• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24 
25 #include "internal.h"
26 
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34 
35 #ifdef LOG_DEVICE
regmap_should_log(struct regmap * map)36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
regmap_should_log(struct regmap * map)41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43 
44 
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 			       unsigned int mask, unsigned int val,
47 			       bool *change, bool force_write);
48 
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 				unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 			    unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 				       unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 				 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 				 unsigned int val);
59 
regmap_reg_in_ranges(unsigned int reg,const struct regmap_range * ranges,unsigned int nranges)60 bool regmap_reg_in_ranges(unsigned int reg,
61 			  const struct regmap_range *ranges,
62 			  unsigned int nranges)
63 {
64 	const struct regmap_range *r;
65 	int i;
66 
67 	for (i = 0, r = ranges; i < nranges; i++, r++)
68 		if (regmap_reg_in_range(reg, r))
69 			return true;
70 	return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73 
regmap_check_range_table(struct regmap * map,unsigned int reg,const struct regmap_access_table * table)74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 			      const struct regmap_access_table *table)
76 {
77 	/* Check "no ranges" first */
78 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 		return false;
80 
81 	/* In case zero "yes ranges" are supplied, any reg is OK */
82 	if (!table->n_yes_ranges)
83 		return true;
84 
85 	return regmap_reg_in_ranges(reg, table->yes_ranges,
86 				    table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89 
regmap_writeable(struct regmap * map,unsigned int reg)90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 	if (map->max_register && reg > map->max_register)
93 		return false;
94 
95 	if (map->writeable_reg)
96 		return map->writeable_reg(map->dev, reg);
97 
98 	if (map->wr_table)
99 		return regmap_check_range_table(map, reg, map->wr_table);
100 
101 	return true;
102 }
103 
regmap_cached(struct regmap * map,unsigned int reg)104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 	int ret;
107 	unsigned int val;
108 
109 	if (map->cache_type == REGCACHE_NONE)
110 		return false;
111 
112 	if (!map->cache_ops)
113 		return false;
114 
115 	if (map->max_register && reg > map->max_register)
116 		return false;
117 
118 	map->lock(map->lock_arg);
119 	ret = regcache_read(map, reg, &val);
120 	map->unlock(map->lock_arg);
121 	if (ret)
122 		return false;
123 
124 	return true;
125 }
126 
regmap_readable(struct regmap * map,unsigned int reg)127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 	if (!map->reg_read)
130 		return false;
131 
132 	if (map->max_register && reg > map->max_register)
133 		return false;
134 
135 	if (map->format.format_write)
136 		return false;
137 
138 	if (map->readable_reg)
139 		return map->readable_reg(map->dev, reg);
140 
141 	if (map->rd_table)
142 		return regmap_check_range_table(map, reg, map->rd_table);
143 
144 	return true;
145 }
146 
regmap_volatile(struct regmap * map,unsigned int reg)147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 	if (!map->format.format_write && !regmap_readable(map, reg))
150 		return false;
151 
152 	if (map->volatile_reg)
153 		return map->volatile_reg(map->dev, reg);
154 
155 	if (map->volatile_table)
156 		return regmap_check_range_table(map, reg, map->volatile_table);
157 
158 	if (map->cache_ops)
159 		return false;
160 	else
161 		return true;
162 }
163 
regmap_precious(struct regmap * map,unsigned int reg)164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 	if (!regmap_readable(map, reg))
167 		return false;
168 
169 	if (map->precious_reg)
170 		return map->precious_reg(map->dev, reg);
171 
172 	if (map->precious_table)
173 		return regmap_check_range_table(map, reg, map->precious_table);
174 
175 	return false;
176 }
177 
regmap_writeable_noinc(struct regmap * map,unsigned int reg)178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 	if (map->writeable_noinc_reg)
181 		return map->writeable_noinc_reg(map->dev, reg);
182 
183 	if (map->wr_noinc_table)
184 		return regmap_check_range_table(map, reg, map->wr_noinc_table);
185 
186 	return true;
187 }
188 
regmap_readable_noinc(struct regmap * map,unsigned int reg)189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 	if (map->readable_noinc_reg)
192 		return map->readable_noinc_reg(map->dev, reg);
193 
194 	if (map->rd_noinc_table)
195 		return regmap_check_range_table(map, reg, map->rd_noinc_table);
196 
197 	return true;
198 }
199 
regmap_volatile_range(struct regmap * map,unsigned int reg,size_t num)200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 	size_t num)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < num; i++)
206 		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 			return false;
208 
209 	return true;
210 }
211 
regmap_format_12_20_write(struct regmap * map,unsigned int reg,unsigned int val)212 static void regmap_format_12_20_write(struct regmap *map,
213 				     unsigned int reg, unsigned int val)
214 {
215 	u8 *out = map->work_buf;
216 
217 	out[0] = reg >> 4;
218 	out[1] = (reg << 4) | (val >> 16);
219 	out[2] = val >> 8;
220 	out[3] = val;
221 }
222 
223 
regmap_format_2_6_write(struct regmap * map,unsigned int reg,unsigned int val)224 static void regmap_format_2_6_write(struct regmap *map,
225 				     unsigned int reg, unsigned int val)
226 {
227 	u8 *out = map->work_buf;
228 
229 	*out = (reg << 6) | val;
230 }
231 
regmap_format_4_12_write(struct regmap * map,unsigned int reg,unsigned int val)232 static void regmap_format_4_12_write(struct regmap *map,
233 				     unsigned int reg, unsigned int val)
234 {
235 	__be16 *out = map->work_buf;
236 	*out = cpu_to_be16((reg << 12) | val);
237 }
238 
regmap_format_7_9_write(struct regmap * map,unsigned int reg,unsigned int val)239 static void regmap_format_7_9_write(struct regmap *map,
240 				    unsigned int reg, unsigned int val)
241 {
242 	__be16 *out = map->work_buf;
243 	*out = cpu_to_be16((reg << 9) | val);
244 }
245 
regmap_format_10_14_write(struct regmap * map,unsigned int reg,unsigned int val)246 static void regmap_format_10_14_write(struct regmap *map,
247 				    unsigned int reg, unsigned int val)
248 {
249 	u8 *out = map->work_buf;
250 
251 	out[2] = val;
252 	out[1] = (val >> 8) | (reg << 6);
253 	out[0] = reg >> 2;
254 }
255 
regmap_format_8(void * buf,unsigned int val,unsigned int shift)256 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
257 {
258 	u8 *b = buf;
259 
260 	b[0] = val << shift;
261 }
262 
regmap_format_16_be(void * buf,unsigned int val,unsigned int shift)263 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
264 {
265 	put_unaligned_be16(val << shift, buf);
266 }
267 
regmap_format_16_le(void * buf,unsigned int val,unsigned int shift)268 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
269 {
270 	put_unaligned_le16(val << shift, buf);
271 }
272 
regmap_format_16_native(void * buf,unsigned int val,unsigned int shift)273 static void regmap_format_16_native(void *buf, unsigned int val,
274 				    unsigned int shift)
275 {
276 	u16 v = val << shift;
277 
278 	memcpy(buf, &v, sizeof(v));
279 }
280 
regmap_format_24(void * buf,unsigned int val,unsigned int shift)281 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
282 {
283 	u8 *b = buf;
284 
285 	val <<= shift;
286 
287 	b[0] = val >> 16;
288 	b[1] = val >> 8;
289 	b[2] = val;
290 }
291 
regmap_format_32_be(void * buf,unsigned int val,unsigned int shift)292 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
293 {
294 	put_unaligned_be32(val << shift, buf);
295 }
296 
regmap_format_32_le(void * buf,unsigned int val,unsigned int shift)297 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
298 {
299 	put_unaligned_le32(val << shift, buf);
300 }
301 
regmap_format_32_native(void * buf,unsigned int val,unsigned int shift)302 static void regmap_format_32_native(void *buf, unsigned int val,
303 				    unsigned int shift)
304 {
305 	u32 v = val << shift;
306 
307 	memcpy(buf, &v, sizeof(v));
308 }
309 
310 #ifdef CONFIG_64BIT
regmap_format_64_be(void * buf,unsigned int val,unsigned int shift)311 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
312 {
313 	put_unaligned_be64((u64) val << shift, buf);
314 }
315 
regmap_format_64_le(void * buf,unsigned int val,unsigned int shift)316 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
317 {
318 	put_unaligned_le64((u64) val << shift, buf);
319 }
320 
regmap_format_64_native(void * buf,unsigned int val,unsigned int shift)321 static void regmap_format_64_native(void *buf, unsigned int val,
322 				    unsigned int shift)
323 {
324 	u64 v = (u64) val << shift;
325 
326 	memcpy(buf, &v, sizeof(v));
327 }
328 #endif
329 
regmap_parse_inplace_noop(void * buf)330 static void regmap_parse_inplace_noop(void *buf)
331 {
332 }
333 
regmap_parse_8(const void * buf)334 static unsigned int regmap_parse_8(const void *buf)
335 {
336 	const u8 *b = buf;
337 
338 	return b[0];
339 }
340 
regmap_parse_16_be(const void * buf)341 static unsigned int regmap_parse_16_be(const void *buf)
342 {
343 	return get_unaligned_be16(buf);
344 }
345 
regmap_parse_16_le(const void * buf)346 static unsigned int regmap_parse_16_le(const void *buf)
347 {
348 	return get_unaligned_le16(buf);
349 }
350 
regmap_parse_16_be_inplace(void * buf)351 static void regmap_parse_16_be_inplace(void *buf)
352 {
353 	u16 v = get_unaligned_be16(buf);
354 
355 	memcpy(buf, &v, sizeof(v));
356 }
357 
regmap_parse_16_le_inplace(void * buf)358 static void regmap_parse_16_le_inplace(void *buf)
359 {
360 	u16 v = get_unaligned_le16(buf);
361 
362 	memcpy(buf, &v, sizeof(v));
363 }
364 
regmap_parse_16_native(const void * buf)365 static unsigned int regmap_parse_16_native(const void *buf)
366 {
367 	u16 v;
368 
369 	memcpy(&v, buf, sizeof(v));
370 	return v;
371 }
372 
regmap_parse_24(const void * buf)373 static unsigned int regmap_parse_24(const void *buf)
374 {
375 	const u8 *b = buf;
376 	unsigned int ret = b[2];
377 	ret |= ((unsigned int)b[1]) << 8;
378 	ret |= ((unsigned int)b[0]) << 16;
379 
380 	return ret;
381 }
382 
regmap_parse_32_be(const void * buf)383 static unsigned int regmap_parse_32_be(const void *buf)
384 {
385 	return get_unaligned_be32(buf);
386 }
387 
regmap_parse_32_le(const void * buf)388 static unsigned int regmap_parse_32_le(const void *buf)
389 {
390 	return get_unaligned_le32(buf);
391 }
392 
regmap_parse_32_be_inplace(void * buf)393 static void regmap_parse_32_be_inplace(void *buf)
394 {
395 	u32 v = get_unaligned_be32(buf);
396 
397 	memcpy(buf, &v, sizeof(v));
398 }
399 
regmap_parse_32_le_inplace(void * buf)400 static void regmap_parse_32_le_inplace(void *buf)
401 {
402 	u32 v = get_unaligned_le32(buf);
403 
404 	memcpy(buf, &v, sizeof(v));
405 }
406 
regmap_parse_32_native(const void * buf)407 static unsigned int regmap_parse_32_native(const void *buf)
408 {
409 	u32 v;
410 
411 	memcpy(&v, buf, sizeof(v));
412 	return v;
413 }
414 
415 #ifdef CONFIG_64BIT
regmap_parse_64_be(const void * buf)416 static unsigned int regmap_parse_64_be(const void *buf)
417 {
418 	return get_unaligned_be64(buf);
419 }
420 
regmap_parse_64_le(const void * buf)421 static unsigned int regmap_parse_64_le(const void *buf)
422 {
423 	return get_unaligned_le64(buf);
424 }
425 
regmap_parse_64_be_inplace(void * buf)426 static void regmap_parse_64_be_inplace(void *buf)
427 {
428 	u64 v =  get_unaligned_be64(buf);
429 
430 	memcpy(buf, &v, sizeof(v));
431 }
432 
regmap_parse_64_le_inplace(void * buf)433 static void regmap_parse_64_le_inplace(void *buf)
434 {
435 	u64 v = get_unaligned_le64(buf);
436 
437 	memcpy(buf, &v, sizeof(v));
438 }
439 
regmap_parse_64_native(const void * buf)440 static unsigned int regmap_parse_64_native(const void *buf)
441 {
442 	u64 v;
443 
444 	memcpy(&v, buf, sizeof(v));
445 	return v;
446 }
447 #endif
448 
regmap_lock_hwlock(void * __map)449 static void regmap_lock_hwlock(void *__map)
450 {
451 	struct regmap *map = __map;
452 
453 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
454 }
455 
regmap_lock_hwlock_irq(void * __map)456 static void regmap_lock_hwlock_irq(void *__map)
457 {
458 	struct regmap *map = __map;
459 
460 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
461 }
462 
regmap_lock_hwlock_irqsave(void * __map)463 static void regmap_lock_hwlock_irqsave(void *__map)
464 {
465 	struct regmap *map = __map;
466 
467 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
468 				    &map->spinlock_flags);
469 }
470 
regmap_unlock_hwlock(void * __map)471 static void regmap_unlock_hwlock(void *__map)
472 {
473 	struct regmap *map = __map;
474 
475 	hwspin_unlock(map->hwlock);
476 }
477 
regmap_unlock_hwlock_irq(void * __map)478 static void regmap_unlock_hwlock_irq(void *__map)
479 {
480 	struct regmap *map = __map;
481 
482 	hwspin_unlock_irq(map->hwlock);
483 }
484 
regmap_unlock_hwlock_irqrestore(void * __map)485 static void regmap_unlock_hwlock_irqrestore(void *__map)
486 {
487 	struct regmap *map = __map;
488 
489 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
490 }
491 
regmap_lock_unlock_none(void * __map)492 static void regmap_lock_unlock_none(void *__map)
493 {
494 
495 }
496 
regmap_lock_mutex(void * __map)497 static void regmap_lock_mutex(void *__map)
498 {
499 	struct regmap *map = __map;
500 	mutex_lock(&map->mutex);
501 }
502 
regmap_unlock_mutex(void * __map)503 static void regmap_unlock_mutex(void *__map)
504 {
505 	struct regmap *map = __map;
506 	mutex_unlock(&map->mutex);
507 }
508 
regmap_lock_spinlock(void * __map)509 static void regmap_lock_spinlock(void *__map)
510 __acquires(&map->spinlock)
511 {
512 	struct regmap *map = __map;
513 	unsigned long flags;
514 
515 	spin_lock_irqsave(&map->spinlock, flags);
516 	map->spinlock_flags = flags;
517 }
518 
regmap_unlock_spinlock(void * __map)519 static void regmap_unlock_spinlock(void *__map)
520 __releases(&map->spinlock)
521 {
522 	struct regmap *map = __map;
523 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
524 }
525 
dev_get_regmap_release(struct device * dev,void * res)526 static void dev_get_regmap_release(struct device *dev, void *res)
527 {
528 	/*
529 	 * We don't actually have anything to do here; the goal here
530 	 * is not to manage the regmap but to provide a simple way to
531 	 * get the regmap back given a struct device.
532 	 */
533 }
534 
_regmap_range_add(struct regmap * map,struct regmap_range_node * data)535 static bool _regmap_range_add(struct regmap *map,
536 			      struct regmap_range_node *data)
537 {
538 	struct rb_root *root = &map->range_tree;
539 	struct rb_node **new = &(root->rb_node), *parent = NULL;
540 
541 	while (*new) {
542 		struct regmap_range_node *this =
543 			rb_entry(*new, struct regmap_range_node, node);
544 
545 		parent = *new;
546 		if (data->range_max < this->range_min)
547 			new = &((*new)->rb_left);
548 		else if (data->range_min > this->range_max)
549 			new = &((*new)->rb_right);
550 		else
551 			return false;
552 	}
553 
554 	rb_link_node(&data->node, parent, new);
555 	rb_insert_color(&data->node, root);
556 
557 	return true;
558 }
559 
_regmap_range_lookup(struct regmap * map,unsigned int reg)560 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
561 						      unsigned int reg)
562 {
563 	struct rb_node *node = map->range_tree.rb_node;
564 
565 	while (node) {
566 		struct regmap_range_node *this =
567 			rb_entry(node, struct regmap_range_node, node);
568 
569 		if (reg < this->range_min)
570 			node = node->rb_left;
571 		else if (reg > this->range_max)
572 			node = node->rb_right;
573 		else
574 			return this;
575 	}
576 
577 	return NULL;
578 }
579 
regmap_range_exit(struct regmap * map)580 static void regmap_range_exit(struct regmap *map)
581 {
582 	struct rb_node *next;
583 	struct regmap_range_node *range_node;
584 
585 	next = rb_first(&map->range_tree);
586 	while (next) {
587 		range_node = rb_entry(next, struct regmap_range_node, node);
588 		next = rb_next(&range_node->node);
589 		rb_erase(&range_node->node, &map->range_tree);
590 		kfree(range_node);
591 	}
592 
593 	kfree(map->selector_work_buf);
594 }
595 
regmap_set_name(struct regmap * map,const struct regmap_config * config)596 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
597 {
598 	if (config->name) {
599 		const char *name = kstrdup_const(config->name, GFP_KERNEL);
600 
601 		if (!name)
602 			return -ENOMEM;
603 
604 		kfree_const(map->name);
605 		map->name = name;
606 	}
607 
608 	return 0;
609 }
610 
regmap_attach_dev(struct device * dev,struct regmap * map,const struct regmap_config * config)611 int regmap_attach_dev(struct device *dev, struct regmap *map,
612 		      const struct regmap_config *config)
613 {
614 	struct regmap **m;
615 	int ret;
616 
617 	map->dev = dev;
618 
619 	ret = regmap_set_name(map, config);
620 	if (ret)
621 		return ret;
622 
623 	regmap_debugfs_exit(map);
624 	regmap_debugfs_init(map);
625 
626 	/* Add a devres resource for dev_get_regmap() */
627 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
628 	if (!m) {
629 		regmap_debugfs_exit(map);
630 		return -ENOMEM;
631 	}
632 	*m = map;
633 	devres_add(dev, m);
634 
635 	return 0;
636 }
637 EXPORT_SYMBOL_GPL(regmap_attach_dev);
638 
regmap_get_reg_endian(const struct regmap_bus * bus,const struct regmap_config * config)639 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
640 					const struct regmap_config *config)
641 {
642 	enum regmap_endian endian;
643 
644 	/* Retrieve the endianness specification from the regmap config */
645 	endian = config->reg_format_endian;
646 
647 	/* If the regmap config specified a non-default value, use that */
648 	if (endian != REGMAP_ENDIAN_DEFAULT)
649 		return endian;
650 
651 	/* Retrieve the endianness specification from the bus config */
652 	if (bus && bus->reg_format_endian_default)
653 		endian = bus->reg_format_endian_default;
654 
655 	/* If the bus specified a non-default value, use that */
656 	if (endian != REGMAP_ENDIAN_DEFAULT)
657 		return endian;
658 
659 	/* Use this if no other value was found */
660 	return REGMAP_ENDIAN_BIG;
661 }
662 
regmap_get_val_endian(struct device * dev,const struct regmap_bus * bus,const struct regmap_config * config)663 enum regmap_endian regmap_get_val_endian(struct device *dev,
664 					 const struct regmap_bus *bus,
665 					 const struct regmap_config *config)
666 {
667 	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
668 	enum regmap_endian endian;
669 
670 	/* Retrieve the endianness specification from the regmap config */
671 	endian = config->val_format_endian;
672 
673 	/* If the regmap config specified a non-default value, use that */
674 	if (endian != REGMAP_ENDIAN_DEFAULT)
675 		return endian;
676 
677 	/* If the firmware node exist try to get endianness from it */
678 	if (fwnode_property_read_bool(fwnode, "big-endian"))
679 		endian = REGMAP_ENDIAN_BIG;
680 	else if (fwnode_property_read_bool(fwnode, "little-endian"))
681 		endian = REGMAP_ENDIAN_LITTLE;
682 	else if (fwnode_property_read_bool(fwnode, "native-endian"))
683 		endian = REGMAP_ENDIAN_NATIVE;
684 
685 	/* If the endianness was specified in fwnode, use that */
686 	if (endian != REGMAP_ENDIAN_DEFAULT)
687 		return endian;
688 
689 	/* Retrieve the endianness specification from the bus config */
690 	if (bus && bus->val_format_endian_default)
691 		endian = bus->val_format_endian_default;
692 
693 	/* If the bus specified a non-default value, use that */
694 	if (endian != REGMAP_ENDIAN_DEFAULT)
695 		return endian;
696 
697 	/* Use this if no other value was found */
698 	return REGMAP_ENDIAN_BIG;
699 }
700 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
701 
__regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)702 struct regmap *__regmap_init(struct device *dev,
703 			     const struct regmap_bus *bus,
704 			     void *bus_context,
705 			     const struct regmap_config *config,
706 			     struct lock_class_key *lock_key,
707 			     const char *lock_name)
708 {
709 	struct regmap *map;
710 	int ret = -EINVAL;
711 	enum regmap_endian reg_endian, val_endian;
712 	int i, j;
713 
714 	if (!config)
715 		goto err;
716 
717 	map = kzalloc(sizeof(*map), GFP_KERNEL);
718 	if (map == NULL) {
719 		ret = -ENOMEM;
720 		goto err;
721 	}
722 
723 	ret = regmap_set_name(map, config);
724 	if (ret)
725 		goto err_map;
726 
727 	ret = -EINVAL; /* Later error paths rely on this */
728 
729 	if (config->disable_locking) {
730 		map->lock = map->unlock = regmap_lock_unlock_none;
731 		map->can_sleep = config->can_sleep;
732 		regmap_debugfs_disable(map);
733 	} else if (config->lock && config->unlock) {
734 		map->lock = config->lock;
735 		map->unlock = config->unlock;
736 		map->lock_arg = config->lock_arg;
737 		map->can_sleep = config->can_sleep;
738 	} else if (config->use_hwlock) {
739 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
740 		if (!map->hwlock) {
741 			ret = -ENXIO;
742 			goto err_name;
743 		}
744 
745 		switch (config->hwlock_mode) {
746 		case HWLOCK_IRQSTATE:
747 			map->lock = regmap_lock_hwlock_irqsave;
748 			map->unlock = regmap_unlock_hwlock_irqrestore;
749 			break;
750 		case HWLOCK_IRQ:
751 			map->lock = regmap_lock_hwlock_irq;
752 			map->unlock = regmap_unlock_hwlock_irq;
753 			break;
754 		default:
755 			map->lock = regmap_lock_hwlock;
756 			map->unlock = regmap_unlock_hwlock;
757 			break;
758 		}
759 
760 		map->lock_arg = map;
761 	} else {
762 		if ((bus && bus->fast_io) ||
763 		    config->fast_io) {
764 			spin_lock_init(&map->spinlock);
765 			map->lock = regmap_lock_spinlock;
766 			map->unlock = regmap_unlock_spinlock;
767 			lockdep_set_class_and_name(&map->spinlock,
768 						   lock_key, lock_name);
769 		} else {
770 			mutex_init(&map->mutex);
771 			map->lock = regmap_lock_mutex;
772 			map->unlock = regmap_unlock_mutex;
773 			map->can_sleep = true;
774 			lockdep_set_class_and_name(&map->mutex,
775 						   lock_key, lock_name);
776 		}
777 		map->lock_arg = map;
778 	}
779 
780 	/*
781 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
782 	 * scratch buffers with sleeping allocations.
783 	 */
784 	if ((bus && bus->fast_io) || config->fast_io)
785 		map->alloc_flags = GFP_ATOMIC;
786 	else
787 		map->alloc_flags = GFP_KERNEL;
788 
789 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
790 	map->format.pad_bytes = config->pad_bits / 8;
791 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
792 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
793 			config->val_bits + config->pad_bits, 8);
794 	map->reg_shift = config->pad_bits % 8;
795 	if (config->reg_stride)
796 		map->reg_stride = config->reg_stride;
797 	else
798 		map->reg_stride = 1;
799 	if (is_power_of_2(map->reg_stride))
800 		map->reg_stride_order = ilog2(map->reg_stride);
801 	else
802 		map->reg_stride_order = -1;
803 	map->use_single_read = config->use_single_read || !bus || !bus->read;
804 	map->use_single_write = config->use_single_write || !bus || !bus->write;
805 	map->can_multi_write = config->can_multi_write && bus && bus->write;
806 	if (bus) {
807 		map->max_raw_read = bus->max_raw_read;
808 		map->max_raw_write = bus->max_raw_write;
809 	}
810 	map->dev = dev;
811 	map->bus = bus;
812 	map->bus_context = bus_context;
813 	map->max_register = config->max_register;
814 	map->wr_table = config->wr_table;
815 	map->rd_table = config->rd_table;
816 	map->volatile_table = config->volatile_table;
817 	map->precious_table = config->precious_table;
818 	map->wr_noinc_table = config->wr_noinc_table;
819 	map->rd_noinc_table = config->rd_noinc_table;
820 	map->writeable_reg = config->writeable_reg;
821 	map->readable_reg = config->readable_reg;
822 	map->volatile_reg = config->volatile_reg;
823 	map->precious_reg = config->precious_reg;
824 	map->writeable_noinc_reg = config->writeable_noinc_reg;
825 	map->readable_noinc_reg = config->readable_noinc_reg;
826 	map->cache_type = config->cache_type;
827 
828 	spin_lock_init(&map->async_lock);
829 	INIT_LIST_HEAD(&map->async_list);
830 	INIT_LIST_HEAD(&map->async_free);
831 	init_waitqueue_head(&map->async_waitq);
832 
833 	if (config->read_flag_mask ||
834 	    config->write_flag_mask ||
835 	    config->zero_flag_mask) {
836 		map->read_flag_mask = config->read_flag_mask;
837 		map->write_flag_mask = config->write_flag_mask;
838 	} else if (bus) {
839 		map->read_flag_mask = bus->read_flag_mask;
840 	}
841 
842 	if (!bus) {
843 		map->reg_read  = config->reg_read;
844 		map->reg_write = config->reg_write;
845 
846 		map->defer_caching = false;
847 		goto skip_format_initialization;
848 	} else if (!bus->read || !bus->write) {
849 		map->reg_read = _regmap_bus_reg_read;
850 		map->reg_write = _regmap_bus_reg_write;
851 		map->reg_update_bits = bus->reg_update_bits;
852 
853 		map->defer_caching = false;
854 		goto skip_format_initialization;
855 	} else {
856 		map->reg_read  = _regmap_bus_read;
857 		map->reg_update_bits = bus->reg_update_bits;
858 	}
859 
860 	reg_endian = regmap_get_reg_endian(bus, config);
861 	val_endian = regmap_get_val_endian(dev, bus, config);
862 
863 	switch (config->reg_bits + map->reg_shift) {
864 	case 2:
865 		switch (config->val_bits) {
866 		case 6:
867 			map->format.format_write = regmap_format_2_6_write;
868 			break;
869 		default:
870 			goto err_hwlock;
871 		}
872 		break;
873 
874 	case 4:
875 		switch (config->val_bits) {
876 		case 12:
877 			map->format.format_write = regmap_format_4_12_write;
878 			break;
879 		default:
880 			goto err_hwlock;
881 		}
882 		break;
883 
884 	case 7:
885 		switch (config->val_bits) {
886 		case 9:
887 			map->format.format_write = regmap_format_7_9_write;
888 			break;
889 		default:
890 			goto err_hwlock;
891 		}
892 		break;
893 
894 	case 10:
895 		switch (config->val_bits) {
896 		case 14:
897 			map->format.format_write = regmap_format_10_14_write;
898 			break;
899 		default:
900 			goto err_hwlock;
901 		}
902 		break;
903 
904 	case 12:
905 		switch (config->val_bits) {
906 		case 20:
907 			map->format.format_write = regmap_format_12_20_write;
908 			break;
909 		default:
910 			goto err_hwlock;
911 		}
912 		break;
913 
914 	case 8:
915 		map->format.format_reg = regmap_format_8;
916 		break;
917 
918 	case 16:
919 		switch (reg_endian) {
920 		case REGMAP_ENDIAN_BIG:
921 			map->format.format_reg = regmap_format_16_be;
922 			break;
923 		case REGMAP_ENDIAN_LITTLE:
924 			map->format.format_reg = regmap_format_16_le;
925 			break;
926 		case REGMAP_ENDIAN_NATIVE:
927 			map->format.format_reg = regmap_format_16_native;
928 			break;
929 		default:
930 			goto err_hwlock;
931 		}
932 		break;
933 
934 	case 24:
935 		if (reg_endian != REGMAP_ENDIAN_BIG)
936 			goto err_hwlock;
937 		map->format.format_reg = regmap_format_24;
938 		break;
939 
940 	case 32:
941 		switch (reg_endian) {
942 		case REGMAP_ENDIAN_BIG:
943 			map->format.format_reg = regmap_format_32_be;
944 			break;
945 		case REGMAP_ENDIAN_LITTLE:
946 			map->format.format_reg = regmap_format_32_le;
947 			break;
948 		case REGMAP_ENDIAN_NATIVE:
949 			map->format.format_reg = regmap_format_32_native;
950 			break;
951 		default:
952 			goto err_hwlock;
953 		}
954 		break;
955 
956 #ifdef CONFIG_64BIT
957 	case 64:
958 		switch (reg_endian) {
959 		case REGMAP_ENDIAN_BIG:
960 			map->format.format_reg = regmap_format_64_be;
961 			break;
962 		case REGMAP_ENDIAN_LITTLE:
963 			map->format.format_reg = regmap_format_64_le;
964 			break;
965 		case REGMAP_ENDIAN_NATIVE:
966 			map->format.format_reg = regmap_format_64_native;
967 			break;
968 		default:
969 			goto err_hwlock;
970 		}
971 		break;
972 #endif
973 
974 	default:
975 		goto err_hwlock;
976 	}
977 
978 	if (val_endian == REGMAP_ENDIAN_NATIVE)
979 		map->format.parse_inplace = regmap_parse_inplace_noop;
980 
981 	switch (config->val_bits) {
982 	case 8:
983 		map->format.format_val = regmap_format_8;
984 		map->format.parse_val = regmap_parse_8;
985 		map->format.parse_inplace = regmap_parse_inplace_noop;
986 		break;
987 	case 16:
988 		switch (val_endian) {
989 		case REGMAP_ENDIAN_BIG:
990 			map->format.format_val = regmap_format_16_be;
991 			map->format.parse_val = regmap_parse_16_be;
992 			map->format.parse_inplace = regmap_parse_16_be_inplace;
993 			break;
994 		case REGMAP_ENDIAN_LITTLE:
995 			map->format.format_val = regmap_format_16_le;
996 			map->format.parse_val = regmap_parse_16_le;
997 			map->format.parse_inplace = regmap_parse_16_le_inplace;
998 			break;
999 		case REGMAP_ENDIAN_NATIVE:
1000 			map->format.format_val = regmap_format_16_native;
1001 			map->format.parse_val = regmap_parse_16_native;
1002 			break;
1003 		default:
1004 			goto err_hwlock;
1005 		}
1006 		break;
1007 	case 24:
1008 		if (val_endian != REGMAP_ENDIAN_BIG)
1009 			goto err_hwlock;
1010 		map->format.format_val = regmap_format_24;
1011 		map->format.parse_val = regmap_parse_24;
1012 		break;
1013 	case 32:
1014 		switch (val_endian) {
1015 		case REGMAP_ENDIAN_BIG:
1016 			map->format.format_val = regmap_format_32_be;
1017 			map->format.parse_val = regmap_parse_32_be;
1018 			map->format.parse_inplace = regmap_parse_32_be_inplace;
1019 			break;
1020 		case REGMAP_ENDIAN_LITTLE:
1021 			map->format.format_val = regmap_format_32_le;
1022 			map->format.parse_val = regmap_parse_32_le;
1023 			map->format.parse_inplace = regmap_parse_32_le_inplace;
1024 			break;
1025 		case REGMAP_ENDIAN_NATIVE:
1026 			map->format.format_val = regmap_format_32_native;
1027 			map->format.parse_val = regmap_parse_32_native;
1028 			break;
1029 		default:
1030 			goto err_hwlock;
1031 		}
1032 		break;
1033 #ifdef CONFIG_64BIT
1034 	case 64:
1035 		switch (val_endian) {
1036 		case REGMAP_ENDIAN_BIG:
1037 			map->format.format_val = regmap_format_64_be;
1038 			map->format.parse_val = regmap_parse_64_be;
1039 			map->format.parse_inplace = regmap_parse_64_be_inplace;
1040 			break;
1041 		case REGMAP_ENDIAN_LITTLE:
1042 			map->format.format_val = regmap_format_64_le;
1043 			map->format.parse_val = regmap_parse_64_le;
1044 			map->format.parse_inplace = regmap_parse_64_le_inplace;
1045 			break;
1046 		case REGMAP_ENDIAN_NATIVE:
1047 			map->format.format_val = regmap_format_64_native;
1048 			map->format.parse_val = regmap_parse_64_native;
1049 			break;
1050 		default:
1051 			goto err_hwlock;
1052 		}
1053 		break;
1054 #endif
1055 	}
1056 
1057 	if (map->format.format_write) {
1058 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1059 		    (val_endian != REGMAP_ENDIAN_BIG))
1060 			goto err_hwlock;
1061 		map->use_single_write = true;
1062 	}
1063 
1064 	if (!map->format.format_write &&
1065 	    !(map->format.format_reg && map->format.format_val))
1066 		goto err_hwlock;
1067 
1068 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1069 	if (map->work_buf == NULL) {
1070 		ret = -ENOMEM;
1071 		goto err_hwlock;
1072 	}
1073 
1074 	if (map->format.format_write) {
1075 		map->defer_caching = false;
1076 		map->reg_write = _regmap_bus_formatted_write;
1077 	} else if (map->format.format_val) {
1078 		map->defer_caching = true;
1079 		map->reg_write = _regmap_bus_raw_write;
1080 	}
1081 
1082 skip_format_initialization:
1083 
1084 	map->range_tree = RB_ROOT;
1085 	for (i = 0; i < config->num_ranges; i++) {
1086 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1087 		struct regmap_range_node *new;
1088 
1089 		/* Sanity check */
1090 		if (range_cfg->range_max < range_cfg->range_min) {
1091 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1092 				range_cfg->range_max, range_cfg->range_min);
1093 			goto err_range;
1094 		}
1095 
1096 		if (range_cfg->range_max > map->max_register) {
1097 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1098 				range_cfg->range_max, map->max_register);
1099 			goto err_range;
1100 		}
1101 
1102 		if (range_cfg->selector_reg > map->max_register) {
1103 			dev_err(map->dev,
1104 				"Invalid range %d: selector out of map\n", i);
1105 			goto err_range;
1106 		}
1107 
1108 		if (range_cfg->window_len == 0) {
1109 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1110 				i);
1111 			goto err_range;
1112 		}
1113 
1114 		/* Make sure, that this register range has no selector
1115 		   or data window within its boundary */
1116 		for (j = 0; j < config->num_ranges; j++) {
1117 			unsigned sel_reg = config->ranges[j].selector_reg;
1118 			unsigned win_min = config->ranges[j].window_start;
1119 			unsigned win_max = win_min +
1120 					   config->ranges[j].window_len - 1;
1121 
1122 			/* Allow data window inside its own virtual range */
1123 			if (j == i)
1124 				continue;
1125 
1126 			if (range_cfg->range_min <= sel_reg &&
1127 			    sel_reg <= range_cfg->range_max) {
1128 				dev_err(map->dev,
1129 					"Range %d: selector for %d in window\n",
1130 					i, j);
1131 				goto err_range;
1132 			}
1133 
1134 			if (!(win_max < range_cfg->range_min ||
1135 			      win_min > range_cfg->range_max)) {
1136 				dev_err(map->dev,
1137 					"Range %d: window for %d in window\n",
1138 					i, j);
1139 				goto err_range;
1140 			}
1141 		}
1142 
1143 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1144 		if (new == NULL) {
1145 			ret = -ENOMEM;
1146 			goto err_range;
1147 		}
1148 
1149 		new->map = map;
1150 		new->name = range_cfg->name;
1151 		new->range_min = range_cfg->range_min;
1152 		new->range_max = range_cfg->range_max;
1153 		new->selector_reg = range_cfg->selector_reg;
1154 		new->selector_mask = range_cfg->selector_mask;
1155 		new->selector_shift = range_cfg->selector_shift;
1156 		new->window_start = range_cfg->window_start;
1157 		new->window_len = range_cfg->window_len;
1158 
1159 		if (!_regmap_range_add(map, new)) {
1160 			dev_err(map->dev, "Failed to add range %d\n", i);
1161 			kfree(new);
1162 			goto err_range;
1163 		}
1164 
1165 		if (map->selector_work_buf == NULL) {
1166 			map->selector_work_buf =
1167 				kzalloc(map->format.buf_size, GFP_KERNEL);
1168 			if (map->selector_work_buf == NULL) {
1169 				ret = -ENOMEM;
1170 				goto err_range;
1171 			}
1172 		}
1173 	}
1174 
1175 	ret = regcache_init(map, config);
1176 	if (ret != 0)
1177 		goto err_range;
1178 
1179 	if (dev) {
1180 		ret = regmap_attach_dev(dev, map, config);
1181 		if (ret != 0)
1182 			goto err_regcache;
1183 	} else {
1184 		regmap_debugfs_init(map);
1185 	}
1186 
1187 	return map;
1188 
1189 err_regcache:
1190 	regcache_exit(map);
1191 err_range:
1192 	regmap_range_exit(map);
1193 	kfree(map->work_buf);
1194 err_hwlock:
1195 	if (map->hwlock)
1196 		hwspin_lock_free(map->hwlock);
1197 err_name:
1198 	kfree_const(map->name);
1199 err_map:
1200 	kfree(map);
1201 err:
1202 	return ERR_PTR(ret);
1203 }
1204 EXPORT_SYMBOL_GPL(__regmap_init);
1205 
devm_regmap_release(struct device * dev,void * res)1206 static void devm_regmap_release(struct device *dev, void *res)
1207 {
1208 	regmap_exit(*(struct regmap **)res);
1209 }
1210 
__devm_regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)1211 struct regmap *__devm_regmap_init(struct device *dev,
1212 				  const struct regmap_bus *bus,
1213 				  void *bus_context,
1214 				  const struct regmap_config *config,
1215 				  struct lock_class_key *lock_key,
1216 				  const char *lock_name)
1217 {
1218 	struct regmap **ptr, *regmap;
1219 
1220 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1221 	if (!ptr)
1222 		return ERR_PTR(-ENOMEM);
1223 
1224 	regmap = __regmap_init(dev, bus, bus_context, config,
1225 			       lock_key, lock_name);
1226 	if (!IS_ERR(regmap)) {
1227 		*ptr = regmap;
1228 		devres_add(dev, ptr);
1229 	} else {
1230 		devres_free(ptr);
1231 	}
1232 
1233 	return regmap;
1234 }
1235 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1236 
regmap_field_init(struct regmap_field * rm_field,struct regmap * regmap,struct reg_field reg_field)1237 static void regmap_field_init(struct regmap_field *rm_field,
1238 	struct regmap *regmap, struct reg_field reg_field)
1239 {
1240 	rm_field->regmap = regmap;
1241 	rm_field->reg = reg_field.reg;
1242 	rm_field->shift = reg_field.lsb;
1243 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1244 	rm_field->id_size = reg_field.id_size;
1245 	rm_field->id_offset = reg_field.id_offset;
1246 }
1247 
1248 /**
1249  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1250  *
1251  * @dev: Device that will be interacted with
1252  * @regmap: regmap bank in which this register field is located.
1253  * @reg_field: Register field with in the bank.
1254  *
1255  * The return value will be an ERR_PTR() on error or a valid pointer
1256  * to a struct regmap_field. The regmap_field will be automatically freed
1257  * by the device management code.
1258  */
devm_regmap_field_alloc(struct device * dev,struct regmap * regmap,struct reg_field reg_field)1259 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1260 		struct regmap *regmap, struct reg_field reg_field)
1261 {
1262 	struct regmap_field *rm_field = devm_kzalloc(dev,
1263 					sizeof(*rm_field), GFP_KERNEL);
1264 	if (!rm_field)
1265 		return ERR_PTR(-ENOMEM);
1266 
1267 	regmap_field_init(rm_field, regmap, reg_field);
1268 
1269 	return rm_field;
1270 
1271 }
1272 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1273 
1274 
1275 /**
1276  * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1277  *
1278  * @regmap: regmap bank in which this register field is located.
1279  * @rm_field: regmap register fields within the bank.
1280  * @reg_field: Register fields within the bank.
1281  * @num_fields: Number of register fields.
1282  *
1283  * The return value will be an -ENOMEM on error or zero for success.
1284  * Newly allocated regmap_fields should be freed by calling
1285  * regmap_field_bulk_free()
1286  */
regmap_field_bulk_alloc(struct regmap * regmap,struct regmap_field ** rm_field,struct reg_field * reg_field,int num_fields)1287 int regmap_field_bulk_alloc(struct regmap *regmap,
1288 			    struct regmap_field **rm_field,
1289 			    struct reg_field *reg_field,
1290 			    int num_fields)
1291 {
1292 	struct regmap_field *rf;
1293 	int i;
1294 
1295 	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1296 	if (!rf)
1297 		return -ENOMEM;
1298 
1299 	for (i = 0; i < num_fields; i++) {
1300 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1301 		rm_field[i] = &rf[i];
1302 	}
1303 
1304 	return 0;
1305 }
1306 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1307 
1308 /**
1309  * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1310  * fields.
1311  *
1312  * @dev: Device that will be interacted with
1313  * @regmap: regmap bank in which this register field is located.
1314  * @rm_field: regmap register fields within the bank.
1315  * @reg_field: Register fields within the bank.
1316  * @num_fields: Number of register fields.
1317  *
1318  * The return value will be an -ENOMEM on error or zero for success.
1319  * Newly allocated regmap_fields will be automatically freed by the
1320  * device management code.
1321  */
devm_regmap_field_bulk_alloc(struct device * dev,struct regmap * regmap,struct regmap_field ** rm_field,struct reg_field * reg_field,int num_fields)1322 int devm_regmap_field_bulk_alloc(struct device *dev,
1323 				 struct regmap *regmap,
1324 				 struct regmap_field **rm_field,
1325 				 struct reg_field *reg_field,
1326 				 int num_fields)
1327 {
1328 	struct regmap_field *rf;
1329 	int i;
1330 
1331 	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1332 	if (!rf)
1333 		return -ENOMEM;
1334 
1335 	for (i = 0; i < num_fields; i++) {
1336 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1337 		rm_field[i] = &rf[i];
1338 	}
1339 
1340 	return 0;
1341 }
1342 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1343 
1344 /**
1345  * regmap_field_bulk_free() - Free register field allocated using
1346  *                       regmap_field_bulk_alloc.
1347  *
1348  * @field: regmap fields which should be freed.
1349  */
regmap_field_bulk_free(struct regmap_field * field)1350 void regmap_field_bulk_free(struct regmap_field *field)
1351 {
1352 	kfree(field);
1353 }
1354 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1355 
1356 /**
1357  * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1358  *                            devm_regmap_field_bulk_alloc.
1359  *
1360  * @dev: Device that will be interacted with
1361  * @field: regmap field which should be freed.
1362  *
1363  * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1364  * drivers need not call this function, as the memory allocated via devm
1365  * will be freed as per device-driver life-cycle.
1366  */
devm_regmap_field_bulk_free(struct device * dev,struct regmap_field * field)1367 void devm_regmap_field_bulk_free(struct device *dev,
1368 				 struct regmap_field *field)
1369 {
1370 	devm_kfree(dev, field);
1371 }
1372 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1373 
1374 /**
1375  * devm_regmap_field_free() - Free a register field allocated using
1376  *                            devm_regmap_field_alloc.
1377  *
1378  * @dev: Device that will be interacted with
1379  * @field: regmap field which should be freed.
1380  *
1381  * Free register field allocated using devm_regmap_field_alloc(). Usually
1382  * drivers need not call this function, as the memory allocated via devm
1383  * will be freed as per device-driver life-cyle.
1384  */
devm_regmap_field_free(struct device * dev,struct regmap_field * field)1385 void devm_regmap_field_free(struct device *dev,
1386 	struct regmap_field *field)
1387 {
1388 	devm_kfree(dev, field);
1389 }
1390 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1391 
1392 /**
1393  * regmap_field_alloc() - Allocate and initialise a register field.
1394  *
1395  * @regmap: regmap bank in which this register field is located.
1396  * @reg_field: Register field with in the bank.
1397  *
1398  * The return value will be an ERR_PTR() on error or a valid pointer
1399  * to a struct regmap_field. The regmap_field should be freed by the
1400  * user once its finished working with it using regmap_field_free().
1401  */
regmap_field_alloc(struct regmap * regmap,struct reg_field reg_field)1402 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1403 		struct reg_field reg_field)
1404 {
1405 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1406 
1407 	if (!rm_field)
1408 		return ERR_PTR(-ENOMEM);
1409 
1410 	regmap_field_init(rm_field, regmap, reg_field);
1411 
1412 	return rm_field;
1413 }
1414 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1415 
1416 /**
1417  * regmap_field_free() - Free register field allocated using
1418  *                       regmap_field_alloc.
1419  *
1420  * @field: regmap field which should be freed.
1421  */
regmap_field_free(struct regmap_field * field)1422 void regmap_field_free(struct regmap_field *field)
1423 {
1424 	kfree(field);
1425 }
1426 EXPORT_SYMBOL_GPL(regmap_field_free);
1427 
1428 /**
1429  * regmap_reinit_cache() - Reinitialise the current register cache
1430  *
1431  * @map: Register map to operate on.
1432  * @config: New configuration.  Only the cache data will be used.
1433  *
1434  * Discard any existing register cache for the map and initialize a
1435  * new cache.  This can be used to restore the cache to defaults or to
1436  * update the cache configuration to reflect runtime discovery of the
1437  * hardware.
1438  *
1439  * No explicit locking is done here, the user needs to ensure that
1440  * this function will not race with other calls to regmap.
1441  */
regmap_reinit_cache(struct regmap * map,const struct regmap_config * config)1442 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1443 {
1444 	int ret;
1445 
1446 	regcache_exit(map);
1447 	regmap_debugfs_exit(map);
1448 
1449 	map->max_register = config->max_register;
1450 	map->writeable_reg = config->writeable_reg;
1451 	map->readable_reg = config->readable_reg;
1452 	map->volatile_reg = config->volatile_reg;
1453 	map->precious_reg = config->precious_reg;
1454 	map->writeable_noinc_reg = config->writeable_noinc_reg;
1455 	map->readable_noinc_reg = config->readable_noinc_reg;
1456 	map->cache_type = config->cache_type;
1457 
1458 	ret = regmap_set_name(map, config);
1459 	if (ret)
1460 		return ret;
1461 
1462 	regmap_debugfs_init(map);
1463 
1464 	map->cache_bypass = false;
1465 	map->cache_only = false;
1466 
1467 	return regcache_init(map, config);
1468 }
1469 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1470 
1471 /**
1472  * regmap_exit() - Free a previously allocated register map
1473  *
1474  * @map: Register map to operate on.
1475  */
regmap_exit(struct regmap * map)1476 void regmap_exit(struct regmap *map)
1477 {
1478 	struct regmap_async *async;
1479 
1480 	regcache_exit(map);
1481 	regmap_debugfs_exit(map);
1482 	regmap_range_exit(map);
1483 	if (map->bus && map->bus->free_context)
1484 		map->bus->free_context(map->bus_context);
1485 	kfree(map->work_buf);
1486 	while (!list_empty(&map->async_free)) {
1487 		async = list_first_entry_or_null(&map->async_free,
1488 						 struct regmap_async,
1489 						 list);
1490 		list_del(&async->list);
1491 		kfree(async->work_buf);
1492 		kfree(async);
1493 	}
1494 	if (map->hwlock)
1495 		hwspin_lock_free(map->hwlock);
1496 	if (map->lock == regmap_lock_mutex)
1497 		mutex_destroy(&map->mutex);
1498 	kfree_const(map->name);
1499 	kfree(map->patch);
1500 	kfree(map);
1501 }
1502 EXPORT_SYMBOL_GPL(regmap_exit);
1503 
dev_get_regmap_match(struct device * dev,void * res,void * data)1504 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1505 {
1506 	struct regmap **r = res;
1507 	if (!r || !*r) {
1508 		WARN_ON(!r || !*r);
1509 		return 0;
1510 	}
1511 
1512 	/* If the user didn't specify a name match any */
1513 	if (data)
1514 		return (*r)->name && !strcmp((*r)->name, data);
1515 	else
1516 		return 1;
1517 }
1518 
1519 /**
1520  * dev_get_regmap() - Obtain the regmap (if any) for a device
1521  *
1522  * @dev: Device to retrieve the map for
1523  * @name: Optional name for the register map, usually NULL.
1524  *
1525  * Returns the regmap for the device if one is present, or NULL.  If
1526  * name is specified then it must match the name specified when
1527  * registering the device, if it is NULL then the first regmap found
1528  * will be used.  Devices with multiple register maps are very rare,
1529  * generic code should normally not need to specify a name.
1530  */
dev_get_regmap(struct device * dev,const char * name)1531 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1532 {
1533 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1534 					dev_get_regmap_match, (void *)name);
1535 
1536 	if (!r)
1537 		return NULL;
1538 	return *r;
1539 }
1540 EXPORT_SYMBOL_GPL(dev_get_regmap);
1541 
1542 /**
1543  * regmap_get_device() - Obtain the device from a regmap
1544  *
1545  * @map: Register map to operate on.
1546  *
1547  * Returns the underlying device that the regmap has been created for.
1548  */
regmap_get_device(struct regmap * map)1549 struct device *regmap_get_device(struct regmap *map)
1550 {
1551 	return map->dev;
1552 }
1553 EXPORT_SYMBOL_GPL(regmap_get_device);
1554 
_regmap_select_page(struct regmap * map,unsigned int * reg,struct regmap_range_node * range,unsigned int val_num)1555 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1556 			       struct regmap_range_node *range,
1557 			       unsigned int val_num)
1558 {
1559 	void *orig_work_buf;
1560 	unsigned int win_offset;
1561 	unsigned int win_page;
1562 	bool page_chg;
1563 	int ret;
1564 
1565 	win_offset = (*reg - range->range_min) % range->window_len;
1566 	win_page = (*reg - range->range_min) / range->window_len;
1567 
1568 	if (val_num > 1) {
1569 		/* Bulk write shouldn't cross range boundary */
1570 		if (*reg + val_num - 1 > range->range_max)
1571 			return -EINVAL;
1572 
1573 		/* ... or single page boundary */
1574 		if (val_num > range->window_len - win_offset)
1575 			return -EINVAL;
1576 	}
1577 
1578 	/* It is possible to have selector register inside data window.
1579 	   In that case, selector register is located on every page and
1580 	   it needs no page switching, when accessed alone. */
1581 	if (val_num > 1 ||
1582 	    range->window_start + win_offset != range->selector_reg) {
1583 		/* Use separate work_buf during page switching */
1584 		orig_work_buf = map->work_buf;
1585 		map->work_buf = map->selector_work_buf;
1586 
1587 		ret = _regmap_update_bits(map, range->selector_reg,
1588 					  range->selector_mask,
1589 					  win_page << range->selector_shift,
1590 					  &page_chg, false);
1591 
1592 		map->work_buf = orig_work_buf;
1593 
1594 		if (ret != 0)
1595 			return ret;
1596 	}
1597 
1598 	*reg = range->window_start + win_offset;
1599 
1600 	return 0;
1601 }
1602 
regmap_set_work_buf_flag_mask(struct regmap * map,int max_bytes,unsigned long mask)1603 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1604 					  unsigned long mask)
1605 {
1606 	u8 *buf;
1607 	int i;
1608 
1609 	if (!mask || !map->work_buf)
1610 		return;
1611 
1612 	buf = map->work_buf;
1613 
1614 	for (i = 0; i < max_bytes; i++)
1615 		buf[i] |= (mask >> (8 * i)) & 0xff;
1616 }
1617 
_regmap_raw_write_impl(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)1618 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1619 				  const void *val, size_t val_len, bool noinc)
1620 {
1621 	struct regmap_range_node *range;
1622 	unsigned long flags;
1623 	void *work_val = map->work_buf + map->format.reg_bytes +
1624 		map->format.pad_bytes;
1625 	void *buf;
1626 	int ret = -ENOTSUPP;
1627 	size_t len;
1628 	int i;
1629 
1630 	WARN_ON(!map->bus);
1631 
1632 	/* Check for unwritable or noinc registers in range
1633 	 * before we start
1634 	 */
1635 	if (!regmap_writeable_noinc(map, reg)) {
1636 		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1637 			unsigned int element =
1638 				reg + regmap_get_offset(map, i);
1639 			if (!regmap_writeable(map, element) ||
1640 				regmap_writeable_noinc(map, element))
1641 				return -EINVAL;
1642 		}
1643 	}
1644 
1645 	if (!map->cache_bypass && map->format.parse_val) {
1646 		unsigned int ival, offset;
1647 		int val_bytes = map->format.val_bytes;
1648 
1649 		/* Cache the last written value for noinc writes */
1650 		i = noinc ? val_len - val_bytes : 0;
1651 		for (; i < val_len; i += val_bytes) {
1652 			ival = map->format.parse_val(val + i);
1653 			offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1654 			ret = regcache_write(map, reg + offset, ival);
1655 			if (ret) {
1656 				dev_err(map->dev,
1657 					"Error in caching of register: %x ret: %d\n",
1658 					reg + offset, ret);
1659 				return ret;
1660 			}
1661 		}
1662 		if (map->cache_only) {
1663 			map->cache_dirty = true;
1664 			return 0;
1665 		}
1666 	}
1667 
1668 	range = _regmap_range_lookup(map, reg);
1669 	if (range) {
1670 		int val_num = val_len / map->format.val_bytes;
1671 		int win_offset = (reg - range->range_min) % range->window_len;
1672 		int win_residue = range->window_len - win_offset;
1673 
1674 		/* If the write goes beyond the end of the window split it */
1675 		while (val_num > win_residue) {
1676 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1677 				win_residue, val_len / map->format.val_bytes);
1678 			ret = _regmap_raw_write_impl(map, reg, val,
1679 						     win_residue *
1680 						     map->format.val_bytes, noinc);
1681 			if (ret != 0)
1682 				return ret;
1683 
1684 			reg += win_residue;
1685 			val_num -= win_residue;
1686 			val += win_residue * map->format.val_bytes;
1687 			val_len -= win_residue * map->format.val_bytes;
1688 
1689 			win_offset = (reg - range->range_min) %
1690 				range->window_len;
1691 			win_residue = range->window_len - win_offset;
1692 		}
1693 
1694 		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1695 		if (ret != 0)
1696 			return ret;
1697 	}
1698 
1699 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1700 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1701 				      map->write_flag_mask);
1702 
1703 	/*
1704 	 * Essentially all I/O mechanisms will be faster with a single
1705 	 * buffer to write.  Since register syncs often generate raw
1706 	 * writes of single registers optimise that case.
1707 	 */
1708 	if (val != work_val && val_len == map->format.val_bytes) {
1709 		memcpy(work_val, val, map->format.val_bytes);
1710 		val = work_val;
1711 	}
1712 
1713 	if (map->async && map->bus->async_write) {
1714 		struct regmap_async *async;
1715 
1716 		trace_regmap_async_write_start(map, reg, val_len);
1717 
1718 		spin_lock_irqsave(&map->async_lock, flags);
1719 		async = list_first_entry_or_null(&map->async_free,
1720 						 struct regmap_async,
1721 						 list);
1722 		if (async)
1723 			list_del(&async->list);
1724 		spin_unlock_irqrestore(&map->async_lock, flags);
1725 
1726 		if (!async) {
1727 			async = map->bus->async_alloc();
1728 			if (!async)
1729 				return -ENOMEM;
1730 
1731 			async->work_buf = kzalloc(map->format.buf_size,
1732 						  GFP_KERNEL | GFP_DMA);
1733 			if (!async->work_buf) {
1734 				kfree(async);
1735 				return -ENOMEM;
1736 			}
1737 		}
1738 
1739 		async->map = map;
1740 
1741 		/* If the caller supplied the value we can use it safely. */
1742 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1743 		       map->format.reg_bytes + map->format.val_bytes);
1744 
1745 		spin_lock_irqsave(&map->async_lock, flags);
1746 		list_add_tail(&async->list, &map->async_list);
1747 		spin_unlock_irqrestore(&map->async_lock, flags);
1748 
1749 		if (val != work_val)
1750 			ret = map->bus->async_write(map->bus_context,
1751 						    async->work_buf,
1752 						    map->format.reg_bytes +
1753 						    map->format.pad_bytes,
1754 						    val, val_len, async);
1755 		else
1756 			ret = map->bus->async_write(map->bus_context,
1757 						    async->work_buf,
1758 						    map->format.reg_bytes +
1759 						    map->format.pad_bytes +
1760 						    val_len, NULL, 0, async);
1761 
1762 		if (ret != 0) {
1763 			dev_err(map->dev, "Failed to schedule write: %d\n",
1764 				ret);
1765 
1766 			spin_lock_irqsave(&map->async_lock, flags);
1767 			list_move(&async->list, &map->async_free);
1768 			spin_unlock_irqrestore(&map->async_lock, flags);
1769 		}
1770 
1771 		return ret;
1772 	}
1773 
1774 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1775 
1776 	/* If we're doing a single register write we can probably just
1777 	 * send the work_buf directly, otherwise try to do a gather
1778 	 * write.
1779 	 */
1780 	if (val == work_val)
1781 		ret = map->bus->write(map->bus_context, map->work_buf,
1782 				      map->format.reg_bytes +
1783 				      map->format.pad_bytes +
1784 				      val_len);
1785 	else if (map->bus->gather_write)
1786 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1787 					     map->format.reg_bytes +
1788 					     map->format.pad_bytes,
1789 					     val, val_len);
1790 	else
1791 		ret = -ENOTSUPP;
1792 
1793 	/* If that didn't work fall back on linearising by hand. */
1794 	if (ret == -ENOTSUPP) {
1795 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1796 		buf = kzalloc(len, GFP_KERNEL);
1797 		if (!buf)
1798 			return -ENOMEM;
1799 
1800 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1801 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1802 		       val, val_len);
1803 		ret = map->bus->write(map->bus_context, buf, len);
1804 
1805 		kfree(buf);
1806 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1807 		/* regcache_drop_region() takes lock that we already have,
1808 		 * thus call map->cache_ops->drop() directly
1809 		 */
1810 		if (map->cache_ops && map->cache_ops->drop)
1811 			map->cache_ops->drop(map, reg, reg + 1);
1812 	}
1813 
1814 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1815 
1816 	return ret;
1817 }
1818 
1819 /**
1820  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1821  *
1822  * @map: Map to check.
1823  */
regmap_can_raw_write(struct regmap * map)1824 bool regmap_can_raw_write(struct regmap *map)
1825 {
1826 	return map->bus && map->bus->write && map->format.format_val &&
1827 		map->format.format_reg;
1828 }
1829 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1830 
1831 /**
1832  * regmap_get_raw_read_max - Get the maximum size we can read
1833  *
1834  * @map: Map to check.
1835  */
regmap_get_raw_read_max(struct regmap * map)1836 size_t regmap_get_raw_read_max(struct regmap *map)
1837 {
1838 	return map->max_raw_read;
1839 }
1840 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1841 
1842 /**
1843  * regmap_get_raw_write_max - Get the maximum size we can read
1844  *
1845  * @map: Map to check.
1846  */
regmap_get_raw_write_max(struct regmap * map)1847 size_t regmap_get_raw_write_max(struct regmap *map)
1848 {
1849 	return map->max_raw_write;
1850 }
1851 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1852 
_regmap_bus_formatted_write(void * context,unsigned int reg,unsigned int val)1853 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1854 				       unsigned int val)
1855 {
1856 	int ret;
1857 	struct regmap_range_node *range;
1858 	struct regmap *map = context;
1859 
1860 	WARN_ON(!map->bus || !map->format.format_write);
1861 
1862 	range = _regmap_range_lookup(map, reg);
1863 	if (range) {
1864 		ret = _regmap_select_page(map, &reg, range, 1);
1865 		if (ret != 0)
1866 			return ret;
1867 	}
1868 
1869 	map->format.format_write(map, reg, val);
1870 
1871 	trace_regmap_hw_write_start(map, reg, 1);
1872 
1873 	ret = map->bus->write(map->bus_context, map->work_buf,
1874 			      map->format.buf_size);
1875 
1876 	trace_regmap_hw_write_done(map, reg, 1);
1877 
1878 	return ret;
1879 }
1880 
_regmap_bus_reg_write(void * context,unsigned int reg,unsigned int val)1881 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1882 				 unsigned int val)
1883 {
1884 	struct regmap *map = context;
1885 
1886 	return map->bus->reg_write(map->bus_context, reg, val);
1887 }
1888 
_regmap_bus_raw_write(void * context,unsigned int reg,unsigned int val)1889 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1890 				 unsigned int val)
1891 {
1892 	struct regmap *map = context;
1893 
1894 	WARN_ON(!map->bus || !map->format.format_val);
1895 
1896 	map->format.format_val(map->work_buf + map->format.reg_bytes
1897 			       + map->format.pad_bytes, val, 0);
1898 	return _regmap_raw_write_impl(map, reg,
1899 				      map->work_buf +
1900 				      map->format.reg_bytes +
1901 				      map->format.pad_bytes,
1902 				      map->format.val_bytes,
1903 				      false);
1904 }
1905 
_regmap_map_get_context(struct regmap * map)1906 static inline void *_regmap_map_get_context(struct regmap *map)
1907 {
1908 	return (map->bus) ? map : map->bus_context;
1909 }
1910 
_regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1911 int _regmap_write(struct regmap *map, unsigned int reg,
1912 		  unsigned int val)
1913 {
1914 	int ret;
1915 	void *context = _regmap_map_get_context(map);
1916 
1917 	if (!regmap_writeable(map, reg))
1918 		return -EIO;
1919 
1920 	if (!map->cache_bypass && !map->defer_caching) {
1921 		ret = regcache_write(map, reg, val);
1922 		if (ret != 0)
1923 			return ret;
1924 		if (map->cache_only) {
1925 			map->cache_dirty = true;
1926 			return 0;
1927 		}
1928 	}
1929 
1930 	if (regmap_should_log(map))
1931 		dev_info(map->dev, "%x <= %x\n", reg, val);
1932 
1933 	trace_regmap_reg_write(map, reg, val);
1934 
1935 	return map->reg_write(context, reg, val);
1936 }
1937 
1938 /**
1939  * regmap_write() - Write a value to a single register
1940  *
1941  * @map: Register map to write to
1942  * @reg: Register to write to
1943  * @val: Value to be written
1944  *
1945  * A value of zero will be returned on success, a negative errno will
1946  * be returned in error cases.
1947  */
regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1948 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1949 {
1950 	int ret;
1951 
1952 	if (!IS_ALIGNED(reg, map->reg_stride))
1953 		return -EINVAL;
1954 
1955 	map->lock(map->lock_arg);
1956 
1957 	ret = _regmap_write(map, reg, val);
1958 
1959 	map->unlock(map->lock_arg);
1960 
1961 	return ret;
1962 }
1963 EXPORT_SYMBOL_GPL(regmap_write);
1964 
1965 /**
1966  * regmap_write_async() - Write a value to a single register asynchronously
1967  *
1968  * @map: Register map to write to
1969  * @reg: Register to write to
1970  * @val: Value to be written
1971  *
1972  * A value of zero will be returned on success, a negative errno will
1973  * be returned in error cases.
1974  */
regmap_write_async(struct regmap * map,unsigned int reg,unsigned int val)1975 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1976 {
1977 	int ret;
1978 
1979 	if (!IS_ALIGNED(reg, map->reg_stride))
1980 		return -EINVAL;
1981 
1982 	map->lock(map->lock_arg);
1983 
1984 	map->async = true;
1985 
1986 	ret = _regmap_write(map, reg, val);
1987 
1988 	map->async = false;
1989 
1990 	map->unlock(map->lock_arg);
1991 
1992 	return ret;
1993 }
1994 EXPORT_SYMBOL_GPL(regmap_write_async);
1995 
_regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)1996 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1997 		      const void *val, size_t val_len, bool noinc)
1998 {
1999 	size_t val_bytes = map->format.val_bytes;
2000 	size_t val_count = val_len / val_bytes;
2001 	size_t chunk_count, chunk_bytes;
2002 	size_t chunk_regs = val_count;
2003 	int ret, i;
2004 
2005 	if (!val_count)
2006 		return -EINVAL;
2007 
2008 	if (map->use_single_write)
2009 		chunk_regs = 1;
2010 	else if (map->max_raw_write && val_len > map->max_raw_write)
2011 		chunk_regs = map->max_raw_write / val_bytes;
2012 
2013 	chunk_count = val_count / chunk_regs;
2014 	chunk_bytes = chunk_regs * val_bytes;
2015 
2016 	/* Write as many bytes as possible with chunk_size */
2017 	for (i = 0; i < chunk_count; i++) {
2018 		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2019 		if (ret)
2020 			return ret;
2021 
2022 		reg += regmap_get_offset(map, chunk_regs);
2023 		val += chunk_bytes;
2024 		val_len -= chunk_bytes;
2025 	}
2026 
2027 	/* Write remaining bytes */
2028 	if (val_len)
2029 		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2030 
2031 	return ret;
2032 }
2033 
2034 /**
2035  * regmap_raw_write() - Write raw values to one or more registers
2036  *
2037  * @map: Register map to write to
2038  * @reg: Initial register to write to
2039  * @val: Block of data to be written, laid out for direct transmission to the
2040  *       device
2041  * @val_len: Length of data pointed to by val.
2042  *
2043  * This function is intended to be used for things like firmware
2044  * download where a large block of data needs to be transferred to the
2045  * device.  No formatting will be done on the data provided.
2046  *
2047  * A value of zero will be returned on success, a negative errno will
2048  * be returned in error cases.
2049  */
regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2050 int regmap_raw_write(struct regmap *map, unsigned int reg,
2051 		     const void *val, size_t val_len)
2052 {
2053 	int ret;
2054 
2055 	if (!regmap_can_raw_write(map))
2056 		return -EINVAL;
2057 	if (val_len % map->format.val_bytes)
2058 		return -EINVAL;
2059 
2060 	map->lock(map->lock_arg);
2061 
2062 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2063 
2064 	map->unlock(map->lock_arg);
2065 
2066 	return ret;
2067 }
2068 EXPORT_SYMBOL_GPL(regmap_raw_write);
2069 
2070 /**
2071  * regmap_noinc_write(): Write data from a register without incrementing the
2072  *			register number
2073  *
2074  * @map: Register map to write to
2075  * @reg: Register to write to
2076  * @val: Pointer to data buffer
2077  * @val_len: Length of output buffer in bytes.
2078  *
2079  * The regmap API usually assumes that bulk bus write operations will write a
2080  * range of registers. Some devices have certain registers for which a write
2081  * operation can write to an internal FIFO.
2082  *
2083  * The target register must be volatile but registers after it can be
2084  * completely unrelated cacheable registers.
2085  *
2086  * This will attempt multiple writes as required to write val_len bytes.
2087  *
2088  * A value of zero will be returned on success, a negative errno will be
2089  * returned in error cases.
2090  */
regmap_noinc_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2091 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2092 		      const void *val, size_t val_len)
2093 {
2094 	size_t write_len;
2095 	int ret;
2096 
2097 	if (!map->bus)
2098 		return -EINVAL;
2099 	if (!map->bus->write)
2100 		return -ENOTSUPP;
2101 	if (val_len % map->format.val_bytes)
2102 		return -EINVAL;
2103 	if (!IS_ALIGNED(reg, map->reg_stride))
2104 		return -EINVAL;
2105 	if (val_len == 0)
2106 		return -EINVAL;
2107 
2108 	map->lock(map->lock_arg);
2109 
2110 	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2111 		ret = -EINVAL;
2112 		goto out_unlock;
2113 	}
2114 
2115 	while (val_len) {
2116 		if (map->max_raw_write && map->max_raw_write < val_len)
2117 			write_len = map->max_raw_write;
2118 		else
2119 			write_len = val_len;
2120 		ret = _regmap_raw_write(map, reg, val, write_len, true);
2121 		if (ret)
2122 			goto out_unlock;
2123 		val = ((u8 *)val) + write_len;
2124 		val_len -= write_len;
2125 	}
2126 
2127 out_unlock:
2128 	map->unlock(map->lock_arg);
2129 	return ret;
2130 }
2131 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2132 
2133 /**
2134  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2135  *                                   register field.
2136  *
2137  * @field: Register field to write to
2138  * @mask: Bitmask to change
2139  * @val: Value to be written
2140  * @change: Boolean indicating if a write was done
2141  * @async: Boolean indicating asynchronously
2142  * @force: Boolean indicating use force update
2143  *
2144  * Perform a read/modify/write cycle on the register field with change,
2145  * async, force option.
2146  *
2147  * A value of zero will be returned on success, a negative errno will
2148  * be returned in error cases.
2149  */
regmap_field_update_bits_base(struct regmap_field * field,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2150 int regmap_field_update_bits_base(struct regmap_field *field,
2151 				  unsigned int mask, unsigned int val,
2152 				  bool *change, bool async, bool force)
2153 {
2154 	mask = (mask << field->shift) & field->mask;
2155 
2156 	return regmap_update_bits_base(field->regmap, field->reg,
2157 				       mask, val << field->shift,
2158 				       change, async, force);
2159 }
2160 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2161 
2162 /**
2163  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2164  *                                    register field with port ID
2165  *
2166  * @field: Register field to write to
2167  * @id: port ID
2168  * @mask: Bitmask to change
2169  * @val: Value to be written
2170  * @change: Boolean indicating if a write was done
2171  * @async: Boolean indicating asynchronously
2172  * @force: Boolean indicating use force update
2173  *
2174  * A value of zero will be returned on success, a negative errno will
2175  * be returned in error cases.
2176  */
regmap_fields_update_bits_base(struct regmap_field * field,unsigned int id,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2177 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2178 				   unsigned int mask, unsigned int val,
2179 				   bool *change, bool async, bool force)
2180 {
2181 	if (id >= field->id_size)
2182 		return -EINVAL;
2183 
2184 	mask = (mask << field->shift) & field->mask;
2185 
2186 	return regmap_update_bits_base(field->regmap,
2187 				       field->reg + (field->id_offset * id),
2188 				       mask, val << field->shift,
2189 				       change, async, force);
2190 }
2191 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2192 
2193 /**
2194  * regmap_bulk_write() - Write multiple registers to the device
2195  *
2196  * @map: Register map to write to
2197  * @reg: First register to be write from
2198  * @val: Block of data to be written, in native register size for device
2199  * @val_count: Number of registers to write
2200  *
2201  * This function is intended to be used for writing a large block of
2202  * data to the device either in single transfer or multiple transfer.
2203  *
2204  * A value of zero will be returned on success, a negative errno will
2205  * be returned in error cases.
2206  */
regmap_bulk_write(struct regmap * map,unsigned int reg,const void * val,size_t val_count)2207 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2208 		     size_t val_count)
2209 {
2210 	int ret = 0, i;
2211 	size_t val_bytes = map->format.val_bytes;
2212 
2213 	if (!IS_ALIGNED(reg, map->reg_stride))
2214 		return -EINVAL;
2215 
2216 	/*
2217 	 * Some devices don't support bulk write, for them we have a series of
2218 	 * single write operations.
2219 	 */
2220 	if (!map->bus || !map->format.parse_inplace) {
2221 		map->lock(map->lock_arg);
2222 		for (i = 0; i < val_count; i++) {
2223 			unsigned int ival;
2224 
2225 			switch (val_bytes) {
2226 			case 1:
2227 				ival = *(u8 *)(val + (i * val_bytes));
2228 				break;
2229 			case 2:
2230 				ival = *(u16 *)(val + (i * val_bytes));
2231 				break;
2232 			case 4:
2233 				ival = *(u32 *)(val + (i * val_bytes));
2234 				break;
2235 #ifdef CONFIG_64BIT
2236 			case 8:
2237 				ival = *(u64 *)(val + (i * val_bytes));
2238 				break;
2239 #endif
2240 			default:
2241 				ret = -EINVAL;
2242 				goto out;
2243 			}
2244 
2245 			ret = _regmap_write(map,
2246 					    reg + regmap_get_offset(map, i),
2247 					    ival);
2248 			if (ret != 0)
2249 				goto out;
2250 		}
2251 out:
2252 		map->unlock(map->lock_arg);
2253 	} else {
2254 		void *wval;
2255 
2256 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2257 		if (!wval)
2258 			return -ENOMEM;
2259 
2260 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2261 			map->format.parse_inplace(wval + i);
2262 
2263 		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2264 
2265 		kfree(wval);
2266 	}
2267 	return ret;
2268 }
2269 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2270 
2271 /*
2272  * _regmap_raw_multi_reg_write()
2273  *
2274  * the (register,newvalue) pairs in regs have not been formatted, but
2275  * they are all in the same page and have been changed to being page
2276  * relative. The page register has been written if that was necessary.
2277  */
_regmap_raw_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2278 static int _regmap_raw_multi_reg_write(struct regmap *map,
2279 				       const struct reg_sequence *regs,
2280 				       size_t num_regs)
2281 {
2282 	int ret;
2283 	void *buf;
2284 	int i;
2285 	u8 *u8;
2286 	size_t val_bytes = map->format.val_bytes;
2287 	size_t reg_bytes = map->format.reg_bytes;
2288 	size_t pad_bytes = map->format.pad_bytes;
2289 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2290 	size_t len = pair_size * num_regs;
2291 
2292 	if (!len)
2293 		return -EINVAL;
2294 
2295 	buf = kzalloc(len, GFP_KERNEL);
2296 	if (!buf)
2297 		return -ENOMEM;
2298 
2299 	/* We have to linearise by hand. */
2300 
2301 	u8 = buf;
2302 
2303 	for (i = 0; i < num_regs; i++) {
2304 		unsigned int reg = regs[i].reg;
2305 		unsigned int val = regs[i].def;
2306 		trace_regmap_hw_write_start(map, reg, 1);
2307 		map->format.format_reg(u8, reg, map->reg_shift);
2308 		u8 += reg_bytes + pad_bytes;
2309 		map->format.format_val(u8, val, 0);
2310 		u8 += val_bytes;
2311 	}
2312 	u8 = buf;
2313 	*u8 |= map->write_flag_mask;
2314 
2315 	ret = map->bus->write(map->bus_context, buf, len);
2316 
2317 	kfree(buf);
2318 
2319 	for (i = 0; i < num_regs; i++) {
2320 		int reg = regs[i].reg;
2321 		trace_regmap_hw_write_done(map, reg, 1);
2322 	}
2323 	return ret;
2324 }
2325 
_regmap_register_page(struct regmap * map,unsigned int reg,struct regmap_range_node * range)2326 static unsigned int _regmap_register_page(struct regmap *map,
2327 					  unsigned int reg,
2328 					  struct regmap_range_node *range)
2329 {
2330 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2331 
2332 	return win_page;
2333 }
2334 
_regmap_range_multi_paged_reg_write(struct regmap * map,struct reg_sequence * regs,size_t num_regs)2335 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2336 					       struct reg_sequence *regs,
2337 					       size_t num_regs)
2338 {
2339 	int ret;
2340 	int i, n;
2341 	struct reg_sequence *base;
2342 	unsigned int this_page = 0;
2343 	unsigned int page_change = 0;
2344 	/*
2345 	 * the set of registers are not neccessarily in order, but
2346 	 * since the order of write must be preserved this algorithm
2347 	 * chops the set each time the page changes. This also applies
2348 	 * if there is a delay required at any point in the sequence.
2349 	 */
2350 	base = regs;
2351 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2352 		unsigned int reg = regs[i].reg;
2353 		struct regmap_range_node *range;
2354 
2355 		range = _regmap_range_lookup(map, reg);
2356 		if (range) {
2357 			unsigned int win_page = _regmap_register_page(map, reg,
2358 								      range);
2359 
2360 			if (i == 0)
2361 				this_page = win_page;
2362 			if (win_page != this_page) {
2363 				this_page = win_page;
2364 				page_change = 1;
2365 			}
2366 		}
2367 
2368 		/* If we have both a page change and a delay make sure to
2369 		 * write the regs and apply the delay before we change the
2370 		 * page.
2371 		 */
2372 
2373 		if (page_change || regs[i].delay_us) {
2374 
2375 				/* For situations where the first write requires
2376 				 * a delay we need to make sure we don't call
2377 				 * raw_multi_reg_write with n=0
2378 				 * This can't occur with page breaks as we
2379 				 * never write on the first iteration
2380 				 */
2381 				if (regs[i].delay_us && i == 0)
2382 					n = 1;
2383 
2384 				ret = _regmap_raw_multi_reg_write(map, base, n);
2385 				if (ret != 0)
2386 					return ret;
2387 
2388 				if (regs[i].delay_us) {
2389 					if (map->can_sleep)
2390 						fsleep(regs[i].delay_us);
2391 					else
2392 						udelay(regs[i].delay_us);
2393 				}
2394 
2395 				base += n;
2396 				n = 0;
2397 
2398 				if (page_change) {
2399 					ret = _regmap_select_page(map,
2400 								  &base[n].reg,
2401 								  range, 1);
2402 					if (ret != 0)
2403 						return ret;
2404 
2405 					page_change = 0;
2406 				}
2407 
2408 		}
2409 
2410 	}
2411 	if (n > 0)
2412 		return _regmap_raw_multi_reg_write(map, base, n);
2413 	return 0;
2414 }
2415 
_regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2416 static int _regmap_multi_reg_write(struct regmap *map,
2417 				   const struct reg_sequence *regs,
2418 				   size_t num_regs)
2419 {
2420 	int i;
2421 	int ret;
2422 
2423 	if (!map->can_multi_write) {
2424 		for (i = 0; i < num_regs; i++) {
2425 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2426 			if (ret != 0)
2427 				return ret;
2428 
2429 			if (regs[i].delay_us) {
2430 				if (map->can_sleep)
2431 					fsleep(regs[i].delay_us);
2432 				else
2433 					udelay(regs[i].delay_us);
2434 			}
2435 		}
2436 		return 0;
2437 	}
2438 
2439 	if (!map->format.parse_inplace)
2440 		return -EINVAL;
2441 
2442 	if (map->writeable_reg)
2443 		for (i = 0; i < num_regs; i++) {
2444 			int reg = regs[i].reg;
2445 			if (!map->writeable_reg(map->dev, reg))
2446 				return -EINVAL;
2447 			if (!IS_ALIGNED(reg, map->reg_stride))
2448 				return -EINVAL;
2449 		}
2450 
2451 	if (!map->cache_bypass) {
2452 		for (i = 0; i < num_regs; i++) {
2453 			unsigned int val = regs[i].def;
2454 			unsigned int reg = regs[i].reg;
2455 			ret = regcache_write(map, reg, val);
2456 			if (ret) {
2457 				dev_err(map->dev,
2458 				"Error in caching of register: %x ret: %d\n",
2459 								reg, ret);
2460 				return ret;
2461 			}
2462 		}
2463 		if (map->cache_only) {
2464 			map->cache_dirty = true;
2465 			return 0;
2466 		}
2467 	}
2468 
2469 	WARN_ON(!map->bus);
2470 
2471 	for (i = 0; i < num_regs; i++) {
2472 		unsigned int reg = regs[i].reg;
2473 		struct regmap_range_node *range;
2474 
2475 		/* Coalesce all the writes between a page break or a delay
2476 		 * in a sequence
2477 		 */
2478 		range = _regmap_range_lookup(map, reg);
2479 		if (range || regs[i].delay_us) {
2480 			size_t len = sizeof(struct reg_sequence)*num_regs;
2481 			struct reg_sequence *base = kmemdup(regs, len,
2482 							   GFP_KERNEL);
2483 			if (!base)
2484 				return -ENOMEM;
2485 			ret = _regmap_range_multi_paged_reg_write(map, base,
2486 								  num_regs);
2487 			kfree(base);
2488 
2489 			return ret;
2490 		}
2491 	}
2492 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2493 }
2494 
2495 /**
2496  * regmap_multi_reg_write() - Write multiple registers to the device
2497  *
2498  * @map: Register map to write to
2499  * @regs: Array of structures containing register,value to be written
2500  * @num_regs: Number of registers to write
2501  *
2502  * Write multiple registers to the device where the set of register, value
2503  * pairs are supplied in any order, possibly not all in a single range.
2504  *
2505  * The 'normal' block write mode will send ultimately send data on the
2506  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2507  * addressed. However, this alternative block multi write mode will send
2508  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2509  * must of course support the mode.
2510  *
2511  * A value of zero will be returned on success, a negative errno will be
2512  * returned in error cases.
2513  */
regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,int num_regs)2514 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2515 			   int num_regs)
2516 {
2517 	int ret;
2518 
2519 	map->lock(map->lock_arg);
2520 
2521 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2522 
2523 	map->unlock(map->lock_arg);
2524 
2525 	return ret;
2526 }
2527 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2528 
2529 /**
2530  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2531  *                                     device but not the cache
2532  *
2533  * @map: Register map to write to
2534  * @regs: Array of structures containing register,value to be written
2535  * @num_regs: Number of registers to write
2536  *
2537  * Write multiple registers to the device but not the cache where the set
2538  * of register are supplied in any order.
2539  *
2540  * This function is intended to be used for writing a large block of data
2541  * atomically to the device in single transfer for those I2C client devices
2542  * that implement this alternative block write mode.
2543  *
2544  * A value of zero will be returned on success, a negative errno will
2545  * be returned in error cases.
2546  */
regmap_multi_reg_write_bypassed(struct regmap * map,const struct reg_sequence * regs,int num_regs)2547 int regmap_multi_reg_write_bypassed(struct regmap *map,
2548 				    const struct reg_sequence *regs,
2549 				    int num_regs)
2550 {
2551 	int ret;
2552 	bool bypass;
2553 
2554 	map->lock(map->lock_arg);
2555 
2556 	bypass = map->cache_bypass;
2557 	map->cache_bypass = true;
2558 
2559 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2560 
2561 	map->cache_bypass = bypass;
2562 
2563 	map->unlock(map->lock_arg);
2564 
2565 	return ret;
2566 }
2567 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2568 
2569 /**
2570  * regmap_raw_write_async() - Write raw values to one or more registers
2571  *                            asynchronously
2572  *
2573  * @map: Register map to write to
2574  * @reg: Initial register to write to
2575  * @val: Block of data to be written, laid out for direct transmission to the
2576  *       device.  Must be valid until regmap_async_complete() is called.
2577  * @val_len: Length of data pointed to by val.
2578  *
2579  * This function is intended to be used for things like firmware
2580  * download where a large block of data needs to be transferred to the
2581  * device.  No formatting will be done on the data provided.
2582  *
2583  * If supported by the underlying bus the write will be scheduled
2584  * asynchronously, helping maximise I/O speed on higher speed buses
2585  * like SPI.  regmap_async_complete() can be called to ensure that all
2586  * asynchrnous writes have been completed.
2587  *
2588  * A value of zero will be returned on success, a negative errno will
2589  * be returned in error cases.
2590  */
regmap_raw_write_async(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2591 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2592 			   const void *val, size_t val_len)
2593 {
2594 	int ret;
2595 
2596 	if (val_len % map->format.val_bytes)
2597 		return -EINVAL;
2598 	if (!IS_ALIGNED(reg, map->reg_stride))
2599 		return -EINVAL;
2600 
2601 	map->lock(map->lock_arg);
2602 
2603 	map->async = true;
2604 
2605 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2606 
2607 	map->async = false;
2608 
2609 	map->unlock(map->lock_arg);
2610 
2611 	return ret;
2612 }
2613 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2614 
_regmap_raw_read(struct regmap * map,unsigned int reg,void * val,unsigned int val_len,bool noinc)2615 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2616 			    unsigned int val_len, bool noinc)
2617 {
2618 	struct regmap_range_node *range;
2619 	int ret;
2620 
2621 	WARN_ON(!map->bus);
2622 
2623 	if (!map->bus || !map->bus->read)
2624 		return -EINVAL;
2625 
2626 	range = _regmap_range_lookup(map, reg);
2627 	if (range) {
2628 		ret = _regmap_select_page(map, &reg, range,
2629 					  noinc ? 1 : val_len / map->format.val_bytes);
2630 		if (ret != 0)
2631 			return ret;
2632 	}
2633 
2634 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2635 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2636 				      map->read_flag_mask);
2637 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2638 
2639 	ret = map->bus->read(map->bus_context, map->work_buf,
2640 			     map->format.reg_bytes + map->format.pad_bytes,
2641 			     val, val_len);
2642 
2643 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2644 
2645 	return ret;
2646 }
2647 
_regmap_bus_reg_read(void * context,unsigned int reg,unsigned int * val)2648 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2649 				unsigned int *val)
2650 {
2651 	struct regmap *map = context;
2652 
2653 	return map->bus->reg_read(map->bus_context, reg, val);
2654 }
2655 
_regmap_bus_read(void * context,unsigned int reg,unsigned int * val)2656 static int _regmap_bus_read(void *context, unsigned int reg,
2657 			    unsigned int *val)
2658 {
2659 	int ret;
2660 	struct regmap *map = context;
2661 	void *work_val = map->work_buf + map->format.reg_bytes +
2662 		map->format.pad_bytes;
2663 
2664 	if (!map->format.parse_val)
2665 		return -EINVAL;
2666 
2667 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2668 	if (ret == 0)
2669 		*val = map->format.parse_val(work_val);
2670 
2671 	return ret;
2672 }
2673 
_regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2674 static int _regmap_read(struct regmap *map, unsigned int reg,
2675 			unsigned int *val)
2676 {
2677 	int ret;
2678 	void *context = _regmap_map_get_context(map);
2679 
2680 	if (!map->cache_bypass) {
2681 		ret = regcache_read(map, reg, val);
2682 		if (ret == 0)
2683 			return 0;
2684 	}
2685 
2686 	if (map->cache_only)
2687 		return -EBUSY;
2688 
2689 	if (!regmap_readable(map, reg))
2690 		return -EIO;
2691 
2692 	ret = map->reg_read(context, reg, val);
2693 	if (ret == 0) {
2694 		if (regmap_should_log(map))
2695 			dev_info(map->dev, "%x => %x\n", reg, *val);
2696 
2697 		trace_regmap_reg_read(map, reg, *val);
2698 
2699 		if (!map->cache_bypass)
2700 			regcache_write(map, reg, *val);
2701 	}
2702 
2703 	return ret;
2704 }
2705 
2706 /**
2707  * regmap_read() - Read a value from a single register
2708  *
2709  * @map: Register map to read from
2710  * @reg: Register to be read from
2711  * @val: Pointer to store read value
2712  *
2713  * A value of zero will be returned on success, a negative errno will
2714  * be returned in error cases.
2715  */
regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2716 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2717 {
2718 	int ret;
2719 
2720 	if (!IS_ALIGNED(reg, map->reg_stride))
2721 		return -EINVAL;
2722 
2723 	map->lock(map->lock_arg);
2724 
2725 	ret = _regmap_read(map, reg, val);
2726 
2727 	map->unlock(map->lock_arg);
2728 
2729 	return ret;
2730 }
2731 EXPORT_SYMBOL_GPL(regmap_read);
2732 
2733 /**
2734  * regmap_raw_read() - Read raw data from the device
2735  *
2736  * @map: Register map to read from
2737  * @reg: First register to be read from
2738  * @val: Pointer to store read value
2739  * @val_len: Size of data to read
2740  *
2741  * A value of zero will be returned on success, a negative errno will
2742  * be returned in error cases.
2743  */
regmap_raw_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2744 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2745 		    size_t val_len)
2746 {
2747 	size_t val_bytes = map->format.val_bytes;
2748 	size_t val_count = val_len / val_bytes;
2749 	unsigned int v;
2750 	int ret, i;
2751 
2752 	if (!map->bus)
2753 		return -EINVAL;
2754 	if (val_len % map->format.val_bytes)
2755 		return -EINVAL;
2756 	if (!IS_ALIGNED(reg, map->reg_stride))
2757 		return -EINVAL;
2758 	if (val_count == 0)
2759 		return -EINVAL;
2760 
2761 	map->lock(map->lock_arg);
2762 
2763 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2764 	    map->cache_type == REGCACHE_NONE) {
2765 		size_t chunk_count, chunk_bytes;
2766 		size_t chunk_regs = val_count;
2767 
2768 		if (!map->bus->read) {
2769 			ret = -ENOTSUPP;
2770 			goto out;
2771 		}
2772 
2773 		if (map->use_single_read)
2774 			chunk_regs = 1;
2775 		else if (map->max_raw_read && val_len > map->max_raw_read)
2776 			chunk_regs = map->max_raw_read / val_bytes;
2777 
2778 		chunk_count = val_count / chunk_regs;
2779 		chunk_bytes = chunk_regs * val_bytes;
2780 
2781 		/* Read bytes that fit into whole chunks */
2782 		for (i = 0; i < chunk_count; i++) {
2783 			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2784 			if (ret != 0)
2785 				goto out;
2786 
2787 			reg += regmap_get_offset(map, chunk_regs);
2788 			val += chunk_bytes;
2789 			val_len -= chunk_bytes;
2790 		}
2791 
2792 		/* Read remaining bytes */
2793 		if (val_len) {
2794 			ret = _regmap_raw_read(map, reg, val, val_len, false);
2795 			if (ret != 0)
2796 				goto out;
2797 		}
2798 	} else {
2799 		/* Otherwise go word by word for the cache; should be low
2800 		 * cost as we expect to hit the cache.
2801 		 */
2802 		for (i = 0; i < val_count; i++) {
2803 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2804 					   &v);
2805 			if (ret != 0)
2806 				goto out;
2807 
2808 			map->format.format_val(val + (i * val_bytes), v, 0);
2809 		}
2810 	}
2811 
2812  out:
2813 	map->unlock(map->lock_arg);
2814 
2815 	return ret;
2816 }
2817 EXPORT_SYMBOL_GPL(regmap_raw_read);
2818 
2819 /**
2820  * regmap_noinc_read(): Read data from a register without incrementing the
2821  *			register number
2822  *
2823  * @map: Register map to read from
2824  * @reg: Register to read from
2825  * @val: Pointer to data buffer
2826  * @val_len: Length of output buffer in bytes.
2827  *
2828  * The regmap API usually assumes that bulk bus read operations will read a
2829  * range of registers. Some devices have certain registers for which a read
2830  * operation read will read from an internal FIFO.
2831  *
2832  * The target register must be volatile but registers after it can be
2833  * completely unrelated cacheable registers.
2834  *
2835  * This will attempt multiple reads as required to read val_len bytes.
2836  *
2837  * A value of zero will be returned on success, a negative errno will be
2838  * returned in error cases.
2839  */
regmap_noinc_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2840 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2841 		      void *val, size_t val_len)
2842 {
2843 	size_t read_len;
2844 	int ret;
2845 
2846 	if (!map->bus)
2847 		return -EINVAL;
2848 	if (!map->bus->read)
2849 		return -ENOTSUPP;
2850 	if (val_len % map->format.val_bytes)
2851 		return -EINVAL;
2852 	if (!IS_ALIGNED(reg, map->reg_stride))
2853 		return -EINVAL;
2854 	if (val_len == 0)
2855 		return -EINVAL;
2856 
2857 	map->lock(map->lock_arg);
2858 
2859 	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2860 		ret = -EINVAL;
2861 		goto out_unlock;
2862 	}
2863 
2864 	while (val_len) {
2865 		if (map->max_raw_read && map->max_raw_read < val_len)
2866 			read_len = map->max_raw_read;
2867 		else
2868 			read_len = val_len;
2869 		ret = _regmap_raw_read(map, reg, val, read_len, true);
2870 		if (ret)
2871 			goto out_unlock;
2872 		val = ((u8 *)val) + read_len;
2873 		val_len -= read_len;
2874 	}
2875 
2876 out_unlock:
2877 	map->unlock(map->lock_arg);
2878 	return ret;
2879 }
2880 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2881 
2882 /**
2883  * regmap_field_read(): Read a value to a single register field
2884  *
2885  * @field: Register field to read from
2886  * @val: Pointer to store read value
2887  *
2888  * A value of zero will be returned on success, a negative errno will
2889  * be returned in error cases.
2890  */
regmap_field_read(struct regmap_field * field,unsigned int * val)2891 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2892 {
2893 	int ret;
2894 	unsigned int reg_val;
2895 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2896 	if (ret != 0)
2897 		return ret;
2898 
2899 	reg_val &= field->mask;
2900 	reg_val >>= field->shift;
2901 	*val = reg_val;
2902 
2903 	return ret;
2904 }
2905 EXPORT_SYMBOL_GPL(regmap_field_read);
2906 
2907 /**
2908  * regmap_fields_read() - Read a value to a single register field with port ID
2909  *
2910  * @field: Register field to read from
2911  * @id: port ID
2912  * @val: Pointer to store read value
2913  *
2914  * A value of zero will be returned on success, a negative errno will
2915  * be returned in error cases.
2916  */
regmap_fields_read(struct regmap_field * field,unsigned int id,unsigned int * val)2917 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2918 		       unsigned int *val)
2919 {
2920 	int ret;
2921 	unsigned int reg_val;
2922 
2923 	if (id >= field->id_size)
2924 		return -EINVAL;
2925 
2926 	ret = regmap_read(field->regmap,
2927 			  field->reg + (field->id_offset * id),
2928 			  &reg_val);
2929 	if (ret != 0)
2930 		return ret;
2931 
2932 	reg_val &= field->mask;
2933 	reg_val >>= field->shift;
2934 	*val = reg_val;
2935 
2936 	return ret;
2937 }
2938 EXPORT_SYMBOL_GPL(regmap_fields_read);
2939 
2940 /**
2941  * regmap_bulk_read() - Read multiple registers from the device
2942  *
2943  * @map: Register map to read from
2944  * @reg: First register to be read from
2945  * @val: Pointer to store read value, in native register size for device
2946  * @val_count: Number of registers to read
2947  *
2948  * A value of zero will be returned on success, a negative errno will
2949  * be returned in error cases.
2950  */
regmap_bulk_read(struct regmap * map,unsigned int reg,void * val,size_t val_count)2951 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2952 		     size_t val_count)
2953 {
2954 	int ret, i;
2955 	size_t val_bytes = map->format.val_bytes;
2956 	bool vol = regmap_volatile_range(map, reg, val_count);
2957 
2958 	if (!IS_ALIGNED(reg, map->reg_stride))
2959 		return -EINVAL;
2960 	if (val_count == 0)
2961 		return -EINVAL;
2962 
2963 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2964 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2965 		if (ret != 0)
2966 			return ret;
2967 
2968 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2969 			map->format.parse_inplace(val + i);
2970 	} else {
2971 #ifdef CONFIG_64BIT
2972 		u64 *u64 = val;
2973 #endif
2974 		u32 *u32 = val;
2975 		u16 *u16 = val;
2976 		u8 *u8 = val;
2977 
2978 		map->lock(map->lock_arg);
2979 
2980 		for (i = 0; i < val_count; i++) {
2981 			unsigned int ival;
2982 
2983 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2984 					   &ival);
2985 			if (ret != 0)
2986 				goto out;
2987 
2988 			switch (map->format.val_bytes) {
2989 #ifdef CONFIG_64BIT
2990 			case 8:
2991 				u64[i] = ival;
2992 				break;
2993 #endif
2994 			case 4:
2995 				u32[i] = ival;
2996 				break;
2997 			case 2:
2998 				u16[i] = ival;
2999 				break;
3000 			case 1:
3001 				u8[i] = ival;
3002 				break;
3003 			default:
3004 				ret = -EINVAL;
3005 				goto out;
3006 			}
3007 		}
3008 
3009 out:
3010 		map->unlock(map->lock_arg);
3011 	}
3012 
3013 	return ret;
3014 }
3015 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3016 
_regmap_update_bits(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool force_write)3017 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3018 			       unsigned int mask, unsigned int val,
3019 			       bool *change, bool force_write)
3020 {
3021 	int ret;
3022 	unsigned int tmp, orig;
3023 
3024 	if (change)
3025 		*change = false;
3026 
3027 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3028 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3029 		if (ret == 0 && change)
3030 			*change = true;
3031 	} else {
3032 		ret = _regmap_read(map, reg, &orig);
3033 		if (ret != 0)
3034 			return ret;
3035 
3036 		tmp = orig & ~mask;
3037 		tmp |= val & mask;
3038 
3039 		if (force_write || (tmp != orig)) {
3040 			ret = _regmap_write(map, reg, tmp);
3041 			if (ret == 0 && change)
3042 				*change = true;
3043 		}
3044 	}
3045 
3046 	return ret;
3047 }
3048 
3049 /**
3050  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3051  *
3052  * @map: Register map to update
3053  * @reg: Register to update
3054  * @mask: Bitmask to change
3055  * @val: New value for bitmask
3056  * @change: Boolean indicating if a write was done
3057  * @async: Boolean indicating asynchronously
3058  * @force: Boolean indicating use force update
3059  *
3060  * Perform a read/modify/write cycle on a register map with change, async, force
3061  * options.
3062  *
3063  * If async is true:
3064  *
3065  * With most buses the read must be done synchronously so this is most useful
3066  * for devices with a cache which do not need to interact with the hardware to
3067  * determine the current register value.
3068  *
3069  * Returns zero for success, a negative number on error.
3070  */
regmap_update_bits_base(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool async,bool force)3071 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3072 			    unsigned int mask, unsigned int val,
3073 			    bool *change, bool async, bool force)
3074 {
3075 	int ret;
3076 
3077 	map->lock(map->lock_arg);
3078 
3079 	map->async = async;
3080 
3081 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3082 
3083 	map->async = false;
3084 
3085 	map->unlock(map->lock_arg);
3086 
3087 	return ret;
3088 }
3089 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3090 
3091 /**
3092  * regmap_test_bits() - Check if all specified bits are set in a register.
3093  *
3094  * @map: Register map to operate on
3095  * @reg: Register to read from
3096  * @bits: Bits to test
3097  *
3098  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3099  * bits are set and a negative error number if the underlying regmap_read()
3100  * fails.
3101  */
regmap_test_bits(struct regmap * map,unsigned int reg,unsigned int bits)3102 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3103 {
3104 	unsigned int val, ret;
3105 
3106 	ret = regmap_read(map, reg, &val);
3107 	if (ret)
3108 		return ret;
3109 
3110 	return (val & bits) == bits;
3111 }
3112 EXPORT_SYMBOL_GPL(regmap_test_bits);
3113 
regmap_async_complete_cb(struct regmap_async * async,int ret)3114 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3115 {
3116 	struct regmap *map = async->map;
3117 	bool wake;
3118 
3119 	trace_regmap_async_io_complete(map);
3120 
3121 	spin_lock(&map->async_lock);
3122 	list_move(&async->list, &map->async_free);
3123 	wake = list_empty(&map->async_list);
3124 
3125 	if (ret != 0)
3126 		map->async_ret = ret;
3127 
3128 	spin_unlock(&map->async_lock);
3129 
3130 	if (wake)
3131 		wake_up(&map->async_waitq);
3132 }
3133 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3134 
regmap_async_is_done(struct regmap * map)3135 static int regmap_async_is_done(struct regmap *map)
3136 {
3137 	unsigned long flags;
3138 	int ret;
3139 
3140 	spin_lock_irqsave(&map->async_lock, flags);
3141 	ret = list_empty(&map->async_list);
3142 	spin_unlock_irqrestore(&map->async_lock, flags);
3143 
3144 	return ret;
3145 }
3146 
3147 /**
3148  * regmap_async_complete - Ensure all asynchronous I/O has completed.
3149  *
3150  * @map: Map to operate on.
3151  *
3152  * Blocks until any pending asynchronous I/O has completed.  Returns
3153  * an error code for any failed I/O operations.
3154  */
regmap_async_complete(struct regmap * map)3155 int regmap_async_complete(struct regmap *map)
3156 {
3157 	unsigned long flags;
3158 	int ret;
3159 
3160 	/* Nothing to do with no async support */
3161 	if (!map->bus || !map->bus->async_write)
3162 		return 0;
3163 
3164 	trace_regmap_async_complete_start(map);
3165 
3166 	wait_event(map->async_waitq, regmap_async_is_done(map));
3167 
3168 	spin_lock_irqsave(&map->async_lock, flags);
3169 	ret = map->async_ret;
3170 	map->async_ret = 0;
3171 	spin_unlock_irqrestore(&map->async_lock, flags);
3172 
3173 	trace_regmap_async_complete_done(map);
3174 
3175 	return ret;
3176 }
3177 EXPORT_SYMBOL_GPL(regmap_async_complete);
3178 
3179 /**
3180  * regmap_register_patch - Register and apply register updates to be applied
3181  *                         on device initialistion
3182  *
3183  * @map: Register map to apply updates to.
3184  * @regs: Values to update.
3185  * @num_regs: Number of entries in regs.
3186  *
3187  * Register a set of register updates to be applied to the device
3188  * whenever the device registers are synchronised with the cache and
3189  * apply them immediately.  Typically this is used to apply
3190  * corrections to be applied to the device defaults on startup, such
3191  * as the updates some vendors provide to undocumented registers.
3192  *
3193  * The caller must ensure that this function cannot be called
3194  * concurrently with either itself or regcache_sync().
3195  */
regmap_register_patch(struct regmap * map,const struct reg_sequence * regs,int num_regs)3196 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3197 			  int num_regs)
3198 {
3199 	struct reg_sequence *p;
3200 	int ret;
3201 	bool bypass;
3202 
3203 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3204 	    num_regs))
3205 		return 0;
3206 
3207 	p = krealloc(map->patch,
3208 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3209 		     GFP_KERNEL);
3210 	if (p) {
3211 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3212 		map->patch = p;
3213 		map->patch_regs += num_regs;
3214 	} else {
3215 		return -ENOMEM;
3216 	}
3217 
3218 	map->lock(map->lock_arg);
3219 
3220 	bypass = map->cache_bypass;
3221 
3222 	map->cache_bypass = true;
3223 	map->async = true;
3224 
3225 	ret = _regmap_multi_reg_write(map, regs, num_regs);
3226 
3227 	map->async = false;
3228 	map->cache_bypass = bypass;
3229 
3230 	map->unlock(map->lock_arg);
3231 
3232 	regmap_async_complete(map);
3233 
3234 	return ret;
3235 }
3236 EXPORT_SYMBOL_GPL(regmap_register_patch);
3237 
3238 /**
3239  * regmap_get_val_bytes() - Report the size of a register value
3240  *
3241  * @map: Register map to operate on.
3242  *
3243  * Report the size of a register value, mainly intended to for use by
3244  * generic infrastructure built on top of regmap.
3245  */
regmap_get_val_bytes(struct regmap * map)3246 int regmap_get_val_bytes(struct regmap *map)
3247 {
3248 	if (map->format.format_write)
3249 		return -EINVAL;
3250 
3251 	return map->format.val_bytes;
3252 }
3253 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3254 
3255 /**
3256  * regmap_get_max_register() - Report the max register value
3257  *
3258  * @map: Register map to operate on.
3259  *
3260  * Report the max register value, mainly intended to for use by
3261  * generic infrastructure built on top of regmap.
3262  */
regmap_get_max_register(struct regmap * map)3263 int regmap_get_max_register(struct regmap *map)
3264 {
3265 	return map->max_register ? map->max_register : -EINVAL;
3266 }
3267 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3268 
3269 /**
3270  * regmap_get_reg_stride() - Report the register address stride
3271  *
3272  * @map: Register map to operate on.
3273  *
3274  * Report the register address stride, mainly intended to for use by
3275  * generic infrastructure built on top of regmap.
3276  */
regmap_get_reg_stride(struct regmap * map)3277 int regmap_get_reg_stride(struct regmap *map)
3278 {
3279 	return map->reg_stride;
3280 }
3281 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3282 
regmap_parse_val(struct regmap * map,const void * buf,unsigned int * val)3283 int regmap_parse_val(struct regmap *map, const void *buf,
3284 			unsigned int *val)
3285 {
3286 	if (!map->format.parse_val)
3287 		return -EINVAL;
3288 
3289 	*val = map->format.parse_val(buf);
3290 
3291 	return 0;
3292 }
3293 EXPORT_SYMBOL_GPL(regmap_parse_val);
3294 
regmap_initcall(void)3295 static int __init regmap_initcall(void)
3296 {
3297 	regmap_debugfs_initcall();
3298 
3299 	return 0;
3300 }
3301 postcore_initcall(regmap_initcall);
3302