1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
4 */
5
6 #include <linux/err.h>
7 #include <linux/interrupt.h>
8 #include <linux/types.h>
9 #include <crypto/scatterwalk.h>
10 #include <crypto/sha.h>
11
12 #include "cipher.h"
13 #include "common.h"
14 #include "core.h"
15 #include "regs-v5.h"
16 #include "sha.h"
17
qce_read(struct qce_device * qce,u32 offset)18 static inline u32 qce_read(struct qce_device *qce, u32 offset)
19 {
20 return readl(qce->base + offset);
21 }
22
qce_write(struct qce_device * qce,u32 offset,u32 val)23 static inline void qce_write(struct qce_device *qce, u32 offset, u32 val)
24 {
25 writel(val, qce->base + offset);
26 }
27
qce_write_array(struct qce_device * qce,u32 offset,const u32 * val,unsigned int len)28 static inline void qce_write_array(struct qce_device *qce, u32 offset,
29 const u32 *val, unsigned int len)
30 {
31 int i;
32
33 for (i = 0; i < len; i++)
34 qce_write(qce, offset + i * sizeof(u32), val[i]);
35 }
36
37 static inline void
qce_clear_array(struct qce_device * qce,u32 offset,unsigned int len)38 qce_clear_array(struct qce_device *qce, u32 offset, unsigned int len)
39 {
40 int i;
41
42 for (i = 0; i < len; i++)
43 qce_write(qce, offset + i * sizeof(u32), 0);
44 }
45
qce_config_reg(struct qce_device * qce,int little)46 static u32 qce_config_reg(struct qce_device *qce, int little)
47 {
48 u32 beats = (qce->burst_size >> 3) - 1;
49 u32 pipe_pair = qce->pipe_pair_id;
50 u32 config;
51
52 config = (beats << REQ_SIZE_SHIFT) & REQ_SIZE_MASK;
53 config |= BIT(MASK_DOUT_INTR_SHIFT) | BIT(MASK_DIN_INTR_SHIFT) |
54 BIT(MASK_OP_DONE_INTR_SHIFT) | BIT(MASK_ERR_INTR_SHIFT);
55 config |= (pipe_pair << PIPE_SET_SELECT_SHIFT) & PIPE_SET_SELECT_MASK;
56 config &= ~HIGH_SPD_EN_N_SHIFT;
57
58 if (little)
59 config |= BIT(LITTLE_ENDIAN_MODE_SHIFT);
60
61 return config;
62 }
63
qce_cpu_to_be32p_array(__be32 * dst,const u8 * src,unsigned int len)64 void qce_cpu_to_be32p_array(__be32 *dst, const u8 *src, unsigned int len)
65 {
66 __be32 *d = dst;
67 const u8 *s = src;
68 unsigned int n;
69
70 n = len / sizeof(u32);
71 for (; n > 0; n--) {
72 *d = cpu_to_be32p((const __u32 *) s);
73 s += sizeof(__u32);
74 d++;
75 }
76 }
77
qce_setup_config(struct qce_device * qce)78 static void qce_setup_config(struct qce_device *qce)
79 {
80 u32 config;
81
82 /* get big endianness */
83 config = qce_config_reg(qce, 0);
84
85 /* clear status */
86 qce_write(qce, REG_STATUS, 0);
87 qce_write(qce, REG_CONFIG, config);
88 }
89
qce_crypto_go(struct qce_device * qce)90 static inline void qce_crypto_go(struct qce_device *qce)
91 {
92 qce_write(qce, REG_GOPROC, BIT(GO_SHIFT) | BIT(RESULTS_DUMP_SHIFT));
93 }
94
95 #ifdef CONFIG_CRYPTO_DEV_QCE_SHA
qce_auth_cfg(unsigned long flags,u32 key_size)96 static u32 qce_auth_cfg(unsigned long flags, u32 key_size)
97 {
98 u32 cfg = 0;
99
100 if (IS_AES(flags) && (IS_CCM(flags) || IS_CMAC(flags)))
101 cfg |= AUTH_ALG_AES << AUTH_ALG_SHIFT;
102 else
103 cfg |= AUTH_ALG_SHA << AUTH_ALG_SHIFT;
104
105 if (IS_CCM(flags) || IS_CMAC(flags)) {
106 if (key_size == AES_KEYSIZE_128)
107 cfg |= AUTH_KEY_SZ_AES128 << AUTH_KEY_SIZE_SHIFT;
108 else if (key_size == AES_KEYSIZE_256)
109 cfg |= AUTH_KEY_SZ_AES256 << AUTH_KEY_SIZE_SHIFT;
110 }
111
112 if (IS_SHA1(flags) || IS_SHA1_HMAC(flags))
113 cfg |= AUTH_SIZE_SHA1 << AUTH_SIZE_SHIFT;
114 else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags))
115 cfg |= AUTH_SIZE_SHA256 << AUTH_SIZE_SHIFT;
116 else if (IS_CMAC(flags))
117 cfg |= AUTH_SIZE_ENUM_16_BYTES << AUTH_SIZE_SHIFT;
118
119 if (IS_SHA1(flags) || IS_SHA256(flags))
120 cfg |= AUTH_MODE_HASH << AUTH_MODE_SHIFT;
121 else if (IS_SHA1_HMAC(flags) || IS_SHA256_HMAC(flags) ||
122 IS_CBC(flags) || IS_CTR(flags))
123 cfg |= AUTH_MODE_HMAC << AUTH_MODE_SHIFT;
124 else if (IS_AES(flags) && IS_CCM(flags))
125 cfg |= AUTH_MODE_CCM << AUTH_MODE_SHIFT;
126 else if (IS_AES(flags) && IS_CMAC(flags))
127 cfg |= AUTH_MODE_CMAC << AUTH_MODE_SHIFT;
128
129 if (IS_SHA(flags) || IS_SHA_HMAC(flags))
130 cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
131
132 if (IS_CCM(flags))
133 cfg |= QCE_MAX_NONCE_WORDS << AUTH_NONCE_NUM_WORDS_SHIFT;
134
135 if (IS_CBC(flags) || IS_CTR(flags) || IS_CCM(flags) ||
136 IS_CMAC(flags))
137 cfg |= BIT(AUTH_LAST_SHIFT) | BIT(AUTH_FIRST_SHIFT);
138
139 return cfg;
140 }
141
qce_setup_regs_ahash(struct crypto_async_request * async_req,u32 totallen,u32 offset)142 static int qce_setup_regs_ahash(struct crypto_async_request *async_req,
143 u32 totallen, u32 offset)
144 {
145 struct ahash_request *req = ahash_request_cast(async_req);
146 struct crypto_ahash *ahash = __crypto_ahash_cast(async_req->tfm);
147 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
148 struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
149 struct qce_device *qce = tmpl->qce;
150 unsigned int digestsize = crypto_ahash_digestsize(ahash);
151 unsigned int blocksize = crypto_tfm_alg_blocksize(async_req->tfm);
152 __be32 auth[SHA256_DIGEST_SIZE / sizeof(__be32)] = {0};
153 __be32 mackey[QCE_SHA_HMAC_KEY_SIZE / sizeof(__be32)] = {0};
154 u32 auth_cfg = 0, config;
155 unsigned int iv_words;
156
157 /* if not the last, the size has to be on the block boundary */
158 if (!rctx->last_blk && req->nbytes % blocksize)
159 return -EINVAL;
160
161 qce_setup_config(qce);
162
163 if (IS_CMAC(rctx->flags)) {
164 qce_write(qce, REG_AUTH_SEG_CFG, 0);
165 qce_write(qce, REG_ENCR_SEG_CFG, 0);
166 qce_write(qce, REG_ENCR_SEG_SIZE, 0);
167 qce_clear_array(qce, REG_AUTH_IV0, 16);
168 qce_clear_array(qce, REG_AUTH_KEY0, 16);
169 qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
170
171 auth_cfg = qce_auth_cfg(rctx->flags, rctx->authklen);
172 }
173
174 if (IS_SHA_HMAC(rctx->flags) || IS_CMAC(rctx->flags)) {
175 u32 authkey_words = rctx->authklen / sizeof(u32);
176
177 qce_cpu_to_be32p_array(mackey, rctx->authkey, rctx->authklen);
178 qce_write_array(qce, REG_AUTH_KEY0, (u32 *)mackey,
179 authkey_words);
180 }
181
182 if (IS_CMAC(rctx->flags))
183 goto go_proc;
184
185 if (rctx->first_blk)
186 memcpy(auth, rctx->digest, digestsize);
187 else
188 qce_cpu_to_be32p_array(auth, rctx->digest, digestsize);
189
190 iv_words = (IS_SHA1(rctx->flags) || IS_SHA1_HMAC(rctx->flags)) ? 5 : 8;
191 qce_write_array(qce, REG_AUTH_IV0, (u32 *)auth, iv_words);
192
193 if (rctx->first_blk)
194 qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
195 else
196 qce_write_array(qce, REG_AUTH_BYTECNT0,
197 (u32 *)rctx->byte_count, 2);
198
199 auth_cfg = qce_auth_cfg(rctx->flags, 0);
200
201 if (rctx->last_blk)
202 auth_cfg |= BIT(AUTH_LAST_SHIFT);
203 else
204 auth_cfg &= ~BIT(AUTH_LAST_SHIFT);
205
206 if (rctx->first_blk)
207 auth_cfg |= BIT(AUTH_FIRST_SHIFT);
208 else
209 auth_cfg &= ~BIT(AUTH_FIRST_SHIFT);
210
211 go_proc:
212 qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
213 qce_write(qce, REG_AUTH_SEG_SIZE, req->nbytes);
214 qce_write(qce, REG_AUTH_SEG_START, 0);
215 qce_write(qce, REG_ENCR_SEG_CFG, 0);
216 qce_write(qce, REG_SEG_SIZE, req->nbytes);
217
218 /* get little endianness */
219 config = qce_config_reg(qce, 1);
220 qce_write(qce, REG_CONFIG, config);
221
222 qce_crypto_go(qce);
223
224 return 0;
225 }
226 #endif
227
228 #ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
qce_encr_cfg(unsigned long flags,u32 aes_key_size)229 static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size)
230 {
231 u32 cfg = 0;
232
233 if (IS_AES(flags)) {
234 if (aes_key_size == AES_KEYSIZE_128)
235 cfg |= ENCR_KEY_SZ_AES128 << ENCR_KEY_SZ_SHIFT;
236 else if (aes_key_size == AES_KEYSIZE_256)
237 cfg |= ENCR_KEY_SZ_AES256 << ENCR_KEY_SZ_SHIFT;
238 }
239
240 if (IS_AES(flags))
241 cfg |= ENCR_ALG_AES << ENCR_ALG_SHIFT;
242 else if (IS_DES(flags) || IS_3DES(flags))
243 cfg |= ENCR_ALG_DES << ENCR_ALG_SHIFT;
244
245 if (IS_DES(flags))
246 cfg |= ENCR_KEY_SZ_DES << ENCR_KEY_SZ_SHIFT;
247
248 if (IS_3DES(flags))
249 cfg |= ENCR_KEY_SZ_3DES << ENCR_KEY_SZ_SHIFT;
250
251 switch (flags & QCE_MODE_MASK) {
252 case QCE_MODE_ECB:
253 cfg |= ENCR_MODE_ECB << ENCR_MODE_SHIFT;
254 break;
255 case QCE_MODE_CBC:
256 cfg |= ENCR_MODE_CBC << ENCR_MODE_SHIFT;
257 break;
258 case QCE_MODE_CTR:
259 cfg |= ENCR_MODE_CTR << ENCR_MODE_SHIFT;
260 break;
261 case QCE_MODE_XTS:
262 cfg |= ENCR_MODE_XTS << ENCR_MODE_SHIFT;
263 break;
264 case QCE_MODE_CCM:
265 cfg |= ENCR_MODE_CCM << ENCR_MODE_SHIFT;
266 cfg |= LAST_CCM_XFR << LAST_CCM_SHIFT;
267 break;
268 default:
269 return ~0;
270 }
271
272 return cfg;
273 }
274
qce_xts_swapiv(__be32 * dst,const u8 * src,unsigned int ivsize)275 static void qce_xts_swapiv(__be32 *dst, const u8 *src, unsigned int ivsize)
276 {
277 u8 swap[QCE_AES_IV_LENGTH];
278 u32 i, j;
279
280 if (ivsize > QCE_AES_IV_LENGTH)
281 return;
282
283 memset(swap, 0, QCE_AES_IV_LENGTH);
284
285 for (i = (QCE_AES_IV_LENGTH - ivsize), j = ivsize - 1;
286 i < QCE_AES_IV_LENGTH; i++, j--)
287 swap[i] = src[j];
288
289 qce_cpu_to_be32p_array(dst, swap, QCE_AES_IV_LENGTH);
290 }
291
qce_xtskey(struct qce_device * qce,const u8 * enckey,unsigned int enckeylen,unsigned int cryptlen)292 static void qce_xtskey(struct qce_device *qce, const u8 *enckey,
293 unsigned int enckeylen, unsigned int cryptlen)
294 {
295 u32 xtskey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
296 unsigned int xtsklen = enckeylen / (2 * sizeof(u32));
297 unsigned int xtsdusize;
298
299 qce_cpu_to_be32p_array((__be32 *)xtskey, enckey + enckeylen / 2,
300 enckeylen / 2);
301 qce_write_array(qce, REG_ENCR_XTS_KEY0, xtskey, xtsklen);
302
303 /* xts du size 512B */
304 xtsdusize = min_t(u32, QCE_SECTOR_SIZE, cryptlen);
305 qce_write(qce, REG_ENCR_XTS_DU_SIZE, xtsdusize);
306 }
307
qce_setup_regs_skcipher(struct crypto_async_request * async_req,u32 totallen,u32 offset)308 static int qce_setup_regs_skcipher(struct crypto_async_request *async_req,
309 u32 totallen, u32 offset)
310 {
311 struct skcipher_request *req = skcipher_request_cast(async_req);
312 struct qce_cipher_reqctx *rctx = skcipher_request_ctx(req);
313 struct qce_cipher_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
314 struct qce_alg_template *tmpl = to_cipher_tmpl(crypto_skcipher_reqtfm(req));
315 struct qce_device *qce = tmpl->qce;
316 __be32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(__be32)] = {0};
317 __be32 enciv[QCE_MAX_IV_SIZE / sizeof(__be32)] = {0};
318 unsigned int enckey_words, enciv_words;
319 unsigned int keylen;
320 u32 encr_cfg = 0, auth_cfg = 0, config;
321 unsigned int ivsize = rctx->ivsize;
322 unsigned long flags = rctx->flags;
323
324 qce_setup_config(qce);
325
326 if (IS_XTS(flags))
327 keylen = ctx->enc_keylen / 2;
328 else
329 keylen = ctx->enc_keylen;
330
331 qce_cpu_to_be32p_array(enckey, ctx->enc_key, keylen);
332 enckey_words = keylen / sizeof(u32);
333
334 qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
335
336 encr_cfg = qce_encr_cfg(flags, keylen);
337
338 if (IS_DES(flags)) {
339 enciv_words = 2;
340 enckey_words = 2;
341 } else if (IS_3DES(flags)) {
342 enciv_words = 2;
343 enckey_words = 6;
344 } else if (IS_AES(flags)) {
345 if (IS_XTS(flags))
346 qce_xtskey(qce, ctx->enc_key, ctx->enc_keylen,
347 rctx->cryptlen);
348 enciv_words = 4;
349 } else {
350 return -EINVAL;
351 }
352
353 qce_write_array(qce, REG_ENCR_KEY0, (u32 *)enckey, enckey_words);
354
355 if (!IS_ECB(flags)) {
356 if (IS_XTS(flags))
357 qce_xts_swapiv(enciv, rctx->iv, ivsize);
358 else
359 qce_cpu_to_be32p_array(enciv, rctx->iv, ivsize);
360
361 qce_write_array(qce, REG_CNTR0_IV0, (u32 *)enciv, enciv_words);
362 }
363
364 if (IS_ENCRYPT(flags))
365 encr_cfg |= BIT(ENCODE_SHIFT);
366
367 qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
368 qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
369 qce_write(qce, REG_ENCR_SEG_START, offset & 0xffff);
370
371 if (IS_CTR(flags)) {
372 qce_write(qce, REG_CNTR_MASK, ~0);
373 qce_write(qce, REG_CNTR_MASK0, ~0);
374 qce_write(qce, REG_CNTR_MASK1, ~0);
375 qce_write(qce, REG_CNTR_MASK2, ~0);
376 }
377
378 qce_write(qce, REG_SEG_SIZE, totallen);
379
380 /* get little endianness */
381 config = qce_config_reg(qce, 1);
382 qce_write(qce, REG_CONFIG, config);
383
384 qce_crypto_go(qce);
385
386 return 0;
387 }
388 #endif
389
qce_start(struct crypto_async_request * async_req,u32 type,u32 totallen,u32 offset)390 int qce_start(struct crypto_async_request *async_req, u32 type, u32 totallen,
391 u32 offset)
392 {
393 switch (type) {
394 #ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
395 case CRYPTO_ALG_TYPE_SKCIPHER:
396 return qce_setup_regs_skcipher(async_req, totallen, offset);
397 #endif
398 #ifdef CONFIG_CRYPTO_DEV_QCE_SHA
399 case CRYPTO_ALG_TYPE_AHASH:
400 return qce_setup_regs_ahash(async_req, totallen, offset);
401 #endif
402 default:
403 return -EINVAL;
404 }
405 }
406
407 #define STATUS_ERRORS \
408 (BIT(SW_ERR_SHIFT) | BIT(AXI_ERR_SHIFT) | BIT(HSD_ERR_SHIFT))
409
qce_check_status(struct qce_device * qce,u32 * status)410 int qce_check_status(struct qce_device *qce, u32 *status)
411 {
412 int ret = 0;
413
414 *status = qce_read(qce, REG_STATUS);
415
416 /*
417 * Don't use result dump status. The operation may not be complete.
418 * Instead, use the status we just read from device. In case, we need to
419 * use result_status from result dump the result_status needs to be byte
420 * swapped, since we set the device to little endian.
421 */
422 if (*status & STATUS_ERRORS || !(*status & BIT(OPERATION_DONE_SHIFT)))
423 ret = -ENXIO;
424
425 return ret;
426 }
427
qce_get_version(struct qce_device * qce,u32 * major,u32 * minor,u32 * step)428 void qce_get_version(struct qce_device *qce, u32 *major, u32 *minor, u32 *step)
429 {
430 u32 val;
431
432 val = qce_read(qce, REG_VERSION);
433 *major = (val & CORE_MAJOR_REV_MASK) >> CORE_MAJOR_REV_SHIFT;
434 *minor = (val & CORE_MINOR_REV_MASK) >> CORE_MINOR_REV_SHIFT;
435 *step = (val & CORE_STEP_REV_MASK) >> CORE_STEP_REV_SHIFT;
436 }
437