1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/mm_inline.h>
5 #include <linux/hugetlb.h>
6 #include <linux/huge_mm.h>
7 #include <linux/mount.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/swapops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
23
24 #include <asm/elf.h>
25 #include <asm/tlb.h>
26 #include <asm/tlbflush.h>
27 #include "internal.h"
28
29 #define SEQ_PUT_DEC(str, val) \
30 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
task_mem(struct seq_file * m,struct mm_struct * mm)31 void task_mem(struct seq_file *m, struct mm_struct *mm)
32 {
33 unsigned long text, lib, swap, anon, file, shmem;
34 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
35
36 anon = get_mm_counter(mm, MM_ANONPAGES);
37 file = get_mm_counter(mm, MM_FILEPAGES);
38 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
39
40 /*
41 * Note: to minimize their overhead, mm maintains hiwater_vm and
42 * hiwater_rss only when about to *lower* total_vm or rss. Any
43 * collector of these hiwater stats must therefore get total_vm
44 * and rss too, which will usually be the higher. Barriers? not
45 * worth the effort, such snapshots can always be inconsistent.
46 */
47 hiwater_vm = total_vm = mm->total_vm;
48 if (hiwater_vm < mm->hiwater_vm)
49 hiwater_vm = mm->hiwater_vm;
50 hiwater_rss = total_rss = anon + file + shmem;
51 if (hiwater_rss < mm->hiwater_rss)
52 hiwater_rss = mm->hiwater_rss;
53
54 /* split executable areas between text and lib */
55 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
56 text = min(text, mm->exec_vm << PAGE_SHIFT);
57 lib = (mm->exec_vm << PAGE_SHIFT) - text;
58
59 swap = get_mm_counter(mm, MM_SWAPENTS);
60 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
61 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
62 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
63 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
64 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
65 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
66 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
67 SEQ_PUT_DEC(" kB\nRssFile:\t", file);
68 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
69 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
70 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
71 seq_put_decimal_ull_width(m,
72 " kB\nVmExe:\t", text >> 10, 8);
73 seq_put_decimal_ull_width(m,
74 " kB\nVmLib:\t", lib >> 10, 8);
75 seq_put_decimal_ull_width(m,
76 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
77 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
78 seq_puts(m, " kB\n");
79 hugetlb_report_usage(m, mm);
80 }
81 #undef SEQ_PUT_DEC
82
task_vsize(struct mm_struct * mm)83 unsigned long task_vsize(struct mm_struct *mm)
84 {
85 return PAGE_SIZE * mm->total_vm;
86 }
87
task_statm(struct mm_struct * mm,unsigned long * shared,unsigned long * text,unsigned long * data,unsigned long * resident)88 unsigned long task_statm(struct mm_struct *mm,
89 unsigned long *shared, unsigned long *text,
90 unsigned long *data, unsigned long *resident)
91 {
92 *shared = get_mm_counter(mm, MM_FILEPAGES) +
93 get_mm_counter(mm, MM_SHMEMPAGES);
94 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
95 >> PAGE_SHIFT;
96 *data = mm->data_vm + mm->stack_vm;
97 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
98 return mm->total_vm;
99 }
100
101 #ifdef CONFIG_NUMA
102 /*
103 * Save get_task_policy() for show_numa_map().
104 */
hold_task_mempolicy(struct proc_maps_private * priv)105 static void hold_task_mempolicy(struct proc_maps_private *priv)
106 {
107 struct task_struct *task = priv->task;
108
109 task_lock(task);
110 priv->task_mempolicy = get_task_policy(task);
111 mpol_get(priv->task_mempolicy);
112 task_unlock(task);
113 }
release_task_mempolicy(struct proc_maps_private * priv)114 static void release_task_mempolicy(struct proc_maps_private *priv)
115 {
116 mpol_put(priv->task_mempolicy);
117 }
118 #else
hold_task_mempolicy(struct proc_maps_private * priv)119 static void hold_task_mempolicy(struct proc_maps_private *priv)
120 {
121 }
release_task_mempolicy(struct proc_maps_private * priv)122 static void release_task_mempolicy(struct proc_maps_private *priv)
123 {
124 }
125 #endif
126
m_start(struct seq_file * m,loff_t * ppos)127 static void *m_start(struct seq_file *m, loff_t *ppos)
128 {
129 struct proc_maps_private *priv = m->private;
130 unsigned long last_addr = *ppos;
131 struct mm_struct *mm;
132 struct vm_area_struct *vma;
133
134 /* See m_next(). Zero at the start or after lseek. */
135 if (last_addr == -1UL)
136 return NULL;
137
138 priv->task = get_proc_task(priv->inode);
139 if (!priv->task)
140 return ERR_PTR(-ESRCH);
141
142 mm = priv->mm;
143 if (!mm || !mmget_not_zero(mm)) {
144 put_task_struct(priv->task);
145 priv->task = NULL;
146 return NULL;
147 }
148
149 if (mmap_read_lock_killable(mm)) {
150 mmput(mm);
151 put_task_struct(priv->task);
152 priv->task = NULL;
153 return ERR_PTR(-EINTR);
154 }
155
156 hold_task_mempolicy(priv);
157 priv->tail_vma = get_gate_vma(mm);
158
159 vma = find_vma(mm, last_addr);
160 if (vma)
161 return vma;
162
163 return priv->tail_vma;
164 }
165
m_next(struct seq_file * m,void * v,loff_t * ppos)166 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
167 {
168 struct proc_maps_private *priv = m->private;
169 struct vm_area_struct *next, *vma = v;
170
171 if (vma == priv->tail_vma)
172 next = NULL;
173 else if (vma->vm_next)
174 next = vma->vm_next;
175 else
176 next = priv->tail_vma;
177
178 *ppos = next ? next->vm_start : -1UL;
179
180 return next;
181 }
182
m_stop(struct seq_file * m,void * v)183 static void m_stop(struct seq_file *m, void *v)
184 {
185 struct proc_maps_private *priv = m->private;
186 struct mm_struct *mm = priv->mm;
187
188 if (!priv->task)
189 return;
190
191 release_task_mempolicy(priv);
192 mmap_read_unlock(mm);
193 mmput(mm);
194 put_task_struct(priv->task);
195 priv->task = NULL;
196 }
197
proc_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops,int psize)198 static int proc_maps_open(struct inode *inode, struct file *file,
199 const struct seq_operations *ops, int psize)
200 {
201 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
202
203 if (!priv)
204 return -ENOMEM;
205
206 priv->inode = inode;
207 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
208 if (IS_ERR(priv->mm)) {
209 int err = PTR_ERR(priv->mm);
210
211 seq_release_private(inode, file);
212 return err;
213 }
214
215 return 0;
216 }
217
proc_map_release(struct inode * inode,struct file * file)218 static int proc_map_release(struct inode *inode, struct file *file)
219 {
220 struct seq_file *seq = file->private_data;
221 struct proc_maps_private *priv = seq->private;
222
223 if (priv->mm)
224 mmdrop(priv->mm);
225
226 return seq_release_private(inode, file);
227 }
228
do_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)229 static int do_maps_open(struct inode *inode, struct file *file,
230 const struct seq_operations *ops)
231 {
232 return proc_maps_open(inode, file, ops,
233 sizeof(struct proc_maps_private));
234 }
235
236 /*
237 * Indicate if the VMA is a stack for the given task; for
238 * /proc/PID/maps that is the stack of the main task.
239 */
is_stack(struct vm_area_struct * vma)240 static int is_stack(struct vm_area_struct *vma)
241 {
242 /*
243 * We make no effort to guess what a given thread considers to be
244 * its "stack". It's not even well-defined for programs written
245 * languages like Go.
246 */
247 return vma->vm_start <= vma->vm_mm->start_stack &&
248 vma->vm_end >= vma->vm_mm->start_stack;
249 }
250
show_vma_header_prefix(struct seq_file * m,unsigned long start,unsigned long end,vm_flags_t flags,unsigned long long pgoff,dev_t dev,unsigned long ino)251 static void show_vma_header_prefix(struct seq_file *m,
252 unsigned long start, unsigned long end,
253 vm_flags_t flags, unsigned long long pgoff,
254 dev_t dev, unsigned long ino)
255 {
256 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
257 seq_put_hex_ll(m, NULL, start, 8);
258 seq_put_hex_ll(m, "-", end, 8);
259 seq_putc(m, ' ');
260 seq_putc(m, flags & VM_READ ? 'r' : '-');
261 seq_putc(m, flags & VM_WRITE ? 'w' : '-');
262 seq_putc(m, flags & VM_EXEC ? 'x' : '-');
263 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
264 seq_put_hex_ll(m, " ", pgoff, 8);
265 seq_put_hex_ll(m, " ", MAJOR(dev), 2);
266 seq_put_hex_ll(m, ":", MINOR(dev), 2);
267 seq_put_decimal_ull(m, " ", ino);
268 seq_putc(m, ' ');
269 }
270
271 static void
show_map_vma(struct seq_file * m,struct vm_area_struct * vma)272 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
273 {
274 struct mm_struct *mm = vma->vm_mm;
275 struct file *file = vma->vm_file;
276 vm_flags_t flags = vma->vm_flags;
277 unsigned long ino = 0;
278 unsigned long long pgoff = 0;
279 unsigned long start, end;
280 dev_t dev = 0;
281 const char *name = NULL;
282
283 if (file) {
284 struct inode *inode = file_inode(vma->vm_file);
285 dev = inode->i_sb->s_dev;
286 ino = inode->i_ino;
287 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
288 }
289
290 start = vma->vm_start;
291 end = vma->vm_end;
292 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
293
294 /*
295 * Print the dentry name for named mappings, and a
296 * special [heap] marker for the heap:
297 */
298 if (file) {
299 seq_pad(m, ' ');
300 seq_file_path(m, file, "\n");
301 goto done;
302 }
303
304 if (vma->vm_ops && vma->vm_ops->name) {
305 name = vma->vm_ops->name(vma);
306 if (name)
307 goto done;
308 }
309
310 name = arch_vma_name(vma);
311 if (!name) {
312 struct anon_vma_name *anon_name;
313
314 if (!mm) {
315 name = "[vdso]";
316 goto done;
317 }
318
319 if (vma->vm_start <= mm->brk &&
320 vma->vm_end >= mm->start_brk) {
321 name = "[heap]";
322 goto done;
323 }
324
325 if (is_stack(vma)) {
326 name = "[stack]";
327 goto done;
328 }
329
330 anon_name = anon_vma_name(vma);
331 if (anon_name) {
332 seq_pad(m, ' ');
333 seq_printf(m, "[anon:%s]", anon_name->name);
334 }
335 }
336
337 done:
338 if (name) {
339 seq_pad(m, ' ');
340 seq_puts(m, name);
341 }
342 seq_putc(m, '\n');
343 }
344
show_map(struct seq_file * m,void * v)345 static int show_map(struct seq_file *m, void *v)
346 {
347 show_map_vma(m, v);
348 return 0;
349 }
350
351 static const struct seq_operations proc_pid_maps_op = {
352 .start = m_start,
353 .next = m_next,
354 .stop = m_stop,
355 .show = show_map
356 };
357
pid_maps_open(struct inode * inode,struct file * file)358 static int pid_maps_open(struct inode *inode, struct file *file)
359 {
360 return do_maps_open(inode, file, &proc_pid_maps_op);
361 }
362
363 const struct file_operations proc_pid_maps_operations = {
364 .open = pid_maps_open,
365 .read = seq_read,
366 .llseek = seq_lseek,
367 .release = proc_map_release,
368 };
369
370 /*
371 * Proportional Set Size(PSS): my share of RSS.
372 *
373 * PSS of a process is the count of pages it has in memory, where each
374 * page is divided by the number of processes sharing it. So if a
375 * process has 1000 pages all to itself, and 1000 shared with one other
376 * process, its PSS will be 1500.
377 *
378 * To keep (accumulated) division errors low, we adopt a 64bit
379 * fixed-point pss counter to minimize division errors. So (pss >>
380 * PSS_SHIFT) would be the real byte count.
381 *
382 * A shift of 12 before division means (assuming 4K page size):
383 * - 1M 3-user-pages add up to 8KB errors;
384 * - supports mapcount up to 2^24, or 16M;
385 * - supports PSS up to 2^52 bytes, or 4PB.
386 */
387 #define PSS_SHIFT 12
388
389 #ifdef CONFIG_PROC_PAGE_MONITOR
390 struct mem_size_stats {
391 unsigned long resident;
392 unsigned long shared_clean;
393 unsigned long shared_dirty;
394 unsigned long private_clean;
395 unsigned long private_dirty;
396 unsigned long referenced;
397 unsigned long anonymous;
398 unsigned long lazyfree;
399 unsigned long anonymous_thp;
400 unsigned long shmem_thp;
401 unsigned long file_thp;
402 unsigned long swap;
403 unsigned long shared_hugetlb;
404 unsigned long private_hugetlb;
405 u64 pss;
406 u64 pss_anon;
407 u64 pss_file;
408 u64 pss_shmem;
409 u64 pss_locked;
410 u64 swap_pss;
411 bool check_shmem_swap;
412 };
413
smaps_page_accumulate(struct mem_size_stats * mss,struct page * page,unsigned long size,unsigned long pss,bool dirty,bool locked,bool private)414 static void smaps_page_accumulate(struct mem_size_stats *mss,
415 struct page *page, unsigned long size, unsigned long pss,
416 bool dirty, bool locked, bool private)
417 {
418 mss->pss += pss;
419
420 if (PageAnon(page))
421 mss->pss_anon += pss;
422 else if (PageSwapBacked(page))
423 mss->pss_shmem += pss;
424 else
425 mss->pss_file += pss;
426
427 if (locked)
428 mss->pss_locked += pss;
429
430 if (dirty || PageDirty(page)) {
431 if (private)
432 mss->private_dirty += size;
433 else
434 mss->shared_dirty += size;
435 } else {
436 if (private)
437 mss->private_clean += size;
438 else
439 mss->shared_clean += size;
440 }
441 }
442
smaps_account(struct mem_size_stats * mss,struct page * page,bool compound,bool young,bool dirty,bool locked,bool migration)443 static void smaps_account(struct mem_size_stats *mss, struct page *page,
444 bool compound, bool young, bool dirty, bool locked,
445 bool migration)
446 {
447 int i, nr = compound ? compound_nr(page) : 1;
448 unsigned long size = nr * PAGE_SIZE;
449
450 /*
451 * First accumulate quantities that depend only on |size| and the type
452 * of the compound page.
453 */
454 if (PageAnon(page)) {
455 mss->anonymous += size;
456 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
457 mss->lazyfree += size;
458 }
459
460 mss->resident += size;
461 /* Accumulate the size in pages that have been accessed. */
462 if (young || page_is_young(page) || PageReferenced(page))
463 mss->referenced += size;
464
465 /*
466 * Then accumulate quantities that may depend on sharing, or that may
467 * differ page-by-page.
468 *
469 * page_count(page) == 1 guarantees the page is mapped exactly once.
470 * If any subpage of the compound page mapped with PTE it would elevate
471 * page_count().
472 *
473 * The page_mapcount() is called to get a snapshot of the mapcount.
474 * Without holding the page lock this snapshot can be slightly wrong as
475 * we cannot always read the mapcount atomically. It is not safe to
476 * call page_mapcount() even with PTL held if the page is not mapped,
477 * especially for migration entries. Treat regular migration entries
478 * as mapcount == 1.
479 */
480 if ((page_count(page) == 1) || migration) {
481 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
482 locked, true);
483 return;
484 }
485 for (i = 0; i < nr; i++, page++) {
486 int mapcount = page_mapcount(page);
487 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
488 if (mapcount >= 2)
489 pss /= mapcount;
490 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
491 mapcount < 2);
492 }
493 }
494
495 #ifdef CONFIG_SHMEM
smaps_pte_hole(unsigned long addr,unsigned long end,__always_unused int depth,struct mm_walk * walk)496 static int smaps_pte_hole(unsigned long addr, unsigned long end,
497 __always_unused int depth, struct mm_walk *walk)
498 {
499 struct mem_size_stats *mss = walk->private;
500
501 mss->swap += shmem_partial_swap_usage(
502 walk->vma->vm_file->f_mapping, addr, end);
503
504 return 0;
505 }
506 #else
507 #define smaps_pte_hole NULL
508 #endif /* CONFIG_SHMEM */
509
smaps_pte_entry(pte_t * pte,unsigned long addr,struct mm_walk * walk)510 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
511 struct mm_walk *walk)
512 {
513 struct mem_size_stats *mss = walk->private;
514 struct vm_area_struct *vma = walk->vma;
515 bool locked = !!(vma->vm_flags & VM_LOCKED);
516 struct page *page = NULL;
517 bool migration = false, young = false, dirty = false;
518
519 if (pte_present(*pte)) {
520 page = vm_normal_page(vma, addr, *pte);
521 young = pte_young(*pte);
522 dirty = pte_dirty(*pte);
523 } else if (is_swap_pte(*pte)) {
524 swp_entry_t swpent = pte_to_swp_entry(*pte);
525
526 if (!non_swap_entry(swpent)) {
527 int mapcount;
528
529 mss->swap += PAGE_SIZE;
530 mapcount = swp_swapcount(swpent);
531 if (mapcount >= 2) {
532 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
533
534 do_div(pss_delta, mapcount);
535 mss->swap_pss += pss_delta;
536 } else {
537 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
538 }
539 } else if (is_migration_entry(swpent)) {
540 migration = true;
541 page = migration_entry_to_page(swpent);
542 } else if (is_device_private_entry(swpent))
543 page = device_private_entry_to_page(swpent);
544 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
545 && pte_none(*pte))) {
546 page = xa_load(&vma->vm_file->f_mapping->i_pages,
547 linear_page_index(vma, addr));
548 if (xa_is_value(page))
549 mss->swap += PAGE_SIZE;
550 return;
551 }
552
553 if (!page)
554 return;
555
556 smaps_account(mss, page, false, young, dirty, locked, migration);
557 }
558
559 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)560 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
561 struct mm_walk *walk)
562 {
563 struct mem_size_stats *mss = walk->private;
564 struct vm_area_struct *vma = walk->vma;
565 bool locked = !!(vma->vm_flags & VM_LOCKED);
566 struct page *page = NULL;
567 bool migration = false;
568
569 if (pmd_present(*pmd)) {
570 /* FOLL_DUMP will return -EFAULT on huge zero page */
571 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
572 } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
573 swp_entry_t entry = pmd_to_swp_entry(*pmd);
574
575 if (is_migration_entry(entry)) {
576 migration = true;
577 page = migration_entry_to_page(entry);
578 }
579 }
580 if (IS_ERR_OR_NULL(page))
581 return;
582 if (PageAnon(page))
583 mss->anonymous_thp += HPAGE_PMD_SIZE;
584 else if (PageSwapBacked(page))
585 mss->shmem_thp += HPAGE_PMD_SIZE;
586 else if (is_zone_device_page(page))
587 /* pass */;
588 else
589 mss->file_thp += HPAGE_PMD_SIZE;
590
591 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
592 locked, migration);
593 }
594 #else
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)595 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
596 struct mm_walk *walk)
597 {
598 }
599 #endif
600
smaps_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)601 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
602 struct mm_walk *walk)
603 {
604 struct vm_area_struct *vma = walk->vma;
605 pte_t *pte;
606 spinlock_t *ptl;
607
608 ptl = pmd_trans_huge_lock(pmd, vma);
609 if (ptl) {
610 smaps_pmd_entry(pmd, addr, walk);
611 spin_unlock(ptl);
612 goto out;
613 }
614
615 if (pmd_trans_unstable(pmd))
616 goto out;
617 /*
618 * The mmap_lock held all the way back in m_start() is what
619 * keeps khugepaged out of here and from collapsing things
620 * in here.
621 */
622 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
623 for (; addr != end; pte++, addr += PAGE_SIZE)
624 smaps_pte_entry(pte, addr, walk);
625 pte_unmap_unlock(pte - 1, ptl);
626 out:
627 cond_resched();
628 return 0;
629 }
630
show_smap_vma_flags(struct seq_file * m,struct vm_area_struct * vma)631 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
632 {
633 /*
634 * Don't forget to update Documentation/ on changes.
635 */
636 static const char mnemonics[BITS_PER_LONG][2] = {
637 /*
638 * In case if we meet a flag we don't know about.
639 */
640 [0 ... (BITS_PER_LONG-1)] = "??",
641
642 [ilog2(VM_READ)] = "rd",
643 [ilog2(VM_WRITE)] = "wr",
644 [ilog2(VM_EXEC)] = "ex",
645 [ilog2(VM_SHARED)] = "sh",
646 [ilog2(VM_MAYREAD)] = "mr",
647 [ilog2(VM_MAYWRITE)] = "mw",
648 [ilog2(VM_MAYEXEC)] = "me",
649 [ilog2(VM_MAYSHARE)] = "ms",
650 [ilog2(VM_GROWSDOWN)] = "gd",
651 [ilog2(VM_PFNMAP)] = "pf",
652 [ilog2(VM_DENYWRITE)] = "dw",
653 [ilog2(VM_LOCKED)] = "lo",
654 [ilog2(VM_IO)] = "io",
655 [ilog2(VM_SEQ_READ)] = "sr",
656 [ilog2(VM_RAND_READ)] = "rr",
657 [ilog2(VM_DONTCOPY)] = "dc",
658 [ilog2(VM_DONTEXPAND)] = "de",
659 [ilog2(VM_ACCOUNT)] = "ac",
660 [ilog2(VM_NORESERVE)] = "nr",
661 [ilog2(VM_HUGETLB)] = "ht",
662 [ilog2(VM_SYNC)] = "sf",
663 [ilog2(VM_ARCH_1)] = "ar",
664 [ilog2(VM_WIPEONFORK)] = "wf",
665 [ilog2(VM_DONTDUMP)] = "dd",
666 #ifdef CONFIG_ARM64_BTI
667 [ilog2(VM_ARM64_BTI)] = "bt",
668 #endif
669 #ifdef CONFIG_MEM_SOFT_DIRTY
670 [ilog2(VM_SOFTDIRTY)] = "sd",
671 #endif
672 [ilog2(VM_MIXEDMAP)] = "mm",
673 [ilog2(VM_HUGEPAGE)] = "hg",
674 [ilog2(VM_NOHUGEPAGE)] = "nh",
675 [ilog2(VM_MERGEABLE)] = "mg",
676 [ilog2(VM_UFFD_MISSING)]= "um",
677 [ilog2(VM_UFFD_WP)] = "uw",
678 #ifdef CONFIG_ARM64_MTE
679 [ilog2(VM_MTE)] = "mt",
680 [ilog2(VM_MTE_ALLOWED)] = "",
681 #endif
682 #ifdef CONFIG_ARCH_HAS_PKEYS
683 /* These come out via ProtectionKey: */
684 [ilog2(VM_PKEY_BIT0)] = "",
685 [ilog2(VM_PKEY_BIT1)] = "",
686 [ilog2(VM_PKEY_BIT2)] = "",
687 [ilog2(VM_PKEY_BIT3)] = "",
688 #if VM_PKEY_BIT4
689 [ilog2(VM_PKEY_BIT4)] = "",
690 #endif
691 #endif /* CONFIG_ARCH_HAS_PKEYS */
692 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
693 [ilog2(VM_UFFD_MINOR)] = "ui",
694 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
695 };
696 size_t i;
697
698 seq_puts(m, "VmFlags: ");
699 for (i = 0; i < BITS_PER_LONG; i++) {
700 if (!mnemonics[i][0])
701 continue;
702 if (vma->vm_flags & (1UL << i)) {
703 seq_putc(m, mnemonics[i][0]);
704 seq_putc(m, mnemonics[i][1]);
705 seq_putc(m, ' ');
706 }
707 }
708 seq_putc(m, '\n');
709 }
710
711 #ifdef CONFIG_HUGETLB_PAGE
smaps_hugetlb_range(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)712 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
713 unsigned long addr, unsigned long end,
714 struct mm_walk *walk)
715 {
716 struct mem_size_stats *mss = walk->private;
717 struct vm_area_struct *vma = walk->vma;
718 struct page *page = NULL;
719
720 if (pte_present(*pte)) {
721 page = vm_normal_page(vma, addr, *pte);
722 } else if (is_swap_pte(*pte)) {
723 swp_entry_t swpent = pte_to_swp_entry(*pte);
724
725 if (is_migration_entry(swpent))
726 page = migration_entry_to_page(swpent);
727 else if (is_device_private_entry(swpent))
728 page = device_private_entry_to_page(swpent);
729 }
730 if (page) {
731 if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
732 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
733 else
734 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
735 }
736 return 0;
737 }
738 #else
739 #define smaps_hugetlb_range NULL
740 #endif /* HUGETLB_PAGE */
741
742 static const struct mm_walk_ops smaps_walk_ops = {
743 .pmd_entry = smaps_pte_range,
744 .hugetlb_entry = smaps_hugetlb_range,
745 };
746
747 static const struct mm_walk_ops smaps_shmem_walk_ops = {
748 .pmd_entry = smaps_pte_range,
749 .hugetlb_entry = smaps_hugetlb_range,
750 .pte_hole = smaps_pte_hole,
751 };
752
753 /*
754 * Gather mem stats from @vma with the indicated beginning
755 * address @start, and keep them in @mss.
756 *
757 * Use vm_start of @vma as the beginning address if @start is 0.
758 */
smap_gather_stats(struct vm_area_struct * vma,struct mem_size_stats * mss,unsigned long start)759 static void smap_gather_stats(struct vm_area_struct *vma,
760 struct mem_size_stats *mss, unsigned long start)
761 {
762 const struct mm_walk_ops *ops = &smaps_walk_ops;
763
764 /* Invalid start */
765 if (start >= vma->vm_end)
766 return;
767
768 #ifdef CONFIG_SHMEM
769 /* In case of smaps_rollup, reset the value from previous vma */
770 mss->check_shmem_swap = false;
771 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
772 /*
773 * For shared or readonly shmem mappings we know that all
774 * swapped out pages belong to the shmem object, and we can
775 * obtain the swap value much more efficiently. For private
776 * writable mappings, we might have COW pages that are
777 * not affected by the parent swapped out pages of the shmem
778 * object, so we have to distinguish them during the page walk.
779 * Unless we know that the shmem object (or the part mapped by
780 * our VMA) has no swapped out pages at all.
781 */
782 unsigned long shmem_swapped = shmem_swap_usage(vma);
783
784 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
785 !(vma->vm_flags & VM_WRITE))) {
786 mss->swap += shmem_swapped;
787 } else {
788 mss->check_shmem_swap = true;
789 ops = &smaps_shmem_walk_ops;
790 }
791 }
792 #endif
793 /* mmap_lock is held in m_start */
794 if (!start)
795 walk_page_vma(vma, ops, mss);
796 else
797 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
798 }
799
800 #define SEQ_PUT_DEC(str, val) \
801 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
802
803 /* Show the contents common for smaps and smaps_rollup */
__show_smap(struct seq_file * m,const struct mem_size_stats * mss,bool rollup_mode)804 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
805 bool rollup_mode)
806 {
807 SEQ_PUT_DEC("Rss: ", mss->resident);
808 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
809 if (rollup_mode) {
810 /*
811 * These are meaningful only for smaps_rollup, otherwise two of
812 * them are zero, and the other one is the same as Pss.
813 */
814 SEQ_PUT_DEC(" kB\nPss_Anon: ",
815 mss->pss_anon >> PSS_SHIFT);
816 SEQ_PUT_DEC(" kB\nPss_File: ",
817 mss->pss_file >> PSS_SHIFT);
818 SEQ_PUT_DEC(" kB\nPss_Shmem: ",
819 mss->pss_shmem >> PSS_SHIFT);
820 }
821 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
822 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
823 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
824 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
825 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
826 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
827 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
828 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
829 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
830 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp);
831 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
832 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
833 mss->private_hugetlb >> 10, 7);
834 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
835 SEQ_PUT_DEC(" kB\nSwapPss: ",
836 mss->swap_pss >> PSS_SHIFT);
837 SEQ_PUT_DEC(" kB\nLocked: ",
838 mss->pss_locked >> PSS_SHIFT);
839 seq_puts(m, " kB\n");
840 }
841
show_smap(struct seq_file * m,void * v)842 static int show_smap(struct seq_file *m, void *v)
843 {
844 struct vm_area_struct *vma = v;
845 struct mem_size_stats mss;
846
847 memset(&mss, 0, sizeof(mss));
848
849 smap_gather_stats(vma, &mss, 0);
850
851 show_map_vma(m, vma);
852
853 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
854 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
855 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
856 seq_puts(m, " kB\n");
857
858 __show_smap(m, &mss, false);
859
860 seq_printf(m, "THPeligible: %d\n",
861 transparent_hugepage_active(vma));
862
863 if (arch_pkeys_enabled())
864 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
865 show_smap_vma_flags(m, vma);
866
867 return 0;
868 }
869
show_smaps_rollup(struct seq_file * m,void * v)870 static int show_smaps_rollup(struct seq_file *m, void *v)
871 {
872 struct proc_maps_private *priv = m->private;
873 struct mem_size_stats mss;
874 struct mm_struct *mm;
875 struct vm_area_struct *vma;
876 unsigned long last_vma_end = 0;
877 int ret = 0;
878
879 priv->task = get_proc_task(priv->inode);
880 if (!priv->task)
881 return -ESRCH;
882
883 mm = priv->mm;
884 if (!mm || !mmget_not_zero(mm)) {
885 ret = -ESRCH;
886 goto out_put_task;
887 }
888
889 memset(&mss, 0, sizeof(mss));
890
891 ret = mmap_read_lock_killable(mm);
892 if (ret)
893 goto out_put_mm;
894
895 hold_task_mempolicy(priv);
896
897 for (vma = priv->mm->mmap; vma;) {
898 smap_gather_stats(vma, &mss, 0);
899 last_vma_end = vma->vm_end;
900
901 /*
902 * Release mmap_lock temporarily if someone wants to
903 * access it for write request.
904 */
905 if (mmap_lock_is_contended(mm)) {
906 mmap_read_unlock(mm);
907 ret = mmap_read_lock_killable(mm);
908 if (ret) {
909 release_task_mempolicy(priv);
910 goto out_put_mm;
911 }
912
913 /*
914 * After dropping the lock, there are four cases to
915 * consider. See the following example for explanation.
916 *
917 * +------+------+-----------+
918 * | VMA1 | VMA2 | VMA3 |
919 * +------+------+-----------+
920 * | | | |
921 * 4k 8k 16k 400k
922 *
923 * Suppose we drop the lock after reading VMA2 due to
924 * contention, then we get:
925 *
926 * last_vma_end = 16k
927 *
928 * 1) VMA2 is freed, but VMA3 exists:
929 *
930 * find_vma(mm, 16k - 1) will return VMA3.
931 * In this case, just continue from VMA3.
932 *
933 * 2) VMA2 still exists:
934 *
935 * find_vma(mm, 16k - 1) will return VMA2.
936 * Iterate the loop like the original one.
937 *
938 * 3) No more VMAs can be found:
939 *
940 * find_vma(mm, 16k - 1) will return NULL.
941 * No more things to do, just break.
942 *
943 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
944 *
945 * find_vma(mm, 16k - 1) will return VMA' whose range
946 * contains last_vma_end.
947 * Iterate VMA' from last_vma_end.
948 */
949 vma = find_vma(mm, last_vma_end - 1);
950 /* Case 3 above */
951 if (!vma)
952 break;
953
954 /* Case 1 above */
955 if (vma->vm_start >= last_vma_end)
956 continue;
957
958 /* Case 4 above */
959 if (vma->vm_end > last_vma_end)
960 smap_gather_stats(vma, &mss, last_vma_end);
961 }
962 /* Case 2 above */
963 vma = vma->vm_next;
964 }
965
966 show_vma_header_prefix(m, priv->mm->mmap ? priv->mm->mmap->vm_start : 0,
967 last_vma_end, 0, 0, 0, 0);
968 seq_pad(m, ' ');
969 seq_puts(m, "[rollup]\n");
970
971 __show_smap(m, &mss, true);
972
973 release_task_mempolicy(priv);
974 mmap_read_unlock(mm);
975
976 out_put_mm:
977 mmput(mm);
978 out_put_task:
979 put_task_struct(priv->task);
980 priv->task = NULL;
981
982 return ret;
983 }
984 #undef SEQ_PUT_DEC
985
986 static const struct seq_operations proc_pid_smaps_op = {
987 .start = m_start,
988 .next = m_next,
989 .stop = m_stop,
990 .show = show_smap
991 };
992
pid_smaps_open(struct inode * inode,struct file * file)993 static int pid_smaps_open(struct inode *inode, struct file *file)
994 {
995 return do_maps_open(inode, file, &proc_pid_smaps_op);
996 }
997
smaps_rollup_open(struct inode * inode,struct file * file)998 static int smaps_rollup_open(struct inode *inode, struct file *file)
999 {
1000 int ret;
1001 struct proc_maps_private *priv;
1002
1003 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1004 if (!priv)
1005 return -ENOMEM;
1006
1007 ret = single_open(file, show_smaps_rollup, priv);
1008 if (ret)
1009 goto out_free;
1010
1011 priv->inode = inode;
1012 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1013 if (IS_ERR(priv->mm)) {
1014 ret = PTR_ERR(priv->mm);
1015
1016 single_release(inode, file);
1017 goto out_free;
1018 }
1019
1020 return 0;
1021
1022 out_free:
1023 kfree(priv);
1024 return ret;
1025 }
1026
smaps_rollup_release(struct inode * inode,struct file * file)1027 static int smaps_rollup_release(struct inode *inode, struct file *file)
1028 {
1029 struct seq_file *seq = file->private_data;
1030 struct proc_maps_private *priv = seq->private;
1031
1032 if (priv->mm)
1033 mmdrop(priv->mm);
1034
1035 kfree(priv);
1036 return single_release(inode, file);
1037 }
1038
1039 const struct file_operations proc_pid_smaps_operations = {
1040 .open = pid_smaps_open,
1041 .read = seq_read,
1042 .llseek = seq_lseek,
1043 .release = proc_map_release,
1044 };
1045
1046 const struct file_operations proc_pid_smaps_rollup_operations = {
1047 .open = smaps_rollup_open,
1048 .read = seq_read,
1049 .llseek = seq_lseek,
1050 .release = smaps_rollup_release,
1051 };
1052
1053 enum clear_refs_types {
1054 CLEAR_REFS_ALL = 1,
1055 CLEAR_REFS_ANON,
1056 CLEAR_REFS_MAPPED,
1057 CLEAR_REFS_SOFT_DIRTY,
1058 CLEAR_REFS_MM_HIWATER_RSS,
1059 CLEAR_REFS_LAST,
1060 };
1061
1062 struct clear_refs_private {
1063 enum clear_refs_types type;
1064 };
1065
1066 #ifdef CONFIG_MEM_SOFT_DIRTY
1067
1068 #define is_cow_mapping(flags) (((flags) & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE)
1069
pte_is_pinned(struct vm_area_struct * vma,unsigned long addr,pte_t pte)1070 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1071 {
1072 struct page *page;
1073
1074 if (!pte_write(pte))
1075 return false;
1076 if (!is_cow_mapping(vma->vm_flags))
1077 return false;
1078 if (likely(!atomic_read(&vma->vm_mm->has_pinned)))
1079 return false;
1080 page = vm_normal_page(vma, addr, pte);
1081 if (!page)
1082 return false;
1083 return page_maybe_dma_pinned(page);
1084 }
1085
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1086 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1087 unsigned long addr, pte_t *pte)
1088 {
1089 /*
1090 * The soft-dirty tracker uses #PF-s to catch writes
1091 * to pages, so write-protect the pte as well. See the
1092 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1093 * of how soft-dirty works.
1094 */
1095 pte_t ptent = *pte;
1096
1097 if (pte_present(ptent)) {
1098 pte_t old_pte;
1099
1100 if (pte_is_pinned(vma, addr, ptent))
1101 return;
1102 old_pte = ptep_modify_prot_start(vma, addr, pte);
1103 ptent = pte_wrprotect(old_pte);
1104 ptent = pte_clear_soft_dirty(ptent);
1105 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1106 } else if (is_swap_pte(ptent)) {
1107 ptent = pte_swp_clear_soft_dirty(ptent);
1108 set_pte_at(vma->vm_mm, addr, pte, ptent);
1109 }
1110 }
1111 #else
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1112 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1113 unsigned long addr, pte_t *pte)
1114 {
1115 }
1116 #endif
1117
1118 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1119 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1120 unsigned long addr, pmd_t *pmdp)
1121 {
1122 pmd_t old, pmd = *pmdp;
1123
1124 if (pmd_present(pmd)) {
1125 /* See comment in change_huge_pmd() */
1126 old = pmdp_invalidate(vma, addr, pmdp);
1127 if (pmd_dirty(old))
1128 pmd = pmd_mkdirty(pmd);
1129 if (pmd_young(old))
1130 pmd = pmd_mkyoung(pmd);
1131
1132 pmd = pmd_wrprotect(pmd);
1133 pmd = pmd_clear_soft_dirty(pmd);
1134
1135 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1136 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1137 pmd = pmd_swp_clear_soft_dirty(pmd);
1138 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1139 }
1140 }
1141 #else
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1142 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1143 unsigned long addr, pmd_t *pmdp)
1144 {
1145 }
1146 #endif
1147
clear_refs_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1148 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1149 unsigned long end, struct mm_walk *walk)
1150 {
1151 struct clear_refs_private *cp = walk->private;
1152 struct vm_area_struct *vma = walk->vma;
1153 pte_t *pte, ptent;
1154 spinlock_t *ptl;
1155 struct page *page;
1156
1157 ptl = pmd_trans_huge_lock(pmd, vma);
1158 if (ptl) {
1159 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1160 clear_soft_dirty_pmd(vma, addr, pmd);
1161 goto out;
1162 }
1163
1164 if (!pmd_present(*pmd))
1165 goto out;
1166
1167 page = pmd_page(*pmd);
1168
1169 /* Clear accessed and referenced bits. */
1170 pmdp_test_and_clear_young(vma, addr, pmd);
1171 test_and_clear_page_young(page);
1172 ClearPageReferenced(page);
1173 out:
1174 spin_unlock(ptl);
1175 return 0;
1176 }
1177
1178 if (pmd_trans_unstable(pmd))
1179 return 0;
1180
1181 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1182 for (; addr != end; pte++, addr += PAGE_SIZE) {
1183 ptent = *pte;
1184
1185 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1186 clear_soft_dirty(vma, addr, pte);
1187 continue;
1188 }
1189
1190 if (!pte_present(ptent))
1191 continue;
1192
1193 page = vm_normal_page(vma, addr, ptent);
1194 if (!page)
1195 continue;
1196
1197 /* Clear accessed and referenced bits. */
1198 ptep_test_and_clear_young(vma, addr, pte);
1199 test_and_clear_page_young(page);
1200 ClearPageReferenced(page);
1201 }
1202 pte_unmap_unlock(pte - 1, ptl);
1203 cond_resched();
1204 return 0;
1205 }
1206
clear_refs_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)1207 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1208 struct mm_walk *walk)
1209 {
1210 struct clear_refs_private *cp = walk->private;
1211 struct vm_area_struct *vma = walk->vma;
1212
1213 if (vma->vm_flags & VM_PFNMAP)
1214 return 1;
1215
1216 /*
1217 * Writing 1 to /proc/pid/clear_refs affects all pages.
1218 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1219 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1220 * Writing 4 to /proc/pid/clear_refs affects all pages.
1221 */
1222 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1223 return 1;
1224 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1225 return 1;
1226 return 0;
1227 }
1228
1229 static const struct mm_walk_ops clear_refs_walk_ops = {
1230 .pmd_entry = clear_refs_pte_range,
1231 .test_walk = clear_refs_test_walk,
1232 };
1233
clear_refs_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1234 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1235 size_t count, loff_t *ppos)
1236 {
1237 struct task_struct *task;
1238 char buffer[PROC_NUMBUF];
1239 struct mm_struct *mm;
1240 struct vm_area_struct *vma;
1241 enum clear_refs_types type;
1242 int itype;
1243 int rv;
1244
1245 memset(buffer, 0, sizeof(buffer));
1246 if (count > sizeof(buffer) - 1)
1247 count = sizeof(buffer) - 1;
1248 if (copy_from_user(buffer, buf, count))
1249 return -EFAULT;
1250 rv = kstrtoint(strstrip(buffer), 10, &itype);
1251 if (rv < 0)
1252 return rv;
1253 type = (enum clear_refs_types)itype;
1254 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1255 return -EINVAL;
1256
1257 task = get_proc_task(file_inode(file));
1258 if (!task)
1259 return -ESRCH;
1260 mm = get_task_mm(task);
1261 if (mm) {
1262 struct mmu_notifier_range range;
1263 struct clear_refs_private cp = {
1264 .type = type,
1265 };
1266
1267 if (mmap_write_lock_killable(mm)) {
1268 count = -EINTR;
1269 goto out_mm;
1270 }
1271 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1272 /*
1273 * Writing 5 to /proc/pid/clear_refs resets the peak
1274 * resident set size to this mm's current rss value.
1275 */
1276 reset_mm_hiwater_rss(mm);
1277 goto out_unlock;
1278 }
1279
1280 if (type == CLEAR_REFS_SOFT_DIRTY) {
1281 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1282 if (!(vma->vm_flags & VM_SOFTDIRTY))
1283 continue;
1284 vm_write_begin(vma);
1285 WRITE_ONCE(vma->vm_flags,
1286 vma->vm_flags & ~VM_SOFTDIRTY);
1287 vma_set_page_prot(vma);
1288 vm_write_end(vma);
1289 }
1290
1291 inc_tlb_flush_pending(mm);
1292 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1293 0, NULL, mm, 0, -1UL);
1294 mmu_notifier_invalidate_range_start(&range);
1295 }
1296 walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1297 &cp);
1298 if (type == CLEAR_REFS_SOFT_DIRTY) {
1299 mmu_notifier_invalidate_range_end(&range);
1300 flush_tlb_mm(mm);
1301 dec_tlb_flush_pending(mm);
1302 }
1303 out_unlock:
1304 mmap_write_unlock(mm);
1305 out_mm:
1306 mmput(mm);
1307 }
1308 put_task_struct(task);
1309
1310 return count;
1311 }
1312
1313 const struct file_operations proc_clear_refs_operations = {
1314 .write = clear_refs_write,
1315 .llseek = noop_llseek,
1316 };
1317
1318 typedef struct {
1319 u64 pme;
1320 } pagemap_entry_t;
1321
1322 struct pagemapread {
1323 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1324 pagemap_entry_t *buffer;
1325 bool show_pfn;
1326 };
1327
1328 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1329 #define PAGEMAP_WALK_MASK (PMD_MASK)
1330
1331 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1332 #define PM_PFRAME_BITS 55
1333 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1334 #define PM_SOFT_DIRTY BIT_ULL(55)
1335 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1336 #define PM_FILE BIT_ULL(61)
1337 #define PM_SWAP BIT_ULL(62)
1338 #define PM_PRESENT BIT_ULL(63)
1339
1340 #define PM_END_OF_BUFFER 1
1341
make_pme(u64 frame,u64 flags)1342 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1343 {
1344 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1345 }
1346
add_to_pagemap(unsigned long addr,pagemap_entry_t * pme,struct pagemapread * pm)1347 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1348 struct pagemapread *pm)
1349 {
1350 pm->buffer[pm->pos++] = *pme;
1351 if (pm->pos >= pm->len)
1352 return PM_END_OF_BUFFER;
1353 return 0;
1354 }
1355
pagemap_pte_hole(unsigned long start,unsigned long end,__always_unused int depth,struct mm_walk * walk)1356 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1357 __always_unused int depth, struct mm_walk *walk)
1358 {
1359 struct pagemapread *pm = walk->private;
1360 unsigned long addr = start;
1361 int err = 0;
1362
1363 while (addr < end) {
1364 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1365 pagemap_entry_t pme = make_pme(0, 0);
1366 /* End of address space hole, which we mark as non-present. */
1367 unsigned long hole_end;
1368
1369 if (vma)
1370 hole_end = min(end, vma->vm_start);
1371 else
1372 hole_end = end;
1373
1374 for (; addr < hole_end; addr += PAGE_SIZE) {
1375 err = add_to_pagemap(addr, &pme, pm);
1376 if (err)
1377 goto out;
1378 }
1379
1380 if (!vma)
1381 break;
1382
1383 /* Addresses in the VMA. */
1384 if (vma->vm_flags & VM_SOFTDIRTY)
1385 pme = make_pme(0, PM_SOFT_DIRTY);
1386 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1387 err = add_to_pagemap(addr, &pme, pm);
1388 if (err)
1389 goto out;
1390 }
1391 }
1392 out:
1393 return err;
1394 }
1395
pte_to_pagemap_entry(struct pagemapread * pm,struct vm_area_struct * vma,unsigned long addr,pte_t pte)1396 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1397 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1398 {
1399 u64 frame = 0, flags = 0;
1400 struct page *page = NULL;
1401 bool migration = false;
1402
1403 if (pte_present(pte)) {
1404 if (pm->show_pfn)
1405 frame = pte_pfn(pte);
1406 flags |= PM_PRESENT;
1407 page = vm_normal_page(vma, addr, pte);
1408 if (pte_soft_dirty(pte))
1409 flags |= PM_SOFT_DIRTY;
1410 } else if (is_swap_pte(pte)) {
1411 swp_entry_t entry;
1412 if (pte_swp_soft_dirty(pte))
1413 flags |= PM_SOFT_DIRTY;
1414 entry = pte_to_swp_entry(pte);
1415 if (pm->show_pfn)
1416 frame = swp_type(entry) |
1417 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1418 flags |= PM_SWAP;
1419 if (is_migration_entry(entry)) {
1420 migration = true;
1421 page = migration_entry_to_page(entry);
1422 }
1423
1424 if (is_device_private_entry(entry))
1425 page = device_private_entry_to_page(entry);
1426 }
1427
1428 if (page && !PageAnon(page))
1429 flags |= PM_FILE;
1430 if (page && !migration && page_mapcount(page) == 1)
1431 flags |= PM_MMAP_EXCLUSIVE;
1432 if (vma->vm_flags & VM_SOFTDIRTY)
1433 flags |= PM_SOFT_DIRTY;
1434
1435 return make_pme(frame, flags);
1436 }
1437
pagemap_pmd_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)1438 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1439 struct mm_walk *walk)
1440 {
1441 struct vm_area_struct *vma = walk->vma;
1442 struct pagemapread *pm = walk->private;
1443 spinlock_t *ptl;
1444 pte_t *pte, *orig_pte;
1445 int err = 0;
1446 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1447 bool migration = false;
1448
1449 ptl = pmd_trans_huge_lock(pmdp, vma);
1450 if (ptl) {
1451 u64 flags = 0, frame = 0;
1452 pmd_t pmd = *pmdp;
1453 struct page *page = NULL;
1454
1455 if (vma->vm_flags & VM_SOFTDIRTY)
1456 flags |= PM_SOFT_DIRTY;
1457
1458 if (pmd_present(pmd)) {
1459 page = pmd_page(pmd);
1460
1461 flags |= PM_PRESENT;
1462 if (pmd_soft_dirty(pmd))
1463 flags |= PM_SOFT_DIRTY;
1464 if (pm->show_pfn)
1465 frame = pmd_pfn(pmd) +
1466 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1467 }
1468 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1469 else if (is_swap_pmd(pmd)) {
1470 swp_entry_t entry = pmd_to_swp_entry(pmd);
1471 unsigned long offset;
1472
1473 if (pm->show_pfn) {
1474 offset = swp_offset(entry) +
1475 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1476 frame = swp_type(entry) |
1477 (offset << MAX_SWAPFILES_SHIFT);
1478 }
1479 flags |= PM_SWAP;
1480 if (pmd_swp_soft_dirty(pmd))
1481 flags |= PM_SOFT_DIRTY;
1482 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1483 migration = is_migration_entry(entry);
1484 page = migration_entry_to_page(entry);
1485 }
1486 #endif
1487
1488 if (page && !migration && page_mapcount(page) == 1)
1489 flags |= PM_MMAP_EXCLUSIVE;
1490
1491 for (; addr != end; addr += PAGE_SIZE) {
1492 pagemap_entry_t pme = make_pme(frame, flags);
1493
1494 err = add_to_pagemap(addr, &pme, pm);
1495 if (err)
1496 break;
1497 if (pm->show_pfn) {
1498 if (flags & PM_PRESENT)
1499 frame++;
1500 else if (flags & PM_SWAP)
1501 frame += (1 << MAX_SWAPFILES_SHIFT);
1502 }
1503 }
1504 spin_unlock(ptl);
1505 return err;
1506 }
1507
1508 if (pmd_trans_unstable(pmdp))
1509 return 0;
1510 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1511
1512 /*
1513 * We can assume that @vma always points to a valid one and @end never
1514 * goes beyond vma->vm_end.
1515 */
1516 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1517 for (; addr < end; pte++, addr += PAGE_SIZE) {
1518 pagemap_entry_t pme;
1519
1520 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1521 err = add_to_pagemap(addr, &pme, pm);
1522 if (err)
1523 break;
1524 }
1525 pte_unmap_unlock(orig_pte, ptl);
1526
1527 cond_resched();
1528
1529 return err;
1530 }
1531
1532 #ifdef CONFIG_HUGETLB_PAGE
1533 /* This function walks within one hugetlb entry in the single call */
pagemap_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1534 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1535 unsigned long addr, unsigned long end,
1536 struct mm_walk *walk)
1537 {
1538 struct pagemapread *pm = walk->private;
1539 struct vm_area_struct *vma = walk->vma;
1540 u64 flags = 0, frame = 0;
1541 int err = 0;
1542 pte_t pte;
1543
1544 if (vma->vm_flags & VM_SOFTDIRTY)
1545 flags |= PM_SOFT_DIRTY;
1546
1547 pte = huge_ptep_get(ptep);
1548 if (pte_present(pte)) {
1549 struct page *page = pte_page(pte);
1550
1551 if (!PageAnon(page))
1552 flags |= PM_FILE;
1553
1554 if (page_mapcount(page) == 1)
1555 flags |= PM_MMAP_EXCLUSIVE;
1556
1557 flags |= PM_PRESENT;
1558 if (pm->show_pfn)
1559 frame = pte_pfn(pte) +
1560 ((addr & ~hmask) >> PAGE_SHIFT);
1561 }
1562
1563 for (; addr != end; addr += PAGE_SIZE) {
1564 pagemap_entry_t pme = make_pme(frame, flags);
1565
1566 err = add_to_pagemap(addr, &pme, pm);
1567 if (err)
1568 return err;
1569 if (pm->show_pfn && (flags & PM_PRESENT))
1570 frame++;
1571 }
1572
1573 cond_resched();
1574
1575 return err;
1576 }
1577 #else
1578 #define pagemap_hugetlb_range NULL
1579 #endif /* HUGETLB_PAGE */
1580
1581 static const struct mm_walk_ops pagemap_ops = {
1582 .pmd_entry = pagemap_pmd_range,
1583 .pte_hole = pagemap_pte_hole,
1584 .hugetlb_entry = pagemap_hugetlb_range,
1585 };
1586
1587 /*
1588 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1589 *
1590 * For each page in the address space, this file contains one 64-bit entry
1591 * consisting of the following:
1592 *
1593 * Bits 0-54 page frame number (PFN) if present
1594 * Bits 0-4 swap type if swapped
1595 * Bits 5-54 swap offset if swapped
1596 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1597 * Bit 56 page exclusively mapped
1598 * Bits 57-60 zero
1599 * Bit 61 page is file-page or shared-anon
1600 * Bit 62 page swapped
1601 * Bit 63 page present
1602 *
1603 * If the page is not present but in swap, then the PFN contains an
1604 * encoding of the swap file number and the page's offset into the
1605 * swap. Unmapped pages return a null PFN. This allows determining
1606 * precisely which pages are mapped (or in swap) and comparing mapped
1607 * pages between processes.
1608 *
1609 * Efficient users of this interface will use /proc/pid/maps to
1610 * determine which areas of memory are actually mapped and llseek to
1611 * skip over unmapped regions.
1612 */
pagemap_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1613 static ssize_t pagemap_read(struct file *file, char __user *buf,
1614 size_t count, loff_t *ppos)
1615 {
1616 struct mm_struct *mm = file->private_data;
1617 struct pagemapread pm;
1618 unsigned long src;
1619 unsigned long svpfn;
1620 unsigned long start_vaddr;
1621 unsigned long end_vaddr;
1622 int ret = 0, copied = 0;
1623
1624 if (!mm || !mmget_not_zero(mm))
1625 goto out;
1626
1627 ret = -EINVAL;
1628 /* file position must be aligned */
1629 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1630 goto out_mm;
1631
1632 ret = 0;
1633 if (!count)
1634 goto out_mm;
1635
1636 /* do not disclose physical addresses: attack vector */
1637 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1638
1639 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1640 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1641 ret = -ENOMEM;
1642 if (!pm.buffer)
1643 goto out_mm;
1644
1645 src = *ppos;
1646 svpfn = src / PM_ENTRY_BYTES;
1647 end_vaddr = mm->task_size;
1648
1649 /* watch out for wraparound */
1650 start_vaddr = end_vaddr;
1651 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1652 start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1653
1654 /* Ensure the address is inside the task */
1655 if (start_vaddr > mm->task_size)
1656 start_vaddr = end_vaddr;
1657
1658 /*
1659 * The odds are that this will stop walking way
1660 * before end_vaddr, because the length of the
1661 * user buffer is tracked in "pm", and the walk
1662 * will stop when we hit the end of the buffer.
1663 */
1664 ret = 0;
1665 while (count && (start_vaddr < end_vaddr)) {
1666 int len;
1667 unsigned long end;
1668
1669 pm.pos = 0;
1670 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1671 /* overflow ? */
1672 if (end < start_vaddr || end > end_vaddr)
1673 end = end_vaddr;
1674 ret = mmap_read_lock_killable(mm);
1675 if (ret)
1676 goto out_free;
1677 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1678 mmap_read_unlock(mm);
1679 start_vaddr = end;
1680
1681 len = min(count, PM_ENTRY_BYTES * pm.pos);
1682 if (copy_to_user(buf, pm.buffer, len)) {
1683 ret = -EFAULT;
1684 goto out_free;
1685 }
1686 copied += len;
1687 buf += len;
1688 count -= len;
1689 }
1690 *ppos += copied;
1691 if (!ret || ret == PM_END_OF_BUFFER)
1692 ret = copied;
1693
1694 out_free:
1695 kfree(pm.buffer);
1696 out_mm:
1697 mmput(mm);
1698 out:
1699 return ret;
1700 }
1701
pagemap_open(struct inode * inode,struct file * file)1702 static int pagemap_open(struct inode *inode, struct file *file)
1703 {
1704 struct mm_struct *mm;
1705
1706 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1707 if (IS_ERR(mm))
1708 return PTR_ERR(mm);
1709 file->private_data = mm;
1710 return 0;
1711 }
1712
pagemap_release(struct inode * inode,struct file * file)1713 static int pagemap_release(struct inode *inode, struct file *file)
1714 {
1715 struct mm_struct *mm = file->private_data;
1716
1717 if (mm)
1718 mmdrop(mm);
1719 return 0;
1720 }
1721
1722 const struct file_operations proc_pagemap_operations = {
1723 .llseek = mem_lseek, /* borrow this */
1724 .read = pagemap_read,
1725 .open = pagemap_open,
1726 .release = pagemap_release,
1727 };
1728 #endif /* CONFIG_PROC_PAGE_MONITOR */
1729
1730 #ifdef CONFIG_NUMA
1731
1732 struct numa_maps {
1733 unsigned long pages;
1734 unsigned long anon;
1735 unsigned long active;
1736 unsigned long writeback;
1737 unsigned long mapcount_max;
1738 unsigned long dirty;
1739 unsigned long swapcache;
1740 unsigned long node[MAX_NUMNODES];
1741 };
1742
1743 struct numa_maps_private {
1744 struct proc_maps_private proc_maps;
1745 struct numa_maps md;
1746 };
1747
gather_stats(struct page * page,struct numa_maps * md,int pte_dirty,unsigned long nr_pages)1748 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1749 unsigned long nr_pages)
1750 {
1751 int count = page_mapcount(page);
1752
1753 md->pages += nr_pages;
1754 if (pte_dirty || PageDirty(page))
1755 md->dirty += nr_pages;
1756
1757 if (PageSwapCache(page))
1758 md->swapcache += nr_pages;
1759
1760 if (PageActive(page) || PageUnevictable(page))
1761 md->active += nr_pages;
1762
1763 if (PageWriteback(page))
1764 md->writeback += nr_pages;
1765
1766 if (PageAnon(page))
1767 md->anon += nr_pages;
1768
1769 if (count > md->mapcount_max)
1770 md->mapcount_max = count;
1771
1772 md->node[page_to_nid(page)] += nr_pages;
1773 }
1774
can_gather_numa_stats(pte_t pte,struct vm_area_struct * vma,unsigned long addr)1775 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1776 unsigned long addr)
1777 {
1778 struct page *page;
1779 int nid;
1780
1781 if (!pte_present(pte))
1782 return NULL;
1783
1784 page = vm_normal_page(vma, addr, pte);
1785 if (!page)
1786 return NULL;
1787
1788 if (PageReserved(page))
1789 return NULL;
1790
1791 nid = page_to_nid(page);
1792 if (!node_isset(nid, node_states[N_MEMORY]))
1793 return NULL;
1794
1795 return page;
1796 }
1797
1798 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
can_gather_numa_stats_pmd(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)1799 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1800 struct vm_area_struct *vma,
1801 unsigned long addr)
1802 {
1803 struct page *page;
1804 int nid;
1805
1806 if (!pmd_present(pmd))
1807 return NULL;
1808
1809 page = vm_normal_page_pmd(vma, addr, pmd);
1810 if (!page)
1811 return NULL;
1812
1813 if (PageReserved(page))
1814 return NULL;
1815
1816 nid = page_to_nid(page);
1817 if (!node_isset(nid, node_states[N_MEMORY]))
1818 return NULL;
1819
1820 return page;
1821 }
1822 #endif
1823
gather_pte_stats(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1824 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1825 unsigned long end, struct mm_walk *walk)
1826 {
1827 struct numa_maps *md = walk->private;
1828 struct vm_area_struct *vma = walk->vma;
1829 spinlock_t *ptl;
1830 pte_t *orig_pte;
1831 pte_t *pte;
1832
1833 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1834 ptl = pmd_trans_huge_lock(pmd, vma);
1835 if (ptl) {
1836 struct page *page;
1837
1838 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1839 if (page)
1840 gather_stats(page, md, pmd_dirty(*pmd),
1841 HPAGE_PMD_SIZE/PAGE_SIZE);
1842 spin_unlock(ptl);
1843 return 0;
1844 }
1845
1846 if (pmd_trans_unstable(pmd))
1847 return 0;
1848 #endif
1849 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1850 do {
1851 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1852 if (!page)
1853 continue;
1854 gather_stats(page, md, pte_dirty(*pte), 1);
1855
1856 } while (pte++, addr += PAGE_SIZE, addr != end);
1857 pte_unmap_unlock(orig_pte, ptl);
1858 cond_resched();
1859 return 0;
1860 }
1861 #ifdef CONFIG_HUGETLB_PAGE
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1862 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1863 unsigned long addr, unsigned long end, struct mm_walk *walk)
1864 {
1865 pte_t huge_pte = huge_ptep_get(pte);
1866 struct numa_maps *md;
1867 struct page *page;
1868
1869 if (!pte_present(huge_pte))
1870 return 0;
1871
1872 page = pte_page(huge_pte);
1873 if (!page)
1874 return 0;
1875
1876 md = walk->private;
1877 gather_stats(page, md, pte_dirty(huge_pte), 1);
1878 return 0;
1879 }
1880
1881 #else
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1882 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1883 unsigned long addr, unsigned long end, struct mm_walk *walk)
1884 {
1885 return 0;
1886 }
1887 #endif
1888
1889 static const struct mm_walk_ops show_numa_ops = {
1890 .hugetlb_entry = gather_hugetlb_stats,
1891 .pmd_entry = gather_pte_stats,
1892 };
1893
1894 /*
1895 * Display pages allocated per node and memory policy via /proc.
1896 */
show_numa_map(struct seq_file * m,void * v)1897 static int show_numa_map(struct seq_file *m, void *v)
1898 {
1899 struct numa_maps_private *numa_priv = m->private;
1900 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1901 struct vm_area_struct *vma = v;
1902 struct numa_maps *md = &numa_priv->md;
1903 struct file *file = vma->vm_file;
1904 struct mm_struct *mm = vma->vm_mm;
1905 struct mempolicy *pol;
1906 char buffer[64];
1907 int nid;
1908
1909 if (!mm)
1910 return 0;
1911
1912 /* Ensure we start with an empty set of numa_maps statistics. */
1913 memset(md, 0, sizeof(*md));
1914
1915 pol = __get_vma_policy(vma, vma->vm_start);
1916 if (pol) {
1917 mpol_to_str(buffer, sizeof(buffer), pol);
1918 mpol_cond_put(pol);
1919 } else {
1920 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1921 }
1922
1923 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1924
1925 if (file) {
1926 seq_puts(m, " file=");
1927 seq_file_path(m, file, "\n\t= ");
1928 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1929 seq_puts(m, " heap");
1930 } else if (is_stack(vma)) {
1931 seq_puts(m, " stack");
1932 }
1933
1934 if (is_vm_hugetlb_page(vma))
1935 seq_puts(m, " huge");
1936
1937 /* mmap_lock is held by m_start */
1938 walk_page_vma(vma, &show_numa_ops, md);
1939
1940 if (!md->pages)
1941 goto out;
1942
1943 if (md->anon)
1944 seq_printf(m, " anon=%lu", md->anon);
1945
1946 if (md->dirty)
1947 seq_printf(m, " dirty=%lu", md->dirty);
1948
1949 if (md->pages != md->anon && md->pages != md->dirty)
1950 seq_printf(m, " mapped=%lu", md->pages);
1951
1952 if (md->mapcount_max > 1)
1953 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1954
1955 if (md->swapcache)
1956 seq_printf(m, " swapcache=%lu", md->swapcache);
1957
1958 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1959 seq_printf(m, " active=%lu", md->active);
1960
1961 if (md->writeback)
1962 seq_printf(m, " writeback=%lu", md->writeback);
1963
1964 for_each_node_state(nid, N_MEMORY)
1965 if (md->node[nid])
1966 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1967
1968 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1969 out:
1970 seq_putc(m, '\n');
1971 return 0;
1972 }
1973
1974 static const struct seq_operations proc_pid_numa_maps_op = {
1975 .start = m_start,
1976 .next = m_next,
1977 .stop = m_stop,
1978 .show = show_numa_map,
1979 };
1980
pid_numa_maps_open(struct inode * inode,struct file * file)1981 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1982 {
1983 return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1984 sizeof(struct numa_maps_private));
1985 }
1986
1987 const struct file_operations proc_pid_numa_maps_operations = {
1988 .open = pid_numa_maps_open,
1989 .read = seq_read,
1990 .llseek = seq_lseek,
1991 .release = proc_map_release,
1992 };
1993
1994 #endif /* CONFIG_NUMA */
1995