• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
4  *
5  * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
6  *
7  * Thanks to Essential Communication for providing us with hardware
8  * and very comprehensive documentation without which I would not have
9  * been able to write this driver. A special thank you to John Gibbon
10  * for sorting out the legal issues, with the NDA, allowing the code to
11  * be released under the GPL.
12  *
13  * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
14  * stupid bugs in my code.
15  *
16  * Softnet support and various other patches from Val Henson of
17  * ODS/Essential.
18  *
19  * PCI DMA mapping code partly based on work by Francois Romieu.
20  */
21 
22 
23 #define DEBUG 1
24 #define RX_DMA_SKBUFF 1
25 #define PKT_COPY_THRESHOLD 512
26 
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/pci.h>
32 #include <linux/kernel.h>
33 #include <linux/netdevice.h>
34 #include <linux/hippidevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/delay.h>
37 #include <linux/mm.h>
38 #include <linux/slab.h>
39 #include <net/sock.h>
40 
41 #include <asm/cache.h>
42 #include <asm/byteorder.h>
43 #include <asm/io.h>
44 #include <asm/irq.h>
45 #include <linux/uaccess.h>
46 
47 #define rr_if_busy(dev)     netif_queue_stopped(dev)
48 #define rr_if_running(dev)  netif_running(dev)
49 
50 #include "rrunner.h"
51 
52 #define RUN_AT(x) (jiffies + (x))
53 
54 
55 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
56 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
57 MODULE_LICENSE("GPL");
58 
59 static const char version[] =
60 "rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
61 
62 
63 static const struct net_device_ops rr_netdev_ops = {
64 	.ndo_open 		= rr_open,
65 	.ndo_stop		= rr_close,
66 	.ndo_do_ioctl		= rr_ioctl,
67 	.ndo_start_xmit		= rr_start_xmit,
68 	.ndo_set_mac_address	= hippi_mac_addr,
69 };
70 
71 /*
72  * Implementation notes:
73  *
74  * The DMA engine only allows for DMA within physical 64KB chunks of
75  * memory. The current approach of the driver (and stack) is to use
76  * linear blocks of memory for the skbuffs. However, as the data block
77  * is always the first part of the skb and skbs are 2^n aligned so we
78  * are guarantted to get the whole block within one 64KB align 64KB
79  * chunk.
80  *
81  * On the long term, relying on being able to allocate 64KB linear
82  * chunks of memory is not feasible and the skb handling code and the
83  * stack will need to know about I/O vectors or something similar.
84  */
85 
rr_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)86 static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
87 {
88 	struct net_device *dev;
89 	static int version_disp;
90 	u8 pci_latency;
91 	struct rr_private *rrpriv;
92 	void *tmpptr;
93 	dma_addr_t ring_dma;
94 	int ret = -ENOMEM;
95 
96 	dev = alloc_hippi_dev(sizeof(struct rr_private));
97 	if (!dev)
98 		goto out3;
99 
100 	ret = pci_enable_device(pdev);
101 	if (ret) {
102 		ret = -ENODEV;
103 		goto out2;
104 	}
105 
106 	rrpriv = netdev_priv(dev);
107 
108 	SET_NETDEV_DEV(dev, &pdev->dev);
109 
110 	ret = pci_request_regions(pdev, "rrunner");
111 	if (ret < 0)
112 		goto out;
113 
114 	pci_set_drvdata(pdev, dev);
115 
116 	rrpriv->pci_dev = pdev;
117 
118 	spin_lock_init(&rrpriv->lock);
119 
120 	dev->netdev_ops = &rr_netdev_ops;
121 
122 	/* display version info if adapter is found */
123 	if (!version_disp) {
124 		/* set display flag to TRUE so that */
125 		/* we only display this string ONCE */
126 		version_disp = 1;
127 		printk(version);
128 	}
129 
130 	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
131 	if (pci_latency <= 0x58){
132 		pci_latency = 0x58;
133 		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
134 	}
135 
136 	pci_set_master(pdev);
137 
138 	printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
139 	       "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
140 	       (unsigned long long)pci_resource_start(pdev, 0),
141 	       pdev->irq, pci_latency);
142 
143 	/*
144 	 * Remap the MMIO regs into kernel space.
145 	 */
146 	rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
147 	if (!rrpriv->regs) {
148 		printk(KERN_ERR "%s:  Unable to map I/O register, "
149 			"RoadRunner will be disabled.\n", dev->name);
150 		ret = -EIO;
151 		goto out;
152 	}
153 
154 	tmpptr = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
155 				    GFP_KERNEL);
156 	rrpriv->tx_ring = tmpptr;
157 	rrpriv->tx_ring_dma = ring_dma;
158 
159 	if (!tmpptr) {
160 		ret = -ENOMEM;
161 		goto out;
162 	}
163 
164 	tmpptr = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
165 				    GFP_KERNEL);
166 	rrpriv->rx_ring = tmpptr;
167 	rrpriv->rx_ring_dma = ring_dma;
168 
169 	if (!tmpptr) {
170 		ret = -ENOMEM;
171 		goto out;
172 	}
173 
174 	tmpptr = dma_alloc_coherent(&pdev->dev, EVT_RING_SIZE, &ring_dma,
175 				    GFP_KERNEL);
176 	rrpriv->evt_ring = tmpptr;
177 	rrpriv->evt_ring_dma = ring_dma;
178 
179 	if (!tmpptr) {
180 		ret = -ENOMEM;
181 		goto out;
182 	}
183 
184 	/*
185 	 * Don't access any register before this point!
186 	 */
187 #ifdef __BIG_ENDIAN
188 	writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
189 		&rrpriv->regs->HostCtrl);
190 #endif
191 	/*
192 	 * Need to add a case for little-endian 64-bit hosts here.
193 	 */
194 
195 	rr_init(dev);
196 
197 	ret = register_netdev(dev);
198 	if (ret)
199 		goto out;
200 	return 0;
201 
202  out:
203 	if (rrpriv->evt_ring)
204 		dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rrpriv->evt_ring,
205 				  rrpriv->evt_ring_dma);
206 	if (rrpriv->rx_ring)
207 		dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rrpriv->rx_ring,
208 				  rrpriv->rx_ring_dma);
209 	if (rrpriv->tx_ring)
210 		dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rrpriv->tx_ring,
211 				  rrpriv->tx_ring_dma);
212 	if (rrpriv->regs)
213 		pci_iounmap(pdev, rrpriv->regs);
214 	if (pdev)
215 		pci_release_regions(pdev);
216  out2:
217 	free_netdev(dev);
218  out3:
219 	return ret;
220 }
221 
rr_remove_one(struct pci_dev * pdev)222 static void rr_remove_one(struct pci_dev *pdev)
223 {
224 	struct net_device *dev = pci_get_drvdata(pdev);
225 	struct rr_private *rr = netdev_priv(dev);
226 
227 	if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
228 		printk(KERN_ERR "%s: trying to unload running NIC\n",
229 		       dev->name);
230 		writel(HALT_NIC, &rr->regs->HostCtrl);
231 	}
232 
233 	unregister_netdev(dev);
234 	dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rr->evt_ring,
235 			  rr->evt_ring_dma);
236 	dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rr->rx_ring,
237 			  rr->rx_ring_dma);
238 	dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rr->tx_ring,
239 			  rr->tx_ring_dma);
240 	pci_iounmap(pdev, rr->regs);
241 	pci_release_regions(pdev);
242 	pci_disable_device(pdev);
243 	free_netdev(dev);
244 }
245 
246 
247 /*
248  * Commands are considered to be slow, thus there is no reason to
249  * inline this.
250  */
rr_issue_cmd(struct rr_private * rrpriv,struct cmd * cmd)251 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
252 {
253 	struct rr_regs __iomem *regs;
254 	u32 idx;
255 
256 	regs = rrpriv->regs;
257 	/*
258 	 * This is temporary - it will go away in the final version.
259 	 * We probably also want to make this function inline.
260 	 */
261 	if (readl(&regs->HostCtrl) & NIC_HALTED){
262 		printk("issuing command for halted NIC, code 0x%x, "
263 		       "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
264 		if (readl(&regs->Mode) & FATAL_ERR)
265 			printk("error codes Fail1 %02x, Fail2 %02x\n",
266 			       readl(&regs->Fail1), readl(&regs->Fail2));
267 	}
268 
269 	idx = rrpriv->info->cmd_ctrl.pi;
270 
271 	writel(*(u32*)(cmd), &regs->CmdRing[idx]);
272 	wmb();
273 
274 	idx = (idx - 1) % CMD_RING_ENTRIES;
275 	rrpriv->info->cmd_ctrl.pi = idx;
276 	wmb();
277 
278 	if (readl(&regs->Mode) & FATAL_ERR)
279 		printk("error code %02x\n", readl(&regs->Fail1));
280 }
281 
282 
283 /*
284  * Reset the board in a sensible manner. The NIC is already halted
285  * when we get here and a spin-lock is held.
286  */
rr_reset(struct net_device * dev)287 static int rr_reset(struct net_device *dev)
288 {
289 	struct rr_private *rrpriv;
290 	struct rr_regs __iomem *regs;
291 	u32 start_pc;
292 	int i;
293 
294 	rrpriv = netdev_priv(dev);
295 	regs = rrpriv->regs;
296 
297 	rr_load_firmware(dev);
298 
299 	writel(0x01000000, &regs->TX_state);
300 	writel(0xff800000, &regs->RX_state);
301 	writel(0, &regs->AssistState);
302 	writel(CLEAR_INTA, &regs->LocalCtrl);
303 	writel(0x01, &regs->BrkPt);
304 	writel(0, &regs->Timer);
305 	writel(0, &regs->TimerRef);
306 	writel(RESET_DMA, &regs->DmaReadState);
307 	writel(RESET_DMA, &regs->DmaWriteState);
308 	writel(0, &regs->DmaWriteHostHi);
309 	writel(0, &regs->DmaWriteHostLo);
310 	writel(0, &regs->DmaReadHostHi);
311 	writel(0, &regs->DmaReadHostLo);
312 	writel(0, &regs->DmaReadLen);
313 	writel(0, &regs->DmaWriteLen);
314 	writel(0, &regs->DmaWriteLcl);
315 	writel(0, &regs->DmaWriteIPchecksum);
316 	writel(0, &regs->DmaReadLcl);
317 	writel(0, &regs->DmaReadIPchecksum);
318 	writel(0, &regs->PciState);
319 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
320 	writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
321 #elif (BITS_PER_LONG == 64)
322 	writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
323 #else
324 	writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
325 #endif
326 
327 #if 0
328 	/*
329 	 * Don't worry, this is just black magic.
330 	 */
331 	writel(0xdf000, &regs->RxBase);
332 	writel(0xdf000, &regs->RxPrd);
333 	writel(0xdf000, &regs->RxCon);
334 	writel(0xce000, &regs->TxBase);
335 	writel(0xce000, &regs->TxPrd);
336 	writel(0xce000, &regs->TxCon);
337 	writel(0, &regs->RxIndPro);
338 	writel(0, &regs->RxIndCon);
339 	writel(0, &regs->RxIndRef);
340 	writel(0, &regs->TxIndPro);
341 	writel(0, &regs->TxIndCon);
342 	writel(0, &regs->TxIndRef);
343 	writel(0xcc000, &regs->pad10[0]);
344 	writel(0, &regs->DrCmndPro);
345 	writel(0, &regs->DrCmndCon);
346 	writel(0, &regs->DwCmndPro);
347 	writel(0, &regs->DwCmndCon);
348 	writel(0, &regs->DwCmndRef);
349 	writel(0, &regs->DrDataPro);
350 	writel(0, &regs->DrDataCon);
351 	writel(0, &regs->DrDataRef);
352 	writel(0, &regs->DwDataPro);
353 	writel(0, &regs->DwDataCon);
354 	writel(0, &regs->DwDataRef);
355 #endif
356 
357 	writel(0xffffffff, &regs->MbEvent);
358 	writel(0, &regs->Event);
359 
360 	writel(0, &regs->TxPi);
361 	writel(0, &regs->IpRxPi);
362 
363 	writel(0, &regs->EvtCon);
364 	writel(0, &regs->EvtPrd);
365 
366 	rrpriv->info->evt_ctrl.pi = 0;
367 
368 	for (i = 0; i < CMD_RING_ENTRIES; i++)
369 		writel(0, &regs->CmdRing[i]);
370 
371 /*
372  * Why 32 ? is this not cache line size dependent?
373  */
374 	writel(RBURST_64|WBURST_64, &regs->PciState);
375 	wmb();
376 
377 	start_pc = rr_read_eeprom_word(rrpriv,
378 			offsetof(struct eeprom, rncd_info.FwStart));
379 
380 #if (DEBUG > 1)
381 	printk("%s: Executing firmware at address 0x%06x\n",
382 	       dev->name, start_pc);
383 #endif
384 
385 	writel(start_pc + 0x800, &regs->Pc);
386 	wmb();
387 	udelay(5);
388 
389 	writel(start_pc, &regs->Pc);
390 	wmb();
391 
392 	return 0;
393 }
394 
395 
396 /*
397  * Read a string from the EEPROM.
398  */
rr_read_eeprom(struct rr_private * rrpriv,unsigned long offset,unsigned char * buf,unsigned long length)399 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
400 				unsigned long offset,
401 				unsigned char *buf,
402 				unsigned long length)
403 {
404 	struct rr_regs __iomem *regs = rrpriv->regs;
405 	u32 misc, io, host, i;
406 
407 	io = readl(&regs->ExtIo);
408 	writel(0, &regs->ExtIo);
409 	misc = readl(&regs->LocalCtrl);
410 	writel(0, &regs->LocalCtrl);
411 	host = readl(&regs->HostCtrl);
412 	writel(host | HALT_NIC, &regs->HostCtrl);
413 	mb();
414 
415 	for (i = 0; i < length; i++){
416 		writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
417 		mb();
418 		buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
419 		mb();
420 	}
421 
422 	writel(host, &regs->HostCtrl);
423 	writel(misc, &regs->LocalCtrl);
424 	writel(io, &regs->ExtIo);
425 	mb();
426 	return i;
427 }
428 
429 
430 /*
431  * Shortcut to read one word (4 bytes) out of the EEPROM and convert
432  * it to our CPU byte-order.
433  */
rr_read_eeprom_word(struct rr_private * rrpriv,size_t offset)434 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
435 			    size_t offset)
436 {
437 	__be32 word;
438 
439 	if ((rr_read_eeprom(rrpriv, offset,
440 			    (unsigned char *)&word, 4) == 4))
441 		return be32_to_cpu(word);
442 	return 0;
443 }
444 
445 
446 /*
447  * Write a string to the EEPROM.
448  *
449  * This is only called when the firmware is not running.
450  */
write_eeprom(struct rr_private * rrpriv,unsigned long offset,unsigned char * buf,unsigned long length)451 static unsigned int write_eeprom(struct rr_private *rrpriv,
452 				 unsigned long offset,
453 				 unsigned char *buf,
454 				 unsigned long length)
455 {
456 	struct rr_regs __iomem *regs = rrpriv->regs;
457 	u32 misc, io, data, i, j, ready, error = 0;
458 
459 	io = readl(&regs->ExtIo);
460 	writel(0, &regs->ExtIo);
461 	misc = readl(&regs->LocalCtrl);
462 	writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
463 	mb();
464 
465 	for (i = 0; i < length; i++){
466 		writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
467 		mb();
468 		data = buf[i] << 24;
469 		/*
470 		 * Only try to write the data if it is not the same
471 		 * value already.
472 		 */
473 		if ((readl(&regs->WinData) & 0xff000000) != data){
474 			writel(data, &regs->WinData);
475 			ready = 0;
476 			j = 0;
477 			mb();
478 			while(!ready){
479 				udelay(20);
480 				if ((readl(&regs->WinData) & 0xff000000) ==
481 				    data)
482 					ready = 1;
483 				mb();
484 				if (j++ > 5000){
485 					printk("data mismatch: %08x, "
486 					       "WinData %08x\n", data,
487 					       readl(&regs->WinData));
488 					ready = 1;
489 					error = 1;
490 				}
491 			}
492 		}
493 	}
494 
495 	writel(misc, &regs->LocalCtrl);
496 	writel(io, &regs->ExtIo);
497 	mb();
498 
499 	return error;
500 }
501 
502 
rr_init(struct net_device * dev)503 static int rr_init(struct net_device *dev)
504 {
505 	struct rr_private *rrpriv;
506 	struct rr_regs __iomem *regs;
507 	u32 sram_size, rev;
508 
509 	rrpriv = netdev_priv(dev);
510 	regs = rrpriv->regs;
511 
512 	rev = readl(&regs->FwRev);
513 	rrpriv->fw_rev = rev;
514 	if (rev > 0x00020024)
515 		printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
516 		       ((rev >> 8) & 0xff), (rev & 0xff));
517 	else if (rev >= 0x00020000) {
518 		printk("  Firmware revision: %i.%i.%i (2.0.37 or "
519 		       "later is recommended)\n", (rev >> 16),
520 		       ((rev >> 8) & 0xff), (rev & 0xff));
521 	}else{
522 		printk("  Firmware revision too old: %i.%i.%i, please "
523 		       "upgrade to 2.0.37 or later.\n",
524 		       (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
525 	}
526 
527 #if (DEBUG > 2)
528 	printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
529 #endif
530 
531 	/*
532 	 * Read the hardware address from the eeprom.  The HW address
533 	 * is not really necessary for HIPPI but awfully convenient.
534 	 * The pointer arithmetic to put it in dev_addr is ugly, but
535 	 * Donald Becker does it this way for the GigE version of this
536 	 * card and it's shorter and more portable than any
537 	 * other method I've seen.  -VAL
538 	 */
539 
540 	*(__be16 *)(dev->dev_addr) =
541 	  htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
542 	*(__be32 *)(dev->dev_addr+2) =
543 	  htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
544 
545 	printk("  MAC: %pM\n", dev->dev_addr);
546 
547 	sram_size = rr_read_eeprom_word(rrpriv, 8);
548 	printk("  SRAM size 0x%06x\n", sram_size);
549 
550 	return 0;
551 }
552 
553 
rr_init1(struct net_device * dev)554 static int rr_init1(struct net_device *dev)
555 {
556 	struct rr_private *rrpriv;
557 	struct rr_regs __iomem *regs;
558 	unsigned long myjif, flags;
559 	struct cmd cmd;
560 	u32 hostctrl;
561 	int ecode = 0;
562 	short i;
563 
564 	rrpriv = netdev_priv(dev);
565 	regs = rrpriv->regs;
566 
567 	spin_lock_irqsave(&rrpriv->lock, flags);
568 
569 	hostctrl = readl(&regs->HostCtrl);
570 	writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
571 	wmb();
572 
573 	if (hostctrl & PARITY_ERR){
574 		printk("%s: Parity error halting NIC - this is serious!\n",
575 		       dev->name);
576 		spin_unlock_irqrestore(&rrpriv->lock, flags);
577 		ecode = -EFAULT;
578 		goto error;
579 	}
580 
581 	set_rxaddr(regs, rrpriv->rx_ctrl_dma);
582 	set_infoaddr(regs, rrpriv->info_dma);
583 
584 	rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
585 	rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
586 	rrpriv->info->evt_ctrl.mode = 0;
587 	rrpriv->info->evt_ctrl.pi = 0;
588 	set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
589 
590 	rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
591 	rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
592 	rrpriv->info->cmd_ctrl.mode = 0;
593 	rrpriv->info->cmd_ctrl.pi = 15;
594 
595 	for (i = 0; i < CMD_RING_ENTRIES; i++) {
596 		writel(0, &regs->CmdRing[i]);
597 	}
598 
599 	for (i = 0; i < TX_RING_ENTRIES; i++) {
600 		rrpriv->tx_ring[i].size = 0;
601 		set_rraddr(&rrpriv->tx_ring[i].addr, 0);
602 		rrpriv->tx_skbuff[i] = NULL;
603 	}
604 	rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
605 	rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
606 	rrpriv->info->tx_ctrl.mode = 0;
607 	rrpriv->info->tx_ctrl.pi = 0;
608 	set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
609 
610 	/*
611 	 * Set dirty_tx before we start receiving interrupts, otherwise
612 	 * the interrupt handler might think it is supposed to process
613 	 * tx ints before we are up and running, which may cause a null
614 	 * pointer access in the int handler.
615 	 */
616 	rrpriv->tx_full = 0;
617 	rrpriv->cur_rx = 0;
618 	rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
619 
620 	rr_reset(dev);
621 
622 	/* Tuning values */
623 	writel(0x5000, &regs->ConRetry);
624 	writel(0x100, &regs->ConRetryTmr);
625 	writel(0x500000, &regs->ConTmout);
626  	writel(0x60, &regs->IntrTmr);
627 	writel(0x500000, &regs->TxDataMvTimeout);
628 	writel(0x200000, &regs->RxDataMvTimeout);
629  	writel(0x80, &regs->WriteDmaThresh);
630  	writel(0x80, &regs->ReadDmaThresh);
631 
632 	rrpriv->fw_running = 0;
633 	wmb();
634 
635 	hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
636 	writel(hostctrl, &regs->HostCtrl);
637 	wmb();
638 
639 	spin_unlock_irqrestore(&rrpriv->lock, flags);
640 
641 	for (i = 0; i < RX_RING_ENTRIES; i++) {
642 		struct sk_buff *skb;
643 		dma_addr_t addr;
644 
645 		rrpriv->rx_ring[i].mode = 0;
646 		skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
647 		if (!skb) {
648 			printk(KERN_WARNING "%s: Unable to allocate memory "
649 			       "for receive ring - halting NIC\n", dev->name);
650 			ecode = -ENOMEM;
651 			goto error;
652 		}
653 		rrpriv->rx_skbuff[i] = skb;
654 		addr = dma_map_single(&rrpriv->pci_dev->dev, skb->data,
655 				      dev->mtu + HIPPI_HLEN, DMA_FROM_DEVICE);
656 		/*
657 		 * Sanity test to see if we conflict with the DMA
658 		 * limitations of the Roadrunner.
659 		 */
660 		if ((((unsigned long)skb->data) & 0xfff) > ~65320)
661 			printk("skb alloc error\n");
662 
663 		set_rraddr(&rrpriv->rx_ring[i].addr, addr);
664 		rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
665 	}
666 
667 	rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
668 	rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
669 	rrpriv->rx_ctrl[4].mode = 8;
670 	rrpriv->rx_ctrl[4].pi = 0;
671 	wmb();
672 	set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
673 
674 	udelay(1000);
675 
676 	/*
677 	 * Now start the FirmWare.
678 	 */
679 	cmd.code = C_START_FW;
680 	cmd.ring = 0;
681 	cmd.index = 0;
682 
683 	rr_issue_cmd(rrpriv, &cmd);
684 
685 	/*
686 	 * Give the FirmWare time to chew on the `get running' command.
687 	 */
688 	myjif = jiffies + 5 * HZ;
689 	while (time_before(jiffies, myjif) && !rrpriv->fw_running)
690 		cpu_relax();
691 
692 	netif_start_queue(dev);
693 
694 	return ecode;
695 
696  error:
697 	/*
698 	 * We might have gotten here because we are out of memory,
699 	 * make sure we release everything we allocated before failing
700 	 */
701 	for (i = 0; i < RX_RING_ENTRIES; i++) {
702 		struct sk_buff *skb = rrpriv->rx_skbuff[i];
703 
704 		if (skb) {
705 			dma_unmap_single(&rrpriv->pci_dev->dev,
706 					 rrpriv->rx_ring[i].addr.addrlo,
707 					 dev->mtu + HIPPI_HLEN,
708 					 DMA_FROM_DEVICE);
709 			rrpriv->rx_ring[i].size = 0;
710 			set_rraddr(&rrpriv->rx_ring[i].addr, 0);
711 			dev_kfree_skb(skb);
712 			rrpriv->rx_skbuff[i] = NULL;
713 		}
714 	}
715 	return ecode;
716 }
717 
718 
719 /*
720  * All events are considered to be slow (RX/TX ints do not generate
721  * events) and are handled here, outside the main interrupt handler,
722  * to reduce the size of the handler.
723  */
rr_handle_event(struct net_device * dev,u32 prodidx,u32 eidx)724 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
725 {
726 	struct rr_private *rrpriv;
727 	struct rr_regs __iomem *regs;
728 	u32 tmp;
729 
730 	rrpriv = netdev_priv(dev);
731 	regs = rrpriv->regs;
732 
733 	while (prodidx != eidx){
734 		switch (rrpriv->evt_ring[eidx].code){
735 		case E_NIC_UP:
736 			tmp = readl(&regs->FwRev);
737 			printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
738 			       "up and running\n", dev->name,
739 			       (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
740 			rrpriv->fw_running = 1;
741 			writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
742 			wmb();
743 			break;
744 		case E_LINK_ON:
745 			printk(KERN_INFO "%s: Optical link ON\n", dev->name);
746 			break;
747 		case E_LINK_OFF:
748 			printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
749 			break;
750 		case E_RX_IDLE:
751 			printk(KERN_WARNING "%s: RX data not moving\n",
752 			       dev->name);
753 			goto drop;
754 		case E_WATCHDOG:
755 			printk(KERN_INFO "%s: The watchdog is here to see "
756 			       "us\n", dev->name);
757 			break;
758 		case E_INTERN_ERR:
759 			printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
760 			       dev->name);
761 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
762 			       &regs->HostCtrl);
763 			wmb();
764 			break;
765 		case E_HOST_ERR:
766 			printk(KERN_ERR "%s: Host software error\n",
767 			       dev->name);
768 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
769 			       &regs->HostCtrl);
770 			wmb();
771 			break;
772 		/*
773 		 * TX events.
774 		 */
775 		case E_CON_REJ:
776 			printk(KERN_WARNING "%s: Connection rejected\n",
777 			       dev->name);
778 			dev->stats.tx_aborted_errors++;
779 			break;
780 		case E_CON_TMOUT:
781 			printk(KERN_WARNING "%s: Connection timeout\n",
782 			       dev->name);
783 			break;
784 		case E_DISC_ERR:
785 			printk(KERN_WARNING "%s: HIPPI disconnect error\n",
786 			       dev->name);
787 			dev->stats.tx_aborted_errors++;
788 			break;
789 		case E_INT_PRTY:
790 			printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
791 			       dev->name);
792 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
793 			       &regs->HostCtrl);
794 			wmb();
795 			break;
796 		case E_TX_IDLE:
797 			printk(KERN_WARNING "%s: Transmitter idle\n",
798 			       dev->name);
799 			break;
800 		case E_TX_LINK_DROP:
801 			printk(KERN_WARNING "%s: Link lost during transmit\n",
802 			       dev->name);
803 			dev->stats.tx_aborted_errors++;
804 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
805 			       &regs->HostCtrl);
806 			wmb();
807 			break;
808 		case E_TX_INV_RNG:
809 			printk(KERN_ERR "%s: Invalid send ring block\n",
810 			       dev->name);
811 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
812 			       &regs->HostCtrl);
813 			wmb();
814 			break;
815 		case E_TX_INV_BUF:
816 			printk(KERN_ERR "%s: Invalid send buffer address\n",
817 			       dev->name);
818 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
819 			       &regs->HostCtrl);
820 			wmb();
821 			break;
822 		case E_TX_INV_DSC:
823 			printk(KERN_ERR "%s: Invalid descriptor address\n",
824 			       dev->name);
825 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
826 			       &regs->HostCtrl);
827 			wmb();
828 			break;
829 		/*
830 		 * RX events.
831 		 */
832 		case E_RX_RNG_OUT:
833 			printk(KERN_INFO "%s: Receive ring full\n", dev->name);
834 			break;
835 
836 		case E_RX_PAR_ERR:
837 			printk(KERN_WARNING "%s: Receive parity error\n",
838 			       dev->name);
839 			goto drop;
840 		case E_RX_LLRC_ERR:
841 			printk(KERN_WARNING "%s: Receive LLRC error\n",
842 			       dev->name);
843 			goto drop;
844 		case E_PKT_LN_ERR:
845 			printk(KERN_WARNING "%s: Receive packet length "
846 			       "error\n", dev->name);
847 			goto drop;
848 		case E_DTA_CKSM_ERR:
849 			printk(KERN_WARNING "%s: Data checksum error\n",
850 			       dev->name);
851 			goto drop;
852 		case E_SHT_BST:
853 			printk(KERN_WARNING "%s: Unexpected short burst "
854 			       "error\n", dev->name);
855 			goto drop;
856 		case E_STATE_ERR:
857 			printk(KERN_WARNING "%s: Recv. state transition"
858 			       " error\n", dev->name);
859 			goto drop;
860 		case E_UNEXP_DATA:
861 			printk(KERN_WARNING "%s: Unexpected data error\n",
862 			       dev->name);
863 			goto drop;
864 		case E_LST_LNK_ERR:
865 			printk(KERN_WARNING "%s: Link lost error\n",
866 			       dev->name);
867 			goto drop;
868 		case E_FRM_ERR:
869 			printk(KERN_WARNING "%s: Framing Error\n",
870 			       dev->name);
871 			goto drop;
872 		case E_FLG_SYN_ERR:
873 			printk(KERN_WARNING "%s: Flag sync. lost during "
874 			       "packet\n", dev->name);
875 			goto drop;
876 		case E_RX_INV_BUF:
877 			printk(KERN_ERR "%s: Invalid receive buffer "
878 			       "address\n", dev->name);
879 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
880 			       &regs->HostCtrl);
881 			wmb();
882 			break;
883 		case E_RX_INV_DSC:
884 			printk(KERN_ERR "%s: Invalid receive descriptor "
885 			       "address\n", dev->name);
886 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
887 			       &regs->HostCtrl);
888 			wmb();
889 			break;
890 		case E_RNG_BLK:
891 			printk(KERN_ERR "%s: Invalid ring block\n",
892 			       dev->name);
893 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
894 			       &regs->HostCtrl);
895 			wmb();
896 			break;
897 		drop:
898 			/* Label packet to be dropped.
899 			 * Actual dropping occurs in rx
900 			 * handling.
901 			 *
902 			 * The index of packet we get to drop is
903 			 * the index of the packet following
904 			 * the bad packet. -kbf
905 			 */
906 			{
907 				u16 index = rrpriv->evt_ring[eidx].index;
908 				index = (index + (RX_RING_ENTRIES - 1)) %
909 					RX_RING_ENTRIES;
910 				rrpriv->rx_ring[index].mode |=
911 					(PACKET_BAD | PACKET_END);
912 			}
913 			break;
914 		default:
915 			printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
916 			       dev->name, rrpriv->evt_ring[eidx].code);
917 		}
918 		eidx = (eidx + 1) % EVT_RING_ENTRIES;
919 	}
920 
921 	rrpriv->info->evt_ctrl.pi = eidx;
922 	wmb();
923 	return eidx;
924 }
925 
926 
rx_int(struct net_device * dev,u32 rxlimit,u32 index)927 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
928 {
929 	struct rr_private *rrpriv = netdev_priv(dev);
930 	struct rr_regs __iomem *regs = rrpriv->regs;
931 
932 	do {
933 		struct rx_desc *desc;
934 		u32 pkt_len;
935 
936 		desc = &(rrpriv->rx_ring[index]);
937 		pkt_len = desc->size;
938 #if (DEBUG > 2)
939 		printk("index %i, rxlimit %i\n", index, rxlimit);
940 		printk("len %x, mode %x\n", pkt_len, desc->mode);
941 #endif
942 		if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
943 			dev->stats.rx_dropped++;
944 			goto defer;
945 		}
946 
947 		if (pkt_len > 0){
948 			struct sk_buff *skb, *rx_skb;
949 
950 			rx_skb = rrpriv->rx_skbuff[index];
951 
952 			if (pkt_len < PKT_COPY_THRESHOLD) {
953 				skb = alloc_skb(pkt_len, GFP_ATOMIC);
954 				if (skb == NULL){
955 					printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
956 					dev->stats.rx_dropped++;
957 					goto defer;
958 				} else {
959 					dma_sync_single_for_cpu(&rrpriv->pci_dev->dev,
960 								desc->addr.addrlo,
961 								pkt_len,
962 								DMA_FROM_DEVICE);
963 
964 					skb_put_data(skb, rx_skb->data,
965 						     pkt_len);
966 
967 					dma_sync_single_for_device(&rrpriv->pci_dev->dev,
968 								   desc->addr.addrlo,
969 								   pkt_len,
970 								   DMA_FROM_DEVICE);
971 				}
972 			}else{
973 				struct sk_buff *newskb;
974 
975 				newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
976 					GFP_ATOMIC);
977 				if (newskb){
978 					dma_addr_t addr;
979 
980 					dma_unmap_single(&rrpriv->pci_dev->dev,
981 							 desc->addr.addrlo,
982 							 dev->mtu + HIPPI_HLEN,
983 							 DMA_FROM_DEVICE);
984 					skb = rx_skb;
985 					skb_put(skb, pkt_len);
986 					rrpriv->rx_skbuff[index] = newskb;
987 					addr = dma_map_single(&rrpriv->pci_dev->dev,
988 							      newskb->data,
989 							      dev->mtu + HIPPI_HLEN,
990 							      DMA_FROM_DEVICE);
991 					set_rraddr(&desc->addr, addr);
992 				} else {
993 					printk("%s: Out of memory, deferring "
994 					       "packet\n", dev->name);
995 					dev->stats.rx_dropped++;
996 					goto defer;
997 				}
998 			}
999 			skb->protocol = hippi_type_trans(skb, dev);
1000 
1001 			netif_rx(skb);		/* send it up */
1002 
1003 			dev->stats.rx_packets++;
1004 			dev->stats.rx_bytes += pkt_len;
1005 		}
1006 	defer:
1007 		desc->mode = 0;
1008 		desc->size = dev->mtu + HIPPI_HLEN;
1009 
1010 		if ((index & 7) == 7)
1011 			writel(index, &regs->IpRxPi);
1012 
1013 		index = (index + 1) % RX_RING_ENTRIES;
1014 	} while(index != rxlimit);
1015 
1016 	rrpriv->cur_rx = index;
1017 	wmb();
1018 }
1019 
1020 
rr_interrupt(int irq,void * dev_id)1021 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1022 {
1023 	struct rr_private *rrpriv;
1024 	struct rr_regs __iomem *regs;
1025 	struct net_device *dev = (struct net_device *)dev_id;
1026 	u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1027 
1028 	rrpriv = netdev_priv(dev);
1029 	regs = rrpriv->regs;
1030 
1031 	if (!(readl(&regs->HostCtrl) & RR_INT))
1032 		return IRQ_NONE;
1033 
1034 	spin_lock(&rrpriv->lock);
1035 
1036 	prodidx = readl(&regs->EvtPrd);
1037 	txcsmr = (prodidx >> 8) & 0xff;
1038 	rxlimit = (prodidx >> 16) & 0xff;
1039 	prodidx &= 0xff;
1040 
1041 #if (DEBUG > 2)
1042 	printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1043 	       prodidx, rrpriv->info->evt_ctrl.pi);
1044 #endif
1045 	/*
1046 	 * Order here is important.  We must handle events
1047 	 * before doing anything else in order to catch
1048 	 * such things as LLRC errors, etc -kbf
1049 	 */
1050 
1051 	eidx = rrpriv->info->evt_ctrl.pi;
1052 	if (prodidx != eidx)
1053 		eidx = rr_handle_event(dev, prodidx, eidx);
1054 
1055 	rxindex = rrpriv->cur_rx;
1056 	if (rxindex != rxlimit)
1057 		rx_int(dev, rxlimit, rxindex);
1058 
1059 	txcon = rrpriv->dirty_tx;
1060 	if (txcsmr != txcon) {
1061 		do {
1062 			/* Due to occational firmware TX producer/consumer out
1063 			 * of sync. error need to check entry in ring -kbf
1064 			 */
1065 			if(rrpriv->tx_skbuff[txcon]){
1066 				struct tx_desc *desc;
1067 				struct sk_buff *skb;
1068 
1069 				desc = &(rrpriv->tx_ring[txcon]);
1070 				skb = rrpriv->tx_skbuff[txcon];
1071 
1072 				dev->stats.tx_packets++;
1073 				dev->stats.tx_bytes += skb->len;
1074 
1075 				dma_unmap_single(&rrpriv->pci_dev->dev,
1076 						 desc->addr.addrlo, skb->len,
1077 						 DMA_TO_DEVICE);
1078 				dev_kfree_skb_irq(skb);
1079 
1080 				rrpriv->tx_skbuff[txcon] = NULL;
1081 				desc->size = 0;
1082 				set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1083 				desc->mode = 0;
1084 			}
1085 			txcon = (txcon + 1) % TX_RING_ENTRIES;
1086 		} while (txcsmr != txcon);
1087 		wmb();
1088 
1089 		rrpriv->dirty_tx = txcon;
1090 		if (rrpriv->tx_full && rr_if_busy(dev) &&
1091 		    (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1092 		     != rrpriv->dirty_tx)){
1093 			rrpriv->tx_full = 0;
1094 			netif_wake_queue(dev);
1095 		}
1096 	}
1097 
1098 	eidx |= ((txcsmr << 8) | (rxlimit << 16));
1099 	writel(eidx, &regs->EvtCon);
1100 	wmb();
1101 
1102 	spin_unlock(&rrpriv->lock);
1103 	return IRQ_HANDLED;
1104 }
1105 
rr_raz_tx(struct rr_private * rrpriv,struct net_device * dev)1106 static inline void rr_raz_tx(struct rr_private *rrpriv,
1107 			     struct net_device *dev)
1108 {
1109 	int i;
1110 
1111 	for (i = 0; i < TX_RING_ENTRIES; i++) {
1112 		struct sk_buff *skb = rrpriv->tx_skbuff[i];
1113 
1114 		if (skb) {
1115 			struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1116 
1117 			dma_unmap_single(&rrpriv->pci_dev->dev,
1118 					 desc->addr.addrlo, skb->len,
1119 					 DMA_TO_DEVICE);
1120 			desc->size = 0;
1121 			set_rraddr(&desc->addr, 0);
1122 			dev_kfree_skb(skb);
1123 			rrpriv->tx_skbuff[i] = NULL;
1124 		}
1125 	}
1126 }
1127 
1128 
rr_raz_rx(struct rr_private * rrpriv,struct net_device * dev)1129 static inline void rr_raz_rx(struct rr_private *rrpriv,
1130 			     struct net_device *dev)
1131 {
1132 	int i;
1133 
1134 	for (i = 0; i < RX_RING_ENTRIES; i++) {
1135 		struct sk_buff *skb = rrpriv->rx_skbuff[i];
1136 
1137 		if (skb) {
1138 			struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1139 
1140 			dma_unmap_single(&rrpriv->pci_dev->dev,
1141 					 desc->addr.addrlo,
1142 					 dev->mtu + HIPPI_HLEN,
1143 					 DMA_FROM_DEVICE);
1144 			desc->size = 0;
1145 			set_rraddr(&desc->addr, 0);
1146 			dev_kfree_skb(skb);
1147 			rrpriv->rx_skbuff[i] = NULL;
1148 		}
1149 	}
1150 }
1151 
rr_timer(struct timer_list * t)1152 static void rr_timer(struct timer_list *t)
1153 {
1154 	struct rr_private *rrpriv = from_timer(rrpriv, t, timer);
1155 	struct net_device *dev = pci_get_drvdata(rrpriv->pci_dev);
1156 	struct rr_regs __iomem *regs = rrpriv->regs;
1157 	unsigned long flags;
1158 
1159 	if (readl(&regs->HostCtrl) & NIC_HALTED){
1160 		printk("%s: Restarting nic\n", dev->name);
1161 		memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1162 		memset(rrpriv->info, 0, sizeof(struct rr_info));
1163 		wmb();
1164 
1165 		rr_raz_tx(rrpriv, dev);
1166 		rr_raz_rx(rrpriv, dev);
1167 
1168 		if (rr_init1(dev)) {
1169 			spin_lock_irqsave(&rrpriv->lock, flags);
1170 			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1171 			       &regs->HostCtrl);
1172 			spin_unlock_irqrestore(&rrpriv->lock, flags);
1173 		}
1174 	}
1175 	rrpriv->timer.expires = RUN_AT(5*HZ);
1176 	add_timer(&rrpriv->timer);
1177 }
1178 
1179 
rr_open(struct net_device * dev)1180 static int rr_open(struct net_device *dev)
1181 {
1182 	struct rr_private *rrpriv = netdev_priv(dev);
1183 	struct pci_dev *pdev = rrpriv->pci_dev;
1184 	struct rr_regs __iomem *regs;
1185 	int ecode = 0;
1186 	unsigned long flags;
1187 	dma_addr_t dma_addr;
1188 
1189 	regs = rrpriv->regs;
1190 
1191 	if (rrpriv->fw_rev < 0x00020000) {
1192 		printk(KERN_WARNING "%s: trying to configure device with "
1193 		       "obsolete firmware\n", dev->name);
1194 		ecode = -EBUSY;
1195 		goto error;
1196 	}
1197 
1198 	rrpriv->rx_ctrl = dma_alloc_coherent(&pdev->dev,
1199 					     256 * sizeof(struct ring_ctrl),
1200 					     &dma_addr, GFP_KERNEL);
1201 	if (!rrpriv->rx_ctrl) {
1202 		ecode = -ENOMEM;
1203 		goto error;
1204 	}
1205 	rrpriv->rx_ctrl_dma = dma_addr;
1206 
1207 	rrpriv->info = dma_alloc_coherent(&pdev->dev, sizeof(struct rr_info),
1208 					  &dma_addr, GFP_KERNEL);
1209 	if (!rrpriv->info) {
1210 		ecode = -ENOMEM;
1211 		goto error;
1212 	}
1213 	rrpriv->info_dma = dma_addr;
1214 	wmb();
1215 
1216 	spin_lock_irqsave(&rrpriv->lock, flags);
1217 	writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1218 	readl(&regs->HostCtrl);
1219 	spin_unlock_irqrestore(&rrpriv->lock, flags);
1220 
1221 	if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1222 		printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1223 		       dev->name, pdev->irq);
1224 		ecode = -EAGAIN;
1225 		goto error;
1226 	}
1227 
1228 	if ((ecode = rr_init1(dev)))
1229 		goto error;
1230 
1231 	/* Set the timer to switch to check for link beat and perhaps switch
1232 	   to an alternate media type. */
1233 	timer_setup(&rrpriv->timer, rr_timer, 0);
1234 	rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1235 	add_timer(&rrpriv->timer);
1236 
1237 	netif_start_queue(dev);
1238 
1239 	return ecode;
1240 
1241  error:
1242 	spin_lock_irqsave(&rrpriv->lock, flags);
1243 	writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1244 	spin_unlock_irqrestore(&rrpriv->lock, flags);
1245 
1246 	if (rrpriv->info) {
1247 		dma_free_coherent(&pdev->dev, sizeof(struct rr_info),
1248 				  rrpriv->info, rrpriv->info_dma);
1249 		rrpriv->info = NULL;
1250 	}
1251 	if (rrpriv->rx_ctrl) {
1252 		dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl),
1253 				  rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1254 		rrpriv->rx_ctrl = NULL;
1255 	}
1256 
1257 	netif_stop_queue(dev);
1258 
1259 	return ecode;
1260 }
1261 
1262 
rr_dump(struct net_device * dev)1263 static void rr_dump(struct net_device *dev)
1264 {
1265 	struct rr_private *rrpriv;
1266 	struct rr_regs __iomem *regs;
1267 	u32 index, cons;
1268 	short i;
1269 	int len;
1270 
1271 	rrpriv = netdev_priv(dev);
1272 	regs = rrpriv->regs;
1273 
1274 	printk("%s: dumping NIC TX rings\n", dev->name);
1275 
1276 	printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1277 	       readl(&regs->RxPrd), readl(&regs->TxPrd),
1278 	       readl(&regs->EvtPrd), readl(&regs->TxPi),
1279 	       rrpriv->info->tx_ctrl.pi);
1280 
1281 	printk("Error code 0x%x\n", readl(&regs->Fail1));
1282 
1283 	index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1284 	cons = rrpriv->dirty_tx;
1285 	printk("TX ring index %i, TX consumer %i\n",
1286 	       index, cons);
1287 
1288 	if (rrpriv->tx_skbuff[index]){
1289 		len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1290 		printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1291 		for (i = 0; i < len; i++){
1292 			if (!(i & 7))
1293 				printk("\n");
1294 			printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1295 		}
1296 		printk("\n");
1297 	}
1298 
1299 	if (rrpriv->tx_skbuff[cons]){
1300 		len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1301 		printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1302 		printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %p, truesize 0x%x\n",
1303 		       rrpriv->tx_ring[cons].mode,
1304 		       rrpriv->tx_ring[cons].size,
1305 		       (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1306 		       rrpriv->tx_skbuff[cons]->data,
1307 		       (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1308 		for (i = 0; i < len; i++){
1309 			if (!(i & 7))
1310 				printk("\n");
1311 			printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1312 		}
1313 		printk("\n");
1314 	}
1315 
1316 	printk("dumping TX ring info:\n");
1317 	for (i = 0; i < TX_RING_ENTRIES; i++)
1318 		printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1319 		       rrpriv->tx_ring[i].mode,
1320 		       rrpriv->tx_ring[i].size,
1321 		       (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1322 
1323 }
1324 
1325 
rr_close(struct net_device * dev)1326 static int rr_close(struct net_device *dev)
1327 {
1328 	struct rr_private *rrpriv = netdev_priv(dev);
1329 	struct rr_regs __iomem *regs = rrpriv->regs;
1330 	struct pci_dev *pdev = rrpriv->pci_dev;
1331 	unsigned long flags;
1332 	u32 tmp;
1333 	short i;
1334 
1335 	netif_stop_queue(dev);
1336 
1337 
1338 	/*
1339 	 * Lock to make sure we are not cleaning up while another CPU
1340 	 * is handling interrupts.
1341 	 */
1342 	spin_lock_irqsave(&rrpriv->lock, flags);
1343 
1344 	tmp = readl(&regs->HostCtrl);
1345 	if (tmp & NIC_HALTED){
1346 		printk("%s: NIC already halted\n", dev->name);
1347 		rr_dump(dev);
1348 	}else{
1349 		tmp |= HALT_NIC | RR_CLEAR_INT;
1350 		writel(tmp, &regs->HostCtrl);
1351 		readl(&regs->HostCtrl);
1352 	}
1353 
1354 	rrpriv->fw_running = 0;
1355 
1356 	spin_unlock_irqrestore(&rrpriv->lock, flags);
1357 	del_timer_sync(&rrpriv->timer);
1358 	spin_lock_irqsave(&rrpriv->lock, flags);
1359 
1360 	writel(0, &regs->TxPi);
1361 	writel(0, &regs->IpRxPi);
1362 
1363 	writel(0, &regs->EvtCon);
1364 	writel(0, &regs->EvtPrd);
1365 
1366 	for (i = 0; i < CMD_RING_ENTRIES; i++)
1367 		writel(0, &regs->CmdRing[i]);
1368 
1369 	rrpriv->info->tx_ctrl.entries = 0;
1370 	rrpriv->info->cmd_ctrl.pi = 0;
1371 	rrpriv->info->evt_ctrl.pi = 0;
1372 	rrpriv->rx_ctrl[4].entries = 0;
1373 
1374 	rr_raz_tx(rrpriv, dev);
1375 	rr_raz_rx(rrpriv, dev);
1376 
1377 	dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl),
1378 			  rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1379 	rrpriv->rx_ctrl = NULL;
1380 
1381 	dma_free_coherent(&pdev->dev, sizeof(struct rr_info), rrpriv->info,
1382 			  rrpriv->info_dma);
1383 	rrpriv->info = NULL;
1384 
1385 	spin_unlock_irqrestore(&rrpriv->lock, flags);
1386 	free_irq(pdev->irq, dev);
1387 
1388 	return 0;
1389 }
1390 
1391 
rr_start_xmit(struct sk_buff * skb,struct net_device * dev)1392 static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1393 				 struct net_device *dev)
1394 {
1395 	struct rr_private *rrpriv = netdev_priv(dev);
1396 	struct rr_regs __iomem *regs = rrpriv->regs;
1397 	struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1398 	struct ring_ctrl *txctrl;
1399 	unsigned long flags;
1400 	u32 index, len = skb->len;
1401 	u32 *ifield;
1402 	struct sk_buff *new_skb;
1403 
1404 	if (readl(&regs->Mode) & FATAL_ERR)
1405 		printk("error codes Fail1 %02x, Fail2 %02x\n",
1406 		       readl(&regs->Fail1), readl(&regs->Fail2));
1407 
1408 	/*
1409 	 * We probably need to deal with tbusy here to prevent overruns.
1410 	 */
1411 
1412 	if (skb_headroom(skb) < 8){
1413 		printk("incoming skb too small - reallocating\n");
1414 		if (!(new_skb = dev_alloc_skb(len + 8))) {
1415 			dev_kfree_skb(skb);
1416 			netif_wake_queue(dev);
1417 			return NETDEV_TX_OK;
1418 		}
1419 		skb_reserve(new_skb, 8);
1420 		skb_put(new_skb, len);
1421 		skb_copy_from_linear_data(skb, new_skb->data, len);
1422 		dev_kfree_skb(skb);
1423 		skb = new_skb;
1424 	}
1425 
1426 	ifield = skb_push(skb, 8);
1427 
1428 	ifield[0] = 0;
1429 	ifield[1] = hcb->ifield;
1430 
1431 	/*
1432 	 * We don't need the lock before we are actually going to start
1433 	 * fiddling with the control blocks.
1434 	 */
1435 	spin_lock_irqsave(&rrpriv->lock, flags);
1436 
1437 	txctrl = &rrpriv->info->tx_ctrl;
1438 
1439 	index = txctrl->pi;
1440 
1441 	rrpriv->tx_skbuff[index] = skb;
1442 	set_rraddr(&rrpriv->tx_ring[index].addr,
1443 		   dma_map_single(&rrpriv->pci_dev->dev, skb->data, len + 8, DMA_TO_DEVICE));
1444 	rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1445 	rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1446 	txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1447 	wmb();
1448 	writel(txctrl->pi, &regs->TxPi);
1449 
1450 	if (txctrl->pi == rrpriv->dirty_tx){
1451 		rrpriv->tx_full = 1;
1452 		netif_stop_queue(dev);
1453 	}
1454 
1455 	spin_unlock_irqrestore(&rrpriv->lock, flags);
1456 
1457 	return NETDEV_TX_OK;
1458 }
1459 
1460 
1461 /*
1462  * Read the firmware out of the EEPROM and put it into the SRAM
1463  * (or from user space - later)
1464  *
1465  * This operation requires the NIC to be halted and is performed with
1466  * interrupts disabled and with the spinlock hold.
1467  */
rr_load_firmware(struct net_device * dev)1468 static int rr_load_firmware(struct net_device *dev)
1469 {
1470 	struct rr_private *rrpriv;
1471 	struct rr_regs __iomem *regs;
1472 	size_t eptr, segptr;
1473 	int i, j;
1474 	u32 localctrl, sptr, len, tmp;
1475 	u32 p2len, p2size, nr_seg, revision, io, sram_size;
1476 
1477 	rrpriv = netdev_priv(dev);
1478 	regs = rrpriv->regs;
1479 
1480 	if (dev->flags & IFF_UP)
1481 		return -EBUSY;
1482 
1483 	if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1484 		printk("%s: Trying to load firmware to a running NIC.\n",
1485 		       dev->name);
1486 		return -EBUSY;
1487 	}
1488 
1489 	localctrl = readl(&regs->LocalCtrl);
1490 	writel(0, &regs->LocalCtrl);
1491 
1492 	writel(0, &regs->EvtPrd);
1493 	writel(0, &regs->RxPrd);
1494 	writel(0, &regs->TxPrd);
1495 
1496 	/*
1497 	 * First wipe the entire SRAM, otherwise we might run into all
1498 	 * kinds of trouble ... sigh, this took almost all afternoon
1499 	 * to track down ;-(
1500 	 */
1501 	io = readl(&regs->ExtIo);
1502 	writel(0, &regs->ExtIo);
1503 	sram_size = rr_read_eeprom_word(rrpriv, 8);
1504 
1505 	for (i = 200; i < sram_size / 4; i++){
1506 		writel(i * 4, &regs->WinBase);
1507 		mb();
1508 		writel(0, &regs->WinData);
1509 		mb();
1510 	}
1511 	writel(io, &regs->ExtIo);
1512 	mb();
1513 
1514 	eptr = rr_read_eeprom_word(rrpriv,
1515 		       offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1516 	eptr = ((eptr & 0x1fffff) >> 3);
1517 
1518 	p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1519 	p2len = (p2len << 2);
1520 	p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1521 	p2size = ((p2size & 0x1fffff) >> 3);
1522 
1523 	if ((eptr < p2size) || (eptr > (p2size + p2len))){
1524 		printk("%s: eptr is invalid\n", dev->name);
1525 		goto out;
1526 	}
1527 
1528 	revision = rr_read_eeprom_word(rrpriv,
1529 			offsetof(struct eeprom, manf.HeaderFmt));
1530 
1531 	if (revision != 1){
1532 		printk("%s: invalid firmware format (%i)\n",
1533 		       dev->name, revision);
1534 		goto out;
1535 	}
1536 
1537 	nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1538 	eptr +=4;
1539 #if (DEBUG > 1)
1540 	printk("%s: nr_seg %i\n", dev->name, nr_seg);
1541 #endif
1542 
1543 	for (i = 0; i < nr_seg; i++){
1544 		sptr = rr_read_eeprom_word(rrpriv, eptr);
1545 		eptr += 4;
1546 		len = rr_read_eeprom_word(rrpriv, eptr);
1547 		eptr += 4;
1548 		segptr = rr_read_eeprom_word(rrpriv, eptr);
1549 		segptr = ((segptr & 0x1fffff) >> 3);
1550 		eptr += 4;
1551 #if (DEBUG > 1)
1552 		printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1553 		       dev->name, i, sptr, len, segptr);
1554 #endif
1555 		for (j = 0; j < len; j++){
1556 			tmp = rr_read_eeprom_word(rrpriv, segptr);
1557 			writel(sptr, &regs->WinBase);
1558 			mb();
1559 			writel(tmp, &regs->WinData);
1560 			mb();
1561 			segptr += 4;
1562 			sptr += 4;
1563 		}
1564 	}
1565 
1566 out:
1567 	writel(localctrl, &regs->LocalCtrl);
1568 	mb();
1569 	return 0;
1570 }
1571 
1572 
rr_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1573 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1574 {
1575 	struct rr_private *rrpriv;
1576 	unsigned char *image, *oldimage;
1577 	unsigned long flags;
1578 	unsigned int i;
1579 	int error = -EOPNOTSUPP;
1580 
1581 	rrpriv = netdev_priv(dev);
1582 
1583 	switch(cmd){
1584 	case SIOCRRGFW:
1585 		if (!capable(CAP_SYS_RAWIO)){
1586 			return -EPERM;
1587 		}
1588 
1589 		image = kmalloc_array(EEPROM_WORDS, sizeof(u32), GFP_KERNEL);
1590 		if (!image)
1591 			return -ENOMEM;
1592 
1593 		if (rrpriv->fw_running){
1594 			printk("%s: Firmware already running\n", dev->name);
1595 			error = -EPERM;
1596 			goto gf_out;
1597 		}
1598 
1599 		spin_lock_irqsave(&rrpriv->lock, flags);
1600 		i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1601 		spin_unlock_irqrestore(&rrpriv->lock, flags);
1602 		if (i != EEPROM_BYTES){
1603 			printk(KERN_ERR "%s: Error reading EEPROM\n",
1604 			       dev->name);
1605 			error = -EFAULT;
1606 			goto gf_out;
1607 		}
1608 		error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1609 		if (error)
1610 			error = -EFAULT;
1611 	gf_out:
1612 		kfree(image);
1613 		return error;
1614 
1615 	case SIOCRRPFW:
1616 		if (!capable(CAP_SYS_RAWIO)){
1617 			return -EPERM;
1618 		}
1619 
1620 		image = memdup_user(rq->ifr_data, EEPROM_BYTES);
1621 		if (IS_ERR(image))
1622 			return PTR_ERR(image);
1623 
1624 		oldimage = kmalloc(EEPROM_BYTES, GFP_KERNEL);
1625 		if (!oldimage) {
1626 			kfree(image);
1627 			return -ENOMEM;
1628 		}
1629 
1630 		if (rrpriv->fw_running){
1631 			printk("%s: Firmware already running\n", dev->name);
1632 			error = -EPERM;
1633 			goto wf_out;
1634 		}
1635 
1636 		printk("%s: Updating EEPROM firmware\n", dev->name);
1637 
1638 		spin_lock_irqsave(&rrpriv->lock, flags);
1639 		error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1640 		if (error)
1641 			printk(KERN_ERR "%s: Error writing EEPROM\n",
1642 			       dev->name);
1643 
1644 		i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1645 		spin_unlock_irqrestore(&rrpriv->lock, flags);
1646 
1647 		if (i != EEPROM_BYTES)
1648 			printk(KERN_ERR "%s: Error reading back EEPROM "
1649 			       "image\n", dev->name);
1650 
1651 		error = memcmp(image, oldimage, EEPROM_BYTES);
1652 		if (error){
1653 			printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1654 			       dev->name);
1655 			error = -EFAULT;
1656 		}
1657 	wf_out:
1658 		kfree(oldimage);
1659 		kfree(image);
1660 		return error;
1661 
1662 	case SIOCRRID:
1663 		return put_user(0x52523032, (int __user *)rq->ifr_data);
1664 	default:
1665 		return error;
1666 	}
1667 }
1668 
1669 static const struct pci_device_id rr_pci_tbl[] = {
1670 	{ PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1671 		PCI_ANY_ID, PCI_ANY_ID, },
1672 	{ 0,}
1673 };
1674 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1675 
1676 static struct pci_driver rr_driver = {
1677 	.name		= "rrunner",
1678 	.id_table	= rr_pci_tbl,
1679 	.probe		= rr_init_one,
1680 	.remove		= rr_remove_one,
1681 };
1682 
1683 module_pci_driver(rr_driver);
1684