci_bus * bus)5396 static void pci_bus_restore_locked(struct pci_bus *bus)
5397 {
5398 struct pci_dev *dev;
5399
5400 list_for_each_entry(dev, &bus->devices, bus_list) {
5401 pci_dev_restore(dev);
5402 if (dev->subordinate)
5403 pci_bus_restore_locked(dev->subordinate);
5404 }
5405 }
5406
5407 /*
5408 * Save and disable devices from the top of the tree down while holding
5409 * the @dev mutex lock for the entire tree.
5410 */
pci_slot_save_and_disable_locked(struct pci_slot * slot)5411 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5412 {
5413 struct pci_dev *dev;
5414
5415 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5416 if (!dev->slot || dev->slot != slot)
5417 continue;
5418 pci_dev_save_and_disable(dev);
5419 if (dev->subordinate)
5420 pci_bus_save_and_disable_locked(dev->subordinate);
5421 }
5422 }
5423
5424 /*
5425 * Restore devices from top of the tree down while holding @dev mutex lock
5426 * for the entire tree. Parent bridges need to be restored before we can
5427 * get to subordinate devices.
5428 */
pci_slot_restore_locked(struct pci_slot * slot)5429 static void pci_slot_restore_locked(struct pci_slot *slot)
5430 {
5431 struct pci_dev *dev;
5432
5433 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5434 if (!dev->slot || dev->slot != slot)
5435 continue;
5436 pci_dev_restore(dev);
5437 if (dev->subordinate)
5438 pci_bus_restore_locked(dev->subordinate);
5439 }
5440 }
5441
pci_slot_reset(struct pci_slot * slot,int probe)5442 static int pci_slot_reset(struct pci_slot *slot, int probe)
5443 {
5444 int rc;
5445
5446 if (!slot || !pci_slot_resetable(slot))
5447 return -ENOTTY;
5448
5449 if (!probe)
5450 pci_slot_lock(slot);
5451
5452 might_sleep();
5453
5454 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5455
5456 if (!probe)
5457 pci_slot_unlock(slot);
5458
5459 return rc;
5460 }
5461
5462 /**
5463 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5464 * @slot: PCI slot to probe
5465 *
5466 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5467 */
pci_probe_reset_slot(struct pci_slot * slot)5468 int pci_probe_reset_slot(struct pci_slot *slot)
5469 {
5470 return pci_slot_reset(slot, 1);
5471 }
5472 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5473
5474 /**
5475 * __pci_reset_slot - Try to reset a PCI slot
5476 * @slot: PCI slot to reset
5477 *
5478 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5479 * independent of other slots. For instance, some slots may support slot power
5480 * control. In the case of a 1:1 bus to slot architecture, this function may
5481 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5482 * Generally a slot reset should be attempted before a bus reset. All of the
5483 * function of the slot and any subordinate buses behind the slot are reset
5484 * through this function. PCI config space of all devices in the slot and
5485 * behind the slot is saved before and restored after reset.
5486 *
5487 * Same as above except return -EAGAIN if the slot cannot be locked
5488 */
__pci_reset_slot(struct pci_slot * slot)5489 static int __pci_reset_slot(struct pci_slot *slot)
5490 {
5491 int rc;
5492
5493 rc = pci_slot_reset(slot, 1);
5494 if (rc)
5495 return rc;
5496
5497 if (pci_slot_trylock(slot)) {
5498 pci_slot_save_and_disable_locked(slot);
5499 might_sleep();
5500 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5501 pci_slot_restore_locked(slot);
5502 pci_slot_unlock(slot);
5503 } else
5504 rc = -EAGAIN;
5505
5506 return rc;
5507 }
5508
pci_bus_reset(struct pci_bus * bus,int probe)5509 static int pci_bus_reset(struct pci_bus *bus, int probe)
5510 {
5511 int ret;
5512
5513 if (!bus->self || !pci_bus_resetable(bus))
5514 return -ENOTTY;
5515
5516 if (probe)
5517 return 0;
5518
5519 pci_bus_lock(bus);
5520
5521 might_sleep();
5522
5523 ret = pci_bridge_secondary_bus_reset(bus->self);
5524
5525 pci_bus_unlock(bus);
5526
5527 return ret;
5528 }
5529
5530 /**
5531 * pci_bus_error_reset - reset the bridge's subordinate bus
5532 * @bridge: The parent device that connects to the bus to reset
5533 *
5534 * This function will first try to reset the slots on this bus if the method is
5535 * available. If slot reset fails or is not available, this will fall back to a
5536 * secondary bus reset.
5537 */
pci_bus_error_reset(struct pci_dev * bridge)5538 int pci_bus_error_reset(struct pci_dev *bridge)
5539 {
5540 struct pci_bus *bus = bridge->subordinate;
5541 struct pci_slot *slot;
5542
5543 if (!bus)
5544 return -ENOTTY;
5545
5546 mutex_lock(&pci_slot_mutex);
5547 if (list_empty(&bus->slots))
5548 goto bus_reset;
5549
5550 list_for_each_entry(slot, &bus->slots, list)
5551 if (pci_probe_reset_slot(slot))
5552 goto bus_reset;
5553
5554 list_for_each_entry(slot, &bus->slots, list)
5555 if (pci_slot_reset(slot, 0))
5556 goto bus_reset;
5557
5558 mutex_unlock(&pci_slot_mutex);
5559 return 0;
5560 bus_reset:
5561 mutex_unlock(&pci_slot_mutex);
5562 return pci_bus_reset(bridge->subordinate, 0);
5563 }
5564
5565 /**
5566 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5567 * @bus: PCI bus to probe
5568 *
5569 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5570 */
pci_probe_reset_bus(struct pci_bus * bus)5571 int pci_probe_reset_bus(struct pci_bus *bus)
5572 {
5573 return pci_bus_reset(bus, 1);
5574 }
5575 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5576
5577 /**
5578 * __pci_reset_bus - Try to reset a PCI bus
5579 * @bus: top level PCI bus to reset
5580 *
5581 * Same as above except return -EAGAIN if the bus cannot be locked
5582 */
__pci_reset_bus(struct pci_bus * bus)5583 static int __pci_reset_bus(struct pci_bus *bus)
5584 {
5585 int rc;
5586
5587 rc = pci_bus_reset(bus, 1);
5588 if (rc)
5589 return rc;
5590
5591 if (pci_bus_trylock(bus)) {
5592 pci_bus_save_and_disable_locked(bus);
5593 might_sleep();
5594 rc = pci_bridge_secondary_bus_reset(bus->self);
5595 pci_bus_restore_locked(bus);
5596 pci_bus_unlock(bus);
5597 } else
5598 rc = -EAGAIN;
5599
5600 return rc;
5601 }
5602
5603 /**
5604 * pci_reset_bus - Try to reset a PCI bus
5605 * @pdev: top level PCI device to reset via slot/bus
5606 *
5607 * Same as above except return -EAGAIN if the bus cannot be locked
5608 */
pci_reset_bus(struct pci_dev * pdev)5609 int pci_reset_bus(struct pci_dev *pdev)
5610 {
5611 return (!pci_probe_reset_slot(pdev->slot)) ?
5612 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5613 }
5614 EXPORT_SYMBOL_GPL(pci_reset_bus);
5615
5616 /**
5617 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5618 * @dev: PCI device to query
5619 *
5620 * Returns mmrbc: maximum designed memory read count in bytes or
5621 * appropriate error value.
5622 */
pcix_get_max_mmrbc(struct pci_dev * dev)5623 int pcix_get_max_mmrbc(struct pci_dev *dev)
5624 {
5625 int cap;
5626 u32 stat;
5627
5628 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5629 if (!cap)
5630 return -EINVAL;
5631
5632 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5633 return -EINVAL;
5634
5635 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5636 }
5637 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5638
5639 /**
5640 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5641 * @dev: PCI device to query
5642 *
5643 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5644 * value.
5645 */
pcix_get_mmrbc(struct pci_dev * dev)5646 int pcix_get_mmrbc(struct pci_dev *dev)
5647 {
5648 int cap;
5649 u16 cmd;
5650
5651 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5652 if (!cap)
5653 return -EINVAL;
5654
5655 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5656 return -EINVAL;
5657
5658 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5659 }
5660 EXPORT_SYMBOL(pcix_get_mmrbc);
5661
5662 /**
5663 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5664 * @dev: PCI device to query
5665 * @mmrbc: maximum memory read count in bytes
5666 * valid values are 512, 1024, 2048, 4096
5667 *
5668 * If possible sets maximum memory read byte count, some bridges have errata
5669 * that prevent this.
5670 */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)5671 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5672 {
5673 int cap;
5674 u32 stat, v, o;
5675 u16 cmd;
5676
5677 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5678 return -EINVAL;
5679
5680 v = ffs(mmrbc) - 10;
5681
5682 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5683 if (!cap)
5684 return -EINVAL;
5685
5686 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5687 return -EINVAL;
5688
5689 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5690 return -E2BIG;
5691
5692 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5693 return -EINVAL;
5694
5695 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5696 if (o != v) {
5697 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5698 return -EIO;
5699
5700 cmd &= ~PCI_X_CMD_MAX_READ;
5701 cmd |= v << 2;
5702 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5703 return -EIO;
5704 }
5705 return 0;
5706 }
5707 EXPORT_SYMBOL(pcix_set_mmrbc);
5708
5709 /**
5710 * pcie_get_readrq - get PCI Express read request size
5711 * @dev: PCI device to query
5712 *
5713 * Returns maximum memory read request in bytes or appropriate error value.
5714 */
pcie_get_readrq(struct pci_dev * dev)5715 int pcie_get_readrq(struct pci_dev *dev)
5716 {
5717 u16 ctl;
5718
5719 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5720
5721 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5722 }
5723 EXPORT_SYMBOL(pcie_get_readrq);
5724
5725 /**
5726 * pcie_set_readrq - set PCI Express maximum memory read request
5727 * @dev: PCI device to query
5728 * @rq: maximum memory read count in bytes
5729 * valid values are 128, 256, 512, 1024, 2048, 4096
5730 *
5731 * If possible sets maximum memory read request in bytes
5732 */
pcie_set_readrq(struct pci_dev * dev,int rq)5733 int pcie_set_readrq(struct pci_dev *dev, int rq)
5734 {
5735 u16 v;
5736 int ret;
5737
5738 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5739 return -EINVAL;
5740
5741 /*
5742 * If using the "performance" PCIe config, we clamp the read rq
5743 * size to the max packet size to keep the host bridge from
5744 * generating requests larger than we can cope with.
5745 */
5746 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5747 int mps = pcie_get_mps(dev);
5748
5749 if (mps < rq)
5750 rq = mps;
5751 }
5752
5753 v = (ffs(rq) - 8) << 12;
5754
5755 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5756 PCI_EXP_DEVCTL_READRQ, v);
5757
5758 return pcibios_err_to_errno(ret);
5759 }
5760 EXPORT_SYMBOL(pcie_set_readrq);
5761
5762 /**
5763 * pcie_get_mps - get PCI Express maximum payload size
5764 * @dev: PCI device to query
5765 *
5766 * Returns maximum payload size in bytes
5767 */
pcie_get_mps(struct pci_dev * dev)5768 int pcie_get_mps(struct pci_dev *dev)
5769 {
5770 u16 ctl;
5771
5772 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5773
5774 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5775 }
5776 EXPORT_SYMBOL(pcie_get_mps);
5777
5778 /**
5779 * pcie_set_mps - set PCI Express maximum payload size
5780 * @dev: PCI device to query
5781 * @mps: maximum payload size in bytes
5782 * valid values are 128, 256, 512, 1024, 2048, 4096
5783 *
5784 * If possible sets maximum payload size
5785 */
pcie_set_mps(struct pci_dev * dev,int mps)5786 int pcie_set_mps(struct pci_dev *dev, int mps)
5787 {
5788 u16 v;
5789 int ret;
5790
5791 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5792 return -EINVAL;
5793
5794 v = ffs(mps) - 8;
5795 if (v > dev->pcie_mpss)
5796 return -EINVAL;
5797 v <<= 5;
5798
5799 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5800 PCI_EXP_DEVCTL_PAYLOAD, v);
5801
5802 return pcibios_err_to_errno(ret);
5803 }
5804 EXPORT_SYMBOL(pcie_set_mps);
5805
5806 /**
5807 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5808 * device and its bandwidth limitation
5809 * @dev: PCI device to query
5810 * @limiting_dev: storage for device causing the bandwidth limitation
5811 * @speed: storage for speed of limiting device
5812 * @width: storage for width of limiting device
5813 *
5814 * Walk up the PCI device chain and find the point where the minimum
5815 * bandwidth is available. Return the bandwidth available there and (if
5816 * limiting_dev, speed, and width pointers are supplied) information about
5817 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5818 * raw bandwidth.
5819 */
pcie_bandwidth_available(struct pci_dev * dev,struct pci_dev ** limiting_dev,enum pci_bus_speed * speed,enum pcie_link_width * width)5820 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5821 enum pci_bus_speed *speed,
5822 enum pcie_link_width *width)
5823 {
5824 u16 lnksta;
5825 enum pci_bus_speed next_speed;
5826 enum pcie_link_width next_width;
5827 u32 bw, next_bw;
5828
5829 if (speed)
5830 *speed = PCI_SPEED_UNKNOWN;
5831 if (width)
5832 *width = PCIE_LNK_WIDTH_UNKNOWN;
5833
5834 bw = 0;
5835
5836 while (dev) {
5837 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5838
5839 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5840 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5841 PCI_EXP_LNKSTA_NLW_SHIFT;
5842
5843 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5844
5845 /* Check if current device limits the total bandwidth */
5846 if (!bw || next_bw <= bw) {
5847 bw = next_bw;
5848
5849 if (limiting_dev)
5850 *limiting_dev = dev;
5851 if (speed)
5852 *speed = next_speed;
5853 if (width)
5854 *width = next_width;
5855 }
5856
5857 dev = pci_upstream_bridge(dev);
5858 }
5859
5860 return bw;
5861 }
5862 EXPORT_SYMBOL(pcie_bandwidth_available);
5863
5864 /**
5865 * pcie_get_speed_cap - query for the PCI device's link speed capability
5866 * @dev: PCI device to query
5867 *
5868 * Query the PCI device speed capability. Return the maximum link speed
5869 * supported by the device.
5870 */
pcie_get_speed_cap(struct pci_dev * dev)5871 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5872 {
5873 u32 lnkcap2, lnkcap;
5874
5875 /*
5876 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5877 * implementation note there recommends using the Supported Link
5878 * Speeds Vector in Link Capabilities 2 when supported.
5879 *
5880 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5881 * should use the Supported Link Speeds field in Link Capabilities,
5882 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5883 */
5884 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5885
5886 /* PCIe r3.0-compliant */
5887 if (lnkcap2)
5888 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5889
5890 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5891 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5892 return PCIE_SPEED_5_0GT;
5893 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5894 return PCIE_SPEED_2_5GT;
5895
5896 return PCI_SPEED_UNKNOWN;
5897 }
5898 EXPORT_SYMBOL(pcie_get_speed_cap);
5899
5900 /**
5901 * pcie_get_width_cap - query for the PCI device's link width capability
5902 * @dev: PCI device to query
5903 *
5904 * Query the PCI device width capability. Return the maximum link width
5905 * supported by the device.
5906 */
pcie_get_width_cap(struct pci_dev * dev)5907 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5908 {
5909 u32 lnkcap;
5910
5911 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5912 if (lnkcap)
5913 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5914
5915 return PCIE_LNK_WIDTH_UNKNOWN;
5916 }
5917 EXPORT_SYMBOL(pcie_get_width_cap);
5918
5919 /**
5920 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5921 * @dev: PCI device
5922 * @speed: storage for link speed
5923 * @width: storage for link width
5924 *
5925 * Calculate a PCI device's link bandwidth by querying for its link speed
5926 * and width, multiplying them, and applying encoding overhead. The result
5927 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5928 */
pcie_bandwidth_capable(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)5929 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5930 enum pcie_link_width *width)
5931 {
5932 *speed = pcie_get_speed_cap(dev);
5933 *width = pcie_get_width_cap(dev);
5934
5935 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5936 return 0;
5937
5938 return *width * PCIE_SPEED2MBS_ENC(*speed);
5939 }
5940
5941 /**
5942 * __pcie_print_link_status - Report the PCI device's link speed and width
5943 * @dev: PCI device to query
5944 * @verbose: Print info even when enough bandwidth is available
5945 *
5946 * If the available bandwidth at the device is less than the device is
5947 * capable of, report the device's maximum possible bandwidth and the
5948 * upstream link that limits its performance. If @verbose, always print
5949 * the available bandwidth, even if the device isn't constrained.
5950 */
__pcie_print_link_status(struct pci_dev * dev,bool verbose)5951 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5952 {
5953 enum pcie_link_width width, width_cap;
5954 enum pci_bus_speed speed, speed_cap;
5955 struct pci_dev *limiting_dev = NULL;
5956 u32 bw_avail, bw_cap;
5957
5958 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5959 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5960
5961 if (bw_avail >= bw_cap && verbose)
5962 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5963 bw_cap / 1000, bw_cap % 1000,
5964 pci_speed_string(speed_cap), width_cap);
5965 else if (bw_avail < bw_cap)
5966 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5967 bw_avail / 1000, bw_avail % 1000,
5968 pci_speed_string(speed), width,
5969 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5970 bw_cap / 1000, bw_cap % 1000,
5971 pci_speed_string(speed_cap), width_cap);
5972 }
5973
5974 /**
5975 * pcie_print_link_status - Report the PCI device's link speed and width
5976 * @dev: PCI device to query
5977 *
5978 * Report the available bandwidth at the device.
5979 */
pcie_print_link_status(struct pci_dev * dev)5980 void pcie_print_link_status(struct pci_dev *dev)
5981 {
5982 __pcie_print_link_status(dev, true);
5983 }
5984 EXPORT_SYMBOL(pcie_print_link_status);
5985
5986 /**
5987 * pci_select_bars - Make BAR mask from the type of resource
5988 * @dev: the PCI device for which BAR mask is made
5989 * @flags: resource type mask to be selected
5990 *
5991 * This helper routine makes bar mask from the type of resource.
5992 */
pci_select_bars(struct pci_dev * dev,unsigned long flags)5993 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5994 {
5995 int i, bars = 0;
5996 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5997 if (pci_resource_flags(dev, i) & flags)
5998 bars |= (1 << i);
5999 return bars;
6000 }
6001 EXPORT_SYMBOL(pci_select_bars);
6002
6003 /* Some architectures require additional programming to enable VGA */
6004 static arch_set_vga_state_t arch_set_vga_state;
6005
pci_register_set_vga_state(arch_set_vga_state_t func)6006 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6007 {
6008 arch_set_vga_state = func; /* NULL disables */
6009 }
6010
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6011 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6012 unsigned int command_bits, u32 flags)
6013 {
6014 if (arch_set_vga_state)
6015 return arch_set_vga_state(dev, decode, command_bits,
6016 flags);
6017 return 0;
6018 }
6019
6020 /**
6021 * pci_set_vga_state - set VGA decode state on device and parents if requested
6022 * @dev: the PCI device
6023 * @decode: true = enable decoding, false = disable decoding
6024 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6025 * @flags: traverse ancestors and change bridges
6026 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6027 */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6028 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6029 unsigned int command_bits, u32 flags)
6030 {
6031 struct pci_bus *bus;
6032 struct pci_dev *bridge;
6033 u16 cmd;
6034 int rc;
6035
6036 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6037
6038 /* ARCH specific VGA enables */
6039 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6040 if (rc)
6041 return rc;
6042
6043 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6044 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6045 if (decode)
6046 cmd |= command_bits;
6047 else
6048 cmd &= ~command_bits;
6049 pci_write_config_word(dev, PCI_COMMAND, cmd);
6050 }
6051
6052 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6053 return 0;
6054
6055 bus = dev->bus;
6056 while (bus) {
6057 bridge = bus->self;
6058 if (bridge) {
6059 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6060 &cmd);
6061 if (decode)
6062 cmd |= PCI_BRIDGE_CTL_VGA;
6063 else
6064 cmd &= ~PCI_BRIDGE_CTL_VGA;
6065 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6066 cmd);
6067 }
6068 bus = bus->parent;
6069 }
6070 return 0;
6071 }
6072
6073 #ifdef CONFIG_ACPI
pci_pr3_present(struct pci_dev * pdev)6074 bool pci_pr3_present(struct pci_dev *pdev)
6075 {
6076 struct acpi_device *adev;
6077
6078 if (acpi_disabled)
6079 return false;
6080
6081 adev = ACPI_COMPANION(&pdev->dev);
6082 if (!adev)
6083 return false;
6084
6085 return adev->power.flags.power_resources &&
6086 acpi_has_method(adev->handle, "_PR3");
6087 }
6088 EXPORT_SYMBOL_GPL(pci_pr3_present);
6089 #endif
6090
6091 /**
6092 * pci_add_dma_alias - Add a DMA devfn alias for a device
6093 * @dev: the PCI device for which alias is added
6094 * @devfn_from: alias slot and function
6095 * @nr_devfns: number of subsequent devfns to alias
6096 *
6097 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6098 * which is used to program permissible bus-devfn source addresses for DMA
6099 * requests in an IOMMU. These aliases factor into IOMMU group creation
6100 * and are useful for devices generating DMA requests beyond or different
6101 * from their logical bus-devfn. Examples include device quirks where the
6102 * device simply uses the wrong devfn, as well as non-transparent bridges
6103 * where the alias may be a proxy for devices in another domain.
6104 *
6105 * IOMMU group creation is performed during device discovery or addition,
6106 * prior to any potential DMA mapping and therefore prior to driver probing
6107 * (especially for userspace assigned devices where IOMMU group definition
6108 * cannot be left as a userspace activity). DMA aliases should therefore
6109 * be configured via quirks, such as the PCI fixup header quirk.
6110 */
pci_add_dma_alias(struct pci_dev * dev,u8 devfn_from,unsigned nr_devfns)6111 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6112 {
6113 int devfn_to;
6114
6115 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6116 devfn_to = devfn_from + nr_devfns - 1;
6117
6118 if (!dev->dma_alias_mask)
6119 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6120 if (!dev->dma_alias_mask) {
6121 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6122 return;
6123 }
6124
6125 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6126
6127 if (nr_devfns == 1)
6128 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6129 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6130 else if (nr_devfns > 1)
6131 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6132 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6133 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6134 }
6135
pci_devs_are_dma_aliases(struct pci_dev * dev1,struct pci_dev * dev2)6136 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6137 {
6138 return (dev1->dma_alias_mask &&
6139 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6140 (dev2->dma_alias_mask &&
6141 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6142 pci_real_dma_dev(dev1) == dev2 ||
6143 pci_real_dma_dev(dev2) == dev1;
6144 }
6145
pci_device_is_present(struct pci_dev * pdev)6146 bool pci_device_is_present(struct pci_dev *pdev)
6147 {
6148 u32 v;
6149
6150 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6151 pdev = pci_physfn(pdev);
6152 if (pci_dev_is_disconnected(pdev))
6153 return false;
6154 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6155 }
6156 EXPORT_SYMBOL_GPL(pci_device_is_present);
6157
pci_ignore_hotplug(struct pci_dev * dev)6158 void pci_ignore_hotplug(struct pci_dev *dev)
6159 {
6160 struct pci_dev *bridge = dev->bus->self;
6161
6162 dev->ignore_hotplug = 1;
6163 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6164 if (bridge)
6165 bridge->ignore_hotplug = 1;
6166 }
6167 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6168
6169 /**
6170 * pci_real_dma_dev - Get PCI DMA device for PCI device
6171 * @dev: the PCI device that may have a PCI DMA alias
6172 *
6173 * Permits the platform to provide architecture-specific functionality to
6174 * devices needing to alias DMA to another PCI device on another PCI bus. If
6175 * the PCI device is on the same bus, it is recommended to use
6176 * pci_add_dma_alias(). This is the default implementation. Architecture
6177 * implementations can override this.
6178 */
pci_real_dma_dev(struct pci_dev * dev)6179 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6180 {
6181 return dev;
6182 }
6183
pcibios_default_alignment(void)6184 resource_size_t __weak pcibios_default_alignment(void)
6185 {
6186 return 0;
6187 }
6188
6189 /*
6190 * Arches that don't want to expose struct resource to userland as-is in
6191 * sysfs and /proc can implement their own pci_resource_to_user().
6192 */
pci_resource_to_user(const struct pci_dev * dev,int bar,const struct resource * rsrc,resource_size_t * start,resource_size_t * end)6193 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6194 const struct resource *rsrc,
6195 resource_size_t *start, resource_size_t *end)
6196 {
6197 *start = rsrc->start;
6198 *end = rsrc->end;
6199 }
6200
6201 static char *resource_alignment_param;
6202 static DEFINE_SPINLOCK(resource_alignment_lock);
6203
6204 /**
6205 * pci_specified_resource_alignment - get resource alignment specified by user.
6206 * @dev: the PCI device to get
6207 * @resize: whether or not to change resources' size when reassigning alignment
6208 *
6209 * RETURNS: Resource alignment if it is specified.
6210 * Zero if it is not specified.
6211 */
pci_specified_resource_alignment(struct pci_dev * dev,bool * resize)6212 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6213 bool *resize)
6214 {
6215 int align_order, count;
6216 resource_size_t align = pcibios_default_alignment();
6217 const char *p;
6218 int ret;
6219
6220 spin_lock(&resource_alignment_lock);
6221 p = resource_alignment_param;
6222 if (!p || !*p)
6223 goto out;
6224 if (pci_has_flag(PCI_PROBE_ONLY)) {
6225 align = 0;
6226 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6227 goto out;
6228 }
6229
6230 while (*p) {
6231 count = 0;
6232 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6233 p[count] == '@') {
6234 p += count + 1;
6235 if (align_order > 63) {
6236 pr_err("PCI: Invalid requested alignment (order %d)\n",
6237 align_order);
6238 align_order = PAGE_SHIFT;
6239 }
6240 } else {
6241 align_order = PAGE_SHIFT;
6242 }
6243
6244 ret = pci_dev_str_match(dev, p, &p);
6245 if (ret == 1) {
6246 *resize = true;
6247 align = 1ULL << align_order;
6248 break;
6249 } else if (ret < 0) {
6250 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6251 p);
6252 break;
6253 }
6254
6255 if (*p != ';' && *p != ',') {
6256 /* End of param or invalid format */
6257 break;
6258 }
6259 p++;
6260 }
6261 out:
6262 spin_unlock(&resource_alignment_lock);
6263 return align;
6264 }
6265
pci_request_resource_alignment(struct pci_dev * dev,int bar,resource_size_t align,bool resize)6266 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6267 resource_size_t align, bool resize)
6268 {
6269 struct resource *r = &dev->resource[bar];
6270 resource_size_t size;
6271
6272 if (!(r->flags & IORESOURCE_MEM))
6273 return;
6274
6275 if (r->flags & IORESOURCE_PCI_FIXED) {
6276 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6277 bar, r, (unsigned long long)align);
6278 return;
6279 }
6280
6281 size = resource_size(r);
6282 if (size >= align)
6283 return;
6284
6285 /*
6286 * Increase the alignment of the resource. There are two ways we
6287 * can do this:
6288 *
6289 * 1) Increase the size of the resource. BARs are aligned on their
6290 * size, so when we reallocate space for this resource, we'll
6291 * allocate it with the larger alignment. This also prevents
6292 * assignment of any other BARs inside the alignment region, so
6293 * if we're requesting page alignment, this means no other BARs
6294 * will share the page.
6295 *
6296 * The disadvantage is that this makes the resource larger than
6297 * the hardware BAR, which may break drivers that compute things
6298 * based on the resource size, e.g., to find registers at a
6299 * fixed offset before the end of the BAR.
6300 *
6301 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6302 * set r->start to the desired alignment. By itself this
6303 * doesn't prevent other BARs being put inside the alignment
6304 * region, but if we realign *every* resource of every device in
6305 * the system, none of them will share an alignment region.
6306 *
6307 * When the user has requested alignment for only some devices via
6308 * the "pci=resource_alignment" argument, "resize" is true and we
6309 * use the first method. Otherwise we assume we're aligning all
6310 * devices and we use the second.
6311 */
6312
6313 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6314 bar, r, (unsigned long long)align);
6315
6316 if (resize) {
6317 r->start = 0;
6318 r->end = align - 1;
6319 } else {
6320 r->flags &= ~IORESOURCE_SIZEALIGN;
6321 r->flags |= IORESOURCE_STARTALIGN;
6322 r->start = align;
6323 r->end = r->start + size - 1;
6324 }
6325 r->flags |= IORESOURCE_UNSET;
6326 }
6327
6328 /*
6329 * This function disables memory decoding and releases memory resources
6330 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6331 * It also rounds up size to specified alignment.
6332 * Later on, the kernel will assign page-aligned memory resource back
6333 * to the device.
6334 */
pci_reassigndev_resource_alignment(struct pci_dev * dev)6335 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6336 {
6337 int i;
6338 struct resource *r;
6339 resource_size_t align;
6340 u16 command;
6341 bool resize = false;
6342
6343 /*
6344 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6345 * 3.4.1.11. Their resources are allocated from the space
6346 * described by the VF BARx register in the PF's SR-IOV capability.
6347 * We can't influence their alignment here.
6348 */
6349 if (dev->is_virtfn)
6350 return;
6351
6352 /* check if specified PCI is target device to reassign */
6353 align = pci_specified_resource_alignment(dev, &resize);
6354 if (!align)
6355 return;
6356
6357 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6358 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6359 pci_warn(dev, "Can't reassign resources to host bridge\n");
6360 return;
6361 }
6362
6363 pci_read_config_word(dev, PCI_COMMAND, &command);
6364 command &= ~PCI_COMMAND_MEMORY;
6365 pci_write_config_word(dev, PCI_COMMAND, command);
6366
6367 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6368 pci_request_resource_alignment(dev, i, align, resize);
6369
6370 /*
6371 * Need to disable bridge's resource window,
6372 * to enable the kernel to reassign new resource
6373 * window later on.
6374 */
6375 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6376 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6377 r = &dev->resource[i];
6378 if (!(r->flags & IORESOURCE_MEM))
6379 continue;
6380 r->flags |= IORESOURCE_UNSET;
6381 r->end = resource_size(r) - 1;
6382 r->start = 0;
6383 }
6384 pci_disable_bridge_window(dev);
6385 }
6386 }
6387
resource_alignment_show(struct bus_type * bus,char * buf)6388 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6389 {
6390 size_t count = 0;
6391
6392 spin_lock(&resource_alignment_lock);
6393 if (resource_alignment_param)
6394 count = scnprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6395 spin_unlock(&resource_alignment_lock);
6396
6397 /*
6398 * When set by the command line, resource_alignment_param will not
6399 * have a trailing line feed, which is ugly. So conditionally add
6400 * it here.
6401 */
6402 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6403 buf[count - 1] = '\n';
6404 buf[count++] = 0;
6405 }
6406
6407 return count;
6408 }
6409
resource_alignment_store(struct bus_type * bus,const char * buf,size_t count)6410 static ssize_t resource_alignment_store(struct bus_type *bus,
6411 const char *buf, size_t count)
6412 {
6413 char *param = kstrndup(buf, count, GFP_KERNEL);
6414
6415 if (!param)
6416 return -ENOMEM;
6417
6418 spin_lock(&resource_alignment_lock);
6419 kfree(resource_alignment_param);
6420 resource_alignment_param = param;
6421 spin_unlock(&resource_alignment_lock);
6422 return count;
6423 }
6424
6425 static BUS_ATTR_RW(resource_alignment);
6426
pci_resource_alignment_sysfs_init(void)6427 static int __init pci_resource_alignment_sysfs_init(void)
6428 {
6429 return bus_create_file(&pci_bus_type,
6430 &bus_attr_resource_alignment);
6431 }
6432 late_initcall(pci_resource_alignment_sysfs_init);
6433
pci_no_domains(void)6434 static void pci_no_domains(void)
6435 {
6436 #ifdef CONFIG_PCI_DOMAINS
6437 pci_domains_supported = 0;
6438 #endif
6439 }
6440
6441 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6442 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6443
pci_get_new_domain_nr(void)6444 static int pci_get_new_domain_nr(void)
6445 {
6446 return atomic_inc_return(&__domain_nr);
6447 }
6448
of_pci_bus_find_domain_nr(struct device * parent)6449 static int of_pci_bus_find_domain_nr(struct device *parent)
6450 {
6451 static int use_dt_domains = -1;
6452 int domain = -1;
6453
6454 if (parent)
6455 domain = of_get_pci_domain_nr(parent->of_node);
6456
6457 /*
6458 * Check DT domain and use_dt_domains values.
6459 *
6460 * If DT domain property is valid (domain >= 0) and
6461 * use_dt_domains != 0, the DT assignment is valid since this means
6462 * we have not previously allocated a domain number by using
6463 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6464 * 1, to indicate that we have just assigned a domain number from
6465 * DT.
6466 *
6467 * If DT domain property value is not valid (ie domain < 0), and we
6468 * have not previously assigned a domain number from DT
6469 * (use_dt_domains != 1) we should assign a domain number by
6470 * using the:
6471 *
6472 * pci_get_new_domain_nr()
6473 *
6474 * API and update the use_dt_domains value to keep track of method we
6475 * are using to assign domain numbers (use_dt_domains = 0).
6476 *
6477 * All other combinations imply we have a platform that is trying
6478 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6479 * which is a recipe for domain mishandling and it is prevented by
6480 * invalidating the domain value (domain = -1) and printing a
6481 * corresponding error.
6482 */
6483 if (domain >= 0 && use_dt_domains) {
6484 use_dt_domains = 1;
6485 } else if (domain < 0 && use_dt_domains != 1) {
6486 use_dt_domains = 0;
6487 domain = pci_get_new_domain_nr();
6488 } else {
6489 if (parent)
6490 pr_err("Node %pOF has ", parent->of_node);
6491 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6492 domain = -1;
6493 }
6494
6495 return domain;
6496 }
6497
pci_bus_find_domain_nr(struct pci_bus * bus,struct device * parent)6498 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6499 {
6500 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6501 acpi_pci_bus_find_domain_nr(bus);
6502 }
6503 #endif
6504
6505 /**
6506 * pci_ext_cfg_avail - can we access extended PCI config space?
6507 *
6508 * Returns 1 if we can access PCI extended config space (offsets
6509 * greater than 0xff). This is the default implementation. Architecture
6510 * implementations can override this.
6511 */
pci_ext_cfg_avail(void)6512 int __weak pci_ext_cfg_avail(void)
6513 {
6514 return 1;
6515 }
6516
pci_fixup_cardbus(struct pci_bus * bus)6517 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6518 {
6519 }
6520 EXPORT_SYMBOL(pci_fixup_cardbus);
6521
pci_setup(char * str)6522 static int __init pci_setup(char *str)
6523 {
6524 while (str) {
6525 char *k = strchr(str, ',');
6526 if (k)
6527 *k++ = 0;
6528 if (*str && (str = pcibios_setup(str)) && *str) {
6529 if (!strcmp(str, "nomsi")) {
6530 pci_no_msi();
6531 } else if (!strncmp(str, "noats", 5)) {
6532 pr_info("PCIe: ATS is disabled\n");
6533 pcie_ats_disabled = true;
6534 } else if (!strcmp(str, "noaer")) {
6535 pci_no_aer();
6536 } else if (!strcmp(str, "earlydump")) {
6537 pci_early_dump = true;
6538 } else if (!strncmp(str, "realloc=", 8)) {
6539 pci_realloc_get_opt(str + 8);
6540 } else if (!strncmp(str, "realloc", 7)) {
6541 pci_realloc_get_opt("on");
6542 } else if (!strcmp(str, "nodomains")) {
6543 pci_no_domains();
6544 } else if (!strncmp(str, "noari", 5)) {
6545 pcie_ari_disabled = true;
6546 } else if (!strncmp(str, "cbiosize=", 9)) {
6547 pci_cardbus_io_size = memparse(str + 9, &str);
6548 } else if (!strncmp(str, "cbmemsize=", 10)) {
6549 pci_cardbus_mem_size = memparse(str + 10, &str);
6550 } else if (!strncmp(str, "resource_alignment=", 19)) {
6551 resource_alignment_param = str + 19;
6552 } else if (!strncmp(str, "ecrc=", 5)) {
6553 pcie_ecrc_get_policy(str + 5);
6554 } else if (!strncmp(str, "hpiosize=", 9)) {
6555 pci_hotplug_io_size = memparse(str + 9, &str);
6556 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6557 pci_hotplug_mmio_size = memparse(str + 11, &str);
6558 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6559 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6560 } else if (!strncmp(str, "hpmemsize=", 10)) {
6561 pci_hotplug_mmio_size = memparse(str + 10, &str);
6562 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6563 } else if (!strncmp(str, "hpbussize=", 10)) {
6564 pci_hotplug_bus_size =
6565 simple_strtoul(str + 10, &str, 0);
6566 if (pci_hotplug_bus_size > 0xff)
6567 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6568 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6569 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6570 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6571 pcie_bus_config = PCIE_BUS_SAFE;
6572 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6573 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6574 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6575 pcie_bus_config = PCIE_BUS_PEER2PEER;
6576 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6577 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6578 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6579 disable_acs_redir_param = str + 18;
6580 } else {
6581 pr_err("PCI: Unknown option `%s'\n", str);
6582 }
6583 }
6584 str = k;
6585 }
6586 return 0;
6587 }
6588 early_param("pci", pci_setup);
6589
6590 /*
6591 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6592 * in pci_setup(), above, to point to data in the __initdata section which
6593 * will be freed after the init sequence is complete. We can't allocate memory
6594 * in pci_setup() because some architectures do not have any memory allocation
6595 * service available during an early_param() call. So we allocate memory and
6596 * copy the variable here before the init section is freed.
6597 *
6598 */
pci_realloc_setup_params(void)6599 static int __init pci_realloc_setup_params(void)
6600 {
6601 resource_alignment_param = kstrdup(resource_alignment_param,
6602 GFP_KERNEL);
6603 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6604
6605 return 0;
6606 }
6607 pure_initcall(pci_realloc_setup_params);
6608