• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Fusion-io  All rights reserved.
4  * Copyright (C) 2012 Intel Corp. All rights reserved.
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/raid/pq.h>
12 #include <linux/hash.h>
13 #include <linux/list_sort.h>
14 #include <linux/raid/xor.h>
15 #include <linux/mm.h>
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "volumes.h"
19 #include "raid56.h"
20 #include "async-thread.h"
21 
22 /* set when additional merges to this rbio are not allowed */
23 #define RBIO_RMW_LOCKED_BIT	1
24 
25 /*
26  * set when this rbio is sitting in the hash, but it is just a cache
27  * of past RMW
28  */
29 #define RBIO_CACHE_BIT		2
30 
31 /*
32  * set when it is safe to trust the stripe_pages for caching
33  */
34 #define RBIO_CACHE_READY_BIT	3
35 
36 #define RBIO_CACHE_SIZE 1024
37 
38 #define BTRFS_STRIPE_HASH_TABLE_BITS				11
39 
40 /* Used by the raid56 code to lock stripes for read/modify/write */
41 struct btrfs_stripe_hash {
42 	struct list_head hash_list;
43 	spinlock_t lock;
44 };
45 
46 /* Used by the raid56 code to lock stripes for read/modify/write */
47 struct btrfs_stripe_hash_table {
48 	struct list_head stripe_cache;
49 	spinlock_t cache_lock;
50 	int cache_size;
51 	struct btrfs_stripe_hash table[];
52 };
53 
54 enum btrfs_rbio_ops {
55 	BTRFS_RBIO_WRITE,
56 	BTRFS_RBIO_READ_REBUILD,
57 	BTRFS_RBIO_PARITY_SCRUB,
58 	BTRFS_RBIO_REBUILD_MISSING,
59 };
60 
61 struct btrfs_raid_bio {
62 	struct btrfs_fs_info *fs_info;
63 	struct btrfs_bio *bbio;
64 
65 	/* while we're doing rmw on a stripe
66 	 * we put it into a hash table so we can
67 	 * lock the stripe and merge more rbios
68 	 * into it.
69 	 */
70 	struct list_head hash_list;
71 
72 	/*
73 	 * LRU list for the stripe cache
74 	 */
75 	struct list_head stripe_cache;
76 
77 	/*
78 	 * for scheduling work in the helper threads
79 	 */
80 	struct btrfs_work work;
81 
82 	/*
83 	 * bio list and bio_list_lock are used
84 	 * to add more bios into the stripe
85 	 * in hopes of avoiding the full rmw
86 	 */
87 	struct bio_list bio_list;
88 	spinlock_t bio_list_lock;
89 
90 	/* also protected by the bio_list_lock, the
91 	 * plug list is used by the plugging code
92 	 * to collect partial bios while plugged.  The
93 	 * stripe locking code also uses it to hand off
94 	 * the stripe lock to the next pending IO
95 	 */
96 	struct list_head plug_list;
97 
98 	/*
99 	 * flags that tell us if it is safe to
100 	 * merge with this bio
101 	 */
102 	unsigned long flags;
103 
104 	/* size of each individual stripe on disk */
105 	int stripe_len;
106 
107 	/* number of data stripes (no p/q) */
108 	int nr_data;
109 
110 	int real_stripes;
111 
112 	int stripe_npages;
113 	/*
114 	 * set if we're doing a parity rebuild
115 	 * for a read from higher up, which is handled
116 	 * differently from a parity rebuild as part of
117 	 * rmw
118 	 */
119 	enum btrfs_rbio_ops operation;
120 
121 	/* first bad stripe */
122 	int faila;
123 
124 	/* second bad stripe (for raid6 use) */
125 	int failb;
126 
127 	int scrubp;
128 	/*
129 	 * number of pages needed to represent the full
130 	 * stripe
131 	 */
132 	int nr_pages;
133 
134 	/*
135 	 * size of all the bios in the bio_list.  This
136 	 * helps us decide if the rbio maps to a full
137 	 * stripe or not
138 	 */
139 	int bio_list_bytes;
140 
141 	int generic_bio_cnt;
142 
143 	refcount_t refs;
144 
145 	atomic_t stripes_pending;
146 
147 	atomic_t error;
148 	/*
149 	 * these are two arrays of pointers.  We allocate the
150 	 * rbio big enough to hold them both and setup their
151 	 * locations when the rbio is allocated
152 	 */
153 
154 	/* pointers to pages that we allocated for
155 	 * reading/writing stripes directly from the disk (including P/Q)
156 	 */
157 	struct page **stripe_pages;
158 
159 	/*
160 	 * pointers to the pages in the bio_list.  Stored
161 	 * here for faster lookup
162 	 */
163 	struct page **bio_pages;
164 
165 	/*
166 	 * bitmap to record which horizontal stripe has data
167 	 */
168 	unsigned long *dbitmap;
169 
170 	/* allocated with real_stripes-many pointers for finish_*() calls */
171 	void **finish_pointers;
172 
173 	/* allocated with stripe_npages-many bits for finish_*() calls */
174 	unsigned long *finish_pbitmap;
175 };
176 
177 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
178 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
179 static void rmw_work(struct btrfs_work *work);
180 static void read_rebuild_work(struct btrfs_work *work);
181 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
182 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
183 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
184 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
185 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
186 
187 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
188 					 int need_check);
189 static void scrub_parity_work(struct btrfs_work *work);
190 
start_async_work(struct btrfs_raid_bio * rbio,btrfs_func_t work_func)191 static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func)
192 {
193 	btrfs_init_work(&rbio->work, work_func, NULL, NULL);
194 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
195 }
196 
197 /*
198  * the stripe hash table is used for locking, and to collect
199  * bios in hopes of making a full stripe
200  */
btrfs_alloc_stripe_hash_table(struct btrfs_fs_info * info)201 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
202 {
203 	struct btrfs_stripe_hash_table *table;
204 	struct btrfs_stripe_hash_table *x;
205 	struct btrfs_stripe_hash *cur;
206 	struct btrfs_stripe_hash *h;
207 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
208 	int i;
209 
210 	if (info->stripe_hash_table)
211 		return 0;
212 
213 	/*
214 	 * The table is large, starting with order 4 and can go as high as
215 	 * order 7 in case lock debugging is turned on.
216 	 *
217 	 * Try harder to allocate and fallback to vmalloc to lower the chance
218 	 * of a failing mount.
219 	 */
220 	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
221 	if (!table)
222 		return -ENOMEM;
223 
224 	spin_lock_init(&table->cache_lock);
225 	INIT_LIST_HEAD(&table->stripe_cache);
226 
227 	h = table->table;
228 
229 	for (i = 0; i < num_entries; i++) {
230 		cur = h + i;
231 		INIT_LIST_HEAD(&cur->hash_list);
232 		spin_lock_init(&cur->lock);
233 	}
234 
235 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
236 	if (x)
237 		kvfree(x);
238 	return 0;
239 }
240 
241 /*
242  * caching an rbio means to copy anything from the
243  * bio_pages array into the stripe_pages array.  We
244  * use the page uptodate bit in the stripe cache array
245  * to indicate if it has valid data
246  *
247  * once the caching is done, we set the cache ready
248  * bit.
249  */
cache_rbio_pages(struct btrfs_raid_bio * rbio)250 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
251 {
252 	int i;
253 	char *s;
254 	char *d;
255 	int ret;
256 
257 	ret = alloc_rbio_pages(rbio);
258 	if (ret)
259 		return;
260 
261 	for (i = 0; i < rbio->nr_pages; i++) {
262 		if (!rbio->bio_pages[i])
263 			continue;
264 
265 		s = kmap(rbio->bio_pages[i]);
266 		d = kmap(rbio->stripe_pages[i]);
267 
268 		copy_page(d, s);
269 
270 		kunmap(rbio->bio_pages[i]);
271 		kunmap(rbio->stripe_pages[i]);
272 		SetPageUptodate(rbio->stripe_pages[i]);
273 	}
274 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
275 }
276 
277 /*
278  * we hash on the first logical address of the stripe
279  */
rbio_bucket(struct btrfs_raid_bio * rbio)280 static int rbio_bucket(struct btrfs_raid_bio *rbio)
281 {
282 	u64 num = rbio->bbio->raid_map[0];
283 
284 	/*
285 	 * we shift down quite a bit.  We're using byte
286 	 * addressing, and most of the lower bits are zeros.
287 	 * This tends to upset hash_64, and it consistently
288 	 * returns just one or two different values.
289 	 *
290 	 * shifting off the lower bits fixes things.
291 	 */
292 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
293 }
294 
295 /*
296  * stealing an rbio means taking all the uptodate pages from the stripe
297  * array in the source rbio and putting them into the destination rbio
298  */
steal_rbio(struct btrfs_raid_bio * src,struct btrfs_raid_bio * dest)299 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
300 {
301 	int i;
302 	struct page *s;
303 	struct page *d;
304 
305 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
306 		return;
307 
308 	for (i = 0; i < dest->nr_pages; i++) {
309 		s = src->stripe_pages[i];
310 		if (!s || !PageUptodate(s)) {
311 			continue;
312 		}
313 
314 		d = dest->stripe_pages[i];
315 		if (d)
316 			__free_page(d);
317 
318 		dest->stripe_pages[i] = s;
319 		src->stripe_pages[i] = NULL;
320 	}
321 }
322 
323 /*
324  * merging means we take the bio_list from the victim and
325  * splice it into the destination.  The victim should
326  * be discarded afterwards.
327  *
328  * must be called with dest->rbio_list_lock held
329  */
merge_rbio(struct btrfs_raid_bio * dest,struct btrfs_raid_bio * victim)330 static void merge_rbio(struct btrfs_raid_bio *dest,
331 		       struct btrfs_raid_bio *victim)
332 {
333 	bio_list_merge(&dest->bio_list, &victim->bio_list);
334 	dest->bio_list_bytes += victim->bio_list_bytes;
335 	/* Also inherit the bitmaps from @victim. */
336 	bitmap_or(dest->dbitmap, victim->dbitmap, dest->dbitmap,
337 		  dest->stripe_npages);
338 	dest->generic_bio_cnt += victim->generic_bio_cnt;
339 	bio_list_init(&victim->bio_list);
340 }
341 
342 /*
343  * used to prune items that are in the cache.  The caller
344  * must hold the hash table lock.
345  */
__remove_rbio_from_cache(struct btrfs_raid_bio * rbio)346 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
347 {
348 	int bucket = rbio_bucket(rbio);
349 	struct btrfs_stripe_hash_table *table;
350 	struct btrfs_stripe_hash *h;
351 	int freeit = 0;
352 
353 	/*
354 	 * check the bit again under the hash table lock.
355 	 */
356 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
357 		return;
358 
359 	table = rbio->fs_info->stripe_hash_table;
360 	h = table->table + bucket;
361 
362 	/* hold the lock for the bucket because we may be
363 	 * removing it from the hash table
364 	 */
365 	spin_lock(&h->lock);
366 
367 	/*
368 	 * hold the lock for the bio list because we need
369 	 * to make sure the bio list is empty
370 	 */
371 	spin_lock(&rbio->bio_list_lock);
372 
373 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
374 		list_del_init(&rbio->stripe_cache);
375 		table->cache_size -= 1;
376 		freeit = 1;
377 
378 		/* if the bio list isn't empty, this rbio is
379 		 * still involved in an IO.  We take it out
380 		 * of the cache list, and drop the ref that
381 		 * was held for the list.
382 		 *
383 		 * If the bio_list was empty, we also remove
384 		 * the rbio from the hash_table, and drop
385 		 * the corresponding ref
386 		 */
387 		if (bio_list_empty(&rbio->bio_list)) {
388 			if (!list_empty(&rbio->hash_list)) {
389 				list_del_init(&rbio->hash_list);
390 				refcount_dec(&rbio->refs);
391 				BUG_ON(!list_empty(&rbio->plug_list));
392 			}
393 		}
394 	}
395 
396 	spin_unlock(&rbio->bio_list_lock);
397 	spin_unlock(&h->lock);
398 
399 	if (freeit)
400 		__free_raid_bio(rbio);
401 }
402 
403 /*
404  * prune a given rbio from the cache
405  */
remove_rbio_from_cache(struct btrfs_raid_bio * rbio)406 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
407 {
408 	struct btrfs_stripe_hash_table *table;
409 	unsigned long flags;
410 
411 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
412 		return;
413 
414 	table = rbio->fs_info->stripe_hash_table;
415 
416 	spin_lock_irqsave(&table->cache_lock, flags);
417 	__remove_rbio_from_cache(rbio);
418 	spin_unlock_irqrestore(&table->cache_lock, flags);
419 }
420 
421 /*
422  * remove everything in the cache
423  */
btrfs_clear_rbio_cache(struct btrfs_fs_info * info)424 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
425 {
426 	struct btrfs_stripe_hash_table *table;
427 	unsigned long flags;
428 	struct btrfs_raid_bio *rbio;
429 
430 	table = info->stripe_hash_table;
431 
432 	spin_lock_irqsave(&table->cache_lock, flags);
433 	while (!list_empty(&table->stripe_cache)) {
434 		rbio = list_entry(table->stripe_cache.next,
435 				  struct btrfs_raid_bio,
436 				  stripe_cache);
437 		__remove_rbio_from_cache(rbio);
438 	}
439 	spin_unlock_irqrestore(&table->cache_lock, flags);
440 }
441 
442 /*
443  * remove all cached entries and free the hash table
444  * used by unmount
445  */
btrfs_free_stripe_hash_table(struct btrfs_fs_info * info)446 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
447 {
448 	if (!info->stripe_hash_table)
449 		return;
450 	btrfs_clear_rbio_cache(info);
451 	kvfree(info->stripe_hash_table);
452 	info->stripe_hash_table = NULL;
453 }
454 
455 /*
456  * insert an rbio into the stripe cache.  It
457  * must have already been prepared by calling
458  * cache_rbio_pages
459  *
460  * If this rbio was already cached, it gets
461  * moved to the front of the lru.
462  *
463  * If the size of the rbio cache is too big, we
464  * prune an item.
465  */
cache_rbio(struct btrfs_raid_bio * rbio)466 static void cache_rbio(struct btrfs_raid_bio *rbio)
467 {
468 	struct btrfs_stripe_hash_table *table;
469 	unsigned long flags;
470 
471 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
472 		return;
473 
474 	table = rbio->fs_info->stripe_hash_table;
475 
476 	spin_lock_irqsave(&table->cache_lock, flags);
477 	spin_lock(&rbio->bio_list_lock);
478 
479 	/* bump our ref if we were not in the list before */
480 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
481 		refcount_inc(&rbio->refs);
482 
483 	if (!list_empty(&rbio->stripe_cache)){
484 		list_move(&rbio->stripe_cache, &table->stripe_cache);
485 	} else {
486 		list_add(&rbio->stripe_cache, &table->stripe_cache);
487 		table->cache_size += 1;
488 	}
489 
490 	spin_unlock(&rbio->bio_list_lock);
491 
492 	if (table->cache_size > RBIO_CACHE_SIZE) {
493 		struct btrfs_raid_bio *found;
494 
495 		found = list_entry(table->stripe_cache.prev,
496 				  struct btrfs_raid_bio,
497 				  stripe_cache);
498 
499 		if (found != rbio)
500 			__remove_rbio_from_cache(found);
501 	}
502 
503 	spin_unlock_irqrestore(&table->cache_lock, flags);
504 }
505 
506 /*
507  * helper function to run the xor_blocks api.  It is only
508  * able to do MAX_XOR_BLOCKS at a time, so we need to
509  * loop through.
510  */
run_xor(void ** pages,int src_cnt,ssize_t len)511 static void run_xor(void **pages, int src_cnt, ssize_t len)
512 {
513 	int src_off = 0;
514 	int xor_src_cnt = 0;
515 	void *dest = pages[src_cnt];
516 
517 	while(src_cnt > 0) {
518 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
519 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
520 
521 		src_cnt -= xor_src_cnt;
522 		src_off += xor_src_cnt;
523 	}
524 }
525 
526 /*
527  * Returns true if the bio list inside this rbio covers an entire stripe (no
528  * rmw required).
529  */
rbio_is_full(struct btrfs_raid_bio * rbio)530 static int rbio_is_full(struct btrfs_raid_bio *rbio)
531 {
532 	unsigned long flags;
533 	unsigned long size = rbio->bio_list_bytes;
534 	int ret = 1;
535 
536 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
537 	if (size != rbio->nr_data * rbio->stripe_len)
538 		ret = 0;
539 	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
540 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
541 
542 	return ret;
543 }
544 
545 /*
546  * returns 1 if it is safe to merge two rbios together.
547  * The merging is safe if the two rbios correspond to
548  * the same stripe and if they are both going in the same
549  * direction (read vs write), and if neither one is
550  * locked for final IO
551  *
552  * The caller is responsible for locking such that
553  * rmw_locked is safe to test
554  */
rbio_can_merge(struct btrfs_raid_bio * last,struct btrfs_raid_bio * cur)555 static int rbio_can_merge(struct btrfs_raid_bio *last,
556 			  struct btrfs_raid_bio *cur)
557 {
558 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
559 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
560 		return 0;
561 
562 	/*
563 	 * we can't merge with cached rbios, since the
564 	 * idea is that when we merge the destination
565 	 * rbio is going to run our IO for us.  We can
566 	 * steal from cached rbios though, other functions
567 	 * handle that.
568 	 */
569 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
570 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
571 		return 0;
572 
573 	if (last->bbio->raid_map[0] !=
574 	    cur->bbio->raid_map[0])
575 		return 0;
576 
577 	/* we can't merge with different operations */
578 	if (last->operation != cur->operation)
579 		return 0;
580 	/*
581 	 * We've need read the full stripe from the drive.
582 	 * check and repair the parity and write the new results.
583 	 *
584 	 * We're not allowed to add any new bios to the
585 	 * bio list here, anyone else that wants to
586 	 * change this stripe needs to do their own rmw.
587 	 */
588 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
589 		return 0;
590 
591 	if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
592 		return 0;
593 
594 	if (last->operation == BTRFS_RBIO_READ_REBUILD) {
595 		int fa = last->faila;
596 		int fb = last->failb;
597 		int cur_fa = cur->faila;
598 		int cur_fb = cur->failb;
599 
600 		if (last->faila >= last->failb) {
601 			fa = last->failb;
602 			fb = last->faila;
603 		}
604 
605 		if (cur->faila >= cur->failb) {
606 			cur_fa = cur->failb;
607 			cur_fb = cur->faila;
608 		}
609 
610 		if (fa != cur_fa || fb != cur_fb)
611 			return 0;
612 	}
613 	return 1;
614 }
615 
rbio_stripe_page_index(struct btrfs_raid_bio * rbio,int stripe,int index)616 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
617 				  int index)
618 {
619 	return stripe * rbio->stripe_npages + index;
620 }
621 
622 /*
623  * these are just the pages from the rbio array, not from anything
624  * the FS sent down to us
625  */
rbio_stripe_page(struct btrfs_raid_bio * rbio,int stripe,int index)626 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
627 				     int index)
628 {
629 	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
630 }
631 
632 /*
633  * helper to index into the pstripe
634  */
rbio_pstripe_page(struct btrfs_raid_bio * rbio,int index)635 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
636 {
637 	return rbio_stripe_page(rbio, rbio->nr_data, index);
638 }
639 
640 /*
641  * helper to index into the qstripe, returns null
642  * if there is no qstripe
643  */
rbio_qstripe_page(struct btrfs_raid_bio * rbio,int index)644 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
645 {
646 	if (rbio->nr_data + 1 == rbio->real_stripes)
647 		return NULL;
648 	return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
649 }
650 
651 /*
652  * The first stripe in the table for a logical address
653  * has the lock.  rbios are added in one of three ways:
654  *
655  * 1) Nobody has the stripe locked yet.  The rbio is given
656  * the lock and 0 is returned.  The caller must start the IO
657  * themselves.
658  *
659  * 2) Someone has the stripe locked, but we're able to merge
660  * with the lock owner.  The rbio is freed and the IO will
661  * start automatically along with the existing rbio.  1 is returned.
662  *
663  * 3) Someone has the stripe locked, but we're not able to merge.
664  * The rbio is added to the lock owner's plug list, or merged into
665  * an rbio already on the plug list.  When the lock owner unlocks,
666  * the next rbio on the list is run and the IO is started automatically.
667  * 1 is returned
668  *
669  * If we return 0, the caller still owns the rbio and must continue with
670  * IO submission.  If we return 1, the caller must assume the rbio has
671  * already been freed.
672  */
lock_stripe_add(struct btrfs_raid_bio * rbio)673 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
674 {
675 	struct btrfs_stripe_hash *h;
676 	struct btrfs_raid_bio *cur;
677 	struct btrfs_raid_bio *pending;
678 	unsigned long flags;
679 	struct btrfs_raid_bio *freeit = NULL;
680 	struct btrfs_raid_bio *cache_drop = NULL;
681 	int ret = 0;
682 
683 	h = rbio->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
684 
685 	spin_lock_irqsave(&h->lock, flags);
686 	list_for_each_entry(cur, &h->hash_list, hash_list) {
687 		if (cur->bbio->raid_map[0] != rbio->bbio->raid_map[0])
688 			continue;
689 
690 		spin_lock(&cur->bio_list_lock);
691 
692 		/* Can we steal this cached rbio's pages? */
693 		if (bio_list_empty(&cur->bio_list) &&
694 		    list_empty(&cur->plug_list) &&
695 		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
696 		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
697 			list_del_init(&cur->hash_list);
698 			refcount_dec(&cur->refs);
699 
700 			steal_rbio(cur, rbio);
701 			cache_drop = cur;
702 			spin_unlock(&cur->bio_list_lock);
703 
704 			goto lockit;
705 		}
706 
707 		/* Can we merge into the lock owner? */
708 		if (rbio_can_merge(cur, rbio)) {
709 			merge_rbio(cur, rbio);
710 			spin_unlock(&cur->bio_list_lock);
711 			freeit = rbio;
712 			ret = 1;
713 			goto out;
714 		}
715 
716 
717 		/*
718 		 * We couldn't merge with the running rbio, see if we can merge
719 		 * with the pending ones.  We don't have to check for rmw_locked
720 		 * because there is no way they are inside finish_rmw right now
721 		 */
722 		list_for_each_entry(pending, &cur->plug_list, plug_list) {
723 			if (rbio_can_merge(pending, rbio)) {
724 				merge_rbio(pending, rbio);
725 				spin_unlock(&cur->bio_list_lock);
726 				freeit = rbio;
727 				ret = 1;
728 				goto out;
729 			}
730 		}
731 
732 		/*
733 		 * No merging, put us on the tail of the plug list, our rbio
734 		 * will be started with the currently running rbio unlocks
735 		 */
736 		list_add_tail(&rbio->plug_list, &cur->plug_list);
737 		spin_unlock(&cur->bio_list_lock);
738 		ret = 1;
739 		goto out;
740 	}
741 lockit:
742 	refcount_inc(&rbio->refs);
743 	list_add(&rbio->hash_list, &h->hash_list);
744 out:
745 	spin_unlock_irqrestore(&h->lock, flags);
746 	if (cache_drop)
747 		remove_rbio_from_cache(cache_drop);
748 	if (freeit)
749 		__free_raid_bio(freeit);
750 	return ret;
751 }
752 
753 /*
754  * called as rmw or parity rebuild is completed.  If the plug list has more
755  * rbios waiting for this stripe, the next one on the list will be started
756  */
unlock_stripe(struct btrfs_raid_bio * rbio)757 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
758 {
759 	int bucket;
760 	struct btrfs_stripe_hash *h;
761 	unsigned long flags;
762 	int keep_cache = 0;
763 
764 	bucket = rbio_bucket(rbio);
765 	h = rbio->fs_info->stripe_hash_table->table + bucket;
766 
767 	if (list_empty(&rbio->plug_list))
768 		cache_rbio(rbio);
769 
770 	spin_lock_irqsave(&h->lock, flags);
771 	spin_lock(&rbio->bio_list_lock);
772 
773 	if (!list_empty(&rbio->hash_list)) {
774 		/*
775 		 * if we're still cached and there is no other IO
776 		 * to perform, just leave this rbio here for others
777 		 * to steal from later
778 		 */
779 		if (list_empty(&rbio->plug_list) &&
780 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
781 			keep_cache = 1;
782 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
783 			BUG_ON(!bio_list_empty(&rbio->bio_list));
784 			goto done;
785 		}
786 
787 		list_del_init(&rbio->hash_list);
788 		refcount_dec(&rbio->refs);
789 
790 		/*
791 		 * we use the plug list to hold all the rbios
792 		 * waiting for the chance to lock this stripe.
793 		 * hand the lock over to one of them.
794 		 */
795 		if (!list_empty(&rbio->plug_list)) {
796 			struct btrfs_raid_bio *next;
797 			struct list_head *head = rbio->plug_list.next;
798 
799 			next = list_entry(head, struct btrfs_raid_bio,
800 					  plug_list);
801 
802 			list_del_init(&rbio->plug_list);
803 
804 			list_add(&next->hash_list, &h->hash_list);
805 			refcount_inc(&next->refs);
806 			spin_unlock(&rbio->bio_list_lock);
807 			spin_unlock_irqrestore(&h->lock, flags);
808 
809 			if (next->operation == BTRFS_RBIO_READ_REBUILD)
810 				start_async_work(next, read_rebuild_work);
811 			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
812 				steal_rbio(rbio, next);
813 				start_async_work(next, read_rebuild_work);
814 			} else if (next->operation == BTRFS_RBIO_WRITE) {
815 				steal_rbio(rbio, next);
816 				start_async_work(next, rmw_work);
817 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
818 				steal_rbio(rbio, next);
819 				start_async_work(next, scrub_parity_work);
820 			}
821 
822 			goto done_nolock;
823 		}
824 	}
825 done:
826 	spin_unlock(&rbio->bio_list_lock);
827 	spin_unlock_irqrestore(&h->lock, flags);
828 
829 done_nolock:
830 	if (!keep_cache)
831 		remove_rbio_from_cache(rbio);
832 }
833 
__free_raid_bio(struct btrfs_raid_bio * rbio)834 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
835 {
836 	int i;
837 
838 	if (!refcount_dec_and_test(&rbio->refs))
839 		return;
840 
841 	WARN_ON(!list_empty(&rbio->stripe_cache));
842 	WARN_ON(!list_empty(&rbio->hash_list));
843 	WARN_ON(!bio_list_empty(&rbio->bio_list));
844 
845 	for (i = 0; i < rbio->nr_pages; i++) {
846 		if (rbio->stripe_pages[i]) {
847 			__free_page(rbio->stripe_pages[i]);
848 			rbio->stripe_pages[i] = NULL;
849 		}
850 	}
851 
852 	btrfs_put_bbio(rbio->bbio);
853 	kfree(rbio);
854 }
855 
rbio_endio_bio_list(struct bio * cur,blk_status_t err)856 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
857 {
858 	struct bio *next;
859 
860 	while (cur) {
861 		next = cur->bi_next;
862 		cur->bi_next = NULL;
863 		cur->bi_status = err;
864 		bio_endio(cur);
865 		cur = next;
866 	}
867 }
868 
869 /*
870  * this frees the rbio and runs through all the bios in the
871  * bio_list and calls end_io on them
872  */
rbio_orig_end_io(struct btrfs_raid_bio * rbio,blk_status_t err)873 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
874 {
875 	struct bio *cur = bio_list_get(&rbio->bio_list);
876 	struct bio *extra;
877 
878 	if (rbio->generic_bio_cnt)
879 		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
880 	/*
881 	 * Clear the data bitmap, as the rbio may be cached for later usage.
882 	 * do this before before unlock_stripe() so there will be no new bio
883 	 * for this bio.
884 	 */
885 	bitmap_clear(rbio->dbitmap, 0, rbio->stripe_npages);
886 
887 	/*
888 	 * At this moment, rbio->bio_list is empty, however since rbio does not
889 	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
890 	 * hash list, rbio may be merged with others so that rbio->bio_list
891 	 * becomes non-empty.
892 	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
893 	 * more and we can call bio_endio() on all queued bios.
894 	 */
895 	unlock_stripe(rbio);
896 	extra = bio_list_get(&rbio->bio_list);
897 	__free_raid_bio(rbio);
898 
899 	rbio_endio_bio_list(cur, err);
900 	if (extra)
901 		rbio_endio_bio_list(extra, err);
902 }
903 
904 /*
905  * end io function used by finish_rmw.  When we finally
906  * get here, we've written a full stripe
907  */
raid_write_end_io(struct bio * bio)908 static void raid_write_end_io(struct bio *bio)
909 {
910 	struct btrfs_raid_bio *rbio = bio->bi_private;
911 	blk_status_t err = bio->bi_status;
912 	int max_errors;
913 
914 	if (err)
915 		fail_bio_stripe(rbio, bio);
916 
917 	bio_put(bio);
918 
919 	if (!atomic_dec_and_test(&rbio->stripes_pending))
920 		return;
921 
922 	err = BLK_STS_OK;
923 
924 	/* OK, we have read all the stripes we need to. */
925 	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
926 		     0 : rbio->bbio->max_errors;
927 	if (atomic_read(&rbio->error) > max_errors)
928 		err = BLK_STS_IOERR;
929 
930 	rbio_orig_end_io(rbio, err);
931 }
932 
933 /*
934  * the read/modify/write code wants to use the original bio for
935  * any pages it included, and then use the rbio for everything
936  * else.  This function decides if a given index (stripe number)
937  * and page number in that stripe fall inside the original bio
938  * or the rbio.
939  *
940  * if you set bio_list_only, you'll get a NULL back for any ranges
941  * that are outside the bio_list
942  *
943  * This doesn't take any refs on anything, you get a bare page pointer
944  * and the caller must bump refs as required.
945  *
946  * You must call index_rbio_pages once before you can trust
947  * the answers from this function.
948  */
page_in_rbio(struct btrfs_raid_bio * rbio,int index,int pagenr,int bio_list_only)949 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
950 				 int index, int pagenr, int bio_list_only)
951 {
952 	int chunk_page;
953 	struct page *p = NULL;
954 
955 	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
956 
957 	spin_lock_irq(&rbio->bio_list_lock);
958 	p = rbio->bio_pages[chunk_page];
959 	spin_unlock_irq(&rbio->bio_list_lock);
960 
961 	if (p || bio_list_only)
962 		return p;
963 
964 	return rbio->stripe_pages[chunk_page];
965 }
966 
967 /*
968  * number of pages we need for the entire stripe across all the
969  * drives
970  */
rbio_nr_pages(unsigned long stripe_len,int nr_stripes)971 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
972 {
973 	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
974 }
975 
976 /*
977  * allocation and initial setup for the btrfs_raid_bio.  Not
978  * this does not allocate any pages for rbio->pages.
979  */
alloc_rbio(struct btrfs_fs_info * fs_info,struct btrfs_bio * bbio,u64 stripe_len)980 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
981 					 struct btrfs_bio *bbio,
982 					 u64 stripe_len)
983 {
984 	struct btrfs_raid_bio *rbio;
985 	int nr_data = 0;
986 	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
987 	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
988 	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
989 	void *p;
990 
991 	rbio = kzalloc(sizeof(*rbio) +
992 		       sizeof(*rbio->stripe_pages) * num_pages +
993 		       sizeof(*rbio->bio_pages) * num_pages +
994 		       sizeof(*rbio->finish_pointers) * real_stripes +
995 		       sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) +
996 		       sizeof(*rbio->finish_pbitmap) *
997 				BITS_TO_LONGS(stripe_npages),
998 		       GFP_NOFS);
999 	if (!rbio)
1000 		return ERR_PTR(-ENOMEM);
1001 
1002 	bio_list_init(&rbio->bio_list);
1003 	INIT_LIST_HEAD(&rbio->plug_list);
1004 	spin_lock_init(&rbio->bio_list_lock);
1005 	INIT_LIST_HEAD(&rbio->stripe_cache);
1006 	INIT_LIST_HEAD(&rbio->hash_list);
1007 	rbio->bbio = bbio;
1008 	rbio->fs_info = fs_info;
1009 	rbio->stripe_len = stripe_len;
1010 	rbio->nr_pages = num_pages;
1011 	rbio->real_stripes = real_stripes;
1012 	rbio->stripe_npages = stripe_npages;
1013 	rbio->faila = -1;
1014 	rbio->failb = -1;
1015 	refcount_set(&rbio->refs, 1);
1016 	atomic_set(&rbio->error, 0);
1017 	atomic_set(&rbio->stripes_pending, 0);
1018 
1019 	/*
1020 	 * the stripe_pages, bio_pages, etc arrays point to the extra
1021 	 * memory we allocated past the end of the rbio
1022 	 */
1023 	p = rbio + 1;
1024 #define CONSUME_ALLOC(ptr, count)	do {				\
1025 		ptr = p;						\
1026 		p = (unsigned char *)p + sizeof(*(ptr)) * (count);	\
1027 	} while (0)
1028 	CONSUME_ALLOC(rbio->stripe_pages, num_pages);
1029 	CONSUME_ALLOC(rbio->bio_pages, num_pages);
1030 	CONSUME_ALLOC(rbio->finish_pointers, real_stripes);
1031 	CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages));
1032 	CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages));
1033 #undef  CONSUME_ALLOC
1034 
1035 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1036 		nr_data = real_stripes - 1;
1037 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1038 		nr_data = real_stripes - 2;
1039 	else
1040 		BUG();
1041 
1042 	rbio->nr_data = nr_data;
1043 	return rbio;
1044 }
1045 
1046 /* allocate pages for all the stripes in the bio, including parity */
alloc_rbio_pages(struct btrfs_raid_bio * rbio)1047 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1048 {
1049 	int i;
1050 	struct page *page;
1051 
1052 	for (i = 0; i < rbio->nr_pages; i++) {
1053 		if (rbio->stripe_pages[i])
1054 			continue;
1055 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1056 		if (!page)
1057 			return -ENOMEM;
1058 		rbio->stripe_pages[i] = page;
1059 	}
1060 	return 0;
1061 }
1062 
1063 /* only allocate pages for p/q stripes */
alloc_rbio_parity_pages(struct btrfs_raid_bio * rbio)1064 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1065 {
1066 	int i;
1067 	struct page *page;
1068 
1069 	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1070 
1071 	for (; i < rbio->nr_pages; i++) {
1072 		if (rbio->stripe_pages[i])
1073 			continue;
1074 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1075 		if (!page)
1076 			return -ENOMEM;
1077 		rbio->stripe_pages[i] = page;
1078 	}
1079 	return 0;
1080 }
1081 
1082 /*
1083  * add a single page from a specific stripe into our list of bios for IO
1084  * this will try to merge into existing bios if possible, and returns
1085  * zero if all went well.
1086  */
rbio_add_io_page(struct btrfs_raid_bio * rbio,struct bio_list * bio_list,struct page * page,int stripe_nr,unsigned long page_index,unsigned long bio_max_len)1087 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1088 			    struct bio_list *bio_list,
1089 			    struct page *page,
1090 			    int stripe_nr,
1091 			    unsigned long page_index,
1092 			    unsigned long bio_max_len)
1093 {
1094 	struct bio *last = bio_list->tail;
1095 	int ret;
1096 	struct bio *bio;
1097 	struct btrfs_bio_stripe *stripe;
1098 	u64 disk_start;
1099 
1100 	stripe = &rbio->bbio->stripes[stripe_nr];
1101 	disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1102 
1103 	/* if the device is missing, just fail this stripe */
1104 	if (!stripe->dev->bdev)
1105 		return fail_rbio_index(rbio, stripe_nr);
1106 
1107 	/* see if we can add this page onto our existing bio */
1108 	if (last) {
1109 		u64 last_end = (u64)last->bi_iter.bi_sector << 9;
1110 		last_end += last->bi_iter.bi_size;
1111 
1112 		/*
1113 		 * we can't merge these if they are from different
1114 		 * devices or if they are not contiguous
1115 		 */
1116 		if (last_end == disk_start && !last->bi_status &&
1117 		    last->bi_disk == stripe->dev->bdev->bd_disk &&
1118 		    last->bi_partno == stripe->dev->bdev->bd_partno) {
1119 			ret = bio_add_page(last, page, PAGE_SIZE, 0);
1120 			if (ret == PAGE_SIZE)
1121 				return 0;
1122 		}
1123 	}
1124 
1125 	/* put a new bio on the list */
1126 	bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1127 	btrfs_io_bio(bio)->device = stripe->dev;
1128 	bio->bi_iter.bi_size = 0;
1129 	bio_set_dev(bio, stripe->dev->bdev);
1130 	bio->bi_iter.bi_sector = disk_start >> 9;
1131 
1132 	bio_add_page(bio, page, PAGE_SIZE, 0);
1133 	bio_list_add(bio_list, bio);
1134 	return 0;
1135 }
1136 
1137 /*
1138  * while we're doing the read/modify/write cycle, we could
1139  * have errors in reading pages off the disk.  This checks
1140  * for errors and if we're not able to read the page it'll
1141  * trigger parity reconstruction.  The rmw will be finished
1142  * after we've reconstructed the failed stripes
1143  */
validate_rbio_for_rmw(struct btrfs_raid_bio * rbio)1144 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1145 {
1146 	if (rbio->faila >= 0 || rbio->failb >= 0) {
1147 		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1148 		__raid56_parity_recover(rbio);
1149 	} else {
1150 		finish_rmw(rbio);
1151 	}
1152 }
1153 
1154 /*
1155  * helper function to walk our bio list and populate the bio_pages array with
1156  * the result.  This seems expensive, but it is faster than constantly
1157  * searching through the bio list as we setup the IO in finish_rmw or stripe
1158  * reconstruction.
1159  *
1160  * This must be called before you trust the answers from page_in_rbio
1161  */
index_rbio_pages(struct btrfs_raid_bio * rbio)1162 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1163 {
1164 	struct bio *bio;
1165 	u64 start;
1166 	unsigned long stripe_offset;
1167 	unsigned long page_index;
1168 
1169 	spin_lock_irq(&rbio->bio_list_lock);
1170 	bio_list_for_each(bio, &rbio->bio_list) {
1171 		struct bio_vec bvec;
1172 		struct bvec_iter iter;
1173 		int i = 0;
1174 
1175 		start = (u64)bio->bi_iter.bi_sector << 9;
1176 		stripe_offset = start - rbio->bbio->raid_map[0];
1177 		page_index = stripe_offset >> PAGE_SHIFT;
1178 
1179 		if (bio_flagged(bio, BIO_CLONED))
1180 			bio->bi_iter = btrfs_io_bio(bio)->iter;
1181 
1182 		bio_for_each_segment(bvec, bio, iter) {
1183 			rbio->bio_pages[page_index + i] = bvec.bv_page;
1184 			i++;
1185 		}
1186 	}
1187 	spin_unlock_irq(&rbio->bio_list_lock);
1188 }
1189 
1190 /*
1191  * this is called from one of two situations.  We either
1192  * have a full stripe from the higher layers, or we've read all
1193  * the missing bits off disk.
1194  *
1195  * This will calculate the parity and then send down any
1196  * changed blocks.
1197  */
finish_rmw(struct btrfs_raid_bio * rbio)1198 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1199 {
1200 	struct btrfs_bio *bbio = rbio->bbio;
1201 	void **pointers = rbio->finish_pointers;
1202 	int nr_data = rbio->nr_data;
1203 	int stripe;
1204 	int pagenr;
1205 	bool has_qstripe;
1206 	struct bio_list bio_list;
1207 	struct bio *bio;
1208 	int ret;
1209 
1210 	bio_list_init(&bio_list);
1211 
1212 	if (rbio->real_stripes - rbio->nr_data == 1)
1213 		has_qstripe = false;
1214 	else if (rbio->real_stripes - rbio->nr_data == 2)
1215 		has_qstripe = true;
1216 	else
1217 		BUG();
1218 
1219 	/* We should have at least one data sector. */
1220 	ASSERT(bitmap_weight(rbio->dbitmap, rbio->stripe_npages));
1221 
1222 	/* at this point we either have a full stripe,
1223 	 * or we've read the full stripe from the drive.
1224 	 * recalculate the parity and write the new results.
1225 	 *
1226 	 * We're not allowed to add any new bios to the
1227 	 * bio list here, anyone else that wants to
1228 	 * change this stripe needs to do their own rmw.
1229 	 */
1230 	spin_lock_irq(&rbio->bio_list_lock);
1231 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1232 	spin_unlock_irq(&rbio->bio_list_lock);
1233 
1234 	atomic_set(&rbio->error, 0);
1235 
1236 	/*
1237 	 * now that we've set rmw_locked, run through the
1238 	 * bio list one last time and map the page pointers
1239 	 *
1240 	 * We don't cache full rbios because we're assuming
1241 	 * the higher layers are unlikely to use this area of
1242 	 * the disk again soon.  If they do use it again,
1243 	 * hopefully they will send another full bio.
1244 	 */
1245 	index_rbio_pages(rbio);
1246 	if (!rbio_is_full(rbio))
1247 		cache_rbio_pages(rbio);
1248 	else
1249 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1250 
1251 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1252 		struct page *p;
1253 		/* first collect one page from each data stripe */
1254 		for (stripe = 0; stripe < nr_data; stripe++) {
1255 			p = page_in_rbio(rbio, stripe, pagenr, 0);
1256 			pointers[stripe] = kmap(p);
1257 		}
1258 
1259 		/* then add the parity stripe */
1260 		p = rbio_pstripe_page(rbio, pagenr);
1261 		SetPageUptodate(p);
1262 		pointers[stripe++] = kmap(p);
1263 
1264 		if (has_qstripe) {
1265 
1266 			/*
1267 			 * raid6, add the qstripe and call the
1268 			 * library function to fill in our p/q
1269 			 */
1270 			p = rbio_qstripe_page(rbio, pagenr);
1271 			SetPageUptodate(p);
1272 			pointers[stripe++] = kmap(p);
1273 
1274 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1275 						pointers);
1276 		} else {
1277 			/* raid5 */
1278 			copy_page(pointers[nr_data], pointers[0]);
1279 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1280 		}
1281 
1282 
1283 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1284 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1285 	}
1286 
1287 	/*
1288 	 * time to start writing.  Make bios for everything from the
1289 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1290 	 * everything else.
1291 	 */
1292 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1293 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1294 			struct page *page;
1295 
1296 			/* This vertical stripe has no data, skip it. */
1297 			if (!test_bit(pagenr, rbio->dbitmap))
1298 				continue;
1299 
1300 			if (stripe < rbio->nr_data) {
1301 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1302 				if (!page)
1303 					continue;
1304 			} else {
1305 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1306 			}
1307 
1308 			ret = rbio_add_io_page(rbio, &bio_list,
1309 				       page, stripe, pagenr, rbio->stripe_len);
1310 			if (ret)
1311 				goto cleanup;
1312 		}
1313 	}
1314 
1315 	if (likely(!bbio->num_tgtdevs))
1316 		goto write_data;
1317 
1318 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1319 		if (!bbio->tgtdev_map[stripe])
1320 			continue;
1321 
1322 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1323 			struct page *page;
1324 
1325 			/* This vertical stripe has no data, skip it. */
1326 			if (!test_bit(pagenr, rbio->dbitmap))
1327 				continue;
1328 
1329 			if (stripe < rbio->nr_data) {
1330 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1331 				if (!page)
1332 					continue;
1333 			} else {
1334 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1335 			}
1336 
1337 			ret = rbio_add_io_page(rbio, &bio_list, page,
1338 					       rbio->bbio->tgtdev_map[stripe],
1339 					       pagenr, rbio->stripe_len);
1340 			if (ret)
1341 				goto cleanup;
1342 		}
1343 	}
1344 
1345 write_data:
1346 	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1347 	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1348 
1349 	while ((bio = bio_list_pop(&bio_list))) {
1350 		bio->bi_private = rbio;
1351 		bio->bi_end_io = raid_write_end_io;
1352 		bio->bi_opf = REQ_OP_WRITE;
1353 
1354 		submit_bio(bio);
1355 	}
1356 	return;
1357 
1358 cleanup:
1359 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1360 
1361 	while ((bio = bio_list_pop(&bio_list)))
1362 		bio_put(bio);
1363 }
1364 
1365 /*
1366  * helper to find the stripe number for a given bio.  Used to figure out which
1367  * stripe has failed.  This expects the bio to correspond to a physical disk,
1368  * so it looks up based on physical sector numbers.
1369  */
find_bio_stripe(struct btrfs_raid_bio * rbio,struct bio * bio)1370 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1371 			   struct bio *bio)
1372 {
1373 	u64 physical = bio->bi_iter.bi_sector;
1374 	int i;
1375 	struct btrfs_bio_stripe *stripe;
1376 
1377 	physical <<= 9;
1378 
1379 	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1380 		stripe = &rbio->bbio->stripes[i];
1381 		if (in_range(physical, stripe->physical, rbio->stripe_len) &&
1382 		    stripe->dev->bdev &&
1383 		    bio->bi_disk == stripe->dev->bdev->bd_disk &&
1384 		    bio->bi_partno == stripe->dev->bdev->bd_partno) {
1385 			return i;
1386 		}
1387 	}
1388 	return -1;
1389 }
1390 
1391 /*
1392  * helper to find the stripe number for a given
1393  * bio (before mapping).  Used to figure out which stripe has
1394  * failed.  This looks up based on logical block numbers.
1395  */
find_logical_bio_stripe(struct btrfs_raid_bio * rbio,struct bio * bio)1396 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1397 				   struct bio *bio)
1398 {
1399 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1400 	int i;
1401 
1402 	for (i = 0; i < rbio->nr_data; i++) {
1403 		u64 stripe_start = rbio->bbio->raid_map[i];
1404 
1405 		if (in_range(logical, stripe_start, rbio->stripe_len))
1406 			return i;
1407 	}
1408 	return -1;
1409 }
1410 
1411 /*
1412  * returns -EIO if we had too many failures
1413  */
fail_rbio_index(struct btrfs_raid_bio * rbio,int failed)1414 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1415 {
1416 	unsigned long flags;
1417 	int ret = 0;
1418 
1419 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1420 
1421 	/* we already know this stripe is bad, move on */
1422 	if (rbio->faila == failed || rbio->failb == failed)
1423 		goto out;
1424 
1425 	if (rbio->faila == -1) {
1426 		/* first failure on this rbio */
1427 		rbio->faila = failed;
1428 		atomic_inc(&rbio->error);
1429 	} else if (rbio->failb == -1) {
1430 		/* second failure on this rbio */
1431 		rbio->failb = failed;
1432 		atomic_inc(&rbio->error);
1433 	} else {
1434 		ret = -EIO;
1435 	}
1436 out:
1437 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1438 
1439 	return ret;
1440 }
1441 
1442 /*
1443  * helper to fail a stripe based on a physical disk
1444  * bio.
1445  */
fail_bio_stripe(struct btrfs_raid_bio * rbio,struct bio * bio)1446 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1447 			   struct bio *bio)
1448 {
1449 	int failed = find_bio_stripe(rbio, bio);
1450 
1451 	if (failed < 0)
1452 		return -EIO;
1453 
1454 	return fail_rbio_index(rbio, failed);
1455 }
1456 
1457 /*
1458  * this sets each page in the bio uptodate.  It should only be used on private
1459  * rbio pages, nothing that comes in from the higher layers
1460  */
set_bio_pages_uptodate(struct bio * bio)1461 static void set_bio_pages_uptodate(struct bio *bio)
1462 {
1463 	struct bio_vec *bvec;
1464 	struct bvec_iter_all iter_all;
1465 
1466 	ASSERT(!bio_flagged(bio, BIO_CLONED));
1467 
1468 	bio_for_each_segment_all(bvec, bio, iter_all)
1469 		SetPageUptodate(bvec->bv_page);
1470 }
1471 
1472 /*
1473  * end io for the read phase of the rmw cycle.  All the bios here are physical
1474  * stripe bios we've read from the disk so we can recalculate the parity of the
1475  * stripe.
1476  *
1477  * This will usually kick off finish_rmw once all the bios are read in, but it
1478  * may trigger parity reconstruction if we had any errors along the way
1479  */
raid_rmw_end_io(struct bio * bio)1480 static void raid_rmw_end_io(struct bio *bio)
1481 {
1482 	struct btrfs_raid_bio *rbio = bio->bi_private;
1483 
1484 	if (bio->bi_status)
1485 		fail_bio_stripe(rbio, bio);
1486 	else
1487 		set_bio_pages_uptodate(bio);
1488 
1489 	bio_put(bio);
1490 
1491 	if (!atomic_dec_and_test(&rbio->stripes_pending))
1492 		return;
1493 
1494 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1495 		goto cleanup;
1496 
1497 	/*
1498 	 * this will normally call finish_rmw to start our write
1499 	 * but if there are any failed stripes we'll reconstruct
1500 	 * from parity first
1501 	 */
1502 	validate_rbio_for_rmw(rbio);
1503 	return;
1504 
1505 cleanup:
1506 
1507 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1508 }
1509 
1510 /*
1511  * the stripe must be locked by the caller.  It will
1512  * unlock after all the writes are done
1513  */
raid56_rmw_stripe(struct btrfs_raid_bio * rbio)1514 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1515 {
1516 	int bios_to_read = 0;
1517 	struct bio_list bio_list;
1518 	int ret;
1519 	int pagenr;
1520 	int stripe;
1521 	struct bio *bio;
1522 
1523 	bio_list_init(&bio_list);
1524 
1525 	ret = alloc_rbio_pages(rbio);
1526 	if (ret)
1527 		goto cleanup;
1528 
1529 	index_rbio_pages(rbio);
1530 
1531 	atomic_set(&rbio->error, 0);
1532 	/*
1533 	 * build a list of bios to read all the missing parts of this
1534 	 * stripe
1535 	 */
1536 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1537 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1538 			struct page *page;
1539 			/*
1540 			 * we want to find all the pages missing from
1541 			 * the rbio and read them from the disk.  If
1542 			 * page_in_rbio finds a page in the bio list
1543 			 * we don't need to read it off the stripe.
1544 			 */
1545 			page = page_in_rbio(rbio, stripe, pagenr, 1);
1546 			if (page)
1547 				continue;
1548 
1549 			page = rbio_stripe_page(rbio, stripe, pagenr);
1550 			/*
1551 			 * the bio cache may have handed us an uptodate
1552 			 * page.  If so, be happy and use it
1553 			 */
1554 			if (PageUptodate(page))
1555 				continue;
1556 
1557 			ret = rbio_add_io_page(rbio, &bio_list, page,
1558 				       stripe, pagenr, rbio->stripe_len);
1559 			if (ret)
1560 				goto cleanup;
1561 		}
1562 	}
1563 
1564 	bios_to_read = bio_list_size(&bio_list);
1565 	if (!bios_to_read) {
1566 		/*
1567 		 * this can happen if others have merged with
1568 		 * us, it means there is nothing left to read.
1569 		 * But if there are missing devices it may not be
1570 		 * safe to do the full stripe write yet.
1571 		 */
1572 		goto finish;
1573 	}
1574 
1575 	/*
1576 	 * the bbio may be freed once we submit the last bio.  Make sure
1577 	 * not to touch it after that
1578 	 */
1579 	atomic_set(&rbio->stripes_pending, bios_to_read);
1580 	while ((bio = bio_list_pop(&bio_list))) {
1581 		bio->bi_private = rbio;
1582 		bio->bi_end_io = raid_rmw_end_io;
1583 		bio->bi_opf = REQ_OP_READ;
1584 
1585 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1586 
1587 		submit_bio(bio);
1588 	}
1589 	/* the actual write will happen once the reads are done */
1590 	return 0;
1591 
1592 cleanup:
1593 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1594 
1595 	while ((bio = bio_list_pop(&bio_list)))
1596 		bio_put(bio);
1597 
1598 	return -EIO;
1599 
1600 finish:
1601 	validate_rbio_for_rmw(rbio);
1602 	return 0;
1603 }
1604 
1605 /*
1606  * if the upper layers pass in a full stripe, we thank them by only allocating
1607  * enough pages to hold the parity, and sending it all down quickly.
1608  */
full_stripe_write(struct btrfs_raid_bio * rbio)1609 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1610 {
1611 	int ret;
1612 
1613 	ret = alloc_rbio_parity_pages(rbio);
1614 	if (ret) {
1615 		__free_raid_bio(rbio);
1616 		return ret;
1617 	}
1618 
1619 	ret = lock_stripe_add(rbio);
1620 	if (ret == 0)
1621 		finish_rmw(rbio);
1622 	return 0;
1623 }
1624 
1625 /*
1626  * partial stripe writes get handed over to async helpers.
1627  * We're really hoping to merge a few more writes into this
1628  * rbio before calculating new parity
1629  */
partial_stripe_write(struct btrfs_raid_bio * rbio)1630 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1631 {
1632 	int ret;
1633 
1634 	ret = lock_stripe_add(rbio);
1635 	if (ret == 0)
1636 		start_async_work(rbio, rmw_work);
1637 	return 0;
1638 }
1639 
1640 /*
1641  * sometimes while we were reading from the drive to
1642  * recalculate parity, enough new bios come into create
1643  * a full stripe.  So we do a check here to see if we can
1644  * go directly to finish_rmw
1645  */
__raid56_parity_write(struct btrfs_raid_bio * rbio)1646 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1647 {
1648 	/* head off into rmw land if we don't have a full stripe */
1649 	if (!rbio_is_full(rbio))
1650 		return partial_stripe_write(rbio);
1651 	return full_stripe_write(rbio);
1652 }
1653 
1654 /*
1655  * We use plugging call backs to collect full stripes.
1656  * Any time we get a partial stripe write while plugged
1657  * we collect it into a list.  When the unplug comes down,
1658  * we sort the list by logical block number and merge
1659  * everything we can into the same rbios
1660  */
1661 struct btrfs_plug_cb {
1662 	struct blk_plug_cb cb;
1663 	struct btrfs_fs_info *info;
1664 	struct list_head rbio_list;
1665 	struct btrfs_work work;
1666 };
1667 
1668 /*
1669  * rbios on the plug list are sorted for easier merging.
1670  */
plug_cmp(void * priv,const struct list_head * a,const struct list_head * b)1671 static int plug_cmp(void *priv, const struct list_head *a,
1672 		    const struct list_head *b)
1673 {
1674 	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1675 						 plug_list);
1676 	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1677 						 plug_list);
1678 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1679 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1680 
1681 	if (a_sector < b_sector)
1682 		return -1;
1683 	if (a_sector > b_sector)
1684 		return 1;
1685 	return 0;
1686 }
1687 
run_plug(struct btrfs_plug_cb * plug)1688 static void run_plug(struct btrfs_plug_cb *plug)
1689 {
1690 	struct btrfs_raid_bio *cur;
1691 	struct btrfs_raid_bio *last = NULL;
1692 
1693 	/*
1694 	 * sort our plug list then try to merge
1695 	 * everything we can in hopes of creating full
1696 	 * stripes.
1697 	 */
1698 	list_sort(NULL, &plug->rbio_list, plug_cmp);
1699 	while (!list_empty(&plug->rbio_list)) {
1700 		cur = list_entry(plug->rbio_list.next,
1701 				 struct btrfs_raid_bio, plug_list);
1702 		list_del_init(&cur->plug_list);
1703 
1704 		if (rbio_is_full(cur)) {
1705 			int ret;
1706 
1707 			/* we have a full stripe, send it down */
1708 			ret = full_stripe_write(cur);
1709 			BUG_ON(ret);
1710 			continue;
1711 		}
1712 		if (last) {
1713 			if (rbio_can_merge(last, cur)) {
1714 				merge_rbio(last, cur);
1715 				__free_raid_bio(cur);
1716 				continue;
1717 
1718 			}
1719 			__raid56_parity_write(last);
1720 		}
1721 		last = cur;
1722 	}
1723 	if (last) {
1724 		__raid56_parity_write(last);
1725 	}
1726 	kfree(plug);
1727 }
1728 
1729 /*
1730  * if the unplug comes from schedule, we have to push the
1731  * work off to a helper thread
1732  */
unplug_work(struct btrfs_work * work)1733 static void unplug_work(struct btrfs_work *work)
1734 {
1735 	struct btrfs_plug_cb *plug;
1736 	plug = container_of(work, struct btrfs_plug_cb, work);
1737 	run_plug(plug);
1738 }
1739 
btrfs_raid_unplug(struct blk_plug_cb * cb,bool from_schedule)1740 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1741 {
1742 	struct btrfs_plug_cb *plug;
1743 	plug = container_of(cb, struct btrfs_plug_cb, cb);
1744 
1745 	if (from_schedule) {
1746 		btrfs_init_work(&plug->work, unplug_work, NULL, NULL);
1747 		btrfs_queue_work(plug->info->rmw_workers,
1748 				 &plug->work);
1749 		return;
1750 	}
1751 	run_plug(plug);
1752 }
1753 
1754 /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
rbio_add_bio(struct btrfs_raid_bio * rbio,struct bio * orig_bio)1755 static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
1756 {
1757 	const struct btrfs_fs_info *fs_info = rbio->fs_info;
1758 	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
1759 	const u64 full_stripe_start = rbio->bbio->raid_map[0];
1760 	const u32 orig_len = orig_bio->bi_iter.bi_size;
1761 	const u32 sectorsize = fs_info->sectorsize;
1762 	u64 cur_logical;
1763 
1764 	ASSERT(orig_logical >= full_stripe_start &&
1765 	       orig_logical + orig_len <= full_stripe_start +
1766 	       rbio->nr_data * rbio->stripe_len);
1767 
1768 	bio_list_add(&rbio->bio_list, orig_bio);
1769 	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1770 
1771 	/* Update the dbitmap. */
1772 	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1773 	     cur_logical += sectorsize) {
1774 		int bit = ((u32)(cur_logical - full_stripe_start) >>
1775 			   PAGE_SHIFT) % rbio->stripe_npages;
1776 
1777 		set_bit(bit, rbio->dbitmap);
1778 	}
1779 }
1780 
1781 /*
1782  * our main entry point for writes from the rest of the FS.
1783  */
raid56_parity_write(struct btrfs_fs_info * fs_info,struct bio * bio,struct btrfs_bio * bbio,u64 stripe_len)1784 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1785 			struct btrfs_bio *bbio, u64 stripe_len)
1786 {
1787 	struct btrfs_raid_bio *rbio;
1788 	struct btrfs_plug_cb *plug = NULL;
1789 	struct blk_plug_cb *cb;
1790 	int ret;
1791 
1792 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
1793 	if (IS_ERR(rbio)) {
1794 		btrfs_put_bbio(bbio);
1795 		return PTR_ERR(rbio);
1796 	}
1797 	rbio->operation = BTRFS_RBIO_WRITE;
1798 	rbio_add_bio(rbio, bio);
1799 
1800 	btrfs_bio_counter_inc_noblocked(fs_info);
1801 	rbio->generic_bio_cnt = 1;
1802 
1803 	/*
1804 	 * don't plug on full rbios, just get them out the door
1805 	 * as quickly as we can
1806 	 */
1807 	if (rbio_is_full(rbio)) {
1808 		ret = full_stripe_write(rbio);
1809 		if (ret)
1810 			btrfs_bio_counter_dec(fs_info);
1811 		return ret;
1812 	}
1813 
1814 	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1815 	if (cb) {
1816 		plug = container_of(cb, struct btrfs_plug_cb, cb);
1817 		if (!plug->info) {
1818 			plug->info = fs_info;
1819 			INIT_LIST_HEAD(&plug->rbio_list);
1820 		}
1821 		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1822 		ret = 0;
1823 	} else {
1824 		ret = __raid56_parity_write(rbio);
1825 		if (ret)
1826 			btrfs_bio_counter_dec(fs_info);
1827 	}
1828 	return ret;
1829 }
1830 
1831 /*
1832  * all parity reconstruction happens here.  We've read in everything
1833  * we can find from the drives and this does the heavy lifting of
1834  * sorting the good from the bad.
1835  */
__raid_recover_end_io(struct btrfs_raid_bio * rbio)1836 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1837 {
1838 	int pagenr, stripe;
1839 	void **pointers;
1840 	int faila = -1, failb = -1;
1841 	struct page *page;
1842 	blk_status_t err;
1843 	int i;
1844 
1845 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1846 	if (!pointers) {
1847 		err = BLK_STS_RESOURCE;
1848 		goto cleanup_io;
1849 	}
1850 
1851 	faila = rbio->faila;
1852 	failb = rbio->failb;
1853 
1854 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1855 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1856 		spin_lock_irq(&rbio->bio_list_lock);
1857 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1858 		spin_unlock_irq(&rbio->bio_list_lock);
1859 	}
1860 
1861 	index_rbio_pages(rbio);
1862 
1863 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1864 		/*
1865 		 * Now we just use bitmap to mark the horizontal stripes in
1866 		 * which we have data when doing parity scrub.
1867 		 */
1868 		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1869 		    !test_bit(pagenr, rbio->dbitmap))
1870 			continue;
1871 
1872 		/* setup our array of pointers with pages
1873 		 * from each stripe
1874 		 */
1875 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1876 			/*
1877 			 * if we're rebuilding a read, we have to use
1878 			 * pages from the bio list
1879 			 */
1880 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1881 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1882 			    (stripe == faila || stripe == failb)) {
1883 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1884 			} else {
1885 				page = rbio_stripe_page(rbio, stripe, pagenr);
1886 			}
1887 			pointers[stripe] = kmap(page);
1888 		}
1889 
1890 		/* all raid6 handling here */
1891 		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1892 			/*
1893 			 * single failure, rebuild from parity raid5
1894 			 * style
1895 			 */
1896 			if (failb < 0) {
1897 				if (faila == rbio->nr_data) {
1898 					/*
1899 					 * Just the P stripe has failed, without
1900 					 * a bad data or Q stripe.
1901 					 * TODO, we should redo the xor here.
1902 					 */
1903 					err = BLK_STS_IOERR;
1904 					goto cleanup;
1905 				}
1906 				/*
1907 				 * a single failure in raid6 is rebuilt
1908 				 * in the pstripe code below
1909 				 */
1910 				goto pstripe;
1911 			}
1912 
1913 			/* make sure our ps and qs are in order */
1914 			if (faila > failb)
1915 				swap(faila, failb);
1916 
1917 			/* if the q stripe is failed, do a pstripe reconstruction
1918 			 * from the xors.
1919 			 * If both the q stripe and the P stripe are failed, we're
1920 			 * here due to a crc mismatch and we can't give them the
1921 			 * data they want
1922 			 */
1923 			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1924 				if (rbio->bbio->raid_map[faila] ==
1925 				    RAID5_P_STRIPE) {
1926 					err = BLK_STS_IOERR;
1927 					goto cleanup;
1928 				}
1929 				/*
1930 				 * otherwise we have one bad data stripe and
1931 				 * a good P stripe.  raid5!
1932 				 */
1933 				goto pstripe;
1934 			}
1935 
1936 			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1937 				raid6_datap_recov(rbio->real_stripes,
1938 						  PAGE_SIZE, faila, pointers);
1939 			} else {
1940 				raid6_2data_recov(rbio->real_stripes,
1941 						  PAGE_SIZE, faila, failb,
1942 						  pointers);
1943 			}
1944 		} else {
1945 			void *p;
1946 
1947 			/* rebuild from P stripe here (raid5 or raid6) */
1948 			BUG_ON(failb != -1);
1949 pstripe:
1950 			/* Copy parity block into failed block to start with */
1951 			copy_page(pointers[faila], pointers[rbio->nr_data]);
1952 
1953 			/* rearrange the pointer array */
1954 			p = pointers[faila];
1955 			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1956 				pointers[stripe] = pointers[stripe + 1];
1957 			pointers[rbio->nr_data - 1] = p;
1958 
1959 			/* xor in the rest */
1960 			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1961 		}
1962 		/* if we're doing this rebuild as part of an rmw, go through
1963 		 * and set all of our private rbio pages in the
1964 		 * failed stripes as uptodate.  This way finish_rmw will
1965 		 * know they can be trusted.  If this was a read reconstruction,
1966 		 * other endio functions will fiddle the uptodate bits
1967 		 */
1968 		if (rbio->operation == BTRFS_RBIO_WRITE) {
1969 			for (i = 0;  i < rbio->stripe_npages; i++) {
1970 				if (faila != -1) {
1971 					page = rbio_stripe_page(rbio, faila, i);
1972 					SetPageUptodate(page);
1973 				}
1974 				if (failb != -1) {
1975 					page = rbio_stripe_page(rbio, failb, i);
1976 					SetPageUptodate(page);
1977 				}
1978 			}
1979 		}
1980 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1981 			/*
1982 			 * if we're rebuilding a read, we have to use
1983 			 * pages from the bio list
1984 			 */
1985 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1986 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1987 			    (stripe == faila || stripe == failb)) {
1988 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1989 			} else {
1990 				page = rbio_stripe_page(rbio, stripe, pagenr);
1991 			}
1992 			kunmap(page);
1993 		}
1994 	}
1995 
1996 	err = BLK_STS_OK;
1997 cleanup:
1998 	kfree(pointers);
1999 
2000 cleanup_io:
2001 	/*
2002 	 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
2003 	 * valid rbio which is consistent with ondisk content, thus such a
2004 	 * valid rbio can be cached to avoid further disk reads.
2005 	 */
2006 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2007 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
2008 		/*
2009 		 * - In case of two failures, where rbio->failb != -1:
2010 		 *
2011 		 *   Do not cache this rbio since the above read reconstruction
2012 		 *   (raid6_datap_recov() or raid6_2data_recov()) may have
2013 		 *   changed some content of stripes which are not identical to
2014 		 *   on-disk content any more, otherwise, a later write/recover
2015 		 *   may steal stripe_pages from this rbio and end up with
2016 		 *   corruptions or rebuild failures.
2017 		 *
2018 		 * - In case of single failure, where rbio->failb == -1:
2019 		 *
2020 		 *   Cache this rbio iff the above read reconstruction is
2021 		 *   executed without problems.
2022 		 */
2023 		if (err == BLK_STS_OK && rbio->failb < 0)
2024 			cache_rbio_pages(rbio);
2025 		else
2026 			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2027 
2028 		rbio_orig_end_io(rbio, err);
2029 	} else if (err == BLK_STS_OK) {
2030 		rbio->faila = -1;
2031 		rbio->failb = -1;
2032 
2033 		if (rbio->operation == BTRFS_RBIO_WRITE)
2034 			finish_rmw(rbio);
2035 		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
2036 			finish_parity_scrub(rbio, 0);
2037 		else
2038 			BUG();
2039 	} else {
2040 		rbio_orig_end_io(rbio, err);
2041 	}
2042 }
2043 
2044 /*
2045  * This is called only for stripes we've read from disk to
2046  * reconstruct the parity.
2047  */
raid_recover_end_io(struct bio * bio)2048 static void raid_recover_end_io(struct bio *bio)
2049 {
2050 	struct btrfs_raid_bio *rbio = bio->bi_private;
2051 
2052 	/*
2053 	 * we only read stripe pages off the disk, set them
2054 	 * up to date if there were no errors
2055 	 */
2056 	if (bio->bi_status)
2057 		fail_bio_stripe(rbio, bio);
2058 	else
2059 		set_bio_pages_uptodate(bio);
2060 	bio_put(bio);
2061 
2062 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2063 		return;
2064 
2065 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2066 		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2067 	else
2068 		__raid_recover_end_io(rbio);
2069 }
2070 
2071 /*
2072  * reads everything we need off the disk to reconstruct
2073  * the parity. endio handlers trigger final reconstruction
2074  * when the IO is done.
2075  *
2076  * This is used both for reads from the higher layers and for
2077  * parity construction required to finish a rmw cycle.
2078  */
__raid56_parity_recover(struct btrfs_raid_bio * rbio)2079 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2080 {
2081 	int bios_to_read = 0;
2082 	struct bio_list bio_list;
2083 	int ret;
2084 	int pagenr;
2085 	int stripe;
2086 	struct bio *bio;
2087 
2088 	bio_list_init(&bio_list);
2089 
2090 	ret = alloc_rbio_pages(rbio);
2091 	if (ret)
2092 		goto cleanup;
2093 
2094 	atomic_set(&rbio->error, 0);
2095 
2096 	/*
2097 	 * Read everything that hasn't failed. However this time we will
2098 	 * not trust any cached sector.
2099 	 * As we may read out some stale data but higher layer is not reading
2100 	 * that stale part.
2101 	 *
2102 	 * So here we always re-read everything in recovery path.
2103 	 */
2104 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2105 		if (rbio->faila == stripe || rbio->failb == stripe) {
2106 			atomic_inc(&rbio->error);
2107 			continue;
2108 		}
2109 
2110 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2111 			ret = rbio_add_io_page(rbio, &bio_list,
2112 				       rbio_stripe_page(rbio, stripe, pagenr),
2113 				       stripe, pagenr, rbio->stripe_len);
2114 			if (ret < 0)
2115 				goto cleanup;
2116 		}
2117 	}
2118 
2119 	bios_to_read = bio_list_size(&bio_list);
2120 	if (!bios_to_read) {
2121 		/*
2122 		 * we might have no bios to read just because the pages
2123 		 * were up to date, or we might have no bios to read because
2124 		 * the devices were gone.
2125 		 */
2126 		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2127 			__raid_recover_end_io(rbio);
2128 			return 0;
2129 		} else {
2130 			goto cleanup;
2131 		}
2132 	}
2133 
2134 	/*
2135 	 * the bbio may be freed once we submit the last bio.  Make sure
2136 	 * not to touch it after that
2137 	 */
2138 	atomic_set(&rbio->stripes_pending, bios_to_read);
2139 	while ((bio = bio_list_pop(&bio_list))) {
2140 		bio->bi_private = rbio;
2141 		bio->bi_end_io = raid_recover_end_io;
2142 		bio->bi_opf = REQ_OP_READ;
2143 
2144 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2145 
2146 		submit_bio(bio);
2147 	}
2148 
2149 	return 0;
2150 
2151 cleanup:
2152 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2153 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2154 		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2155 
2156 	while ((bio = bio_list_pop(&bio_list)))
2157 		bio_put(bio);
2158 
2159 	return -EIO;
2160 }
2161 
2162 /*
2163  * the main entry point for reads from the higher layers.  This
2164  * is really only called when the normal read path had a failure,
2165  * so we assume the bio they send down corresponds to a failed part
2166  * of the drive.
2167  */
raid56_parity_recover(struct btrfs_fs_info * fs_info,struct bio * bio,struct btrfs_bio * bbio,u64 stripe_len,int mirror_num,int generic_io)2168 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2169 			  struct btrfs_bio *bbio, u64 stripe_len,
2170 			  int mirror_num, int generic_io)
2171 {
2172 	struct btrfs_raid_bio *rbio;
2173 	int ret;
2174 
2175 	if (generic_io) {
2176 		ASSERT(bbio->mirror_num == mirror_num);
2177 		btrfs_io_bio(bio)->mirror_num = mirror_num;
2178 	}
2179 
2180 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2181 	if (IS_ERR(rbio)) {
2182 		if (generic_io)
2183 			btrfs_put_bbio(bbio);
2184 		return PTR_ERR(rbio);
2185 	}
2186 
2187 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2188 	rbio_add_bio(rbio, bio);
2189 
2190 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2191 	if (rbio->faila == -1) {
2192 		btrfs_warn(fs_info,
2193 	"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2194 			   __func__, (u64)bio->bi_iter.bi_sector << 9,
2195 			   (u64)bio->bi_iter.bi_size, bbio->map_type);
2196 		if (generic_io)
2197 			btrfs_put_bbio(bbio);
2198 		kfree(rbio);
2199 		return -EIO;
2200 	}
2201 
2202 	if (generic_io) {
2203 		btrfs_bio_counter_inc_noblocked(fs_info);
2204 		rbio->generic_bio_cnt = 1;
2205 	} else {
2206 		btrfs_get_bbio(bbio);
2207 	}
2208 
2209 	/*
2210 	 * Loop retry:
2211 	 * for 'mirror == 2', reconstruct from all other stripes.
2212 	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2213 	 */
2214 	if (mirror_num > 2) {
2215 		/*
2216 		 * 'mirror == 3' is to fail the p stripe and
2217 		 * reconstruct from the q stripe.  'mirror > 3' is to
2218 		 * fail a data stripe and reconstruct from p+q stripe.
2219 		 */
2220 		rbio->failb = rbio->real_stripes - (mirror_num - 1);
2221 		ASSERT(rbio->failb > 0);
2222 		if (rbio->failb <= rbio->faila)
2223 			rbio->failb--;
2224 	}
2225 
2226 	ret = lock_stripe_add(rbio);
2227 
2228 	/*
2229 	 * __raid56_parity_recover will end the bio with
2230 	 * any errors it hits.  We don't want to return
2231 	 * its error value up the stack because our caller
2232 	 * will end up calling bio_endio with any nonzero
2233 	 * return
2234 	 */
2235 	if (ret == 0)
2236 		__raid56_parity_recover(rbio);
2237 	/*
2238 	 * our rbio has been added to the list of
2239 	 * rbios that will be handled after the
2240 	 * currently lock owner is done
2241 	 */
2242 	return 0;
2243 
2244 }
2245 
rmw_work(struct btrfs_work * work)2246 static void rmw_work(struct btrfs_work *work)
2247 {
2248 	struct btrfs_raid_bio *rbio;
2249 
2250 	rbio = container_of(work, struct btrfs_raid_bio, work);
2251 	raid56_rmw_stripe(rbio);
2252 }
2253 
read_rebuild_work(struct btrfs_work * work)2254 static void read_rebuild_work(struct btrfs_work *work)
2255 {
2256 	struct btrfs_raid_bio *rbio;
2257 
2258 	rbio = container_of(work, struct btrfs_raid_bio, work);
2259 	__raid56_parity_recover(rbio);
2260 }
2261 
2262 /*
2263  * The following code is used to scrub/replace the parity stripe
2264  *
2265  * Caller must have already increased bio_counter for getting @bbio.
2266  *
2267  * Note: We need make sure all the pages that add into the scrub/replace
2268  * raid bio are correct and not be changed during the scrub/replace. That
2269  * is those pages just hold metadata or file data with checksum.
2270  */
2271 
2272 struct btrfs_raid_bio *
raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info * fs_info,struct bio * bio,struct btrfs_bio * bbio,u64 stripe_len,struct btrfs_device * scrub_dev,unsigned long * dbitmap,int stripe_nsectors)2273 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2274 			       struct btrfs_bio *bbio, u64 stripe_len,
2275 			       struct btrfs_device *scrub_dev,
2276 			       unsigned long *dbitmap, int stripe_nsectors)
2277 {
2278 	struct btrfs_raid_bio *rbio;
2279 	int i;
2280 
2281 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2282 	if (IS_ERR(rbio))
2283 		return NULL;
2284 	bio_list_add(&rbio->bio_list, bio);
2285 	/*
2286 	 * This is a special bio which is used to hold the completion handler
2287 	 * and make the scrub rbio is similar to the other types
2288 	 */
2289 	ASSERT(!bio->bi_iter.bi_size);
2290 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2291 
2292 	/*
2293 	 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2294 	 * to the end position, so this search can start from the first parity
2295 	 * stripe.
2296 	 */
2297 	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2298 		if (bbio->stripes[i].dev == scrub_dev) {
2299 			rbio->scrubp = i;
2300 			break;
2301 		}
2302 	}
2303 	ASSERT(i < rbio->real_stripes);
2304 
2305 	/* Now we just support the sectorsize equals to page size */
2306 	ASSERT(fs_info->sectorsize == PAGE_SIZE);
2307 	ASSERT(rbio->stripe_npages == stripe_nsectors);
2308 	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2309 
2310 	/*
2311 	 * We have already increased bio_counter when getting bbio, record it
2312 	 * so we can free it at rbio_orig_end_io().
2313 	 */
2314 	rbio->generic_bio_cnt = 1;
2315 
2316 	return rbio;
2317 }
2318 
2319 /* Used for both parity scrub and missing. */
raid56_add_scrub_pages(struct btrfs_raid_bio * rbio,struct page * page,u64 logical)2320 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2321 			    u64 logical)
2322 {
2323 	int stripe_offset;
2324 	int index;
2325 
2326 	ASSERT(logical >= rbio->bbio->raid_map[0]);
2327 	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2328 				rbio->stripe_len * rbio->nr_data);
2329 	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2330 	index = stripe_offset >> PAGE_SHIFT;
2331 	rbio->bio_pages[index] = page;
2332 }
2333 
2334 /*
2335  * We just scrub the parity that we have correct data on the same horizontal,
2336  * so we needn't allocate all pages for all the stripes.
2337  */
alloc_rbio_essential_pages(struct btrfs_raid_bio * rbio)2338 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2339 {
2340 	int i;
2341 	int bit;
2342 	int index;
2343 	struct page *page;
2344 
2345 	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2346 		for (i = 0; i < rbio->real_stripes; i++) {
2347 			index = i * rbio->stripe_npages + bit;
2348 			if (rbio->stripe_pages[index])
2349 				continue;
2350 
2351 			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2352 			if (!page)
2353 				return -ENOMEM;
2354 			rbio->stripe_pages[index] = page;
2355 		}
2356 	}
2357 	return 0;
2358 }
2359 
finish_parity_scrub(struct btrfs_raid_bio * rbio,int need_check)2360 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2361 					 int need_check)
2362 {
2363 	struct btrfs_bio *bbio = rbio->bbio;
2364 	void **pointers = rbio->finish_pointers;
2365 	unsigned long *pbitmap = rbio->finish_pbitmap;
2366 	int nr_data = rbio->nr_data;
2367 	int stripe;
2368 	int pagenr;
2369 	bool has_qstripe;
2370 	struct page *p_page = NULL;
2371 	struct page *q_page = NULL;
2372 	struct bio_list bio_list;
2373 	struct bio *bio;
2374 	int is_replace = 0;
2375 	int ret;
2376 
2377 	bio_list_init(&bio_list);
2378 
2379 	if (rbio->real_stripes - rbio->nr_data == 1)
2380 		has_qstripe = false;
2381 	else if (rbio->real_stripes - rbio->nr_data == 2)
2382 		has_qstripe = true;
2383 	else
2384 		BUG();
2385 
2386 	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2387 		is_replace = 1;
2388 		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2389 	}
2390 
2391 	/*
2392 	 * Because the higher layers(scrubber) are unlikely to
2393 	 * use this area of the disk again soon, so don't cache
2394 	 * it.
2395 	 */
2396 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2397 
2398 	if (!need_check)
2399 		goto writeback;
2400 
2401 	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2402 	if (!p_page)
2403 		goto cleanup;
2404 	SetPageUptodate(p_page);
2405 
2406 	if (has_qstripe) {
2407 		/* RAID6, allocate and map temp space for the Q stripe */
2408 		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2409 		if (!q_page) {
2410 			__free_page(p_page);
2411 			goto cleanup;
2412 		}
2413 		SetPageUptodate(q_page);
2414 		pointers[rbio->real_stripes - 1] = kmap(q_page);
2415 	}
2416 
2417 	atomic_set(&rbio->error, 0);
2418 
2419 	/* Map the parity stripe just once */
2420 	pointers[nr_data] = kmap(p_page);
2421 
2422 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2423 		struct page *p;
2424 		void *parity;
2425 		/* first collect one page from each data stripe */
2426 		for (stripe = 0; stripe < nr_data; stripe++) {
2427 			p = page_in_rbio(rbio, stripe, pagenr, 0);
2428 			pointers[stripe] = kmap(p);
2429 		}
2430 
2431 		if (has_qstripe) {
2432 			/* RAID6, call the library function to fill in our P/Q */
2433 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2434 						pointers);
2435 		} else {
2436 			/* raid5 */
2437 			copy_page(pointers[nr_data], pointers[0]);
2438 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2439 		}
2440 
2441 		/* Check scrubbing parity and repair it */
2442 		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2443 		parity = kmap(p);
2444 		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2445 			copy_page(parity, pointers[rbio->scrubp]);
2446 		else
2447 			/* Parity is right, needn't writeback */
2448 			bitmap_clear(rbio->dbitmap, pagenr, 1);
2449 		kunmap(p);
2450 
2451 		for (stripe = 0; stripe < nr_data; stripe++)
2452 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2453 	}
2454 
2455 	kunmap(p_page);
2456 	__free_page(p_page);
2457 	if (q_page) {
2458 		kunmap(q_page);
2459 		__free_page(q_page);
2460 	}
2461 
2462 writeback:
2463 	/*
2464 	 * time to start writing.  Make bios for everything from the
2465 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2466 	 * everything else.
2467 	 */
2468 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2469 		struct page *page;
2470 
2471 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2472 		ret = rbio_add_io_page(rbio, &bio_list,
2473 			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2474 		if (ret)
2475 			goto cleanup;
2476 	}
2477 
2478 	if (!is_replace)
2479 		goto submit_write;
2480 
2481 	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2482 		struct page *page;
2483 
2484 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2485 		ret = rbio_add_io_page(rbio, &bio_list, page,
2486 				       bbio->tgtdev_map[rbio->scrubp],
2487 				       pagenr, rbio->stripe_len);
2488 		if (ret)
2489 			goto cleanup;
2490 	}
2491 
2492 submit_write:
2493 	nr_data = bio_list_size(&bio_list);
2494 	if (!nr_data) {
2495 		/* Every parity is right */
2496 		rbio_orig_end_io(rbio, BLK_STS_OK);
2497 		return;
2498 	}
2499 
2500 	atomic_set(&rbio->stripes_pending, nr_data);
2501 
2502 	while ((bio = bio_list_pop(&bio_list))) {
2503 		bio->bi_private = rbio;
2504 		bio->bi_end_io = raid_write_end_io;
2505 		bio->bi_opf = REQ_OP_WRITE;
2506 
2507 		submit_bio(bio);
2508 	}
2509 	return;
2510 
2511 cleanup:
2512 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2513 
2514 	while ((bio = bio_list_pop(&bio_list)))
2515 		bio_put(bio);
2516 }
2517 
is_data_stripe(struct btrfs_raid_bio * rbio,int stripe)2518 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2519 {
2520 	if (stripe >= 0 && stripe < rbio->nr_data)
2521 		return 1;
2522 	return 0;
2523 }
2524 
2525 /*
2526  * While we're doing the parity check and repair, we could have errors
2527  * in reading pages off the disk.  This checks for errors and if we're
2528  * not able to read the page it'll trigger parity reconstruction.  The
2529  * parity scrub will be finished after we've reconstructed the failed
2530  * stripes
2531  */
validate_rbio_for_parity_scrub(struct btrfs_raid_bio * rbio)2532 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2533 {
2534 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2535 		goto cleanup;
2536 
2537 	if (rbio->faila >= 0 || rbio->failb >= 0) {
2538 		int dfail = 0, failp = -1;
2539 
2540 		if (is_data_stripe(rbio, rbio->faila))
2541 			dfail++;
2542 		else if (is_parity_stripe(rbio->faila))
2543 			failp = rbio->faila;
2544 
2545 		if (is_data_stripe(rbio, rbio->failb))
2546 			dfail++;
2547 		else if (is_parity_stripe(rbio->failb))
2548 			failp = rbio->failb;
2549 
2550 		/*
2551 		 * Because we can not use a scrubbing parity to repair
2552 		 * the data, so the capability of the repair is declined.
2553 		 * (In the case of RAID5, we can not repair anything)
2554 		 */
2555 		if (dfail > rbio->bbio->max_errors - 1)
2556 			goto cleanup;
2557 
2558 		/*
2559 		 * If all data is good, only parity is correctly, just
2560 		 * repair the parity.
2561 		 */
2562 		if (dfail == 0) {
2563 			finish_parity_scrub(rbio, 0);
2564 			return;
2565 		}
2566 
2567 		/*
2568 		 * Here means we got one corrupted data stripe and one
2569 		 * corrupted parity on RAID6, if the corrupted parity
2570 		 * is scrubbing parity, luckily, use the other one to repair
2571 		 * the data, or we can not repair the data stripe.
2572 		 */
2573 		if (failp != rbio->scrubp)
2574 			goto cleanup;
2575 
2576 		__raid_recover_end_io(rbio);
2577 	} else {
2578 		finish_parity_scrub(rbio, 1);
2579 	}
2580 	return;
2581 
2582 cleanup:
2583 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2584 }
2585 
2586 /*
2587  * end io for the read phase of the rmw cycle.  All the bios here are physical
2588  * stripe bios we've read from the disk so we can recalculate the parity of the
2589  * stripe.
2590  *
2591  * This will usually kick off finish_rmw once all the bios are read in, but it
2592  * may trigger parity reconstruction if we had any errors along the way
2593  */
raid56_parity_scrub_end_io(struct bio * bio)2594 static void raid56_parity_scrub_end_io(struct bio *bio)
2595 {
2596 	struct btrfs_raid_bio *rbio = bio->bi_private;
2597 
2598 	if (bio->bi_status)
2599 		fail_bio_stripe(rbio, bio);
2600 	else
2601 		set_bio_pages_uptodate(bio);
2602 
2603 	bio_put(bio);
2604 
2605 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2606 		return;
2607 
2608 	/*
2609 	 * this will normally call finish_rmw to start our write
2610 	 * but if there are any failed stripes we'll reconstruct
2611 	 * from parity first
2612 	 */
2613 	validate_rbio_for_parity_scrub(rbio);
2614 }
2615 
raid56_parity_scrub_stripe(struct btrfs_raid_bio * rbio)2616 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2617 {
2618 	int bios_to_read = 0;
2619 	struct bio_list bio_list;
2620 	int ret;
2621 	int pagenr;
2622 	int stripe;
2623 	struct bio *bio;
2624 
2625 	bio_list_init(&bio_list);
2626 
2627 	ret = alloc_rbio_essential_pages(rbio);
2628 	if (ret)
2629 		goto cleanup;
2630 
2631 	atomic_set(&rbio->error, 0);
2632 	/*
2633 	 * build a list of bios to read all the missing parts of this
2634 	 * stripe
2635 	 */
2636 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2637 		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2638 			struct page *page;
2639 			/*
2640 			 * we want to find all the pages missing from
2641 			 * the rbio and read them from the disk.  If
2642 			 * page_in_rbio finds a page in the bio list
2643 			 * we don't need to read it off the stripe.
2644 			 */
2645 			page = page_in_rbio(rbio, stripe, pagenr, 1);
2646 			if (page)
2647 				continue;
2648 
2649 			page = rbio_stripe_page(rbio, stripe, pagenr);
2650 			/*
2651 			 * the bio cache may have handed us an uptodate
2652 			 * page.  If so, be happy and use it
2653 			 */
2654 			if (PageUptodate(page))
2655 				continue;
2656 
2657 			ret = rbio_add_io_page(rbio, &bio_list, page,
2658 				       stripe, pagenr, rbio->stripe_len);
2659 			if (ret)
2660 				goto cleanup;
2661 		}
2662 	}
2663 
2664 	bios_to_read = bio_list_size(&bio_list);
2665 	if (!bios_to_read) {
2666 		/*
2667 		 * this can happen if others have merged with
2668 		 * us, it means there is nothing left to read.
2669 		 * But if there are missing devices it may not be
2670 		 * safe to do the full stripe write yet.
2671 		 */
2672 		goto finish;
2673 	}
2674 
2675 	/*
2676 	 * the bbio may be freed once we submit the last bio.  Make sure
2677 	 * not to touch it after that
2678 	 */
2679 	atomic_set(&rbio->stripes_pending, bios_to_read);
2680 	while ((bio = bio_list_pop(&bio_list))) {
2681 		bio->bi_private = rbio;
2682 		bio->bi_end_io = raid56_parity_scrub_end_io;
2683 		bio->bi_opf = REQ_OP_READ;
2684 
2685 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2686 
2687 		submit_bio(bio);
2688 	}
2689 	/* the actual write will happen once the reads are done */
2690 	return;
2691 
2692 cleanup:
2693 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2694 
2695 	while ((bio = bio_list_pop(&bio_list)))
2696 		bio_put(bio);
2697 
2698 	return;
2699 
2700 finish:
2701 	validate_rbio_for_parity_scrub(rbio);
2702 }
2703 
scrub_parity_work(struct btrfs_work * work)2704 static void scrub_parity_work(struct btrfs_work *work)
2705 {
2706 	struct btrfs_raid_bio *rbio;
2707 
2708 	rbio = container_of(work, struct btrfs_raid_bio, work);
2709 	raid56_parity_scrub_stripe(rbio);
2710 }
2711 
raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio * rbio)2712 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2713 {
2714 	if (!lock_stripe_add(rbio))
2715 		start_async_work(rbio, scrub_parity_work);
2716 }
2717 
2718 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2719 
2720 struct btrfs_raid_bio *
raid56_alloc_missing_rbio(struct btrfs_fs_info * fs_info,struct bio * bio,struct btrfs_bio * bbio,u64 length)2721 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2722 			  struct btrfs_bio *bbio, u64 length)
2723 {
2724 	struct btrfs_raid_bio *rbio;
2725 
2726 	rbio = alloc_rbio(fs_info, bbio, length);
2727 	if (IS_ERR(rbio))
2728 		return NULL;
2729 
2730 	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2731 	bio_list_add(&rbio->bio_list, bio);
2732 	/*
2733 	 * This is a special bio which is used to hold the completion handler
2734 	 * and make the scrub rbio is similar to the other types
2735 	 */
2736 	ASSERT(!bio->bi_iter.bi_size);
2737 
2738 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2739 	if (rbio->faila == -1) {
2740 		BUG();
2741 		kfree(rbio);
2742 		return NULL;
2743 	}
2744 
2745 	/*
2746 	 * When we get bbio, we have already increased bio_counter, record it
2747 	 * so we can free it at rbio_orig_end_io()
2748 	 */
2749 	rbio->generic_bio_cnt = 1;
2750 
2751 	return rbio;
2752 }
2753 
raid56_submit_missing_rbio(struct btrfs_raid_bio * rbio)2754 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2755 {
2756 	if (!lock_stripe_add(rbio))
2757 		start_async_work(rbio, read_rebuild_work);
2758 }
2759