1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24
25 #include "internal.h"
26
27 /*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33 #undef LOG_DEVICE
34
35 #ifdef LOG_DEVICE
regmap_should_log(struct regmap * map)36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
regmap_should_log(struct regmap * map)41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43
44
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
48
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
59
regmap_reg_in_ranges(unsigned int reg,const struct regmap_range * ranges,unsigned int nranges)60 bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
63 {
64 const struct regmap_range *r;
65 int i;
66
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
69 return true;
70 return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
regmap_check_range_table(struct regmap * map,unsigned int reg,const struct regmap_access_table * table)74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
76 {
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
80
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
84
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
regmap_writeable(struct regmap * map,unsigned int reg)90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 if (map->max_register && reg > map->max_register)
93 return false;
94
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
97
98 if (map->wr_table)
99 return regmap_check_range_table(map, reg, map->wr_table);
100
101 return true;
102 }
103
regmap_cached(struct regmap * map,unsigned int reg)104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 int ret;
107 unsigned int val;
108
109 if (map->cache_type == REGCACHE_NONE)
110 return false;
111
112 if (!map->cache_ops)
113 return false;
114
115 if (map->max_register && reg > map->max_register)
116 return false;
117
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
123
124 return true;
125 }
126
regmap_readable(struct regmap * map,unsigned int reg)127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 if (!map->reg_read)
130 return false;
131
132 if (map->max_register && reg > map->max_register)
133 return false;
134
135 if (map->format.format_write)
136 return false;
137
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
140
141 if (map->rd_table)
142 return regmap_check_range_table(map, reg, map->rd_table);
143
144 return true;
145 }
146
regmap_volatile(struct regmap * map,unsigned int reg)147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 if (!map->format.format_write && !regmap_readable(map, reg))
150 return false;
151
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
154
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
157
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
162 }
163
regmap_precious(struct regmap * map,unsigned int reg)164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 if (!regmap_readable(map, reg))
167 return false;
168
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
171
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
174
175 return false;
176 }
177
regmap_writeable_noinc(struct regmap * map,unsigned int reg)178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
182
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186 return true;
187 }
188
regmap_readable_noinc(struct regmap * map,unsigned int reg)189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
193
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197 return true;
198 }
199
regmap_volatile_range(struct regmap * map,unsigned int reg,size_t num)200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 size_t num)
202 {
203 unsigned int i;
204
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 return false;
208
209 return true;
210 }
211
regmap_format_12_20_write(struct regmap * map,unsigned int reg,unsigned int val)212 static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
214 {
215 u8 *out = map->work_buf;
216
217 out[0] = reg >> 4;
218 out[1] = (reg << 4) | (val >> 16);
219 out[2] = val >> 8;
220 out[3] = val;
221 }
222
223
regmap_format_2_6_write(struct regmap * map,unsigned int reg,unsigned int val)224 static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
226 {
227 u8 *out = map->work_buf;
228
229 *out = (reg << 6) | val;
230 }
231
regmap_format_4_12_write(struct regmap * map,unsigned int reg,unsigned int val)232 static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
234 {
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
237 }
238
regmap_format_7_9_write(struct regmap * map,unsigned int reg,unsigned int val)239 static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
241 {
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
244 }
245
regmap_format_10_14_write(struct regmap * map,unsigned int reg,unsigned int val)246 static void regmap_format_10_14_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
248 {
249 u8 *out = map->work_buf;
250
251 out[2] = val;
252 out[1] = (val >> 8) | (reg << 6);
253 out[0] = reg >> 2;
254 }
255
regmap_format_8(void * buf,unsigned int val,unsigned int shift)256 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
257 {
258 u8 *b = buf;
259
260 b[0] = val << shift;
261 }
262
regmap_format_16_be(void * buf,unsigned int val,unsigned int shift)263 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
264 {
265 put_unaligned_be16(val << shift, buf);
266 }
267
regmap_format_16_le(void * buf,unsigned int val,unsigned int shift)268 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
269 {
270 put_unaligned_le16(val << shift, buf);
271 }
272
regmap_format_16_native(void * buf,unsigned int val,unsigned int shift)273 static void regmap_format_16_native(void *buf, unsigned int val,
274 unsigned int shift)
275 {
276 u16 v = val << shift;
277
278 memcpy(buf, &v, sizeof(v));
279 }
280
regmap_format_24(void * buf,unsigned int val,unsigned int shift)281 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
282 {
283 u8 *b = buf;
284
285 val <<= shift;
286
287 b[0] = val >> 16;
288 b[1] = val >> 8;
289 b[2] = val;
290 }
291
regmap_format_32_be(void * buf,unsigned int val,unsigned int shift)292 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
293 {
294 put_unaligned_be32(val << shift, buf);
295 }
296
regmap_format_32_le(void * buf,unsigned int val,unsigned int shift)297 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
298 {
299 put_unaligned_le32(val << shift, buf);
300 }
301
regmap_format_32_native(void * buf,unsigned int val,unsigned int shift)302 static void regmap_format_32_native(void *buf, unsigned int val,
303 unsigned int shift)
304 {
305 u32 v = val << shift;
306
307 memcpy(buf, &v, sizeof(v));
308 }
309
310 #ifdef CONFIG_64BIT
regmap_format_64_be(void * buf,unsigned int val,unsigned int shift)311 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
312 {
313 put_unaligned_be64((u64) val << shift, buf);
314 }
315
regmap_format_64_le(void * buf,unsigned int val,unsigned int shift)316 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
317 {
318 put_unaligned_le64((u64) val << shift, buf);
319 }
320
regmap_format_64_native(void * buf,unsigned int val,unsigned int shift)321 static void regmap_format_64_native(void *buf, unsigned int val,
322 unsigned int shift)
323 {
324 u64 v = (u64) val << shift;
325
326 memcpy(buf, &v, sizeof(v));
327 }
328 #endif
329
regmap_parse_inplace_noop(void * buf)330 static void regmap_parse_inplace_noop(void *buf)
331 {
332 }
333
regmap_parse_8(const void * buf)334 static unsigned int regmap_parse_8(const void *buf)
335 {
336 const u8 *b = buf;
337
338 return b[0];
339 }
340
regmap_parse_16_be(const void * buf)341 static unsigned int regmap_parse_16_be(const void *buf)
342 {
343 return get_unaligned_be16(buf);
344 }
345
regmap_parse_16_le(const void * buf)346 static unsigned int regmap_parse_16_le(const void *buf)
347 {
348 return get_unaligned_le16(buf);
349 }
350
regmap_parse_16_be_inplace(void * buf)351 static void regmap_parse_16_be_inplace(void *buf)
352 {
353 u16 v = get_unaligned_be16(buf);
354
355 memcpy(buf, &v, sizeof(v));
356 }
357
regmap_parse_16_le_inplace(void * buf)358 static void regmap_parse_16_le_inplace(void *buf)
359 {
360 u16 v = get_unaligned_le16(buf);
361
362 memcpy(buf, &v, sizeof(v));
363 }
364
regmap_parse_16_native(const void * buf)365 static unsigned int regmap_parse_16_native(const void *buf)
366 {
367 u16 v;
368
369 memcpy(&v, buf, sizeof(v));
370 return v;
371 }
372
regmap_parse_24(const void * buf)373 static unsigned int regmap_parse_24(const void *buf)
374 {
375 const u8 *b = buf;
376 unsigned int ret = b[2];
377 ret |= ((unsigned int)b[1]) << 8;
378 ret |= ((unsigned int)b[0]) << 16;
379
380 return ret;
381 }
382
regmap_parse_32_be(const void * buf)383 static unsigned int regmap_parse_32_be(const void *buf)
384 {
385 return get_unaligned_be32(buf);
386 }
387
regmap_parse_32_le(const void * buf)388 static unsigned int regmap_parse_32_le(const void *buf)
389 {
390 return get_unaligned_le32(buf);
391 }
392
regmap_parse_32_be_inplace(void * buf)393 static void regmap_parse_32_be_inplace(void *buf)
394 {
395 u32 v = get_unaligned_be32(buf);
396
397 memcpy(buf, &v, sizeof(v));
398 }
399
regmap_parse_32_le_inplace(void * buf)400 static void regmap_parse_32_le_inplace(void *buf)
401 {
402 u32 v = get_unaligned_le32(buf);
403
404 memcpy(buf, &v, sizeof(v));
405 }
406
regmap_parse_32_native(const void * buf)407 static unsigned int regmap_parse_32_native(const void *buf)
408 {
409 u32 v;
410
411 memcpy(&v, buf, sizeof(v));
412 return v;
413 }
414
415 #ifdef CONFIG_64BIT
regmap_parse_64_be(const void * buf)416 static unsigned int regmap_parse_64_be(const void *buf)
417 {
418 return get_unaligned_be64(buf);
419 }
420
regmap_parse_64_le(const void * buf)421 static unsigned int regmap_parse_64_le(const void *buf)
422 {
423 return get_unaligned_le64(buf);
424 }
425
regmap_parse_64_be_inplace(void * buf)426 static void regmap_parse_64_be_inplace(void *buf)
427 {
428 u64 v = get_unaligned_be64(buf);
429
430 memcpy(buf, &v, sizeof(v));
431 }
432
regmap_parse_64_le_inplace(void * buf)433 static void regmap_parse_64_le_inplace(void *buf)
434 {
435 u64 v = get_unaligned_le64(buf);
436
437 memcpy(buf, &v, sizeof(v));
438 }
439
regmap_parse_64_native(const void * buf)440 static unsigned int regmap_parse_64_native(const void *buf)
441 {
442 u64 v;
443
444 memcpy(&v, buf, sizeof(v));
445 return v;
446 }
447 #endif
448
regmap_lock_hwlock(void * __map)449 static void regmap_lock_hwlock(void *__map)
450 {
451 struct regmap *map = __map;
452
453 hwspin_lock_timeout(map->hwlock, UINT_MAX);
454 }
455
regmap_lock_hwlock_irq(void * __map)456 static void regmap_lock_hwlock_irq(void *__map)
457 {
458 struct regmap *map = __map;
459
460 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
461 }
462
regmap_lock_hwlock_irqsave(void * __map)463 static void regmap_lock_hwlock_irqsave(void *__map)
464 {
465 struct regmap *map = __map;
466
467 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
468 &map->spinlock_flags);
469 }
470
regmap_unlock_hwlock(void * __map)471 static void regmap_unlock_hwlock(void *__map)
472 {
473 struct regmap *map = __map;
474
475 hwspin_unlock(map->hwlock);
476 }
477
regmap_unlock_hwlock_irq(void * __map)478 static void regmap_unlock_hwlock_irq(void *__map)
479 {
480 struct regmap *map = __map;
481
482 hwspin_unlock_irq(map->hwlock);
483 }
484
regmap_unlock_hwlock_irqrestore(void * __map)485 static void regmap_unlock_hwlock_irqrestore(void *__map)
486 {
487 struct regmap *map = __map;
488
489 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
490 }
491
regmap_lock_unlock_none(void * __map)492 static void regmap_lock_unlock_none(void *__map)
493 {
494
495 }
496
regmap_lock_mutex(void * __map)497 static void regmap_lock_mutex(void *__map)
498 {
499 struct regmap *map = __map;
500 mutex_lock(&map->mutex);
501 }
502
regmap_unlock_mutex(void * __map)503 static void regmap_unlock_mutex(void *__map)
504 {
505 struct regmap *map = __map;
506 mutex_unlock(&map->mutex);
507 }
508
regmap_lock_spinlock(void * __map)509 static void regmap_lock_spinlock(void *__map)
510 __acquires(&map->spinlock)
511 {
512 struct regmap *map = __map;
513 unsigned long flags;
514
515 spin_lock_irqsave(&map->spinlock, flags);
516 map->spinlock_flags = flags;
517 }
518
regmap_unlock_spinlock(void * __map)519 static void regmap_unlock_spinlock(void *__map)
520 __releases(&map->spinlock)
521 {
522 struct regmap *map = __map;
523 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
524 }
525
dev_get_regmap_release(struct device * dev,void * res)526 static void dev_get_regmap_release(struct device *dev, void *res)
527 {
528 /*
529 * We don't actually have anything to do here; the goal here
530 * is not to manage the regmap but to provide a simple way to
531 * get the regmap back given a struct device.
532 */
533 }
534
_regmap_range_add(struct regmap * map,struct regmap_range_node * data)535 static bool _regmap_range_add(struct regmap *map,
536 struct regmap_range_node *data)
537 {
538 struct rb_root *root = &map->range_tree;
539 struct rb_node **new = &(root->rb_node), *parent = NULL;
540
541 while (*new) {
542 struct regmap_range_node *this =
543 rb_entry(*new, struct regmap_range_node, node);
544
545 parent = *new;
546 if (data->range_max < this->range_min)
547 new = &((*new)->rb_left);
548 else if (data->range_min > this->range_max)
549 new = &((*new)->rb_right);
550 else
551 return false;
552 }
553
554 rb_link_node(&data->node, parent, new);
555 rb_insert_color(&data->node, root);
556
557 return true;
558 }
559
_regmap_range_lookup(struct regmap * map,unsigned int reg)560 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
561 unsigned int reg)
562 {
563 struct rb_node *node = map->range_tree.rb_node;
564
565 while (node) {
566 struct regmap_range_node *this =
567 rb_entry(node, struct regmap_range_node, node);
568
569 if (reg < this->range_min)
570 node = node->rb_left;
571 else if (reg > this->range_max)
572 node = node->rb_right;
573 else
574 return this;
575 }
576
577 return NULL;
578 }
579
regmap_range_exit(struct regmap * map)580 static void regmap_range_exit(struct regmap *map)
581 {
582 struct rb_node *next;
583 struct regmap_range_node *range_node;
584
585 next = rb_first(&map->range_tree);
586 while (next) {
587 range_node = rb_entry(next, struct regmap_range_node, node);
588 next = rb_next(&range_node->node);
589 rb_erase(&range_node->node, &map->range_tree);
590 kfree(range_node);
591 }
592
593 kfree(map->selector_work_buf);
594 }
595
regmap_set_name(struct regmap * map,const struct regmap_config * config)596 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
597 {
598 if (config->name) {
599 const char *name = kstrdup_const(config->name, GFP_KERNEL);
600
601 if (!name)
602 return -ENOMEM;
603
604 kfree_const(map->name);
605 map->name = name;
606 }
607
608 return 0;
609 }
610
regmap_attach_dev(struct device * dev,struct regmap * map,const struct regmap_config * config)611 int regmap_attach_dev(struct device *dev, struct regmap *map,
612 const struct regmap_config *config)
613 {
614 struct regmap **m;
615 int ret;
616
617 map->dev = dev;
618
619 ret = regmap_set_name(map, config);
620 if (ret)
621 return ret;
622
623 regmap_debugfs_exit(map);
624 regmap_debugfs_init(map);
625
626 /* Add a devres resource for dev_get_regmap() */
627 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
628 if (!m) {
629 regmap_debugfs_exit(map);
630 return -ENOMEM;
631 }
632 *m = map;
633 devres_add(dev, m);
634
635 return 0;
636 }
637 EXPORT_SYMBOL_GPL(regmap_attach_dev);
638
regmap_get_reg_endian(const struct regmap_bus * bus,const struct regmap_config * config)639 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
640 const struct regmap_config *config)
641 {
642 enum regmap_endian endian;
643
644 /* Retrieve the endianness specification from the regmap config */
645 endian = config->reg_format_endian;
646
647 /* If the regmap config specified a non-default value, use that */
648 if (endian != REGMAP_ENDIAN_DEFAULT)
649 return endian;
650
651 /* Retrieve the endianness specification from the bus config */
652 if (bus && bus->reg_format_endian_default)
653 endian = bus->reg_format_endian_default;
654
655 /* If the bus specified a non-default value, use that */
656 if (endian != REGMAP_ENDIAN_DEFAULT)
657 return endian;
658
659 /* Use this if no other value was found */
660 return REGMAP_ENDIAN_BIG;
661 }
662
regmap_get_val_endian(struct device * dev,const struct regmap_bus * bus,const struct regmap_config * config)663 enum regmap_endian regmap_get_val_endian(struct device *dev,
664 const struct regmap_bus *bus,
665 const struct regmap_config *config)
666 {
667 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
668 enum regmap_endian endian;
669
670 /* Retrieve the endianness specification from the regmap config */
671 endian = config->val_format_endian;
672
673 /* If the regmap config specified a non-default value, use that */
674 if (endian != REGMAP_ENDIAN_DEFAULT)
675 return endian;
676
677 /* If the firmware node exist try to get endianness from it */
678 if (fwnode_property_read_bool(fwnode, "big-endian"))
679 endian = REGMAP_ENDIAN_BIG;
680 else if (fwnode_property_read_bool(fwnode, "little-endian"))
681 endian = REGMAP_ENDIAN_LITTLE;
682 else if (fwnode_property_read_bool(fwnode, "native-endian"))
683 endian = REGMAP_ENDIAN_NATIVE;
684
685 /* If the endianness was specified in fwnode, use that */
686 if (endian != REGMAP_ENDIAN_DEFAULT)
687 return endian;
688
689 /* Retrieve the endianness specification from the bus config */
690 if (bus && bus->val_format_endian_default)
691 endian = bus->val_format_endian_default;
692
693 /* If the bus specified a non-default value, use that */
694 if (endian != REGMAP_ENDIAN_DEFAULT)
695 return endian;
696
697 /* Use this if no other value was found */
698 return REGMAP_ENDIAN_BIG;
699 }
700 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
701
__regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)702 struct regmap *__regmap_init(struct device *dev,
703 const struct regmap_bus *bus,
704 void *bus_context,
705 const struct regmap_config *config,
706 struct lock_class_key *lock_key,
707 const char *lock_name)
708 {
709 struct regmap *map;
710 int ret = -EINVAL;
711 enum regmap_endian reg_endian, val_endian;
712 int i, j;
713
714 if (!config)
715 goto err;
716
717 map = kzalloc(sizeof(*map), GFP_KERNEL);
718 if (map == NULL) {
719 ret = -ENOMEM;
720 goto err;
721 }
722
723 ret = regmap_set_name(map, config);
724 if (ret)
725 goto err_map;
726
727 ret = -EINVAL; /* Later error paths rely on this */
728
729 if (config->disable_locking) {
730 map->lock = map->unlock = regmap_lock_unlock_none;
731 map->can_sleep = config->can_sleep;
732 regmap_debugfs_disable(map);
733 } else if (config->lock && config->unlock) {
734 map->lock = config->lock;
735 map->unlock = config->unlock;
736 map->lock_arg = config->lock_arg;
737 map->can_sleep = config->can_sleep;
738 } else if (config->use_hwlock) {
739 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
740 if (!map->hwlock) {
741 ret = -ENXIO;
742 goto err_name;
743 }
744
745 switch (config->hwlock_mode) {
746 case HWLOCK_IRQSTATE:
747 map->lock = regmap_lock_hwlock_irqsave;
748 map->unlock = regmap_unlock_hwlock_irqrestore;
749 break;
750 case HWLOCK_IRQ:
751 map->lock = regmap_lock_hwlock_irq;
752 map->unlock = regmap_unlock_hwlock_irq;
753 break;
754 default:
755 map->lock = regmap_lock_hwlock;
756 map->unlock = regmap_unlock_hwlock;
757 break;
758 }
759
760 map->lock_arg = map;
761 } else {
762 if ((bus && bus->fast_io) ||
763 config->fast_io) {
764 spin_lock_init(&map->spinlock);
765 map->lock = regmap_lock_spinlock;
766 map->unlock = regmap_unlock_spinlock;
767 lockdep_set_class_and_name(&map->spinlock,
768 lock_key, lock_name);
769 } else {
770 mutex_init(&map->mutex);
771 map->lock = regmap_lock_mutex;
772 map->unlock = regmap_unlock_mutex;
773 map->can_sleep = true;
774 lockdep_set_class_and_name(&map->mutex,
775 lock_key, lock_name);
776 }
777 map->lock_arg = map;
778 }
779
780 /*
781 * When we write in fast-paths with regmap_bulk_write() don't allocate
782 * scratch buffers with sleeping allocations.
783 */
784 if ((bus && bus->fast_io) || config->fast_io)
785 map->alloc_flags = GFP_ATOMIC;
786 else
787 map->alloc_flags = GFP_KERNEL;
788
789 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
790 map->format.pad_bytes = config->pad_bits / 8;
791 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
792 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
793 config->val_bits + config->pad_bits, 8);
794 map->reg_shift = config->pad_bits % 8;
795 if (config->reg_stride)
796 map->reg_stride = config->reg_stride;
797 else
798 map->reg_stride = 1;
799 if (is_power_of_2(map->reg_stride))
800 map->reg_stride_order = ilog2(map->reg_stride);
801 else
802 map->reg_stride_order = -1;
803 map->use_single_read = config->use_single_read || !bus || !bus->read;
804 map->use_single_write = config->use_single_write || !bus || !bus->write;
805 map->can_multi_write = config->can_multi_write && bus && bus->write;
806 if (bus) {
807 map->max_raw_read = bus->max_raw_read;
808 map->max_raw_write = bus->max_raw_write;
809 }
810 map->dev = dev;
811 map->bus = bus;
812 map->bus_context = bus_context;
813 map->max_register = config->max_register;
814 map->wr_table = config->wr_table;
815 map->rd_table = config->rd_table;
816 map->volatile_table = config->volatile_table;
817 map->precious_table = config->precious_table;
818 map->wr_noinc_table = config->wr_noinc_table;
819 map->rd_noinc_table = config->rd_noinc_table;
820 map->writeable_reg = config->writeable_reg;
821 map->readable_reg = config->readable_reg;
822 map->volatile_reg = config->volatile_reg;
823 map->precious_reg = config->precious_reg;
824 map->writeable_noinc_reg = config->writeable_noinc_reg;
825 map->readable_noinc_reg = config->readable_noinc_reg;
826 map->cache_type = config->cache_type;
827
828 spin_lock_init(&map->async_lock);
829 INIT_LIST_HEAD(&map->async_list);
830 INIT_LIST_HEAD(&map->async_free);
831 init_waitqueue_head(&map->async_waitq);
832
833 if (config->read_flag_mask ||
834 config->write_flag_mask ||
835 config->zero_flag_mask) {
836 map->read_flag_mask = config->read_flag_mask;
837 map->write_flag_mask = config->write_flag_mask;
838 } else if (bus) {
839 map->read_flag_mask = bus->read_flag_mask;
840 }
841
842 if (!bus) {
843 map->reg_read = config->reg_read;
844 map->reg_write = config->reg_write;
845
846 map->defer_caching = false;
847 goto skip_format_initialization;
848 } else if (!bus->read || !bus->write) {
849 map->reg_read = _regmap_bus_reg_read;
850 map->reg_write = _regmap_bus_reg_write;
851 map->reg_update_bits = bus->reg_update_bits;
852
853 map->defer_caching = false;
854 goto skip_format_initialization;
855 } else {
856 map->reg_read = _regmap_bus_read;
857 map->reg_update_bits = bus->reg_update_bits;
858 }
859
860 reg_endian = regmap_get_reg_endian(bus, config);
861 val_endian = regmap_get_val_endian(dev, bus, config);
862
863 switch (config->reg_bits + map->reg_shift) {
864 case 2:
865 switch (config->val_bits) {
866 case 6:
867 map->format.format_write = regmap_format_2_6_write;
868 break;
869 default:
870 goto err_hwlock;
871 }
872 break;
873
874 case 4:
875 switch (config->val_bits) {
876 case 12:
877 map->format.format_write = regmap_format_4_12_write;
878 break;
879 default:
880 goto err_hwlock;
881 }
882 break;
883
884 case 7:
885 switch (config->val_bits) {
886 case 9:
887 map->format.format_write = regmap_format_7_9_write;
888 break;
889 default:
890 goto err_hwlock;
891 }
892 break;
893
894 case 10:
895 switch (config->val_bits) {
896 case 14:
897 map->format.format_write = regmap_format_10_14_write;
898 break;
899 default:
900 goto err_hwlock;
901 }
902 break;
903
904 case 12:
905 switch (config->val_bits) {
906 case 20:
907 map->format.format_write = regmap_format_12_20_write;
908 break;
909 default:
910 goto err_hwlock;
911 }
912 break;
913
914 case 8:
915 map->format.format_reg = regmap_format_8;
916 break;
917
918 case 16:
919 switch (reg_endian) {
920 case REGMAP_ENDIAN_BIG:
921 map->format.format_reg = regmap_format_16_be;
922 break;
923 case REGMAP_ENDIAN_LITTLE:
924 map->format.format_reg = regmap_format_16_le;
925 break;
926 case REGMAP_ENDIAN_NATIVE:
927 map->format.format_reg = regmap_format_16_native;
928 break;
929 default:
930 goto err_hwlock;
931 }
932 break;
933
934 case 24:
935 if (reg_endian != REGMAP_ENDIAN_BIG)
936 goto err_hwlock;
937 map->format.format_reg = regmap_format_24;
938 break;
939
940 case 32:
941 switch (reg_endian) {
942 case REGMAP_ENDIAN_BIG:
943 map->format.format_reg = regmap_format_32_be;
944 break;
945 case REGMAP_ENDIAN_LITTLE:
946 map->format.format_reg = regmap_format_32_le;
947 break;
948 case REGMAP_ENDIAN_NATIVE:
949 map->format.format_reg = regmap_format_32_native;
950 break;
951 default:
952 goto err_hwlock;
953 }
954 break;
955
956 #ifdef CONFIG_64BIT
957 case 64:
958 switch (reg_endian) {
959 case REGMAP_ENDIAN_BIG:
960 map->format.format_reg = regmap_format_64_be;
961 break;
962 case REGMAP_ENDIAN_LITTLE:
963 map->format.format_reg = regmap_format_64_le;
964 break;
965 case REGMAP_ENDIAN_NATIVE:
966 map->format.format_reg = regmap_format_64_native;
967 break;
968 default:
969 goto err_hwlock;
970 }
971 break;
972 #endif
973
974 default:
975 goto err_hwlock;
976 }
977
978 if (val_endian == REGMAP_ENDIAN_NATIVE)
979 map->format.parse_inplace = regmap_parse_inplace_noop;
980
981 switch (config->val_bits) {
982 case 8:
983 map->format.format_val = regmap_format_8;
984 map->format.parse_val = regmap_parse_8;
985 map->format.parse_inplace = regmap_parse_inplace_noop;
986 break;
987 case 16:
988 switch (val_endian) {
989 case REGMAP_ENDIAN_BIG:
990 map->format.format_val = regmap_format_16_be;
991 map->format.parse_val = regmap_parse_16_be;
992 map->format.parse_inplace = regmap_parse_16_be_inplace;
993 break;
994 case REGMAP_ENDIAN_LITTLE:
995 map->format.format_val = regmap_format_16_le;
996 map->format.parse_val = regmap_parse_16_le;
997 map->format.parse_inplace = regmap_parse_16_le_inplace;
998 break;
999 case REGMAP_ENDIAN_NATIVE:
1000 map->format.format_val = regmap_format_16_native;
1001 map->format.parse_val = regmap_parse_16_native;
1002 break;
1003 default:
1004 goto err_hwlock;
1005 }
1006 break;
1007 case 24:
1008 if (val_endian != REGMAP_ENDIAN_BIG)
1009 goto err_hwlock;
1010 map->format.format_val = regmap_format_24;
1011 map->format.parse_val = regmap_parse_24;
1012 break;
1013 case 32:
1014 switch (val_endian) {
1015 case REGMAP_ENDIAN_BIG:
1016 map->format.format_val = regmap_format_32_be;
1017 map->format.parse_val = regmap_parse_32_be;
1018 map->format.parse_inplace = regmap_parse_32_be_inplace;
1019 break;
1020 case REGMAP_ENDIAN_LITTLE:
1021 map->format.format_val = regmap_format_32_le;
1022 map->format.parse_val = regmap_parse_32_le;
1023 map->format.parse_inplace = regmap_parse_32_le_inplace;
1024 break;
1025 case REGMAP_ENDIAN_NATIVE:
1026 map->format.format_val = regmap_format_32_native;
1027 map->format.parse_val = regmap_parse_32_native;
1028 break;
1029 default:
1030 goto err_hwlock;
1031 }
1032 break;
1033 #ifdef CONFIG_64BIT
1034 case 64:
1035 switch (val_endian) {
1036 case REGMAP_ENDIAN_BIG:
1037 map->format.format_val = regmap_format_64_be;
1038 map->format.parse_val = regmap_parse_64_be;
1039 map->format.parse_inplace = regmap_parse_64_be_inplace;
1040 break;
1041 case REGMAP_ENDIAN_LITTLE:
1042 map->format.format_val = regmap_format_64_le;
1043 map->format.parse_val = regmap_parse_64_le;
1044 map->format.parse_inplace = regmap_parse_64_le_inplace;
1045 break;
1046 case REGMAP_ENDIAN_NATIVE:
1047 map->format.format_val = regmap_format_64_native;
1048 map->format.parse_val = regmap_parse_64_native;
1049 break;
1050 default:
1051 goto err_hwlock;
1052 }
1053 break;
1054 #endif
1055 }
1056
1057 if (map->format.format_write) {
1058 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1059 (val_endian != REGMAP_ENDIAN_BIG))
1060 goto err_hwlock;
1061 map->use_single_write = true;
1062 }
1063
1064 if (!map->format.format_write &&
1065 !(map->format.format_reg && map->format.format_val))
1066 goto err_hwlock;
1067
1068 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1069 if (map->work_buf == NULL) {
1070 ret = -ENOMEM;
1071 goto err_hwlock;
1072 }
1073
1074 if (map->format.format_write) {
1075 map->defer_caching = false;
1076 map->reg_write = _regmap_bus_formatted_write;
1077 } else if (map->format.format_val) {
1078 map->defer_caching = true;
1079 map->reg_write = _regmap_bus_raw_write;
1080 }
1081
1082 skip_format_initialization:
1083
1084 map->range_tree = RB_ROOT;
1085 for (i = 0; i < config->num_ranges; i++) {
1086 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1087 struct regmap_range_node *new;
1088
1089 /* Sanity check */
1090 if (range_cfg->range_max < range_cfg->range_min) {
1091 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1092 range_cfg->range_max, range_cfg->range_min);
1093 goto err_range;
1094 }
1095
1096 if (range_cfg->range_max > map->max_register) {
1097 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1098 range_cfg->range_max, map->max_register);
1099 goto err_range;
1100 }
1101
1102 if (range_cfg->selector_reg > map->max_register) {
1103 dev_err(map->dev,
1104 "Invalid range %d: selector out of map\n", i);
1105 goto err_range;
1106 }
1107
1108 if (range_cfg->window_len == 0) {
1109 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1110 i);
1111 goto err_range;
1112 }
1113
1114 /* Make sure, that this register range has no selector
1115 or data window within its boundary */
1116 for (j = 0; j < config->num_ranges; j++) {
1117 unsigned sel_reg = config->ranges[j].selector_reg;
1118 unsigned win_min = config->ranges[j].window_start;
1119 unsigned win_max = win_min +
1120 config->ranges[j].window_len - 1;
1121
1122 /* Allow data window inside its own virtual range */
1123 if (j == i)
1124 continue;
1125
1126 if (range_cfg->range_min <= sel_reg &&
1127 sel_reg <= range_cfg->range_max) {
1128 dev_err(map->dev,
1129 "Range %d: selector for %d in window\n",
1130 i, j);
1131 goto err_range;
1132 }
1133
1134 if (!(win_max < range_cfg->range_min ||
1135 win_min > range_cfg->range_max)) {
1136 dev_err(map->dev,
1137 "Range %d: window for %d in window\n",
1138 i, j);
1139 goto err_range;
1140 }
1141 }
1142
1143 new = kzalloc(sizeof(*new), GFP_KERNEL);
1144 if (new == NULL) {
1145 ret = -ENOMEM;
1146 goto err_range;
1147 }
1148
1149 new->map = map;
1150 new->name = range_cfg->name;
1151 new->range_min = range_cfg->range_min;
1152 new->range_max = range_cfg->range_max;
1153 new->selector_reg = range_cfg->selector_reg;
1154 new->selector_mask = range_cfg->selector_mask;
1155 new->selector_shift = range_cfg->selector_shift;
1156 new->window_start = range_cfg->window_start;
1157 new->window_len = range_cfg->window_len;
1158
1159 if (!_regmap_range_add(map, new)) {
1160 dev_err(map->dev, "Failed to add range %d\n", i);
1161 kfree(new);
1162 goto err_range;
1163 }
1164
1165 if (map->selector_work_buf == NULL) {
1166 map->selector_work_buf =
1167 kzalloc(map->format.buf_size, GFP_KERNEL);
1168 if (map->selector_work_buf == NULL) {
1169 ret = -ENOMEM;
1170 goto err_range;
1171 }
1172 }
1173 }
1174
1175 ret = regcache_init(map, config);
1176 if (ret != 0)
1177 goto err_range;
1178
1179 if (dev) {
1180 ret = regmap_attach_dev(dev, map, config);
1181 if (ret != 0)
1182 goto err_regcache;
1183 } else {
1184 regmap_debugfs_init(map);
1185 }
1186
1187 return map;
1188
1189 err_regcache:
1190 regcache_exit(map);
1191 err_range:
1192 regmap_range_exit(map);
1193 kfree(map->work_buf);
1194 err_hwlock:
1195 if (map->hwlock)
1196 hwspin_lock_free(map->hwlock);
1197 err_name:
1198 kfree_const(map->name);
1199 err_map:
1200 kfree(map);
1201 err:
1202 return ERR_PTR(ret);
1203 }
1204 EXPORT_SYMBOL_GPL(__regmap_init);
1205
devm_regmap_release(struct device * dev,void * res)1206 static void devm_regmap_release(struct device *dev, void *res)
1207 {
1208 regmap_exit(*(struct regmap **)res);
1209 }
1210
__devm_regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)1211 struct regmap *__devm_regmap_init(struct device *dev,
1212 const struct regmap_bus *bus,
1213 void *bus_context,
1214 const struct regmap_config *config,
1215 struct lock_class_key *lock_key,
1216 const char *lock_name)
1217 {
1218 struct regmap **ptr, *regmap;
1219
1220 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1221 if (!ptr)
1222 return ERR_PTR(-ENOMEM);
1223
1224 regmap = __regmap_init(dev, bus, bus_context, config,
1225 lock_key, lock_name);
1226 if (!IS_ERR(regmap)) {
1227 *ptr = regmap;
1228 devres_add(dev, ptr);
1229 } else {
1230 devres_free(ptr);
1231 }
1232
1233 return regmap;
1234 }
1235 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1236
regmap_field_init(struct regmap_field * rm_field,struct regmap * regmap,struct reg_field reg_field)1237 static void regmap_field_init(struct regmap_field *rm_field,
1238 struct regmap *regmap, struct reg_field reg_field)
1239 {
1240 rm_field->regmap = regmap;
1241 rm_field->reg = reg_field.reg;
1242 rm_field->shift = reg_field.lsb;
1243 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1244 rm_field->id_size = reg_field.id_size;
1245 rm_field->id_offset = reg_field.id_offset;
1246 }
1247
1248 /**
1249 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1250 *
1251 * @dev: Device that will be interacted with
1252 * @regmap: regmap bank in which this register field is located.
1253 * @reg_field: Register field with in the bank.
1254 *
1255 * The return value will be an ERR_PTR() on error or a valid pointer
1256 * to a struct regmap_field. The regmap_field will be automatically freed
1257 * by the device management code.
1258 */
devm_regmap_field_alloc(struct device * dev,struct regmap * regmap,struct reg_field reg_field)1259 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1260 struct regmap *regmap, struct reg_field reg_field)
1261 {
1262 struct regmap_field *rm_field = devm_kzalloc(dev,
1263 sizeof(*rm_field), GFP_KERNEL);
1264 if (!rm_field)
1265 return ERR_PTR(-ENOMEM);
1266
1267 regmap_field_init(rm_field, regmap, reg_field);
1268
1269 return rm_field;
1270
1271 }
1272 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1273
1274
1275 /**
1276 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1277 *
1278 * @regmap: regmap bank in which this register field is located.
1279 * @rm_field: regmap register fields within the bank.
1280 * @reg_field: Register fields within the bank.
1281 * @num_fields: Number of register fields.
1282 *
1283 * The return value will be an -ENOMEM on error or zero for success.
1284 * Newly allocated regmap_fields should be freed by calling
1285 * regmap_field_bulk_free()
1286 */
regmap_field_bulk_alloc(struct regmap * regmap,struct regmap_field ** rm_field,struct reg_field * reg_field,int num_fields)1287 int regmap_field_bulk_alloc(struct regmap *regmap,
1288 struct regmap_field **rm_field,
1289 struct reg_field *reg_field,
1290 int num_fields)
1291 {
1292 struct regmap_field *rf;
1293 int i;
1294
1295 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1296 if (!rf)
1297 return -ENOMEM;
1298
1299 for (i = 0; i < num_fields; i++) {
1300 regmap_field_init(&rf[i], regmap, reg_field[i]);
1301 rm_field[i] = &rf[i];
1302 }
1303
1304 return 0;
1305 }
1306 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1307
1308 /**
1309 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1310 * fields.
1311 *
1312 * @dev: Device that will be interacted with
1313 * @regmap: regmap bank in which this register field is located.
1314 * @rm_field: regmap register fields within the bank.
1315 * @reg_field: Register fields within the bank.
1316 * @num_fields: Number of register fields.
1317 *
1318 * The return value will be an -ENOMEM on error or zero for success.
1319 * Newly allocated regmap_fields will be automatically freed by the
1320 * device management code.
1321 */
devm_regmap_field_bulk_alloc(struct device * dev,struct regmap * regmap,struct regmap_field ** rm_field,struct reg_field * reg_field,int num_fields)1322 int devm_regmap_field_bulk_alloc(struct device *dev,
1323 struct regmap *regmap,
1324 struct regmap_field **rm_field,
1325 struct reg_field *reg_field,
1326 int num_fields)
1327 {
1328 struct regmap_field *rf;
1329 int i;
1330
1331 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1332 if (!rf)
1333 return -ENOMEM;
1334
1335 for (i = 0; i < num_fields; i++) {
1336 regmap_field_init(&rf[i], regmap, reg_field[i]);
1337 rm_field[i] = &rf[i];
1338 }
1339
1340 return 0;
1341 }
1342 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1343
1344 /**
1345 * regmap_field_bulk_free() - Free register field allocated using
1346 * regmap_field_bulk_alloc.
1347 *
1348 * @field: regmap fields which should be freed.
1349 */
regmap_field_bulk_free(struct regmap_field * field)1350 void regmap_field_bulk_free(struct regmap_field *field)
1351 {
1352 kfree(field);
1353 }
1354 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1355
1356 /**
1357 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1358 * devm_regmap_field_bulk_alloc.
1359 *
1360 * @dev: Device that will be interacted with
1361 * @field: regmap field which should be freed.
1362 *
1363 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1364 * drivers need not call this function, as the memory allocated via devm
1365 * will be freed as per device-driver life-cycle.
1366 */
devm_regmap_field_bulk_free(struct device * dev,struct regmap_field * field)1367 void devm_regmap_field_bulk_free(struct device *dev,
1368 struct regmap_field *field)
1369 {
1370 devm_kfree(dev, field);
1371 }
1372 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1373
1374 /**
1375 * devm_regmap_field_free() - Free a register field allocated using
1376 * devm_regmap_field_alloc.
1377 *
1378 * @dev: Device that will be interacted with
1379 * @field: regmap field which should be freed.
1380 *
1381 * Free register field allocated using devm_regmap_field_alloc(). Usually
1382 * drivers need not call this function, as the memory allocated via devm
1383 * will be freed as per device-driver life-cyle.
1384 */
devm_regmap_field_free(struct device * dev,struct regmap_field * field)1385 void devm_regmap_field_free(struct device *dev,
1386 struct regmap_field *field)
1387 {
1388 devm_kfree(dev, field);
1389 }
1390 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1391
1392 /**
1393 * regmap_field_alloc() - Allocate and initialise a register field.
1394 *
1395 * @regmap: regmap bank in which this register field is located.
1396 * @reg_field: Register field with in the bank.
1397 *
1398 * The return value will be an ERR_PTR() on error or a valid pointer
1399 * to a struct regmap_field. The regmap_field should be freed by the
1400 * user once its finished working with it using regmap_field_free().
1401 */
regmap_field_alloc(struct regmap * regmap,struct reg_field reg_field)1402 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1403 struct reg_field reg_field)
1404 {
1405 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1406
1407 if (!rm_field)
1408 return ERR_PTR(-ENOMEM);
1409
1410 regmap_field_init(rm_field, regmap, reg_field);
1411
1412 return rm_field;
1413 }
1414 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1415
1416 /**
1417 * regmap_field_free() - Free register field allocated using
1418 * regmap_field_alloc.
1419 *
1420 * @field: regmap field which should be freed.
1421 */
regmap_field_free(struct regmap_field * field)1422 void regmap_field_free(struct regmap_field *field)
1423 {
1424 kfree(field);
1425 }
1426 EXPORT_SYMBOL_GPL(regmap_field_free);
1427
1428 /**
1429 * regmap_reinit_cache() - Reinitialise the current register cache
1430 *
1431 * @map: Register map to operate on.
1432 * @config: New configuration. Only the cache data will be used.
1433 *
1434 * Discard any existing register cache for the map and initialize a
1435 * new cache. This can be used to restore the cache to defaults or to
1436 * update the cache configuration to reflect runtime discovery of the
1437 * hardware.
1438 *
1439 * No explicit locking is done here, the user needs to ensure that
1440 * this function will not race with other calls to regmap.
1441 */
regmap_reinit_cache(struct regmap * map,const struct regmap_config * config)1442 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1443 {
1444 int ret;
1445
1446 regcache_exit(map);
1447 regmap_debugfs_exit(map);
1448
1449 map->max_register = config->max_register;
1450 map->writeable_reg = config->writeable_reg;
1451 map->readable_reg = config->readable_reg;
1452 map->volatile_reg = config->volatile_reg;
1453 map->precious_reg = config->precious_reg;
1454 map->writeable_noinc_reg = config->writeable_noinc_reg;
1455 map->readable_noinc_reg = config->readable_noinc_reg;
1456 map->cache_type = config->cache_type;
1457
1458 ret = regmap_set_name(map, config);
1459 if (ret)
1460 return ret;
1461
1462 regmap_debugfs_init(map);
1463
1464 map->cache_bypass = false;
1465 map->cache_only = false;
1466
1467 return regcache_init(map, config);
1468 }
1469 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1470
1471 /**
1472 * regmap_exit() - Free a previously allocated register map
1473 *
1474 * @map: Register map to operate on.
1475 */
regmap_exit(struct regmap * map)1476 void regmap_exit(struct regmap *map)
1477 {
1478 struct regmap_async *async;
1479
1480 regcache_exit(map);
1481 regmap_debugfs_exit(map);
1482 regmap_range_exit(map);
1483 if (map->bus && map->bus->free_context)
1484 map->bus->free_context(map->bus_context);
1485 kfree(map->work_buf);
1486 while (!list_empty(&map->async_free)) {
1487 async = list_first_entry_or_null(&map->async_free,
1488 struct regmap_async,
1489 list);
1490 list_del(&async->list);
1491 kfree(async->work_buf);
1492 kfree(async);
1493 }
1494 if (map->hwlock)
1495 hwspin_lock_free(map->hwlock);
1496 if (map->lock == regmap_lock_mutex)
1497 mutex_destroy(&map->mutex);
1498 kfree_const(map->name);
1499 kfree(map->patch);
1500 kfree(map);
1501 }
1502 EXPORT_SYMBOL_GPL(regmap_exit);
1503
dev_get_regmap_match(struct device * dev,void * res,void * data)1504 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1505 {
1506 struct regmap **r = res;
1507 if (!r || !*r) {
1508 WARN_ON(!r || !*r);
1509 return 0;
1510 }
1511
1512 /* If the user didn't specify a name match any */
1513 if (data)
1514 return (*r)->name && !strcmp((*r)->name, data);
1515 else
1516 return 1;
1517 }
1518
1519 /**
1520 * dev_get_regmap() - Obtain the regmap (if any) for a device
1521 *
1522 * @dev: Device to retrieve the map for
1523 * @name: Optional name for the register map, usually NULL.
1524 *
1525 * Returns the regmap for the device if one is present, or NULL. If
1526 * name is specified then it must match the name specified when
1527 * registering the device, if it is NULL then the first regmap found
1528 * will be used. Devices with multiple register maps are very rare,
1529 * generic code should normally not need to specify a name.
1530 */
dev_get_regmap(struct device * dev,const char * name)1531 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1532 {
1533 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1534 dev_get_regmap_match, (void *)name);
1535
1536 if (!r)
1537 return NULL;
1538 return *r;
1539 }
1540 EXPORT_SYMBOL_GPL(dev_get_regmap);
1541
1542 /**
1543 * regmap_get_device() - Obtain the device from a regmap
1544 *
1545 * @map: Register map to operate on.
1546 *
1547 * Returns the underlying device that the regmap has been created for.
1548 */
regmap_get_device(struct regmap * map)1549 struct device *regmap_get_device(struct regmap *map)
1550 {
1551 return map->dev;
1552 }
1553 EXPORT_SYMBOL_GPL(regmap_get_device);
1554
_regmap_select_page(struct regmap * map,unsigned int * reg,struct regmap_range_node * range,unsigned int val_num)1555 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1556 struct regmap_range_node *range,
1557 unsigned int val_num)
1558 {
1559 void *orig_work_buf;
1560 unsigned int win_offset;
1561 unsigned int win_page;
1562 bool page_chg;
1563 int ret;
1564
1565 win_offset = (*reg - range->range_min) % range->window_len;
1566 win_page = (*reg - range->range_min) / range->window_len;
1567
1568 if (val_num > 1) {
1569 /* Bulk write shouldn't cross range boundary */
1570 if (*reg + val_num - 1 > range->range_max)
1571 return -EINVAL;
1572
1573 /* ... or single page boundary */
1574 if (val_num > range->window_len - win_offset)
1575 return -EINVAL;
1576 }
1577
1578 /* It is possible to have selector register inside data window.
1579 In that case, selector register is located on every page and
1580 it needs no page switching, when accessed alone. */
1581 if (val_num > 1 ||
1582 range->window_start + win_offset != range->selector_reg) {
1583 /* Use separate work_buf during page switching */
1584 orig_work_buf = map->work_buf;
1585 map->work_buf = map->selector_work_buf;
1586
1587 ret = _regmap_update_bits(map, range->selector_reg,
1588 range->selector_mask,
1589 win_page << range->selector_shift,
1590 &page_chg, false);
1591
1592 map->work_buf = orig_work_buf;
1593
1594 if (ret != 0)
1595 return ret;
1596 }
1597
1598 *reg = range->window_start + win_offset;
1599
1600 return 0;
1601 }
1602
regmap_set_work_buf_flag_mask(struct regmap * map,int max_bytes,unsigned long mask)1603 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1604 unsigned long mask)
1605 {
1606 u8 *buf;
1607 int i;
1608
1609 if (!mask || !map->work_buf)
1610 return;
1611
1612 buf = map->work_buf;
1613
1614 for (i = 0; i < max_bytes; i++)
1615 buf[i] |= (mask >> (8 * i)) & 0xff;
1616 }
1617
_regmap_raw_write_impl(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)1618 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1619 const void *val, size_t val_len, bool noinc)
1620 {
1621 struct regmap_range_node *range;
1622 unsigned long flags;
1623 void *work_val = map->work_buf + map->format.reg_bytes +
1624 map->format.pad_bytes;
1625 void *buf;
1626 int ret = -ENOTSUPP;
1627 size_t len;
1628 int i;
1629
1630 WARN_ON(!map->bus);
1631
1632 /* Check for unwritable or noinc registers in range
1633 * before we start
1634 */
1635 if (!regmap_writeable_noinc(map, reg)) {
1636 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1637 unsigned int element =
1638 reg + regmap_get_offset(map, i);
1639 if (!regmap_writeable(map, element) ||
1640 regmap_writeable_noinc(map, element))
1641 return -EINVAL;
1642 }
1643 }
1644
1645 if (!map->cache_bypass && map->format.parse_val) {
1646 unsigned int ival, offset;
1647 int val_bytes = map->format.val_bytes;
1648
1649 /* Cache the last written value for noinc writes */
1650 i = noinc ? val_len - val_bytes : 0;
1651 for (; i < val_len; i += val_bytes) {
1652 ival = map->format.parse_val(val + i);
1653 offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1654 ret = regcache_write(map, reg + offset, ival);
1655 if (ret) {
1656 dev_err(map->dev,
1657 "Error in caching of register: %x ret: %d\n",
1658 reg + offset, ret);
1659 return ret;
1660 }
1661 }
1662 if (map->cache_only) {
1663 map->cache_dirty = true;
1664 return 0;
1665 }
1666 }
1667
1668 range = _regmap_range_lookup(map, reg);
1669 if (range) {
1670 int val_num = val_len / map->format.val_bytes;
1671 int win_offset = (reg - range->range_min) % range->window_len;
1672 int win_residue = range->window_len - win_offset;
1673
1674 /* If the write goes beyond the end of the window split it */
1675 while (val_num > win_residue) {
1676 dev_dbg(map->dev, "Writing window %d/%zu\n",
1677 win_residue, val_len / map->format.val_bytes);
1678 ret = _regmap_raw_write_impl(map, reg, val,
1679 win_residue *
1680 map->format.val_bytes, noinc);
1681 if (ret != 0)
1682 return ret;
1683
1684 reg += win_residue;
1685 val_num -= win_residue;
1686 val += win_residue * map->format.val_bytes;
1687 val_len -= win_residue * map->format.val_bytes;
1688
1689 win_offset = (reg - range->range_min) %
1690 range->window_len;
1691 win_residue = range->window_len - win_offset;
1692 }
1693
1694 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1695 if (ret != 0)
1696 return ret;
1697 }
1698
1699 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1700 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1701 map->write_flag_mask);
1702
1703 /*
1704 * Essentially all I/O mechanisms will be faster with a single
1705 * buffer to write. Since register syncs often generate raw
1706 * writes of single registers optimise that case.
1707 */
1708 if (val != work_val && val_len == map->format.val_bytes) {
1709 memcpy(work_val, val, map->format.val_bytes);
1710 val = work_val;
1711 }
1712
1713 if (map->async && map->bus->async_write) {
1714 struct regmap_async *async;
1715
1716 trace_regmap_async_write_start(map, reg, val_len);
1717
1718 spin_lock_irqsave(&map->async_lock, flags);
1719 async = list_first_entry_or_null(&map->async_free,
1720 struct regmap_async,
1721 list);
1722 if (async)
1723 list_del(&async->list);
1724 spin_unlock_irqrestore(&map->async_lock, flags);
1725
1726 if (!async) {
1727 async = map->bus->async_alloc();
1728 if (!async)
1729 return -ENOMEM;
1730
1731 async->work_buf = kzalloc(map->format.buf_size,
1732 GFP_KERNEL | GFP_DMA);
1733 if (!async->work_buf) {
1734 kfree(async);
1735 return -ENOMEM;
1736 }
1737 }
1738
1739 async->map = map;
1740
1741 /* If the caller supplied the value we can use it safely. */
1742 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1743 map->format.reg_bytes + map->format.val_bytes);
1744
1745 spin_lock_irqsave(&map->async_lock, flags);
1746 list_add_tail(&async->list, &map->async_list);
1747 spin_unlock_irqrestore(&map->async_lock, flags);
1748
1749 if (val != work_val)
1750 ret = map->bus->async_write(map->bus_context,
1751 async->work_buf,
1752 map->format.reg_bytes +
1753 map->format.pad_bytes,
1754 val, val_len, async);
1755 else
1756 ret = map->bus->async_write(map->bus_context,
1757 async->work_buf,
1758 map->format.reg_bytes +
1759 map->format.pad_bytes +
1760 val_len, NULL, 0, async);
1761
1762 if (ret != 0) {
1763 dev_err(map->dev, "Failed to schedule write: %d\n",
1764 ret);
1765
1766 spin_lock_irqsave(&map->async_lock, flags);
1767 list_move(&async->list, &map->async_free);
1768 spin_unlock_irqrestore(&map->async_lock, flags);
1769 }
1770
1771 return ret;
1772 }
1773
1774 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1775
1776 /* If we're doing a single register write we can probably just
1777 * send the work_buf directly, otherwise try to do a gather
1778 * write.
1779 */
1780 if (val == work_val)
1781 ret = map->bus->write(map->bus_context, map->work_buf,
1782 map->format.reg_bytes +
1783 map->format.pad_bytes +
1784 val_len);
1785 else if (map->bus->gather_write)
1786 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1787 map->format.reg_bytes +
1788 map->format.pad_bytes,
1789 val, val_len);
1790 else
1791 ret = -ENOTSUPP;
1792
1793 /* If that didn't work fall back on linearising by hand. */
1794 if (ret == -ENOTSUPP) {
1795 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1796 buf = kzalloc(len, GFP_KERNEL);
1797 if (!buf)
1798 return -ENOMEM;
1799
1800 memcpy(buf, map->work_buf, map->format.reg_bytes);
1801 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1802 val, val_len);
1803 ret = map->bus->write(map->bus_context, buf, len);
1804
1805 kfree(buf);
1806 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1807 /* regcache_drop_region() takes lock that we already have,
1808 * thus call map->cache_ops->drop() directly
1809 */
1810 if (map->cache_ops && map->cache_ops->drop)
1811 map->cache_ops->drop(map, reg, reg + 1);
1812 }
1813
1814 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1815
1816 return ret;
1817 }
1818
1819 /**
1820 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1821 *
1822 * @map: Map to check.
1823 */
regmap_can_raw_write(struct regmap * map)1824 bool regmap_can_raw_write(struct regmap *map)
1825 {
1826 return map->bus && map->bus->write && map->format.format_val &&
1827 map->format.format_reg;
1828 }
1829 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1830
1831 /**
1832 * regmap_get_raw_read_max - Get the maximum size we can read
1833 *
1834 * @map: Map to check.
1835 */
regmap_get_raw_read_max(struct regmap * map)1836 size_t regmap_get_raw_read_max(struct regmap *map)
1837 {
1838 return map->max_raw_read;
1839 }
1840 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1841
1842 /**
1843 * regmap_get_raw_write_max - Get the maximum size we can read
1844 *
1845 * @map: Map to check.
1846 */
regmap_get_raw_write_max(struct regmap * map)1847 size_t regmap_get_raw_write_max(struct regmap *map)
1848 {
1849 return map->max_raw_write;
1850 }
1851 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1852
_regmap_bus_formatted_write(void * context,unsigned int reg,unsigned int val)1853 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1854 unsigned int val)
1855 {
1856 int ret;
1857 struct regmap_range_node *range;
1858 struct regmap *map = context;
1859
1860 WARN_ON(!map->bus || !map->format.format_write);
1861
1862 range = _regmap_range_lookup(map, reg);
1863 if (range) {
1864 ret = _regmap_select_page(map, ®, range, 1);
1865 if (ret != 0)
1866 return ret;
1867 }
1868
1869 map->format.format_write(map, reg, val);
1870
1871 trace_regmap_hw_write_start(map, reg, 1);
1872
1873 ret = map->bus->write(map->bus_context, map->work_buf,
1874 map->format.buf_size);
1875
1876 trace_regmap_hw_write_done(map, reg, 1);
1877
1878 return ret;
1879 }
1880
_regmap_bus_reg_write(void * context,unsigned int reg,unsigned int val)1881 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1882 unsigned int val)
1883 {
1884 struct regmap *map = context;
1885
1886 return map->bus->reg_write(map->bus_context, reg, val);
1887 }
1888
_regmap_bus_raw_write(void * context,unsigned int reg,unsigned int val)1889 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1890 unsigned int val)
1891 {
1892 struct regmap *map = context;
1893
1894 WARN_ON(!map->bus || !map->format.format_val);
1895
1896 map->format.format_val(map->work_buf + map->format.reg_bytes
1897 + map->format.pad_bytes, val, 0);
1898 return _regmap_raw_write_impl(map, reg,
1899 map->work_buf +
1900 map->format.reg_bytes +
1901 map->format.pad_bytes,
1902 map->format.val_bytes,
1903 false);
1904 }
1905
_regmap_map_get_context(struct regmap * map)1906 static inline void *_regmap_map_get_context(struct regmap *map)
1907 {
1908 return (map->bus) ? map : map->bus_context;
1909 }
1910
_regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1911 int _regmap_write(struct regmap *map, unsigned int reg,
1912 unsigned int val)
1913 {
1914 int ret;
1915 void *context = _regmap_map_get_context(map);
1916
1917 if (!regmap_writeable(map, reg))
1918 return -EIO;
1919
1920 if (!map->cache_bypass && !map->defer_caching) {
1921 ret = regcache_write(map, reg, val);
1922 if (ret != 0)
1923 return ret;
1924 if (map->cache_only) {
1925 map->cache_dirty = true;
1926 return 0;
1927 }
1928 }
1929
1930 if (regmap_should_log(map))
1931 dev_info(map->dev, "%x <= %x\n", reg, val);
1932
1933 trace_regmap_reg_write(map, reg, val);
1934
1935 return map->reg_write(context, reg, val);
1936 }
1937
1938 /**
1939 * regmap_write() - Write a value to a single register
1940 *
1941 * @map: Register map to write to
1942 * @reg: Register to write to
1943 * @val: Value to be written
1944 *
1945 * A value of zero will be returned on success, a negative errno will
1946 * be returned in error cases.
1947 */
regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1948 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1949 {
1950 int ret;
1951
1952 if (!IS_ALIGNED(reg, map->reg_stride))
1953 return -EINVAL;
1954
1955 map->lock(map->lock_arg);
1956
1957 ret = _regmap_write(map, reg, val);
1958
1959 map->unlock(map->lock_arg);
1960
1961 return ret;
1962 }
1963 EXPORT_SYMBOL_GPL(regmap_write);
1964
1965 /**
1966 * regmap_write_async() - Write a value to a single register asynchronously
1967 *
1968 * @map: Register map to write to
1969 * @reg: Register to write to
1970 * @val: Value to be written
1971 *
1972 * A value of zero will be returned on success, a negative errno will
1973 * be returned in error cases.
1974 */
regmap_write_async(struct regmap * map,unsigned int reg,unsigned int val)1975 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1976 {
1977 int ret;
1978
1979 if (!IS_ALIGNED(reg, map->reg_stride))
1980 return -EINVAL;
1981
1982 map->lock(map->lock_arg);
1983
1984 map->async = true;
1985
1986 ret = _regmap_write(map, reg, val);
1987
1988 map->async = false;
1989
1990 map->unlock(map->lock_arg);
1991
1992 return ret;
1993 }
1994 EXPORT_SYMBOL_GPL(regmap_write_async);
1995
_regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)1996 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1997 const void *val, size_t val_len, bool noinc)
1998 {
1999 size_t val_bytes = map->format.val_bytes;
2000 size_t val_count = val_len / val_bytes;
2001 size_t chunk_count, chunk_bytes;
2002 size_t chunk_regs = val_count;
2003 int ret, i;
2004
2005 if (!val_count)
2006 return -EINVAL;
2007
2008 if (map->use_single_write)
2009 chunk_regs = 1;
2010 else if (map->max_raw_write && val_len > map->max_raw_write)
2011 chunk_regs = map->max_raw_write / val_bytes;
2012
2013 chunk_count = val_count / chunk_regs;
2014 chunk_bytes = chunk_regs * val_bytes;
2015
2016 /* Write as many bytes as possible with chunk_size */
2017 for (i = 0; i < chunk_count; i++) {
2018 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2019 if (ret)
2020 return ret;
2021
2022 reg += regmap_get_offset(map, chunk_regs);
2023 val += chunk_bytes;
2024 val_len -= chunk_bytes;
2025 }
2026
2027 /* Write remaining bytes */
2028 if (val_len)
2029 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2030
2031 return ret;
2032 }
2033
2034 /**
2035 * regmap_raw_write() - Write raw values to one or more registers
2036 *
2037 * @map: Register map to write to
2038 * @reg: Initial register to write to
2039 * @val: Block of data to be written, laid out for direct transmission to the
2040 * device
2041 * @val_len: Length of data pointed to by val.
2042 *
2043 * This function is intended to be used for things like firmware
2044 * download where a large block of data needs to be transferred to the
2045 * device. No formatting will be done on the data provided.
2046 *
2047 * A value of zero will be returned on success, a negative errno will
2048 * be returned in error cases.
2049 */
regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2050 int regmap_raw_write(struct regmap *map, unsigned int reg,
2051 const void *val, size_t val_len)
2052 {
2053 int ret;
2054
2055 if (!regmap_can_raw_write(map))
2056 return -EINVAL;
2057 if (val_len % map->format.val_bytes)
2058 return -EINVAL;
2059
2060 map->lock(map->lock_arg);
2061
2062 ret = _regmap_raw_write(map, reg, val, val_len, false);
2063
2064 map->unlock(map->lock_arg);
2065
2066 return ret;
2067 }
2068 EXPORT_SYMBOL_GPL(regmap_raw_write);
2069
2070 /**
2071 * regmap_noinc_write(): Write data from a register without incrementing the
2072 * register number
2073 *
2074 * @map: Register map to write to
2075 * @reg: Register to write to
2076 * @val: Pointer to data buffer
2077 * @val_len: Length of output buffer in bytes.
2078 *
2079 * The regmap API usually assumes that bulk bus write operations will write a
2080 * range of registers. Some devices have certain registers for which a write
2081 * operation can write to an internal FIFO.
2082 *
2083 * The target register must be volatile but registers after it can be
2084 * completely unrelated cacheable registers.
2085 *
2086 * This will attempt multiple writes as required to write val_len bytes.
2087 *
2088 * A value of zero will be returned on success, a negative errno will be
2089 * returned in error cases.
2090 */
regmap_noinc_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2091 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2092 const void *val, size_t val_len)
2093 {
2094 size_t write_len;
2095 int ret;
2096
2097 if (!map->bus)
2098 return -EINVAL;
2099 if (!map->bus->write)
2100 return -ENOTSUPP;
2101 if (val_len % map->format.val_bytes)
2102 return -EINVAL;
2103 if (!IS_ALIGNED(reg, map->reg_stride))
2104 return -EINVAL;
2105 if (val_len == 0)
2106 return -EINVAL;
2107
2108 map->lock(map->lock_arg);
2109
2110 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2111 ret = -EINVAL;
2112 goto out_unlock;
2113 }
2114
2115 while (val_len) {
2116 if (map->max_raw_write && map->max_raw_write < val_len)
2117 write_len = map->max_raw_write;
2118 else
2119 write_len = val_len;
2120 ret = _regmap_raw_write(map, reg, val, write_len, true);
2121 if (ret)
2122 goto out_unlock;
2123 val = ((u8 *)val) + write_len;
2124 val_len -= write_len;
2125 }
2126
2127 out_unlock:
2128 map->unlock(map->lock_arg);
2129 return ret;
2130 }
2131 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2132
2133 /**
2134 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2135 * register field.
2136 *
2137 * @field: Register field to write to
2138 * @mask: Bitmask to change
2139 * @val: Value to be written
2140 * @change: Boolean indicating if a write was done
2141 * @async: Boolean indicating asynchronously
2142 * @force: Boolean indicating use force update
2143 *
2144 * Perform a read/modify/write cycle on the register field with change,
2145 * async, force option.
2146 *
2147 * A value of zero will be returned on success, a negative errno will
2148 * be returned in error cases.
2149 */
regmap_field_update_bits_base(struct regmap_field * field,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2150 int regmap_field_update_bits_base(struct regmap_field *field,
2151 unsigned int mask, unsigned int val,
2152 bool *change, bool async, bool force)
2153 {
2154 mask = (mask << field->shift) & field->mask;
2155
2156 return regmap_update_bits_base(field->regmap, field->reg,
2157 mask, val << field->shift,
2158 change, async, force);
2159 }
2160 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2161
2162 /**
2163 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2164 * register field with port ID
2165 *
2166 * @field: Register field to write to
2167 * @id: port ID
2168 * @mask: Bitmask to change
2169 * @val: Value to be written
2170 * @change: Boolean indicating if a write was done
2171 * @async: Boolean indicating asynchronously
2172 * @force: Boolean indicating use force update
2173 *
2174 * A value of zero will be returned on success, a negative errno will
2175 * be returned in error cases.
2176 */
regmap_fields_update_bits_base(struct regmap_field * field,unsigned int id,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2177 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2178 unsigned int mask, unsigned int val,
2179 bool *change, bool async, bool force)
2180 {
2181 if (id >= field->id_size)
2182 return -EINVAL;
2183
2184 mask = (mask << field->shift) & field->mask;
2185
2186 return regmap_update_bits_base(field->regmap,
2187 field->reg + (field->id_offset * id),
2188 mask, val << field->shift,
2189 change, async, force);
2190 }
2191 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2192
2193 /**
2194 * regmap_bulk_write() - Write multiple registers to the device
2195 *
2196 * @map: Register map to write to
2197 * @reg: First register to be write from
2198 * @val: Block of data to be written, in native register size for device
2199 * @val_count: Number of registers to write
2200 *
2201 * This function is intended to be used for writing a large block of
2202 * data to the device either in single transfer or multiple transfer.
2203 *
2204 * A value of zero will be returned on success, a negative errno will
2205 * be returned in error cases.
2206 */
regmap_bulk_write(struct regmap * map,unsigned int reg,const void * val,size_t val_count)2207 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2208 size_t val_count)
2209 {
2210 int ret = 0, i;
2211 size_t val_bytes = map->format.val_bytes;
2212
2213 if (!IS_ALIGNED(reg, map->reg_stride))
2214 return -EINVAL;
2215
2216 /*
2217 * Some devices don't support bulk write, for them we have a series of
2218 * single write operations.
2219 */
2220 if (!map->bus || !map->format.parse_inplace) {
2221 map->lock(map->lock_arg);
2222 for (i = 0; i < val_count; i++) {
2223 unsigned int ival;
2224
2225 switch (val_bytes) {
2226 case 1:
2227 ival = *(u8 *)(val + (i * val_bytes));
2228 break;
2229 case 2:
2230 ival = *(u16 *)(val + (i * val_bytes));
2231 break;
2232 case 4:
2233 ival = *(u32 *)(val + (i * val_bytes));
2234 break;
2235 #ifdef CONFIG_64BIT
2236 case 8:
2237 ival = *(u64 *)(val + (i * val_bytes));
2238 break;
2239 #endif
2240 default:
2241 ret = -EINVAL;
2242 goto out;
2243 }
2244
2245 ret = _regmap_write(map,
2246 reg + regmap_get_offset(map, i),
2247 ival);
2248 if (ret != 0)
2249 goto out;
2250 }
2251 out:
2252 map->unlock(map->lock_arg);
2253 } else {
2254 void *wval;
2255
2256 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2257 if (!wval)
2258 return -ENOMEM;
2259
2260 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2261 map->format.parse_inplace(wval + i);
2262
2263 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2264
2265 kfree(wval);
2266 }
2267 return ret;
2268 }
2269 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2270
2271 /*
2272 * _regmap_raw_multi_reg_write()
2273 *
2274 * the (register,newvalue) pairs in regs have not been formatted, but
2275 * they are all in the same page and have been changed to being page
2276 * relative. The page register has been written if that was necessary.
2277 */
_regmap_raw_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2278 static int _regmap_raw_multi_reg_write(struct regmap *map,
2279 const struct reg_sequence *regs,
2280 size_t num_regs)
2281 {
2282 int ret;
2283 void *buf;
2284 int i;
2285 u8 *u8;
2286 size_t val_bytes = map->format.val_bytes;
2287 size_t reg_bytes = map->format.reg_bytes;
2288 size_t pad_bytes = map->format.pad_bytes;
2289 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2290 size_t len = pair_size * num_regs;
2291
2292 if (!len)
2293 return -EINVAL;
2294
2295 buf = kzalloc(len, GFP_KERNEL);
2296 if (!buf)
2297 return -ENOMEM;
2298
2299 /* We have to linearise by hand. */
2300
2301 u8 = buf;
2302
2303 for (i = 0; i < num_regs; i++) {
2304 unsigned int reg = regs[i].reg;
2305 unsigned int val = regs[i].def;
2306 trace_regmap_hw_write_start(map, reg, 1);
2307 map->format.format_reg(u8, reg, map->reg_shift);
2308 u8 += reg_bytes + pad_bytes;
2309 map->format.format_val(u8, val, 0);
2310 u8 += val_bytes;
2311 }
2312 u8 = buf;
2313 *u8 |= map->write_flag_mask;
2314
2315 ret = map->bus->write(map->bus_context, buf, len);
2316
2317 kfree(buf);
2318
2319 for (i = 0; i < num_regs; i++) {
2320 int reg = regs[i].reg;
2321 trace_regmap_hw_write_done(map, reg, 1);
2322 }
2323 return ret;
2324 }
2325
_regmap_register_page(struct regmap * map,unsigned int reg,struct regmap_range_node * range)2326 static unsigned int _regmap_register_page(struct regmap *map,
2327 unsigned int reg,
2328 struct regmap_range_node *range)
2329 {
2330 unsigned int win_page = (reg - range->range_min) / range->window_len;
2331
2332 return win_page;
2333 }
2334
_regmap_range_multi_paged_reg_write(struct regmap * map,struct reg_sequence * regs,size_t num_regs)2335 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2336 struct reg_sequence *regs,
2337 size_t num_regs)
2338 {
2339 int ret;
2340 int i, n;
2341 struct reg_sequence *base;
2342 unsigned int this_page = 0;
2343 unsigned int page_change = 0;
2344 /*
2345 * the set of registers are not neccessarily in order, but
2346 * since the order of write must be preserved this algorithm
2347 * chops the set each time the page changes. This also applies
2348 * if there is a delay required at any point in the sequence.
2349 */
2350 base = regs;
2351 for (i = 0, n = 0; i < num_regs; i++, n++) {
2352 unsigned int reg = regs[i].reg;
2353 struct regmap_range_node *range;
2354
2355 range = _regmap_range_lookup(map, reg);
2356 if (range) {
2357 unsigned int win_page = _regmap_register_page(map, reg,
2358 range);
2359
2360 if (i == 0)
2361 this_page = win_page;
2362 if (win_page != this_page) {
2363 this_page = win_page;
2364 page_change = 1;
2365 }
2366 }
2367
2368 /* If we have both a page change and a delay make sure to
2369 * write the regs and apply the delay before we change the
2370 * page.
2371 */
2372
2373 if (page_change || regs[i].delay_us) {
2374
2375 /* For situations where the first write requires
2376 * a delay we need to make sure we don't call
2377 * raw_multi_reg_write with n=0
2378 * This can't occur with page breaks as we
2379 * never write on the first iteration
2380 */
2381 if (regs[i].delay_us && i == 0)
2382 n = 1;
2383
2384 ret = _regmap_raw_multi_reg_write(map, base, n);
2385 if (ret != 0)
2386 return ret;
2387
2388 if (regs[i].delay_us) {
2389 if (map->can_sleep)
2390 fsleep(regs[i].delay_us);
2391 else
2392 udelay(regs[i].delay_us);
2393 }
2394
2395 base += n;
2396 n = 0;
2397
2398 if (page_change) {
2399 ret = _regmap_select_page(map,
2400 &base[n].reg,
2401 range, 1);
2402 if (ret != 0)
2403 return ret;
2404
2405 page_change = 0;
2406 }
2407
2408 }
2409
2410 }
2411 if (n > 0)
2412 return _regmap_raw_multi_reg_write(map, base, n);
2413 return 0;
2414 }
2415
_regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2416 static int _regmap_multi_reg_write(struct regmap *map,
2417 const struct reg_sequence *regs,
2418 size_t num_regs)
2419 {
2420 int i;
2421 int ret;
2422
2423 if (!map->can_multi_write) {
2424 for (i = 0; i < num_regs; i++) {
2425 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2426 if (ret != 0)
2427 return ret;
2428
2429 if (regs[i].delay_us) {
2430 if (map->can_sleep)
2431 fsleep(regs[i].delay_us);
2432 else
2433 udelay(regs[i].delay_us);
2434 }
2435 }
2436 return 0;
2437 }
2438
2439 if (!map->format.parse_inplace)
2440 return -EINVAL;
2441
2442 if (map->writeable_reg)
2443 for (i = 0; i < num_regs; i++) {
2444 int reg = regs[i].reg;
2445 if (!map->writeable_reg(map->dev, reg))
2446 return -EINVAL;
2447 if (!IS_ALIGNED(reg, map->reg_stride))
2448 return -EINVAL;
2449 }
2450
2451 if (!map->cache_bypass) {
2452 for (i = 0; i < num_regs; i++) {
2453 unsigned int val = regs[i].def;
2454 unsigned int reg = regs[i].reg;
2455 ret = regcache_write(map, reg, val);
2456 if (ret) {
2457 dev_err(map->dev,
2458 "Error in caching of register: %x ret: %d\n",
2459 reg, ret);
2460 return ret;
2461 }
2462 }
2463 if (map->cache_only) {
2464 map->cache_dirty = true;
2465 return 0;
2466 }
2467 }
2468
2469 WARN_ON(!map->bus);
2470
2471 for (i = 0; i < num_regs; i++) {
2472 unsigned int reg = regs[i].reg;
2473 struct regmap_range_node *range;
2474
2475 /* Coalesce all the writes between a page break or a delay
2476 * in a sequence
2477 */
2478 range = _regmap_range_lookup(map, reg);
2479 if (range || regs[i].delay_us) {
2480 size_t len = sizeof(struct reg_sequence)*num_regs;
2481 struct reg_sequence *base = kmemdup(regs, len,
2482 GFP_KERNEL);
2483 if (!base)
2484 return -ENOMEM;
2485 ret = _regmap_range_multi_paged_reg_write(map, base,
2486 num_regs);
2487 kfree(base);
2488
2489 return ret;
2490 }
2491 }
2492 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2493 }
2494
2495 /**
2496 * regmap_multi_reg_write() - Write multiple registers to the device
2497 *
2498 * @map: Register map to write to
2499 * @regs: Array of structures containing register,value to be written
2500 * @num_regs: Number of registers to write
2501 *
2502 * Write multiple registers to the device where the set of register, value
2503 * pairs are supplied in any order, possibly not all in a single range.
2504 *
2505 * The 'normal' block write mode will send ultimately send data on the
2506 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2507 * addressed. However, this alternative block multi write mode will send
2508 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2509 * must of course support the mode.
2510 *
2511 * A value of zero will be returned on success, a negative errno will be
2512 * returned in error cases.
2513 */
regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,int num_regs)2514 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2515 int num_regs)
2516 {
2517 int ret;
2518
2519 map->lock(map->lock_arg);
2520
2521 ret = _regmap_multi_reg_write(map, regs, num_regs);
2522
2523 map->unlock(map->lock_arg);
2524
2525 return ret;
2526 }
2527 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2528
2529 /**
2530 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2531 * device but not the cache
2532 *
2533 * @map: Register map to write to
2534 * @regs: Array of structures containing register,value to be written
2535 * @num_regs: Number of registers to write
2536 *
2537 * Write multiple registers to the device but not the cache where the set
2538 * of register are supplied in any order.
2539 *
2540 * This function is intended to be used for writing a large block of data
2541 * atomically to the device in single transfer for those I2C client devices
2542 * that implement this alternative block write mode.
2543 *
2544 * A value of zero will be returned on success, a negative errno will
2545 * be returned in error cases.
2546 */
regmap_multi_reg_write_bypassed(struct regmap * map,const struct reg_sequence * regs,int num_regs)2547 int regmap_multi_reg_write_bypassed(struct regmap *map,
2548 const struct reg_sequence *regs,
2549 int num_regs)
2550 {
2551 int ret;
2552 bool bypass;
2553
2554 map->lock(map->lock_arg);
2555
2556 bypass = map->cache_bypass;
2557 map->cache_bypass = true;
2558
2559 ret = _regmap_multi_reg_write(map, regs, num_regs);
2560
2561 map->cache_bypass = bypass;
2562
2563 map->unlock(map->lock_arg);
2564
2565 return ret;
2566 }
2567 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2568
2569 /**
2570 * regmap_raw_write_async() - Write raw values to one or more registers
2571 * asynchronously
2572 *
2573 * @map: Register map to write to
2574 * @reg: Initial register to write to
2575 * @val: Block of data to be written, laid out for direct transmission to the
2576 * device. Must be valid until regmap_async_complete() is called.
2577 * @val_len: Length of data pointed to by val.
2578 *
2579 * This function is intended to be used for things like firmware
2580 * download where a large block of data needs to be transferred to the
2581 * device. No formatting will be done on the data provided.
2582 *
2583 * If supported by the underlying bus the write will be scheduled
2584 * asynchronously, helping maximise I/O speed on higher speed buses
2585 * like SPI. regmap_async_complete() can be called to ensure that all
2586 * asynchrnous writes have been completed.
2587 *
2588 * A value of zero will be returned on success, a negative errno will
2589 * be returned in error cases.
2590 */
regmap_raw_write_async(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2591 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2592 const void *val, size_t val_len)
2593 {
2594 int ret;
2595
2596 if (val_len % map->format.val_bytes)
2597 return -EINVAL;
2598 if (!IS_ALIGNED(reg, map->reg_stride))
2599 return -EINVAL;
2600
2601 map->lock(map->lock_arg);
2602
2603 map->async = true;
2604
2605 ret = _regmap_raw_write(map, reg, val, val_len, false);
2606
2607 map->async = false;
2608
2609 map->unlock(map->lock_arg);
2610
2611 return ret;
2612 }
2613 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2614
_regmap_raw_read(struct regmap * map,unsigned int reg,void * val,unsigned int val_len,bool noinc)2615 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2616 unsigned int val_len, bool noinc)
2617 {
2618 struct regmap_range_node *range;
2619 int ret;
2620
2621 WARN_ON(!map->bus);
2622
2623 if (!map->bus || !map->bus->read)
2624 return -EINVAL;
2625
2626 range = _regmap_range_lookup(map, reg);
2627 if (range) {
2628 ret = _regmap_select_page(map, ®, range,
2629 noinc ? 1 : val_len / map->format.val_bytes);
2630 if (ret != 0)
2631 return ret;
2632 }
2633
2634 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2635 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2636 map->read_flag_mask);
2637 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2638
2639 ret = map->bus->read(map->bus_context, map->work_buf,
2640 map->format.reg_bytes + map->format.pad_bytes,
2641 val, val_len);
2642
2643 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2644
2645 return ret;
2646 }
2647
_regmap_bus_reg_read(void * context,unsigned int reg,unsigned int * val)2648 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2649 unsigned int *val)
2650 {
2651 struct regmap *map = context;
2652
2653 return map->bus->reg_read(map->bus_context, reg, val);
2654 }
2655
_regmap_bus_read(void * context,unsigned int reg,unsigned int * val)2656 static int _regmap_bus_read(void *context, unsigned int reg,
2657 unsigned int *val)
2658 {
2659 int ret;
2660 struct regmap *map = context;
2661 void *work_val = map->work_buf + map->format.reg_bytes +
2662 map->format.pad_bytes;
2663
2664 if (!map->format.parse_val)
2665 return -EINVAL;
2666
2667 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2668 if (ret == 0)
2669 *val = map->format.parse_val(work_val);
2670
2671 return ret;
2672 }
2673
_regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2674 static int _regmap_read(struct regmap *map, unsigned int reg,
2675 unsigned int *val)
2676 {
2677 int ret;
2678 void *context = _regmap_map_get_context(map);
2679
2680 if (!map->cache_bypass) {
2681 ret = regcache_read(map, reg, val);
2682 if (ret == 0)
2683 return 0;
2684 }
2685
2686 if (map->cache_only)
2687 return -EBUSY;
2688
2689 if (!regmap_readable(map, reg))
2690 return -EIO;
2691
2692 ret = map->reg_read(context, reg, val);
2693 if (ret == 0) {
2694 if (regmap_should_log(map))
2695 dev_info(map->dev, "%x => %x\n", reg, *val);
2696
2697 trace_regmap_reg_read(map, reg, *val);
2698
2699 if (!map->cache_bypass)
2700 regcache_write(map, reg, *val);
2701 }
2702
2703 return ret;
2704 }
2705
2706 /**
2707 * regmap_read() - Read a value from a single register
2708 *
2709 * @map: Register map to read from
2710 * @reg: Register to be read from
2711 * @val: Pointer to store read value
2712 *
2713 * A value of zero will be returned on success, a negative errno will
2714 * be returned in error cases.
2715 */
regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2716 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2717 {
2718 int ret;
2719
2720 if (!IS_ALIGNED(reg, map->reg_stride))
2721 return -EINVAL;
2722
2723 map->lock(map->lock_arg);
2724
2725 ret = _regmap_read(map, reg, val);
2726
2727 map->unlock(map->lock_arg);
2728
2729 return ret;
2730 }
2731 EXPORT_SYMBOL_GPL(regmap_read);
2732
2733 /**
2734 * regmap_raw_read() - Read raw data from the device
2735 *
2736 * @map: Register map to read from
2737 * @reg: First register to be read from
2738 * @val: Pointer to store read value
2739 * @val_len: Size of data to read
2740 *
2741 * A value of zero will be returned on success, a negative errno will
2742 * be returned in error cases.
2743 */
regmap_raw_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2744 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2745 size_t val_len)
2746 {
2747 size_t val_bytes = map->format.val_bytes;
2748 size_t val_count = val_len / val_bytes;
2749 unsigned int v;
2750 int ret, i;
2751
2752 if (!map->bus)
2753 return -EINVAL;
2754 if (val_len % map->format.val_bytes)
2755 return -EINVAL;
2756 if (!IS_ALIGNED(reg, map->reg_stride))
2757 return -EINVAL;
2758 if (val_count == 0)
2759 return -EINVAL;
2760
2761 map->lock(map->lock_arg);
2762
2763 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2764 map->cache_type == REGCACHE_NONE) {
2765 size_t chunk_count, chunk_bytes;
2766 size_t chunk_regs = val_count;
2767
2768 if (!map->bus->read) {
2769 ret = -ENOTSUPP;
2770 goto out;
2771 }
2772
2773 if (map->use_single_read)
2774 chunk_regs = 1;
2775 else if (map->max_raw_read && val_len > map->max_raw_read)
2776 chunk_regs = map->max_raw_read / val_bytes;
2777
2778 chunk_count = val_count / chunk_regs;
2779 chunk_bytes = chunk_regs * val_bytes;
2780
2781 /* Read bytes that fit into whole chunks */
2782 for (i = 0; i < chunk_count; i++) {
2783 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2784 if (ret != 0)
2785 goto out;
2786
2787 reg += regmap_get_offset(map, chunk_regs);
2788 val += chunk_bytes;
2789 val_len -= chunk_bytes;
2790 }
2791
2792 /* Read remaining bytes */
2793 if (val_len) {
2794 ret = _regmap_raw_read(map, reg, val, val_len, false);
2795 if (ret != 0)
2796 goto out;
2797 }
2798 } else {
2799 /* Otherwise go word by word for the cache; should be low
2800 * cost as we expect to hit the cache.
2801 */
2802 for (i = 0; i < val_count; i++) {
2803 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2804 &v);
2805 if (ret != 0)
2806 goto out;
2807
2808 map->format.format_val(val + (i * val_bytes), v, 0);
2809 }
2810 }
2811
2812 out:
2813 map->unlock(map->lock_arg);
2814
2815 return ret;
2816 }
2817 EXPORT_SYMBOL_GPL(regmap_raw_read);
2818
2819 /**
2820 * regmap_noinc_read(): Read data from a register without incrementing the
2821 * register number
2822 *
2823 * @map: Register map to read from
2824 * @reg: Register to read from
2825 * @val: Pointer to data buffer
2826 * @val_len: Length of output buffer in bytes.
2827 *
2828 * The regmap API usually assumes that bulk bus read operations will read a
2829 * range of registers. Some devices have certain registers for which a read
2830 * operation read will read from an internal FIFO.
2831 *
2832 * The target register must be volatile but registers after it can be
2833 * completely unrelated cacheable registers.
2834 *
2835 * This will attempt multiple reads as required to read val_len bytes.
2836 *
2837 * A value of zero will be returned on success, a negative errno will be
2838 * returned in error cases.
2839 */
regmap_noinc_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2840 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2841 void *val, size_t val_len)
2842 {
2843 size_t read_len;
2844 int ret;
2845
2846 if (!map->bus)
2847 return -EINVAL;
2848 if (!map->bus->read)
2849 return -ENOTSUPP;
2850 if (val_len % map->format.val_bytes)
2851 return -EINVAL;
2852 if (!IS_ALIGNED(reg, map->reg_stride))
2853 return -EINVAL;
2854 if (val_len == 0)
2855 return -EINVAL;
2856
2857 map->lock(map->lock_arg);
2858
2859 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2860 ret = -EINVAL;
2861 goto out_unlock;
2862 }
2863
2864 while (val_len) {
2865 if (map->max_raw_read && map->max_raw_read < val_len)
2866 read_len = map->max_raw_read;
2867 else
2868 read_len = val_len;
2869 ret = _regmap_raw_read(map, reg, val, read_len, true);
2870 if (ret)
2871 goto out_unlock;
2872 val = ((u8 *)val) + read_len;
2873 val_len -= read_len;
2874 }
2875
2876 out_unlock:
2877 map->unlock(map->lock_arg);
2878 return ret;
2879 }
2880 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2881
2882 /**
2883 * regmap_field_read(): Read a value to a single register field
2884 *
2885 * @field: Register field to read from
2886 * @val: Pointer to store read value
2887 *
2888 * A value of zero will be returned on success, a negative errno will
2889 * be returned in error cases.
2890 */
regmap_field_read(struct regmap_field * field,unsigned int * val)2891 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2892 {
2893 int ret;
2894 unsigned int reg_val;
2895 ret = regmap_read(field->regmap, field->reg, ®_val);
2896 if (ret != 0)
2897 return ret;
2898
2899 reg_val &= field->mask;
2900 reg_val >>= field->shift;
2901 *val = reg_val;
2902
2903 return ret;
2904 }
2905 EXPORT_SYMBOL_GPL(regmap_field_read);
2906
2907 /**
2908 * regmap_fields_read() - Read a value to a single register field with port ID
2909 *
2910 * @field: Register field to read from
2911 * @id: port ID
2912 * @val: Pointer to store read value
2913 *
2914 * A value of zero will be returned on success, a negative errno will
2915 * be returned in error cases.
2916 */
regmap_fields_read(struct regmap_field * field,unsigned int id,unsigned int * val)2917 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2918 unsigned int *val)
2919 {
2920 int ret;
2921 unsigned int reg_val;
2922
2923 if (id >= field->id_size)
2924 return -EINVAL;
2925
2926 ret = regmap_read(field->regmap,
2927 field->reg + (field->id_offset * id),
2928 ®_val);
2929 if (ret != 0)
2930 return ret;
2931
2932 reg_val &= field->mask;
2933 reg_val >>= field->shift;
2934 *val = reg_val;
2935
2936 return ret;
2937 }
2938 EXPORT_SYMBOL_GPL(regmap_fields_read);
2939
2940 /**
2941 * regmap_bulk_read() - Read multiple registers from the device
2942 *
2943 * @map: Register map to read from
2944 * @reg: First register to be read from
2945 * @val: Pointer to store read value, in native register size for device
2946 * @val_count: Number of registers to read
2947 *
2948 * A value of zero will be returned on success, a negative errno will
2949 * be returned in error cases.
2950 */
regmap_bulk_read(struct regmap * map,unsigned int reg,void * val,size_t val_count)2951 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2952 size_t val_count)
2953 {
2954 int ret, i;
2955 size_t val_bytes = map->format.val_bytes;
2956 bool vol = regmap_volatile_range(map, reg, val_count);
2957
2958 if (!IS_ALIGNED(reg, map->reg_stride))
2959 return -EINVAL;
2960 if (val_count == 0)
2961 return -EINVAL;
2962
2963 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2964 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2965 if (ret != 0)
2966 return ret;
2967
2968 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2969 map->format.parse_inplace(val + i);
2970 } else {
2971 #ifdef CONFIG_64BIT
2972 u64 *u64 = val;
2973 #endif
2974 u32 *u32 = val;
2975 u16 *u16 = val;
2976 u8 *u8 = val;
2977
2978 map->lock(map->lock_arg);
2979
2980 for (i = 0; i < val_count; i++) {
2981 unsigned int ival;
2982
2983 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2984 &ival);
2985 if (ret != 0)
2986 goto out;
2987
2988 switch (map->format.val_bytes) {
2989 #ifdef CONFIG_64BIT
2990 case 8:
2991 u64[i] = ival;
2992 break;
2993 #endif
2994 case 4:
2995 u32[i] = ival;
2996 break;
2997 case 2:
2998 u16[i] = ival;
2999 break;
3000 case 1:
3001 u8[i] = ival;
3002 break;
3003 default:
3004 ret = -EINVAL;
3005 goto out;
3006 }
3007 }
3008
3009 out:
3010 map->unlock(map->lock_arg);
3011 }
3012
3013 return ret;
3014 }
3015 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3016
_regmap_update_bits(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool force_write)3017 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3018 unsigned int mask, unsigned int val,
3019 bool *change, bool force_write)
3020 {
3021 int ret;
3022 unsigned int tmp, orig;
3023
3024 if (change)
3025 *change = false;
3026
3027 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3028 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3029 if (ret == 0 && change)
3030 *change = true;
3031 } else {
3032 ret = _regmap_read(map, reg, &orig);
3033 if (ret != 0)
3034 return ret;
3035
3036 tmp = orig & ~mask;
3037 tmp |= val & mask;
3038
3039 if (force_write || (tmp != orig)) {
3040 ret = _regmap_write(map, reg, tmp);
3041 if (ret == 0 && change)
3042 *change = true;
3043 }
3044 }
3045
3046 return ret;
3047 }
3048
3049 /**
3050 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3051 *
3052 * @map: Register map to update
3053 * @reg: Register to update
3054 * @mask: Bitmask to change
3055 * @val: New value for bitmask
3056 * @change: Boolean indicating if a write was done
3057 * @async: Boolean indicating asynchronously
3058 * @force: Boolean indicating use force update
3059 *
3060 * Perform a read/modify/write cycle on a register map with change, async, force
3061 * options.
3062 *
3063 * If async is true:
3064 *
3065 * With most buses the read must be done synchronously so this is most useful
3066 * for devices with a cache which do not need to interact with the hardware to
3067 * determine the current register value.
3068 *
3069 * Returns zero for success, a negative number on error.
3070 */
regmap_update_bits_base(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool async,bool force)3071 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3072 unsigned int mask, unsigned int val,
3073 bool *change, bool async, bool force)
3074 {
3075 int ret;
3076
3077 map->lock(map->lock_arg);
3078
3079 map->async = async;
3080
3081 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3082
3083 map->async = false;
3084
3085 map->unlock(map->lock_arg);
3086
3087 return ret;
3088 }
3089 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3090
3091 /**
3092 * regmap_test_bits() - Check if all specified bits are set in a register.
3093 *
3094 * @map: Register map to operate on
3095 * @reg: Register to read from
3096 * @bits: Bits to test
3097 *
3098 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3099 * bits are set and a negative error number if the underlying regmap_read()
3100 * fails.
3101 */
regmap_test_bits(struct regmap * map,unsigned int reg,unsigned int bits)3102 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3103 {
3104 unsigned int val, ret;
3105
3106 ret = regmap_read(map, reg, &val);
3107 if (ret)
3108 return ret;
3109
3110 return (val & bits) == bits;
3111 }
3112 EXPORT_SYMBOL_GPL(regmap_test_bits);
3113
regmap_async_complete_cb(struct regmap_async * async,int ret)3114 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3115 {
3116 struct regmap *map = async->map;
3117 bool wake;
3118
3119 trace_regmap_async_io_complete(map);
3120
3121 spin_lock(&map->async_lock);
3122 list_move(&async->list, &map->async_free);
3123 wake = list_empty(&map->async_list);
3124
3125 if (ret != 0)
3126 map->async_ret = ret;
3127
3128 spin_unlock(&map->async_lock);
3129
3130 if (wake)
3131 wake_up(&map->async_waitq);
3132 }
3133 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3134
regmap_async_is_done(struct regmap * map)3135 static int regmap_async_is_done(struct regmap *map)
3136 {
3137 unsigned long flags;
3138 int ret;
3139
3140 spin_lock_irqsave(&map->async_lock, flags);
3141 ret = list_empty(&map->async_list);
3142 spin_unlock_irqrestore(&map->async_lock, flags);
3143
3144 return ret;
3145 }
3146
3147 /**
3148 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3149 *
3150 * @map: Map to operate on.
3151 *
3152 * Blocks until any pending asynchronous I/O has completed. Returns
3153 * an error code for any failed I/O operations.
3154 */
regmap_async_complete(struct regmap * map)3155 int regmap_async_complete(struct regmap *map)
3156 {
3157 unsigned long flags;
3158 int ret;
3159
3160 /* Nothing to do with no async support */
3161 if (!map->bus || !map->bus->async_write)
3162 return 0;
3163
3164 trace_regmap_async_complete_start(map);
3165
3166 wait_event(map->async_waitq, regmap_async_is_done(map));
3167
3168 spin_lock_irqsave(&map->async_lock, flags);
3169 ret = map->async_ret;
3170 map->async_ret = 0;
3171 spin_unlock_irqrestore(&map->async_lock, flags);
3172
3173 trace_regmap_async_complete_done(map);
3174
3175 return ret;
3176 }
3177 EXPORT_SYMBOL_GPL(regmap_async_complete);
3178
3179 /**
3180 * regmap_register_patch - Register and apply register updates to be applied
3181 * on device initialistion
3182 *
3183 * @map: Register map to apply updates to.
3184 * @regs: Values to update.
3185 * @num_regs: Number of entries in regs.
3186 *
3187 * Register a set of register updates to be applied to the device
3188 * whenever the device registers are synchronised with the cache and
3189 * apply them immediately. Typically this is used to apply
3190 * corrections to be applied to the device defaults on startup, such
3191 * as the updates some vendors provide to undocumented registers.
3192 *
3193 * The caller must ensure that this function cannot be called
3194 * concurrently with either itself or regcache_sync().
3195 */
regmap_register_patch(struct regmap * map,const struct reg_sequence * regs,int num_regs)3196 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3197 int num_regs)
3198 {
3199 struct reg_sequence *p;
3200 int ret;
3201 bool bypass;
3202
3203 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3204 num_regs))
3205 return 0;
3206
3207 p = krealloc(map->patch,
3208 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3209 GFP_KERNEL);
3210 if (p) {
3211 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3212 map->patch = p;
3213 map->patch_regs += num_regs;
3214 } else {
3215 return -ENOMEM;
3216 }
3217
3218 map->lock(map->lock_arg);
3219
3220 bypass = map->cache_bypass;
3221
3222 map->cache_bypass = true;
3223 map->async = true;
3224
3225 ret = _regmap_multi_reg_write(map, regs, num_regs);
3226
3227 map->async = false;
3228 map->cache_bypass = bypass;
3229
3230 map->unlock(map->lock_arg);
3231
3232 regmap_async_complete(map);
3233
3234 return ret;
3235 }
3236 EXPORT_SYMBOL_GPL(regmap_register_patch);
3237
3238 /**
3239 * regmap_get_val_bytes() - Report the size of a register value
3240 *
3241 * @map: Register map to operate on.
3242 *
3243 * Report the size of a register value, mainly intended to for use by
3244 * generic infrastructure built on top of regmap.
3245 */
regmap_get_val_bytes(struct regmap * map)3246 int regmap_get_val_bytes(struct regmap *map)
3247 {
3248 if (map->format.format_write)
3249 return -EINVAL;
3250
3251 return map->format.val_bytes;
3252 }
3253 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3254
3255 /**
3256 * regmap_get_max_register() - Report the max register value
3257 *
3258 * @map: Register map to operate on.
3259 *
3260 * Report the max register value, mainly intended to for use by
3261 * generic infrastructure built on top of regmap.
3262 */
regmap_get_max_register(struct regmap * map)3263 int regmap_get_max_register(struct regmap *map)
3264 {
3265 return map->max_register ? map->max_register : -EINVAL;
3266 }
3267 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3268
3269 /**
3270 * regmap_get_reg_stride() - Report the register address stride
3271 *
3272 * @map: Register map to operate on.
3273 *
3274 * Report the register address stride, mainly intended to for use by
3275 * generic infrastructure built on top of regmap.
3276 */
regmap_get_reg_stride(struct regmap * map)3277 int regmap_get_reg_stride(struct regmap *map)
3278 {
3279 return map->reg_stride;
3280 }
3281 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3282
regmap_parse_val(struct regmap * map,const void * buf,unsigned int * val)3283 int regmap_parse_val(struct regmap *map, const void *buf,
3284 unsigned int *val)
3285 {
3286 if (!map->format.parse_val)
3287 return -EINVAL;
3288
3289 *val = map->format.parse_val(buf);
3290
3291 return 0;
3292 }
3293 EXPORT_SYMBOL_GPL(regmap_parse_val);
3294
regmap_initcall(void)3295 static int __init regmap_initcall(void)
3296 {
3297 regmap_debugfs_initcall();
3298
3299 return 0;
3300 }
3301 postcore_initcall(regmap_initcall);
3302