• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32 
33 #include "dummy.h"
34 #include "internal.h"
35 
36 #define rdev_crit(rdev, fmt, ...)					\
37 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...)					\
39 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...)					\
41 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...)					\
43 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...)					\
45 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55 
56 static struct dentry *debugfs_root;
57 
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64 	struct list_head list;
65 	const char *dev_name;   /* The dev_name() for the consumer */
66 	const char *supply;
67 	struct regulator_dev *regulator;
68 };
69 
70 /*
71  * struct regulator_enable_gpio
72  *
73  * Management for shared enable GPIO pin
74  */
75 struct regulator_enable_gpio {
76 	struct list_head list;
77 	struct gpio_desc *gpiod;
78 	u32 enable_count;	/* a number of enabled shared GPIO */
79 	u32 request_count;	/* a number of requested shared GPIO */
80 };
81 
82 /*
83  * struct regulator_supply_alias
84  *
85  * Used to map lookups for a supply onto an alternative device.
86  */
87 struct regulator_supply_alias {
88 	struct list_head list;
89 	struct device *src_dev;
90 	const char *src_supply;
91 	struct device *alias_dev;
92 	const char *alias_supply;
93 };
94 
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100 				  unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 				     int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104 				     suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106 					  struct device *dev,
107 					  const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
110 
rdev_get_name(struct regulator_dev * rdev)111 const char *rdev_get_name(struct regulator_dev *rdev)
112 {
113 	if (rdev->constraints && rdev->constraints->name)
114 		return rdev->constraints->name;
115 	else if (rdev->desc->name)
116 		return rdev->desc->name;
117 	else
118 		return "";
119 }
120 
have_full_constraints(void)121 static bool have_full_constraints(void)
122 {
123 	return has_full_constraints || of_have_populated_dt();
124 }
125 
regulator_ops_is_valid(struct regulator_dev * rdev,int ops)126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 {
128 	if (!rdev->constraints) {
129 		rdev_err(rdev, "no constraints\n");
130 		return false;
131 	}
132 
133 	if (rdev->constraints->valid_ops_mask & ops)
134 		return true;
135 
136 	return false;
137 }
138 
139 /**
140  * regulator_lock_nested - lock a single regulator
141  * @rdev:		regulator source
142  * @ww_ctx:		w/w mutex acquire context
143  *
144  * This function can be called many times by one task on
145  * a single regulator and its mutex will be locked only
146  * once. If a task, which is calling this function is other
147  * than the one, which initially locked the mutex, it will
148  * wait on mutex.
149  */
regulator_lock_nested(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151 					struct ww_acquire_ctx *ww_ctx)
152 {
153 	bool lock = false;
154 	int ret = 0;
155 
156 	mutex_lock(&regulator_nesting_mutex);
157 
158 	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159 		if (rdev->mutex_owner == current)
160 			rdev->ref_cnt++;
161 		else
162 			lock = true;
163 
164 		if (lock) {
165 			mutex_unlock(&regulator_nesting_mutex);
166 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167 			mutex_lock(&regulator_nesting_mutex);
168 		}
169 	} else {
170 		lock = true;
171 	}
172 
173 	if (lock && ret != -EDEADLK) {
174 		rdev->ref_cnt++;
175 		rdev->mutex_owner = current;
176 	}
177 
178 	mutex_unlock(&regulator_nesting_mutex);
179 
180 	return ret;
181 }
182 
183 /**
184  * regulator_lock - lock a single regulator
185  * @rdev:		regulator source
186  *
187  * This function can be called many times by one task on
188  * a single regulator and its mutex will be locked only
189  * once. If a task, which is calling this function is other
190  * than the one, which initially locked the mutex, it will
191  * wait on mutex.
192  */
regulator_lock(struct regulator_dev * rdev)193 static void regulator_lock(struct regulator_dev *rdev)
194 {
195 	regulator_lock_nested(rdev, NULL);
196 }
197 
198 /**
199  * regulator_unlock - unlock a single regulator
200  * @rdev:		regulator_source
201  *
202  * This function unlocks the mutex when the
203  * reference counter reaches 0.
204  */
regulator_unlock(struct regulator_dev * rdev)205 static void regulator_unlock(struct regulator_dev *rdev)
206 {
207 	mutex_lock(&regulator_nesting_mutex);
208 
209 	if (--rdev->ref_cnt == 0) {
210 		rdev->mutex_owner = NULL;
211 		ww_mutex_unlock(&rdev->mutex);
212 	}
213 
214 	WARN_ON_ONCE(rdev->ref_cnt < 0);
215 
216 	mutex_unlock(&regulator_nesting_mutex);
217 }
218 
219 /**
220  * regulator_lock_two - lock two regulators
221  * @rdev1:		first regulator
222  * @rdev2:		second regulator
223  * @ww_ctx:		w/w mutex acquire context
224  *
225  * Locks both rdevs using the regulator_ww_class.
226  */
regulator_lock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)227 static void regulator_lock_two(struct regulator_dev *rdev1,
228 			       struct regulator_dev *rdev2,
229 			       struct ww_acquire_ctx *ww_ctx)
230 {
231 	struct regulator_dev *tmp;
232 	int ret;
233 
234 	ww_acquire_init(ww_ctx, &regulator_ww_class);
235 
236 	/* Try to just grab both of them */
237 	ret = regulator_lock_nested(rdev1, ww_ctx);
238 	WARN_ON(ret);
239 	ret = regulator_lock_nested(rdev2, ww_ctx);
240 	if (ret != -EDEADLOCK) {
241 		WARN_ON(ret);
242 		goto exit;
243 	}
244 
245 	while (true) {
246 		/*
247 		 * Start of loop: rdev1 was locked and rdev2 was contended.
248 		 * Need to unlock rdev1, slowly lock rdev2, then try rdev1
249 		 * again.
250 		 */
251 		regulator_unlock(rdev1);
252 
253 		ww_mutex_lock_slow(&rdev2->mutex, ww_ctx);
254 		rdev2->ref_cnt++;
255 		rdev2->mutex_owner = current;
256 		ret = regulator_lock_nested(rdev1, ww_ctx);
257 
258 		if (ret == -EDEADLOCK) {
259 			/* More contention; swap which needs to be slow */
260 			tmp = rdev1;
261 			rdev1 = rdev2;
262 			rdev2 = tmp;
263 		} else {
264 			WARN_ON(ret);
265 			break;
266 		}
267 	}
268 
269 exit:
270 	ww_acquire_done(ww_ctx);
271 }
272 
273 /**
274  * regulator_unlock_two - unlock two regulators
275  * @rdev1:		first regulator
276  * @rdev2:		second regulator
277  * @ww_ctx:		w/w mutex acquire context
278  *
279  * The inverse of regulator_lock_two().
280  */
281 
regulator_unlock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)282 static void regulator_unlock_two(struct regulator_dev *rdev1,
283 				 struct regulator_dev *rdev2,
284 				 struct ww_acquire_ctx *ww_ctx)
285 {
286 	regulator_unlock(rdev2);
287 	regulator_unlock(rdev1);
288 	ww_acquire_fini(ww_ctx);
289 }
290 
regulator_supply_is_couple(struct regulator_dev * rdev)291 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
292 {
293 	struct regulator_dev *c_rdev;
294 	int i;
295 
296 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
297 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
298 
299 		if (rdev->supply->rdev == c_rdev)
300 			return true;
301 	}
302 
303 	return false;
304 }
305 
regulator_unlock_recursive(struct regulator_dev * rdev,unsigned int n_coupled)306 static void regulator_unlock_recursive(struct regulator_dev *rdev,
307 				       unsigned int n_coupled)
308 {
309 	struct regulator_dev *c_rdev, *supply_rdev;
310 	int i, supply_n_coupled;
311 
312 	for (i = n_coupled; i > 0; i--) {
313 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
314 
315 		if (!c_rdev)
316 			continue;
317 
318 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
319 			supply_rdev = c_rdev->supply->rdev;
320 			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
321 
322 			regulator_unlock_recursive(supply_rdev,
323 						   supply_n_coupled);
324 		}
325 
326 		regulator_unlock(c_rdev);
327 	}
328 }
329 
regulator_lock_recursive(struct regulator_dev * rdev,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev,struct ww_acquire_ctx * ww_ctx)330 static int regulator_lock_recursive(struct regulator_dev *rdev,
331 				    struct regulator_dev **new_contended_rdev,
332 				    struct regulator_dev **old_contended_rdev,
333 				    struct ww_acquire_ctx *ww_ctx)
334 {
335 	struct regulator_dev *c_rdev;
336 	int i, err;
337 
338 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
339 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
340 
341 		if (!c_rdev)
342 			continue;
343 
344 		if (c_rdev != *old_contended_rdev) {
345 			err = regulator_lock_nested(c_rdev, ww_ctx);
346 			if (err) {
347 				if (err == -EDEADLK) {
348 					*new_contended_rdev = c_rdev;
349 					goto err_unlock;
350 				}
351 
352 				/* shouldn't happen */
353 				WARN_ON_ONCE(err != -EALREADY);
354 			}
355 		} else {
356 			*old_contended_rdev = NULL;
357 		}
358 
359 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
360 			err = regulator_lock_recursive(c_rdev->supply->rdev,
361 						       new_contended_rdev,
362 						       old_contended_rdev,
363 						       ww_ctx);
364 			if (err) {
365 				regulator_unlock(c_rdev);
366 				goto err_unlock;
367 			}
368 		}
369 	}
370 
371 	return 0;
372 
373 err_unlock:
374 	regulator_unlock_recursive(rdev, i);
375 
376 	return err;
377 }
378 
379 /**
380  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
381  *				regulators
382  * @rdev:			regulator source
383  * @ww_ctx:			w/w mutex acquire context
384  *
385  * Unlock all regulators related with rdev by coupling or supplying.
386  */
regulator_unlock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)387 static void regulator_unlock_dependent(struct regulator_dev *rdev,
388 				       struct ww_acquire_ctx *ww_ctx)
389 {
390 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
391 	ww_acquire_fini(ww_ctx);
392 }
393 
394 /**
395  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
396  * @rdev:			regulator source
397  * @ww_ctx:			w/w mutex acquire context
398  *
399  * This function as a wrapper on regulator_lock_recursive(), which locks
400  * all regulators related with rdev by coupling or supplying.
401  */
regulator_lock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)402 static void regulator_lock_dependent(struct regulator_dev *rdev,
403 				     struct ww_acquire_ctx *ww_ctx)
404 {
405 	struct regulator_dev *new_contended_rdev = NULL;
406 	struct regulator_dev *old_contended_rdev = NULL;
407 	int err;
408 
409 	mutex_lock(&regulator_list_mutex);
410 
411 	ww_acquire_init(ww_ctx, &regulator_ww_class);
412 
413 	do {
414 		if (new_contended_rdev) {
415 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
416 			old_contended_rdev = new_contended_rdev;
417 			old_contended_rdev->ref_cnt++;
418 			old_contended_rdev->mutex_owner = current;
419 		}
420 
421 		err = regulator_lock_recursive(rdev,
422 					       &new_contended_rdev,
423 					       &old_contended_rdev,
424 					       ww_ctx);
425 
426 		if (old_contended_rdev)
427 			regulator_unlock(old_contended_rdev);
428 
429 	} while (err == -EDEADLK);
430 
431 	ww_acquire_done(ww_ctx);
432 
433 	mutex_unlock(&regulator_list_mutex);
434 }
435 
436 /**
437  * of_get_child_regulator - get a child regulator device node
438  * based on supply name
439  * @parent: Parent device node
440  * @prop_name: Combination regulator supply name and "-supply"
441  *
442  * Traverse all child nodes.
443  * Extract the child regulator device node corresponding to the supply name.
444  * returns the device node corresponding to the regulator if found, else
445  * returns NULL.
446  */
of_get_child_regulator(struct device_node * parent,const char * prop_name)447 static struct device_node *of_get_child_regulator(struct device_node *parent,
448 						  const char *prop_name)
449 {
450 	struct device_node *regnode = NULL;
451 	struct device_node *child = NULL;
452 
453 	for_each_child_of_node(parent, child) {
454 		regnode = of_parse_phandle(child, prop_name, 0);
455 
456 		if (!regnode) {
457 			regnode = of_get_child_regulator(child, prop_name);
458 			if (regnode)
459 				goto err_node_put;
460 		} else {
461 			goto err_node_put;
462 		}
463 	}
464 	return NULL;
465 
466 err_node_put:
467 	of_node_put(child);
468 	return regnode;
469 }
470 
471 /**
472  * of_get_regulator - get a regulator device node based on supply name
473  * @dev: Device pointer for the consumer (of regulator) device
474  * @supply: regulator supply name
475  *
476  * Extract the regulator device node corresponding to the supply name.
477  * returns the device node corresponding to the regulator if found, else
478  * returns NULL.
479  */
of_get_regulator(struct device * dev,const char * supply)480 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
481 {
482 	struct device_node *regnode = NULL;
483 	char prop_name[64]; /* 64 is max size of property name */
484 
485 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
486 
487 	snprintf(prop_name, 64, "%s-supply", supply);
488 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
489 
490 	if (!regnode) {
491 		regnode = of_get_child_regulator(dev->of_node, prop_name);
492 		if (regnode)
493 			return regnode;
494 
495 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
496 				prop_name, dev->of_node);
497 		return NULL;
498 	}
499 	return regnode;
500 }
501 
502 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)503 int regulator_check_voltage(struct regulator_dev *rdev,
504 			    int *min_uV, int *max_uV)
505 {
506 	BUG_ON(*min_uV > *max_uV);
507 
508 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
509 		rdev_err(rdev, "voltage operation not allowed\n");
510 		return -EPERM;
511 	}
512 
513 	if (*max_uV > rdev->constraints->max_uV)
514 		*max_uV = rdev->constraints->max_uV;
515 	if (*min_uV < rdev->constraints->min_uV)
516 		*min_uV = rdev->constraints->min_uV;
517 
518 	if (*min_uV > *max_uV) {
519 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
520 			 *min_uV, *max_uV);
521 		return -EINVAL;
522 	}
523 
524 	return 0;
525 }
526 
527 /* return 0 if the state is valid */
regulator_check_states(suspend_state_t state)528 static int regulator_check_states(suspend_state_t state)
529 {
530 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
531 }
532 
533 /* Make sure we select a voltage that suits the needs of all
534  * regulator consumers
535  */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV,suspend_state_t state)536 int regulator_check_consumers(struct regulator_dev *rdev,
537 			      int *min_uV, int *max_uV,
538 			      suspend_state_t state)
539 {
540 	struct regulator *regulator;
541 	struct regulator_voltage *voltage;
542 
543 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
544 		voltage = &regulator->voltage[state];
545 		/*
546 		 * Assume consumers that didn't say anything are OK
547 		 * with anything in the constraint range.
548 		 */
549 		if (!voltage->min_uV && !voltage->max_uV)
550 			continue;
551 
552 		if (*max_uV > voltage->max_uV)
553 			*max_uV = voltage->max_uV;
554 		if (*min_uV < voltage->min_uV)
555 			*min_uV = voltage->min_uV;
556 	}
557 
558 	if (*min_uV > *max_uV) {
559 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
560 			*min_uV, *max_uV);
561 		return -EINVAL;
562 	}
563 
564 	return 0;
565 }
566 
567 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)568 static int regulator_check_current_limit(struct regulator_dev *rdev,
569 					int *min_uA, int *max_uA)
570 {
571 	BUG_ON(*min_uA > *max_uA);
572 
573 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
574 		rdev_err(rdev, "current operation not allowed\n");
575 		return -EPERM;
576 	}
577 
578 	if (*max_uA > rdev->constraints->max_uA)
579 		*max_uA = rdev->constraints->max_uA;
580 	if (*min_uA < rdev->constraints->min_uA)
581 		*min_uA = rdev->constraints->min_uA;
582 
583 	if (*min_uA > *max_uA) {
584 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
585 			 *min_uA, *max_uA);
586 		return -EINVAL;
587 	}
588 
589 	return 0;
590 }
591 
592 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,unsigned int * mode)593 static int regulator_mode_constrain(struct regulator_dev *rdev,
594 				    unsigned int *mode)
595 {
596 	switch (*mode) {
597 	case REGULATOR_MODE_FAST:
598 	case REGULATOR_MODE_NORMAL:
599 	case REGULATOR_MODE_IDLE:
600 	case REGULATOR_MODE_STANDBY:
601 		break;
602 	default:
603 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
604 		return -EINVAL;
605 	}
606 
607 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
608 		rdev_err(rdev, "mode operation not allowed\n");
609 		return -EPERM;
610 	}
611 
612 	/* The modes are bitmasks, the most power hungry modes having
613 	 * the lowest values. If the requested mode isn't supported
614 	 * try higher modes. */
615 	while (*mode) {
616 		if (rdev->constraints->valid_modes_mask & *mode)
617 			return 0;
618 		*mode /= 2;
619 	}
620 
621 	return -EINVAL;
622 }
623 
624 static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev * rdev,suspend_state_t state)625 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
626 {
627 	if (rdev->constraints == NULL)
628 		return NULL;
629 
630 	switch (state) {
631 	case PM_SUSPEND_STANDBY:
632 		return &rdev->constraints->state_standby;
633 	case PM_SUSPEND_MEM:
634 		return &rdev->constraints->state_mem;
635 	case PM_SUSPEND_MAX:
636 		return &rdev->constraints->state_disk;
637 	default:
638 		return NULL;
639 	}
640 }
641 
642 static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev * rdev,suspend_state_t state)643 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
644 {
645 	const struct regulator_state *rstate;
646 
647 	rstate = regulator_get_suspend_state(rdev, state);
648 	if (rstate == NULL)
649 		return NULL;
650 
651 	/* If we have no suspend mode configuration don't set anything;
652 	 * only warn if the driver implements set_suspend_voltage or
653 	 * set_suspend_mode callback.
654 	 */
655 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
656 	    rstate->enabled != DISABLE_IN_SUSPEND) {
657 		if (rdev->desc->ops->set_suspend_voltage ||
658 		    rdev->desc->ops->set_suspend_mode)
659 			rdev_warn(rdev, "No configuration\n");
660 		return NULL;
661 	}
662 
663 	return rstate;
664 }
665 
regulator_uV_show(struct device * dev,struct device_attribute * attr,char * buf)666 static ssize_t regulator_uV_show(struct device *dev,
667 				struct device_attribute *attr, char *buf)
668 {
669 	struct regulator_dev *rdev = dev_get_drvdata(dev);
670 	int uV;
671 
672 	regulator_lock(rdev);
673 	uV = regulator_get_voltage_rdev(rdev);
674 	regulator_unlock(rdev);
675 
676 	if (uV < 0)
677 		return uV;
678 	return sprintf(buf, "%d\n", uV);
679 }
680 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
681 
regulator_uA_show(struct device * dev,struct device_attribute * attr,char * buf)682 static ssize_t regulator_uA_show(struct device *dev,
683 				struct device_attribute *attr, char *buf)
684 {
685 	struct regulator_dev *rdev = dev_get_drvdata(dev);
686 
687 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
688 }
689 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
690 
name_show(struct device * dev,struct device_attribute * attr,char * buf)691 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
692 			 char *buf)
693 {
694 	struct regulator_dev *rdev = dev_get_drvdata(dev);
695 
696 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
697 }
698 static DEVICE_ATTR_RO(name);
699 
regulator_opmode_to_str(int mode)700 static const char *regulator_opmode_to_str(int mode)
701 {
702 	switch (mode) {
703 	case REGULATOR_MODE_FAST:
704 		return "fast";
705 	case REGULATOR_MODE_NORMAL:
706 		return "normal";
707 	case REGULATOR_MODE_IDLE:
708 		return "idle";
709 	case REGULATOR_MODE_STANDBY:
710 		return "standby";
711 	}
712 	return "unknown";
713 }
714 
regulator_print_opmode(char * buf,int mode)715 static ssize_t regulator_print_opmode(char *buf, int mode)
716 {
717 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
718 }
719 
regulator_opmode_show(struct device * dev,struct device_attribute * attr,char * buf)720 static ssize_t regulator_opmode_show(struct device *dev,
721 				    struct device_attribute *attr, char *buf)
722 {
723 	struct regulator_dev *rdev = dev_get_drvdata(dev);
724 
725 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
726 }
727 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
728 
regulator_print_state(char * buf,int state)729 static ssize_t regulator_print_state(char *buf, int state)
730 {
731 	if (state > 0)
732 		return sprintf(buf, "enabled\n");
733 	else if (state == 0)
734 		return sprintf(buf, "disabled\n");
735 	else
736 		return sprintf(buf, "unknown\n");
737 }
738 
regulator_state_show(struct device * dev,struct device_attribute * attr,char * buf)739 static ssize_t regulator_state_show(struct device *dev,
740 				   struct device_attribute *attr, char *buf)
741 {
742 	struct regulator_dev *rdev = dev_get_drvdata(dev);
743 	ssize_t ret;
744 
745 	regulator_lock(rdev);
746 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
747 	regulator_unlock(rdev);
748 
749 	return ret;
750 }
751 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
752 
regulator_status_show(struct device * dev,struct device_attribute * attr,char * buf)753 static ssize_t regulator_status_show(struct device *dev,
754 				   struct device_attribute *attr, char *buf)
755 {
756 	struct regulator_dev *rdev = dev_get_drvdata(dev);
757 	int status;
758 	char *label;
759 
760 	status = rdev->desc->ops->get_status(rdev);
761 	if (status < 0)
762 		return status;
763 
764 	switch (status) {
765 	case REGULATOR_STATUS_OFF:
766 		label = "off";
767 		break;
768 	case REGULATOR_STATUS_ON:
769 		label = "on";
770 		break;
771 	case REGULATOR_STATUS_ERROR:
772 		label = "error";
773 		break;
774 	case REGULATOR_STATUS_FAST:
775 		label = "fast";
776 		break;
777 	case REGULATOR_STATUS_NORMAL:
778 		label = "normal";
779 		break;
780 	case REGULATOR_STATUS_IDLE:
781 		label = "idle";
782 		break;
783 	case REGULATOR_STATUS_STANDBY:
784 		label = "standby";
785 		break;
786 	case REGULATOR_STATUS_BYPASS:
787 		label = "bypass";
788 		break;
789 	case REGULATOR_STATUS_UNDEFINED:
790 		label = "undefined";
791 		break;
792 	default:
793 		return -ERANGE;
794 	}
795 
796 	return sprintf(buf, "%s\n", label);
797 }
798 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
799 
regulator_min_uA_show(struct device * dev,struct device_attribute * attr,char * buf)800 static ssize_t regulator_min_uA_show(struct device *dev,
801 				    struct device_attribute *attr, char *buf)
802 {
803 	struct regulator_dev *rdev = dev_get_drvdata(dev);
804 
805 	if (!rdev->constraints)
806 		return sprintf(buf, "constraint not defined\n");
807 
808 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
809 }
810 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
811 
regulator_max_uA_show(struct device * dev,struct device_attribute * attr,char * buf)812 static ssize_t regulator_max_uA_show(struct device *dev,
813 				    struct device_attribute *attr, char *buf)
814 {
815 	struct regulator_dev *rdev = dev_get_drvdata(dev);
816 
817 	if (!rdev->constraints)
818 		return sprintf(buf, "constraint not defined\n");
819 
820 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
821 }
822 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
823 
regulator_min_uV_show(struct device * dev,struct device_attribute * attr,char * buf)824 static ssize_t regulator_min_uV_show(struct device *dev,
825 				    struct device_attribute *attr, char *buf)
826 {
827 	struct regulator_dev *rdev = dev_get_drvdata(dev);
828 
829 	if (!rdev->constraints)
830 		return sprintf(buf, "constraint not defined\n");
831 
832 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
833 }
834 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
835 
regulator_max_uV_show(struct device * dev,struct device_attribute * attr,char * buf)836 static ssize_t regulator_max_uV_show(struct device *dev,
837 				    struct device_attribute *attr, char *buf)
838 {
839 	struct regulator_dev *rdev = dev_get_drvdata(dev);
840 
841 	if (!rdev->constraints)
842 		return sprintf(buf, "constraint not defined\n");
843 
844 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
845 }
846 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
847 
regulator_total_uA_show(struct device * dev,struct device_attribute * attr,char * buf)848 static ssize_t regulator_total_uA_show(struct device *dev,
849 				      struct device_attribute *attr, char *buf)
850 {
851 	struct regulator_dev *rdev = dev_get_drvdata(dev);
852 	struct regulator *regulator;
853 	int uA = 0;
854 
855 	regulator_lock(rdev);
856 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
857 		if (regulator->enable_count)
858 			uA += regulator->uA_load;
859 	}
860 	regulator_unlock(rdev);
861 	return sprintf(buf, "%d\n", uA);
862 }
863 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
864 
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)865 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
866 			      char *buf)
867 {
868 	struct regulator_dev *rdev = dev_get_drvdata(dev);
869 	return sprintf(buf, "%d\n", rdev->use_count);
870 }
871 static DEVICE_ATTR_RO(num_users);
872 
type_show(struct device * dev,struct device_attribute * attr,char * buf)873 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
874 			 char *buf)
875 {
876 	struct regulator_dev *rdev = dev_get_drvdata(dev);
877 
878 	switch (rdev->desc->type) {
879 	case REGULATOR_VOLTAGE:
880 		return sprintf(buf, "voltage\n");
881 	case REGULATOR_CURRENT:
882 		return sprintf(buf, "current\n");
883 	}
884 	return sprintf(buf, "unknown\n");
885 }
886 static DEVICE_ATTR_RO(type);
887 
regulator_suspend_mem_uV_show(struct device * dev,struct device_attribute * attr,char * buf)888 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
889 				struct device_attribute *attr, char *buf)
890 {
891 	struct regulator_dev *rdev = dev_get_drvdata(dev);
892 
893 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
894 }
895 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
896 		regulator_suspend_mem_uV_show, NULL);
897 
regulator_suspend_disk_uV_show(struct device * dev,struct device_attribute * attr,char * buf)898 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
899 				struct device_attribute *attr, char *buf)
900 {
901 	struct regulator_dev *rdev = dev_get_drvdata(dev);
902 
903 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
904 }
905 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
906 		regulator_suspend_disk_uV_show, NULL);
907 
regulator_suspend_standby_uV_show(struct device * dev,struct device_attribute * attr,char * buf)908 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
909 				struct device_attribute *attr, char *buf)
910 {
911 	struct regulator_dev *rdev = dev_get_drvdata(dev);
912 
913 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
914 }
915 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
916 		regulator_suspend_standby_uV_show, NULL);
917 
regulator_suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)918 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
919 				struct device_attribute *attr, char *buf)
920 {
921 	struct regulator_dev *rdev = dev_get_drvdata(dev);
922 
923 	return regulator_print_opmode(buf,
924 		rdev->constraints->state_mem.mode);
925 }
926 static DEVICE_ATTR(suspend_mem_mode, 0444,
927 		regulator_suspend_mem_mode_show, NULL);
928 
regulator_suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)929 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
930 				struct device_attribute *attr, char *buf)
931 {
932 	struct regulator_dev *rdev = dev_get_drvdata(dev);
933 
934 	return regulator_print_opmode(buf,
935 		rdev->constraints->state_disk.mode);
936 }
937 static DEVICE_ATTR(suspend_disk_mode, 0444,
938 		regulator_suspend_disk_mode_show, NULL);
939 
regulator_suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)940 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
941 				struct device_attribute *attr, char *buf)
942 {
943 	struct regulator_dev *rdev = dev_get_drvdata(dev);
944 
945 	return regulator_print_opmode(buf,
946 		rdev->constraints->state_standby.mode);
947 }
948 static DEVICE_ATTR(suspend_standby_mode, 0444,
949 		regulator_suspend_standby_mode_show, NULL);
950 
regulator_suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)951 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
952 				   struct device_attribute *attr, char *buf)
953 {
954 	struct regulator_dev *rdev = dev_get_drvdata(dev);
955 
956 	return regulator_print_state(buf,
957 			rdev->constraints->state_mem.enabled);
958 }
959 static DEVICE_ATTR(suspend_mem_state, 0444,
960 		regulator_suspend_mem_state_show, NULL);
961 
regulator_suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)962 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
963 				   struct device_attribute *attr, char *buf)
964 {
965 	struct regulator_dev *rdev = dev_get_drvdata(dev);
966 
967 	return regulator_print_state(buf,
968 			rdev->constraints->state_disk.enabled);
969 }
970 static DEVICE_ATTR(suspend_disk_state, 0444,
971 		regulator_suspend_disk_state_show, NULL);
972 
regulator_suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)973 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
974 				   struct device_attribute *attr, char *buf)
975 {
976 	struct regulator_dev *rdev = dev_get_drvdata(dev);
977 
978 	return regulator_print_state(buf,
979 			rdev->constraints->state_standby.enabled);
980 }
981 static DEVICE_ATTR(suspend_standby_state, 0444,
982 		regulator_suspend_standby_state_show, NULL);
983 
regulator_bypass_show(struct device * dev,struct device_attribute * attr,char * buf)984 static ssize_t regulator_bypass_show(struct device *dev,
985 				     struct device_attribute *attr, char *buf)
986 {
987 	struct regulator_dev *rdev = dev_get_drvdata(dev);
988 	const char *report;
989 	bool bypass;
990 	int ret;
991 
992 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
993 
994 	if (ret != 0)
995 		report = "unknown";
996 	else if (bypass)
997 		report = "enabled";
998 	else
999 		report = "disabled";
1000 
1001 	return sprintf(buf, "%s\n", report);
1002 }
1003 static DEVICE_ATTR(bypass, 0444,
1004 		   regulator_bypass_show, NULL);
1005 
1006 /* Calculate the new optimum regulator operating mode based on the new total
1007  * consumer load. All locks held by caller */
drms_uA_update(struct regulator_dev * rdev)1008 static int drms_uA_update(struct regulator_dev *rdev)
1009 {
1010 	struct regulator *sibling;
1011 	int current_uA = 0, output_uV, input_uV, err;
1012 	unsigned int mode;
1013 
1014 	/*
1015 	 * first check to see if we can set modes at all, otherwise just
1016 	 * tell the consumer everything is OK.
1017 	 */
1018 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1019 		rdev_dbg(rdev, "DRMS operation not allowed\n");
1020 		return 0;
1021 	}
1022 
1023 	if (!rdev->desc->ops->get_optimum_mode &&
1024 	    !rdev->desc->ops->set_load)
1025 		return 0;
1026 
1027 	if (!rdev->desc->ops->set_mode &&
1028 	    !rdev->desc->ops->set_load)
1029 		return -EINVAL;
1030 
1031 	/* calc total requested load */
1032 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
1033 		if (sibling->enable_count)
1034 			current_uA += sibling->uA_load;
1035 	}
1036 
1037 	current_uA += rdev->constraints->system_load;
1038 
1039 	if (rdev->desc->ops->set_load) {
1040 		/* set the optimum mode for our new total regulator load */
1041 		err = rdev->desc->ops->set_load(rdev, current_uA);
1042 		if (err < 0)
1043 			rdev_err(rdev, "failed to set load %d: %pe\n",
1044 				 current_uA, ERR_PTR(err));
1045 	} else {
1046 		/* get output voltage */
1047 		output_uV = regulator_get_voltage_rdev(rdev);
1048 		if (output_uV <= 0) {
1049 			rdev_err(rdev, "invalid output voltage found\n");
1050 			return -EINVAL;
1051 		}
1052 
1053 		/* get input voltage */
1054 		input_uV = 0;
1055 		if (rdev->supply)
1056 			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1057 		if (input_uV <= 0)
1058 			input_uV = rdev->constraints->input_uV;
1059 		if (input_uV <= 0) {
1060 			rdev_err(rdev, "invalid input voltage found\n");
1061 			return -EINVAL;
1062 		}
1063 
1064 		/* now get the optimum mode for our new total regulator load */
1065 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1066 							 output_uV, current_uA);
1067 
1068 		/* check the new mode is allowed */
1069 		err = regulator_mode_constrain(rdev, &mode);
1070 		if (err < 0) {
1071 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1072 				 current_uA, input_uV, output_uV, ERR_PTR(err));
1073 			return err;
1074 		}
1075 
1076 		err = rdev->desc->ops->set_mode(rdev, mode);
1077 		if (err < 0)
1078 			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1079 				 mode, ERR_PTR(err));
1080 	}
1081 
1082 	return err;
1083 }
1084 
__suspend_set_state(struct regulator_dev * rdev,const struct regulator_state * rstate)1085 static int __suspend_set_state(struct regulator_dev *rdev,
1086 			       const struct regulator_state *rstate)
1087 {
1088 	int ret = 0;
1089 
1090 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1091 		rdev->desc->ops->set_suspend_enable)
1092 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1093 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1094 		rdev->desc->ops->set_suspend_disable)
1095 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1096 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1097 		ret = 0;
1098 
1099 	if (ret < 0) {
1100 		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1101 		return ret;
1102 	}
1103 
1104 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1105 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1106 		if (ret < 0) {
1107 			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1108 			return ret;
1109 		}
1110 	}
1111 
1112 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1113 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1114 		if (ret < 0) {
1115 			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1116 			return ret;
1117 		}
1118 	}
1119 
1120 	return ret;
1121 }
1122 
suspend_set_initial_state(struct regulator_dev * rdev)1123 static int suspend_set_initial_state(struct regulator_dev *rdev)
1124 {
1125 	const struct regulator_state *rstate;
1126 
1127 	rstate = regulator_get_suspend_state_check(rdev,
1128 			rdev->constraints->initial_state);
1129 	if (!rstate)
1130 		return 0;
1131 
1132 	return __suspend_set_state(rdev, rstate);
1133 }
1134 
1135 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
print_constraints_debug(struct regulator_dev * rdev)1136 static void print_constraints_debug(struct regulator_dev *rdev)
1137 {
1138 	struct regulation_constraints *constraints = rdev->constraints;
1139 	char buf[160] = "";
1140 	size_t len = sizeof(buf) - 1;
1141 	int count = 0;
1142 	int ret;
1143 
1144 	if (constraints->min_uV && constraints->max_uV) {
1145 		if (constraints->min_uV == constraints->max_uV)
1146 			count += scnprintf(buf + count, len - count, "%d mV ",
1147 					   constraints->min_uV / 1000);
1148 		else
1149 			count += scnprintf(buf + count, len - count,
1150 					   "%d <--> %d mV ",
1151 					   constraints->min_uV / 1000,
1152 					   constraints->max_uV / 1000);
1153 	}
1154 
1155 	if (!constraints->min_uV ||
1156 	    constraints->min_uV != constraints->max_uV) {
1157 		ret = regulator_get_voltage_rdev(rdev);
1158 		if (ret > 0)
1159 			count += scnprintf(buf + count, len - count,
1160 					   "at %d mV ", ret / 1000);
1161 	}
1162 
1163 	if (constraints->uV_offset)
1164 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1165 				   constraints->uV_offset / 1000);
1166 
1167 	if (constraints->min_uA && constraints->max_uA) {
1168 		if (constraints->min_uA == constraints->max_uA)
1169 			count += scnprintf(buf + count, len - count, "%d mA ",
1170 					   constraints->min_uA / 1000);
1171 		else
1172 			count += scnprintf(buf + count, len - count,
1173 					   "%d <--> %d mA ",
1174 					   constraints->min_uA / 1000,
1175 					   constraints->max_uA / 1000);
1176 	}
1177 
1178 	if (!constraints->min_uA ||
1179 	    constraints->min_uA != constraints->max_uA) {
1180 		ret = _regulator_get_current_limit(rdev);
1181 		if (ret > 0)
1182 			count += scnprintf(buf + count, len - count,
1183 					   "at %d mA ", ret / 1000);
1184 	}
1185 
1186 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1187 		count += scnprintf(buf + count, len - count, "fast ");
1188 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1189 		count += scnprintf(buf + count, len - count, "normal ");
1190 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1191 		count += scnprintf(buf + count, len - count, "idle ");
1192 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1193 		count += scnprintf(buf + count, len - count, "standby ");
1194 
1195 	if (!count)
1196 		count = scnprintf(buf, len, "no parameters");
1197 	else
1198 		--count;
1199 
1200 	count += scnprintf(buf + count, len - count, ", %s",
1201 		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1202 
1203 	rdev_dbg(rdev, "%s\n", buf);
1204 }
1205 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
print_constraints_debug(struct regulator_dev * rdev)1206 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1207 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1208 
print_constraints(struct regulator_dev * rdev)1209 static void print_constraints(struct regulator_dev *rdev)
1210 {
1211 	struct regulation_constraints *constraints = rdev->constraints;
1212 
1213 	print_constraints_debug(rdev);
1214 
1215 	if ((constraints->min_uV != constraints->max_uV) &&
1216 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1217 		rdev_warn(rdev,
1218 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1219 }
1220 
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)1221 static int machine_constraints_voltage(struct regulator_dev *rdev,
1222 	struct regulation_constraints *constraints)
1223 {
1224 	const struct regulator_ops *ops = rdev->desc->ops;
1225 	int ret;
1226 
1227 	/* do we need to apply the constraint voltage */
1228 	if (rdev->constraints->apply_uV &&
1229 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1230 		int target_min, target_max;
1231 		int current_uV = regulator_get_voltage_rdev(rdev);
1232 
1233 		if (current_uV == -ENOTRECOVERABLE) {
1234 			/* This regulator can't be read and must be initialized */
1235 			rdev_info(rdev, "Setting %d-%duV\n",
1236 				  rdev->constraints->min_uV,
1237 				  rdev->constraints->max_uV);
1238 			_regulator_do_set_voltage(rdev,
1239 						  rdev->constraints->min_uV,
1240 						  rdev->constraints->max_uV);
1241 			current_uV = regulator_get_voltage_rdev(rdev);
1242 		}
1243 
1244 		if (current_uV < 0) {
1245 			rdev_err(rdev,
1246 				 "failed to get the current voltage: %pe\n",
1247 				 ERR_PTR(current_uV));
1248 			return current_uV;
1249 		}
1250 
1251 		/*
1252 		 * If we're below the minimum voltage move up to the
1253 		 * minimum voltage, if we're above the maximum voltage
1254 		 * then move down to the maximum.
1255 		 */
1256 		target_min = current_uV;
1257 		target_max = current_uV;
1258 
1259 		if (current_uV < rdev->constraints->min_uV) {
1260 			target_min = rdev->constraints->min_uV;
1261 			target_max = rdev->constraints->min_uV;
1262 		}
1263 
1264 		if (current_uV > rdev->constraints->max_uV) {
1265 			target_min = rdev->constraints->max_uV;
1266 			target_max = rdev->constraints->max_uV;
1267 		}
1268 
1269 		if (target_min != current_uV || target_max != current_uV) {
1270 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1271 				  current_uV, target_min, target_max);
1272 			ret = _regulator_do_set_voltage(
1273 				rdev, target_min, target_max);
1274 			if (ret < 0) {
1275 				rdev_err(rdev,
1276 					"failed to apply %d-%duV constraint: %pe\n",
1277 					target_min, target_max, ERR_PTR(ret));
1278 				return ret;
1279 			}
1280 		}
1281 	}
1282 
1283 	/* constrain machine-level voltage specs to fit
1284 	 * the actual range supported by this regulator.
1285 	 */
1286 	if (ops->list_voltage && rdev->desc->n_voltages) {
1287 		int	count = rdev->desc->n_voltages;
1288 		int	i;
1289 		int	min_uV = INT_MAX;
1290 		int	max_uV = INT_MIN;
1291 		int	cmin = constraints->min_uV;
1292 		int	cmax = constraints->max_uV;
1293 
1294 		/* it's safe to autoconfigure fixed-voltage supplies
1295 		   and the constraints are used by list_voltage. */
1296 		if (count == 1 && !cmin) {
1297 			cmin = 1;
1298 			cmax = INT_MAX;
1299 			constraints->min_uV = cmin;
1300 			constraints->max_uV = cmax;
1301 		}
1302 
1303 		/* voltage constraints are optional */
1304 		if ((cmin == 0) && (cmax == 0))
1305 			return 0;
1306 
1307 		/* else require explicit machine-level constraints */
1308 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1309 			rdev_err(rdev, "invalid voltage constraints\n");
1310 			return -EINVAL;
1311 		}
1312 
1313 		/* no need to loop voltages if range is continuous */
1314 		if (rdev->desc->continuous_voltage_range)
1315 			return 0;
1316 
1317 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1318 		for (i = 0; i < count; i++) {
1319 			int	value;
1320 
1321 			value = ops->list_voltage(rdev, i);
1322 			if (value <= 0)
1323 				continue;
1324 
1325 			/* maybe adjust [min_uV..max_uV] */
1326 			if (value >= cmin && value < min_uV)
1327 				min_uV = value;
1328 			if (value <= cmax && value > max_uV)
1329 				max_uV = value;
1330 		}
1331 
1332 		/* final: [min_uV..max_uV] valid iff constraints valid */
1333 		if (max_uV < min_uV) {
1334 			rdev_err(rdev,
1335 				 "unsupportable voltage constraints %u-%uuV\n",
1336 				 min_uV, max_uV);
1337 			return -EINVAL;
1338 		}
1339 
1340 		/* use regulator's subset of machine constraints */
1341 		if (constraints->min_uV < min_uV) {
1342 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1343 				 constraints->min_uV, min_uV);
1344 			constraints->min_uV = min_uV;
1345 		}
1346 		if (constraints->max_uV > max_uV) {
1347 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1348 				 constraints->max_uV, max_uV);
1349 			constraints->max_uV = max_uV;
1350 		}
1351 	}
1352 
1353 	return 0;
1354 }
1355 
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)1356 static int machine_constraints_current(struct regulator_dev *rdev,
1357 	struct regulation_constraints *constraints)
1358 {
1359 	const struct regulator_ops *ops = rdev->desc->ops;
1360 	int ret;
1361 
1362 	if (!constraints->min_uA && !constraints->max_uA)
1363 		return 0;
1364 
1365 	if (constraints->min_uA > constraints->max_uA) {
1366 		rdev_err(rdev, "Invalid current constraints\n");
1367 		return -EINVAL;
1368 	}
1369 
1370 	if (!ops->set_current_limit || !ops->get_current_limit) {
1371 		rdev_warn(rdev, "Operation of current configuration missing\n");
1372 		return 0;
1373 	}
1374 
1375 	/* Set regulator current in constraints range */
1376 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1377 			constraints->max_uA);
1378 	if (ret < 0) {
1379 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1380 		return ret;
1381 	}
1382 
1383 	return 0;
1384 }
1385 
1386 static int _regulator_do_enable(struct regulator_dev *rdev);
1387 
1388 /**
1389  * set_machine_constraints - sets regulator constraints
1390  * @rdev: regulator source
1391  *
1392  * Allows platform initialisation code to define and constrain
1393  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1394  * Constraints *must* be set by platform code in order for some
1395  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1396  * set_mode.
1397  */
set_machine_constraints(struct regulator_dev * rdev)1398 static int set_machine_constraints(struct regulator_dev *rdev)
1399 {
1400 	int ret = 0;
1401 	const struct regulator_ops *ops = rdev->desc->ops;
1402 
1403 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1404 	if (ret != 0)
1405 		return ret;
1406 
1407 	ret = machine_constraints_current(rdev, rdev->constraints);
1408 	if (ret != 0)
1409 		return ret;
1410 
1411 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1412 		ret = ops->set_input_current_limit(rdev,
1413 						   rdev->constraints->ilim_uA);
1414 		if (ret < 0) {
1415 			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1416 			return ret;
1417 		}
1418 	}
1419 
1420 	/* do we need to setup our suspend state */
1421 	if (rdev->constraints->initial_state) {
1422 		ret = suspend_set_initial_state(rdev);
1423 		if (ret < 0) {
1424 			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1425 			return ret;
1426 		}
1427 	}
1428 
1429 	if (rdev->constraints->initial_mode) {
1430 		if (!ops->set_mode) {
1431 			rdev_err(rdev, "no set_mode operation\n");
1432 			return -EINVAL;
1433 		}
1434 
1435 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1436 		if (ret < 0) {
1437 			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1438 			return ret;
1439 		}
1440 	} else if (rdev->constraints->system_load) {
1441 		/*
1442 		 * We'll only apply the initial system load if an
1443 		 * initial mode wasn't specified.
1444 		 */
1445 		drms_uA_update(rdev);
1446 	}
1447 
1448 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1449 		&& ops->set_ramp_delay) {
1450 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1451 		if (ret < 0) {
1452 			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1453 			return ret;
1454 		}
1455 	}
1456 
1457 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1458 		ret = ops->set_pull_down(rdev);
1459 		if (ret < 0) {
1460 			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1461 			return ret;
1462 		}
1463 	}
1464 
1465 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1466 		ret = ops->set_soft_start(rdev);
1467 		if (ret < 0) {
1468 			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1469 			return ret;
1470 		}
1471 	}
1472 
1473 	if (rdev->constraints->over_current_protection
1474 		&& ops->set_over_current_protection) {
1475 		ret = ops->set_over_current_protection(rdev);
1476 		if (ret < 0) {
1477 			rdev_err(rdev, "failed to set over current protection: %pe\n",
1478 				 ERR_PTR(ret));
1479 			return ret;
1480 		}
1481 	}
1482 
1483 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1484 		bool ad_state = (rdev->constraints->active_discharge ==
1485 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1486 
1487 		ret = ops->set_active_discharge(rdev, ad_state);
1488 		if (ret < 0) {
1489 			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1490 			return ret;
1491 		}
1492 	}
1493 
1494 	/* If the constraints say the regulator should be on at this point
1495 	 * and we have control then make sure it is enabled.
1496 	 */
1497 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1498 		/* If we want to enable this regulator, make sure that we know
1499 		 * the supplying regulator.
1500 		 */
1501 		if (rdev->supply_name && !rdev->supply)
1502 			return -EPROBE_DEFER;
1503 
1504 		/* If supplying regulator has already been enabled,
1505 		 * it's not intended to have use_count increment
1506 		 * when rdev is only boot-on.
1507 		 */
1508 		if (rdev->supply &&
1509 		    (rdev->constraints->always_on ||
1510 		     !regulator_is_enabled(rdev->supply))) {
1511 			ret = regulator_enable(rdev->supply);
1512 			if (ret < 0) {
1513 				_regulator_put(rdev->supply);
1514 				rdev->supply = NULL;
1515 				return ret;
1516 			}
1517 		}
1518 
1519 		ret = _regulator_do_enable(rdev);
1520 		if (ret < 0 && ret != -EINVAL) {
1521 			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1522 			return ret;
1523 		}
1524 
1525 		if (rdev->constraints->always_on)
1526 			rdev->use_count++;
1527 	}
1528 
1529 	print_constraints(rdev);
1530 	return 0;
1531 }
1532 
1533 /**
1534  * set_supply - set regulator supply regulator
1535  * @rdev: regulator (locked)
1536  * @supply_rdev: supply regulator (locked))
1537  *
1538  * Called by platform initialisation code to set the supply regulator for this
1539  * regulator. This ensures that a regulators supply will also be enabled by the
1540  * core if it's child is enabled.
1541  */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1542 static int set_supply(struct regulator_dev *rdev,
1543 		      struct regulator_dev *supply_rdev)
1544 {
1545 	int err;
1546 
1547 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1548 
1549 	if (!try_module_get(supply_rdev->owner))
1550 		return -ENODEV;
1551 
1552 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1553 	if (rdev->supply == NULL) {
1554 		module_put(supply_rdev->owner);
1555 		err = -ENOMEM;
1556 		return err;
1557 	}
1558 	supply_rdev->open_count++;
1559 
1560 	return 0;
1561 }
1562 
1563 /**
1564  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1565  * @rdev:         regulator source
1566  * @consumer_dev_name: dev_name() string for device supply applies to
1567  * @supply:       symbolic name for supply
1568  *
1569  * Allows platform initialisation code to map physical regulator
1570  * sources to symbolic names for supplies for use by devices.  Devices
1571  * should use these symbolic names to request regulators, avoiding the
1572  * need to provide board-specific regulator names as platform data.
1573  */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1574 static int set_consumer_device_supply(struct regulator_dev *rdev,
1575 				      const char *consumer_dev_name,
1576 				      const char *supply)
1577 {
1578 	struct regulator_map *node, *new_node;
1579 	int has_dev;
1580 
1581 	if (supply == NULL)
1582 		return -EINVAL;
1583 
1584 	if (consumer_dev_name != NULL)
1585 		has_dev = 1;
1586 	else
1587 		has_dev = 0;
1588 
1589 	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1590 	if (new_node == NULL)
1591 		return -ENOMEM;
1592 
1593 	new_node->regulator = rdev;
1594 	new_node->supply = supply;
1595 
1596 	if (has_dev) {
1597 		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1598 		if (new_node->dev_name == NULL) {
1599 			kfree(new_node);
1600 			return -ENOMEM;
1601 		}
1602 	}
1603 
1604 	mutex_lock(&regulator_list_mutex);
1605 	list_for_each_entry(node, &regulator_map_list, list) {
1606 		if (node->dev_name && consumer_dev_name) {
1607 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1608 				continue;
1609 		} else if (node->dev_name || consumer_dev_name) {
1610 			continue;
1611 		}
1612 
1613 		if (strcmp(node->supply, supply) != 0)
1614 			continue;
1615 
1616 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1617 			 consumer_dev_name,
1618 			 dev_name(&node->regulator->dev),
1619 			 node->regulator->desc->name,
1620 			 supply,
1621 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1622 		goto fail;
1623 	}
1624 
1625 	list_add(&new_node->list, &regulator_map_list);
1626 	mutex_unlock(&regulator_list_mutex);
1627 
1628 	return 0;
1629 
1630 fail:
1631 	mutex_unlock(&regulator_list_mutex);
1632 	kfree(new_node->dev_name);
1633 	kfree(new_node);
1634 	return -EBUSY;
1635 }
1636 
unset_regulator_supplies(struct regulator_dev * rdev)1637 static void unset_regulator_supplies(struct regulator_dev *rdev)
1638 {
1639 	struct regulator_map *node, *n;
1640 
1641 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1642 		if (rdev == node->regulator) {
1643 			list_del(&node->list);
1644 			kfree(node->dev_name);
1645 			kfree(node);
1646 		}
1647 	}
1648 }
1649 
1650 #ifdef CONFIG_DEBUG_FS
constraint_flags_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1651 static ssize_t constraint_flags_read_file(struct file *file,
1652 					  char __user *user_buf,
1653 					  size_t count, loff_t *ppos)
1654 {
1655 	const struct regulator *regulator = file->private_data;
1656 	const struct regulation_constraints *c = regulator->rdev->constraints;
1657 	char *buf;
1658 	ssize_t ret;
1659 
1660 	if (!c)
1661 		return 0;
1662 
1663 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1664 	if (!buf)
1665 		return -ENOMEM;
1666 
1667 	ret = snprintf(buf, PAGE_SIZE,
1668 			"always_on: %u\n"
1669 			"boot_on: %u\n"
1670 			"apply_uV: %u\n"
1671 			"ramp_disable: %u\n"
1672 			"soft_start: %u\n"
1673 			"pull_down: %u\n"
1674 			"over_current_protection: %u\n",
1675 			c->always_on,
1676 			c->boot_on,
1677 			c->apply_uV,
1678 			c->ramp_disable,
1679 			c->soft_start,
1680 			c->pull_down,
1681 			c->over_current_protection);
1682 
1683 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1684 	kfree(buf);
1685 
1686 	return ret;
1687 }
1688 
1689 #endif
1690 
1691 static const struct file_operations constraint_flags_fops = {
1692 #ifdef CONFIG_DEBUG_FS
1693 	.open = simple_open,
1694 	.read = constraint_flags_read_file,
1695 	.llseek = default_llseek,
1696 #endif
1697 };
1698 
1699 #define REG_STR_SIZE	64
1700 
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1701 static struct regulator *create_regulator(struct regulator_dev *rdev,
1702 					  struct device *dev,
1703 					  const char *supply_name)
1704 {
1705 	struct regulator *regulator;
1706 	int err = 0;
1707 
1708 	lockdep_assert_held_once(&rdev->mutex.base);
1709 
1710 	if (dev) {
1711 		char buf[REG_STR_SIZE];
1712 		int size;
1713 
1714 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1715 				dev->kobj.name, supply_name);
1716 		if (size >= REG_STR_SIZE)
1717 			return NULL;
1718 
1719 		supply_name = kstrdup(buf, GFP_KERNEL);
1720 		if (supply_name == NULL)
1721 			return NULL;
1722 	} else {
1723 		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1724 		if (supply_name == NULL)
1725 			return NULL;
1726 	}
1727 
1728 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1729 	if (regulator == NULL) {
1730 		kfree_const(supply_name);
1731 		return NULL;
1732 	}
1733 
1734 	regulator->rdev = rdev;
1735 	regulator->supply_name = supply_name;
1736 
1737 	list_add(&regulator->list, &rdev->consumer_list);
1738 
1739 	if (dev) {
1740 		regulator->dev = dev;
1741 
1742 		/* Add a link to the device sysfs entry */
1743 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1744 					       supply_name);
1745 		if (err) {
1746 			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1747 				  dev->kobj.name, ERR_PTR(err));
1748 			/* non-fatal */
1749 		}
1750 	}
1751 
1752 	if (err != -EEXIST)
1753 		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1754 	if (IS_ERR(regulator->debugfs))
1755 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1756 
1757 	debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1758 			   &regulator->uA_load);
1759 	debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1760 			   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1761 	debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1762 			   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1763 	debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1764 			    regulator, &constraint_flags_fops);
1765 
1766 	/*
1767 	 * Check now if the regulator is an always on regulator - if
1768 	 * it is then we don't need to do nearly so much work for
1769 	 * enable/disable calls.
1770 	 */
1771 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1772 	    _regulator_is_enabled(rdev))
1773 		regulator->always_on = true;
1774 
1775 	return regulator;
1776 }
1777 
_regulator_get_enable_time(struct regulator_dev * rdev)1778 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1779 {
1780 	if (rdev->constraints && rdev->constraints->enable_time)
1781 		return rdev->constraints->enable_time;
1782 	if (rdev->desc->ops->enable_time)
1783 		return rdev->desc->ops->enable_time(rdev);
1784 	return rdev->desc->enable_time;
1785 }
1786 
regulator_find_supply_alias(struct device * dev,const char * supply)1787 static struct regulator_supply_alias *regulator_find_supply_alias(
1788 		struct device *dev, const char *supply)
1789 {
1790 	struct regulator_supply_alias *map;
1791 
1792 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1793 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1794 			return map;
1795 
1796 	return NULL;
1797 }
1798 
regulator_supply_alias(struct device ** dev,const char ** supply)1799 static void regulator_supply_alias(struct device **dev, const char **supply)
1800 {
1801 	struct regulator_supply_alias *map;
1802 
1803 	map = regulator_find_supply_alias(*dev, *supply);
1804 	if (map) {
1805 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1806 				*supply, map->alias_supply,
1807 				dev_name(map->alias_dev));
1808 		*dev = map->alias_dev;
1809 		*supply = map->alias_supply;
1810 	}
1811 }
1812 
regulator_match(struct device * dev,const void * data)1813 static int regulator_match(struct device *dev, const void *data)
1814 {
1815 	struct regulator_dev *r = dev_to_rdev(dev);
1816 
1817 	return strcmp(rdev_get_name(r), data) == 0;
1818 }
1819 
regulator_lookup_by_name(const char * name)1820 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1821 {
1822 	struct device *dev;
1823 
1824 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1825 
1826 	return dev ? dev_to_rdev(dev) : NULL;
1827 }
1828 
1829 /**
1830  * regulator_dev_lookup - lookup a regulator device.
1831  * @dev: device for regulator "consumer".
1832  * @supply: Supply name or regulator ID.
1833  *
1834  * If successful, returns a struct regulator_dev that corresponds to the name
1835  * @supply and with the embedded struct device refcount incremented by one.
1836  * The refcount must be dropped by calling put_device().
1837  * On failure one of the following ERR-PTR-encoded values is returned:
1838  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1839  * in the future.
1840  */
regulator_dev_lookup(struct device * dev,const char * supply)1841 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1842 						  const char *supply)
1843 {
1844 	struct regulator_dev *r = NULL;
1845 	struct device_node *node;
1846 	struct regulator_map *map;
1847 	const char *devname = NULL;
1848 
1849 	regulator_supply_alias(&dev, &supply);
1850 
1851 	/* first do a dt based lookup */
1852 	if (dev && dev->of_node) {
1853 		node = of_get_regulator(dev, supply);
1854 		if (node) {
1855 			r = of_find_regulator_by_node(node);
1856 			of_node_put(node);
1857 			if (r)
1858 				return r;
1859 
1860 			/*
1861 			 * We have a node, but there is no device.
1862 			 * assume it has not registered yet.
1863 			 */
1864 			return ERR_PTR(-EPROBE_DEFER);
1865 		}
1866 	}
1867 
1868 	/* if not found, try doing it non-dt way */
1869 	if (dev)
1870 		devname = dev_name(dev);
1871 
1872 	mutex_lock(&regulator_list_mutex);
1873 	list_for_each_entry(map, &regulator_map_list, list) {
1874 		/* If the mapping has a device set up it must match */
1875 		if (map->dev_name &&
1876 		    (!devname || strcmp(map->dev_name, devname)))
1877 			continue;
1878 
1879 		if (strcmp(map->supply, supply) == 0 &&
1880 		    get_device(&map->regulator->dev)) {
1881 			r = map->regulator;
1882 			break;
1883 		}
1884 	}
1885 	mutex_unlock(&regulator_list_mutex);
1886 
1887 	if (r)
1888 		return r;
1889 
1890 	r = regulator_lookup_by_name(supply);
1891 	if (r)
1892 		return r;
1893 
1894 	return ERR_PTR(-ENODEV);
1895 }
1896 
regulator_resolve_supply(struct regulator_dev * rdev)1897 static int regulator_resolve_supply(struct regulator_dev *rdev)
1898 {
1899 	struct regulator_dev *r;
1900 	struct device *dev = rdev->dev.parent;
1901 	struct ww_acquire_ctx ww_ctx;
1902 	int ret = 0;
1903 
1904 	/* No supply to resolve? */
1905 	if (!rdev->supply_name)
1906 		return 0;
1907 
1908 	/* Supply already resolved? (fast-path without locking contention) */
1909 	if (rdev->supply)
1910 		return 0;
1911 
1912 	r = regulator_dev_lookup(dev, rdev->supply_name);
1913 	if (IS_ERR(r)) {
1914 		ret = PTR_ERR(r);
1915 
1916 		/* Did the lookup explicitly defer for us? */
1917 		if (ret == -EPROBE_DEFER)
1918 			goto out;
1919 
1920 		if (have_full_constraints()) {
1921 			r = dummy_regulator_rdev;
1922 			get_device(&r->dev);
1923 		} else {
1924 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1925 				rdev->supply_name, rdev->desc->name);
1926 			ret = -EPROBE_DEFER;
1927 			goto out;
1928 		}
1929 	}
1930 
1931 	if (r == rdev) {
1932 		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1933 			rdev->desc->name, rdev->supply_name);
1934 		if (!have_full_constraints()) {
1935 			ret = -EINVAL;
1936 			goto out;
1937 		}
1938 		r = dummy_regulator_rdev;
1939 		get_device(&r->dev);
1940 	}
1941 
1942 	/*
1943 	 * If the supply's parent device is not the same as the
1944 	 * regulator's parent device, then ensure the parent device
1945 	 * is bound before we resolve the supply, in case the parent
1946 	 * device get probe deferred and unregisters the supply.
1947 	 */
1948 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1949 		if (!device_is_bound(r->dev.parent)) {
1950 			put_device(&r->dev);
1951 			ret = -EPROBE_DEFER;
1952 			goto out;
1953 		}
1954 	}
1955 
1956 	/* Recursively resolve the supply of the supply */
1957 	ret = regulator_resolve_supply(r);
1958 	if (ret < 0) {
1959 		put_device(&r->dev);
1960 		goto out;
1961 	}
1962 
1963 	/*
1964 	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1965 	 * between rdev->supply null check and setting rdev->supply in
1966 	 * set_supply() from concurrent tasks.
1967 	 */
1968 	regulator_lock_two(rdev, r, &ww_ctx);
1969 
1970 	/* Supply just resolved by a concurrent task? */
1971 	if (rdev->supply) {
1972 		regulator_unlock_two(rdev, r, &ww_ctx);
1973 		put_device(&r->dev);
1974 		goto out;
1975 	}
1976 
1977 	ret = set_supply(rdev, r);
1978 	if (ret < 0) {
1979 		regulator_unlock_two(rdev, r, &ww_ctx);
1980 		put_device(&r->dev);
1981 		goto out;
1982 	}
1983 
1984 	regulator_unlock_two(rdev, r, &ww_ctx);
1985 
1986 	/*
1987 	 * In set_machine_constraints() we may have turned this regulator on
1988 	 * but we couldn't propagate to the supply if it hadn't been resolved
1989 	 * yet.  Do it now.
1990 	 */
1991 	if (rdev->use_count) {
1992 		ret = regulator_enable(rdev->supply);
1993 		if (ret < 0) {
1994 			_regulator_put(rdev->supply);
1995 			rdev->supply = NULL;
1996 			goto out;
1997 		}
1998 	}
1999 
2000 out:
2001 	return ret;
2002 }
2003 
2004 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,enum regulator_get_type get_type)2005 struct regulator *_regulator_get(struct device *dev, const char *id,
2006 				 enum regulator_get_type get_type)
2007 {
2008 	struct regulator_dev *rdev;
2009 	struct regulator *regulator;
2010 	struct device_link *link;
2011 	int ret;
2012 
2013 	if (get_type >= MAX_GET_TYPE) {
2014 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2015 		return ERR_PTR(-EINVAL);
2016 	}
2017 
2018 	if (id == NULL) {
2019 		pr_err("get() with no identifier\n");
2020 		return ERR_PTR(-EINVAL);
2021 	}
2022 
2023 	rdev = regulator_dev_lookup(dev, id);
2024 	if (IS_ERR(rdev)) {
2025 		ret = PTR_ERR(rdev);
2026 
2027 		/*
2028 		 * If regulator_dev_lookup() fails with error other
2029 		 * than -ENODEV our job here is done, we simply return it.
2030 		 */
2031 		if (ret != -ENODEV)
2032 			return ERR_PTR(ret);
2033 
2034 		if (!have_full_constraints()) {
2035 			dev_warn(dev,
2036 				 "incomplete constraints, dummy supplies not allowed\n");
2037 			return ERR_PTR(-ENODEV);
2038 		}
2039 
2040 		switch (get_type) {
2041 		case NORMAL_GET:
2042 			/*
2043 			 * Assume that a regulator is physically present and
2044 			 * enabled, even if it isn't hooked up, and just
2045 			 * provide a dummy.
2046 			 */
2047 			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2048 			rdev = dummy_regulator_rdev;
2049 			get_device(&rdev->dev);
2050 			break;
2051 
2052 		case EXCLUSIVE_GET:
2053 			dev_warn(dev,
2054 				 "dummy supplies not allowed for exclusive requests\n");
2055 			fallthrough;
2056 
2057 		default:
2058 			return ERR_PTR(-ENODEV);
2059 		}
2060 	}
2061 
2062 	if (rdev->exclusive) {
2063 		regulator = ERR_PTR(-EPERM);
2064 		put_device(&rdev->dev);
2065 		return regulator;
2066 	}
2067 
2068 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2069 		regulator = ERR_PTR(-EBUSY);
2070 		put_device(&rdev->dev);
2071 		return regulator;
2072 	}
2073 
2074 	mutex_lock(&regulator_list_mutex);
2075 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2076 	mutex_unlock(&regulator_list_mutex);
2077 
2078 	if (ret != 0) {
2079 		regulator = ERR_PTR(-EPROBE_DEFER);
2080 		put_device(&rdev->dev);
2081 		return regulator;
2082 	}
2083 
2084 	ret = regulator_resolve_supply(rdev);
2085 	if (ret < 0) {
2086 		regulator = ERR_PTR(ret);
2087 		put_device(&rdev->dev);
2088 		return regulator;
2089 	}
2090 
2091 	if (!try_module_get(rdev->owner)) {
2092 		regulator = ERR_PTR(-EPROBE_DEFER);
2093 		put_device(&rdev->dev);
2094 		return regulator;
2095 	}
2096 
2097 	regulator_lock(rdev);
2098 	regulator = create_regulator(rdev, dev, id);
2099 	regulator_unlock(rdev);
2100 	if (regulator == NULL) {
2101 		regulator = ERR_PTR(-ENOMEM);
2102 		module_put(rdev->owner);
2103 		put_device(&rdev->dev);
2104 		return regulator;
2105 	}
2106 
2107 	rdev->open_count++;
2108 	if (get_type == EXCLUSIVE_GET) {
2109 		rdev->exclusive = 1;
2110 
2111 		ret = _regulator_is_enabled(rdev);
2112 		if (ret > 0) {
2113 			rdev->use_count = 1;
2114 			regulator->enable_count = 1;
2115 		} else {
2116 			rdev->use_count = 0;
2117 			regulator->enable_count = 0;
2118 		}
2119 	}
2120 
2121 	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2122 	if (!IS_ERR_OR_NULL(link))
2123 		regulator->device_link = true;
2124 
2125 	return regulator;
2126 }
2127 
2128 /**
2129  * regulator_get - lookup and obtain a reference to a regulator.
2130  * @dev: device for regulator "consumer"
2131  * @id: Supply name or regulator ID.
2132  *
2133  * Returns a struct regulator corresponding to the regulator producer,
2134  * or IS_ERR() condition containing errno.
2135  *
2136  * Use of supply names configured via regulator_set_device_supply() is
2137  * strongly encouraged.  It is recommended that the supply name used
2138  * should match the name used for the supply and/or the relevant
2139  * device pins in the datasheet.
2140  */
regulator_get(struct device * dev,const char * id)2141 struct regulator *regulator_get(struct device *dev, const char *id)
2142 {
2143 	return _regulator_get(dev, id, NORMAL_GET);
2144 }
2145 EXPORT_SYMBOL_GPL(regulator_get);
2146 
2147 /**
2148  * regulator_get_exclusive - obtain exclusive access to a regulator.
2149  * @dev: device for regulator "consumer"
2150  * @id: Supply name or regulator ID.
2151  *
2152  * Returns a struct regulator corresponding to the regulator producer,
2153  * or IS_ERR() condition containing errno.  Other consumers will be
2154  * unable to obtain this regulator while this reference is held and the
2155  * use count for the regulator will be initialised to reflect the current
2156  * state of the regulator.
2157  *
2158  * This is intended for use by consumers which cannot tolerate shared
2159  * use of the regulator such as those which need to force the
2160  * regulator off for correct operation of the hardware they are
2161  * controlling.
2162  *
2163  * Use of supply names configured via regulator_set_device_supply() is
2164  * strongly encouraged.  It is recommended that the supply name used
2165  * should match the name used for the supply and/or the relevant
2166  * device pins in the datasheet.
2167  */
regulator_get_exclusive(struct device * dev,const char * id)2168 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2169 {
2170 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2171 }
2172 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2173 
2174 /**
2175  * regulator_get_optional - obtain optional access to a regulator.
2176  * @dev: device for regulator "consumer"
2177  * @id: Supply name or regulator ID.
2178  *
2179  * Returns a struct regulator corresponding to the regulator producer,
2180  * or IS_ERR() condition containing errno.
2181  *
2182  * This is intended for use by consumers for devices which can have
2183  * some supplies unconnected in normal use, such as some MMC devices.
2184  * It can allow the regulator core to provide stub supplies for other
2185  * supplies requested using normal regulator_get() calls without
2186  * disrupting the operation of drivers that can handle absent
2187  * supplies.
2188  *
2189  * Use of supply names configured via regulator_set_device_supply() is
2190  * strongly encouraged.  It is recommended that the supply name used
2191  * should match the name used for the supply and/or the relevant
2192  * device pins in the datasheet.
2193  */
regulator_get_optional(struct device * dev,const char * id)2194 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2195 {
2196 	return _regulator_get(dev, id, OPTIONAL_GET);
2197 }
2198 EXPORT_SYMBOL_GPL(regulator_get_optional);
2199 
destroy_regulator(struct regulator * regulator)2200 static void destroy_regulator(struct regulator *regulator)
2201 {
2202 	struct regulator_dev *rdev = regulator->rdev;
2203 
2204 	debugfs_remove_recursive(regulator->debugfs);
2205 
2206 	if (regulator->dev) {
2207 		if (regulator->device_link)
2208 			device_link_remove(regulator->dev, &rdev->dev);
2209 
2210 		/* remove any sysfs entries */
2211 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2212 	}
2213 
2214 	regulator_lock(rdev);
2215 	list_del(&regulator->list);
2216 
2217 	rdev->open_count--;
2218 	rdev->exclusive = 0;
2219 	regulator_unlock(rdev);
2220 
2221 	kfree_const(regulator->supply_name);
2222 	kfree(regulator);
2223 }
2224 
2225 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)2226 static void _regulator_put(struct regulator *regulator)
2227 {
2228 	struct regulator_dev *rdev;
2229 
2230 	if (IS_ERR_OR_NULL(regulator))
2231 		return;
2232 
2233 	lockdep_assert_held_once(&regulator_list_mutex);
2234 
2235 	/* Docs say you must disable before calling regulator_put() */
2236 	WARN_ON(regulator->enable_count);
2237 
2238 	rdev = regulator->rdev;
2239 
2240 	destroy_regulator(regulator);
2241 
2242 	module_put(rdev->owner);
2243 	put_device(&rdev->dev);
2244 }
2245 
2246 /**
2247  * regulator_put - "free" the regulator source
2248  * @regulator: regulator source
2249  *
2250  * Note: drivers must ensure that all regulator_enable calls made on this
2251  * regulator source are balanced by regulator_disable calls prior to calling
2252  * this function.
2253  */
regulator_put(struct regulator * regulator)2254 void regulator_put(struct regulator *regulator)
2255 {
2256 	mutex_lock(&regulator_list_mutex);
2257 	_regulator_put(regulator);
2258 	mutex_unlock(&regulator_list_mutex);
2259 }
2260 EXPORT_SYMBOL_GPL(regulator_put);
2261 
2262 /**
2263  * regulator_register_supply_alias - Provide device alias for supply lookup
2264  *
2265  * @dev: device that will be given as the regulator "consumer"
2266  * @id: Supply name or regulator ID
2267  * @alias_dev: device that should be used to lookup the supply
2268  * @alias_id: Supply name or regulator ID that should be used to lookup the
2269  * supply
2270  *
2271  * All lookups for id on dev will instead be conducted for alias_id on
2272  * alias_dev.
2273  */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)2274 int regulator_register_supply_alias(struct device *dev, const char *id,
2275 				    struct device *alias_dev,
2276 				    const char *alias_id)
2277 {
2278 	struct regulator_supply_alias *map;
2279 
2280 	map = regulator_find_supply_alias(dev, id);
2281 	if (map)
2282 		return -EEXIST;
2283 
2284 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2285 	if (!map)
2286 		return -ENOMEM;
2287 
2288 	map->src_dev = dev;
2289 	map->src_supply = id;
2290 	map->alias_dev = alias_dev;
2291 	map->alias_supply = alias_id;
2292 
2293 	list_add(&map->list, &regulator_supply_alias_list);
2294 
2295 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2296 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2297 
2298 	return 0;
2299 }
2300 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2301 
2302 /**
2303  * regulator_unregister_supply_alias - Remove device alias
2304  *
2305  * @dev: device that will be given as the regulator "consumer"
2306  * @id: Supply name or regulator ID
2307  *
2308  * Remove a lookup alias if one exists for id on dev.
2309  */
regulator_unregister_supply_alias(struct device * dev,const char * id)2310 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2311 {
2312 	struct regulator_supply_alias *map;
2313 
2314 	map = regulator_find_supply_alias(dev, id);
2315 	if (map) {
2316 		list_del(&map->list);
2317 		kfree(map);
2318 	}
2319 }
2320 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2321 
2322 /**
2323  * regulator_bulk_register_supply_alias - register multiple aliases
2324  *
2325  * @dev: device that will be given as the regulator "consumer"
2326  * @id: List of supply names or regulator IDs
2327  * @alias_dev: device that should be used to lookup the supply
2328  * @alias_id: List of supply names or regulator IDs that should be used to
2329  * lookup the supply
2330  * @num_id: Number of aliases to register
2331  *
2332  * @return 0 on success, an errno on failure.
2333  *
2334  * This helper function allows drivers to register several supply
2335  * aliases in one operation.  If any of the aliases cannot be
2336  * registered any aliases that were registered will be removed
2337  * before returning to the caller.
2338  */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)2339 int regulator_bulk_register_supply_alias(struct device *dev,
2340 					 const char *const *id,
2341 					 struct device *alias_dev,
2342 					 const char *const *alias_id,
2343 					 int num_id)
2344 {
2345 	int i;
2346 	int ret;
2347 
2348 	for (i = 0; i < num_id; ++i) {
2349 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2350 						      alias_id[i]);
2351 		if (ret < 0)
2352 			goto err;
2353 	}
2354 
2355 	return 0;
2356 
2357 err:
2358 	dev_err(dev,
2359 		"Failed to create supply alias %s,%s -> %s,%s\n",
2360 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2361 
2362 	while (--i >= 0)
2363 		regulator_unregister_supply_alias(dev, id[i]);
2364 
2365 	return ret;
2366 }
2367 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2368 
2369 /**
2370  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2371  *
2372  * @dev: device that will be given as the regulator "consumer"
2373  * @id: List of supply names or regulator IDs
2374  * @num_id: Number of aliases to unregister
2375  *
2376  * This helper function allows drivers to unregister several supply
2377  * aliases in one operation.
2378  */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)2379 void regulator_bulk_unregister_supply_alias(struct device *dev,
2380 					    const char *const *id,
2381 					    int num_id)
2382 {
2383 	int i;
2384 
2385 	for (i = 0; i < num_id; ++i)
2386 		regulator_unregister_supply_alias(dev, id[i]);
2387 }
2388 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2389 
2390 
2391 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)2392 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2393 				const struct regulator_config *config)
2394 {
2395 	struct regulator_enable_gpio *pin, *new_pin;
2396 	struct gpio_desc *gpiod;
2397 
2398 	gpiod = config->ena_gpiod;
2399 	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2400 
2401 	mutex_lock(&regulator_list_mutex);
2402 
2403 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2404 		if (pin->gpiod == gpiod) {
2405 			rdev_dbg(rdev, "GPIO is already used\n");
2406 			goto update_ena_gpio_to_rdev;
2407 		}
2408 	}
2409 
2410 	if (new_pin == NULL) {
2411 		mutex_unlock(&regulator_list_mutex);
2412 		return -ENOMEM;
2413 	}
2414 
2415 	pin = new_pin;
2416 	new_pin = NULL;
2417 
2418 	pin->gpiod = gpiod;
2419 	list_add(&pin->list, &regulator_ena_gpio_list);
2420 
2421 update_ena_gpio_to_rdev:
2422 	pin->request_count++;
2423 	rdev->ena_pin = pin;
2424 
2425 	mutex_unlock(&regulator_list_mutex);
2426 	kfree(new_pin);
2427 
2428 	return 0;
2429 }
2430 
regulator_ena_gpio_free(struct regulator_dev * rdev)2431 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2432 {
2433 	struct regulator_enable_gpio *pin, *n;
2434 
2435 	if (!rdev->ena_pin)
2436 		return;
2437 
2438 	/* Free the GPIO only in case of no use */
2439 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2440 		if (pin != rdev->ena_pin)
2441 			continue;
2442 
2443 		if (--pin->request_count)
2444 			break;
2445 
2446 		gpiod_put(pin->gpiod);
2447 		list_del(&pin->list);
2448 		kfree(pin);
2449 		break;
2450 	}
2451 
2452 	rdev->ena_pin = NULL;
2453 }
2454 
2455 /**
2456  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2457  * @rdev: regulator_dev structure
2458  * @enable: enable GPIO at initial use?
2459  *
2460  * GPIO is enabled in case of initial use. (enable_count is 0)
2461  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2462  */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)2463 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2464 {
2465 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2466 
2467 	if (!pin)
2468 		return -EINVAL;
2469 
2470 	if (enable) {
2471 		/* Enable GPIO at initial use */
2472 		if (pin->enable_count == 0)
2473 			gpiod_set_value_cansleep(pin->gpiod, 1);
2474 
2475 		pin->enable_count++;
2476 	} else {
2477 		if (pin->enable_count > 1) {
2478 			pin->enable_count--;
2479 			return 0;
2480 		}
2481 
2482 		/* Disable GPIO if not used */
2483 		if (pin->enable_count <= 1) {
2484 			gpiod_set_value_cansleep(pin->gpiod, 0);
2485 			pin->enable_count = 0;
2486 		}
2487 	}
2488 
2489 	return 0;
2490 }
2491 
2492 /**
2493  * _regulator_enable_delay - a delay helper function
2494  * @delay: time to delay in microseconds
2495  *
2496  * Delay for the requested amount of time as per the guidelines in:
2497  *
2498  *     Documentation/timers/timers-howto.rst
2499  *
2500  * The assumption here is that regulators will never be enabled in
2501  * atomic context and therefore sleeping functions can be used.
2502  */
_regulator_enable_delay(unsigned int delay)2503 static void _regulator_enable_delay(unsigned int delay)
2504 {
2505 	unsigned int ms = delay / 1000;
2506 	unsigned int us = delay % 1000;
2507 
2508 	if (ms > 0) {
2509 		/*
2510 		 * For small enough values, handle super-millisecond
2511 		 * delays in the usleep_range() call below.
2512 		 */
2513 		if (ms < 20)
2514 			us += ms * 1000;
2515 		else
2516 			msleep(ms);
2517 	}
2518 
2519 	/*
2520 	 * Give the scheduler some room to coalesce with any other
2521 	 * wakeup sources. For delays shorter than 10 us, don't even
2522 	 * bother setting up high-resolution timers and just busy-
2523 	 * loop.
2524 	 */
2525 	if (us >= 10)
2526 		usleep_range(us, us + 100);
2527 	else
2528 		udelay(us);
2529 }
2530 
2531 /**
2532  * _regulator_check_status_enabled
2533  *
2534  * A helper function to check if the regulator status can be interpreted
2535  * as 'regulator is enabled'.
2536  * @rdev: the regulator device to check
2537  *
2538  * Return:
2539  * * 1			- if status shows regulator is in enabled state
2540  * * 0			- if not enabled state
2541  * * Error Value	- as received from ops->get_status()
2542  */
_regulator_check_status_enabled(struct regulator_dev * rdev)2543 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2544 {
2545 	int ret = rdev->desc->ops->get_status(rdev);
2546 
2547 	if (ret < 0) {
2548 		rdev_info(rdev, "get_status returned error: %d\n", ret);
2549 		return ret;
2550 	}
2551 
2552 	switch (ret) {
2553 	case REGULATOR_STATUS_OFF:
2554 	case REGULATOR_STATUS_ERROR:
2555 	case REGULATOR_STATUS_UNDEFINED:
2556 		return 0;
2557 	default:
2558 		return 1;
2559 	}
2560 }
2561 
_regulator_do_enable(struct regulator_dev * rdev)2562 static int _regulator_do_enable(struct regulator_dev *rdev)
2563 {
2564 	int ret, delay;
2565 
2566 	/* Query before enabling in case configuration dependent.  */
2567 	ret = _regulator_get_enable_time(rdev);
2568 	if (ret >= 0) {
2569 		delay = ret;
2570 	} else {
2571 		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2572 		delay = 0;
2573 	}
2574 
2575 	trace_regulator_enable(rdev_get_name(rdev));
2576 
2577 	if (rdev->desc->off_on_delay) {
2578 		/* if needed, keep a distance of off_on_delay from last time
2579 		 * this regulator was disabled.
2580 		 */
2581 		unsigned long start_jiffy = jiffies;
2582 		unsigned long intended, max_delay, remaining;
2583 
2584 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2585 		intended = rdev->last_off_jiffy + max_delay;
2586 
2587 		if (time_before(start_jiffy, intended)) {
2588 			/* calc remaining jiffies to deal with one-time
2589 			 * timer wrapping.
2590 			 * in case of multiple timer wrapping, either it can be
2591 			 * detected by out-of-range remaining, or it cannot be
2592 			 * detected and we get a penalty of
2593 			 * _regulator_enable_delay().
2594 			 */
2595 			remaining = intended - start_jiffy;
2596 			if (remaining <= max_delay)
2597 				_regulator_enable_delay(
2598 						jiffies_to_usecs(remaining));
2599 		}
2600 	}
2601 
2602 	if (rdev->ena_pin) {
2603 		if (!rdev->ena_gpio_state) {
2604 			ret = regulator_ena_gpio_ctrl(rdev, true);
2605 			if (ret < 0)
2606 				return ret;
2607 			rdev->ena_gpio_state = 1;
2608 		}
2609 	} else if (rdev->desc->ops->enable) {
2610 		ret = rdev->desc->ops->enable(rdev);
2611 		if (ret < 0)
2612 			return ret;
2613 	} else {
2614 		return -EINVAL;
2615 	}
2616 
2617 	/* Allow the regulator to ramp; it would be useful to extend
2618 	 * this for bulk operations so that the regulators can ramp
2619 	 * together.  */
2620 	trace_regulator_enable_delay(rdev_get_name(rdev));
2621 
2622 	/* If poll_enabled_time is set, poll upto the delay calculated
2623 	 * above, delaying poll_enabled_time uS to check if the regulator
2624 	 * actually got enabled.
2625 	 * If the regulator isn't enabled after enable_delay has
2626 	 * expired, return -ETIMEDOUT.
2627 	 */
2628 	if (rdev->desc->poll_enabled_time) {
2629 		int time_remaining = delay;
2630 
2631 		while (time_remaining > 0) {
2632 			_regulator_enable_delay(rdev->desc->poll_enabled_time);
2633 
2634 			if (rdev->desc->ops->get_status) {
2635 				ret = _regulator_check_status_enabled(rdev);
2636 				if (ret < 0)
2637 					return ret;
2638 				else if (ret)
2639 					break;
2640 			} else if (rdev->desc->ops->is_enabled(rdev))
2641 				break;
2642 
2643 			time_remaining -= rdev->desc->poll_enabled_time;
2644 		}
2645 
2646 		if (time_remaining <= 0) {
2647 			rdev_err(rdev, "Enabled check timed out\n");
2648 			return -ETIMEDOUT;
2649 		}
2650 	} else {
2651 		_regulator_enable_delay(delay);
2652 	}
2653 
2654 	trace_regulator_enable_complete(rdev_get_name(rdev));
2655 
2656 	return 0;
2657 }
2658 
2659 /**
2660  * _regulator_handle_consumer_enable - handle that a consumer enabled
2661  * @regulator: regulator source
2662  *
2663  * Some things on a regulator consumer (like the contribution towards total
2664  * load on the regulator) only have an effect when the consumer wants the
2665  * regulator enabled.  Explained in example with two consumers of the same
2666  * regulator:
2667  *   consumer A: set_load(100);       => total load = 0
2668  *   consumer A: regulator_enable();  => total load = 100
2669  *   consumer B: set_load(1000);      => total load = 100
2670  *   consumer B: regulator_enable();  => total load = 1100
2671  *   consumer A: regulator_disable(); => total_load = 1000
2672  *
2673  * This function (together with _regulator_handle_consumer_disable) is
2674  * responsible for keeping track of the refcount for a given regulator consumer
2675  * and applying / unapplying these things.
2676  *
2677  * Returns 0 upon no error; -error upon error.
2678  */
_regulator_handle_consumer_enable(struct regulator * regulator)2679 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2680 {
2681 	int ret;
2682 	struct regulator_dev *rdev = regulator->rdev;
2683 
2684 	lockdep_assert_held_once(&rdev->mutex.base);
2685 
2686 	regulator->enable_count++;
2687 	if (regulator->uA_load && regulator->enable_count == 1) {
2688 		ret = drms_uA_update(rdev);
2689 		if (ret)
2690 			regulator->enable_count--;
2691 		return ret;
2692 	}
2693 
2694 	return 0;
2695 }
2696 
2697 /**
2698  * _regulator_handle_consumer_disable - handle that a consumer disabled
2699  * @regulator: regulator source
2700  *
2701  * The opposite of _regulator_handle_consumer_enable().
2702  *
2703  * Returns 0 upon no error; -error upon error.
2704  */
_regulator_handle_consumer_disable(struct regulator * regulator)2705 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2706 {
2707 	struct regulator_dev *rdev = regulator->rdev;
2708 
2709 	lockdep_assert_held_once(&rdev->mutex.base);
2710 
2711 	if (!regulator->enable_count) {
2712 		rdev_err(rdev, "Underflow of regulator enable count\n");
2713 		return -EINVAL;
2714 	}
2715 
2716 	regulator->enable_count--;
2717 	if (regulator->uA_load && regulator->enable_count == 0)
2718 		return drms_uA_update(rdev);
2719 
2720 	return 0;
2721 }
2722 
2723 /* locks held by regulator_enable() */
_regulator_enable(struct regulator * regulator)2724 static int _regulator_enable(struct regulator *regulator)
2725 {
2726 	struct regulator_dev *rdev = regulator->rdev;
2727 	int ret;
2728 
2729 	lockdep_assert_held_once(&rdev->mutex.base);
2730 
2731 	if (rdev->use_count == 0 && rdev->supply) {
2732 		ret = _regulator_enable(rdev->supply);
2733 		if (ret < 0)
2734 			return ret;
2735 	}
2736 
2737 	/* balance only if there are regulators coupled */
2738 	if (rdev->coupling_desc.n_coupled > 1) {
2739 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2740 		if (ret < 0)
2741 			goto err_disable_supply;
2742 	}
2743 
2744 	ret = _regulator_handle_consumer_enable(regulator);
2745 	if (ret < 0)
2746 		goto err_disable_supply;
2747 
2748 	if (rdev->use_count == 0) {
2749 		/* The regulator may on if it's not switchable or left on */
2750 		ret = _regulator_is_enabled(rdev);
2751 		if (ret == -EINVAL || ret == 0) {
2752 			if (!regulator_ops_is_valid(rdev,
2753 					REGULATOR_CHANGE_STATUS)) {
2754 				ret = -EPERM;
2755 				goto err_consumer_disable;
2756 			}
2757 
2758 			ret = _regulator_do_enable(rdev);
2759 			if (ret < 0)
2760 				goto err_consumer_disable;
2761 
2762 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2763 					     NULL);
2764 		} else if (ret < 0) {
2765 			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2766 			goto err_consumer_disable;
2767 		}
2768 		/* Fallthrough on positive return values - already enabled */
2769 	}
2770 
2771 	if (regulator->enable_count == 1)
2772 		rdev->use_count++;
2773 
2774 	return 0;
2775 
2776 err_consumer_disable:
2777 	_regulator_handle_consumer_disable(regulator);
2778 
2779 err_disable_supply:
2780 	if (rdev->use_count == 0 && rdev->supply)
2781 		_regulator_disable(rdev->supply);
2782 
2783 	return ret;
2784 }
2785 
2786 /**
2787  * regulator_enable - enable regulator output
2788  * @regulator: regulator source
2789  *
2790  * Request that the regulator be enabled with the regulator output at
2791  * the predefined voltage or current value.  Calls to regulator_enable()
2792  * must be balanced with calls to regulator_disable().
2793  *
2794  * NOTE: the output value can be set by other drivers, boot loader or may be
2795  * hardwired in the regulator.
2796  */
regulator_enable(struct regulator * regulator)2797 int regulator_enable(struct regulator *regulator)
2798 {
2799 	struct regulator_dev *rdev = regulator->rdev;
2800 	struct ww_acquire_ctx ww_ctx;
2801 	int ret;
2802 
2803 	regulator_lock_dependent(rdev, &ww_ctx);
2804 	ret = _regulator_enable(regulator);
2805 	regulator_unlock_dependent(rdev, &ww_ctx);
2806 
2807 	return ret;
2808 }
2809 EXPORT_SYMBOL_GPL(regulator_enable);
2810 
_regulator_do_disable(struct regulator_dev * rdev)2811 static int _regulator_do_disable(struct regulator_dev *rdev)
2812 {
2813 	int ret;
2814 
2815 	trace_regulator_disable(rdev_get_name(rdev));
2816 
2817 	if (rdev->ena_pin) {
2818 		if (rdev->ena_gpio_state) {
2819 			ret = regulator_ena_gpio_ctrl(rdev, false);
2820 			if (ret < 0)
2821 				return ret;
2822 			rdev->ena_gpio_state = 0;
2823 		}
2824 
2825 	} else if (rdev->desc->ops->disable) {
2826 		ret = rdev->desc->ops->disable(rdev);
2827 		if (ret != 0)
2828 			return ret;
2829 	}
2830 
2831 	/* cares about last_off_jiffy only if off_on_delay is required by
2832 	 * device.
2833 	 */
2834 	if (rdev->desc->off_on_delay)
2835 		rdev->last_off_jiffy = jiffies;
2836 
2837 	trace_regulator_disable_complete(rdev_get_name(rdev));
2838 
2839 	return 0;
2840 }
2841 
2842 /* locks held by regulator_disable() */
_regulator_disable(struct regulator * regulator)2843 static int _regulator_disable(struct regulator *regulator)
2844 {
2845 	struct regulator_dev *rdev = regulator->rdev;
2846 	int ret = 0;
2847 
2848 	lockdep_assert_held_once(&rdev->mutex.base);
2849 
2850 	if (WARN(regulator->enable_count == 0,
2851 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2852 		return -EIO;
2853 
2854 	if (regulator->enable_count == 1) {
2855 	/* disabling last enable_count from this regulator */
2856 		/* are we the last user and permitted to disable ? */
2857 		if (rdev->use_count == 1 &&
2858 		    (rdev->constraints && !rdev->constraints->always_on)) {
2859 
2860 			/* we are last user */
2861 			if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2862 				ret = _notifier_call_chain(rdev,
2863 							   REGULATOR_EVENT_PRE_DISABLE,
2864 							   NULL);
2865 				if (ret & NOTIFY_STOP_MASK)
2866 					return -EINVAL;
2867 
2868 				ret = _regulator_do_disable(rdev);
2869 				if (ret < 0) {
2870 					rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2871 					_notifier_call_chain(rdev,
2872 							REGULATOR_EVENT_ABORT_DISABLE,
2873 							NULL);
2874 					return ret;
2875 				}
2876 				_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2877 						NULL);
2878 			}
2879 
2880 			rdev->use_count = 0;
2881 		} else if (rdev->use_count > 1) {
2882 			rdev->use_count--;
2883 		}
2884 	}
2885 
2886 	if (ret == 0)
2887 		ret = _regulator_handle_consumer_disable(regulator);
2888 
2889 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2890 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2891 
2892 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2893 		ret = _regulator_disable(rdev->supply);
2894 
2895 	return ret;
2896 }
2897 
2898 /**
2899  * regulator_disable - disable regulator output
2900  * @regulator: regulator source
2901  *
2902  * Disable the regulator output voltage or current.  Calls to
2903  * regulator_enable() must be balanced with calls to
2904  * regulator_disable().
2905  *
2906  * NOTE: this will only disable the regulator output if no other consumer
2907  * devices have it enabled, the regulator device supports disabling and
2908  * machine constraints permit this operation.
2909  */
regulator_disable(struct regulator * regulator)2910 int regulator_disable(struct regulator *regulator)
2911 {
2912 	struct regulator_dev *rdev = regulator->rdev;
2913 	struct ww_acquire_ctx ww_ctx;
2914 	int ret;
2915 
2916 	regulator_lock_dependent(rdev, &ww_ctx);
2917 	ret = _regulator_disable(regulator);
2918 	regulator_unlock_dependent(rdev, &ww_ctx);
2919 
2920 	return ret;
2921 }
2922 EXPORT_SYMBOL_GPL(regulator_disable);
2923 
2924 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)2925 static int _regulator_force_disable(struct regulator_dev *rdev)
2926 {
2927 	int ret = 0;
2928 
2929 	lockdep_assert_held_once(&rdev->mutex.base);
2930 
2931 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2932 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2933 	if (ret & NOTIFY_STOP_MASK)
2934 		return -EINVAL;
2935 
2936 	ret = _regulator_do_disable(rdev);
2937 	if (ret < 0) {
2938 		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2939 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2940 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2941 		return ret;
2942 	}
2943 
2944 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2945 			REGULATOR_EVENT_DISABLE, NULL);
2946 
2947 	return 0;
2948 }
2949 
2950 /**
2951  * regulator_force_disable - force disable regulator output
2952  * @regulator: regulator source
2953  *
2954  * Forcibly disable the regulator output voltage or current.
2955  * NOTE: this *will* disable the regulator output even if other consumer
2956  * devices have it enabled. This should be used for situations when device
2957  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2958  */
regulator_force_disable(struct regulator * regulator)2959 int regulator_force_disable(struct regulator *regulator)
2960 {
2961 	struct regulator_dev *rdev = regulator->rdev;
2962 	struct ww_acquire_ctx ww_ctx;
2963 	int ret;
2964 
2965 	regulator_lock_dependent(rdev, &ww_ctx);
2966 
2967 	ret = _regulator_force_disable(regulator->rdev);
2968 
2969 	if (rdev->coupling_desc.n_coupled > 1)
2970 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2971 
2972 	if (regulator->uA_load) {
2973 		regulator->uA_load = 0;
2974 		ret = drms_uA_update(rdev);
2975 	}
2976 
2977 	if (rdev->use_count != 0 && rdev->supply)
2978 		_regulator_disable(rdev->supply);
2979 
2980 	regulator_unlock_dependent(rdev, &ww_ctx);
2981 
2982 	return ret;
2983 }
2984 EXPORT_SYMBOL_GPL(regulator_force_disable);
2985 
regulator_disable_work(struct work_struct * work)2986 static void regulator_disable_work(struct work_struct *work)
2987 {
2988 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2989 						  disable_work.work);
2990 	struct ww_acquire_ctx ww_ctx;
2991 	int count, i, ret;
2992 	struct regulator *regulator;
2993 	int total_count = 0;
2994 
2995 	regulator_lock_dependent(rdev, &ww_ctx);
2996 
2997 	/*
2998 	 * Workqueue functions queue the new work instance while the previous
2999 	 * work instance is being processed. Cancel the queued work instance
3000 	 * as the work instance under processing does the job of the queued
3001 	 * work instance.
3002 	 */
3003 	cancel_delayed_work(&rdev->disable_work);
3004 
3005 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3006 		count = regulator->deferred_disables;
3007 
3008 		if (!count)
3009 			continue;
3010 
3011 		total_count += count;
3012 		regulator->deferred_disables = 0;
3013 
3014 		for (i = 0; i < count; i++) {
3015 			ret = _regulator_disable(regulator);
3016 			if (ret != 0)
3017 				rdev_err(rdev, "Deferred disable failed: %pe\n",
3018 					 ERR_PTR(ret));
3019 		}
3020 	}
3021 	WARN_ON(!total_count);
3022 
3023 	if (rdev->coupling_desc.n_coupled > 1)
3024 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3025 
3026 	regulator_unlock_dependent(rdev, &ww_ctx);
3027 }
3028 
3029 /**
3030  * regulator_disable_deferred - disable regulator output with delay
3031  * @regulator: regulator source
3032  * @ms: milliseconds until the regulator is disabled
3033  *
3034  * Execute regulator_disable() on the regulator after a delay.  This
3035  * is intended for use with devices that require some time to quiesce.
3036  *
3037  * NOTE: this will only disable the regulator output if no other consumer
3038  * devices have it enabled, the regulator device supports disabling and
3039  * machine constraints permit this operation.
3040  */
regulator_disable_deferred(struct regulator * regulator,int ms)3041 int regulator_disable_deferred(struct regulator *regulator, int ms)
3042 {
3043 	struct regulator_dev *rdev = regulator->rdev;
3044 
3045 	if (!ms)
3046 		return regulator_disable(regulator);
3047 
3048 	regulator_lock(rdev);
3049 	regulator->deferred_disables++;
3050 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3051 			 msecs_to_jiffies(ms));
3052 	regulator_unlock(rdev);
3053 
3054 	return 0;
3055 }
3056 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3057 
_regulator_is_enabled(struct regulator_dev * rdev)3058 static int _regulator_is_enabled(struct regulator_dev *rdev)
3059 {
3060 	/* A GPIO control always takes precedence */
3061 	if (rdev->ena_pin)
3062 		return rdev->ena_gpio_state;
3063 
3064 	/* If we don't know then assume that the regulator is always on */
3065 	if (!rdev->desc->ops->is_enabled)
3066 		return 1;
3067 
3068 	return rdev->desc->ops->is_enabled(rdev);
3069 }
3070 
_regulator_list_voltage(struct regulator_dev * rdev,unsigned selector,int lock)3071 static int _regulator_list_voltage(struct regulator_dev *rdev,
3072 				   unsigned selector, int lock)
3073 {
3074 	const struct regulator_ops *ops = rdev->desc->ops;
3075 	int ret;
3076 
3077 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3078 		return rdev->desc->fixed_uV;
3079 
3080 	if (ops->list_voltage) {
3081 		if (selector >= rdev->desc->n_voltages)
3082 			return -EINVAL;
3083 		if (lock)
3084 			regulator_lock(rdev);
3085 		ret = ops->list_voltage(rdev, selector);
3086 		if (lock)
3087 			regulator_unlock(rdev);
3088 	} else if (rdev->is_switch && rdev->supply) {
3089 		ret = _regulator_list_voltage(rdev->supply->rdev,
3090 					      selector, lock);
3091 	} else {
3092 		return -EINVAL;
3093 	}
3094 
3095 	if (ret > 0) {
3096 		if (ret < rdev->constraints->min_uV)
3097 			ret = 0;
3098 		else if (ret > rdev->constraints->max_uV)
3099 			ret = 0;
3100 	}
3101 
3102 	return ret;
3103 }
3104 
3105 /**
3106  * regulator_is_enabled - is the regulator output enabled
3107  * @regulator: regulator source
3108  *
3109  * Returns positive if the regulator driver backing the source/client
3110  * has requested that the device be enabled, zero if it hasn't, else a
3111  * negative errno code.
3112  *
3113  * Note that the device backing this regulator handle can have multiple
3114  * users, so it might be enabled even if regulator_enable() was never
3115  * called for this particular source.
3116  */
regulator_is_enabled(struct regulator * regulator)3117 int regulator_is_enabled(struct regulator *regulator)
3118 {
3119 	int ret;
3120 
3121 	if (regulator->always_on)
3122 		return 1;
3123 
3124 	regulator_lock(regulator->rdev);
3125 	ret = _regulator_is_enabled(regulator->rdev);
3126 	regulator_unlock(regulator->rdev);
3127 
3128 	return ret;
3129 }
3130 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3131 
3132 /**
3133  * regulator_count_voltages - count regulator_list_voltage() selectors
3134  * @regulator: regulator source
3135  *
3136  * Returns number of selectors, or negative errno.  Selectors are
3137  * numbered starting at zero, and typically correspond to bitfields
3138  * in hardware registers.
3139  */
regulator_count_voltages(struct regulator * regulator)3140 int regulator_count_voltages(struct regulator *regulator)
3141 {
3142 	struct regulator_dev	*rdev = regulator->rdev;
3143 
3144 	if (rdev->desc->n_voltages)
3145 		return rdev->desc->n_voltages;
3146 
3147 	if (!rdev->is_switch || !rdev->supply)
3148 		return -EINVAL;
3149 
3150 	return regulator_count_voltages(rdev->supply);
3151 }
3152 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3153 
3154 /**
3155  * regulator_list_voltage - enumerate supported voltages
3156  * @regulator: regulator source
3157  * @selector: identify voltage to list
3158  * Context: can sleep
3159  *
3160  * Returns a voltage that can be passed to @regulator_set_voltage(),
3161  * zero if this selector code can't be used on this system, or a
3162  * negative errno.
3163  */
regulator_list_voltage(struct regulator * regulator,unsigned selector)3164 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3165 {
3166 	return _regulator_list_voltage(regulator->rdev, selector, 1);
3167 }
3168 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3169 
3170 /**
3171  * regulator_get_regmap - get the regulator's register map
3172  * @regulator: regulator source
3173  *
3174  * Returns the register map for the given regulator, or an ERR_PTR value
3175  * if the regulator doesn't use regmap.
3176  */
regulator_get_regmap(struct regulator * regulator)3177 struct regmap *regulator_get_regmap(struct regulator *regulator)
3178 {
3179 	struct regmap *map = regulator->rdev->regmap;
3180 
3181 	return map ? map : ERR_PTR(-EOPNOTSUPP);
3182 }
3183 
3184 /**
3185  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3186  * @regulator: regulator source
3187  * @vsel_reg: voltage selector register, output parameter
3188  * @vsel_mask: mask for voltage selector bitfield, output parameter
3189  *
3190  * Returns the hardware register offset and bitmask used for setting the
3191  * regulator voltage. This might be useful when configuring voltage-scaling
3192  * hardware or firmware that can make I2C requests behind the kernel's back,
3193  * for example.
3194  *
3195  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3196  * and 0 is returned, otherwise a negative errno is returned.
3197  */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)3198 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3199 					 unsigned *vsel_reg,
3200 					 unsigned *vsel_mask)
3201 {
3202 	struct regulator_dev *rdev = regulator->rdev;
3203 	const struct regulator_ops *ops = rdev->desc->ops;
3204 
3205 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3206 		return -EOPNOTSUPP;
3207 
3208 	*vsel_reg = rdev->desc->vsel_reg;
3209 	*vsel_mask = rdev->desc->vsel_mask;
3210 
3211 	return 0;
3212 }
3213 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3214 
3215 /**
3216  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3217  * @regulator: regulator source
3218  * @selector: identify voltage to list
3219  *
3220  * Converts the selector to a hardware-specific voltage selector that can be
3221  * directly written to the regulator registers. The address of the voltage
3222  * register can be determined by calling @regulator_get_hardware_vsel_register.
3223  *
3224  * On error a negative errno is returned.
3225  */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)3226 int regulator_list_hardware_vsel(struct regulator *regulator,
3227 				 unsigned selector)
3228 {
3229 	struct regulator_dev *rdev = regulator->rdev;
3230 	const struct regulator_ops *ops = rdev->desc->ops;
3231 
3232 	if (selector >= rdev->desc->n_voltages)
3233 		return -EINVAL;
3234 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3235 		return -EOPNOTSUPP;
3236 
3237 	return selector;
3238 }
3239 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3240 
3241 /**
3242  * regulator_get_linear_step - return the voltage step size between VSEL values
3243  * @regulator: regulator source
3244  *
3245  * Returns the voltage step size between VSEL values for linear
3246  * regulators, or return 0 if the regulator isn't a linear regulator.
3247  */
regulator_get_linear_step(struct regulator * regulator)3248 unsigned int regulator_get_linear_step(struct regulator *regulator)
3249 {
3250 	struct regulator_dev *rdev = regulator->rdev;
3251 
3252 	return rdev->desc->uV_step;
3253 }
3254 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3255 
3256 /**
3257  * regulator_is_supported_voltage - check if a voltage range can be supported
3258  *
3259  * @regulator: Regulator to check.
3260  * @min_uV: Minimum required voltage in uV.
3261  * @max_uV: Maximum required voltage in uV.
3262  *
3263  * Returns a boolean.
3264  */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)3265 int regulator_is_supported_voltage(struct regulator *regulator,
3266 				   int min_uV, int max_uV)
3267 {
3268 	struct regulator_dev *rdev = regulator->rdev;
3269 	int i, voltages, ret;
3270 
3271 	/* If we can't change voltage check the current voltage */
3272 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3273 		ret = regulator_get_voltage(regulator);
3274 		if (ret >= 0)
3275 			return min_uV <= ret && ret <= max_uV;
3276 		else
3277 			return ret;
3278 	}
3279 
3280 	/* Any voltage within constrains range is fine? */
3281 	if (rdev->desc->continuous_voltage_range)
3282 		return min_uV >= rdev->constraints->min_uV &&
3283 				max_uV <= rdev->constraints->max_uV;
3284 
3285 	ret = regulator_count_voltages(regulator);
3286 	if (ret < 0)
3287 		return 0;
3288 	voltages = ret;
3289 
3290 	for (i = 0; i < voltages; i++) {
3291 		ret = regulator_list_voltage(regulator, i);
3292 
3293 		if (ret >= min_uV && ret <= max_uV)
3294 			return 1;
3295 	}
3296 
3297 	return 0;
3298 }
3299 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3300 
regulator_map_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3301 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3302 				 int max_uV)
3303 {
3304 	const struct regulator_desc *desc = rdev->desc;
3305 
3306 	if (desc->ops->map_voltage)
3307 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3308 
3309 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3310 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3311 
3312 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3313 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3314 
3315 	if (desc->ops->list_voltage ==
3316 		regulator_list_voltage_pickable_linear_range)
3317 		return regulator_map_voltage_pickable_linear_range(rdev,
3318 							min_uV, max_uV);
3319 
3320 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3321 }
3322 
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)3323 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3324 				       int min_uV, int max_uV,
3325 				       unsigned *selector)
3326 {
3327 	struct pre_voltage_change_data data;
3328 	int ret;
3329 
3330 	data.old_uV = regulator_get_voltage_rdev(rdev);
3331 	data.min_uV = min_uV;
3332 	data.max_uV = max_uV;
3333 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3334 				   &data);
3335 	if (ret & NOTIFY_STOP_MASK)
3336 		return -EINVAL;
3337 
3338 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3339 	if (ret >= 0)
3340 		return ret;
3341 
3342 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3343 			     (void *)data.old_uV);
3344 
3345 	return ret;
3346 }
3347 
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)3348 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3349 					   int uV, unsigned selector)
3350 {
3351 	struct pre_voltage_change_data data;
3352 	int ret;
3353 
3354 	data.old_uV = regulator_get_voltage_rdev(rdev);
3355 	data.min_uV = uV;
3356 	data.max_uV = uV;
3357 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3358 				   &data);
3359 	if (ret & NOTIFY_STOP_MASK)
3360 		return -EINVAL;
3361 
3362 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3363 	if (ret >= 0)
3364 		return ret;
3365 
3366 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3367 			     (void *)data.old_uV);
3368 
3369 	return ret;
3370 }
3371 
_regulator_set_voltage_sel_step(struct regulator_dev * rdev,int uV,int new_selector)3372 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3373 					   int uV, int new_selector)
3374 {
3375 	const struct regulator_ops *ops = rdev->desc->ops;
3376 	int diff, old_sel, curr_sel, ret;
3377 
3378 	/* Stepping is only needed if the regulator is enabled. */
3379 	if (!_regulator_is_enabled(rdev))
3380 		goto final_set;
3381 
3382 	if (!ops->get_voltage_sel)
3383 		return -EINVAL;
3384 
3385 	old_sel = ops->get_voltage_sel(rdev);
3386 	if (old_sel < 0)
3387 		return old_sel;
3388 
3389 	diff = new_selector - old_sel;
3390 	if (diff == 0)
3391 		return 0; /* No change needed. */
3392 
3393 	if (diff > 0) {
3394 		/* Stepping up. */
3395 		for (curr_sel = old_sel + rdev->desc->vsel_step;
3396 		     curr_sel < new_selector;
3397 		     curr_sel += rdev->desc->vsel_step) {
3398 			/*
3399 			 * Call the callback directly instead of using
3400 			 * _regulator_call_set_voltage_sel() as we don't
3401 			 * want to notify anyone yet. Same in the branch
3402 			 * below.
3403 			 */
3404 			ret = ops->set_voltage_sel(rdev, curr_sel);
3405 			if (ret)
3406 				goto try_revert;
3407 		}
3408 	} else {
3409 		/* Stepping down. */
3410 		for (curr_sel = old_sel - rdev->desc->vsel_step;
3411 		     curr_sel > new_selector;
3412 		     curr_sel -= rdev->desc->vsel_step) {
3413 			ret = ops->set_voltage_sel(rdev, curr_sel);
3414 			if (ret)
3415 				goto try_revert;
3416 		}
3417 	}
3418 
3419 final_set:
3420 	/* The final selector will trigger the notifiers. */
3421 	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3422 
3423 try_revert:
3424 	/*
3425 	 * At least try to return to the previous voltage if setting a new
3426 	 * one failed.
3427 	 */
3428 	(void)ops->set_voltage_sel(rdev, old_sel);
3429 	return ret;
3430 }
3431 
_regulator_set_voltage_time(struct regulator_dev * rdev,int old_uV,int new_uV)3432 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3433 				       int old_uV, int new_uV)
3434 {
3435 	unsigned int ramp_delay = 0;
3436 
3437 	if (rdev->constraints->ramp_delay)
3438 		ramp_delay = rdev->constraints->ramp_delay;
3439 	else if (rdev->desc->ramp_delay)
3440 		ramp_delay = rdev->desc->ramp_delay;
3441 	else if (rdev->constraints->settling_time)
3442 		return rdev->constraints->settling_time;
3443 	else if (rdev->constraints->settling_time_up &&
3444 		 (new_uV > old_uV))
3445 		return rdev->constraints->settling_time_up;
3446 	else if (rdev->constraints->settling_time_down &&
3447 		 (new_uV < old_uV))
3448 		return rdev->constraints->settling_time_down;
3449 
3450 	if (ramp_delay == 0) {
3451 		rdev_dbg(rdev, "ramp_delay not set\n");
3452 		return 0;
3453 	}
3454 
3455 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3456 }
3457 
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3458 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3459 				     int min_uV, int max_uV)
3460 {
3461 	int ret;
3462 	int delay = 0;
3463 	int best_val = 0;
3464 	unsigned int selector;
3465 	int old_selector = -1;
3466 	const struct regulator_ops *ops = rdev->desc->ops;
3467 	int old_uV = regulator_get_voltage_rdev(rdev);
3468 
3469 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3470 
3471 	min_uV += rdev->constraints->uV_offset;
3472 	max_uV += rdev->constraints->uV_offset;
3473 
3474 	/*
3475 	 * If we can't obtain the old selector there is not enough
3476 	 * info to call set_voltage_time_sel().
3477 	 */
3478 	if (_regulator_is_enabled(rdev) &&
3479 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3480 		old_selector = ops->get_voltage_sel(rdev);
3481 		if (old_selector < 0)
3482 			return old_selector;
3483 	}
3484 
3485 	if (ops->set_voltage) {
3486 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3487 						  &selector);
3488 
3489 		if (ret >= 0) {
3490 			if (ops->list_voltage)
3491 				best_val = ops->list_voltage(rdev,
3492 							     selector);
3493 			else
3494 				best_val = regulator_get_voltage_rdev(rdev);
3495 		}
3496 
3497 	} else if (ops->set_voltage_sel) {
3498 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3499 		if (ret >= 0) {
3500 			best_val = ops->list_voltage(rdev, ret);
3501 			if (min_uV <= best_val && max_uV >= best_val) {
3502 				selector = ret;
3503 				if (old_selector == selector)
3504 					ret = 0;
3505 				else if (rdev->desc->vsel_step)
3506 					ret = _regulator_set_voltage_sel_step(
3507 						rdev, best_val, selector);
3508 				else
3509 					ret = _regulator_call_set_voltage_sel(
3510 						rdev, best_val, selector);
3511 			} else {
3512 				ret = -EINVAL;
3513 			}
3514 		}
3515 	} else {
3516 		ret = -EINVAL;
3517 	}
3518 
3519 	if (ret)
3520 		goto out;
3521 
3522 	if (ops->set_voltage_time_sel) {
3523 		/*
3524 		 * Call set_voltage_time_sel if successfully obtained
3525 		 * old_selector
3526 		 */
3527 		if (old_selector >= 0 && old_selector != selector)
3528 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3529 							  selector);
3530 	} else {
3531 		if (old_uV != best_val) {
3532 			if (ops->set_voltage_time)
3533 				delay = ops->set_voltage_time(rdev, old_uV,
3534 							      best_val);
3535 			else
3536 				delay = _regulator_set_voltage_time(rdev,
3537 								    old_uV,
3538 								    best_val);
3539 		}
3540 	}
3541 
3542 	if (delay < 0) {
3543 		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3544 		delay = 0;
3545 	}
3546 
3547 	/* Insert any necessary delays */
3548 	if (delay >= 1000) {
3549 		mdelay(delay / 1000);
3550 		udelay(delay % 1000);
3551 	} else if (delay) {
3552 		udelay(delay);
3553 	}
3554 
3555 	if (best_val >= 0) {
3556 		unsigned long data = best_val;
3557 
3558 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3559 				     (void *)data);
3560 	}
3561 
3562 out:
3563 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3564 
3565 	return ret;
3566 }
3567 
_regulator_do_set_suspend_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3568 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3569 				  int min_uV, int max_uV, suspend_state_t state)
3570 {
3571 	struct regulator_state *rstate;
3572 	int uV, sel;
3573 
3574 	rstate = regulator_get_suspend_state(rdev, state);
3575 	if (rstate == NULL)
3576 		return -EINVAL;
3577 
3578 	if (min_uV < rstate->min_uV)
3579 		min_uV = rstate->min_uV;
3580 	if (max_uV > rstate->max_uV)
3581 		max_uV = rstate->max_uV;
3582 
3583 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3584 	if (sel < 0)
3585 		return sel;
3586 
3587 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3588 	if (uV >= min_uV && uV <= max_uV)
3589 		rstate->uV = uV;
3590 
3591 	return 0;
3592 }
3593 
regulator_set_voltage_unlocked(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3594 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3595 					  int min_uV, int max_uV,
3596 					  suspend_state_t state)
3597 {
3598 	struct regulator_dev *rdev = regulator->rdev;
3599 	struct regulator_voltage *voltage = &regulator->voltage[state];
3600 	int ret = 0;
3601 	int old_min_uV, old_max_uV;
3602 	int current_uV;
3603 
3604 	/* If we're setting the same range as last time the change
3605 	 * should be a noop (some cpufreq implementations use the same
3606 	 * voltage for multiple frequencies, for example).
3607 	 */
3608 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3609 		goto out;
3610 
3611 	/* If we're trying to set a range that overlaps the current voltage,
3612 	 * return successfully even though the regulator does not support
3613 	 * changing the voltage.
3614 	 */
3615 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3616 		current_uV = regulator_get_voltage_rdev(rdev);
3617 		if (min_uV <= current_uV && current_uV <= max_uV) {
3618 			voltage->min_uV = min_uV;
3619 			voltage->max_uV = max_uV;
3620 			goto out;
3621 		}
3622 	}
3623 
3624 	/* sanity check */
3625 	if (!rdev->desc->ops->set_voltage &&
3626 	    !rdev->desc->ops->set_voltage_sel) {
3627 		ret = -EINVAL;
3628 		goto out;
3629 	}
3630 
3631 	/* constraints check */
3632 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3633 	if (ret < 0)
3634 		goto out;
3635 
3636 	/* restore original values in case of error */
3637 	old_min_uV = voltage->min_uV;
3638 	old_max_uV = voltage->max_uV;
3639 	voltage->min_uV = min_uV;
3640 	voltage->max_uV = max_uV;
3641 
3642 	/* for not coupled regulators this will just set the voltage */
3643 	ret = regulator_balance_voltage(rdev, state);
3644 	if (ret < 0) {
3645 		voltage->min_uV = old_min_uV;
3646 		voltage->max_uV = old_max_uV;
3647 	}
3648 
3649 out:
3650 	return ret;
3651 }
3652 
regulator_set_voltage_rdev(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3653 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3654 			       int max_uV, suspend_state_t state)
3655 {
3656 	int best_supply_uV = 0;
3657 	int supply_change_uV = 0;
3658 	int ret;
3659 
3660 	if (rdev->supply &&
3661 	    regulator_ops_is_valid(rdev->supply->rdev,
3662 				   REGULATOR_CHANGE_VOLTAGE) &&
3663 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3664 					   rdev->desc->ops->get_voltage_sel))) {
3665 		int current_supply_uV;
3666 		int selector;
3667 
3668 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3669 		if (selector < 0) {
3670 			ret = selector;
3671 			goto out;
3672 		}
3673 
3674 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3675 		if (best_supply_uV < 0) {
3676 			ret = best_supply_uV;
3677 			goto out;
3678 		}
3679 
3680 		best_supply_uV += rdev->desc->min_dropout_uV;
3681 
3682 		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3683 		if (current_supply_uV < 0) {
3684 			ret = current_supply_uV;
3685 			goto out;
3686 		}
3687 
3688 		supply_change_uV = best_supply_uV - current_supply_uV;
3689 	}
3690 
3691 	if (supply_change_uV > 0) {
3692 		ret = regulator_set_voltage_unlocked(rdev->supply,
3693 				best_supply_uV, INT_MAX, state);
3694 		if (ret) {
3695 			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3696 				ERR_PTR(ret));
3697 			goto out;
3698 		}
3699 	}
3700 
3701 	if (state == PM_SUSPEND_ON)
3702 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3703 	else
3704 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3705 							max_uV, state);
3706 	if (ret < 0)
3707 		goto out;
3708 
3709 	if (supply_change_uV < 0) {
3710 		ret = regulator_set_voltage_unlocked(rdev->supply,
3711 				best_supply_uV, INT_MAX, state);
3712 		if (ret)
3713 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3714 				 ERR_PTR(ret));
3715 		/* No need to fail here */
3716 		ret = 0;
3717 	}
3718 
3719 out:
3720 	return ret;
3721 }
3722 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3723 
regulator_limit_voltage_step(struct regulator_dev * rdev,int * current_uV,int * min_uV)3724 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3725 					int *current_uV, int *min_uV)
3726 {
3727 	struct regulation_constraints *constraints = rdev->constraints;
3728 
3729 	/* Limit voltage change only if necessary */
3730 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3731 		return 1;
3732 
3733 	if (*current_uV < 0) {
3734 		*current_uV = regulator_get_voltage_rdev(rdev);
3735 
3736 		if (*current_uV < 0)
3737 			return *current_uV;
3738 	}
3739 
3740 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3741 		return 1;
3742 
3743 	/* Clamp target voltage within the given step */
3744 	if (*current_uV < *min_uV)
3745 		*min_uV = min(*current_uV + constraints->max_uV_step,
3746 			      *min_uV);
3747 	else
3748 		*min_uV = max(*current_uV - constraints->max_uV_step,
3749 			      *min_uV);
3750 
3751 	return 0;
3752 }
3753 
regulator_get_optimal_voltage(struct regulator_dev * rdev,int * current_uV,int * min_uV,int * max_uV,suspend_state_t state,int n_coupled)3754 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3755 					 int *current_uV,
3756 					 int *min_uV, int *max_uV,
3757 					 suspend_state_t state,
3758 					 int n_coupled)
3759 {
3760 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3761 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3762 	struct regulation_constraints *constraints = rdev->constraints;
3763 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3764 	int max_current_uV = 0, min_current_uV = INT_MAX;
3765 	int highest_min_uV = 0, target_uV, possible_uV;
3766 	int i, ret, max_spread;
3767 	bool done;
3768 
3769 	*current_uV = -1;
3770 
3771 	/*
3772 	 * If there are no coupled regulators, simply set the voltage
3773 	 * demanded by consumers.
3774 	 */
3775 	if (n_coupled == 1) {
3776 		/*
3777 		 * If consumers don't provide any demands, set voltage
3778 		 * to min_uV
3779 		 */
3780 		desired_min_uV = constraints->min_uV;
3781 		desired_max_uV = constraints->max_uV;
3782 
3783 		ret = regulator_check_consumers(rdev,
3784 						&desired_min_uV,
3785 						&desired_max_uV, state);
3786 		if (ret < 0)
3787 			return ret;
3788 
3789 		possible_uV = desired_min_uV;
3790 		done = true;
3791 
3792 		goto finish;
3793 	}
3794 
3795 	/* Find highest min desired voltage */
3796 	for (i = 0; i < n_coupled; i++) {
3797 		int tmp_min = 0;
3798 		int tmp_max = INT_MAX;
3799 
3800 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3801 
3802 		ret = regulator_check_consumers(c_rdevs[i],
3803 						&tmp_min,
3804 						&tmp_max, state);
3805 		if (ret < 0)
3806 			return ret;
3807 
3808 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3809 		if (ret < 0)
3810 			return ret;
3811 
3812 		highest_min_uV = max(highest_min_uV, tmp_min);
3813 
3814 		if (i == 0) {
3815 			desired_min_uV = tmp_min;
3816 			desired_max_uV = tmp_max;
3817 		}
3818 	}
3819 
3820 	max_spread = constraints->max_spread[0];
3821 
3822 	/*
3823 	 * Let target_uV be equal to the desired one if possible.
3824 	 * If not, set it to minimum voltage, allowed by other coupled
3825 	 * regulators.
3826 	 */
3827 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3828 
3829 	/*
3830 	 * Find min and max voltages, which currently aren't violating
3831 	 * max_spread.
3832 	 */
3833 	for (i = 1; i < n_coupled; i++) {
3834 		int tmp_act;
3835 
3836 		if (!_regulator_is_enabled(c_rdevs[i]))
3837 			continue;
3838 
3839 		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3840 		if (tmp_act < 0)
3841 			return tmp_act;
3842 
3843 		min_current_uV = min(tmp_act, min_current_uV);
3844 		max_current_uV = max(tmp_act, max_current_uV);
3845 	}
3846 
3847 	/* There aren't any other regulators enabled */
3848 	if (max_current_uV == 0) {
3849 		possible_uV = target_uV;
3850 	} else {
3851 		/*
3852 		 * Correct target voltage, so as it currently isn't
3853 		 * violating max_spread
3854 		 */
3855 		possible_uV = max(target_uV, max_current_uV - max_spread);
3856 		possible_uV = min(possible_uV, min_current_uV + max_spread);
3857 	}
3858 
3859 	if (possible_uV > desired_max_uV)
3860 		return -EINVAL;
3861 
3862 	done = (possible_uV == target_uV);
3863 	desired_min_uV = possible_uV;
3864 
3865 finish:
3866 	/* Apply max_uV_step constraint if necessary */
3867 	if (state == PM_SUSPEND_ON) {
3868 		ret = regulator_limit_voltage_step(rdev, current_uV,
3869 						   &desired_min_uV);
3870 		if (ret < 0)
3871 			return ret;
3872 
3873 		if (ret == 0)
3874 			done = false;
3875 	}
3876 
3877 	/* Set current_uV if wasn't done earlier in the code and if necessary */
3878 	if (n_coupled > 1 && *current_uV == -1) {
3879 
3880 		if (_regulator_is_enabled(rdev)) {
3881 			ret = regulator_get_voltage_rdev(rdev);
3882 			if (ret < 0)
3883 				return ret;
3884 
3885 			*current_uV = ret;
3886 		} else {
3887 			*current_uV = desired_min_uV;
3888 		}
3889 	}
3890 
3891 	*min_uV = desired_min_uV;
3892 	*max_uV = desired_max_uV;
3893 
3894 	return done;
3895 }
3896 
regulator_do_balance_voltage(struct regulator_dev * rdev,suspend_state_t state,bool skip_coupled)3897 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3898 				 suspend_state_t state, bool skip_coupled)
3899 {
3900 	struct regulator_dev **c_rdevs;
3901 	struct regulator_dev *best_rdev;
3902 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3903 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3904 	unsigned int delta, best_delta;
3905 	unsigned long c_rdev_done = 0;
3906 	bool best_c_rdev_done;
3907 
3908 	c_rdevs = c_desc->coupled_rdevs;
3909 	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3910 
3911 	/*
3912 	 * Find the best possible voltage change on each loop. Leave the loop
3913 	 * if there isn't any possible change.
3914 	 */
3915 	do {
3916 		best_c_rdev_done = false;
3917 		best_delta = 0;
3918 		best_min_uV = 0;
3919 		best_max_uV = 0;
3920 		best_c_rdev = 0;
3921 		best_rdev = NULL;
3922 
3923 		/*
3924 		 * Find highest difference between optimal voltage
3925 		 * and current voltage.
3926 		 */
3927 		for (i = 0; i < n_coupled; i++) {
3928 			/*
3929 			 * optimal_uV is the best voltage that can be set for
3930 			 * i-th regulator at the moment without violating
3931 			 * max_spread constraint in order to balance
3932 			 * the coupled voltages.
3933 			 */
3934 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3935 
3936 			if (test_bit(i, &c_rdev_done))
3937 				continue;
3938 
3939 			ret = regulator_get_optimal_voltage(c_rdevs[i],
3940 							    &current_uV,
3941 							    &optimal_uV,
3942 							    &optimal_max_uV,
3943 							    state, n_coupled);
3944 			if (ret < 0)
3945 				goto out;
3946 
3947 			delta = abs(optimal_uV - current_uV);
3948 
3949 			if (delta && best_delta <= delta) {
3950 				best_c_rdev_done = ret;
3951 				best_delta = delta;
3952 				best_rdev = c_rdevs[i];
3953 				best_min_uV = optimal_uV;
3954 				best_max_uV = optimal_max_uV;
3955 				best_c_rdev = i;
3956 			}
3957 		}
3958 
3959 		/* Nothing to change, return successfully */
3960 		if (!best_rdev) {
3961 			ret = 0;
3962 			goto out;
3963 		}
3964 
3965 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3966 						 best_max_uV, state);
3967 
3968 		if (ret < 0)
3969 			goto out;
3970 
3971 		if (best_c_rdev_done)
3972 			set_bit(best_c_rdev, &c_rdev_done);
3973 
3974 	} while (n_coupled > 1);
3975 
3976 out:
3977 	return ret;
3978 }
3979 
regulator_balance_voltage(struct regulator_dev * rdev,suspend_state_t state)3980 static int regulator_balance_voltage(struct regulator_dev *rdev,
3981 				     suspend_state_t state)
3982 {
3983 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3984 	struct regulator_coupler *coupler = c_desc->coupler;
3985 	bool skip_coupled = false;
3986 
3987 	/*
3988 	 * If system is in a state other than PM_SUSPEND_ON, don't check
3989 	 * other coupled regulators.
3990 	 */
3991 	if (state != PM_SUSPEND_ON)
3992 		skip_coupled = true;
3993 
3994 	if (c_desc->n_resolved < c_desc->n_coupled) {
3995 		rdev_err(rdev, "Not all coupled regulators registered\n");
3996 		return -EPERM;
3997 	}
3998 
3999 	/* Invoke custom balancer for customized couplers */
4000 	if (coupler && coupler->balance_voltage)
4001 		return coupler->balance_voltage(coupler, rdev, state);
4002 
4003 	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4004 }
4005 
4006 /**
4007  * regulator_set_voltage - set regulator output voltage
4008  * @regulator: regulator source
4009  * @min_uV: Minimum required voltage in uV
4010  * @max_uV: Maximum acceptable voltage in uV
4011  *
4012  * Sets a voltage regulator to the desired output voltage. This can be set
4013  * during any regulator state. IOW, regulator can be disabled or enabled.
4014  *
4015  * If the regulator is enabled then the voltage will change to the new value
4016  * immediately otherwise if the regulator is disabled the regulator will
4017  * output at the new voltage when enabled.
4018  *
4019  * NOTE: If the regulator is shared between several devices then the lowest
4020  * request voltage that meets the system constraints will be used.
4021  * Regulator system constraints must be set for this regulator before
4022  * calling this function otherwise this call will fail.
4023  */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)4024 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4025 {
4026 	struct ww_acquire_ctx ww_ctx;
4027 	int ret;
4028 
4029 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4030 
4031 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4032 					     PM_SUSPEND_ON);
4033 
4034 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4035 
4036 	return ret;
4037 }
4038 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4039 
regulator_suspend_toggle(struct regulator_dev * rdev,suspend_state_t state,bool en)4040 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4041 					   suspend_state_t state, bool en)
4042 {
4043 	struct regulator_state *rstate;
4044 
4045 	rstate = regulator_get_suspend_state(rdev, state);
4046 	if (rstate == NULL)
4047 		return -EINVAL;
4048 
4049 	if (!rstate->changeable)
4050 		return -EPERM;
4051 
4052 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4053 
4054 	return 0;
4055 }
4056 
regulator_suspend_enable(struct regulator_dev * rdev,suspend_state_t state)4057 int regulator_suspend_enable(struct regulator_dev *rdev,
4058 				    suspend_state_t state)
4059 {
4060 	return regulator_suspend_toggle(rdev, state, true);
4061 }
4062 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4063 
regulator_suspend_disable(struct regulator_dev * rdev,suspend_state_t state)4064 int regulator_suspend_disable(struct regulator_dev *rdev,
4065 				     suspend_state_t state)
4066 {
4067 	struct regulator *regulator;
4068 	struct regulator_voltage *voltage;
4069 
4070 	/*
4071 	 * if any consumer wants this regulator device keeping on in
4072 	 * suspend states, don't set it as disabled.
4073 	 */
4074 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4075 		voltage = &regulator->voltage[state];
4076 		if (voltage->min_uV || voltage->max_uV)
4077 			return 0;
4078 	}
4079 
4080 	return regulator_suspend_toggle(rdev, state, false);
4081 }
4082 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4083 
_regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4084 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4085 					  int min_uV, int max_uV,
4086 					  suspend_state_t state)
4087 {
4088 	struct regulator_dev *rdev = regulator->rdev;
4089 	struct regulator_state *rstate;
4090 
4091 	rstate = regulator_get_suspend_state(rdev, state);
4092 	if (rstate == NULL)
4093 		return -EINVAL;
4094 
4095 	if (rstate->min_uV == rstate->max_uV) {
4096 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4097 		return -EPERM;
4098 	}
4099 
4100 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4101 }
4102 
regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4103 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4104 				  int max_uV, suspend_state_t state)
4105 {
4106 	struct ww_acquire_ctx ww_ctx;
4107 	int ret;
4108 
4109 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4110 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4111 		return -EINVAL;
4112 
4113 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4114 
4115 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4116 					     max_uV, state);
4117 
4118 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4119 
4120 	return ret;
4121 }
4122 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4123 
4124 /**
4125  * regulator_set_voltage_time - get raise/fall time
4126  * @regulator: regulator source
4127  * @old_uV: starting voltage in microvolts
4128  * @new_uV: target voltage in microvolts
4129  *
4130  * Provided with the starting and ending voltage, this function attempts to
4131  * calculate the time in microseconds required to rise or fall to this new
4132  * voltage.
4133  */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)4134 int regulator_set_voltage_time(struct regulator *regulator,
4135 			       int old_uV, int new_uV)
4136 {
4137 	struct regulator_dev *rdev = regulator->rdev;
4138 	const struct regulator_ops *ops = rdev->desc->ops;
4139 	int old_sel = -1;
4140 	int new_sel = -1;
4141 	int voltage;
4142 	int i;
4143 
4144 	if (ops->set_voltage_time)
4145 		return ops->set_voltage_time(rdev, old_uV, new_uV);
4146 	else if (!ops->set_voltage_time_sel)
4147 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4148 
4149 	/* Currently requires operations to do this */
4150 	if (!ops->list_voltage || !rdev->desc->n_voltages)
4151 		return -EINVAL;
4152 
4153 	for (i = 0; i < rdev->desc->n_voltages; i++) {
4154 		/* We only look for exact voltage matches here */
4155 		voltage = regulator_list_voltage(regulator, i);
4156 		if (voltage < 0)
4157 			return -EINVAL;
4158 		if (voltage == 0)
4159 			continue;
4160 		if (voltage == old_uV)
4161 			old_sel = i;
4162 		if (voltage == new_uV)
4163 			new_sel = i;
4164 	}
4165 
4166 	if (old_sel < 0 || new_sel < 0)
4167 		return -EINVAL;
4168 
4169 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4170 }
4171 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4172 
4173 /**
4174  * regulator_set_voltage_time_sel - get raise/fall time
4175  * @rdev: regulator source device
4176  * @old_selector: selector for starting voltage
4177  * @new_selector: selector for target voltage
4178  *
4179  * Provided with the starting and target voltage selectors, this function
4180  * returns time in microseconds required to rise or fall to this new voltage
4181  *
4182  * Drivers providing ramp_delay in regulation_constraints can use this as their
4183  * set_voltage_time_sel() operation.
4184  */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)4185 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4186 				   unsigned int old_selector,
4187 				   unsigned int new_selector)
4188 {
4189 	int old_volt, new_volt;
4190 
4191 	/* sanity check */
4192 	if (!rdev->desc->ops->list_voltage)
4193 		return -EINVAL;
4194 
4195 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4196 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4197 
4198 	if (rdev->desc->ops->set_voltage_time)
4199 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4200 							 new_volt);
4201 	else
4202 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4203 }
4204 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4205 
4206 /**
4207  * regulator_sync_voltage - re-apply last regulator output voltage
4208  * @regulator: regulator source
4209  *
4210  * Re-apply the last configured voltage.  This is intended to be used
4211  * where some external control source the consumer is cooperating with
4212  * has caused the configured voltage to change.
4213  */
regulator_sync_voltage(struct regulator * regulator)4214 int regulator_sync_voltage(struct regulator *regulator)
4215 {
4216 	struct regulator_dev *rdev = regulator->rdev;
4217 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4218 	int ret, min_uV, max_uV;
4219 
4220 	regulator_lock(rdev);
4221 
4222 	if (!rdev->desc->ops->set_voltage &&
4223 	    !rdev->desc->ops->set_voltage_sel) {
4224 		ret = -EINVAL;
4225 		goto out;
4226 	}
4227 
4228 	/* This is only going to work if we've had a voltage configured. */
4229 	if (!voltage->min_uV && !voltage->max_uV) {
4230 		ret = -EINVAL;
4231 		goto out;
4232 	}
4233 
4234 	min_uV = voltage->min_uV;
4235 	max_uV = voltage->max_uV;
4236 
4237 	/* This should be a paranoia check... */
4238 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4239 	if (ret < 0)
4240 		goto out;
4241 
4242 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4243 	if (ret < 0)
4244 		goto out;
4245 
4246 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4247 
4248 out:
4249 	regulator_unlock(rdev);
4250 	return ret;
4251 }
4252 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4253 
regulator_get_voltage_rdev(struct regulator_dev * rdev)4254 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4255 {
4256 	int sel, ret;
4257 	bool bypassed;
4258 
4259 	if (rdev->desc->ops->get_bypass) {
4260 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4261 		if (ret < 0)
4262 			return ret;
4263 		if (bypassed) {
4264 			/* if bypassed the regulator must have a supply */
4265 			if (!rdev->supply) {
4266 				rdev_err(rdev,
4267 					 "bypassed regulator has no supply!\n");
4268 				return -EPROBE_DEFER;
4269 			}
4270 
4271 			return regulator_get_voltage_rdev(rdev->supply->rdev);
4272 		}
4273 	}
4274 
4275 	if (rdev->desc->ops->get_voltage_sel) {
4276 		sel = rdev->desc->ops->get_voltage_sel(rdev);
4277 		if (sel < 0)
4278 			return sel;
4279 		ret = rdev->desc->ops->list_voltage(rdev, sel);
4280 	} else if (rdev->desc->ops->get_voltage) {
4281 		ret = rdev->desc->ops->get_voltage(rdev);
4282 	} else if (rdev->desc->ops->list_voltage) {
4283 		ret = rdev->desc->ops->list_voltage(rdev, 0);
4284 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4285 		ret = rdev->desc->fixed_uV;
4286 	} else if (rdev->supply) {
4287 		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4288 	} else if (rdev->supply_name) {
4289 		return -EPROBE_DEFER;
4290 	} else {
4291 		return -EINVAL;
4292 	}
4293 
4294 	if (ret < 0)
4295 		return ret;
4296 	return ret - rdev->constraints->uV_offset;
4297 }
4298 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4299 
4300 /**
4301  * regulator_get_voltage - get regulator output voltage
4302  * @regulator: regulator source
4303  *
4304  * This returns the current regulator voltage in uV.
4305  *
4306  * NOTE: If the regulator is disabled it will return the voltage value. This
4307  * function should not be used to determine regulator state.
4308  */
regulator_get_voltage(struct regulator * regulator)4309 int regulator_get_voltage(struct regulator *regulator)
4310 {
4311 	struct ww_acquire_ctx ww_ctx;
4312 	int ret;
4313 
4314 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4315 	ret = regulator_get_voltage_rdev(regulator->rdev);
4316 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4317 
4318 	return ret;
4319 }
4320 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4321 
4322 /**
4323  * regulator_set_current_limit - set regulator output current limit
4324  * @regulator: regulator source
4325  * @min_uA: Minimum supported current in uA
4326  * @max_uA: Maximum supported current in uA
4327  *
4328  * Sets current sink to the desired output current. This can be set during
4329  * any regulator state. IOW, regulator can be disabled or enabled.
4330  *
4331  * If the regulator is enabled then the current will change to the new value
4332  * immediately otherwise if the regulator is disabled the regulator will
4333  * output at the new current when enabled.
4334  *
4335  * NOTE: Regulator system constraints must be set for this regulator before
4336  * calling this function otherwise this call will fail.
4337  */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)4338 int regulator_set_current_limit(struct regulator *regulator,
4339 			       int min_uA, int max_uA)
4340 {
4341 	struct regulator_dev *rdev = regulator->rdev;
4342 	int ret;
4343 
4344 	regulator_lock(rdev);
4345 
4346 	/* sanity check */
4347 	if (!rdev->desc->ops->set_current_limit) {
4348 		ret = -EINVAL;
4349 		goto out;
4350 	}
4351 
4352 	/* constraints check */
4353 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4354 	if (ret < 0)
4355 		goto out;
4356 
4357 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4358 out:
4359 	regulator_unlock(rdev);
4360 	return ret;
4361 }
4362 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4363 
_regulator_get_current_limit_unlocked(struct regulator_dev * rdev)4364 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4365 {
4366 	/* sanity check */
4367 	if (!rdev->desc->ops->get_current_limit)
4368 		return -EINVAL;
4369 
4370 	return rdev->desc->ops->get_current_limit(rdev);
4371 }
4372 
_regulator_get_current_limit(struct regulator_dev * rdev)4373 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4374 {
4375 	int ret;
4376 
4377 	regulator_lock(rdev);
4378 	ret = _regulator_get_current_limit_unlocked(rdev);
4379 	regulator_unlock(rdev);
4380 
4381 	return ret;
4382 }
4383 
4384 /**
4385  * regulator_get_current_limit - get regulator output current
4386  * @regulator: regulator source
4387  *
4388  * This returns the current supplied by the specified current sink in uA.
4389  *
4390  * NOTE: If the regulator is disabled it will return the current value. This
4391  * function should not be used to determine regulator state.
4392  */
regulator_get_current_limit(struct regulator * regulator)4393 int regulator_get_current_limit(struct regulator *regulator)
4394 {
4395 	return _regulator_get_current_limit(regulator->rdev);
4396 }
4397 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4398 
4399 /**
4400  * regulator_set_mode - set regulator operating mode
4401  * @regulator: regulator source
4402  * @mode: operating mode - one of the REGULATOR_MODE constants
4403  *
4404  * Set regulator operating mode to increase regulator efficiency or improve
4405  * regulation performance.
4406  *
4407  * NOTE: Regulator system constraints must be set for this regulator before
4408  * calling this function otherwise this call will fail.
4409  */
regulator_set_mode(struct regulator * regulator,unsigned int mode)4410 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4411 {
4412 	struct regulator_dev *rdev = regulator->rdev;
4413 	int ret;
4414 	int regulator_curr_mode;
4415 
4416 	regulator_lock(rdev);
4417 
4418 	/* sanity check */
4419 	if (!rdev->desc->ops->set_mode) {
4420 		ret = -EINVAL;
4421 		goto out;
4422 	}
4423 
4424 	/* return if the same mode is requested */
4425 	if (rdev->desc->ops->get_mode) {
4426 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4427 		if (regulator_curr_mode == mode) {
4428 			ret = 0;
4429 			goto out;
4430 		}
4431 	}
4432 
4433 	/* constraints check */
4434 	ret = regulator_mode_constrain(rdev, &mode);
4435 	if (ret < 0)
4436 		goto out;
4437 
4438 	ret = rdev->desc->ops->set_mode(rdev, mode);
4439 out:
4440 	regulator_unlock(rdev);
4441 	return ret;
4442 }
4443 EXPORT_SYMBOL_GPL(regulator_set_mode);
4444 
_regulator_get_mode_unlocked(struct regulator_dev * rdev)4445 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4446 {
4447 	/* sanity check */
4448 	if (!rdev->desc->ops->get_mode)
4449 		return -EINVAL;
4450 
4451 	return rdev->desc->ops->get_mode(rdev);
4452 }
4453 
_regulator_get_mode(struct regulator_dev * rdev)4454 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4455 {
4456 	int ret;
4457 
4458 	regulator_lock(rdev);
4459 	ret = _regulator_get_mode_unlocked(rdev);
4460 	regulator_unlock(rdev);
4461 
4462 	return ret;
4463 }
4464 
4465 /**
4466  * regulator_get_mode - get regulator operating mode
4467  * @regulator: regulator source
4468  *
4469  * Get the current regulator operating mode.
4470  */
regulator_get_mode(struct regulator * regulator)4471 unsigned int regulator_get_mode(struct regulator *regulator)
4472 {
4473 	return _regulator_get_mode(regulator->rdev);
4474 }
4475 EXPORT_SYMBOL_GPL(regulator_get_mode);
4476 
_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)4477 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4478 					unsigned int *flags)
4479 {
4480 	int ret;
4481 
4482 	regulator_lock(rdev);
4483 
4484 	/* sanity check */
4485 	if (!rdev->desc->ops->get_error_flags) {
4486 		ret = -EINVAL;
4487 		goto out;
4488 	}
4489 
4490 	ret = rdev->desc->ops->get_error_flags(rdev, flags);
4491 out:
4492 	regulator_unlock(rdev);
4493 	return ret;
4494 }
4495 
4496 /**
4497  * regulator_get_error_flags - get regulator error information
4498  * @regulator: regulator source
4499  * @flags: pointer to store error flags
4500  *
4501  * Get the current regulator error information.
4502  */
regulator_get_error_flags(struct regulator * regulator,unsigned int * flags)4503 int regulator_get_error_flags(struct regulator *regulator,
4504 				unsigned int *flags)
4505 {
4506 	return _regulator_get_error_flags(regulator->rdev, flags);
4507 }
4508 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4509 
4510 /**
4511  * regulator_set_load - set regulator load
4512  * @regulator: regulator source
4513  * @uA_load: load current
4514  *
4515  * Notifies the regulator core of a new device load. This is then used by
4516  * DRMS (if enabled by constraints) to set the most efficient regulator
4517  * operating mode for the new regulator loading.
4518  *
4519  * Consumer devices notify their supply regulator of the maximum power
4520  * they will require (can be taken from device datasheet in the power
4521  * consumption tables) when they change operational status and hence power
4522  * state. Examples of operational state changes that can affect power
4523  * consumption are :-
4524  *
4525  *    o Device is opened / closed.
4526  *    o Device I/O is about to begin or has just finished.
4527  *    o Device is idling in between work.
4528  *
4529  * This information is also exported via sysfs to userspace.
4530  *
4531  * DRMS will sum the total requested load on the regulator and change
4532  * to the most efficient operating mode if platform constraints allow.
4533  *
4534  * NOTE: when a regulator consumer requests to have a regulator
4535  * disabled then any load that consumer requested no longer counts
4536  * toward the total requested load.  If the regulator is re-enabled
4537  * then the previously requested load will start counting again.
4538  *
4539  * If a regulator is an always-on regulator then an individual consumer's
4540  * load will still be removed if that consumer is fully disabled.
4541  *
4542  * On error a negative errno is returned.
4543  */
regulator_set_load(struct regulator * regulator,int uA_load)4544 int regulator_set_load(struct regulator *regulator, int uA_load)
4545 {
4546 	struct regulator_dev *rdev = regulator->rdev;
4547 	int old_uA_load;
4548 	int ret = 0;
4549 
4550 	regulator_lock(rdev);
4551 	old_uA_load = regulator->uA_load;
4552 	regulator->uA_load = uA_load;
4553 	if (regulator->enable_count && old_uA_load != uA_load) {
4554 		ret = drms_uA_update(rdev);
4555 		if (ret < 0)
4556 			regulator->uA_load = old_uA_load;
4557 	}
4558 	regulator_unlock(rdev);
4559 
4560 	return ret;
4561 }
4562 EXPORT_SYMBOL_GPL(regulator_set_load);
4563 
4564 /**
4565  * regulator_allow_bypass - allow the regulator to go into bypass mode
4566  *
4567  * @regulator: Regulator to configure
4568  * @enable: enable or disable bypass mode
4569  *
4570  * Allow the regulator to go into bypass mode if all other consumers
4571  * for the regulator also enable bypass mode and the machine
4572  * constraints allow this.  Bypass mode means that the regulator is
4573  * simply passing the input directly to the output with no regulation.
4574  */
regulator_allow_bypass(struct regulator * regulator,bool enable)4575 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4576 {
4577 	struct regulator_dev *rdev = regulator->rdev;
4578 	const char *name = rdev_get_name(rdev);
4579 	int ret = 0;
4580 
4581 	if (!rdev->desc->ops->set_bypass)
4582 		return 0;
4583 
4584 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4585 		return 0;
4586 
4587 	regulator_lock(rdev);
4588 
4589 	if (enable && !regulator->bypass) {
4590 		rdev->bypass_count++;
4591 
4592 		if (rdev->bypass_count == rdev->open_count) {
4593 			trace_regulator_bypass_enable(name);
4594 
4595 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4596 			if (ret != 0)
4597 				rdev->bypass_count--;
4598 			else
4599 				trace_regulator_bypass_enable_complete(name);
4600 		}
4601 
4602 	} else if (!enable && regulator->bypass) {
4603 		rdev->bypass_count--;
4604 
4605 		if (rdev->bypass_count != rdev->open_count) {
4606 			trace_regulator_bypass_disable(name);
4607 
4608 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4609 			if (ret != 0)
4610 				rdev->bypass_count++;
4611 			else
4612 				trace_regulator_bypass_disable_complete(name);
4613 		}
4614 	}
4615 
4616 	if (ret == 0)
4617 		regulator->bypass = enable;
4618 
4619 	regulator_unlock(rdev);
4620 
4621 	return ret;
4622 }
4623 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4624 
4625 /**
4626  * regulator_register_notifier - register regulator event notifier
4627  * @regulator: regulator source
4628  * @nb: notifier block
4629  *
4630  * Register notifier block to receive regulator events.
4631  */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)4632 int regulator_register_notifier(struct regulator *regulator,
4633 			      struct notifier_block *nb)
4634 {
4635 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4636 						nb);
4637 }
4638 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4639 
4640 /**
4641  * regulator_unregister_notifier - unregister regulator event notifier
4642  * @regulator: regulator source
4643  * @nb: notifier block
4644  *
4645  * Unregister regulator event notifier block.
4646  */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)4647 int regulator_unregister_notifier(struct regulator *regulator,
4648 				struct notifier_block *nb)
4649 {
4650 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4651 						  nb);
4652 }
4653 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4654 
4655 /* notify regulator consumers and downstream regulator consumers.
4656  * Note mutex must be held by caller.
4657  */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)4658 static int _notifier_call_chain(struct regulator_dev *rdev,
4659 				  unsigned long event, void *data)
4660 {
4661 	/* call rdev chain first */
4662 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4663 }
4664 
4665 /**
4666  * regulator_bulk_get - get multiple regulator consumers
4667  *
4668  * @dev:           Device to supply
4669  * @num_consumers: Number of consumers to register
4670  * @consumers:     Configuration of consumers; clients are stored here.
4671  *
4672  * @return 0 on success, an errno on failure.
4673  *
4674  * This helper function allows drivers to get several regulator
4675  * consumers in one operation.  If any of the regulators cannot be
4676  * acquired then any regulators that were allocated will be freed
4677  * before returning to the caller.
4678  */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)4679 int regulator_bulk_get(struct device *dev, int num_consumers,
4680 		       struct regulator_bulk_data *consumers)
4681 {
4682 	int i;
4683 	int ret;
4684 
4685 	for (i = 0; i < num_consumers; i++)
4686 		consumers[i].consumer = NULL;
4687 
4688 	for (i = 0; i < num_consumers; i++) {
4689 		consumers[i].consumer = regulator_get(dev,
4690 						      consumers[i].supply);
4691 		if (IS_ERR(consumers[i].consumer)) {
4692 			ret = PTR_ERR(consumers[i].consumer);
4693 			consumers[i].consumer = NULL;
4694 			goto err;
4695 		}
4696 	}
4697 
4698 	return 0;
4699 
4700 err:
4701 	if (ret != -EPROBE_DEFER)
4702 		dev_err(dev, "Failed to get supply '%s': %pe\n",
4703 			consumers[i].supply, ERR_PTR(ret));
4704 	else
4705 		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4706 			consumers[i].supply);
4707 
4708 	while (--i >= 0)
4709 		regulator_put(consumers[i].consumer);
4710 
4711 	return ret;
4712 }
4713 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4714 
regulator_bulk_enable_async(void * data,async_cookie_t cookie)4715 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4716 {
4717 	struct regulator_bulk_data *bulk = data;
4718 
4719 	bulk->ret = regulator_enable(bulk->consumer);
4720 }
4721 
4722 /**
4723  * regulator_bulk_enable - enable multiple regulator consumers
4724  *
4725  * @num_consumers: Number of consumers
4726  * @consumers:     Consumer data; clients are stored here.
4727  * @return         0 on success, an errno on failure
4728  *
4729  * This convenience API allows consumers to enable multiple regulator
4730  * clients in a single API call.  If any consumers cannot be enabled
4731  * then any others that were enabled will be disabled again prior to
4732  * return.
4733  */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)4734 int regulator_bulk_enable(int num_consumers,
4735 			  struct regulator_bulk_data *consumers)
4736 {
4737 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4738 	int i;
4739 	int ret = 0;
4740 
4741 	for (i = 0; i < num_consumers; i++) {
4742 		async_schedule_domain(regulator_bulk_enable_async,
4743 				      &consumers[i], &async_domain);
4744 	}
4745 
4746 	async_synchronize_full_domain(&async_domain);
4747 
4748 	/* If any consumer failed we need to unwind any that succeeded */
4749 	for (i = 0; i < num_consumers; i++) {
4750 		if (consumers[i].ret != 0) {
4751 			ret = consumers[i].ret;
4752 			goto err;
4753 		}
4754 	}
4755 
4756 	return 0;
4757 
4758 err:
4759 	for (i = 0; i < num_consumers; i++) {
4760 		if (consumers[i].ret < 0)
4761 			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4762 			       ERR_PTR(consumers[i].ret));
4763 		else
4764 			regulator_disable(consumers[i].consumer);
4765 	}
4766 
4767 	return ret;
4768 }
4769 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4770 
4771 /**
4772  * regulator_bulk_disable - disable multiple regulator consumers
4773  *
4774  * @num_consumers: Number of consumers
4775  * @consumers:     Consumer data; clients are stored here.
4776  * @return         0 on success, an errno on failure
4777  *
4778  * This convenience API allows consumers to disable multiple regulator
4779  * clients in a single API call.  If any consumers cannot be disabled
4780  * then any others that were disabled will be enabled again prior to
4781  * return.
4782  */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)4783 int regulator_bulk_disable(int num_consumers,
4784 			   struct regulator_bulk_data *consumers)
4785 {
4786 	int i;
4787 	int ret, r;
4788 
4789 	for (i = num_consumers - 1; i >= 0; --i) {
4790 		ret = regulator_disable(consumers[i].consumer);
4791 		if (ret != 0)
4792 			goto err;
4793 	}
4794 
4795 	return 0;
4796 
4797 err:
4798 	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4799 	for (++i; i < num_consumers; ++i) {
4800 		r = regulator_enable(consumers[i].consumer);
4801 		if (r != 0)
4802 			pr_err("Failed to re-enable %s: %pe\n",
4803 			       consumers[i].supply, ERR_PTR(r));
4804 	}
4805 
4806 	return ret;
4807 }
4808 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4809 
4810 /**
4811  * regulator_bulk_force_disable - force disable multiple regulator consumers
4812  *
4813  * @num_consumers: Number of consumers
4814  * @consumers:     Consumer data; clients are stored here.
4815  * @return         0 on success, an errno on failure
4816  *
4817  * This convenience API allows consumers to forcibly disable multiple regulator
4818  * clients in a single API call.
4819  * NOTE: This should be used for situations when device damage will
4820  * likely occur if the regulators are not disabled (e.g. over temp).
4821  * Although regulator_force_disable function call for some consumers can
4822  * return error numbers, the function is called for all consumers.
4823  */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)4824 int regulator_bulk_force_disable(int num_consumers,
4825 			   struct regulator_bulk_data *consumers)
4826 {
4827 	int i;
4828 	int ret = 0;
4829 
4830 	for (i = 0; i < num_consumers; i++) {
4831 		consumers[i].ret =
4832 			    regulator_force_disable(consumers[i].consumer);
4833 
4834 		/* Store first error for reporting */
4835 		if (consumers[i].ret && !ret)
4836 			ret = consumers[i].ret;
4837 	}
4838 
4839 	return ret;
4840 }
4841 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4842 
4843 /**
4844  * regulator_bulk_free - free multiple regulator consumers
4845  *
4846  * @num_consumers: Number of consumers
4847  * @consumers:     Consumer data; clients are stored here.
4848  *
4849  * This convenience API allows consumers to free multiple regulator
4850  * clients in a single API call.
4851  */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)4852 void regulator_bulk_free(int num_consumers,
4853 			 struct regulator_bulk_data *consumers)
4854 {
4855 	int i;
4856 
4857 	for (i = 0; i < num_consumers; i++) {
4858 		regulator_put(consumers[i].consumer);
4859 		consumers[i].consumer = NULL;
4860 	}
4861 }
4862 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4863 
4864 /**
4865  * regulator_notifier_call_chain - call regulator event notifier
4866  * @rdev: regulator source
4867  * @event: notifier block
4868  * @data: callback-specific data.
4869  *
4870  * Called by regulator drivers to notify clients a regulator event has
4871  * occurred.
4872  */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)4873 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4874 				  unsigned long event, void *data)
4875 {
4876 	_notifier_call_chain(rdev, event, data);
4877 	return NOTIFY_DONE;
4878 
4879 }
4880 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4881 
4882 /**
4883  * regulator_mode_to_status - convert a regulator mode into a status
4884  *
4885  * @mode: Mode to convert
4886  *
4887  * Convert a regulator mode into a status.
4888  */
regulator_mode_to_status(unsigned int mode)4889 int regulator_mode_to_status(unsigned int mode)
4890 {
4891 	switch (mode) {
4892 	case REGULATOR_MODE_FAST:
4893 		return REGULATOR_STATUS_FAST;
4894 	case REGULATOR_MODE_NORMAL:
4895 		return REGULATOR_STATUS_NORMAL;
4896 	case REGULATOR_MODE_IDLE:
4897 		return REGULATOR_STATUS_IDLE;
4898 	case REGULATOR_MODE_STANDBY:
4899 		return REGULATOR_STATUS_STANDBY;
4900 	default:
4901 		return REGULATOR_STATUS_UNDEFINED;
4902 	}
4903 }
4904 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4905 
4906 static struct attribute *regulator_dev_attrs[] = {
4907 	&dev_attr_name.attr,
4908 	&dev_attr_num_users.attr,
4909 	&dev_attr_type.attr,
4910 	&dev_attr_microvolts.attr,
4911 	&dev_attr_microamps.attr,
4912 	&dev_attr_opmode.attr,
4913 	&dev_attr_state.attr,
4914 	&dev_attr_status.attr,
4915 	&dev_attr_bypass.attr,
4916 	&dev_attr_requested_microamps.attr,
4917 	&dev_attr_min_microvolts.attr,
4918 	&dev_attr_max_microvolts.attr,
4919 	&dev_attr_min_microamps.attr,
4920 	&dev_attr_max_microamps.attr,
4921 	&dev_attr_suspend_standby_state.attr,
4922 	&dev_attr_suspend_mem_state.attr,
4923 	&dev_attr_suspend_disk_state.attr,
4924 	&dev_attr_suspend_standby_microvolts.attr,
4925 	&dev_attr_suspend_mem_microvolts.attr,
4926 	&dev_attr_suspend_disk_microvolts.attr,
4927 	&dev_attr_suspend_standby_mode.attr,
4928 	&dev_attr_suspend_mem_mode.attr,
4929 	&dev_attr_suspend_disk_mode.attr,
4930 	NULL
4931 };
4932 
4933 /*
4934  * To avoid cluttering sysfs (and memory) with useless state, only
4935  * create attributes that can be meaningfully displayed.
4936  */
regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)4937 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4938 					 struct attribute *attr, int idx)
4939 {
4940 	struct device *dev = kobj_to_dev(kobj);
4941 	struct regulator_dev *rdev = dev_to_rdev(dev);
4942 	const struct regulator_ops *ops = rdev->desc->ops;
4943 	umode_t mode = attr->mode;
4944 
4945 	/* these three are always present */
4946 	if (attr == &dev_attr_name.attr ||
4947 	    attr == &dev_attr_num_users.attr ||
4948 	    attr == &dev_attr_type.attr)
4949 		return mode;
4950 
4951 	/* some attributes need specific methods to be displayed */
4952 	if (attr == &dev_attr_microvolts.attr) {
4953 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4954 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4955 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4956 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4957 			return mode;
4958 		return 0;
4959 	}
4960 
4961 	if (attr == &dev_attr_microamps.attr)
4962 		return ops->get_current_limit ? mode : 0;
4963 
4964 	if (attr == &dev_attr_opmode.attr)
4965 		return ops->get_mode ? mode : 0;
4966 
4967 	if (attr == &dev_attr_state.attr)
4968 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4969 
4970 	if (attr == &dev_attr_status.attr)
4971 		return ops->get_status ? mode : 0;
4972 
4973 	if (attr == &dev_attr_bypass.attr)
4974 		return ops->get_bypass ? mode : 0;
4975 
4976 	/* constraints need specific supporting methods */
4977 	if (attr == &dev_attr_min_microvolts.attr ||
4978 	    attr == &dev_attr_max_microvolts.attr)
4979 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4980 
4981 	if (attr == &dev_attr_min_microamps.attr ||
4982 	    attr == &dev_attr_max_microamps.attr)
4983 		return ops->set_current_limit ? mode : 0;
4984 
4985 	if (attr == &dev_attr_suspend_standby_state.attr ||
4986 	    attr == &dev_attr_suspend_mem_state.attr ||
4987 	    attr == &dev_attr_suspend_disk_state.attr)
4988 		return mode;
4989 
4990 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4991 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
4992 	    attr == &dev_attr_suspend_disk_microvolts.attr)
4993 		return ops->set_suspend_voltage ? mode : 0;
4994 
4995 	if (attr == &dev_attr_suspend_standby_mode.attr ||
4996 	    attr == &dev_attr_suspend_mem_mode.attr ||
4997 	    attr == &dev_attr_suspend_disk_mode.attr)
4998 		return ops->set_suspend_mode ? mode : 0;
4999 
5000 	return mode;
5001 }
5002 
5003 static const struct attribute_group regulator_dev_group = {
5004 	.attrs = regulator_dev_attrs,
5005 	.is_visible = regulator_attr_is_visible,
5006 };
5007 
5008 static const struct attribute_group *regulator_dev_groups[] = {
5009 	&regulator_dev_group,
5010 	NULL
5011 };
5012 
regulator_dev_release(struct device * dev)5013 static void regulator_dev_release(struct device *dev)
5014 {
5015 	struct regulator_dev *rdev = dev_get_drvdata(dev);
5016 
5017 	debugfs_remove_recursive(rdev->debugfs);
5018 	kfree(rdev->constraints);
5019 	of_node_put(rdev->dev.of_node);
5020 	kfree(rdev);
5021 }
5022 
rdev_init_debugfs(struct regulator_dev * rdev)5023 static void rdev_init_debugfs(struct regulator_dev *rdev)
5024 {
5025 	struct device *parent = rdev->dev.parent;
5026 	const char *rname = rdev_get_name(rdev);
5027 	char name[NAME_MAX];
5028 
5029 	/* Avoid duplicate debugfs directory names */
5030 	if (parent && rname == rdev->desc->name) {
5031 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5032 			 rname);
5033 		rname = name;
5034 	}
5035 
5036 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5037 	if (IS_ERR(rdev->debugfs))
5038 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
5039 
5040 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5041 			   &rdev->use_count);
5042 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5043 			   &rdev->open_count);
5044 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5045 			   &rdev->bypass_count);
5046 }
5047 
regulator_register_resolve_supply(struct device * dev,void * data)5048 static int regulator_register_resolve_supply(struct device *dev, void *data)
5049 {
5050 	struct regulator_dev *rdev = dev_to_rdev(dev);
5051 
5052 	if (regulator_resolve_supply(rdev))
5053 		rdev_dbg(rdev, "unable to resolve supply\n");
5054 
5055 	return 0;
5056 }
5057 
regulator_coupler_register(struct regulator_coupler * coupler)5058 int regulator_coupler_register(struct regulator_coupler *coupler)
5059 {
5060 	mutex_lock(&regulator_list_mutex);
5061 	list_add_tail(&coupler->list, &regulator_coupler_list);
5062 	mutex_unlock(&regulator_list_mutex);
5063 
5064 	return 0;
5065 }
5066 
5067 static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev * rdev)5068 regulator_find_coupler(struct regulator_dev *rdev)
5069 {
5070 	struct regulator_coupler *coupler;
5071 	int err;
5072 
5073 	/*
5074 	 * Note that regulators are appended to the list and the generic
5075 	 * coupler is registered first, hence it will be attached at last
5076 	 * if nobody cared.
5077 	 */
5078 	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5079 		err = coupler->attach_regulator(coupler, rdev);
5080 		if (!err) {
5081 			if (!coupler->balance_voltage &&
5082 			    rdev->coupling_desc.n_coupled > 2)
5083 				goto err_unsupported;
5084 
5085 			return coupler;
5086 		}
5087 
5088 		if (err < 0)
5089 			return ERR_PTR(err);
5090 
5091 		if (err == 1)
5092 			continue;
5093 
5094 		break;
5095 	}
5096 
5097 	return ERR_PTR(-EINVAL);
5098 
5099 err_unsupported:
5100 	if (coupler->detach_regulator)
5101 		coupler->detach_regulator(coupler, rdev);
5102 
5103 	rdev_err(rdev,
5104 		"Voltage balancing for multiple regulator couples is unimplemented\n");
5105 
5106 	return ERR_PTR(-EPERM);
5107 }
5108 
regulator_resolve_coupling(struct regulator_dev * rdev)5109 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5110 {
5111 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5112 	struct coupling_desc *c_desc = &rdev->coupling_desc;
5113 	int n_coupled = c_desc->n_coupled;
5114 	struct regulator_dev *c_rdev;
5115 	int i;
5116 
5117 	for (i = 1; i < n_coupled; i++) {
5118 		/* already resolved */
5119 		if (c_desc->coupled_rdevs[i])
5120 			continue;
5121 
5122 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5123 
5124 		if (!c_rdev)
5125 			continue;
5126 
5127 		if (c_rdev->coupling_desc.coupler != coupler) {
5128 			rdev_err(rdev, "coupler mismatch with %s\n",
5129 				 rdev_get_name(c_rdev));
5130 			return;
5131 		}
5132 
5133 		c_desc->coupled_rdevs[i] = c_rdev;
5134 		c_desc->n_resolved++;
5135 
5136 		regulator_resolve_coupling(c_rdev);
5137 	}
5138 }
5139 
regulator_remove_coupling(struct regulator_dev * rdev)5140 static void regulator_remove_coupling(struct regulator_dev *rdev)
5141 {
5142 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5143 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5144 	struct regulator_dev *__c_rdev, *c_rdev;
5145 	unsigned int __n_coupled, n_coupled;
5146 	int i, k;
5147 	int err;
5148 
5149 	n_coupled = c_desc->n_coupled;
5150 
5151 	for (i = 1; i < n_coupled; i++) {
5152 		c_rdev = c_desc->coupled_rdevs[i];
5153 
5154 		if (!c_rdev)
5155 			continue;
5156 
5157 		regulator_lock(c_rdev);
5158 
5159 		__c_desc = &c_rdev->coupling_desc;
5160 		__n_coupled = __c_desc->n_coupled;
5161 
5162 		for (k = 1; k < __n_coupled; k++) {
5163 			__c_rdev = __c_desc->coupled_rdevs[k];
5164 
5165 			if (__c_rdev == rdev) {
5166 				__c_desc->coupled_rdevs[k] = NULL;
5167 				__c_desc->n_resolved--;
5168 				break;
5169 			}
5170 		}
5171 
5172 		regulator_unlock(c_rdev);
5173 
5174 		c_desc->coupled_rdevs[i] = NULL;
5175 		c_desc->n_resolved--;
5176 	}
5177 
5178 	if (coupler && coupler->detach_regulator) {
5179 		err = coupler->detach_regulator(coupler, rdev);
5180 		if (err)
5181 			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5182 				 ERR_PTR(err));
5183 	}
5184 
5185 	kfree(rdev->coupling_desc.coupled_rdevs);
5186 	rdev->coupling_desc.coupled_rdevs = NULL;
5187 }
5188 
regulator_init_coupling(struct regulator_dev * rdev)5189 static int regulator_init_coupling(struct regulator_dev *rdev)
5190 {
5191 	struct regulator_dev **coupled;
5192 	int err, n_phandles;
5193 
5194 	if (!IS_ENABLED(CONFIG_OF))
5195 		n_phandles = 0;
5196 	else
5197 		n_phandles = of_get_n_coupled(rdev);
5198 
5199 	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5200 	if (!coupled)
5201 		return -ENOMEM;
5202 
5203 	rdev->coupling_desc.coupled_rdevs = coupled;
5204 
5205 	/*
5206 	 * Every regulator should always have coupling descriptor filled with
5207 	 * at least pointer to itself.
5208 	 */
5209 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5210 	rdev->coupling_desc.n_coupled = n_phandles + 1;
5211 	rdev->coupling_desc.n_resolved++;
5212 
5213 	/* regulator isn't coupled */
5214 	if (n_phandles == 0)
5215 		return 0;
5216 
5217 	if (!of_check_coupling_data(rdev))
5218 		return -EPERM;
5219 
5220 	mutex_lock(&regulator_list_mutex);
5221 	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5222 	mutex_unlock(&regulator_list_mutex);
5223 
5224 	if (IS_ERR(rdev->coupling_desc.coupler)) {
5225 		err = PTR_ERR(rdev->coupling_desc.coupler);
5226 		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5227 		return err;
5228 	}
5229 
5230 	return 0;
5231 }
5232 
generic_coupler_attach(struct regulator_coupler * coupler,struct regulator_dev * rdev)5233 static int generic_coupler_attach(struct regulator_coupler *coupler,
5234 				  struct regulator_dev *rdev)
5235 {
5236 	if (rdev->coupling_desc.n_coupled > 2) {
5237 		rdev_err(rdev,
5238 			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5239 		return -EPERM;
5240 	}
5241 
5242 	if (!rdev->constraints->always_on) {
5243 		rdev_err(rdev,
5244 			 "Coupling of a non always-on regulator is unimplemented\n");
5245 		return -ENOTSUPP;
5246 	}
5247 
5248 	return 0;
5249 }
5250 
5251 static struct regulator_coupler generic_regulator_coupler = {
5252 	.attach_regulator = generic_coupler_attach,
5253 };
5254 
5255 /**
5256  * regulator_register - register regulator
5257  * @regulator_desc: regulator to register
5258  * @cfg: runtime configuration for regulator
5259  *
5260  * Called by regulator drivers to register a regulator.
5261  * Returns a valid pointer to struct regulator_dev on success
5262  * or an ERR_PTR() on error.
5263  */
5264 struct regulator_dev *
regulator_register(const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)5265 regulator_register(const struct regulator_desc *regulator_desc,
5266 		   const struct regulator_config *cfg)
5267 {
5268 	const struct regulator_init_data *init_data;
5269 	struct regulator_config *config = NULL;
5270 	static atomic_t regulator_no = ATOMIC_INIT(-1);
5271 	struct regulator_dev *rdev;
5272 	bool dangling_cfg_gpiod = false;
5273 	bool dangling_of_gpiod = false;
5274 	struct device *dev;
5275 	int ret, i;
5276 
5277 	if (cfg == NULL)
5278 		return ERR_PTR(-EINVAL);
5279 	if (cfg->ena_gpiod)
5280 		dangling_cfg_gpiod = true;
5281 	if (regulator_desc == NULL) {
5282 		ret = -EINVAL;
5283 		goto rinse;
5284 	}
5285 
5286 	dev = cfg->dev;
5287 	WARN_ON(!dev);
5288 
5289 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5290 		ret = -EINVAL;
5291 		goto rinse;
5292 	}
5293 
5294 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5295 	    regulator_desc->type != REGULATOR_CURRENT) {
5296 		ret = -EINVAL;
5297 		goto rinse;
5298 	}
5299 
5300 	/* Only one of each should be implemented */
5301 	WARN_ON(regulator_desc->ops->get_voltage &&
5302 		regulator_desc->ops->get_voltage_sel);
5303 	WARN_ON(regulator_desc->ops->set_voltage &&
5304 		regulator_desc->ops->set_voltage_sel);
5305 
5306 	/* If we're using selectors we must implement list_voltage. */
5307 	if (regulator_desc->ops->get_voltage_sel &&
5308 	    !regulator_desc->ops->list_voltage) {
5309 		ret = -EINVAL;
5310 		goto rinse;
5311 	}
5312 	if (regulator_desc->ops->set_voltage_sel &&
5313 	    !regulator_desc->ops->list_voltage) {
5314 		ret = -EINVAL;
5315 		goto rinse;
5316 	}
5317 
5318 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5319 	if (rdev == NULL) {
5320 		ret = -ENOMEM;
5321 		goto rinse;
5322 	}
5323 	device_initialize(&rdev->dev);
5324 
5325 	/*
5326 	 * Duplicate the config so the driver could override it after
5327 	 * parsing init data.
5328 	 */
5329 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5330 	if (config == NULL) {
5331 		ret = -ENOMEM;
5332 		goto clean;
5333 	}
5334 
5335 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5336 					       &rdev->dev.of_node);
5337 
5338 	/*
5339 	 * Sometimes not all resources are probed already so we need to take
5340 	 * that into account. This happens most the time if the ena_gpiod comes
5341 	 * from a gpio extender or something else.
5342 	 */
5343 	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5344 		ret = -EPROBE_DEFER;
5345 		goto clean;
5346 	}
5347 
5348 	/*
5349 	 * We need to keep track of any GPIO descriptor coming from the
5350 	 * device tree until we have handled it over to the core. If the
5351 	 * config that was passed in to this function DOES NOT contain
5352 	 * a descriptor, and the config after this call DOES contain
5353 	 * a descriptor, we definitely got one from parsing the device
5354 	 * tree.
5355 	 */
5356 	if (!cfg->ena_gpiod && config->ena_gpiod)
5357 		dangling_of_gpiod = true;
5358 	if (!init_data) {
5359 		init_data = config->init_data;
5360 		rdev->dev.of_node = of_node_get(config->of_node);
5361 	}
5362 
5363 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5364 	rdev->reg_data = config->driver_data;
5365 	rdev->owner = regulator_desc->owner;
5366 	rdev->desc = regulator_desc;
5367 	if (config->regmap)
5368 		rdev->regmap = config->regmap;
5369 	else if (dev_get_regmap(dev, NULL))
5370 		rdev->regmap = dev_get_regmap(dev, NULL);
5371 	else if (dev->parent)
5372 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5373 	INIT_LIST_HEAD(&rdev->consumer_list);
5374 	INIT_LIST_HEAD(&rdev->list);
5375 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5376 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5377 
5378 	/* preform any regulator specific init */
5379 	if (init_data && init_data->regulator_init) {
5380 		ret = init_data->regulator_init(rdev->reg_data);
5381 		if (ret < 0)
5382 			goto clean;
5383 	}
5384 
5385 	if (config->ena_gpiod) {
5386 		ret = regulator_ena_gpio_request(rdev, config);
5387 		if (ret != 0) {
5388 			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5389 				 ERR_PTR(ret));
5390 			goto clean;
5391 		}
5392 		/* The regulator core took over the GPIO descriptor */
5393 		dangling_cfg_gpiod = false;
5394 		dangling_of_gpiod = false;
5395 	}
5396 
5397 	/* register with sysfs */
5398 	rdev->dev.class = &regulator_class;
5399 	rdev->dev.parent = dev;
5400 	dev_set_name(&rdev->dev, "regulator.%lu",
5401 		    (unsigned long) atomic_inc_return(&regulator_no));
5402 	dev_set_drvdata(&rdev->dev, rdev);
5403 
5404 	/* set regulator constraints */
5405 	if (init_data)
5406 		rdev->constraints = kmemdup(&init_data->constraints,
5407 					    sizeof(*rdev->constraints),
5408 					    GFP_KERNEL);
5409 	else
5410 		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5411 					    GFP_KERNEL);
5412 	if (!rdev->constraints) {
5413 		ret = -ENOMEM;
5414 		goto wash;
5415 	}
5416 
5417 	if (init_data && init_data->supply_regulator)
5418 		rdev->supply_name = init_data->supply_regulator;
5419 	else if (regulator_desc->supply_name)
5420 		rdev->supply_name = regulator_desc->supply_name;
5421 
5422 	ret = set_machine_constraints(rdev);
5423 	if (ret == -EPROBE_DEFER) {
5424 		/* Regulator might be in bypass mode and so needs its supply
5425 		 * to set the constraints */
5426 		/* FIXME: this currently triggers a chicken-and-egg problem
5427 		 * when creating -SUPPLY symlink in sysfs to a regulator
5428 		 * that is just being created */
5429 		ret = regulator_resolve_supply(rdev);
5430 		if (!ret)
5431 			ret = set_machine_constraints(rdev);
5432 		else
5433 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5434 				 ERR_PTR(ret));
5435 	}
5436 	if (ret < 0)
5437 		goto wash;
5438 
5439 	ret = regulator_init_coupling(rdev);
5440 	if (ret < 0)
5441 		goto wash;
5442 
5443 	/* add consumers devices */
5444 	if (init_data) {
5445 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5446 			ret = set_consumer_device_supply(rdev,
5447 				init_data->consumer_supplies[i].dev_name,
5448 				init_data->consumer_supplies[i].supply);
5449 			if (ret < 0) {
5450 				dev_err(dev, "Failed to set supply %s\n",
5451 					init_data->consumer_supplies[i].supply);
5452 				goto unset_supplies;
5453 			}
5454 		}
5455 	}
5456 
5457 	if (!rdev->desc->ops->get_voltage &&
5458 	    !rdev->desc->ops->list_voltage &&
5459 	    !rdev->desc->fixed_uV)
5460 		rdev->is_switch = true;
5461 
5462 	ret = device_add(&rdev->dev);
5463 	if (ret != 0)
5464 		goto unset_supplies;
5465 
5466 	rdev_init_debugfs(rdev);
5467 
5468 	/* try to resolve regulators coupling since a new one was registered */
5469 	mutex_lock(&regulator_list_mutex);
5470 	regulator_resolve_coupling(rdev);
5471 	mutex_unlock(&regulator_list_mutex);
5472 
5473 	/* try to resolve regulators supply since a new one was registered */
5474 	class_for_each_device(&regulator_class, NULL, NULL,
5475 			      regulator_register_resolve_supply);
5476 	kfree(config);
5477 	return rdev;
5478 
5479 unset_supplies:
5480 	mutex_lock(&regulator_list_mutex);
5481 	unset_regulator_supplies(rdev);
5482 	regulator_remove_coupling(rdev);
5483 	mutex_unlock(&regulator_list_mutex);
5484 wash:
5485 	regulator_put(rdev->supply);
5486 	kfree(rdev->coupling_desc.coupled_rdevs);
5487 	mutex_lock(&regulator_list_mutex);
5488 	regulator_ena_gpio_free(rdev);
5489 	mutex_unlock(&regulator_list_mutex);
5490 clean:
5491 	if (dangling_of_gpiod)
5492 		gpiod_put(config->ena_gpiod);
5493 	kfree(config);
5494 	put_device(&rdev->dev);
5495 rinse:
5496 	if (dangling_cfg_gpiod)
5497 		gpiod_put(cfg->ena_gpiod);
5498 	return ERR_PTR(ret);
5499 }
5500 EXPORT_SYMBOL_GPL(regulator_register);
5501 
5502 /**
5503  * regulator_unregister - unregister regulator
5504  * @rdev: regulator to unregister
5505  *
5506  * Called by regulator drivers to unregister a regulator.
5507  */
regulator_unregister(struct regulator_dev * rdev)5508 void regulator_unregister(struct regulator_dev *rdev)
5509 {
5510 	if (rdev == NULL)
5511 		return;
5512 
5513 	if (rdev->supply) {
5514 		while (rdev->use_count--)
5515 			regulator_disable(rdev->supply);
5516 		regulator_put(rdev->supply);
5517 	}
5518 
5519 	flush_work(&rdev->disable_work.work);
5520 
5521 	mutex_lock(&regulator_list_mutex);
5522 
5523 	WARN_ON(rdev->open_count);
5524 	regulator_remove_coupling(rdev);
5525 	unset_regulator_supplies(rdev);
5526 	list_del(&rdev->list);
5527 	regulator_ena_gpio_free(rdev);
5528 	device_unregister(&rdev->dev);
5529 
5530 	mutex_unlock(&regulator_list_mutex);
5531 }
5532 EXPORT_SYMBOL_GPL(regulator_unregister);
5533 
5534 #ifdef CONFIG_SUSPEND
5535 /**
5536  * regulator_suspend - prepare regulators for system wide suspend
5537  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5538  *
5539  * Configure each regulator with it's suspend operating parameters for state.
5540  */
regulator_suspend(struct device * dev)5541 static int regulator_suspend(struct device *dev)
5542 {
5543 	struct regulator_dev *rdev = dev_to_rdev(dev);
5544 	suspend_state_t state = pm_suspend_target_state;
5545 	int ret;
5546 	const struct regulator_state *rstate;
5547 
5548 	rstate = regulator_get_suspend_state_check(rdev, state);
5549 	if (!rstate)
5550 		return 0;
5551 
5552 	regulator_lock(rdev);
5553 	ret = __suspend_set_state(rdev, rstate);
5554 	regulator_unlock(rdev);
5555 
5556 	return ret;
5557 }
5558 
regulator_resume(struct device * dev)5559 static int regulator_resume(struct device *dev)
5560 {
5561 	suspend_state_t state = pm_suspend_target_state;
5562 	struct regulator_dev *rdev = dev_to_rdev(dev);
5563 	struct regulator_state *rstate;
5564 	int ret = 0;
5565 
5566 	rstate = regulator_get_suspend_state(rdev, state);
5567 	if (rstate == NULL)
5568 		return 0;
5569 
5570 	/* Avoid grabbing the lock if we don't need to */
5571 	if (!rdev->desc->ops->resume)
5572 		return 0;
5573 
5574 	regulator_lock(rdev);
5575 
5576 	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5577 	    rstate->enabled == DISABLE_IN_SUSPEND)
5578 		ret = rdev->desc->ops->resume(rdev);
5579 
5580 	regulator_unlock(rdev);
5581 
5582 	return ret;
5583 }
5584 #else /* !CONFIG_SUSPEND */
5585 
5586 #define regulator_suspend	NULL
5587 #define regulator_resume	NULL
5588 
5589 #endif /* !CONFIG_SUSPEND */
5590 
5591 #ifdef CONFIG_PM
5592 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5593 	.suspend	= regulator_suspend,
5594 	.resume		= regulator_resume,
5595 };
5596 #endif
5597 
5598 struct class regulator_class = {
5599 	.name = "regulator",
5600 	.dev_release = regulator_dev_release,
5601 	.dev_groups = regulator_dev_groups,
5602 #ifdef CONFIG_PM
5603 	.pm = &regulator_pm_ops,
5604 #endif
5605 };
5606 /**
5607  * regulator_has_full_constraints - the system has fully specified constraints
5608  *
5609  * Calling this function will cause the regulator API to disable all
5610  * regulators which have a zero use count and don't have an always_on
5611  * constraint in a late_initcall.
5612  *
5613  * The intention is that this will become the default behaviour in a
5614  * future kernel release so users are encouraged to use this facility
5615  * now.
5616  */
regulator_has_full_constraints(void)5617 void regulator_has_full_constraints(void)
5618 {
5619 	has_full_constraints = 1;
5620 }
5621 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5622 
5623 /**
5624  * rdev_get_drvdata - get rdev regulator driver data
5625  * @rdev: regulator
5626  *
5627  * Get rdev regulator driver private data. This call can be used in the
5628  * regulator driver context.
5629  */
rdev_get_drvdata(struct regulator_dev * rdev)5630 void *rdev_get_drvdata(struct regulator_dev *rdev)
5631 {
5632 	return rdev->reg_data;
5633 }
5634 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5635 
5636 /**
5637  * regulator_get_drvdata - get regulator driver data
5638  * @regulator: regulator
5639  *
5640  * Get regulator driver private data. This call can be used in the consumer
5641  * driver context when non API regulator specific functions need to be called.
5642  */
regulator_get_drvdata(struct regulator * regulator)5643 void *regulator_get_drvdata(struct regulator *regulator)
5644 {
5645 	return regulator->rdev->reg_data;
5646 }
5647 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5648 
5649 /**
5650  * regulator_set_drvdata - set regulator driver data
5651  * @regulator: regulator
5652  * @data: data
5653  */
regulator_set_drvdata(struct regulator * regulator,void * data)5654 void regulator_set_drvdata(struct regulator *regulator, void *data)
5655 {
5656 	regulator->rdev->reg_data = data;
5657 }
5658 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5659 
5660 /**
5661  * regulator_get_id - get regulator ID
5662  * @rdev: regulator
5663  */
rdev_get_id(struct regulator_dev * rdev)5664 int rdev_get_id(struct regulator_dev *rdev)
5665 {
5666 	return rdev->desc->id;
5667 }
5668 EXPORT_SYMBOL_GPL(rdev_get_id);
5669 
rdev_get_dev(struct regulator_dev * rdev)5670 struct device *rdev_get_dev(struct regulator_dev *rdev)
5671 {
5672 	return &rdev->dev;
5673 }
5674 EXPORT_SYMBOL_GPL(rdev_get_dev);
5675 
rdev_get_regmap(struct regulator_dev * rdev)5676 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5677 {
5678 	return rdev->regmap;
5679 }
5680 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5681 
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)5682 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5683 {
5684 	return reg_init_data->driver_data;
5685 }
5686 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5687 
5688 #ifdef CONFIG_DEBUG_FS
supply_map_show(struct seq_file * sf,void * data)5689 static int supply_map_show(struct seq_file *sf, void *data)
5690 {
5691 	struct regulator_map *map;
5692 
5693 	list_for_each_entry(map, &regulator_map_list, list) {
5694 		seq_printf(sf, "%s -> %s.%s\n",
5695 				rdev_get_name(map->regulator), map->dev_name,
5696 				map->supply);
5697 	}
5698 
5699 	return 0;
5700 }
5701 DEFINE_SHOW_ATTRIBUTE(supply_map);
5702 
5703 struct summary_data {
5704 	struct seq_file *s;
5705 	struct regulator_dev *parent;
5706 	int level;
5707 };
5708 
5709 static void regulator_summary_show_subtree(struct seq_file *s,
5710 					   struct regulator_dev *rdev,
5711 					   int level);
5712 
regulator_summary_show_children(struct device * dev,void * data)5713 static int regulator_summary_show_children(struct device *dev, void *data)
5714 {
5715 	struct regulator_dev *rdev = dev_to_rdev(dev);
5716 	struct summary_data *summary_data = data;
5717 
5718 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5719 		regulator_summary_show_subtree(summary_data->s, rdev,
5720 					       summary_data->level + 1);
5721 
5722 	return 0;
5723 }
5724 
regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)5725 static void regulator_summary_show_subtree(struct seq_file *s,
5726 					   struct regulator_dev *rdev,
5727 					   int level)
5728 {
5729 	struct regulation_constraints *c;
5730 	struct regulator *consumer;
5731 	struct summary_data summary_data;
5732 	unsigned int opmode;
5733 
5734 	if (!rdev)
5735 		return;
5736 
5737 	opmode = _regulator_get_mode_unlocked(rdev);
5738 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5739 		   level * 3 + 1, "",
5740 		   30 - level * 3, rdev_get_name(rdev),
5741 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5742 		   regulator_opmode_to_str(opmode));
5743 
5744 	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5745 	seq_printf(s, "%5dmA ",
5746 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5747 
5748 	c = rdev->constraints;
5749 	if (c) {
5750 		switch (rdev->desc->type) {
5751 		case REGULATOR_VOLTAGE:
5752 			seq_printf(s, "%5dmV %5dmV ",
5753 				   c->min_uV / 1000, c->max_uV / 1000);
5754 			break;
5755 		case REGULATOR_CURRENT:
5756 			seq_printf(s, "%5dmA %5dmA ",
5757 				   c->min_uA / 1000, c->max_uA / 1000);
5758 			break;
5759 		}
5760 	}
5761 
5762 	seq_puts(s, "\n");
5763 
5764 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5765 		if (consumer->dev && consumer->dev->class == &regulator_class)
5766 			continue;
5767 
5768 		seq_printf(s, "%*s%-*s ",
5769 			   (level + 1) * 3 + 1, "",
5770 			   30 - (level + 1) * 3,
5771 			   consumer->supply_name ? consumer->supply_name :
5772 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5773 
5774 		switch (rdev->desc->type) {
5775 		case REGULATOR_VOLTAGE:
5776 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5777 				   consumer->enable_count,
5778 				   consumer->uA_load / 1000,
5779 				   consumer->uA_load && !consumer->enable_count ?
5780 				   '*' : ' ',
5781 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5782 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5783 			break;
5784 		case REGULATOR_CURRENT:
5785 			break;
5786 		}
5787 
5788 		seq_puts(s, "\n");
5789 	}
5790 
5791 	summary_data.s = s;
5792 	summary_data.level = level;
5793 	summary_data.parent = rdev;
5794 
5795 	class_for_each_device(&regulator_class, NULL, &summary_data,
5796 			      regulator_summary_show_children);
5797 }
5798 
5799 struct summary_lock_data {
5800 	struct ww_acquire_ctx *ww_ctx;
5801 	struct regulator_dev **new_contended_rdev;
5802 	struct regulator_dev **old_contended_rdev;
5803 };
5804 
regulator_summary_lock_one(struct device * dev,void * data)5805 static int regulator_summary_lock_one(struct device *dev, void *data)
5806 {
5807 	struct regulator_dev *rdev = dev_to_rdev(dev);
5808 	struct summary_lock_data *lock_data = data;
5809 	int ret = 0;
5810 
5811 	if (rdev != *lock_data->old_contended_rdev) {
5812 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5813 
5814 		if (ret == -EDEADLK)
5815 			*lock_data->new_contended_rdev = rdev;
5816 		else
5817 			WARN_ON_ONCE(ret);
5818 	} else {
5819 		*lock_data->old_contended_rdev = NULL;
5820 	}
5821 
5822 	return ret;
5823 }
5824 
regulator_summary_unlock_one(struct device * dev,void * data)5825 static int regulator_summary_unlock_one(struct device *dev, void *data)
5826 {
5827 	struct regulator_dev *rdev = dev_to_rdev(dev);
5828 	struct summary_lock_data *lock_data = data;
5829 
5830 	if (lock_data) {
5831 		if (rdev == *lock_data->new_contended_rdev)
5832 			return -EDEADLK;
5833 	}
5834 
5835 	regulator_unlock(rdev);
5836 
5837 	return 0;
5838 }
5839 
regulator_summary_lock_all(struct ww_acquire_ctx * ww_ctx,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev)5840 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5841 				      struct regulator_dev **new_contended_rdev,
5842 				      struct regulator_dev **old_contended_rdev)
5843 {
5844 	struct summary_lock_data lock_data;
5845 	int ret;
5846 
5847 	lock_data.ww_ctx = ww_ctx;
5848 	lock_data.new_contended_rdev = new_contended_rdev;
5849 	lock_data.old_contended_rdev = old_contended_rdev;
5850 
5851 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5852 				    regulator_summary_lock_one);
5853 	if (ret)
5854 		class_for_each_device(&regulator_class, NULL, &lock_data,
5855 				      regulator_summary_unlock_one);
5856 
5857 	return ret;
5858 }
5859 
regulator_summary_lock(struct ww_acquire_ctx * ww_ctx)5860 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5861 {
5862 	struct regulator_dev *new_contended_rdev = NULL;
5863 	struct regulator_dev *old_contended_rdev = NULL;
5864 	int err;
5865 
5866 	mutex_lock(&regulator_list_mutex);
5867 
5868 	ww_acquire_init(ww_ctx, &regulator_ww_class);
5869 
5870 	do {
5871 		if (new_contended_rdev) {
5872 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5873 			old_contended_rdev = new_contended_rdev;
5874 			old_contended_rdev->ref_cnt++;
5875 			old_contended_rdev->mutex_owner = current;
5876 		}
5877 
5878 		err = regulator_summary_lock_all(ww_ctx,
5879 						 &new_contended_rdev,
5880 						 &old_contended_rdev);
5881 
5882 		if (old_contended_rdev)
5883 			regulator_unlock(old_contended_rdev);
5884 
5885 	} while (err == -EDEADLK);
5886 
5887 	ww_acquire_done(ww_ctx);
5888 }
5889 
regulator_summary_unlock(struct ww_acquire_ctx * ww_ctx)5890 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5891 {
5892 	class_for_each_device(&regulator_class, NULL, NULL,
5893 			      regulator_summary_unlock_one);
5894 	ww_acquire_fini(ww_ctx);
5895 
5896 	mutex_unlock(&regulator_list_mutex);
5897 }
5898 
regulator_summary_show_roots(struct device * dev,void * data)5899 static int regulator_summary_show_roots(struct device *dev, void *data)
5900 {
5901 	struct regulator_dev *rdev = dev_to_rdev(dev);
5902 	struct seq_file *s = data;
5903 
5904 	if (!rdev->supply)
5905 		regulator_summary_show_subtree(s, rdev, 0);
5906 
5907 	return 0;
5908 }
5909 
regulator_summary_show(struct seq_file * s,void * data)5910 static int regulator_summary_show(struct seq_file *s, void *data)
5911 {
5912 	struct ww_acquire_ctx ww_ctx;
5913 
5914 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5915 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5916 
5917 	regulator_summary_lock(&ww_ctx);
5918 
5919 	class_for_each_device(&regulator_class, NULL, s,
5920 			      regulator_summary_show_roots);
5921 
5922 	regulator_summary_unlock(&ww_ctx);
5923 
5924 	return 0;
5925 }
5926 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5927 #endif /* CONFIG_DEBUG_FS */
5928 
regulator_init(void)5929 static int __init regulator_init(void)
5930 {
5931 	int ret;
5932 
5933 	ret = class_register(&regulator_class);
5934 
5935 	debugfs_root = debugfs_create_dir("regulator", NULL);
5936 	if (IS_ERR(debugfs_root))
5937 		pr_debug("regulator: Failed to create debugfs directory\n");
5938 
5939 #ifdef CONFIG_DEBUG_FS
5940 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5941 			    &supply_map_fops);
5942 
5943 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5944 			    NULL, &regulator_summary_fops);
5945 #endif
5946 	regulator_dummy_init();
5947 
5948 	regulator_coupler_register(&generic_regulator_coupler);
5949 
5950 	return ret;
5951 }
5952 
5953 /* init early to allow our consumers to complete system booting */
5954 core_initcall(regulator_init);
5955 
regulator_late_cleanup(struct device * dev,void * data)5956 static int regulator_late_cleanup(struct device *dev, void *data)
5957 {
5958 	struct regulator_dev *rdev = dev_to_rdev(dev);
5959 	struct regulation_constraints *c = rdev->constraints;
5960 	int ret;
5961 
5962 	if (c && c->always_on)
5963 		return 0;
5964 
5965 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5966 		return 0;
5967 
5968 	regulator_lock(rdev);
5969 
5970 	if (rdev->use_count)
5971 		goto unlock;
5972 
5973 	/* If reading the status failed, assume that it's off. */
5974 	if (_regulator_is_enabled(rdev) <= 0)
5975 		goto unlock;
5976 
5977 	if (have_full_constraints()) {
5978 		/* We log since this may kill the system if it goes
5979 		 * wrong. */
5980 		rdev_info(rdev, "disabling\n");
5981 		ret = _regulator_do_disable(rdev);
5982 		if (ret != 0)
5983 			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5984 	} else {
5985 		/* The intention is that in future we will
5986 		 * assume that full constraints are provided
5987 		 * so warn even if we aren't going to do
5988 		 * anything here.
5989 		 */
5990 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
5991 	}
5992 
5993 unlock:
5994 	regulator_unlock(rdev);
5995 
5996 	return 0;
5997 }
5998 
regulator_init_complete_work_function(struct work_struct * work)5999 static void regulator_init_complete_work_function(struct work_struct *work)
6000 {
6001 	/*
6002 	 * Regulators may had failed to resolve their input supplies
6003 	 * when were registered, either because the input supply was
6004 	 * not registered yet or because its parent device was not
6005 	 * bound yet. So attempt to resolve the input supplies for
6006 	 * pending regulators before trying to disable unused ones.
6007 	 */
6008 	class_for_each_device(&regulator_class, NULL, NULL,
6009 			      regulator_register_resolve_supply);
6010 
6011 	/* If we have a full configuration then disable any regulators
6012 	 * we have permission to change the status for and which are
6013 	 * not in use or always_on.  This is effectively the default
6014 	 * for DT and ACPI as they have full constraints.
6015 	 */
6016 	class_for_each_device(&regulator_class, NULL, NULL,
6017 			      regulator_late_cleanup);
6018 }
6019 
6020 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6021 			    regulator_init_complete_work_function);
6022 
regulator_init_complete(void)6023 static int __init regulator_init_complete(void)
6024 {
6025 	/*
6026 	 * Since DT doesn't provide an idiomatic mechanism for
6027 	 * enabling full constraints and since it's much more natural
6028 	 * with DT to provide them just assume that a DT enabled
6029 	 * system has full constraints.
6030 	 */
6031 	if (of_have_populated_dt())
6032 		has_full_constraints = true;
6033 
6034 	/*
6035 	 * We punt completion for an arbitrary amount of time since
6036 	 * systems like distros will load many drivers from userspace
6037 	 * so consumers might not always be ready yet, this is
6038 	 * particularly an issue with laptops where this might bounce
6039 	 * the display off then on.  Ideally we'd get a notification
6040 	 * from userspace when this happens but we don't so just wait
6041 	 * a bit and hope we waited long enough.  It'd be better if
6042 	 * we'd only do this on systems that need it, and a kernel
6043 	 * command line option might be useful.
6044 	 */
6045 	schedule_delayed_work(&regulator_init_complete_work,
6046 			      msecs_to_jiffies(30000));
6047 
6048 	return 0;
6049 }
6050 late_initcall_sync(regulator_init_complete);
6051