• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <trace/hooks/pci.h>
35 #include "pci.h"
36 
37 DEFINE_MUTEX(pci_slot_mutex);
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46 
47 int pci_pci_problems;
48 EXPORT_SYMBOL(pci_pci_problems);
49 
50 unsigned int pci_pm_d3hot_delay;
51 
52 static void pci_pme_list_scan(struct work_struct *work);
53 
54 static LIST_HEAD(pci_pme_list);
55 static DEFINE_MUTEX(pci_pme_list_mutex);
56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
57 
58 struct pci_pme_device {
59 	struct list_head list;
60 	struct pci_dev *dev;
61 };
62 
63 #define PME_TIMEOUT 1000 /* How long between PME checks */
64 
pci_dev_d3_sleep(struct pci_dev * dev)65 static void pci_dev_d3_sleep(struct pci_dev *dev)
66 {
67 	unsigned int delay = dev->d3hot_delay;
68 
69 	if (delay < pci_pm_d3hot_delay)
70 		delay = pci_pm_d3hot_delay;
71 
72 	if (delay) {
73 		trace_android_rvh_pci_d3_sleep(dev, &delay);
74 		if (delay)
75 			msleep(delay);
76 	}
77 }
78 
79 #ifdef CONFIG_PCI_DOMAINS
80 int pci_domains_supported = 1;
81 #endif
82 
83 #define DEFAULT_CARDBUS_IO_SIZE		(256)
84 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
85 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
86 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
87 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
88 
89 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
90 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
91 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
92 /* hpiosize=nn can override this */
93 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
94 /*
95  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
96  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
97  * pci=hpmemsize=nnM overrides both
98  */
99 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
100 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
101 
102 #define DEFAULT_HOTPLUG_BUS_SIZE	1
103 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
104 
105 
106 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
107 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
108 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
109 #elif defined CONFIG_PCIE_BUS_SAFE
110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
111 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
113 #elif defined CONFIG_PCIE_BUS_PEER2PEER
114 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
115 #else
116 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
117 #endif
118 
119 /*
120  * The default CLS is used if arch didn't set CLS explicitly and not
121  * all pci devices agree on the same value.  Arch can override either
122  * the dfl or actual value as it sees fit.  Don't forget this is
123  * measured in 32-bit words, not bytes.
124  */
125 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
126 u8 pci_cache_line_size;
127 
128 /*
129  * If we set up a device for bus mastering, we need to check the latency
130  * timer as certain BIOSes forget to set it properly.
131  */
132 unsigned int pcibios_max_latency = 255;
133 
134 /* If set, the PCIe ARI capability will not be used. */
135 static bool pcie_ari_disabled;
136 
137 /* If set, the PCIe ATS capability will not be used. */
138 static bool pcie_ats_disabled;
139 
140 /* If set, the PCI config space of each device is printed during boot. */
141 bool pci_early_dump;
142 
pci_ats_disabled(void)143 bool pci_ats_disabled(void)
144 {
145 	return pcie_ats_disabled;
146 }
147 EXPORT_SYMBOL_GPL(pci_ats_disabled);
148 
149 /* Disable bridge_d3 for all PCIe ports */
150 static bool pci_bridge_d3_disable;
151 /* Force bridge_d3 for all PCIe ports */
152 static bool pci_bridge_d3_force;
153 
pcie_port_pm_setup(char * str)154 static int __init pcie_port_pm_setup(char *str)
155 {
156 	if (!strcmp(str, "off"))
157 		pci_bridge_d3_disable = true;
158 	else if (!strcmp(str, "force"))
159 		pci_bridge_d3_force = true;
160 	return 1;
161 }
162 __setup("pcie_port_pm=", pcie_port_pm_setup);
163 
164 /**
165  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
166  * @bus: pointer to PCI bus structure to search
167  *
168  * Given a PCI bus, returns the highest PCI bus number present in the set
169  * including the given PCI bus and its list of child PCI buses.
170  */
pci_bus_max_busnr(struct pci_bus * bus)171 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
172 {
173 	struct pci_bus *tmp;
174 	unsigned char max, n;
175 
176 	max = bus->busn_res.end;
177 	list_for_each_entry(tmp, &bus->children, node) {
178 		n = pci_bus_max_busnr(tmp);
179 		if (n > max)
180 			max = n;
181 	}
182 	return max;
183 }
184 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
185 
186 /**
187  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
188  * @pdev: the PCI device
189  *
190  * Returns error bits set in PCI_STATUS and clears them.
191  */
pci_status_get_and_clear_errors(struct pci_dev * pdev)192 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
193 {
194 	u16 status;
195 	int ret;
196 
197 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
198 	if (ret != PCIBIOS_SUCCESSFUL)
199 		return -EIO;
200 
201 	status &= PCI_STATUS_ERROR_BITS;
202 	if (status)
203 		pci_write_config_word(pdev, PCI_STATUS, status);
204 
205 	return status;
206 }
207 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
208 
209 #ifdef CONFIG_HAS_IOMEM
pci_ioremap_bar(struct pci_dev * pdev,int bar)210 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
211 {
212 	struct resource *res = &pdev->resource[bar];
213 
214 	/*
215 	 * Make sure the BAR is actually a memory resource, not an IO resource
216 	 */
217 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
218 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
219 		return NULL;
220 	}
221 	return ioremap(res->start, resource_size(res));
222 }
223 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
224 
pci_ioremap_wc_bar(struct pci_dev * pdev,int bar)225 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
226 {
227 	/*
228 	 * Make sure the BAR is actually a memory resource, not an IO resource
229 	 */
230 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
231 		WARN_ON(1);
232 		return NULL;
233 	}
234 	return ioremap_wc(pci_resource_start(pdev, bar),
235 			  pci_resource_len(pdev, bar));
236 }
237 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
238 #endif
239 
240 /**
241  * pci_dev_str_match_path - test if a path string matches a device
242  * @dev: the PCI device to test
243  * @path: string to match the device against
244  * @endptr: pointer to the string after the match
245  *
246  * Test if a string (typically from a kernel parameter) formatted as a
247  * path of device/function addresses matches a PCI device. The string must
248  * be of the form:
249  *
250  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
251  *
252  * A path for a device can be obtained using 'lspci -t'.  Using a path
253  * is more robust against bus renumbering than using only a single bus,
254  * device and function address.
255  *
256  * Returns 1 if the string matches the device, 0 if it does not and
257  * a negative error code if it fails to parse the string.
258  */
pci_dev_str_match_path(struct pci_dev * dev,const char * path,const char ** endptr)259 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
260 				  const char **endptr)
261 {
262 	int ret;
263 	int seg, bus, slot, func;
264 	char *wpath, *p;
265 	char end;
266 
267 	*endptr = strchrnul(path, ';');
268 
269 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
270 	if (!wpath)
271 		return -ENOMEM;
272 
273 	while (1) {
274 		p = strrchr(wpath, '/');
275 		if (!p)
276 			break;
277 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
278 		if (ret != 2) {
279 			ret = -EINVAL;
280 			goto free_and_exit;
281 		}
282 
283 		if (dev->devfn != PCI_DEVFN(slot, func)) {
284 			ret = 0;
285 			goto free_and_exit;
286 		}
287 
288 		/*
289 		 * Note: we don't need to get a reference to the upstream
290 		 * bridge because we hold a reference to the top level
291 		 * device which should hold a reference to the bridge,
292 		 * and so on.
293 		 */
294 		dev = pci_upstream_bridge(dev);
295 		if (!dev) {
296 			ret = 0;
297 			goto free_and_exit;
298 		}
299 
300 		*p = 0;
301 	}
302 
303 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
304 		     &func, &end);
305 	if (ret != 4) {
306 		seg = 0;
307 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
308 		if (ret != 3) {
309 			ret = -EINVAL;
310 			goto free_and_exit;
311 		}
312 	}
313 
314 	ret = (seg == pci_domain_nr(dev->bus) &&
315 	       bus == dev->bus->number &&
316 	       dev->devfn == PCI_DEVFN(slot, func));
317 
318 free_and_exit:
319 	kfree(wpath);
320 	return ret;
321 }
322 
323 /**
324  * pci_dev_str_match - test if a string matches a device
325  * @dev: the PCI device to test
326  * @p: string to match the device against
327  * @endptr: pointer to the string after the match
328  *
329  * Test if a string (typically from a kernel parameter) matches a specified
330  * PCI device. The string may be of one of the following formats:
331  *
332  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
333  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
334  *
335  * The first format specifies a PCI bus/device/function address which
336  * may change if new hardware is inserted, if motherboard firmware changes,
337  * or due to changes caused in kernel parameters. If the domain is
338  * left unspecified, it is taken to be 0.  In order to be robust against
339  * bus renumbering issues, a path of PCI device/function numbers may be used
340  * to address the specific device.  The path for a device can be determined
341  * through the use of 'lspci -t'.
342  *
343  * The second format matches devices using IDs in the configuration
344  * space which may match multiple devices in the system. A value of 0
345  * for any field will match all devices. (Note: this differs from
346  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
347  * legacy reasons and convenience so users don't have to specify
348  * FFFFFFFFs on the command line.)
349  *
350  * Returns 1 if the string matches the device, 0 if it does not and
351  * a negative error code if the string cannot be parsed.
352  */
pci_dev_str_match(struct pci_dev * dev,const char * p,const char ** endptr)353 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
354 			     const char **endptr)
355 {
356 	int ret;
357 	int count;
358 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
359 
360 	if (strncmp(p, "pci:", 4) == 0) {
361 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
362 		p += 4;
363 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
364 			     &subsystem_vendor, &subsystem_device, &count);
365 		if (ret != 4) {
366 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
367 			if (ret != 2)
368 				return -EINVAL;
369 
370 			subsystem_vendor = 0;
371 			subsystem_device = 0;
372 		}
373 
374 		p += count;
375 
376 		if ((!vendor || vendor == dev->vendor) &&
377 		    (!device || device == dev->device) &&
378 		    (!subsystem_vendor ||
379 			    subsystem_vendor == dev->subsystem_vendor) &&
380 		    (!subsystem_device ||
381 			    subsystem_device == dev->subsystem_device))
382 			goto found;
383 	} else {
384 		/*
385 		 * PCI Bus, Device, Function IDs are specified
386 		 * (optionally, may include a path of devfns following it)
387 		 */
388 		ret = pci_dev_str_match_path(dev, p, &p);
389 		if (ret < 0)
390 			return ret;
391 		else if (ret)
392 			goto found;
393 	}
394 
395 	*endptr = p;
396 	return 0;
397 
398 found:
399 	*endptr = p;
400 	return 1;
401 }
402 
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)403 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
404 				   u8 pos, int cap, int *ttl)
405 {
406 	u8 id;
407 	u16 ent;
408 
409 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
410 
411 	while ((*ttl)--) {
412 		if (pos < 0x40)
413 			break;
414 		pos &= ~3;
415 		pci_bus_read_config_word(bus, devfn, pos, &ent);
416 
417 		id = ent & 0xff;
418 		if (id == 0xff)
419 			break;
420 		if (id == cap)
421 			return pos;
422 		pos = (ent >> 8);
423 	}
424 	return 0;
425 }
426 
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)427 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
428 			       u8 pos, int cap)
429 {
430 	int ttl = PCI_FIND_CAP_TTL;
431 
432 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
433 }
434 
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)435 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
436 {
437 	return __pci_find_next_cap(dev->bus, dev->devfn,
438 				   pos + PCI_CAP_LIST_NEXT, cap);
439 }
440 EXPORT_SYMBOL_GPL(pci_find_next_capability);
441 
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)442 static int __pci_bus_find_cap_start(struct pci_bus *bus,
443 				    unsigned int devfn, u8 hdr_type)
444 {
445 	u16 status;
446 
447 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
448 	if (!(status & PCI_STATUS_CAP_LIST))
449 		return 0;
450 
451 	switch (hdr_type) {
452 	case PCI_HEADER_TYPE_NORMAL:
453 	case PCI_HEADER_TYPE_BRIDGE:
454 		return PCI_CAPABILITY_LIST;
455 	case PCI_HEADER_TYPE_CARDBUS:
456 		return PCI_CB_CAPABILITY_LIST;
457 	}
458 
459 	return 0;
460 }
461 
462 /**
463  * pci_find_capability - query for devices' capabilities
464  * @dev: PCI device to query
465  * @cap: capability code
466  *
467  * Tell if a device supports a given PCI capability.
468  * Returns the address of the requested capability structure within the
469  * device's PCI configuration space or 0 in case the device does not
470  * support it.  Possible values for @cap include:
471  *
472  *  %PCI_CAP_ID_PM           Power Management
473  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
474  *  %PCI_CAP_ID_VPD          Vital Product Data
475  *  %PCI_CAP_ID_SLOTID       Slot Identification
476  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
477  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
478  *  %PCI_CAP_ID_PCIX         PCI-X
479  *  %PCI_CAP_ID_EXP          PCI Express
480  */
pci_find_capability(struct pci_dev * dev,int cap)481 int pci_find_capability(struct pci_dev *dev, int cap)
482 {
483 	int pos;
484 
485 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
486 	if (pos)
487 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
488 
489 	return pos;
490 }
491 EXPORT_SYMBOL(pci_find_capability);
492 
493 /**
494  * pci_bus_find_capability - query for devices' capabilities
495  * @bus: the PCI bus to query
496  * @devfn: PCI device to query
497  * @cap: capability code
498  *
499  * Like pci_find_capability() but works for PCI devices that do not have a
500  * pci_dev structure set up yet.
501  *
502  * Returns the address of the requested capability structure within the
503  * device's PCI configuration space or 0 in case the device does not
504  * support it.
505  */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)506 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
507 {
508 	int pos;
509 	u8 hdr_type;
510 
511 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
512 
513 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
514 	if (pos)
515 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
516 
517 	return pos;
518 }
519 EXPORT_SYMBOL(pci_bus_find_capability);
520 
521 /**
522  * pci_find_next_ext_capability - Find an extended capability
523  * @dev: PCI device to query
524  * @start: address at which to start looking (0 to start at beginning of list)
525  * @cap: capability code
526  *
527  * Returns the address of the next matching extended capability structure
528  * within the device's PCI configuration space or 0 if the device does
529  * not support it.  Some capabilities can occur several times, e.g., the
530  * vendor-specific capability, and this provides a way to find them all.
531  */
pci_find_next_ext_capability(struct pci_dev * dev,int start,int cap)532 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
533 {
534 	u32 header;
535 	int ttl;
536 	int pos = PCI_CFG_SPACE_SIZE;
537 
538 	/* minimum 8 bytes per capability */
539 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
540 
541 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
542 		return 0;
543 
544 	if (start)
545 		pos = start;
546 
547 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
548 		return 0;
549 
550 	/*
551 	 * If we have no capabilities, this is indicated by cap ID,
552 	 * cap version and next pointer all being 0.
553 	 */
554 	if (header == 0)
555 		return 0;
556 
557 	while (ttl-- > 0) {
558 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
559 			return pos;
560 
561 		pos = PCI_EXT_CAP_NEXT(header);
562 		if (pos < PCI_CFG_SPACE_SIZE)
563 			break;
564 
565 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
566 			break;
567 	}
568 
569 	return 0;
570 }
571 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
572 
573 /**
574  * pci_find_ext_capability - Find an extended capability
575  * @dev: PCI device to query
576  * @cap: capability code
577  *
578  * Returns the address of the requested extended capability structure
579  * within the device's PCI configuration space or 0 if the device does
580  * not support it.  Possible values for @cap include:
581  *
582  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
583  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
584  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
585  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
586  */
pci_find_ext_capability(struct pci_dev * dev,int cap)587 int pci_find_ext_capability(struct pci_dev *dev, int cap)
588 {
589 	return pci_find_next_ext_capability(dev, 0, cap);
590 }
591 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
592 
593 /**
594  * pci_get_dsn - Read and return the 8-byte Device Serial Number
595  * @dev: PCI device to query
596  *
597  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
598  * Number.
599  *
600  * Returns the DSN, or zero if the capability does not exist.
601  */
pci_get_dsn(struct pci_dev * dev)602 u64 pci_get_dsn(struct pci_dev *dev)
603 {
604 	u32 dword;
605 	u64 dsn;
606 	int pos;
607 
608 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
609 	if (!pos)
610 		return 0;
611 
612 	/*
613 	 * The Device Serial Number is two dwords offset 4 bytes from the
614 	 * capability position. The specification says that the first dword is
615 	 * the lower half, and the second dword is the upper half.
616 	 */
617 	pos += 4;
618 	pci_read_config_dword(dev, pos, &dword);
619 	dsn = (u64)dword;
620 	pci_read_config_dword(dev, pos + 4, &dword);
621 	dsn |= ((u64)dword) << 32;
622 
623 	return dsn;
624 }
625 EXPORT_SYMBOL_GPL(pci_get_dsn);
626 
__pci_find_next_ht_cap(struct pci_dev * dev,int pos,int ht_cap)627 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
628 {
629 	int rc, ttl = PCI_FIND_CAP_TTL;
630 	u8 cap, mask;
631 
632 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
633 		mask = HT_3BIT_CAP_MASK;
634 	else
635 		mask = HT_5BIT_CAP_MASK;
636 
637 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
638 				      PCI_CAP_ID_HT, &ttl);
639 	while (pos) {
640 		rc = pci_read_config_byte(dev, pos + 3, &cap);
641 		if (rc != PCIBIOS_SUCCESSFUL)
642 			return 0;
643 
644 		if ((cap & mask) == ht_cap)
645 			return pos;
646 
647 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
648 					      pos + PCI_CAP_LIST_NEXT,
649 					      PCI_CAP_ID_HT, &ttl);
650 	}
651 
652 	return 0;
653 }
654 /**
655  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
656  * @dev: PCI device to query
657  * @pos: Position from which to continue searching
658  * @ht_cap: Hypertransport capability code
659  *
660  * To be used in conjunction with pci_find_ht_capability() to search for
661  * all capabilities matching @ht_cap. @pos should always be a value returned
662  * from pci_find_ht_capability().
663  *
664  * NB. To be 100% safe against broken PCI devices, the caller should take
665  * steps to avoid an infinite loop.
666  */
pci_find_next_ht_capability(struct pci_dev * dev,int pos,int ht_cap)667 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
668 {
669 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
670 }
671 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
672 
673 /**
674  * pci_find_ht_capability - query a device's Hypertransport capabilities
675  * @dev: PCI device to query
676  * @ht_cap: Hypertransport capability code
677  *
678  * Tell if a device supports a given Hypertransport capability.
679  * Returns an address within the device's PCI configuration space
680  * or 0 in case the device does not support the request capability.
681  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
682  * which has a Hypertransport capability matching @ht_cap.
683  */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)684 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
685 {
686 	int pos;
687 
688 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
689 	if (pos)
690 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
691 
692 	return pos;
693 }
694 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
695 
696 /**
697  * pci_find_parent_resource - return resource region of parent bus of given
698  *			      region
699  * @dev: PCI device structure contains resources to be searched
700  * @res: child resource record for which parent is sought
701  *
702  * For given resource region of given device, return the resource region of
703  * parent bus the given region is contained in.
704  */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)705 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
706 					  struct resource *res)
707 {
708 	const struct pci_bus *bus = dev->bus;
709 	struct resource *r;
710 	int i;
711 
712 	pci_bus_for_each_resource(bus, r, i) {
713 		if (!r)
714 			continue;
715 		if (resource_contains(r, res)) {
716 
717 			/*
718 			 * If the window is prefetchable but the BAR is
719 			 * not, the allocator made a mistake.
720 			 */
721 			if (r->flags & IORESOURCE_PREFETCH &&
722 			    !(res->flags & IORESOURCE_PREFETCH))
723 				return NULL;
724 
725 			/*
726 			 * If we're below a transparent bridge, there may
727 			 * be both a positively-decoded aperture and a
728 			 * subtractively-decoded region that contain the BAR.
729 			 * We want the positively-decoded one, so this depends
730 			 * on pci_bus_for_each_resource() giving us those
731 			 * first.
732 			 */
733 			return r;
734 		}
735 	}
736 	return NULL;
737 }
738 EXPORT_SYMBOL(pci_find_parent_resource);
739 
740 /**
741  * pci_find_resource - Return matching PCI device resource
742  * @dev: PCI device to query
743  * @res: Resource to look for
744  *
745  * Goes over standard PCI resources (BARs) and checks if the given resource
746  * is partially or fully contained in any of them. In that case the
747  * matching resource is returned, %NULL otherwise.
748  */
pci_find_resource(struct pci_dev * dev,struct resource * res)749 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
750 {
751 	int i;
752 
753 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
754 		struct resource *r = &dev->resource[i];
755 
756 		if (r->start && resource_contains(r, res))
757 			return r;
758 	}
759 
760 	return NULL;
761 }
762 EXPORT_SYMBOL(pci_find_resource);
763 
764 /**
765  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
766  * @dev: the PCI device to operate on
767  * @pos: config space offset of status word
768  * @mask: mask of bit(s) to care about in status word
769  *
770  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
771  */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)772 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
773 {
774 	int i;
775 
776 	/* Wait for Transaction Pending bit clean */
777 	for (i = 0; i < 4; i++) {
778 		u16 status;
779 		if (i)
780 			msleep((1 << (i - 1)) * 100);
781 
782 		pci_read_config_word(dev, pos, &status);
783 		if (!(status & mask))
784 			return 1;
785 	}
786 
787 	return 0;
788 }
789 
790 static int pci_acs_enable;
791 
792 /**
793  * pci_request_acs - ask for ACS to be enabled if supported
794  */
pci_request_acs(void)795 void pci_request_acs(void)
796 {
797 	pci_acs_enable = 1;
798 }
799 
800 static const char *disable_acs_redir_param;
801 
802 /**
803  * pci_disable_acs_redir - disable ACS redirect capabilities
804  * @dev: the PCI device
805  *
806  * For only devices specified in the disable_acs_redir parameter.
807  */
pci_disable_acs_redir(struct pci_dev * dev)808 static void pci_disable_acs_redir(struct pci_dev *dev)
809 {
810 	int ret = 0;
811 	const char *p;
812 	int pos;
813 	u16 ctrl;
814 
815 	if (!disable_acs_redir_param)
816 		return;
817 
818 	p = disable_acs_redir_param;
819 	while (*p) {
820 		ret = pci_dev_str_match(dev, p, &p);
821 		if (ret < 0) {
822 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
823 				     disable_acs_redir_param);
824 
825 			break;
826 		} else if (ret == 1) {
827 			/* Found a match */
828 			break;
829 		}
830 
831 		if (*p != ';' && *p != ',') {
832 			/* End of param or invalid format */
833 			break;
834 		}
835 		p++;
836 	}
837 
838 	if (ret != 1)
839 		return;
840 
841 	if (!pci_dev_specific_disable_acs_redir(dev))
842 		return;
843 
844 	pos = dev->acs_cap;
845 	if (!pos) {
846 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
847 		return;
848 	}
849 
850 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
851 
852 	/* P2P Request & Completion Redirect */
853 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
854 
855 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
856 
857 	pci_info(dev, "disabled ACS redirect\n");
858 }
859 
860 /**
861  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
862  * @dev: the PCI device
863  */
pci_std_enable_acs(struct pci_dev * dev)864 static void pci_std_enable_acs(struct pci_dev *dev)
865 {
866 	int pos;
867 	u16 cap;
868 	u16 ctrl;
869 
870 	pos = dev->acs_cap;
871 	if (!pos)
872 		return;
873 
874 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
875 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
876 
877 	/* Source Validation */
878 	ctrl |= (cap & PCI_ACS_SV);
879 
880 	/* P2P Request Redirect */
881 	ctrl |= (cap & PCI_ACS_RR);
882 
883 	/* P2P Completion Redirect */
884 	ctrl |= (cap & PCI_ACS_CR);
885 
886 	/* Upstream Forwarding */
887 	ctrl |= (cap & PCI_ACS_UF);
888 
889 	/* Enable Translation Blocking for external devices */
890 	if (dev->external_facing || dev->untrusted)
891 		ctrl |= (cap & PCI_ACS_TB);
892 
893 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
894 }
895 
896 /**
897  * pci_enable_acs - enable ACS if hardware support it
898  * @dev: the PCI device
899  */
pci_enable_acs(struct pci_dev * dev)900 static void pci_enable_acs(struct pci_dev *dev)
901 {
902 	if (!pci_acs_enable)
903 		goto disable_acs_redir;
904 
905 	if (!pci_dev_specific_enable_acs(dev))
906 		goto disable_acs_redir;
907 
908 	pci_std_enable_acs(dev);
909 
910 disable_acs_redir:
911 	/*
912 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
913 	 * enabled by the kernel because it may have been enabled by
914 	 * platform firmware.  So if we are told to disable it, we should
915 	 * always disable it after setting the kernel's default
916 	 * preferences.
917 	 */
918 	pci_disable_acs_redir(dev);
919 }
920 
921 /**
922  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
923  * @dev: PCI device to have its BARs restored
924  *
925  * Restore the BAR values for a given device, so as to make it
926  * accessible by its driver.
927  */
pci_restore_bars(struct pci_dev * dev)928 static void pci_restore_bars(struct pci_dev *dev)
929 {
930 	int i;
931 
932 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
933 		pci_update_resource(dev, i);
934 }
935 
936 static const struct pci_platform_pm_ops *pci_platform_pm;
937 
pci_set_platform_pm(const struct pci_platform_pm_ops * ops)938 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
939 {
940 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
941 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
942 		return -EINVAL;
943 	pci_platform_pm = ops;
944 	return 0;
945 }
946 
platform_pci_power_manageable(struct pci_dev * dev)947 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
948 {
949 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
950 }
951 
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)952 static inline int platform_pci_set_power_state(struct pci_dev *dev,
953 					       pci_power_t t)
954 {
955 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
956 }
957 
platform_pci_get_power_state(struct pci_dev * dev)958 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
959 {
960 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
961 }
962 
platform_pci_refresh_power_state(struct pci_dev * dev)963 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
964 {
965 	if (pci_platform_pm && pci_platform_pm->refresh_state)
966 		pci_platform_pm->refresh_state(dev);
967 }
968 
platform_pci_choose_state(struct pci_dev * dev)969 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
970 {
971 	return pci_platform_pm ?
972 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
973 }
974 
platform_pci_set_wakeup(struct pci_dev * dev,bool enable)975 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
976 {
977 	return pci_platform_pm ?
978 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
979 }
980 
platform_pci_need_resume(struct pci_dev * dev)981 static inline bool platform_pci_need_resume(struct pci_dev *dev)
982 {
983 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
984 }
985 
platform_pci_bridge_d3(struct pci_dev * dev)986 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
987 {
988 	if (pci_platform_pm && pci_platform_pm->bridge_d3)
989 		return pci_platform_pm->bridge_d3(dev);
990 	return false;
991 }
992 
993 /**
994  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
995  *			     given PCI device
996  * @dev: PCI device to handle.
997  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
998  *
999  * RETURN VALUE:
1000  * -EINVAL if the requested state is invalid.
1001  * -EIO if device does not support PCI PM or its PM capabilities register has a
1002  * wrong version, or device doesn't support the requested state.
1003  * 0 if device already is in the requested state.
1004  * 0 if device's power state has been successfully changed.
1005  */
pci_raw_set_power_state(struct pci_dev * dev,pci_power_t state)1006 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1007 {
1008 	u16 pmcsr;
1009 	bool need_restore = false;
1010 
1011 	/* Check if we're already there */
1012 	if (dev->current_state == state)
1013 		return 0;
1014 
1015 	if (!dev->pm_cap)
1016 		return -EIO;
1017 
1018 	if (state < PCI_D0 || state > PCI_D3hot)
1019 		return -EINVAL;
1020 
1021 	/*
1022 	 * Validate transition: We can enter D0 from any state, but if
1023 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1024 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1025 	 * we'd have to go from D3 to D0, then to D1.
1026 	 */
1027 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1028 	    && dev->current_state > state) {
1029 		pci_err(dev, "invalid power transition (from %s to %s)\n",
1030 			pci_power_name(dev->current_state),
1031 			pci_power_name(state));
1032 		return -EINVAL;
1033 	}
1034 
1035 	/* Check if this device supports the desired state */
1036 	if ((state == PCI_D1 && !dev->d1_support)
1037 	   || (state == PCI_D2 && !dev->d2_support))
1038 		return -EIO;
1039 
1040 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1041 	if (pmcsr == (u16) ~0) {
1042 		pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1043 			pci_power_name(dev->current_state),
1044 			pci_power_name(state));
1045 		return -EIO;
1046 	}
1047 
1048 	/*
1049 	 * If we're (effectively) in D3, force entire word to 0.
1050 	 * This doesn't affect PME_Status, disables PME_En, and
1051 	 * sets PowerState to 0.
1052 	 */
1053 	switch (dev->current_state) {
1054 	case PCI_D0:
1055 	case PCI_D1:
1056 	case PCI_D2:
1057 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1058 		pmcsr |= state;
1059 		break;
1060 	case PCI_D3hot:
1061 	case PCI_D3cold:
1062 	case PCI_UNKNOWN: /* Boot-up */
1063 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1064 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1065 			need_restore = true;
1066 		fallthrough;	/* force to D0 */
1067 	default:
1068 		pmcsr = 0;
1069 		break;
1070 	}
1071 
1072 	/* Enter specified state */
1073 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1074 
1075 	/*
1076 	 * Mandatory power management transition delays; see PCI PM 1.1
1077 	 * 5.6.1 table 18
1078 	 */
1079 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1080 		pci_dev_d3_sleep(dev);
1081 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
1082 		udelay(PCI_PM_D2_DELAY);
1083 
1084 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1085 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1086 	if (dev->current_state != state)
1087 		pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1088 			 pci_power_name(dev->current_state),
1089 			 pci_power_name(state));
1090 
1091 	/*
1092 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1093 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1094 	 * from D3hot to D0 _may_ perform an internal reset, thereby
1095 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
1096 	 * For example, at least some versions of the 3c905B and the
1097 	 * 3c556B exhibit this behaviour.
1098 	 *
1099 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1100 	 * devices in a D3hot state at boot.  Consequently, we need to
1101 	 * restore at least the BARs so that the device will be
1102 	 * accessible to its driver.
1103 	 */
1104 	if (need_restore)
1105 		pci_restore_bars(dev);
1106 
1107 	if (dev->bus->self)
1108 		pcie_aspm_pm_state_change(dev->bus->self);
1109 
1110 	return 0;
1111 }
1112 
1113 /**
1114  * pci_update_current_state - Read power state of given device and cache it
1115  * @dev: PCI device to handle.
1116  * @state: State to cache in case the device doesn't have the PM capability
1117  *
1118  * The power state is read from the PMCSR register, which however is
1119  * inaccessible in D3cold.  The platform firmware is therefore queried first
1120  * to detect accessibility of the register.  In case the platform firmware
1121  * reports an incorrect state or the device isn't power manageable by the
1122  * platform at all, we try to detect D3cold by testing accessibility of the
1123  * vendor ID in config space.
1124  */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)1125 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1126 {
1127 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1128 	    !pci_device_is_present(dev)) {
1129 		dev->current_state = PCI_D3cold;
1130 	} else if (dev->pm_cap) {
1131 		u16 pmcsr;
1132 
1133 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1134 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1135 	} else {
1136 		dev->current_state = state;
1137 	}
1138 }
1139 
1140 /**
1141  * pci_refresh_power_state - Refresh the given device's power state data
1142  * @dev: Target PCI device.
1143  *
1144  * Ask the platform to refresh the devices power state information and invoke
1145  * pci_update_current_state() to update its current PCI power state.
1146  */
pci_refresh_power_state(struct pci_dev * dev)1147 void pci_refresh_power_state(struct pci_dev *dev)
1148 {
1149 	if (platform_pci_power_manageable(dev))
1150 		platform_pci_refresh_power_state(dev);
1151 
1152 	pci_update_current_state(dev, dev->current_state);
1153 }
1154 
1155 /**
1156  * pci_platform_power_transition - Use platform to change device power state
1157  * @dev: PCI device to handle.
1158  * @state: State to put the device into.
1159  */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)1160 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1161 {
1162 	int error;
1163 
1164 	if (platform_pci_power_manageable(dev)) {
1165 		error = platform_pci_set_power_state(dev, state);
1166 		if (!error)
1167 			pci_update_current_state(dev, state);
1168 	} else
1169 		error = -ENODEV;
1170 
1171 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1172 		dev->current_state = PCI_D0;
1173 
1174 	return error;
1175 }
1176 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1177 
1178 /**
1179  * pci_wakeup - Wake up a PCI device
1180  * @pci_dev: Device to handle.
1181  * @ign: ignored parameter
1182  */
pci_wakeup(struct pci_dev * pci_dev,void * ign)1183 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1184 {
1185 	pci_wakeup_event(pci_dev);
1186 	pm_request_resume(&pci_dev->dev);
1187 	return 0;
1188 }
1189 
1190 /**
1191  * pci_wakeup_bus - Walk given bus and wake up devices on it
1192  * @bus: Top bus of the subtree to walk.
1193  */
pci_wakeup_bus(struct pci_bus * bus)1194 void pci_wakeup_bus(struct pci_bus *bus)
1195 {
1196 	if (bus)
1197 		pci_walk_bus(bus, pci_wakeup, NULL);
1198 }
1199 
pci_dev_wait(struct pci_dev * dev,char * reset_type,int timeout)1200 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1201 {
1202 	int delay = 1;
1203 	u32 id;
1204 
1205 	/*
1206 	 * After reset, the device should not silently discard config
1207 	 * requests, but it may still indicate that it needs more time by
1208 	 * responding to them with CRS completions.  The Root Port will
1209 	 * generally synthesize ~0 data to complete the read (except when
1210 	 * CRS SV is enabled and the read was for the Vendor ID; in that
1211 	 * case it synthesizes 0x0001 data).
1212 	 *
1213 	 * Wait for the device to return a non-CRS completion.  Read the
1214 	 * Command register instead of Vendor ID so we don't have to
1215 	 * contend with the CRS SV value.
1216 	 */
1217 	pci_read_config_dword(dev, PCI_COMMAND, &id);
1218 	while (id == ~0) {
1219 		if (delay > timeout) {
1220 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1221 				 delay - 1, reset_type);
1222 			return -ENOTTY;
1223 		}
1224 
1225 		if (delay > PCI_RESET_WAIT)
1226 			pci_info(dev, "not ready %dms after %s; waiting\n",
1227 				 delay - 1, reset_type);
1228 
1229 		msleep(delay);
1230 		delay *= 2;
1231 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1232 	}
1233 
1234 	if (delay > PCI_RESET_WAIT)
1235 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1236 			 reset_type);
1237 
1238 	return 0;
1239 }
1240 
1241 /**
1242  * pci_power_up - Put the given device into D0
1243  * @dev: PCI device to power up
1244  */
pci_power_up(struct pci_dev * dev)1245 int pci_power_up(struct pci_dev *dev)
1246 {
1247 	pci_platform_power_transition(dev, PCI_D0);
1248 
1249 	/*
1250 	 * Mandatory power management transition delays are handled in
1251 	 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1252 	 * corresponding bridge.
1253 	 */
1254 	if (dev->runtime_d3cold) {
1255 		/*
1256 		 * When powering on a bridge from D3cold, the whole hierarchy
1257 		 * may be powered on into D0uninitialized state, resume them to
1258 		 * give them a chance to suspend again
1259 		 */
1260 		pci_wakeup_bus(dev->subordinate);
1261 	}
1262 
1263 	return pci_raw_set_power_state(dev, PCI_D0);
1264 }
1265 
1266 /**
1267  * __pci_dev_set_current_state - Set current state of a PCI device
1268  * @dev: Device to handle
1269  * @data: pointer to state to be set
1270  */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)1271 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1272 {
1273 	pci_power_t state = *(pci_power_t *)data;
1274 
1275 	dev->current_state = state;
1276 	return 0;
1277 }
1278 
1279 /**
1280  * pci_bus_set_current_state - Walk given bus and set current state of devices
1281  * @bus: Top bus of the subtree to walk.
1282  * @state: state to be set
1283  */
pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)1284 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1285 {
1286 	if (bus)
1287 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1288 }
1289 
1290 /**
1291  * pci_set_power_state - Set the power state of a PCI device
1292  * @dev: PCI device to handle.
1293  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1294  *
1295  * Transition a device to a new power state, using the platform firmware and/or
1296  * the device's PCI PM registers.
1297  *
1298  * RETURN VALUE:
1299  * -EINVAL if the requested state is invalid.
1300  * -EIO if device does not support PCI PM or its PM capabilities register has a
1301  * wrong version, or device doesn't support the requested state.
1302  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1303  * 0 if device already is in the requested state.
1304  * 0 if the transition is to D3 but D3 is not supported.
1305  * 0 if device's power state has been successfully changed.
1306  */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)1307 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1308 {
1309 	int error;
1310 
1311 	/* Bound the state we're entering */
1312 	if (state > PCI_D3cold)
1313 		state = PCI_D3cold;
1314 	else if (state < PCI_D0)
1315 		state = PCI_D0;
1316 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1317 
1318 		/*
1319 		 * If the device or the parent bridge do not support PCI
1320 		 * PM, ignore the request if we're doing anything other
1321 		 * than putting it into D0 (which would only happen on
1322 		 * boot).
1323 		 */
1324 		return 0;
1325 
1326 	/* Check if we're already there */
1327 	if (dev->current_state == state)
1328 		return 0;
1329 
1330 	if (state == PCI_D0)
1331 		return pci_power_up(dev);
1332 
1333 	/*
1334 	 * This device is quirked not to be put into D3, so don't put it in
1335 	 * D3
1336 	 */
1337 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1338 		return 0;
1339 
1340 	/*
1341 	 * To put device in D3cold, we put device into D3hot in native
1342 	 * way, then put device into D3cold with platform ops
1343 	 */
1344 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1345 					PCI_D3hot : state);
1346 
1347 	if (pci_platform_power_transition(dev, state))
1348 		return error;
1349 
1350 	/* Powering off a bridge may power off the whole hierarchy */
1351 	if (state == PCI_D3cold)
1352 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1353 
1354 	return 0;
1355 }
1356 EXPORT_SYMBOL(pci_set_power_state);
1357 
1358 /**
1359  * pci_choose_state - Choose the power state of a PCI device
1360  * @dev: PCI device to be suspended
1361  * @state: target sleep state for the whole system. This is the value
1362  *	   that is passed to suspend() function.
1363  *
1364  * Returns PCI power state suitable for given device and given system
1365  * message.
1366  */
pci_choose_state(struct pci_dev * dev,pm_message_t state)1367 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1368 {
1369 	pci_power_t ret;
1370 
1371 	if (!dev->pm_cap)
1372 		return PCI_D0;
1373 
1374 	ret = platform_pci_choose_state(dev);
1375 	if (ret != PCI_POWER_ERROR)
1376 		return ret;
1377 
1378 	switch (state.event) {
1379 	case PM_EVENT_ON:
1380 		return PCI_D0;
1381 	case PM_EVENT_FREEZE:
1382 	case PM_EVENT_PRETHAW:
1383 		/* REVISIT both freeze and pre-thaw "should" use D0 */
1384 	case PM_EVENT_SUSPEND:
1385 	case PM_EVENT_HIBERNATE:
1386 		return PCI_D3hot;
1387 	default:
1388 		pci_info(dev, "unrecognized suspend event %d\n",
1389 			 state.event);
1390 		BUG();
1391 	}
1392 	return PCI_D0;
1393 }
1394 EXPORT_SYMBOL(pci_choose_state);
1395 
1396 #define PCI_EXP_SAVE_REGS	7
1397 
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)1398 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1399 						       u16 cap, bool extended)
1400 {
1401 	struct pci_cap_saved_state *tmp;
1402 
1403 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1404 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1405 			return tmp;
1406 	}
1407 	return NULL;
1408 }
1409 
pci_find_saved_cap(struct pci_dev * dev,char cap)1410 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1411 {
1412 	return _pci_find_saved_cap(dev, cap, false);
1413 }
1414 
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)1415 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1416 {
1417 	return _pci_find_saved_cap(dev, cap, true);
1418 }
1419 
pci_save_pcie_state(struct pci_dev * dev)1420 static int pci_save_pcie_state(struct pci_dev *dev)
1421 {
1422 	int i = 0;
1423 	struct pci_cap_saved_state *save_state;
1424 	u16 *cap;
1425 
1426 	if (!pci_is_pcie(dev))
1427 		return 0;
1428 
1429 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1430 	if (!save_state) {
1431 		pci_err(dev, "buffer not found in %s\n", __func__);
1432 		return -ENOMEM;
1433 	}
1434 
1435 	cap = (u16 *)&save_state->cap.data[0];
1436 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1437 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1438 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1439 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1440 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1441 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1442 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1443 
1444 	return 0;
1445 }
1446 
pci_restore_pcie_state(struct pci_dev * dev)1447 static void pci_restore_pcie_state(struct pci_dev *dev)
1448 {
1449 	int i = 0;
1450 	struct pci_cap_saved_state *save_state;
1451 	u16 *cap;
1452 
1453 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1454 	if (!save_state)
1455 		return;
1456 
1457 	cap = (u16 *)&save_state->cap.data[0];
1458 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1459 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1460 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1461 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1462 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1463 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1464 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1465 }
1466 
pci_save_pcix_state(struct pci_dev * dev)1467 static int pci_save_pcix_state(struct pci_dev *dev)
1468 {
1469 	int pos;
1470 	struct pci_cap_saved_state *save_state;
1471 
1472 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1473 	if (!pos)
1474 		return 0;
1475 
1476 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1477 	if (!save_state) {
1478 		pci_err(dev, "buffer not found in %s\n", __func__);
1479 		return -ENOMEM;
1480 	}
1481 
1482 	pci_read_config_word(dev, pos + PCI_X_CMD,
1483 			     (u16 *)save_state->cap.data);
1484 
1485 	return 0;
1486 }
1487 
pci_restore_pcix_state(struct pci_dev * dev)1488 static void pci_restore_pcix_state(struct pci_dev *dev)
1489 {
1490 	int i = 0, pos;
1491 	struct pci_cap_saved_state *save_state;
1492 	u16 *cap;
1493 
1494 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1495 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1496 	if (!save_state || !pos)
1497 		return;
1498 	cap = (u16 *)&save_state->cap.data[0];
1499 
1500 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1501 }
1502 
pci_save_ltr_state(struct pci_dev * dev)1503 static void pci_save_ltr_state(struct pci_dev *dev)
1504 {
1505 	int ltr;
1506 	struct pci_cap_saved_state *save_state;
1507 	u16 *cap;
1508 
1509 	if (!pci_is_pcie(dev))
1510 		return;
1511 
1512 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1513 	if (!ltr)
1514 		return;
1515 
1516 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1517 	if (!save_state) {
1518 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1519 		return;
1520 	}
1521 
1522 	cap = (u16 *)&save_state->cap.data[0];
1523 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1524 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1525 }
1526 
pci_restore_ltr_state(struct pci_dev * dev)1527 static void pci_restore_ltr_state(struct pci_dev *dev)
1528 {
1529 	struct pci_cap_saved_state *save_state;
1530 	int ltr;
1531 	u16 *cap;
1532 
1533 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1534 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1535 	if (!save_state || !ltr)
1536 		return;
1537 
1538 	cap = (u16 *)&save_state->cap.data[0];
1539 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1540 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1541 }
1542 
1543 /**
1544  * pci_save_state - save the PCI configuration space of a device before
1545  *		    suspending
1546  * @dev: PCI device that we're dealing with
1547  */
pci_save_state(struct pci_dev * dev)1548 int pci_save_state(struct pci_dev *dev)
1549 {
1550 	int i;
1551 	/* XXX: 100% dword access ok here? */
1552 	for (i = 0; i < 16; i++) {
1553 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1554 		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1555 			i * 4, dev->saved_config_space[i]);
1556 	}
1557 	dev->state_saved = true;
1558 
1559 	i = pci_save_pcie_state(dev);
1560 	if (i != 0)
1561 		return i;
1562 
1563 	i = pci_save_pcix_state(dev);
1564 	if (i != 0)
1565 		return i;
1566 
1567 	pci_save_ltr_state(dev);
1568 	pci_save_dpc_state(dev);
1569 	pci_save_aer_state(dev);
1570 	return pci_save_vc_state(dev);
1571 }
1572 EXPORT_SYMBOL(pci_save_state);
1573 
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry,bool force)1574 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1575 				     u32 saved_val, int retry, bool force)
1576 {
1577 	u32 val;
1578 
1579 	pci_read_config_dword(pdev, offset, &val);
1580 	if (!force && val == saved_val)
1581 		return;
1582 
1583 	for (;;) {
1584 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1585 			offset, val, saved_val);
1586 		pci_write_config_dword(pdev, offset, saved_val);
1587 		if (retry-- <= 0)
1588 			return;
1589 
1590 		pci_read_config_dword(pdev, offset, &val);
1591 		if (val == saved_val)
1592 			return;
1593 
1594 		mdelay(1);
1595 	}
1596 }
1597 
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry,bool force)1598 static void pci_restore_config_space_range(struct pci_dev *pdev,
1599 					   int start, int end, int retry,
1600 					   bool force)
1601 {
1602 	int index;
1603 
1604 	for (index = end; index >= start; index--)
1605 		pci_restore_config_dword(pdev, 4 * index,
1606 					 pdev->saved_config_space[index],
1607 					 retry, force);
1608 }
1609 
pci_restore_config_space(struct pci_dev * pdev)1610 static void pci_restore_config_space(struct pci_dev *pdev)
1611 {
1612 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1613 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1614 		/* Restore BARs before the command register. */
1615 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1616 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1617 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1618 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1619 
1620 		/*
1621 		 * Force rewriting of prefetch registers to avoid S3 resume
1622 		 * issues on Intel PCI bridges that occur when these
1623 		 * registers are not explicitly written.
1624 		 */
1625 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1626 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1627 	} else {
1628 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1629 	}
1630 }
1631 
pci_restore_rebar_state(struct pci_dev * pdev)1632 static void pci_restore_rebar_state(struct pci_dev *pdev)
1633 {
1634 	unsigned int pos, nbars, i;
1635 	u32 ctrl;
1636 
1637 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1638 	if (!pos)
1639 		return;
1640 
1641 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1642 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1643 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1644 
1645 	for (i = 0; i < nbars; i++, pos += 8) {
1646 		struct resource *res;
1647 		int bar_idx, size;
1648 
1649 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1650 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1651 		res = pdev->resource + bar_idx;
1652 		size = ilog2(resource_size(res)) - 20;
1653 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1654 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1655 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1656 	}
1657 }
1658 
1659 /**
1660  * pci_restore_state - Restore the saved state of a PCI device
1661  * @dev: PCI device that we're dealing with
1662  */
pci_restore_state(struct pci_dev * dev)1663 void pci_restore_state(struct pci_dev *dev)
1664 {
1665 	if (!dev->state_saved)
1666 		return;
1667 
1668 	/*
1669 	 * Restore max latencies (in the LTR capability) before enabling
1670 	 * LTR itself (in the PCIe capability).
1671 	 */
1672 	pci_restore_ltr_state(dev);
1673 
1674 	pci_restore_pcie_state(dev);
1675 	pci_restore_pasid_state(dev);
1676 	pci_restore_pri_state(dev);
1677 	pci_restore_ats_state(dev);
1678 	pci_restore_vc_state(dev);
1679 	pci_restore_rebar_state(dev);
1680 	pci_restore_dpc_state(dev);
1681 
1682 	pci_aer_clear_status(dev);
1683 	pci_restore_aer_state(dev);
1684 
1685 	pci_restore_config_space(dev);
1686 
1687 	pci_restore_pcix_state(dev);
1688 	pci_restore_msi_state(dev);
1689 
1690 	/* Restore ACS and IOV configuration state */
1691 	pci_enable_acs(dev);
1692 	pci_restore_iov_state(dev);
1693 
1694 	dev->state_saved = false;
1695 }
1696 EXPORT_SYMBOL(pci_restore_state);
1697 
1698 struct pci_saved_state {
1699 	u32 config_space[16];
1700 	struct pci_cap_saved_data cap[];
1701 };
1702 
1703 /**
1704  * pci_store_saved_state - Allocate and return an opaque struct containing
1705  *			   the device saved state.
1706  * @dev: PCI device that we're dealing with
1707  *
1708  * Return NULL if no state or error.
1709  */
pci_store_saved_state(struct pci_dev * dev)1710 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1711 {
1712 	struct pci_saved_state *state;
1713 	struct pci_cap_saved_state *tmp;
1714 	struct pci_cap_saved_data *cap;
1715 	size_t size;
1716 
1717 	if (!dev->state_saved)
1718 		return NULL;
1719 
1720 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1721 
1722 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1723 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1724 
1725 	state = kzalloc(size, GFP_KERNEL);
1726 	if (!state)
1727 		return NULL;
1728 
1729 	memcpy(state->config_space, dev->saved_config_space,
1730 	       sizeof(state->config_space));
1731 
1732 	cap = state->cap;
1733 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1734 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1735 		memcpy(cap, &tmp->cap, len);
1736 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1737 	}
1738 	/* Empty cap_save terminates list */
1739 
1740 	return state;
1741 }
1742 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1743 
1744 /**
1745  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1746  * @dev: PCI device that we're dealing with
1747  * @state: Saved state returned from pci_store_saved_state()
1748  */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)1749 int pci_load_saved_state(struct pci_dev *dev,
1750 			 struct pci_saved_state *state)
1751 {
1752 	struct pci_cap_saved_data *cap;
1753 
1754 	dev->state_saved = false;
1755 
1756 	if (!state)
1757 		return 0;
1758 
1759 	memcpy(dev->saved_config_space, state->config_space,
1760 	       sizeof(state->config_space));
1761 
1762 	cap = state->cap;
1763 	while (cap->size) {
1764 		struct pci_cap_saved_state *tmp;
1765 
1766 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1767 		if (!tmp || tmp->cap.size != cap->size)
1768 			return -EINVAL;
1769 
1770 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1771 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1772 		       sizeof(struct pci_cap_saved_data) + cap->size);
1773 	}
1774 
1775 	dev->state_saved = true;
1776 	return 0;
1777 }
1778 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1779 
1780 /**
1781  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1782  *				   and free the memory allocated for it.
1783  * @dev: PCI device that we're dealing with
1784  * @state: Pointer to saved state returned from pci_store_saved_state()
1785  */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)1786 int pci_load_and_free_saved_state(struct pci_dev *dev,
1787 				  struct pci_saved_state **state)
1788 {
1789 	int ret = pci_load_saved_state(dev, *state);
1790 	kfree(*state);
1791 	*state = NULL;
1792 	return ret;
1793 }
1794 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1795 
pcibios_enable_device(struct pci_dev * dev,int bars)1796 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1797 {
1798 	return pci_enable_resources(dev, bars);
1799 }
1800 
do_pci_enable_device(struct pci_dev * dev,int bars)1801 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1802 {
1803 	int err;
1804 	struct pci_dev *bridge;
1805 	u16 cmd;
1806 	u8 pin;
1807 
1808 	err = pci_set_power_state(dev, PCI_D0);
1809 	if (err < 0 && err != -EIO)
1810 		return err;
1811 
1812 	bridge = pci_upstream_bridge(dev);
1813 	if (bridge)
1814 		pcie_aspm_powersave_config_link(bridge);
1815 
1816 	err = pcibios_enable_device(dev, bars);
1817 	if (err < 0)
1818 		return err;
1819 	pci_fixup_device(pci_fixup_enable, dev);
1820 
1821 	if (dev->msi_enabled || dev->msix_enabled)
1822 		return 0;
1823 
1824 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1825 	if (pin) {
1826 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1827 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1828 			pci_write_config_word(dev, PCI_COMMAND,
1829 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1830 	}
1831 
1832 	return 0;
1833 }
1834 
1835 /**
1836  * pci_reenable_device - Resume abandoned device
1837  * @dev: PCI device to be resumed
1838  *
1839  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1840  * to be called by normal code, write proper resume handler and use it instead.
1841  */
pci_reenable_device(struct pci_dev * dev)1842 int pci_reenable_device(struct pci_dev *dev)
1843 {
1844 	if (pci_is_enabled(dev))
1845 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1846 	return 0;
1847 }
1848 EXPORT_SYMBOL(pci_reenable_device);
1849 
pci_enable_bridge(struct pci_dev * dev)1850 static void pci_enable_bridge(struct pci_dev *dev)
1851 {
1852 	struct pci_dev *bridge;
1853 	int retval;
1854 
1855 	bridge = pci_upstream_bridge(dev);
1856 	if (bridge)
1857 		pci_enable_bridge(bridge);
1858 
1859 	if (pci_is_enabled(dev)) {
1860 		if (!dev->is_busmaster)
1861 			pci_set_master(dev);
1862 		return;
1863 	}
1864 
1865 	retval = pci_enable_device(dev);
1866 	if (retval)
1867 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1868 			retval);
1869 	pci_set_master(dev);
1870 }
1871 
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)1872 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1873 {
1874 	struct pci_dev *bridge;
1875 	int err;
1876 	int i, bars = 0;
1877 
1878 	/*
1879 	 * Power state could be unknown at this point, either due to a fresh
1880 	 * boot or a device removal call.  So get the current power state
1881 	 * so that things like MSI message writing will behave as expected
1882 	 * (e.g. if the device really is in D0 at enable time).
1883 	 */
1884 	pci_update_current_state(dev, dev->current_state);
1885 
1886 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1887 		return 0;		/* already enabled */
1888 
1889 	bridge = pci_upstream_bridge(dev);
1890 	if (bridge)
1891 		pci_enable_bridge(bridge);
1892 
1893 	/* only skip sriov related */
1894 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1895 		if (dev->resource[i].flags & flags)
1896 			bars |= (1 << i);
1897 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1898 		if (dev->resource[i].flags & flags)
1899 			bars |= (1 << i);
1900 
1901 	err = do_pci_enable_device(dev, bars);
1902 	if (err < 0)
1903 		atomic_dec(&dev->enable_cnt);
1904 	return err;
1905 }
1906 
1907 /**
1908  * pci_enable_device_io - Initialize a device for use with IO space
1909  * @dev: PCI device to be initialized
1910  *
1911  * Initialize device before it's used by a driver. Ask low-level code
1912  * to enable I/O resources. Wake up the device if it was suspended.
1913  * Beware, this function can fail.
1914  */
pci_enable_device_io(struct pci_dev * dev)1915 int pci_enable_device_io(struct pci_dev *dev)
1916 {
1917 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1918 }
1919 EXPORT_SYMBOL(pci_enable_device_io);
1920 
1921 /**
1922  * pci_enable_device_mem - Initialize a device for use with Memory space
1923  * @dev: PCI device to be initialized
1924  *
1925  * Initialize device before it's used by a driver. Ask low-level code
1926  * to enable Memory resources. Wake up the device if it was suspended.
1927  * Beware, this function can fail.
1928  */
pci_enable_device_mem(struct pci_dev * dev)1929 int pci_enable_device_mem(struct pci_dev *dev)
1930 {
1931 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1932 }
1933 EXPORT_SYMBOL(pci_enable_device_mem);
1934 
1935 /**
1936  * pci_enable_device - Initialize device before it's used by a driver.
1937  * @dev: PCI device to be initialized
1938  *
1939  * Initialize device before it's used by a driver. Ask low-level code
1940  * to enable I/O and memory. Wake up the device if it was suspended.
1941  * Beware, this function can fail.
1942  *
1943  * Note we don't actually enable the device many times if we call
1944  * this function repeatedly (we just increment the count).
1945  */
pci_enable_device(struct pci_dev * dev)1946 int pci_enable_device(struct pci_dev *dev)
1947 {
1948 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1949 }
1950 EXPORT_SYMBOL(pci_enable_device);
1951 
1952 /*
1953  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1954  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1955  * there's no need to track it separately.  pci_devres is initialized
1956  * when a device is enabled using managed PCI device enable interface.
1957  */
1958 struct pci_devres {
1959 	unsigned int enabled:1;
1960 	unsigned int pinned:1;
1961 	unsigned int orig_intx:1;
1962 	unsigned int restore_intx:1;
1963 	unsigned int mwi:1;
1964 	u32 region_mask;
1965 };
1966 
pcim_release(struct device * gendev,void * res)1967 static void pcim_release(struct device *gendev, void *res)
1968 {
1969 	struct pci_dev *dev = to_pci_dev(gendev);
1970 	struct pci_devres *this = res;
1971 	int i;
1972 
1973 	if (dev->msi_enabled)
1974 		pci_disable_msi(dev);
1975 	if (dev->msix_enabled)
1976 		pci_disable_msix(dev);
1977 
1978 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1979 		if (this->region_mask & (1 << i))
1980 			pci_release_region(dev, i);
1981 
1982 	if (this->mwi)
1983 		pci_clear_mwi(dev);
1984 
1985 	if (this->restore_intx)
1986 		pci_intx(dev, this->orig_intx);
1987 
1988 	if (this->enabled && !this->pinned)
1989 		pci_disable_device(dev);
1990 }
1991 
get_pci_dr(struct pci_dev * pdev)1992 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1993 {
1994 	struct pci_devres *dr, *new_dr;
1995 
1996 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1997 	if (dr)
1998 		return dr;
1999 
2000 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2001 	if (!new_dr)
2002 		return NULL;
2003 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2004 }
2005 
find_pci_dr(struct pci_dev * pdev)2006 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2007 {
2008 	if (pci_is_managed(pdev))
2009 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2010 	return NULL;
2011 }
2012 
2013 /**
2014  * pcim_enable_device - Managed pci_enable_device()
2015  * @pdev: PCI device to be initialized
2016  *
2017  * Managed pci_enable_device().
2018  */
pcim_enable_device(struct pci_dev * pdev)2019 int pcim_enable_device(struct pci_dev *pdev)
2020 {
2021 	struct pci_devres *dr;
2022 	int rc;
2023 
2024 	dr = get_pci_dr(pdev);
2025 	if (unlikely(!dr))
2026 		return -ENOMEM;
2027 	if (dr->enabled)
2028 		return 0;
2029 
2030 	rc = pci_enable_device(pdev);
2031 	if (!rc) {
2032 		pdev->is_managed = 1;
2033 		dr->enabled = 1;
2034 	}
2035 	return rc;
2036 }
2037 EXPORT_SYMBOL(pcim_enable_device);
2038 
2039 /**
2040  * pcim_pin_device - Pin managed PCI device
2041  * @pdev: PCI device to pin
2042  *
2043  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2044  * driver detach.  @pdev must have been enabled with
2045  * pcim_enable_device().
2046  */
pcim_pin_device(struct pci_dev * pdev)2047 void pcim_pin_device(struct pci_dev *pdev)
2048 {
2049 	struct pci_devres *dr;
2050 
2051 	dr = find_pci_dr(pdev);
2052 	WARN_ON(!dr || !dr->enabled);
2053 	if (dr)
2054 		dr->pinned = 1;
2055 }
2056 EXPORT_SYMBOL(pcim_pin_device);
2057 
2058 /*
2059  * pcibios_add_device - provide arch specific hooks when adding device dev
2060  * @dev: the PCI device being added
2061  *
2062  * Permits the platform to provide architecture specific functionality when
2063  * devices are added. This is the default implementation. Architecture
2064  * implementations can override this.
2065  */
pcibios_add_device(struct pci_dev * dev)2066 int __weak pcibios_add_device(struct pci_dev *dev)
2067 {
2068 	return 0;
2069 }
2070 
2071 /**
2072  * pcibios_release_device - provide arch specific hooks when releasing
2073  *			    device dev
2074  * @dev: the PCI device being released
2075  *
2076  * Permits the platform to provide architecture specific functionality when
2077  * devices are released. This is the default implementation. Architecture
2078  * implementations can override this.
2079  */
pcibios_release_device(struct pci_dev * dev)2080 void __weak pcibios_release_device(struct pci_dev *dev) {}
2081 
2082 /**
2083  * pcibios_disable_device - disable arch specific PCI resources for device dev
2084  * @dev: the PCI device to disable
2085  *
2086  * Disables architecture specific PCI resources for the device. This
2087  * is the default implementation. Architecture implementations can
2088  * override this.
2089  */
pcibios_disable_device(struct pci_dev * dev)2090 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2091 
2092 /**
2093  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2094  * @irq: ISA IRQ to penalize
2095  * @active: IRQ active or not
2096  *
2097  * Permits the platform to provide architecture-specific functionality when
2098  * penalizing ISA IRQs. This is the default implementation. Architecture
2099  * implementations can override this.
2100  */
pcibios_penalize_isa_irq(int irq,int active)2101 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2102 
do_pci_disable_device(struct pci_dev * dev)2103 static void do_pci_disable_device(struct pci_dev *dev)
2104 {
2105 	u16 pci_command;
2106 
2107 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2108 	if (pci_command & PCI_COMMAND_MASTER) {
2109 		pci_command &= ~PCI_COMMAND_MASTER;
2110 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2111 	}
2112 
2113 	pcibios_disable_device(dev);
2114 }
2115 
2116 /**
2117  * pci_disable_enabled_device - Disable device without updating enable_cnt
2118  * @dev: PCI device to disable
2119  *
2120  * NOTE: This function is a backend of PCI power management routines and is
2121  * not supposed to be called drivers.
2122  */
pci_disable_enabled_device(struct pci_dev * dev)2123 void pci_disable_enabled_device(struct pci_dev *dev)
2124 {
2125 	if (pci_is_enabled(dev))
2126 		do_pci_disable_device(dev);
2127 }
2128 
2129 /**
2130  * pci_disable_device - Disable PCI device after use
2131  * @dev: PCI device to be disabled
2132  *
2133  * Signal to the system that the PCI device is not in use by the system
2134  * anymore.  This only involves disabling PCI bus-mastering, if active.
2135  *
2136  * Note we don't actually disable the device until all callers of
2137  * pci_enable_device() have called pci_disable_device().
2138  */
pci_disable_device(struct pci_dev * dev)2139 void pci_disable_device(struct pci_dev *dev)
2140 {
2141 	struct pci_devres *dr;
2142 
2143 	dr = find_pci_dr(dev);
2144 	if (dr)
2145 		dr->enabled = 0;
2146 
2147 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2148 		      "disabling already-disabled device");
2149 
2150 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2151 		return;
2152 
2153 	do_pci_disable_device(dev);
2154 
2155 	dev->is_busmaster = 0;
2156 }
2157 EXPORT_SYMBOL(pci_disable_device);
2158 
2159 /**
2160  * pcibios_set_pcie_reset_state - set reset state for device dev
2161  * @dev: the PCIe device reset
2162  * @state: Reset state to enter into
2163  *
2164  * Set the PCIe reset state for the device. This is the default
2165  * implementation. Architecture implementations can override this.
2166  */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2167 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2168 					enum pcie_reset_state state)
2169 {
2170 	return -EINVAL;
2171 }
2172 
2173 /**
2174  * pci_set_pcie_reset_state - set reset state for device dev
2175  * @dev: the PCIe device reset
2176  * @state: Reset state to enter into
2177  *
2178  * Sets the PCI reset state for the device.
2179  */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2180 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2181 {
2182 	return pcibios_set_pcie_reset_state(dev, state);
2183 }
2184 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2185 
pcie_clear_device_status(struct pci_dev * dev)2186 void pcie_clear_device_status(struct pci_dev *dev)
2187 {
2188 	u16 sta;
2189 
2190 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2191 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2192 }
2193 
2194 /**
2195  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2196  * @dev: PCIe root port or event collector.
2197  */
pcie_clear_root_pme_status(struct pci_dev * dev)2198 void pcie_clear_root_pme_status(struct pci_dev *dev)
2199 {
2200 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2201 }
2202 
2203 /**
2204  * pci_check_pme_status - Check if given device has generated PME.
2205  * @dev: Device to check.
2206  *
2207  * Check the PME status of the device and if set, clear it and clear PME enable
2208  * (if set).  Return 'true' if PME status and PME enable were both set or
2209  * 'false' otherwise.
2210  */
pci_check_pme_status(struct pci_dev * dev)2211 bool pci_check_pme_status(struct pci_dev *dev)
2212 {
2213 	int pmcsr_pos;
2214 	u16 pmcsr;
2215 	bool ret = false;
2216 
2217 	if (!dev->pm_cap)
2218 		return false;
2219 
2220 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2221 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2222 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2223 		return false;
2224 
2225 	/* Clear PME status. */
2226 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2227 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2228 		/* Disable PME to avoid interrupt flood. */
2229 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2230 		ret = true;
2231 	}
2232 
2233 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2234 
2235 	return ret;
2236 }
2237 
2238 /**
2239  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2240  * @dev: Device to handle.
2241  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2242  *
2243  * Check if @dev has generated PME and queue a resume request for it in that
2244  * case.
2245  */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)2246 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2247 {
2248 	if (pme_poll_reset && dev->pme_poll)
2249 		dev->pme_poll = false;
2250 
2251 	if (pci_check_pme_status(dev)) {
2252 		pci_wakeup_event(dev);
2253 		pm_request_resume(&dev->dev);
2254 	}
2255 	return 0;
2256 }
2257 
2258 /**
2259  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2260  * @bus: Top bus of the subtree to walk.
2261  */
pci_pme_wakeup_bus(struct pci_bus * bus)2262 void pci_pme_wakeup_bus(struct pci_bus *bus)
2263 {
2264 	if (bus)
2265 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2266 }
2267 
2268 
2269 /**
2270  * pci_pme_capable - check the capability of PCI device to generate PME#
2271  * @dev: PCI device to handle.
2272  * @state: PCI state from which device will issue PME#.
2273  */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)2274 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2275 {
2276 	if (!dev->pm_cap)
2277 		return false;
2278 
2279 	return !!(dev->pme_support & (1 << state));
2280 }
2281 EXPORT_SYMBOL(pci_pme_capable);
2282 
pci_pme_list_scan(struct work_struct * work)2283 static void pci_pme_list_scan(struct work_struct *work)
2284 {
2285 	struct pci_pme_device *pme_dev, *n;
2286 
2287 	mutex_lock(&pci_pme_list_mutex);
2288 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2289 		if (pme_dev->dev->pme_poll) {
2290 			struct pci_dev *bridge;
2291 
2292 			bridge = pme_dev->dev->bus->self;
2293 			/*
2294 			 * If bridge is in low power state, the
2295 			 * configuration space of subordinate devices
2296 			 * may be not accessible
2297 			 */
2298 			if (bridge && bridge->current_state != PCI_D0)
2299 				continue;
2300 			/*
2301 			 * If the device is in D3cold it should not be
2302 			 * polled either.
2303 			 */
2304 			if (pme_dev->dev->current_state == PCI_D3cold)
2305 				continue;
2306 
2307 			pci_pme_wakeup(pme_dev->dev, NULL);
2308 		} else {
2309 			list_del(&pme_dev->list);
2310 			kfree(pme_dev);
2311 		}
2312 	}
2313 	if (!list_empty(&pci_pme_list))
2314 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2315 				   msecs_to_jiffies(PME_TIMEOUT));
2316 	mutex_unlock(&pci_pme_list_mutex);
2317 }
2318 
__pci_pme_active(struct pci_dev * dev,bool enable)2319 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2320 {
2321 	u16 pmcsr;
2322 
2323 	if (!dev->pme_support)
2324 		return;
2325 
2326 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2327 	/* Clear PME_Status by writing 1 to it and enable PME# */
2328 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2329 	if (!enable)
2330 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2331 
2332 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2333 }
2334 
2335 /**
2336  * pci_pme_restore - Restore PME configuration after config space restore.
2337  * @dev: PCI device to update.
2338  */
pci_pme_restore(struct pci_dev * dev)2339 void pci_pme_restore(struct pci_dev *dev)
2340 {
2341 	u16 pmcsr;
2342 
2343 	if (!dev->pme_support)
2344 		return;
2345 
2346 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2347 	if (dev->wakeup_prepared) {
2348 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2349 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2350 	} else {
2351 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2352 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2353 	}
2354 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2355 }
2356 
2357 /**
2358  * pci_pme_active - enable or disable PCI device's PME# function
2359  * @dev: PCI device to handle.
2360  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2361  *
2362  * The caller must verify that the device is capable of generating PME# before
2363  * calling this function with @enable equal to 'true'.
2364  */
pci_pme_active(struct pci_dev * dev,bool enable)2365 void pci_pme_active(struct pci_dev *dev, bool enable)
2366 {
2367 	__pci_pme_active(dev, enable);
2368 
2369 	/*
2370 	 * PCI (as opposed to PCIe) PME requires that the device have
2371 	 * its PME# line hooked up correctly. Not all hardware vendors
2372 	 * do this, so the PME never gets delivered and the device
2373 	 * remains asleep. The easiest way around this is to
2374 	 * periodically walk the list of suspended devices and check
2375 	 * whether any have their PME flag set. The assumption is that
2376 	 * we'll wake up often enough anyway that this won't be a huge
2377 	 * hit, and the power savings from the devices will still be a
2378 	 * win.
2379 	 *
2380 	 * Although PCIe uses in-band PME message instead of PME# line
2381 	 * to report PME, PME does not work for some PCIe devices in
2382 	 * reality.  For example, there are devices that set their PME
2383 	 * status bits, but don't really bother to send a PME message;
2384 	 * there are PCI Express Root Ports that don't bother to
2385 	 * trigger interrupts when they receive PME messages from the
2386 	 * devices below.  So PME poll is used for PCIe devices too.
2387 	 */
2388 
2389 	if (dev->pme_poll) {
2390 		struct pci_pme_device *pme_dev;
2391 		if (enable) {
2392 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2393 					  GFP_KERNEL);
2394 			if (!pme_dev) {
2395 				pci_warn(dev, "can't enable PME#\n");
2396 				return;
2397 			}
2398 			pme_dev->dev = dev;
2399 			mutex_lock(&pci_pme_list_mutex);
2400 			list_add(&pme_dev->list, &pci_pme_list);
2401 			if (list_is_singular(&pci_pme_list))
2402 				queue_delayed_work(system_freezable_wq,
2403 						   &pci_pme_work,
2404 						   msecs_to_jiffies(PME_TIMEOUT));
2405 			mutex_unlock(&pci_pme_list_mutex);
2406 		} else {
2407 			mutex_lock(&pci_pme_list_mutex);
2408 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2409 				if (pme_dev->dev == dev) {
2410 					list_del(&pme_dev->list);
2411 					kfree(pme_dev);
2412 					break;
2413 				}
2414 			}
2415 			mutex_unlock(&pci_pme_list_mutex);
2416 		}
2417 	}
2418 
2419 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2420 }
2421 EXPORT_SYMBOL(pci_pme_active);
2422 
2423 /**
2424  * __pci_enable_wake - enable PCI device as wakeup event source
2425  * @dev: PCI device affected
2426  * @state: PCI state from which device will issue wakeup events
2427  * @enable: True to enable event generation; false to disable
2428  *
2429  * This enables the device as a wakeup event source, or disables it.
2430  * When such events involves platform-specific hooks, those hooks are
2431  * called automatically by this routine.
2432  *
2433  * Devices with legacy power management (no standard PCI PM capabilities)
2434  * always require such platform hooks.
2435  *
2436  * RETURN VALUE:
2437  * 0 is returned on success
2438  * -EINVAL is returned if device is not supposed to wake up the system
2439  * Error code depending on the platform is returned if both the platform and
2440  * the native mechanism fail to enable the generation of wake-up events
2441  */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool enable)2442 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2443 {
2444 	int ret = 0;
2445 
2446 	/*
2447 	 * Bridges that are not power-manageable directly only signal
2448 	 * wakeup on behalf of subordinate devices which is set up
2449 	 * elsewhere, so skip them. However, bridges that are
2450 	 * power-manageable may signal wakeup for themselves (for example,
2451 	 * on a hotplug event) and they need to be covered here.
2452 	 */
2453 	if (!pci_power_manageable(dev))
2454 		return 0;
2455 
2456 	/* Don't do the same thing twice in a row for one device. */
2457 	if (!!enable == !!dev->wakeup_prepared)
2458 		return 0;
2459 
2460 	/*
2461 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2462 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2463 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2464 	 */
2465 
2466 	if (enable) {
2467 		int error;
2468 
2469 		/*
2470 		 * Enable PME signaling if the device can signal PME from
2471 		 * D3cold regardless of whether or not it can signal PME from
2472 		 * the current target state, because that will allow it to
2473 		 * signal PME when the hierarchy above it goes into D3cold and
2474 		 * the device itself ends up in D3cold as a result of that.
2475 		 */
2476 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2477 			pci_pme_active(dev, true);
2478 		else
2479 			ret = 1;
2480 		error = platform_pci_set_wakeup(dev, true);
2481 		if (ret)
2482 			ret = error;
2483 		if (!ret)
2484 			dev->wakeup_prepared = true;
2485 	} else {
2486 		platform_pci_set_wakeup(dev, false);
2487 		pci_pme_active(dev, false);
2488 		dev->wakeup_prepared = false;
2489 	}
2490 
2491 	return ret;
2492 }
2493 
2494 /**
2495  * pci_enable_wake - change wakeup settings for a PCI device
2496  * @pci_dev: Target device
2497  * @state: PCI state from which device will issue wakeup events
2498  * @enable: Whether or not to enable event generation
2499  *
2500  * If @enable is set, check device_may_wakeup() for the device before calling
2501  * __pci_enable_wake() for it.
2502  */
pci_enable_wake(struct pci_dev * pci_dev,pci_power_t state,bool enable)2503 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2504 {
2505 	if (enable && !device_may_wakeup(&pci_dev->dev))
2506 		return -EINVAL;
2507 
2508 	return __pci_enable_wake(pci_dev, state, enable);
2509 }
2510 EXPORT_SYMBOL(pci_enable_wake);
2511 
2512 /**
2513  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2514  * @dev: PCI device to prepare
2515  * @enable: True to enable wake-up event generation; false to disable
2516  *
2517  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2518  * and this function allows them to set that up cleanly - pci_enable_wake()
2519  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2520  * ordering constraints.
2521  *
2522  * This function only returns error code if the device is not allowed to wake
2523  * up the system from sleep or it is not capable of generating PME# from both
2524  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2525  */
pci_wake_from_d3(struct pci_dev * dev,bool enable)2526 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2527 {
2528 	return pci_pme_capable(dev, PCI_D3cold) ?
2529 			pci_enable_wake(dev, PCI_D3cold, enable) :
2530 			pci_enable_wake(dev, PCI_D3hot, enable);
2531 }
2532 EXPORT_SYMBOL(pci_wake_from_d3);
2533 
2534 /**
2535  * pci_target_state - find an appropriate low power state for a given PCI dev
2536  * @dev: PCI device
2537  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2538  *
2539  * Use underlying platform code to find a supported low power state for @dev.
2540  * If the platform can't manage @dev, return the deepest state from which it
2541  * can generate wake events, based on any available PME info.
2542  */
pci_target_state(struct pci_dev * dev,bool wakeup)2543 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2544 {
2545 	pci_power_t target_state = PCI_D3hot;
2546 
2547 	if (platform_pci_power_manageable(dev)) {
2548 		/*
2549 		 * Call the platform to find the target state for the device.
2550 		 */
2551 		pci_power_t state = platform_pci_choose_state(dev);
2552 
2553 		switch (state) {
2554 		case PCI_POWER_ERROR:
2555 		case PCI_UNKNOWN:
2556 			break;
2557 		case PCI_D1:
2558 		case PCI_D2:
2559 			if (pci_no_d1d2(dev))
2560 				break;
2561 			fallthrough;
2562 		default:
2563 			target_state = state;
2564 		}
2565 
2566 		return target_state;
2567 	}
2568 
2569 	if (!dev->pm_cap)
2570 		target_state = PCI_D0;
2571 
2572 	/*
2573 	 * If the device is in D3cold even though it's not power-manageable by
2574 	 * the platform, it may have been powered down by non-standard means.
2575 	 * Best to let it slumber.
2576 	 */
2577 	if (dev->current_state == PCI_D3cold)
2578 		target_state = PCI_D3cold;
2579 
2580 	if (wakeup && dev->pme_support) {
2581 		pci_power_t state = target_state;
2582 
2583 		/*
2584 		 * Find the deepest state from which the device can generate
2585 		 * PME#.
2586 		 */
2587 		while (state && !(dev->pme_support & (1 << state)))
2588 			state--;
2589 
2590 		if (state)
2591 			return state;
2592 		else if (dev->pme_support & 1)
2593 			return PCI_D0;
2594 	}
2595 
2596 	return target_state;
2597 }
2598 
2599 /**
2600  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2601  *			  into a sleep state
2602  * @dev: Device to handle.
2603  *
2604  * Choose the power state appropriate for the device depending on whether
2605  * it can wake up the system and/or is power manageable by the platform
2606  * (PCI_D3hot is the default) and put the device into that state.
2607  */
pci_prepare_to_sleep(struct pci_dev * dev)2608 int pci_prepare_to_sleep(struct pci_dev *dev)
2609 {
2610 	bool wakeup = device_may_wakeup(&dev->dev);
2611 	pci_power_t target_state = pci_target_state(dev, wakeup);
2612 	int error;
2613 
2614 	if (target_state == PCI_POWER_ERROR)
2615 		return -EIO;
2616 
2617 	pci_enable_wake(dev, target_state, wakeup);
2618 
2619 	error = pci_set_power_state(dev, target_state);
2620 
2621 	if (error)
2622 		pci_enable_wake(dev, target_state, false);
2623 
2624 	return error;
2625 }
2626 EXPORT_SYMBOL(pci_prepare_to_sleep);
2627 
2628 /**
2629  * pci_back_from_sleep - turn PCI device on during system-wide transition
2630  *			 into working state
2631  * @dev: Device to handle.
2632  *
2633  * Disable device's system wake-up capability and put it into D0.
2634  */
pci_back_from_sleep(struct pci_dev * dev)2635 int pci_back_from_sleep(struct pci_dev *dev)
2636 {
2637 	pci_enable_wake(dev, PCI_D0, false);
2638 	return pci_set_power_state(dev, PCI_D0);
2639 }
2640 EXPORT_SYMBOL(pci_back_from_sleep);
2641 
2642 /**
2643  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2644  * @dev: PCI device being suspended.
2645  *
2646  * Prepare @dev to generate wake-up events at run time and put it into a low
2647  * power state.
2648  */
pci_finish_runtime_suspend(struct pci_dev * dev)2649 int pci_finish_runtime_suspend(struct pci_dev *dev)
2650 {
2651 	pci_power_t target_state;
2652 	int error;
2653 
2654 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2655 	if (target_state == PCI_POWER_ERROR)
2656 		return -EIO;
2657 
2658 	dev->runtime_d3cold = target_state == PCI_D3cold;
2659 
2660 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2661 
2662 	error = pci_set_power_state(dev, target_state);
2663 
2664 	if (error) {
2665 		pci_enable_wake(dev, target_state, false);
2666 		dev->runtime_d3cold = false;
2667 	}
2668 
2669 	return error;
2670 }
2671 
2672 /**
2673  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2674  * @dev: Device to check.
2675  *
2676  * Return true if the device itself is capable of generating wake-up events
2677  * (through the platform or using the native PCIe PME) or if the device supports
2678  * PME and one of its upstream bridges can generate wake-up events.
2679  */
pci_dev_run_wake(struct pci_dev * dev)2680 bool pci_dev_run_wake(struct pci_dev *dev)
2681 {
2682 	struct pci_bus *bus = dev->bus;
2683 
2684 	if (!dev->pme_support)
2685 		return false;
2686 
2687 	/* PME-capable in principle, but not from the target power state */
2688 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2689 		return false;
2690 
2691 	if (device_can_wakeup(&dev->dev))
2692 		return true;
2693 
2694 	while (bus->parent) {
2695 		struct pci_dev *bridge = bus->self;
2696 
2697 		if (device_can_wakeup(&bridge->dev))
2698 			return true;
2699 
2700 		bus = bus->parent;
2701 	}
2702 
2703 	/* We have reached the root bus. */
2704 	if (bus->bridge)
2705 		return device_can_wakeup(bus->bridge);
2706 
2707 	return false;
2708 }
2709 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2710 
2711 /**
2712  * pci_dev_need_resume - Check if it is necessary to resume the device.
2713  * @pci_dev: Device to check.
2714  *
2715  * Return 'true' if the device is not runtime-suspended or it has to be
2716  * reconfigured due to wakeup settings difference between system and runtime
2717  * suspend, or the current power state of it is not suitable for the upcoming
2718  * (system-wide) transition.
2719  */
pci_dev_need_resume(struct pci_dev * pci_dev)2720 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2721 {
2722 	struct device *dev = &pci_dev->dev;
2723 	pci_power_t target_state;
2724 
2725 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2726 		return true;
2727 
2728 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2729 
2730 	/*
2731 	 * If the earlier platform check has not triggered, D3cold is just power
2732 	 * removal on top of D3hot, so no need to resume the device in that
2733 	 * case.
2734 	 */
2735 	return target_state != pci_dev->current_state &&
2736 		target_state != PCI_D3cold &&
2737 		pci_dev->current_state != PCI_D3hot;
2738 }
2739 
2740 /**
2741  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2742  * @pci_dev: Device to check.
2743  *
2744  * If the device is suspended and it is not configured for system wakeup,
2745  * disable PME for it to prevent it from waking up the system unnecessarily.
2746  *
2747  * Note that if the device's power state is D3cold and the platform check in
2748  * pci_dev_need_resume() has not triggered, the device's configuration need not
2749  * be changed.
2750  */
pci_dev_adjust_pme(struct pci_dev * pci_dev)2751 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2752 {
2753 	struct device *dev = &pci_dev->dev;
2754 
2755 	spin_lock_irq(&dev->power.lock);
2756 
2757 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2758 	    pci_dev->current_state < PCI_D3cold)
2759 		__pci_pme_active(pci_dev, false);
2760 
2761 	spin_unlock_irq(&dev->power.lock);
2762 }
2763 
2764 /**
2765  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2766  * @pci_dev: Device to handle.
2767  *
2768  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2769  * it might have been disabled during the prepare phase of system suspend if
2770  * the device was not configured for system wakeup.
2771  */
pci_dev_complete_resume(struct pci_dev * pci_dev)2772 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2773 {
2774 	struct device *dev = &pci_dev->dev;
2775 
2776 	if (!pci_dev_run_wake(pci_dev))
2777 		return;
2778 
2779 	spin_lock_irq(&dev->power.lock);
2780 
2781 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2782 		__pci_pme_active(pci_dev, true);
2783 
2784 	spin_unlock_irq(&dev->power.lock);
2785 }
2786 
pci_config_pm_runtime_get(struct pci_dev * pdev)2787 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2788 {
2789 	struct device *dev = &pdev->dev;
2790 	struct device *parent = dev->parent;
2791 
2792 	if (parent)
2793 		pm_runtime_get_sync(parent);
2794 	pm_runtime_get_noresume(dev);
2795 	/*
2796 	 * pdev->current_state is set to PCI_D3cold during suspending,
2797 	 * so wait until suspending completes
2798 	 */
2799 	pm_runtime_barrier(dev);
2800 	/*
2801 	 * Only need to resume devices in D3cold, because config
2802 	 * registers are still accessible for devices suspended but
2803 	 * not in D3cold.
2804 	 */
2805 	if (pdev->current_state == PCI_D3cold)
2806 		pm_runtime_resume(dev);
2807 }
2808 
pci_config_pm_runtime_put(struct pci_dev * pdev)2809 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2810 {
2811 	struct device *dev = &pdev->dev;
2812 	struct device *parent = dev->parent;
2813 
2814 	pm_runtime_put(dev);
2815 	if (parent)
2816 		pm_runtime_put_sync(parent);
2817 }
2818 
2819 static const struct dmi_system_id bridge_d3_blacklist[] = {
2820 #ifdef CONFIG_X86
2821 	{
2822 		/*
2823 		 * Gigabyte X299 root port is not marked as hotplug capable
2824 		 * which allows Linux to power manage it.  However, this
2825 		 * confuses the BIOS SMI handler so don't power manage root
2826 		 * ports on that system.
2827 		 */
2828 		.ident = "X299 DESIGNARE EX-CF",
2829 		.matches = {
2830 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2831 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2832 		},
2833 	},
2834 	{
2835 		/*
2836 		 * Downstream device is not accessible after putting a root port
2837 		 * into D3cold and back into D0 on Elo Continental Z2 board
2838 		 */
2839 		.ident = "Elo Continental Z2",
2840 		.matches = {
2841 			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2842 			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2843 			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2844 		},
2845 	},
2846 #endif
2847 	{ }
2848 };
2849 
2850 /**
2851  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2852  * @bridge: Bridge to check
2853  *
2854  * This function checks if it is possible to move the bridge to D3.
2855  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2856  */
pci_bridge_d3_possible(struct pci_dev * bridge)2857 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2858 {
2859 	if (!pci_is_pcie(bridge))
2860 		return false;
2861 
2862 	switch (pci_pcie_type(bridge)) {
2863 	case PCI_EXP_TYPE_ROOT_PORT:
2864 	case PCI_EXP_TYPE_UPSTREAM:
2865 	case PCI_EXP_TYPE_DOWNSTREAM:
2866 		if (pci_bridge_d3_disable)
2867 			return false;
2868 
2869 		/*
2870 		 * Hotplug ports handled by firmware in System Management Mode
2871 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2872 		 */
2873 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2874 			return false;
2875 
2876 		if (pci_bridge_d3_force)
2877 			return true;
2878 
2879 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2880 		if (bridge->is_thunderbolt)
2881 			return true;
2882 
2883 		/* Platform might know better if the bridge supports D3 */
2884 		if (platform_pci_bridge_d3(bridge))
2885 			return true;
2886 
2887 		/*
2888 		 * Hotplug ports handled natively by the OS were not validated
2889 		 * by vendors for runtime D3 at least until 2018 because there
2890 		 * was no OS support.
2891 		 */
2892 		if (bridge->is_hotplug_bridge)
2893 			return false;
2894 
2895 		if (dmi_check_system(bridge_d3_blacklist))
2896 			return false;
2897 
2898 		/*
2899 		 * It should be safe to put PCIe ports from 2015 or newer
2900 		 * to D3.
2901 		 */
2902 		if (dmi_get_bios_year() >= 2015)
2903 			return true;
2904 		break;
2905 	}
2906 
2907 	return false;
2908 }
2909 
pci_dev_check_d3cold(struct pci_dev * dev,void * data)2910 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2911 {
2912 	bool *d3cold_ok = data;
2913 
2914 	if (/* The device needs to be allowed to go D3cold ... */
2915 	    dev->no_d3cold || !dev->d3cold_allowed ||
2916 
2917 	    /* ... and if it is wakeup capable to do so from D3cold. */
2918 	    (device_may_wakeup(&dev->dev) &&
2919 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2920 
2921 	    /* If it is a bridge it must be allowed to go to D3. */
2922 	    !pci_power_manageable(dev))
2923 
2924 		*d3cold_ok = false;
2925 
2926 	return !*d3cold_ok;
2927 }
2928 
2929 /*
2930  * pci_bridge_d3_update - Update bridge D3 capabilities
2931  * @dev: PCI device which is changed
2932  *
2933  * Update upstream bridge PM capabilities accordingly depending on if the
2934  * device PM configuration was changed or the device is being removed.  The
2935  * change is also propagated upstream.
2936  */
pci_bridge_d3_update(struct pci_dev * dev)2937 void pci_bridge_d3_update(struct pci_dev *dev)
2938 {
2939 	bool remove = !device_is_registered(&dev->dev);
2940 	struct pci_dev *bridge;
2941 	bool d3cold_ok = true;
2942 
2943 	bridge = pci_upstream_bridge(dev);
2944 	if (!bridge || !pci_bridge_d3_possible(bridge))
2945 		return;
2946 
2947 	/*
2948 	 * If D3 is currently allowed for the bridge, removing one of its
2949 	 * children won't change that.
2950 	 */
2951 	if (remove && bridge->bridge_d3)
2952 		return;
2953 
2954 	/*
2955 	 * If D3 is currently allowed for the bridge and a child is added or
2956 	 * changed, disallowance of D3 can only be caused by that child, so
2957 	 * we only need to check that single device, not any of its siblings.
2958 	 *
2959 	 * If D3 is currently not allowed for the bridge, checking the device
2960 	 * first may allow us to skip checking its siblings.
2961 	 */
2962 	if (!remove)
2963 		pci_dev_check_d3cold(dev, &d3cold_ok);
2964 
2965 	/*
2966 	 * If D3 is currently not allowed for the bridge, this may be caused
2967 	 * either by the device being changed/removed or any of its siblings,
2968 	 * so we need to go through all children to find out if one of them
2969 	 * continues to block D3.
2970 	 */
2971 	if (d3cold_ok && !bridge->bridge_d3)
2972 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2973 			     &d3cold_ok);
2974 
2975 	if (bridge->bridge_d3 != d3cold_ok) {
2976 		bridge->bridge_d3 = d3cold_ok;
2977 		/* Propagate change to upstream bridges */
2978 		pci_bridge_d3_update(bridge);
2979 	}
2980 }
2981 
2982 /**
2983  * pci_d3cold_enable - Enable D3cold for device
2984  * @dev: PCI device to handle
2985  *
2986  * This function can be used in drivers to enable D3cold from the device
2987  * they handle.  It also updates upstream PCI bridge PM capabilities
2988  * accordingly.
2989  */
pci_d3cold_enable(struct pci_dev * dev)2990 void pci_d3cold_enable(struct pci_dev *dev)
2991 {
2992 	if (dev->no_d3cold) {
2993 		dev->no_d3cold = false;
2994 		pci_bridge_d3_update(dev);
2995 	}
2996 }
2997 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2998 
2999 /**
3000  * pci_d3cold_disable - Disable D3cold for device
3001  * @dev: PCI device to handle
3002  *
3003  * This function can be used in drivers to disable D3cold from the device
3004  * they handle.  It also updates upstream PCI bridge PM capabilities
3005  * accordingly.
3006  */
pci_d3cold_disable(struct pci_dev * dev)3007 void pci_d3cold_disable(struct pci_dev *dev)
3008 {
3009 	if (!dev->no_d3cold) {
3010 		dev->no_d3cold = true;
3011 		pci_bridge_d3_update(dev);
3012 	}
3013 }
3014 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3015 
3016 /**
3017  * pci_pm_init - Initialize PM functions of given PCI device
3018  * @dev: PCI device to handle.
3019  */
pci_pm_init(struct pci_dev * dev)3020 void pci_pm_init(struct pci_dev *dev)
3021 {
3022 	int pm;
3023 	u16 status;
3024 	u16 pmc;
3025 
3026 	pm_runtime_forbid(&dev->dev);
3027 	pm_runtime_set_active(&dev->dev);
3028 	pm_runtime_enable(&dev->dev);
3029 	device_enable_async_suspend(&dev->dev);
3030 	dev->wakeup_prepared = false;
3031 
3032 	dev->pm_cap = 0;
3033 	dev->pme_support = 0;
3034 
3035 	/* find PCI PM capability in list */
3036 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3037 	if (!pm)
3038 		return;
3039 	/* Check device's ability to generate PME# */
3040 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3041 
3042 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3043 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3044 			pmc & PCI_PM_CAP_VER_MASK);
3045 		return;
3046 	}
3047 
3048 	dev->pm_cap = pm;
3049 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3050 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3051 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3052 	dev->d3cold_allowed = true;
3053 
3054 	dev->d1_support = false;
3055 	dev->d2_support = false;
3056 	if (!pci_no_d1d2(dev)) {
3057 		if (pmc & PCI_PM_CAP_D1)
3058 			dev->d1_support = true;
3059 		if (pmc & PCI_PM_CAP_D2)
3060 			dev->d2_support = true;
3061 
3062 		if (dev->d1_support || dev->d2_support)
3063 			pci_info(dev, "supports%s%s\n",
3064 				   dev->d1_support ? " D1" : "",
3065 				   dev->d2_support ? " D2" : "");
3066 	}
3067 
3068 	pmc &= PCI_PM_CAP_PME_MASK;
3069 	if (pmc) {
3070 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3071 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3072 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3073 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3074 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3075 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3076 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3077 		dev->pme_poll = true;
3078 		/*
3079 		 * Make device's PM flags reflect the wake-up capability, but
3080 		 * let the user space enable it to wake up the system as needed.
3081 		 */
3082 		device_set_wakeup_capable(&dev->dev, true);
3083 		/* Disable the PME# generation functionality */
3084 		pci_pme_active(dev, false);
3085 	}
3086 
3087 	pci_read_config_word(dev, PCI_STATUS, &status);
3088 	if (status & PCI_STATUS_IMM_READY)
3089 		dev->imm_ready = 1;
3090 }
3091 
pci_ea_flags(struct pci_dev * dev,u8 prop)3092 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3093 {
3094 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3095 
3096 	switch (prop) {
3097 	case PCI_EA_P_MEM:
3098 	case PCI_EA_P_VF_MEM:
3099 		flags |= IORESOURCE_MEM;
3100 		break;
3101 	case PCI_EA_P_MEM_PREFETCH:
3102 	case PCI_EA_P_VF_MEM_PREFETCH:
3103 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3104 		break;
3105 	case PCI_EA_P_IO:
3106 		flags |= IORESOURCE_IO;
3107 		break;
3108 	default:
3109 		return 0;
3110 	}
3111 
3112 	return flags;
3113 }
3114 
pci_ea_get_resource(struct pci_dev * dev,u8 bei,u8 prop)3115 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3116 					    u8 prop)
3117 {
3118 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3119 		return &dev->resource[bei];
3120 #ifdef CONFIG_PCI_IOV
3121 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3122 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3123 		return &dev->resource[PCI_IOV_RESOURCES +
3124 				      bei - PCI_EA_BEI_VF_BAR0];
3125 #endif
3126 	else if (bei == PCI_EA_BEI_ROM)
3127 		return &dev->resource[PCI_ROM_RESOURCE];
3128 	else
3129 		return NULL;
3130 }
3131 
3132 /* Read an Enhanced Allocation (EA) entry */
pci_ea_read(struct pci_dev * dev,int offset)3133 static int pci_ea_read(struct pci_dev *dev, int offset)
3134 {
3135 	struct resource *res;
3136 	int ent_size, ent_offset = offset;
3137 	resource_size_t start, end;
3138 	unsigned long flags;
3139 	u32 dw0, bei, base, max_offset;
3140 	u8 prop;
3141 	bool support_64 = (sizeof(resource_size_t) >= 8);
3142 
3143 	pci_read_config_dword(dev, ent_offset, &dw0);
3144 	ent_offset += 4;
3145 
3146 	/* Entry size field indicates DWORDs after 1st */
3147 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3148 
3149 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3150 		goto out;
3151 
3152 	bei = (dw0 & PCI_EA_BEI) >> 4;
3153 	prop = (dw0 & PCI_EA_PP) >> 8;
3154 
3155 	/*
3156 	 * If the Property is in the reserved range, try the Secondary
3157 	 * Property instead.
3158 	 */
3159 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3160 		prop = (dw0 & PCI_EA_SP) >> 16;
3161 	if (prop > PCI_EA_P_BRIDGE_IO)
3162 		goto out;
3163 
3164 	res = pci_ea_get_resource(dev, bei, prop);
3165 	if (!res) {
3166 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3167 		goto out;
3168 	}
3169 
3170 	flags = pci_ea_flags(dev, prop);
3171 	if (!flags) {
3172 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3173 		goto out;
3174 	}
3175 
3176 	/* Read Base */
3177 	pci_read_config_dword(dev, ent_offset, &base);
3178 	start = (base & PCI_EA_FIELD_MASK);
3179 	ent_offset += 4;
3180 
3181 	/* Read MaxOffset */
3182 	pci_read_config_dword(dev, ent_offset, &max_offset);
3183 	ent_offset += 4;
3184 
3185 	/* Read Base MSBs (if 64-bit entry) */
3186 	if (base & PCI_EA_IS_64) {
3187 		u32 base_upper;
3188 
3189 		pci_read_config_dword(dev, ent_offset, &base_upper);
3190 		ent_offset += 4;
3191 
3192 		flags |= IORESOURCE_MEM_64;
3193 
3194 		/* entry starts above 32-bit boundary, can't use */
3195 		if (!support_64 && base_upper)
3196 			goto out;
3197 
3198 		if (support_64)
3199 			start |= ((u64)base_upper << 32);
3200 	}
3201 
3202 	end = start + (max_offset | 0x03);
3203 
3204 	/* Read MaxOffset MSBs (if 64-bit entry) */
3205 	if (max_offset & PCI_EA_IS_64) {
3206 		u32 max_offset_upper;
3207 
3208 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3209 		ent_offset += 4;
3210 
3211 		flags |= IORESOURCE_MEM_64;
3212 
3213 		/* entry too big, can't use */
3214 		if (!support_64 && max_offset_upper)
3215 			goto out;
3216 
3217 		if (support_64)
3218 			end += ((u64)max_offset_upper << 32);
3219 	}
3220 
3221 	if (end < start) {
3222 		pci_err(dev, "EA Entry crosses address boundary\n");
3223 		goto out;
3224 	}
3225 
3226 	if (ent_size != ent_offset - offset) {
3227 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3228 			ent_size, ent_offset - offset);
3229 		goto out;
3230 	}
3231 
3232 	res->name = pci_name(dev);
3233 	res->start = start;
3234 	res->end = end;
3235 	res->flags = flags;
3236 
3237 	if (bei <= PCI_EA_BEI_BAR5)
3238 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3239 			   bei, res, prop);
3240 	else if (bei == PCI_EA_BEI_ROM)
3241 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3242 			   res, prop);
3243 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3244 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3245 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3246 	else
3247 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3248 			   bei, res, prop);
3249 
3250 out:
3251 	return offset + ent_size;
3252 }
3253 
3254 /* Enhanced Allocation Initialization */
pci_ea_init(struct pci_dev * dev)3255 void pci_ea_init(struct pci_dev *dev)
3256 {
3257 	int ea;
3258 	u8 num_ent;
3259 	int offset;
3260 	int i;
3261 
3262 	/* find PCI EA capability in list */
3263 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3264 	if (!ea)
3265 		return;
3266 
3267 	/* determine the number of entries */
3268 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3269 					&num_ent);
3270 	num_ent &= PCI_EA_NUM_ENT_MASK;
3271 
3272 	offset = ea + PCI_EA_FIRST_ENT;
3273 
3274 	/* Skip DWORD 2 for type 1 functions */
3275 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3276 		offset += 4;
3277 
3278 	/* parse each EA entry */
3279 	for (i = 0; i < num_ent; ++i)
3280 		offset = pci_ea_read(dev, offset);
3281 }
3282 
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)3283 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3284 	struct pci_cap_saved_state *new_cap)
3285 {
3286 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3287 }
3288 
3289 /**
3290  * _pci_add_cap_save_buffer - allocate buffer for saving given
3291  *			      capability registers
3292  * @dev: the PCI device
3293  * @cap: the capability to allocate the buffer for
3294  * @extended: Standard or Extended capability ID
3295  * @size: requested size of the buffer
3296  */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)3297 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3298 				    bool extended, unsigned int size)
3299 {
3300 	int pos;
3301 	struct pci_cap_saved_state *save_state;
3302 
3303 	if (extended)
3304 		pos = pci_find_ext_capability(dev, cap);
3305 	else
3306 		pos = pci_find_capability(dev, cap);
3307 
3308 	if (!pos)
3309 		return 0;
3310 
3311 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3312 	if (!save_state)
3313 		return -ENOMEM;
3314 
3315 	save_state->cap.cap_nr = cap;
3316 	save_state->cap.cap_extended = extended;
3317 	save_state->cap.size = size;
3318 	pci_add_saved_cap(dev, save_state);
3319 
3320 	return 0;
3321 }
3322 
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)3323 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3324 {
3325 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3326 }
3327 
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)3328 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3329 {
3330 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3331 }
3332 
3333 /**
3334  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3335  * @dev: the PCI device
3336  */
pci_allocate_cap_save_buffers(struct pci_dev * dev)3337 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3338 {
3339 	int error;
3340 
3341 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3342 					PCI_EXP_SAVE_REGS * sizeof(u16));
3343 	if (error)
3344 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3345 
3346 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3347 	if (error)
3348 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3349 
3350 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3351 					    2 * sizeof(u16));
3352 	if (error)
3353 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3354 
3355 	pci_allocate_vc_save_buffers(dev);
3356 }
3357 
pci_free_cap_save_buffers(struct pci_dev * dev)3358 void pci_free_cap_save_buffers(struct pci_dev *dev)
3359 {
3360 	struct pci_cap_saved_state *tmp;
3361 	struct hlist_node *n;
3362 
3363 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3364 		kfree(tmp);
3365 }
3366 
3367 /**
3368  * pci_configure_ari - enable or disable ARI forwarding
3369  * @dev: the PCI device
3370  *
3371  * If @dev and its upstream bridge both support ARI, enable ARI in the
3372  * bridge.  Otherwise, disable ARI in the bridge.
3373  */
pci_configure_ari(struct pci_dev * dev)3374 void pci_configure_ari(struct pci_dev *dev)
3375 {
3376 	u32 cap;
3377 	struct pci_dev *bridge;
3378 
3379 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3380 		return;
3381 
3382 	bridge = dev->bus->self;
3383 	if (!bridge)
3384 		return;
3385 
3386 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3387 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3388 		return;
3389 
3390 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3391 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3392 					 PCI_EXP_DEVCTL2_ARI);
3393 		bridge->ari_enabled = 1;
3394 	} else {
3395 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3396 					   PCI_EXP_DEVCTL2_ARI);
3397 		bridge->ari_enabled = 0;
3398 	}
3399 }
3400 
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)3401 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3402 {
3403 	int pos;
3404 	u16 cap, ctrl;
3405 
3406 	pos = pdev->acs_cap;
3407 	if (!pos)
3408 		return false;
3409 
3410 	/*
3411 	 * Except for egress control, capabilities are either required
3412 	 * or only required if controllable.  Features missing from the
3413 	 * capability field can therefore be assumed as hard-wired enabled.
3414 	 */
3415 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3416 	acs_flags &= (cap | PCI_ACS_EC);
3417 
3418 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3419 	return (ctrl & acs_flags) == acs_flags;
3420 }
3421 
3422 /**
3423  * pci_acs_enabled - test ACS against required flags for a given device
3424  * @pdev: device to test
3425  * @acs_flags: required PCI ACS flags
3426  *
3427  * Return true if the device supports the provided flags.  Automatically
3428  * filters out flags that are not implemented on multifunction devices.
3429  *
3430  * Note that this interface checks the effective ACS capabilities of the
3431  * device rather than the actual capabilities.  For instance, most single
3432  * function endpoints are not required to support ACS because they have no
3433  * opportunity for peer-to-peer access.  We therefore return 'true'
3434  * regardless of whether the device exposes an ACS capability.  This makes
3435  * it much easier for callers of this function to ignore the actual type
3436  * or topology of the device when testing ACS support.
3437  */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)3438 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3439 {
3440 	int ret;
3441 
3442 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3443 	if (ret >= 0)
3444 		return ret > 0;
3445 
3446 	/*
3447 	 * Conventional PCI and PCI-X devices never support ACS, either
3448 	 * effectively or actually.  The shared bus topology implies that
3449 	 * any device on the bus can receive or snoop DMA.
3450 	 */
3451 	if (!pci_is_pcie(pdev))
3452 		return false;
3453 
3454 	switch (pci_pcie_type(pdev)) {
3455 	/*
3456 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3457 	 * but since their primary interface is PCI/X, we conservatively
3458 	 * handle them as we would a non-PCIe device.
3459 	 */
3460 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3461 	/*
3462 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3463 	 * applicable... must never implement an ACS Extended Capability...".
3464 	 * This seems arbitrary, but we take a conservative interpretation
3465 	 * of this statement.
3466 	 */
3467 	case PCI_EXP_TYPE_PCI_BRIDGE:
3468 	case PCI_EXP_TYPE_RC_EC:
3469 		return false;
3470 	/*
3471 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3472 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3473 	 * regardless of whether they are single- or multi-function devices.
3474 	 */
3475 	case PCI_EXP_TYPE_DOWNSTREAM:
3476 	case PCI_EXP_TYPE_ROOT_PORT:
3477 		return pci_acs_flags_enabled(pdev, acs_flags);
3478 	/*
3479 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3480 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3481 	 * capabilities, but only when they are part of a multifunction
3482 	 * device.  The footnote for section 6.12 indicates the specific
3483 	 * PCIe types included here.
3484 	 */
3485 	case PCI_EXP_TYPE_ENDPOINT:
3486 	case PCI_EXP_TYPE_UPSTREAM:
3487 	case PCI_EXP_TYPE_LEG_END:
3488 	case PCI_EXP_TYPE_RC_END:
3489 		if (!pdev->multifunction)
3490 			break;
3491 
3492 		return pci_acs_flags_enabled(pdev, acs_flags);
3493 	}
3494 
3495 	/*
3496 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3497 	 * to single function devices with the exception of downstream ports.
3498 	 */
3499 	return true;
3500 }
3501 
3502 /**
3503  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3504  * @start: starting downstream device
3505  * @end: ending upstream device or NULL to search to the root bus
3506  * @acs_flags: required flags
3507  *
3508  * Walk up a device tree from start to end testing PCI ACS support.  If
3509  * any step along the way does not support the required flags, return false.
3510  */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)3511 bool pci_acs_path_enabled(struct pci_dev *start,
3512 			  struct pci_dev *end, u16 acs_flags)
3513 {
3514 	struct pci_dev *pdev, *parent = start;
3515 
3516 	do {
3517 		pdev = parent;
3518 
3519 		if (!pci_acs_enabled(pdev, acs_flags))
3520 			return false;
3521 
3522 		if (pci_is_root_bus(pdev->bus))
3523 			return (end == NULL);
3524 
3525 		parent = pdev->bus->self;
3526 	} while (pdev != end);
3527 
3528 	return true;
3529 }
3530 
3531 /**
3532  * pci_acs_init - Initialize ACS if hardware supports it
3533  * @dev: the PCI device
3534  */
pci_acs_init(struct pci_dev * dev)3535 void pci_acs_init(struct pci_dev *dev)
3536 {
3537 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3538 
3539 	/*
3540 	 * Attempt to enable ACS regardless of capability because some Root
3541 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3542 	 * the standard ACS capability but still support ACS via those
3543 	 * quirks.
3544 	 */
3545 	pci_enable_acs(dev);
3546 }
3547 
3548 /**
3549  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3550  * @pdev: PCI device
3551  * @bar: BAR to find
3552  *
3553  * Helper to find the position of the ctrl register for a BAR.
3554  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3555  * Returns -ENOENT if no ctrl register for the BAR could be found.
3556  */
pci_rebar_find_pos(struct pci_dev * pdev,int bar)3557 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3558 {
3559 	unsigned int pos, nbars, i;
3560 	u32 ctrl;
3561 
3562 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3563 	if (!pos)
3564 		return -ENOTSUPP;
3565 
3566 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3567 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3568 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3569 
3570 	for (i = 0; i < nbars; i++, pos += 8) {
3571 		int bar_idx;
3572 
3573 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3574 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3575 		if (bar_idx == bar)
3576 			return pos;
3577 	}
3578 
3579 	return -ENOENT;
3580 }
3581 
3582 /**
3583  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3584  * @pdev: PCI device
3585  * @bar: BAR to query
3586  *
3587  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3588  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3589  */
pci_rebar_get_possible_sizes(struct pci_dev * pdev,int bar)3590 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3591 {
3592 	int pos;
3593 	u32 cap;
3594 
3595 	pos = pci_rebar_find_pos(pdev, bar);
3596 	if (pos < 0)
3597 		return 0;
3598 
3599 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3600 	cap &= PCI_REBAR_CAP_SIZES;
3601 
3602 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3603 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3604 	    bar == 0 && cap == 0x7000)
3605 		cap = 0x3f000;
3606 
3607 	return cap >> 4;
3608 }
3609 
3610 /**
3611  * pci_rebar_get_current_size - get the current size of a BAR
3612  * @pdev: PCI device
3613  * @bar: BAR to set size to
3614  *
3615  * Read the size of a BAR from the resizable BAR config.
3616  * Returns size if found or negative error code.
3617  */
pci_rebar_get_current_size(struct pci_dev * pdev,int bar)3618 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3619 {
3620 	int pos;
3621 	u32 ctrl;
3622 
3623 	pos = pci_rebar_find_pos(pdev, bar);
3624 	if (pos < 0)
3625 		return pos;
3626 
3627 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3628 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3629 }
3630 
3631 /**
3632  * pci_rebar_set_size - set a new size for a BAR
3633  * @pdev: PCI device
3634  * @bar: BAR to set size to
3635  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3636  *
3637  * Set the new size of a BAR as defined in the spec.
3638  * Returns zero if resizing was successful, error code otherwise.
3639  */
pci_rebar_set_size(struct pci_dev * pdev,int bar,int size)3640 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3641 {
3642 	int pos;
3643 	u32 ctrl;
3644 
3645 	pos = pci_rebar_find_pos(pdev, bar);
3646 	if (pos < 0)
3647 		return pos;
3648 
3649 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3650 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3651 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3652 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3653 	return 0;
3654 }
3655 
3656 /**
3657  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3658  * @dev: the PCI device
3659  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3660  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3661  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3662  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3663  *
3664  * Return 0 if all upstream bridges support AtomicOp routing, egress
3665  * blocking is disabled on all upstream ports, and the root port supports
3666  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3667  * AtomicOp completion), or negative otherwise.
3668  */
pci_enable_atomic_ops_to_root(struct pci_dev * dev,u32 cap_mask)3669 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3670 {
3671 	struct pci_bus *bus = dev->bus;
3672 	struct pci_dev *bridge;
3673 	u32 cap, ctl2;
3674 
3675 	if (!pci_is_pcie(dev))
3676 		return -EINVAL;
3677 
3678 	/*
3679 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3680 	 * AtomicOp requesters.  For now, we only support endpoints as
3681 	 * requesters and root ports as completers.  No endpoints as
3682 	 * completers, and no peer-to-peer.
3683 	 */
3684 
3685 	switch (pci_pcie_type(dev)) {
3686 	case PCI_EXP_TYPE_ENDPOINT:
3687 	case PCI_EXP_TYPE_LEG_END:
3688 	case PCI_EXP_TYPE_RC_END:
3689 		break;
3690 	default:
3691 		return -EINVAL;
3692 	}
3693 
3694 	while (bus->parent) {
3695 		bridge = bus->self;
3696 
3697 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3698 
3699 		switch (pci_pcie_type(bridge)) {
3700 		/* Ensure switch ports support AtomicOp routing */
3701 		case PCI_EXP_TYPE_UPSTREAM:
3702 		case PCI_EXP_TYPE_DOWNSTREAM:
3703 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3704 				return -EINVAL;
3705 			break;
3706 
3707 		/* Ensure root port supports all the sizes we care about */
3708 		case PCI_EXP_TYPE_ROOT_PORT:
3709 			if ((cap & cap_mask) != cap_mask)
3710 				return -EINVAL;
3711 			break;
3712 		}
3713 
3714 		/* Ensure upstream ports don't block AtomicOps on egress */
3715 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3716 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3717 						   &ctl2);
3718 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3719 				return -EINVAL;
3720 		}
3721 
3722 		bus = bus->parent;
3723 	}
3724 
3725 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3726 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3727 	return 0;
3728 }
3729 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3730 
3731 /**
3732  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3733  * @dev: the PCI device
3734  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3735  *
3736  * Perform INTx swizzling for a device behind one level of bridge.  This is
3737  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3738  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3739  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3740  * the PCI Express Base Specification, Revision 2.1)
3741  */
pci_swizzle_interrupt_pin(const struct pci_dev * dev,u8 pin)3742 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3743 {
3744 	int slot;
3745 
3746 	if (pci_ari_enabled(dev->bus))
3747 		slot = 0;
3748 	else
3749 		slot = PCI_SLOT(dev->devfn);
3750 
3751 	return (((pin - 1) + slot) % 4) + 1;
3752 }
3753 
pci_get_interrupt_pin(struct pci_dev * dev,struct pci_dev ** bridge)3754 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3755 {
3756 	u8 pin;
3757 
3758 	pin = dev->pin;
3759 	if (!pin)
3760 		return -1;
3761 
3762 	while (!pci_is_root_bus(dev->bus)) {
3763 		pin = pci_swizzle_interrupt_pin(dev, pin);
3764 		dev = dev->bus->self;
3765 	}
3766 	*bridge = dev;
3767 	return pin;
3768 }
3769 
3770 /**
3771  * pci_common_swizzle - swizzle INTx all the way to root bridge
3772  * @dev: the PCI device
3773  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3774  *
3775  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3776  * bridges all the way up to a PCI root bus.
3777  */
pci_common_swizzle(struct pci_dev * dev,u8 * pinp)3778 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3779 {
3780 	u8 pin = *pinp;
3781 
3782 	while (!pci_is_root_bus(dev->bus)) {
3783 		pin = pci_swizzle_interrupt_pin(dev, pin);
3784 		dev = dev->bus->self;
3785 	}
3786 	*pinp = pin;
3787 	return PCI_SLOT(dev->devfn);
3788 }
3789 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3790 
3791 /**
3792  * pci_release_region - Release a PCI bar
3793  * @pdev: PCI device whose resources were previously reserved by
3794  *	  pci_request_region()
3795  * @bar: BAR to release
3796  *
3797  * Releases the PCI I/O and memory resources previously reserved by a
3798  * successful call to pci_request_region().  Call this function only
3799  * after all use of the PCI regions has ceased.
3800  */
pci_release_region(struct pci_dev * pdev,int bar)3801 void pci_release_region(struct pci_dev *pdev, int bar)
3802 {
3803 	struct pci_devres *dr;
3804 
3805 	if (pci_resource_len(pdev, bar) == 0)
3806 		return;
3807 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3808 		release_region(pci_resource_start(pdev, bar),
3809 				pci_resource_len(pdev, bar));
3810 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3811 		release_mem_region(pci_resource_start(pdev, bar),
3812 				pci_resource_len(pdev, bar));
3813 
3814 	dr = find_pci_dr(pdev);
3815 	if (dr)
3816 		dr->region_mask &= ~(1 << bar);
3817 }
3818 EXPORT_SYMBOL(pci_release_region);
3819 
3820 /**
3821  * __pci_request_region - Reserved PCI I/O and memory resource
3822  * @pdev: PCI device whose resources are to be reserved
3823  * @bar: BAR to be reserved
3824  * @res_name: Name to be associated with resource.
3825  * @exclusive: whether the region access is exclusive or not
3826  *
3827  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3828  * being reserved by owner @res_name.  Do not access any
3829  * address inside the PCI regions unless this call returns
3830  * successfully.
3831  *
3832  * If @exclusive is set, then the region is marked so that userspace
3833  * is explicitly not allowed to map the resource via /dev/mem or
3834  * sysfs MMIO access.
3835  *
3836  * Returns 0 on success, or %EBUSY on error.  A warning
3837  * message is also printed on failure.
3838  */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)3839 static int __pci_request_region(struct pci_dev *pdev, int bar,
3840 				const char *res_name, int exclusive)
3841 {
3842 	struct pci_devres *dr;
3843 
3844 	if (pci_resource_len(pdev, bar) == 0)
3845 		return 0;
3846 
3847 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3848 		if (!request_region(pci_resource_start(pdev, bar),
3849 			    pci_resource_len(pdev, bar), res_name))
3850 			goto err_out;
3851 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3852 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3853 					pci_resource_len(pdev, bar), res_name,
3854 					exclusive))
3855 			goto err_out;
3856 	}
3857 
3858 	dr = find_pci_dr(pdev);
3859 	if (dr)
3860 		dr->region_mask |= 1 << bar;
3861 
3862 	return 0;
3863 
3864 err_out:
3865 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3866 		 &pdev->resource[bar]);
3867 	return -EBUSY;
3868 }
3869 
3870 /**
3871  * pci_request_region - Reserve PCI I/O and memory resource
3872  * @pdev: PCI device whose resources are to be reserved
3873  * @bar: BAR to be reserved
3874  * @res_name: Name to be associated with resource
3875  *
3876  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3877  * being reserved by owner @res_name.  Do not access any
3878  * address inside the PCI regions unless this call returns
3879  * successfully.
3880  *
3881  * Returns 0 on success, or %EBUSY on error.  A warning
3882  * message is also printed on failure.
3883  */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)3884 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3885 {
3886 	return __pci_request_region(pdev, bar, res_name, 0);
3887 }
3888 EXPORT_SYMBOL(pci_request_region);
3889 
3890 /**
3891  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3892  * @pdev: PCI device whose resources were previously reserved
3893  * @bars: Bitmask of BARs to be released
3894  *
3895  * Release selected PCI I/O and memory resources previously reserved.
3896  * Call this function only after all use of the PCI regions has ceased.
3897  */
pci_release_selected_regions(struct pci_dev * pdev,int bars)3898 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3899 {
3900 	int i;
3901 
3902 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3903 		if (bars & (1 << i))
3904 			pci_release_region(pdev, i);
3905 }
3906 EXPORT_SYMBOL(pci_release_selected_regions);
3907 
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)3908 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3909 					  const char *res_name, int excl)
3910 {
3911 	int i;
3912 
3913 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3914 		if (bars & (1 << i))
3915 			if (__pci_request_region(pdev, i, res_name, excl))
3916 				goto err_out;
3917 	return 0;
3918 
3919 err_out:
3920 	while (--i >= 0)
3921 		if (bars & (1 << i))
3922 			pci_release_region(pdev, i);
3923 
3924 	return -EBUSY;
3925 }
3926 
3927 
3928 /**
3929  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3930  * @pdev: PCI device whose resources are to be reserved
3931  * @bars: Bitmask of BARs to be requested
3932  * @res_name: Name to be associated with resource
3933  */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)3934 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3935 				 const char *res_name)
3936 {
3937 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3938 }
3939 EXPORT_SYMBOL(pci_request_selected_regions);
3940 
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)3941 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3942 					   const char *res_name)
3943 {
3944 	return __pci_request_selected_regions(pdev, bars, res_name,
3945 			IORESOURCE_EXCLUSIVE);
3946 }
3947 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3948 
3949 /**
3950  * pci_release_regions - Release reserved PCI I/O and memory resources
3951  * @pdev: PCI device whose resources were previously reserved by
3952  *	  pci_request_regions()
3953  *
3954  * Releases all PCI I/O and memory resources previously reserved by a
3955  * successful call to pci_request_regions().  Call this function only
3956  * after all use of the PCI regions has ceased.
3957  */
3958 
pci_release_regions(struct pci_dev * pdev)3959 void pci_release_regions(struct pci_dev *pdev)
3960 {
3961 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3962 }
3963 EXPORT_SYMBOL(pci_release_regions);
3964 
3965 /**
3966  * pci_request_regions - Reserve PCI I/O and memory resources
3967  * @pdev: PCI device whose resources are to be reserved
3968  * @res_name: Name to be associated with resource.
3969  *
3970  * Mark all PCI regions associated with PCI device @pdev as
3971  * being reserved by owner @res_name.  Do not access any
3972  * address inside the PCI regions unless this call returns
3973  * successfully.
3974  *
3975  * Returns 0 on success, or %EBUSY on error.  A warning
3976  * message is also printed on failure.
3977  */
pci_request_regions(struct pci_dev * pdev,const char * res_name)3978 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3979 {
3980 	return pci_request_selected_regions(pdev,
3981 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
3982 }
3983 EXPORT_SYMBOL(pci_request_regions);
3984 
3985 /**
3986  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3987  * @pdev: PCI device whose resources are to be reserved
3988  * @res_name: Name to be associated with resource.
3989  *
3990  * Mark all PCI regions associated with PCI device @pdev as being reserved
3991  * by owner @res_name.  Do not access any address inside the PCI regions
3992  * unless this call returns successfully.
3993  *
3994  * pci_request_regions_exclusive() will mark the region so that /dev/mem
3995  * and the sysfs MMIO access will not be allowed.
3996  *
3997  * Returns 0 on success, or %EBUSY on error.  A warning message is also
3998  * printed on failure.
3999  */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)4000 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4001 {
4002 	return pci_request_selected_regions_exclusive(pdev,
4003 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4004 }
4005 EXPORT_SYMBOL(pci_request_regions_exclusive);
4006 
4007 /*
4008  * Record the PCI IO range (expressed as CPU physical address + size).
4009  * Return a negative value if an error has occurred, zero otherwise
4010  */
pci_register_io_range(struct fwnode_handle * fwnode,phys_addr_t addr,resource_size_t size)4011 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4012 			resource_size_t	size)
4013 {
4014 	int ret = 0;
4015 #ifdef PCI_IOBASE
4016 	struct logic_pio_hwaddr *range;
4017 
4018 	if (!size || addr + size < addr)
4019 		return -EINVAL;
4020 
4021 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4022 	if (!range)
4023 		return -ENOMEM;
4024 
4025 	range->fwnode = fwnode;
4026 	range->size = size;
4027 	range->hw_start = addr;
4028 	range->flags = LOGIC_PIO_CPU_MMIO;
4029 
4030 	ret = logic_pio_register_range(range);
4031 	if (ret)
4032 		kfree(range);
4033 
4034 	/* Ignore duplicates due to deferred probing */
4035 	if (ret == -EEXIST)
4036 		ret = 0;
4037 #endif
4038 
4039 	return ret;
4040 }
4041 
pci_pio_to_address(unsigned long pio)4042 phys_addr_t pci_pio_to_address(unsigned long pio)
4043 {
4044 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4045 
4046 #ifdef PCI_IOBASE
4047 	if (pio >= MMIO_UPPER_LIMIT)
4048 		return address;
4049 
4050 	address = logic_pio_to_hwaddr(pio);
4051 #endif
4052 
4053 	return address;
4054 }
4055 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4056 
pci_address_to_pio(phys_addr_t address)4057 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4058 {
4059 #ifdef PCI_IOBASE
4060 	return logic_pio_trans_cpuaddr(address);
4061 #else
4062 	if (address > IO_SPACE_LIMIT)
4063 		return (unsigned long)-1;
4064 
4065 	return (unsigned long) address;
4066 #endif
4067 }
4068 
4069 /**
4070  * pci_remap_iospace - Remap the memory mapped I/O space
4071  * @res: Resource describing the I/O space
4072  * @phys_addr: physical address of range to be mapped
4073  *
4074  * Remap the memory mapped I/O space described by the @res and the CPU
4075  * physical address @phys_addr into virtual address space.  Only
4076  * architectures that have memory mapped IO functions defined (and the
4077  * PCI_IOBASE value defined) should call this function.
4078  */
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)4079 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4080 {
4081 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4082 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4083 
4084 	if (!(res->flags & IORESOURCE_IO))
4085 		return -EINVAL;
4086 
4087 	if (res->end > IO_SPACE_LIMIT)
4088 		return -EINVAL;
4089 
4090 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4091 				  pgprot_device(PAGE_KERNEL));
4092 #else
4093 	/*
4094 	 * This architecture does not have memory mapped I/O space,
4095 	 * so this function should never be called
4096 	 */
4097 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4098 	return -ENODEV;
4099 #endif
4100 }
4101 EXPORT_SYMBOL(pci_remap_iospace);
4102 
4103 /**
4104  * pci_unmap_iospace - Unmap the memory mapped I/O space
4105  * @res: resource to be unmapped
4106  *
4107  * Unmap the CPU virtual address @res from virtual address space.  Only
4108  * architectures that have memory mapped IO functions defined (and the
4109  * PCI_IOBASE value defined) should call this function.
4110  */
pci_unmap_iospace(struct resource * res)4111 void pci_unmap_iospace(struct resource *res)
4112 {
4113 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4114 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4115 
4116 	unmap_kernel_range(vaddr, resource_size(res));
4117 #endif
4118 }
4119 EXPORT_SYMBOL(pci_unmap_iospace);
4120 
devm_pci_unmap_iospace(struct device * dev,void * ptr)4121 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4122 {
4123 	struct resource **res = ptr;
4124 
4125 	pci_unmap_iospace(*res);
4126 }
4127 
4128 /**
4129  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4130  * @dev: Generic device to remap IO address for
4131  * @res: Resource describing the I/O space
4132  * @phys_addr: physical address of range to be mapped
4133  *
4134  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4135  * detach.
4136  */
devm_pci_remap_iospace(struct device * dev,const struct resource * res,phys_addr_t phys_addr)4137 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4138 			   phys_addr_t phys_addr)
4139 {
4140 	const struct resource **ptr;
4141 	int error;
4142 
4143 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4144 	if (!ptr)
4145 		return -ENOMEM;
4146 
4147 	error = pci_remap_iospace(res, phys_addr);
4148 	if (error) {
4149 		devres_free(ptr);
4150 	} else	{
4151 		*ptr = res;
4152 		devres_add(dev, ptr);
4153 	}
4154 
4155 	return error;
4156 }
4157 EXPORT_SYMBOL(devm_pci_remap_iospace);
4158 
4159 /**
4160  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4161  * @dev: Generic device to remap IO address for
4162  * @offset: Resource address to map
4163  * @size: Size of map
4164  *
4165  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4166  * detach.
4167  */
devm_pci_remap_cfgspace(struct device * dev,resource_size_t offset,resource_size_t size)4168 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4169 				      resource_size_t offset,
4170 				      resource_size_t size)
4171 {
4172 	void __iomem **ptr, *addr;
4173 
4174 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4175 	if (!ptr)
4176 		return NULL;
4177 
4178 	addr = pci_remap_cfgspace(offset, size);
4179 	if (addr) {
4180 		*ptr = addr;
4181 		devres_add(dev, ptr);
4182 	} else
4183 		devres_free(ptr);
4184 
4185 	return addr;
4186 }
4187 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4188 
4189 /**
4190  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4191  * @dev: generic device to handle the resource for
4192  * @res: configuration space resource to be handled
4193  *
4194  * Checks that a resource is a valid memory region, requests the memory
4195  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4196  * proper PCI configuration space memory attributes are guaranteed.
4197  *
4198  * All operations are managed and will be undone on driver detach.
4199  *
4200  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4201  * on failure. Usage example::
4202  *
4203  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4204  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4205  *	if (IS_ERR(base))
4206  *		return PTR_ERR(base);
4207  */
devm_pci_remap_cfg_resource(struct device * dev,struct resource * res)4208 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4209 					  struct resource *res)
4210 {
4211 	resource_size_t size;
4212 	const char *name;
4213 	void __iomem *dest_ptr;
4214 
4215 	BUG_ON(!dev);
4216 
4217 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4218 		dev_err(dev, "invalid resource\n");
4219 		return IOMEM_ERR_PTR(-EINVAL);
4220 	}
4221 
4222 	size = resource_size(res);
4223 	name = res->name ?: dev_name(dev);
4224 
4225 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4226 		dev_err(dev, "can't request region for resource %pR\n", res);
4227 		return IOMEM_ERR_PTR(-EBUSY);
4228 	}
4229 
4230 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4231 	if (!dest_ptr) {
4232 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4233 		devm_release_mem_region(dev, res->start, size);
4234 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4235 	}
4236 
4237 	return dest_ptr;
4238 }
4239 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4240 
__pci_set_master(struct pci_dev * dev,bool enable)4241 static void __pci_set_master(struct pci_dev *dev, bool enable)
4242 {
4243 	u16 old_cmd, cmd;
4244 
4245 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4246 	if (enable)
4247 		cmd = old_cmd | PCI_COMMAND_MASTER;
4248 	else
4249 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4250 	if (cmd != old_cmd) {
4251 		pci_dbg(dev, "%s bus mastering\n",
4252 			enable ? "enabling" : "disabling");
4253 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4254 	}
4255 	dev->is_busmaster = enable;
4256 }
4257 
4258 /**
4259  * pcibios_setup - process "pci=" kernel boot arguments
4260  * @str: string used to pass in "pci=" kernel boot arguments
4261  *
4262  * Process kernel boot arguments.  This is the default implementation.
4263  * Architecture specific implementations can override this as necessary.
4264  */
pcibios_setup(char * str)4265 char * __weak __init pcibios_setup(char *str)
4266 {
4267 	return str;
4268 }
4269 
4270 /**
4271  * pcibios_set_master - enable PCI bus-mastering for device dev
4272  * @dev: the PCI device to enable
4273  *
4274  * Enables PCI bus-mastering for the device.  This is the default
4275  * implementation.  Architecture specific implementations can override
4276  * this if necessary.
4277  */
pcibios_set_master(struct pci_dev * dev)4278 void __weak pcibios_set_master(struct pci_dev *dev)
4279 {
4280 	u8 lat;
4281 
4282 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4283 	if (pci_is_pcie(dev))
4284 		return;
4285 
4286 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4287 	if (lat < 16)
4288 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4289 	else if (lat > pcibios_max_latency)
4290 		lat = pcibios_max_latency;
4291 	else
4292 		return;
4293 
4294 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4295 }
4296 
4297 /**
4298  * pci_set_master - enables bus-mastering for device dev
4299  * @dev: the PCI device to enable
4300  *
4301  * Enables bus-mastering on the device and calls pcibios_set_master()
4302  * to do the needed arch specific settings.
4303  */
pci_set_master(struct pci_dev * dev)4304 void pci_set_master(struct pci_dev *dev)
4305 {
4306 	__pci_set_master(dev, true);
4307 	pcibios_set_master(dev);
4308 }
4309 EXPORT_SYMBOL(pci_set_master);
4310 
4311 /**
4312  * pci_clear_master - disables bus-mastering for device dev
4313  * @dev: the PCI device to disable
4314  */
pci_clear_master(struct pci_dev * dev)4315 void pci_clear_master(struct pci_dev *dev)
4316 {
4317 	__pci_set_master(dev, false);
4318 }
4319 EXPORT_SYMBOL(pci_clear_master);
4320 
4321 /**
4322  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4323  * @dev: the PCI device for which MWI is to be enabled
4324  *
4325  * Helper function for pci_set_mwi.
4326  * Originally copied from drivers/net/acenic.c.
4327  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4328  *
4329  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4330  */
pci_set_cacheline_size(struct pci_dev * dev)4331 int pci_set_cacheline_size(struct pci_dev *dev)
4332 {
4333 	u8 cacheline_size;
4334 
4335 	if (!pci_cache_line_size)
4336 		return -EINVAL;
4337 
4338 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4339 	   equal to or multiple of the right value. */
4340 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4341 	if (cacheline_size >= pci_cache_line_size &&
4342 	    (cacheline_size % pci_cache_line_size) == 0)
4343 		return 0;
4344 
4345 	/* Write the correct value. */
4346 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4347 	/* Read it back. */
4348 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4349 	if (cacheline_size == pci_cache_line_size)
4350 		return 0;
4351 
4352 	pci_info(dev, "cache line size of %d is not supported\n",
4353 		   pci_cache_line_size << 2);
4354 
4355 	return -EINVAL;
4356 }
4357 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4358 
4359 /**
4360  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4361  * @dev: the PCI device for which MWI is enabled
4362  *
4363  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4364  *
4365  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4366  */
pci_set_mwi(struct pci_dev * dev)4367 int pci_set_mwi(struct pci_dev *dev)
4368 {
4369 #ifdef PCI_DISABLE_MWI
4370 	return 0;
4371 #else
4372 	int rc;
4373 	u16 cmd;
4374 
4375 	rc = pci_set_cacheline_size(dev);
4376 	if (rc)
4377 		return rc;
4378 
4379 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4380 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4381 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4382 		cmd |= PCI_COMMAND_INVALIDATE;
4383 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4384 	}
4385 	return 0;
4386 #endif
4387 }
4388 EXPORT_SYMBOL(pci_set_mwi);
4389 
4390 /**
4391  * pcim_set_mwi - a device-managed pci_set_mwi()
4392  * @dev: the PCI device for which MWI is enabled
4393  *
4394  * Managed pci_set_mwi().
4395  *
4396  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4397  */
pcim_set_mwi(struct pci_dev * dev)4398 int pcim_set_mwi(struct pci_dev *dev)
4399 {
4400 	struct pci_devres *dr;
4401 
4402 	dr = find_pci_dr(dev);
4403 	if (!dr)
4404 		return -ENOMEM;
4405 
4406 	dr->mwi = 1;
4407 	return pci_set_mwi(dev);
4408 }
4409 EXPORT_SYMBOL(pcim_set_mwi);
4410 
4411 /**
4412  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4413  * @dev: the PCI device for which MWI is enabled
4414  *
4415  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4416  * Callers are not required to check the return value.
4417  *
4418  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4419  */
pci_try_set_mwi(struct pci_dev * dev)4420 int pci_try_set_mwi(struct pci_dev *dev)
4421 {
4422 #ifdef PCI_DISABLE_MWI
4423 	return 0;
4424 #else
4425 	return pci_set_mwi(dev);
4426 #endif
4427 }
4428 EXPORT_SYMBOL(pci_try_set_mwi);
4429 
4430 /**
4431  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4432  * @dev: the PCI device to disable
4433  *
4434  * Disables PCI Memory-Write-Invalidate transaction on the device
4435  */
pci_clear_mwi(struct pci_dev * dev)4436 void pci_clear_mwi(struct pci_dev *dev)
4437 {
4438 #ifndef PCI_DISABLE_MWI
4439 	u16 cmd;
4440 
4441 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4442 	if (cmd & PCI_COMMAND_INVALIDATE) {
4443 		cmd &= ~PCI_COMMAND_INVALIDATE;
4444 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4445 	}
4446 #endif
4447 }
4448 EXPORT_SYMBOL(pci_clear_mwi);
4449 
4450 /**
4451  * pci_intx - enables/disables PCI INTx for device dev
4452  * @pdev: the PCI device to operate on
4453  * @enable: boolean: whether to enable or disable PCI INTx
4454  *
4455  * Enables/disables PCI INTx for device @pdev
4456  */
pci_intx(struct pci_dev * pdev,int enable)4457 void pci_intx(struct pci_dev *pdev, int enable)
4458 {
4459 	u16 pci_command, new;
4460 
4461 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4462 
4463 	if (enable)
4464 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4465 	else
4466 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4467 
4468 	if (new != pci_command) {
4469 		struct pci_devres *dr;
4470 
4471 		pci_write_config_word(pdev, PCI_COMMAND, new);
4472 
4473 		dr = find_pci_dr(pdev);
4474 		if (dr && !dr->restore_intx) {
4475 			dr->restore_intx = 1;
4476 			dr->orig_intx = !enable;
4477 		}
4478 	}
4479 }
4480 EXPORT_SYMBOL_GPL(pci_intx);
4481 
pci_check_and_set_intx_mask(struct pci_dev * dev,bool mask)4482 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4483 {
4484 	struct pci_bus *bus = dev->bus;
4485 	bool mask_updated = true;
4486 	u32 cmd_status_dword;
4487 	u16 origcmd, newcmd;
4488 	unsigned long flags;
4489 	bool irq_pending;
4490 
4491 	/*
4492 	 * We do a single dword read to retrieve both command and status.
4493 	 * Document assumptions that make this possible.
4494 	 */
4495 	BUILD_BUG_ON(PCI_COMMAND % 4);
4496 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4497 
4498 	raw_spin_lock_irqsave(&pci_lock, flags);
4499 
4500 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4501 
4502 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4503 
4504 	/*
4505 	 * Check interrupt status register to see whether our device
4506 	 * triggered the interrupt (when masking) or the next IRQ is
4507 	 * already pending (when unmasking).
4508 	 */
4509 	if (mask != irq_pending) {
4510 		mask_updated = false;
4511 		goto done;
4512 	}
4513 
4514 	origcmd = cmd_status_dword;
4515 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4516 	if (mask)
4517 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4518 	if (newcmd != origcmd)
4519 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4520 
4521 done:
4522 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4523 
4524 	return mask_updated;
4525 }
4526 
4527 /**
4528  * pci_check_and_mask_intx - mask INTx on pending interrupt
4529  * @dev: the PCI device to operate on
4530  *
4531  * Check if the device dev has its INTx line asserted, mask it and return
4532  * true in that case. False is returned if no interrupt was pending.
4533  */
pci_check_and_mask_intx(struct pci_dev * dev)4534 bool pci_check_and_mask_intx(struct pci_dev *dev)
4535 {
4536 	return pci_check_and_set_intx_mask(dev, true);
4537 }
4538 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4539 
4540 /**
4541  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4542  * @dev: the PCI device to operate on
4543  *
4544  * Check if the device dev has its INTx line asserted, unmask it if not and
4545  * return true. False is returned and the mask remains active if there was
4546  * still an interrupt pending.
4547  */
pci_check_and_unmask_intx(struct pci_dev * dev)4548 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4549 {
4550 	return pci_check_and_set_intx_mask(dev, false);
4551 }
4552 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4553 
4554 /**
4555  * pci_wait_for_pending_transaction - wait for pending transaction
4556  * @dev: the PCI device to operate on
4557  *
4558  * Return 0 if transaction is pending 1 otherwise.
4559  */
pci_wait_for_pending_transaction(struct pci_dev * dev)4560 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4561 {
4562 	if (!pci_is_pcie(dev))
4563 		return 1;
4564 
4565 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4566 				    PCI_EXP_DEVSTA_TRPND);
4567 }
4568 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4569 
4570 /**
4571  * pcie_has_flr - check if a device supports function level resets
4572  * @dev: device to check
4573  *
4574  * Returns true if the device advertises support for PCIe function level
4575  * resets.
4576  */
pcie_has_flr(struct pci_dev * dev)4577 bool pcie_has_flr(struct pci_dev *dev)
4578 {
4579 	u32 cap;
4580 
4581 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4582 		return false;
4583 
4584 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4585 	return cap & PCI_EXP_DEVCAP_FLR;
4586 }
4587 EXPORT_SYMBOL_GPL(pcie_has_flr);
4588 
4589 /**
4590  * pcie_flr - initiate a PCIe function level reset
4591  * @dev: device to reset
4592  *
4593  * Initiate a function level reset on @dev.  The caller should ensure the
4594  * device supports FLR before calling this function, e.g. by using the
4595  * pcie_has_flr() helper.
4596  */
pcie_flr(struct pci_dev * dev)4597 int pcie_flr(struct pci_dev *dev)
4598 {
4599 	if (!pci_wait_for_pending_transaction(dev))
4600 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4601 
4602 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4603 
4604 	if (dev->imm_ready)
4605 		return 0;
4606 
4607 	/*
4608 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4609 	 * 100ms, but may silently discard requests while the FLR is in
4610 	 * progress.  Wait 100ms before trying to access the device.
4611 	 */
4612 	msleep(100);
4613 
4614 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4615 }
4616 EXPORT_SYMBOL_GPL(pcie_flr);
4617 
pci_af_flr(struct pci_dev * dev,int probe)4618 static int pci_af_flr(struct pci_dev *dev, int probe)
4619 {
4620 	int pos;
4621 	u8 cap;
4622 
4623 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4624 	if (!pos)
4625 		return -ENOTTY;
4626 
4627 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4628 		return -ENOTTY;
4629 
4630 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4631 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4632 		return -ENOTTY;
4633 
4634 	if (probe)
4635 		return 0;
4636 
4637 	/*
4638 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4639 	 * is used, so we use the control offset rather than status and shift
4640 	 * the test bit to match.
4641 	 */
4642 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4643 				 PCI_AF_STATUS_TP << 8))
4644 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4645 
4646 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4647 
4648 	if (dev->imm_ready)
4649 		return 0;
4650 
4651 	/*
4652 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4653 	 * updated 27 July 2006; a device must complete an FLR within
4654 	 * 100ms, but may silently discard requests while the FLR is in
4655 	 * progress.  Wait 100ms before trying to access the device.
4656 	 */
4657 	msleep(100);
4658 
4659 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4660 }
4661 
4662 /**
4663  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4664  * @dev: Device to reset.
4665  * @probe: If set, only check if the device can be reset this way.
4666  *
4667  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4668  * unset, it will be reinitialized internally when going from PCI_D3hot to
4669  * PCI_D0.  If that's the case and the device is not in a low-power state
4670  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4671  *
4672  * NOTE: This causes the caller to sleep for twice the device power transition
4673  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4674  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4675  * Moreover, only devices in D0 can be reset by this function.
4676  */
pci_pm_reset(struct pci_dev * dev,int probe)4677 static int pci_pm_reset(struct pci_dev *dev, int probe)
4678 {
4679 	u16 csr;
4680 
4681 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4682 		return -ENOTTY;
4683 
4684 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4685 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4686 		return -ENOTTY;
4687 
4688 	if (probe)
4689 		return 0;
4690 
4691 	if (dev->current_state != PCI_D0)
4692 		return -EINVAL;
4693 
4694 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4695 	csr |= PCI_D3hot;
4696 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4697 	pci_dev_d3_sleep(dev);
4698 
4699 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4700 	csr |= PCI_D0;
4701 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4702 	pci_dev_d3_sleep(dev);
4703 
4704 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4705 }
4706 
4707 /**
4708  * pcie_wait_for_link_delay - Wait until link is active or inactive
4709  * @pdev: Bridge device
4710  * @active: waiting for active or inactive?
4711  * @delay: Delay to wait after link has become active (in ms)
4712  *
4713  * Use this to wait till link becomes active or inactive.
4714  */
pcie_wait_for_link_delay(struct pci_dev * pdev,bool active,int delay)4715 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4716 				     int delay)
4717 {
4718 	int timeout = 1000;
4719 	bool ret;
4720 	u16 lnk_status;
4721 
4722 	/*
4723 	 * Some controllers might not implement link active reporting. In this
4724 	 * case, we wait for 1000 ms + any delay requested by the caller.
4725 	 */
4726 	if (!pdev->link_active_reporting) {
4727 		msleep(timeout + delay);
4728 		return true;
4729 	}
4730 
4731 	/*
4732 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4733 	 * after which we should expect an link active if the reset was
4734 	 * successful. If so, software must wait a minimum 100ms before sending
4735 	 * configuration requests to devices downstream this port.
4736 	 *
4737 	 * If the link fails to activate, either the device was physically
4738 	 * removed or the link is permanently failed.
4739 	 */
4740 	if (active)
4741 		msleep(20);
4742 	for (;;) {
4743 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4744 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4745 		if (ret == active)
4746 			break;
4747 		if (timeout <= 0)
4748 			break;
4749 		msleep(10);
4750 		timeout -= 10;
4751 	}
4752 	if (active && ret)
4753 		msleep(delay);
4754 
4755 	return ret == active;
4756 }
4757 
4758 /**
4759  * pcie_wait_for_link - Wait until link is active or inactive
4760  * @pdev: Bridge device
4761  * @active: waiting for active or inactive?
4762  *
4763  * Use this to wait till link becomes active or inactive.
4764  */
pcie_wait_for_link(struct pci_dev * pdev,bool active)4765 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4766 {
4767 	return pcie_wait_for_link_delay(pdev, active, 100);
4768 }
4769 
4770 /*
4771  * Find maximum D3cold delay required by all the devices on the bus.  The
4772  * spec says 100 ms, but firmware can lower it and we allow drivers to
4773  * increase it as well.
4774  *
4775  * Called with @pci_bus_sem locked for reading.
4776  */
pci_bus_max_d3cold_delay(const struct pci_bus * bus)4777 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4778 {
4779 	const struct pci_dev *pdev;
4780 	int min_delay = 100;
4781 	int max_delay = 0;
4782 
4783 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4784 		if (pdev->d3cold_delay < min_delay)
4785 			min_delay = pdev->d3cold_delay;
4786 		if (pdev->d3cold_delay > max_delay)
4787 			max_delay = pdev->d3cold_delay;
4788 	}
4789 
4790 	return max(min_delay, max_delay);
4791 }
4792 
4793 /**
4794  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4795  * @dev: PCI bridge
4796  * @reset_type: reset type in human-readable form
4797  * @timeout: maximum time to wait for devices on secondary bus (milliseconds)
4798  *
4799  * Handle necessary delays before access to the devices on the secondary
4800  * side of the bridge are permitted after D3cold to D0 transition
4801  * or Conventional Reset.
4802  *
4803  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4804  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4805  * 4.3.2.
4806  *
4807  * Return 0 on success or -ENOTTY if the first device on the secondary bus
4808  * failed to become accessible.
4809  */
pci_bridge_wait_for_secondary_bus(struct pci_dev * dev,char * reset_type,int timeout)4810 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type,
4811 				      int timeout)
4812 {
4813 	struct pci_dev *child;
4814 	int delay;
4815 
4816 	if (pci_dev_is_disconnected(dev))
4817 		return 0;
4818 
4819 	if (!pci_is_bridge(dev))
4820 		return 0;
4821 
4822 	down_read(&pci_bus_sem);
4823 
4824 	/*
4825 	 * We only deal with devices that are present currently on the bus.
4826 	 * For any hot-added devices the access delay is handled in pciehp
4827 	 * board_added(). In case of ACPI hotplug the firmware is expected
4828 	 * to configure the devices before OS is notified.
4829 	 */
4830 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4831 		up_read(&pci_bus_sem);
4832 		return 0;
4833 	}
4834 
4835 	/* Take d3cold_delay requirements into account */
4836 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4837 	if (!delay) {
4838 		up_read(&pci_bus_sem);
4839 		return 0;
4840 	}
4841 
4842 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4843 				 bus_list);
4844 	up_read(&pci_bus_sem);
4845 
4846 	/*
4847 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4848 	 * accessing the device after reset (that is 1000 ms + 100 ms).
4849 	 */
4850 	if (!pci_is_pcie(dev)) {
4851 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4852 		msleep(1000 + delay);
4853 		return 0;
4854 	}
4855 
4856 	/*
4857 	 * For PCIe downstream and root ports that do not support speeds
4858 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4859 	 * speeds (gen3) we need to wait first for the data link layer to
4860 	 * become active.
4861 	 *
4862 	 * However, 100 ms is the minimum and the PCIe spec says the
4863 	 * software must allow at least 1s before it can determine that the
4864 	 * device that did not respond is a broken device. There is
4865 	 * evidence that 100 ms is not always enough, for example certain
4866 	 * Titan Ridge xHCI controller does not always respond to
4867 	 * configuration requests if we only wait for 100 ms (see
4868 	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4869 	 *
4870 	 * Therefore we wait for 100 ms and check for the device presence
4871 	 * until the timeout expires.
4872 	 */
4873 	if (!pcie_downstream_port(dev))
4874 		return 0;
4875 
4876 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4877 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4878 		msleep(delay);
4879 	} else {
4880 		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4881 			delay);
4882 		if (!pcie_wait_for_link_delay(dev, true, delay)) {
4883 			/* Did not train, no need to wait any further */
4884 			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4885 			return -ENOTTY;
4886 		}
4887 	}
4888 
4889 	return pci_dev_wait(child, reset_type, timeout - delay);
4890 }
4891 
pci_reset_secondary_bus(struct pci_dev * dev)4892 void pci_reset_secondary_bus(struct pci_dev *dev)
4893 {
4894 	u16 ctrl;
4895 
4896 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4897 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4898 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4899 
4900 	/*
4901 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4902 	 * this to 2ms to ensure that we meet the minimum requirement.
4903 	 */
4904 	msleep(2);
4905 
4906 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4907 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4908 }
4909 
pcibios_reset_secondary_bus(struct pci_dev * dev)4910 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4911 {
4912 	pci_reset_secondary_bus(dev);
4913 }
4914 
4915 /**
4916  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4917  * @dev: Bridge device
4918  *
4919  * Use the bridge control register to assert reset on the secondary bus.
4920  * Devices on the secondary bus are left in power-on state.
4921  */
pci_bridge_secondary_bus_reset(struct pci_dev * dev)4922 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4923 {
4924 	pcibios_reset_secondary_bus(dev);
4925 
4926 	return pci_bridge_wait_for_secondary_bus(dev, "bus reset",
4927 						 PCIE_RESET_READY_POLL_MS);
4928 }
4929 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4930 
pci_parent_bus_reset(struct pci_dev * dev,int probe)4931 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4932 {
4933 	struct pci_dev *pdev;
4934 
4935 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4936 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4937 		return -ENOTTY;
4938 
4939 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4940 		if (pdev != dev)
4941 			return -ENOTTY;
4942 
4943 	if (probe)
4944 		return 0;
4945 
4946 	return pci_bridge_secondary_bus_reset(dev->bus->self);
4947 }
4948 
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,int probe)4949 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4950 {
4951 	int rc = -ENOTTY;
4952 
4953 	if (!hotplug || !try_module_get(hotplug->owner))
4954 		return rc;
4955 
4956 	if (hotplug->ops->reset_slot)
4957 		rc = hotplug->ops->reset_slot(hotplug, probe);
4958 
4959 	module_put(hotplug->owner);
4960 
4961 	return rc;
4962 }
4963 
pci_dev_reset_slot_function(struct pci_dev * dev,int probe)4964 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4965 {
4966 	if (dev->multifunction || dev->subordinate || !dev->slot ||
4967 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4968 		return -ENOTTY;
4969 
4970 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4971 }
4972 
pci_dev_lock(struct pci_dev * dev)4973 static void pci_dev_lock(struct pci_dev *dev)
4974 {
4975 	/* block PM suspend, driver probe, etc. */
4976 	device_lock(&dev->dev);
4977 	pci_cfg_access_lock(dev);
4978 }
4979 
4980 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)4981 static int pci_dev_trylock(struct pci_dev *dev)
4982 {
4983 	if (device_trylock(&dev->dev)) {
4984 		if (pci_cfg_access_trylock(dev))
4985 			return 1;
4986 		device_unlock(&dev->dev);
4987 	}
4988 
4989 	return 0;
4990 }
4991 
pci_dev_unlock(struct pci_dev * dev)4992 static void pci_dev_unlock(struct pci_dev *dev)
4993 {
4994 	pci_cfg_access_unlock(dev);
4995 	device_unlock(&dev->dev);
4996 }
4997 
pci_dev_save_and_disable(struct pci_dev * dev)4998 static void pci_dev_save_and_disable(struct pci_dev *dev)
4999 {
5000 	const struct pci_error_handlers *err_handler =
5001 			dev->driver ? dev->driver->err_handler : NULL;
5002 
5003 	/*
5004 	 * dev->driver->err_handler->reset_prepare() is protected against
5005 	 * races with ->remove() by the device lock, which must be held by
5006 	 * the caller.
5007 	 */
5008 	if (err_handler && err_handler->reset_prepare)
5009 		err_handler->reset_prepare(dev);
5010 
5011 	/*
5012 	 * Wake-up device prior to save.  PM registers default to D0 after
5013 	 * reset and a simple register restore doesn't reliably return
5014 	 * to a non-D0 state anyway.
5015 	 */
5016 	pci_set_power_state(dev, PCI_D0);
5017 
5018 	pci_save_state(dev);
5019 	/*
5020 	 * Disable the device by clearing the Command register, except for
5021 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5022 	 * BARs, but also prevents the device from being Bus Master, preventing
5023 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5024 	 * compliant devices, INTx-disable prevents legacy interrupts.
5025 	 */
5026 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5027 }
5028 
pci_dev_restore(struct pci_dev * dev)5029 static void pci_dev_restore(struct pci_dev *dev)
5030 {
5031 	const struct pci_error_handlers *err_handler =
5032 			dev->driver ? dev->driver->err_handler : NULL;
5033 
5034 	pci_restore_state(dev);
5035 
5036 	/*
5037 	 * dev->driver->err_handler->reset_done() is protected against
5038 	 * races with ->remove() by the device lock, which must be held by
5039 	 * the caller.
5040 	 */
5041 	if (err_handler && err_handler->reset_done)
5042 		err_handler->reset_done(dev);
5043 }
5044 
5045 /**
5046  * __pci_reset_function_locked - reset a PCI device function while holding
5047  * the @dev mutex lock.
5048  * @dev: PCI device to reset
5049  *
5050  * Some devices allow an individual function to be reset without affecting
5051  * other functions in the same device.  The PCI device must be responsive
5052  * to PCI config space in order to use this function.
5053  *
5054  * The device function is presumed to be unused and the caller is holding
5055  * the device mutex lock when this function is called.
5056  *
5057  * Resetting the device will make the contents of PCI configuration space
5058  * random, so any caller of this must be prepared to reinitialise the
5059  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5060  * etc.
5061  *
5062  * Returns 0 if the device function was successfully reset or negative if the
5063  * device doesn't support resetting a single function.
5064  */
__pci_reset_function_locked(struct pci_dev * dev)5065 int __pci_reset_function_locked(struct pci_dev *dev)
5066 {
5067 	int rc;
5068 
5069 	might_sleep();
5070 
5071 	/*
5072 	 * A reset method returns -ENOTTY if it doesn't support this device
5073 	 * and we should try the next method.
5074 	 *
5075 	 * If it returns 0 (success), we're finished.  If it returns any
5076 	 * other error, we're also finished: this indicates that further
5077 	 * reset mechanisms might be broken on the device.
5078 	 */
5079 	rc = pci_dev_specific_reset(dev, 0);
5080 	if (rc != -ENOTTY)
5081 		return rc;
5082 	if (pcie_has_flr(dev)) {
5083 		rc = pcie_flr(dev);
5084 		if (rc != -ENOTTY)
5085 			return rc;
5086 	}
5087 	rc = pci_af_flr(dev, 0);
5088 	if (rc != -ENOTTY)
5089 		return rc;
5090 	rc = pci_pm_reset(dev, 0);
5091 	if (rc != -ENOTTY)
5092 		return rc;
5093 	rc = pci_dev_reset_slot_function(dev, 0);
5094 	if (rc != -ENOTTY)
5095 		return rc;
5096 	return pci_parent_bus_reset(dev, 0);
5097 }
5098 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5099 
5100 /**
5101  * pci_probe_reset_function - check whether the device can be safely reset
5102  * @dev: PCI device to reset
5103  *
5104  * Some devices allow an individual function to be reset without affecting
5105  * other functions in the same device.  The PCI device must be responsive
5106  * to PCI config space in order to use this function.
5107  *
5108  * Returns 0 if the device function can be reset or negative if the
5109  * device doesn't support resetting a single function.
5110  */
pci_probe_reset_function(struct pci_dev * dev)5111 int pci_probe_reset_function(struct pci_dev *dev)
5112 {
5113 	int rc;
5114 
5115 	might_sleep();
5116 
5117 	rc = pci_dev_specific_reset(dev, 1);
5118 	if (rc != -ENOTTY)
5119 		return rc;
5120 	if (pcie_has_flr(dev))
5121 		return 0;
5122 	rc = pci_af_flr(dev, 1);
5123 	if (rc != -ENOTTY)
5124 		return rc;
5125 	rc = pci_pm_reset(dev, 1);
5126 	if (rc != -ENOTTY)
5127 		return rc;
5128 	rc = pci_dev_reset_slot_function(dev, 1);
5129 	if (rc != -ENOTTY)
5130 		return rc;
5131 
5132 	return pci_parent_bus_reset(dev, 1);
5133 }
5134 
5135 /**
5136  * pci_reset_function - quiesce and reset a PCI device function
5137  * @dev: PCI device to reset
5138  *
5139  * Some devices allow an individual function to be reset without affecting
5140  * other functions in the same device.  The PCI device must be responsive
5141  * to PCI config space in order to use this function.
5142  *
5143  * This function does not just reset the PCI portion of a device, but
5144  * clears all the state associated with the device.  This function differs
5145  * from __pci_reset_function_locked() in that it saves and restores device state
5146  * over the reset and takes the PCI device lock.
5147  *
5148  * Returns 0 if the device function was successfully reset or negative if the
5149  * device doesn't support resetting a single function.
5150  */
pci_reset_function(struct pci_dev * dev)5151 int pci_reset_function(struct pci_dev *dev)
5152 {
5153 	int rc;
5154 
5155 	if (!dev->reset_fn)
5156 		return -ENOTTY;
5157 
5158 	pci_dev_lock(dev);
5159 	pci_dev_save_and_disable(dev);
5160 
5161 	rc = __pci_reset_function_locked(dev);
5162 
5163 	pci_dev_restore(dev);
5164 	pci_dev_unlock(dev);
5165 
5166 	return rc;
5167 }
5168 EXPORT_SYMBOL_GPL(pci_reset_function);
5169 
5170 /**
5171  * pci_reset_function_locked - quiesce and reset a PCI device function
5172  * @dev: PCI device to reset
5173  *
5174  * Some devices allow an individual function to be reset without affecting
5175  * other functions in the same device.  The PCI device must be responsive
5176  * to PCI config space in order to use this function.
5177  *
5178  * This function does not just reset the PCI portion of a device, but
5179  * clears all the state associated with the device.  This function differs
5180  * from __pci_reset_function_locked() in that it saves and restores device state
5181  * over the reset.  It also differs from pci_reset_function() in that it
5182  * requires the PCI device lock to be held.
5183  *
5184  * Returns 0 if the device function was successfully reset or negative if the
5185  * device doesn't support resetting a single function.
5186  */
pci_reset_function_locked(struct pci_dev * dev)5187 int pci_reset_function_locked(struct pci_dev *dev)
5188 {
5189 	int rc;
5190 
5191 	if (!dev->reset_fn)
5192 		return -ENOTTY;
5193 
5194 	pci_dev_save_and_disable(dev);
5195 
5196 	rc = __pci_reset_function_locked(dev);
5197 
5198 	pci_dev_restore(dev);
5199 
5200 	return rc;
5201 }
5202 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5203 
5204 /**
5205  * pci_try_reset_function - quiesce and reset a PCI device function
5206  * @dev: PCI device to reset
5207  *
5208  * Same as above, except return -EAGAIN if unable to lock device.
5209  */
pci_try_reset_function(struct pci_dev * dev)5210 int pci_try_reset_function(struct pci_dev *dev)
5211 {
5212 	int rc;
5213 
5214 	if (!dev->reset_fn)
5215 		return -ENOTTY;
5216 
5217 	if (!pci_dev_trylock(dev))
5218 		return -EAGAIN;
5219 
5220 	pci_dev_save_and_disable(dev);
5221 	rc = __pci_reset_function_locked(dev);
5222 	pci_dev_restore(dev);
5223 	pci_dev_unlock(dev);
5224 
5225 	return rc;
5226 }
5227 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5228 
5229 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resetable(struct pci_bus * bus)5230 static bool pci_bus_resetable(struct pci_bus *bus)
5231 {
5232 	struct pci_dev *dev;
5233 
5234 
5235 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5236 		return false;
5237 
5238 	list_for_each_entry(dev, &bus->devices, bus_list) {
5239 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5240 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5241 			return false;
5242 	}
5243 
5244 	return true;
5245 }
5246 
5247 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)5248 static void pci_bus_lock(struct pci_bus *bus)
5249 {
5250 	struct pci_dev *dev;
5251 
5252 	list_for_each_entry(dev, &bus->devices, bus_list) {
5253 		pci_dev_lock(dev);
5254 		if (dev->subordinate)
5255 			pci_bus_lock(dev->subordinate);
5256 	}
5257 }
5258 
5259 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)5260 static void pci_bus_unlock(struct pci_bus *bus)
5261 {
5262 	struct pci_dev *dev;
5263 
5264 	list_for_each_entry(dev, &bus->devices, bus_list) {
5265 		if (dev->subordinate)
5266 			pci_bus_unlock(dev->subordinate);
5267 		pci_dev_unlock(dev);
5268 	}
5269 }
5270 
5271 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)5272 static int pci_bus_trylock(struct pci_bus *bus)
5273 {
5274 	struct pci_dev *dev;
5275 
5276 	list_for_each_entry(dev, &bus->devices, bus_list) {
5277 		if (!pci_dev_trylock(dev))
5278 			goto unlock;
5279 		if (dev->subordinate) {
5280 			if (!pci_bus_trylock(dev->subordinate)) {
5281 				pci_dev_unlock(dev);
5282 				goto unlock;
5283 			}
5284 		}
5285 	}
5286 	return 1;
5287 
5288 unlock:
5289 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5290 		if (dev->subordinate)
5291 			pci_bus_unlock(dev->subordinate);
5292 		pci_dev_unlock(dev);
5293 	}
5294 	return 0;
5295 }
5296 
5297 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resetable(struct pci_slot * slot)5298 static bool pci_slot_resetable(struct pci_slot *slot)
5299 {
5300 	struct pci_dev *dev;
5301 
5302 	if (slot->bus->self &&
5303 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5304 		return false;
5305 
5306 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5307 		if (!dev->slot || dev->slot != slot)
5308 			continue;
5309 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5310 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5311 			return false;
5312 	}
5313 
5314 	return true;
5315 }
5316 
5317 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)5318 static void pci_slot_lock(struct pci_slot *slot)
5319 {
5320 	struct pci_dev *dev;
5321 
5322 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5323 		if (!dev->slot || dev->slot != slot)
5324 			continue;
5325 		pci_dev_lock(dev);
5326 		if (dev->subordinate)
5327 			pci_bus_lock(dev->subordinate);
5328 	}
5329 }
5330 
5331 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)5332 static void pci_slot_unlock(struct pci_slot *slot)
5333 {
5334 	struct pci_dev *dev;
5335 
5336 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5337 		if (!dev->slot || dev->slot != slot)
5338 			continue;
5339 		if (dev->subordinate)
5340 			pci_bus_unlock(dev->subordinate);
5341 		pci_dev_unlock(dev);
5342 	}
5343 }
5344 
5345 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)5346 static int pci_slot_trylock(struct pci_slot *slot)
5347 {
5348 	struct pci_dev *dev;
5349 
5350 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5351 		if (!dev->slot || dev->slot != slot)
5352 			continue;
5353 		if (!pci_dev_trylock(dev))
5354 			goto unlock;
5355 		if (dev->subordinate) {
5356 			if (!pci_bus_trylock(dev->subordinate)) {
5357 				pci_dev_unlock(dev);
5358 				goto unlock;
5359 			}
5360 		}
5361 	}
5362 	return 1;
5363 
5364 unlock:
5365 	list_for_each_entry_continue_reverse(dev,
5366 					     &slot->bus->devices, bus_list) {
5367 		if (!dev->slot || dev->slot != slot)
5368 			continue;
5369 		if (dev->subordinate)
5370 			pci_bus_unlock(dev->subordinate);
5371 		pci_dev_unlock(dev);
5372 	}
5373 	return 0;
5374 }
5375 
5376 /*
5377  * Save and disable devices from the top of the tree down while holding
5378  * the @dev mutex lock for the entire tree.
5379  */
pci_bus_save_and_disable_locked(struct pci_bus * bus)5380 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5381 {
5382 	struct pci_dev *dev;
5383 
5384 	list_for_each_entry(dev, &bus->devices, bus_list) {
5385 		pci_dev_save_and_disable(dev);
5386 		if (dev->subordinate)
5387 			pci_bus_save_and_disable_locked(dev->subordinate);
5388 	}
5389 }
5390 
5391 /*
5392  * Restore devices from top of the tree down while holding @dev mutex lock
5393  * for the entire tree.  Parent bridges need to be restored before we can
5394  * get to subordinate devices.
5395  */
pci_bus_restore_locked(struct pci_bus * bus)5396 static void pci_bus_restore_locked(struct pci_bus *bus)
5397 {
5398 	struct pci_dev *dev;
5399 
5400 	list_for_each_entry(dev, &bus->devices, bus_list) {
5401 		pci_dev_restore(dev);
5402 		if (dev->subordinate)
5403 			pci_bus_restore_locked(dev->subordinate);
5404 	}
5405 }
5406 
5407 /*
5408  * Save and disable devices from the top of the tree down while holding
5409  * the @dev mutex lock for the entire tree.
5410  */
pci_slot_save_and_disable_locked(struct pci_slot * slot)5411 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5412 {
5413 	struct pci_dev *dev;
5414 
5415 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5416 		if (!dev->slot || dev->slot != slot)
5417 			continue;
5418 		pci_dev_save_and_disable(dev);
5419 		if (dev->subordinate)
5420 			pci_bus_save_and_disable_locked(dev->subordinate);
5421 	}
5422 }
5423 
5424 /*
5425  * Restore devices from top of the tree down while holding @dev mutex lock
5426  * for the entire tree.  Parent bridges need to be restored before we can
5427  * get to subordinate devices.
5428  */
pci_slot_restore_locked(struct pci_slot * slot)5429 static void pci_slot_restore_locked(struct pci_slot *slot)
5430 {
5431 	struct pci_dev *dev;
5432 
5433 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5434 		if (!dev->slot || dev->slot != slot)
5435 			continue;
5436 		pci_dev_restore(dev);
5437 		if (dev->subordinate)
5438 			pci_bus_restore_locked(dev->subordinate);
5439 	}
5440 }
5441 
pci_slot_reset(struct pci_slot * slot,int probe)5442 static int pci_slot_reset(struct pci_slot *slot, int probe)
5443 {
5444 	int rc;
5445 
5446 	if (!slot || !pci_slot_resetable(slot))
5447 		return -ENOTTY;
5448 
5449 	if (!probe)
5450 		pci_slot_lock(slot);
5451 
5452 	might_sleep();
5453 
5454 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5455 
5456 	if (!probe)
5457 		pci_slot_unlock(slot);
5458 
5459 	return rc;
5460 }
5461 
5462 /**
5463  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5464  * @slot: PCI slot to probe
5465  *
5466  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5467  */
pci_probe_reset_slot(struct pci_slot * slot)5468 int pci_probe_reset_slot(struct pci_slot *slot)
5469 {
5470 	return pci_slot_reset(slot, 1);
5471 }
5472 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5473 
5474 /**
5475  * __pci_reset_slot - Try to reset a PCI slot
5476  * @slot: PCI slot to reset
5477  *
5478  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5479  * independent of other slots.  For instance, some slots may support slot power
5480  * control.  In the case of a 1:1 bus to slot architecture, this function may
5481  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5482  * Generally a slot reset should be attempted before a bus reset.  All of the
5483  * function of the slot and any subordinate buses behind the slot are reset
5484  * through this function.  PCI config space of all devices in the slot and
5485  * behind the slot is saved before and restored after reset.
5486  *
5487  * Same as above except return -EAGAIN if the slot cannot be locked
5488  */
__pci_reset_slot(struct pci_slot * slot)5489 static int __pci_reset_slot(struct pci_slot *slot)
5490 {
5491 	int rc;
5492 
5493 	rc = pci_slot_reset(slot, 1);
5494 	if (rc)
5495 		return rc;
5496 
5497 	if (pci_slot_trylock(slot)) {
5498 		pci_slot_save_and_disable_locked(slot);
5499 		might_sleep();
5500 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5501 		pci_slot_restore_locked(slot);
5502 		pci_slot_unlock(slot);
5503 	} else
5504 		rc = -EAGAIN;
5505 
5506 	return rc;
5507 }
5508 
pci_bus_reset(struct pci_bus * bus,int probe)5509 static int pci_bus_reset(struct pci_bus *bus, int probe)
5510 {
5511 	int ret;
5512 
5513 	if (!bus->self || !pci_bus_resetable(bus))
5514 		return -ENOTTY;
5515 
5516 	if (probe)
5517 		return 0;
5518 
5519 	pci_bus_lock(bus);
5520 
5521 	might_sleep();
5522 
5523 	ret = pci_bridge_secondary_bus_reset(bus->self);
5524 
5525 	pci_bus_unlock(bus);
5526 
5527 	return ret;
5528 }
5529 
5530 /**
5531  * pci_bus_error_reset - reset the bridge's subordinate bus
5532  * @bridge: The parent device that connects to the bus to reset
5533  *
5534  * This function will first try to reset the slots on this bus if the method is
5535  * available. If slot reset fails or is not available, this will fall back to a
5536  * secondary bus reset.
5537  */
pci_bus_error_reset(struct pci_dev * bridge)5538 int pci_bus_error_reset(struct pci_dev *bridge)
5539 {
5540 	struct pci_bus *bus = bridge->subordinate;
5541 	struct pci_slot *slot;
5542 
5543 	if (!bus)
5544 		return -ENOTTY;
5545 
5546 	mutex_lock(&pci_slot_mutex);
5547 	if (list_empty(&bus->slots))
5548 		goto bus_reset;
5549 
5550 	list_for_each_entry(slot, &bus->slots, list)
5551 		if (pci_probe_reset_slot(slot))
5552 			goto bus_reset;
5553 
5554 	list_for_each_entry(slot, &bus->slots, list)
5555 		if (pci_slot_reset(slot, 0))
5556 			goto bus_reset;
5557 
5558 	mutex_unlock(&pci_slot_mutex);
5559 	return 0;
5560 bus_reset:
5561 	mutex_unlock(&pci_slot_mutex);
5562 	return pci_bus_reset(bridge->subordinate, 0);
5563 }
5564 
5565 /**
5566  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5567  * @bus: PCI bus to probe
5568  *
5569  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5570  */
pci_probe_reset_bus(struct pci_bus * bus)5571 int pci_probe_reset_bus(struct pci_bus *bus)
5572 {
5573 	return pci_bus_reset(bus, 1);
5574 }
5575 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5576 
5577 /**
5578  * __pci_reset_bus - Try to reset a PCI bus
5579  * @bus: top level PCI bus to reset
5580  *
5581  * Same as above except return -EAGAIN if the bus cannot be locked
5582  */
__pci_reset_bus(struct pci_bus * bus)5583 static int __pci_reset_bus(struct pci_bus *bus)
5584 {
5585 	int rc;
5586 
5587 	rc = pci_bus_reset(bus, 1);
5588 	if (rc)
5589 		return rc;
5590 
5591 	if (pci_bus_trylock(bus)) {
5592 		pci_bus_save_and_disable_locked(bus);
5593 		might_sleep();
5594 		rc = pci_bridge_secondary_bus_reset(bus->self);
5595 		pci_bus_restore_locked(bus);
5596 		pci_bus_unlock(bus);
5597 	} else
5598 		rc = -EAGAIN;
5599 
5600 	return rc;
5601 }
5602 
5603 /**
5604  * pci_reset_bus - Try to reset a PCI bus
5605  * @pdev: top level PCI device to reset via slot/bus
5606  *
5607  * Same as above except return -EAGAIN if the bus cannot be locked
5608  */
pci_reset_bus(struct pci_dev * pdev)5609 int pci_reset_bus(struct pci_dev *pdev)
5610 {
5611 	return (!pci_probe_reset_slot(pdev->slot)) ?
5612 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5613 }
5614 EXPORT_SYMBOL_GPL(pci_reset_bus);
5615 
5616 /**
5617  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5618  * @dev: PCI device to query
5619  *
5620  * Returns mmrbc: maximum designed memory read count in bytes or
5621  * appropriate error value.
5622  */
pcix_get_max_mmrbc(struct pci_dev * dev)5623 int pcix_get_max_mmrbc(struct pci_dev *dev)
5624 {
5625 	int cap;
5626 	u32 stat;
5627 
5628 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5629 	if (!cap)
5630 		return -EINVAL;
5631 
5632 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5633 		return -EINVAL;
5634 
5635 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5636 }
5637 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5638 
5639 /**
5640  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5641  * @dev: PCI device to query
5642  *
5643  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5644  * value.
5645  */
pcix_get_mmrbc(struct pci_dev * dev)5646 int pcix_get_mmrbc(struct pci_dev *dev)
5647 {
5648 	int cap;
5649 	u16 cmd;
5650 
5651 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5652 	if (!cap)
5653 		return -EINVAL;
5654 
5655 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5656 		return -EINVAL;
5657 
5658 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5659 }
5660 EXPORT_SYMBOL(pcix_get_mmrbc);
5661 
5662 /**
5663  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5664  * @dev: PCI device to query
5665  * @mmrbc: maximum memory read count in bytes
5666  *    valid values are 512, 1024, 2048, 4096
5667  *
5668  * If possible sets maximum memory read byte count, some bridges have errata
5669  * that prevent this.
5670  */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)5671 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5672 {
5673 	int cap;
5674 	u32 stat, v, o;
5675 	u16 cmd;
5676 
5677 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5678 		return -EINVAL;
5679 
5680 	v = ffs(mmrbc) - 10;
5681 
5682 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5683 	if (!cap)
5684 		return -EINVAL;
5685 
5686 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5687 		return -EINVAL;
5688 
5689 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5690 		return -E2BIG;
5691 
5692 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5693 		return -EINVAL;
5694 
5695 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5696 	if (o != v) {
5697 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5698 			return -EIO;
5699 
5700 		cmd &= ~PCI_X_CMD_MAX_READ;
5701 		cmd |= v << 2;
5702 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5703 			return -EIO;
5704 	}
5705 	return 0;
5706 }
5707 EXPORT_SYMBOL(pcix_set_mmrbc);
5708 
5709 /**
5710  * pcie_get_readrq - get PCI Express read request size
5711  * @dev: PCI device to query
5712  *
5713  * Returns maximum memory read request in bytes or appropriate error value.
5714  */
pcie_get_readrq(struct pci_dev * dev)5715 int pcie_get_readrq(struct pci_dev *dev)
5716 {
5717 	u16 ctl;
5718 
5719 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5720 
5721 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5722 }
5723 EXPORT_SYMBOL(pcie_get_readrq);
5724 
5725 /**
5726  * pcie_set_readrq - set PCI Express maximum memory read request
5727  * @dev: PCI device to query
5728  * @rq: maximum memory read count in bytes
5729  *    valid values are 128, 256, 512, 1024, 2048, 4096
5730  *
5731  * If possible sets maximum memory read request in bytes
5732  */
pcie_set_readrq(struct pci_dev * dev,int rq)5733 int pcie_set_readrq(struct pci_dev *dev, int rq)
5734 {
5735 	u16 v;
5736 	int ret;
5737 
5738 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5739 		return -EINVAL;
5740 
5741 	/*
5742 	 * If using the "performance" PCIe config, we clamp the read rq
5743 	 * size to the max packet size to keep the host bridge from
5744 	 * generating requests larger than we can cope with.
5745 	 */
5746 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5747 		int mps = pcie_get_mps(dev);
5748 
5749 		if (mps < rq)
5750 			rq = mps;
5751 	}
5752 
5753 	v = (ffs(rq) - 8) << 12;
5754 
5755 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5756 						  PCI_EXP_DEVCTL_READRQ, v);
5757 
5758 	return pcibios_err_to_errno(ret);
5759 }
5760 EXPORT_SYMBOL(pcie_set_readrq);
5761 
5762 /**
5763  * pcie_get_mps - get PCI Express maximum payload size
5764  * @dev: PCI device to query
5765  *
5766  * Returns maximum payload size in bytes
5767  */
pcie_get_mps(struct pci_dev * dev)5768 int pcie_get_mps(struct pci_dev *dev)
5769 {
5770 	u16 ctl;
5771 
5772 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5773 
5774 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5775 }
5776 EXPORT_SYMBOL(pcie_get_mps);
5777 
5778 /**
5779  * pcie_set_mps - set PCI Express maximum payload size
5780  * @dev: PCI device to query
5781  * @mps: maximum payload size in bytes
5782  *    valid values are 128, 256, 512, 1024, 2048, 4096
5783  *
5784  * If possible sets maximum payload size
5785  */
pcie_set_mps(struct pci_dev * dev,int mps)5786 int pcie_set_mps(struct pci_dev *dev, int mps)
5787 {
5788 	u16 v;
5789 	int ret;
5790 
5791 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5792 		return -EINVAL;
5793 
5794 	v = ffs(mps) - 8;
5795 	if (v > dev->pcie_mpss)
5796 		return -EINVAL;
5797 	v <<= 5;
5798 
5799 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5800 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5801 
5802 	return pcibios_err_to_errno(ret);
5803 }
5804 EXPORT_SYMBOL(pcie_set_mps);
5805 
5806 /**
5807  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5808  *			      device and its bandwidth limitation
5809  * @dev: PCI device to query
5810  * @limiting_dev: storage for device causing the bandwidth limitation
5811  * @speed: storage for speed of limiting device
5812  * @width: storage for width of limiting device
5813  *
5814  * Walk up the PCI device chain and find the point where the minimum
5815  * bandwidth is available.  Return the bandwidth available there and (if
5816  * limiting_dev, speed, and width pointers are supplied) information about
5817  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5818  * raw bandwidth.
5819  */
pcie_bandwidth_available(struct pci_dev * dev,struct pci_dev ** limiting_dev,enum pci_bus_speed * speed,enum pcie_link_width * width)5820 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5821 			     enum pci_bus_speed *speed,
5822 			     enum pcie_link_width *width)
5823 {
5824 	u16 lnksta;
5825 	enum pci_bus_speed next_speed;
5826 	enum pcie_link_width next_width;
5827 	u32 bw, next_bw;
5828 
5829 	if (speed)
5830 		*speed = PCI_SPEED_UNKNOWN;
5831 	if (width)
5832 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5833 
5834 	bw = 0;
5835 
5836 	while (dev) {
5837 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5838 
5839 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5840 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5841 			PCI_EXP_LNKSTA_NLW_SHIFT;
5842 
5843 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5844 
5845 		/* Check if current device limits the total bandwidth */
5846 		if (!bw || next_bw <= bw) {
5847 			bw = next_bw;
5848 
5849 			if (limiting_dev)
5850 				*limiting_dev = dev;
5851 			if (speed)
5852 				*speed = next_speed;
5853 			if (width)
5854 				*width = next_width;
5855 		}
5856 
5857 		dev = pci_upstream_bridge(dev);
5858 	}
5859 
5860 	return bw;
5861 }
5862 EXPORT_SYMBOL(pcie_bandwidth_available);
5863 
5864 /**
5865  * pcie_get_speed_cap - query for the PCI device's link speed capability
5866  * @dev: PCI device to query
5867  *
5868  * Query the PCI device speed capability.  Return the maximum link speed
5869  * supported by the device.
5870  */
pcie_get_speed_cap(struct pci_dev * dev)5871 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5872 {
5873 	u32 lnkcap2, lnkcap;
5874 
5875 	/*
5876 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5877 	 * implementation note there recommends using the Supported Link
5878 	 * Speeds Vector in Link Capabilities 2 when supported.
5879 	 *
5880 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5881 	 * should use the Supported Link Speeds field in Link Capabilities,
5882 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5883 	 */
5884 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5885 
5886 	/* PCIe r3.0-compliant */
5887 	if (lnkcap2)
5888 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5889 
5890 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5891 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5892 		return PCIE_SPEED_5_0GT;
5893 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5894 		return PCIE_SPEED_2_5GT;
5895 
5896 	return PCI_SPEED_UNKNOWN;
5897 }
5898 EXPORT_SYMBOL(pcie_get_speed_cap);
5899 
5900 /**
5901  * pcie_get_width_cap - query for the PCI device's link width capability
5902  * @dev: PCI device to query
5903  *
5904  * Query the PCI device width capability.  Return the maximum link width
5905  * supported by the device.
5906  */
pcie_get_width_cap(struct pci_dev * dev)5907 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5908 {
5909 	u32 lnkcap;
5910 
5911 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5912 	if (lnkcap)
5913 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5914 
5915 	return PCIE_LNK_WIDTH_UNKNOWN;
5916 }
5917 EXPORT_SYMBOL(pcie_get_width_cap);
5918 
5919 /**
5920  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5921  * @dev: PCI device
5922  * @speed: storage for link speed
5923  * @width: storage for link width
5924  *
5925  * Calculate a PCI device's link bandwidth by querying for its link speed
5926  * and width, multiplying them, and applying encoding overhead.  The result
5927  * is in Mb/s, i.e., megabits/second of raw bandwidth.
5928  */
pcie_bandwidth_capable(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)5929 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5930 			   enum pcie_link_width *width)
5931 {
5932 	*speed = pcie_get_speed_cap(dev);
5933 	*width = pcie_get_width_cap(dev);
5934 
5935 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5936 		return 0;
5937 
5938 	return *width * PCIE_SPEED2MBS_ENC(*speed);
5939 }
5940 
5941 /**
5942  * __pcie_print_link_status - Report the PCI device's link speed and width
5943  * @dev: PCI device to query
5944  * @verbose: Print info even when enough bandwidth is available
5945  *
5946  * If the available bandwidth at the device is less than the device is
5947  * capable of, report the device's maximum possible bandwidth and the
5948  * upstream link that limits its performance.  If @verbose, always print
5949  * the available bandwidth, even if the device isn't constrained.
5950  */
__pcie_print_link_status(struct pci_dev * dev,bool verbose)5951 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5952 {
5953 	enum pcie_link_width width, width_cap;
5954 	enum pci_bus_speed speed, speed_cap;
5955 	struct pci_dev *limiting_dev = NULL;
5956 	u32 bw_avail, bw_cap;
5957 
5958 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5959 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5960 
5961 	if (bw_avail >= bw_cap && verbose)
5962 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5963 			 bw_cap / 1000, bw_cap % 1000,
5964 			 pci_speed_string(speed_cap), width_cap);
5965 	else if (bw_avail < bw_cap)
5966 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5967 			 bw_avail / 1000, bw_avail % 1000,
5968 			 pci_speed_string(speed), width,
5969 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5970 			 bw_cap / 1000, bw_cap % 1000,
5971 			 pci_speed_string(speed_cap), width_cap);
5972 }
5973 
5974 /**
5975  * pcie_print_link_status - Report the PCI device's link speed and width
5976  * @dev: PCI device to query
5977  *
5978  * Report the available bandwidth at the device.
5979  */
pcie_print_link_status(struct pci_dev * dev)5980 void pcie_print_link_status(struct pci_dev *dev)
5981 {
5982 	__pcie_print_link_status(dev, true);
5983 }
5984 EXPORT_SYMBOL(pcie_print_link_status);
5985 
5986 /**
5987  * pci_select_bars - Make BAR mask from the type of resource
5988  * @dev: the PCI device for which BAR mask is made
5989  * @flags: resource type mask to be selected
5990  *
5991  * This helper routine makes bar mask from the type of resource.
5992  */
pci_select_bars(struct pci_dev * dev,unsigned long flags)5993 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5994 {
5995 	int i, bars = 0;
5996 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5997 		if (pci_resource_flags(dev, i) & flags)
5998 			bars |= (1 << i);
5999 	return bars;
6000 }
6001 EXPORT_SYMBOL(pci_select_bars);
6002 
6003 /* Some architectures require additional programming to enable VGA */
6004 static arch_set_vga_state_t arch_set_vga_state;
6005 
pci_register_set_vga_state(arch_set_vga_state_t func)6006 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6007 {
6008 	arch_set_vga_state = func;	/* NULL disables */
6009 }
6010 
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6011 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6012 				  unsigned int command_bits, u32 flags)
6013 {
6014 	if (arch_set_vga_state)
6015 		return arch_set_vga_state(dev, decode, command_bits,
6016 						flags);
6017 	return 0;
6018 }
6019 
6020 /**
6021  * pci_set_vga_state - set VGA decode state on device and parents if requested
6022  * @dev: the PCI device
6023  * @decode: true = enable decoding, false = disable decoding
6024  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6025  * @flags: traverse ancestors and change bridges
6026  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6027  */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6028 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6029 		      unsigned int command_bits, u32 flags)
6030 {
6031 	struct pci_bus *bus;
6032 	struct pci_dev *bridge;
6033 	u16 cmd;
6034 	int rc;
6035 
6036 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6037 
6038 	/* ARCH specific VGA enables */
6039 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6040 	if (rc)
6041 		return rc;
6042 
6043 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6044 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6045 		if (decode)
6046 			cmd |= command_bits;
6047 		else
6048 			cmd &= ~command_bits;
6049 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6050 	}
6051 
6052 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6053 		return 0;
6054 
6055 	bus = dev->bus;
6056 	while (bus) {
6057 		bridge = bus->self;
6058 		if (bridge) {
6059 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6060 					     &cmd);
6061 			if (decode)
6062 				cmd |= PCI_BRIDGE_CTL_VGA;
6063 			else
6064 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6065 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6066 					      cmd);
6067 		}
6068 		bus = bus->parent;
6069 	}
6070 	return 0;
6071 }
6072 
6073 #ifdef CONFIG_ACPI
pci_pr3_present(struct pci_dev * pdev)6074 bool pci_pr3_present(struct pci_dev *pdev)
6075 {
6076 	struct acpi_device *adev;
6077 
6078 	if (acpi_disabled)
6079 		return false;
6080 
6081 	adev = ACPI_COMPANION(&pdev->dev);
6082 	if (!adev)
6083 		return false;
6084 
6085 	return adev->power.flags.power_resources &&
6086 		acpi_has_method(adev->handle, "_PR3");
6087 }
6088 EXPORT_SYMBOL_GPL(pci_pr3_present);
6089 #endif
6090 
6091 /**
6092  * pci_add_dma_alias - Add a DMA devfn alias for a device
6093  * @dev: the PCI device for which alias is added
6094  * @devfn_from: alias slot and function
6095  * @nr_devfns: number of subsequent devfns to alias
6096  *
6097  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6098  * which is used to program permissible bus-devfn source addresses for DMA
6099  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6100  * and are useful for devices generating DMA requests beyond or different
6101  * from their logical bus-devfn.  Examples include device quirks where the
6102  * device simply uses the wrong devfn, as well as non-transparent bridges
6103  * where the alias may be a proxy for devices in another domain.
6104  *
6105  * IOMMU group creation is performed during device discovery or addition,
6106  * prior to any potential DMA mapping and therefore prior to driver probing
6107  * (especially for userspace assigned devices where IOMMU group definition
6108  * cannot be left as a userspace activity).  DMA aliases should therefore
6109  * be configured via quirks, such as the PCI fixup header quirk.
6110  */
pci_add_dma_alias(struct pci_dev * dev,u8 devfn_from,unsigned nr_devfns)6111 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6112 {
6113 	int devfn_to;
6114 
6115 	nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6116 	devfn_to = devfn_from + nr_devfns - 1;
6117 
6118 	if (!dev->dma_alias_mask)
6119 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6120 	if (!dev->dma_alias_mask) {
6121 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6122 		return;
6123 	}
6124 
6125 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6126 
6127 	if (nr_devfns == 1)
6128 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6129 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6130 	else if (nr_devfns > 1)
6131 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6132 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6133 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6134 }
6135 
pci_devs_are_dma_aliases(struct pci_dev * dev1,struct pci_dev * dev2)6136 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6137 {
6138 	return (dev1->dma_alias_mask &&
6139 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6140 	       (dev2->dma_alias_mask &&
6141 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6142 	       pci_real_dma_dev(dev1) == dev2 ||
6143 	       pci_real_dma_dev(dev2) == dev1;
6144 }
6145 
pci_device_is_present(struct pci_dev * pdev)6146 bool pci_device_is_present(struct pci_dev *pdev)
6147 {
6148 	u32 v;
6149 
6150 	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6151 	pdev = pci_physfn(pdev);
6152 	if (pci_dev_is_disconnected(pdev))
6153 		return false;
6154 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6155 }
6156 EXPORT_SYMBOL_GPL(pci_device_is_present);
6157 
pci_ignore_hotplug(struct pci_dev * dev)6158 void pci_ignore_hotplug(struct pci_dev *dev)
6159 {
6160 	struct pci_dev *bridge = dev->bus->self;
6161 
6162 	dev->ignore_hotplug = 1;
6163 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6164 	if (bridge)
6165 		bridge->ignore_hotplug = 1;
6166 }
6167 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6168 
6169 /**
6170  * pci_real_dma_dev - Get PCI DMA device for PCI device
6171  * @dev: the PCI device that may have a PCI DMA alias
6172  *
6173  * Permits the platform to provide architecture-specific functionality to
6174  * devices needing to alias DMA to another PCI device on another PCI bus. If
6175  * the PCI device is on the same bus, it is recommended to use
6176  * pci_add_dma_alias(). This is the default implementation. Architecture
6177  * implementations can override this.
6178  */
pci_real_dma_dev(struct pci_dev * dev)6179 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6180 {
6181 	return dev;
6182 }
6183 
pcibios_default_alignment(void)6184 resource_size_t __weak pcibios_default_alignment(void)
6185 {
6186 	return 0;
6187 }
6188 
6189 /*
6190  * Arches that don't want to expose struct resource to userland as-is in
6191  * sysfs and /proc can implement their own pci_resource_to_user().
6192  */
pci_resource_to_user(const struct pci_dev * dev,int bar,const struct resource * rsrc,resource_size_t * start,resource_size_t * end)6193 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6194 				 const struct resource *rsrc,
6195 				 resource_size_t *start, resource_size_t *end)
6196 {
6197 	*start = rsrc->start;
6198 	*end = rsrc->end;
6199 }
6200 
6201 static char *resource_alignment_param;
6202 static DEFINE_SPINLOCK(resource_alignment_lock);
6203 
6204 /**
6205  * pci_specified_resource_alignment - get resource alignment specified by user.
6206  * @dev: the PCI device to get
6207  * @resize: whether or not to change resources' size when reassigning alignment
6208  *
6209  * RETURNS: Resource alignment if it is specified.
6210  *          Zero if it is not specified.
6211  */
pci_specified_resource_alignment(struct pci_dev * dev,bool * resize)6212 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6213 							bool *resize)
6214 {
6215 	int align_order, count;
6216 	resource_size_t align = pcibios_default_alignment();
6217 	const char *p;
6218 	int ret;
6219 
6220 	spin_lock(&resource_alignment_lock);
6221 	p = resource_alignment_param;
6222 	if (!p || !*p)
6223 		goto out;
6224 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6225 		align = 0;
6226 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6227 		goto out;
6228 	}
6229 
6230 	while (*p) {
6231 		count = 0;
6232 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6233 		    p[count] == '@') {
6234 			p += count + 1;
6235 			if (align_order > 63) {
6236 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6237 				       align_order);
6238 				align_order = PAGE_SHIFT;
6239 			}
6240 		} else {
6241 			align_order = PAGE_SHIFT;
6242 		}
6243 
6244 		ret = pci_dev_str_match(dev, p, &p);
6245 		if (ret == 1) {
6246 			*resize = true;
6247 			align = 1ULL << align_order;
6248 			break;
6249 		} else if (ret < 0) {
6250 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6251 			       p);
6252 			break;
6253 		}
6254 
6255 		if (*p != ';' && *p != ',') {
6256 			/* End of param or invalid format */
6257 			break;
6258 		}
6259 		p++;
6260 	}
6261 out:
6262 	spin_unlock(&resource_alignment_lock);
6263 	return align;
6264 }
6265 
pci_request_resource_alignment(struct pci_dev * dev,int bar,resource_size_t align,bool resize)6266 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6267 					   resource_size_t align, bool resize)
6268 {
6269 	struct resource *r = &dev->resource[bar];
6270 	resource_size_t size;
6271 
6272 	if (!(r->flags & IORESOURCE_MEM))
6273 		return;
6274 
6275 	if (r->flags & IORESOURCE_PCI_FIXED) {
6276 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6277 			 bar, r, (unsigned long long)align);
6278 		return;
6279 	}
6280 
6281 	size = resource_size(r);
6282 	if (size >= align)
6283 		return;
6284 
6285 	/*
6286 	 * Increase the alignment of the resource.  There are two ways we
6287 	 * can do this:
6288 	 *
6289 	 * 1) Increase the size of the resource.  BARs are aligned on their
6290 	 *    size, so when we reallocate space for this resource, we'll
6291 	 *    allocate it with the larger alignment.  This also prevents
6292 	 *    assignment of any other BARs inside the alignment region, so
6293 	 *    if we're requesting page alignment, this means no other BARs
6294 	 *    will share the page.
6295 	 *
6296 	 *    The disadvantage is that this makes the resource larger than
6297 	 *    the hardware BAR, which may break drivers that compute things
6298 	 *    based on the resource size, e.g., to find registers at a
6299 	 *    fixed offset before the end of the BAR.
6300 	 *
6301 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6302 	 *    set r->start to the desired alignment.  By itself this
6303 	 *    doesn't prevent other BARs being put inside the alignment
6304 	 *    region, but if we realign *every* resource of every device in
6305 	 *    the system, none of them will share an alignment region.
6306 	 *
6307 	 * When the user has requested alignment for only some devices via
6308 	 * the "pci=resource_alignment" argument, "resize" is true and we
6309 	 * use the first method.  Otherwise we assume we're aligning all
6310 	 * devices and we use the second.
6311 	 */
6312 
6313 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6314 		 bar, r, (unsigned long long)align);
6315 
6316 	if (resize) {
6317 		r->start = 0;
6318 		r->end = align - 1;
6319 	} else {
6320 		r->flags &= ~IORESOURCE_SIZEALIGN;
6321 		r->flags |= IORESOURCE_STARTALIGN;
6322 		r->start = align;
6323 		r->end = r->start + size - 1;
6324 	}
6325 	r->flags |= IORESOURCE_UNSET;
6326 }
6327 
6328 /*
6329  * This function disables memory decoding and releases memory resources
6330  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6331  * It also rounds up size to specified alignment.
6332  * Later on, the kernel will assign page-aligned memory resource back
6333  * to the device.
6334  */
pci_reassigndev_resource_alignment(struct pci_dev * dev)6335 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6336 {
6337 	int i;
6338 	struct resource *r;
6339 	resource_size_t align;
6340 	u16 command;
6341 	bool resize = false;
6342 
6343 	/*
6344 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6345 	 * 3.4.1.11.  Their resources are allocated from the space
6346 	 * described by the VF BARx register in the PF's SR-IOV capability.
6347 	 * We can't influence their alignment here.
6348 	 */
6349 	if (dev->is_virtfn)
6350 		return;
6351 
6352 	/* check if specified PCI is target device to reassign */
6353 	align = pci_specified_resource_alignment(dev, &resize);
6354 	if (!align)
6355 		return;
6356 
6357 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6358 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6359 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6360 		return;
6361 	}
6362 
6363 	pci_read_config_word(dev, PCI_COMMAND, &command);
6364 	command &= ~PCI_COMMAND_MEMORY;
6365 	pci_write_config_word(dev, PCI_COMMAND, command);
6366 
6367 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6368 		pci_request_resource_alignment(dev, i, align, resize);
6369 
6370 	/*
6371 	 * Need to disable bridge's resource window,
6372 	 * to enable the kernel to reassign new resource
6373 	 * window later on.
6374 	 */
6375 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6376 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6377 			r = &dev->resource[i];
6378 			if (!(r->flags & IORESOURCE_MEM))
6379 				continue;
6380 			r->flags |= IORESOURCE_UNSET;
6381 			r->end = resource_size(r) - 1;
6382 			r->start = 0;
6383 		}
6384 		pci_disable_bridge_window(dev);
6385 	}
6386 }
6387 
resource_alignment_show(struct bus_type * bus,char * buf)6388 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6389 {
6390 	size_t count = 0;
6391 
6392 	spin_lock(&resource_alignment_lock);
6393 	if (resource_alignment_param)
6394 		count = scnprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6395 	spin_unlock(&resource_alignment_lock);
6396 
6397 	/*
6398 	 * When set by the command line, resource_alignment_param will not
6399 	 * have a trailing line feed, which is ugly. So conditionally add
6400 	 * it here.
6401 	 */
6402 	if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6403 		buf[count - 1] = '\n';
6404 		buf[count++] = 0;
6405 	}
6406 
6407 	return count;
6408 }
6409 
resource_alignment_store(struct bus_type * bus,const char * buf,size_t count)6410 static ssize_t resource_alignment_store(struct bus_type *bus,
6411 					const char *buf, size_t count)
6412 {
6413 	char *param = kstrndup(buf, count, GFP_KERNEL);
6414 
6415 	if (!param)
6416 		return -ENOMEM;
6417 
6418 	spin_lock(&resource_alignment_lock);
6419 	kfree(resource_alignment_param);
6420 	resource_alignment_param = param;
6421 	spin_unlock(&resource_alignment_lock);
6422 	return count;
6423 }
6424 
6425 static BUS_ATTR_RW(resource_alignment);
6426 
pci_resource_alignment_sysfs_init(void)6427 static int __init pci_resource_alignment_sysfs_init(void)
6428 {
6429 	return bus_create_file(&pci_bus_type,
6430 					&bus_attr_resource_alignment);
6431 }
6432 late_initcall(pci_resource_alignment_sysfs_init);
6433 
pci_no_domains(void)6434 static void pci_no_domains(void)
6435 {
6436 #ifdef CONFIG_PCI_DOMAINS
6437 	pci_domains_supported = 0;
6438 #endif
6439 }
6440 
6441 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6442 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6443 
pci_get_new_domain_nr(void)6444 static int pci_get_new_domain_nr(void)
6445 {
6446 	return atomic_inc_return(&__domain_nr);
6447 }
6448 
of_pci_bus_find_domain_nr(struct device * parent)6449 static int of_pci_bus_find_domain_nr(struct device *parent)
6450 {
6451 	static int use_dt_domains = -1;
6452 	int domain = -1;
6453 
6454 	if (parent)
6455 		domain = of_get_pci_domain_nr(parent->of_node);
6456 
6457 	/*
6458 	 * Check DT domain and use_dt_domains values.
6459 	 *
6460 	 * If DT domain property is valid (domain >= 0) and
6461 	 * use_dt_domains != 0, the DT assignment is valid since this means
6462 	 * we have not previously allocated a domain number by using
6463 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6464 	 * 1, to indicate that we have just assigned a domain number from
6465 	 * DT.
6466 	 *
6467 	 * If DT domain property value is not valid (ie domain < 0), and we
6468 	 * have not previously assigned a domain number from DT
6469 	 * (use_dt_domains != 1) we should assign a domain number by
6470 	 * using the:
6471 	 *
6472 	 * pci_get_new_domain_nr()
6473 	 *
6474 	 * API and update the use_dt_domains value to keep track of method we
6475 	 * are using to assign domain numbers (use_dt_domains = 0).
6476 	 *
6477 	 * All other combinations imply we have a platform that is trying
6478 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6479 	 * which is a recipe for domain mishandling and it is prevented by
6480 	 * invalidating the domain value (domain = -1) and printing a
6481 	 * corresponding error.
6482 	 */
6483 	if (domain >= 0 && use_dt_domains) {
6484 		use_dt_domains = 1;
6485 	} else if (domain < 0 && use_dt_domains != 1) {
6486 		use_dt_domains = 0;
6487 		domain = pci_get_new_domain_nr();
6488 	} else {
6489 		if (parent)
6490 			pr_err("Node %pOF has ", parent->of_node);
6491 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6492 		domain = -1;
6493 	}
6494 
6495 	return domain;
6496 }
6497 
pci_bus_find_domain_nr(struct pci_bus * bus,struct device * parent)6498 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6499 {
6500 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6501 			       acpi_pci_bus_find_domain_nr(bus);
6502 }
6503 #endif
6504 
6505 /**
6506  * pci_ext_cfg_avail - can we access extended PCI config space?
6507  *
6508  * Returns 1 if we can access PCI extended config space (offsets
6509  * greater than 0xff). This is the default implementation. Architecture
6510  * implementations can override this.
6511  */
pci_ext_cfg_avail(void)6512 int __weak pci_ext_cfg_avail(void)
6513 {
6514 	return 1;
6515 }
6516 
pci_fixup_cardbus(struct pci_bus * bus)6517 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6518 {
6519 }
6520 EXPORT_SYMBOL(pci_fixup_cardbus);
6521 
pci_setup(char * str)6522 static int __init pci_setup(char *str)
6523 {
6524 	while (str) {
6525 		char *k = strchr(str, ',');
6526 		if (k)
6527 			*k++ = 0;
6528 		if (*str && (str = pcibios_setup(str)) && *str) {
6529 			if (!strcmp(str, "nomsi")) {
6530 				pci_no_msi();
6531 			} else if (!strncmp(str, "noats", 5)) {
6532 				pr_info("PCIe: ATS is disabled\n");
6533 				pcie_ats_disabled = true;
6534 			} else if (!strcmp(str, "noaer")) {
6535 				pci_no_aer();
6536 			} else if (!strcmp(str, "earlydump")) {
6537 				pci_early_dump = true;
6538 			} else if (!strncmp(str, "realloc=", 8)) {
6539 				pci_realloc_get_opt(str + 8);
6540 			} else if (!strncmp(str, "realloc", 7)) {
6541 				pci_realloc_get_opt("on");
6542 			} else if (!strcmp(str, "nodomains")) {
6543 				pci_no_domains();
6544 			} else if (!strncmp(str, "noari", 5)) {
6545 				pcie_ari_disabled = true;
6546 			} else if (!strncmp(str, "cbiosize=", 9)) {
6547 				pci_cardbus_io_size = memparse(str + 9, &str);
6548 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6549 				pci_cardbus_mem_size = memparse(str + 10, &str);
6550 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6551 				resource_alignment_param = str + 19;
6552 			} else if (!strncmp(str, "ecrc=", 5)) {
6553 				pcie_ecrc_get_policy(str + 5);
6554 			} else if (!strncmp(str, "hpiosize=", 9)) {
6555 				pci_hotplug_io_size = memparse(str + 9, &str);
6556 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6557 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6558 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6559 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6560 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6561 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6562 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6563 			} else if (!strncmp(str, "hpbussize=", 10)) {
6564 				pci_hotplug_bus_size =
6565 					simple_strtoul(str + 10, &str, 0);
6566 				if (pci_hotplug_bus_size > 0xff)
6567 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6568 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6569 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6570 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6571 				pcie_bus_config = PCIE_BUS_SAFE;
6572 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6573 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6574 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6575 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6576 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6577 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6578 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6579 				disable_acs_redir_param = str + 18;
6580 			} else {
6581 				pr_err("PCI: Unknown option `%s'\n", str);
6582 			}
6583 		}
6584 		str = k;
6585 	}
6586 	return 0;
6587 }
6588 early_param("pci", pci_setup);
6589 
6590 /*
6591  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6592  * in pci_setup(), above, to point to data in the __initdata section which
6593  * will be freed after the init sequence is complete. We can't allocate memory
6594  * in pci_setup() because some architectures do not have any memory allocation
6595  * service available during an early_param() call. So we allocate memory and
6596  * copy the variable here before the init section is freed.
6597  *
6598  */
pci_realloc_setup_params(void)6599 static int __init pci_realloc_setup_params(void)
6600 {
6601 	resource_alignment_param = kstrdup(resource_alignment_param,
6602 					   GFP_KERNEL);
6603 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6604 
6605 	return 0;
6606 }
6607 pure_initcall(pci_realloc_setup_params);
6608