1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
4 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
5 <http://rt2x00.serialmonkey.com>
6
7 */
8
9 /*
10 Module: rt2x00lib
11 Abstract: rt2x00 generic device routines.
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/log2.h>
18 #include <linux/of.h>
19 #include <linux/of_net.h>
20
21 #include "rt2x00.h"
22 #include "rt2x00lib.h"
23
24 /*
25 * Utility functions.
26 */
rt2x00lib_get_bssidx(struct rt2x00_dev * rt2x00dev,struct ieee80211_vif * vif)27 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
28 struct ieee80211_vif *vif)
29 {
30 /*
31 * When in STA mode, bssidx is always 0 otherwise local_address[5]
32 * contains the bss number, see BSS_ID_MASK comments for details.
33 */
34 if (rt2x00dev->intf_sta_count)
35 return 0;
36 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
37 }
38 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
39
40 /*
41 * Radio control handlers.
42 */
rt2x00lib_enable_radio(struct rt2x00_dev * rt2x00dev)43 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
44 {
45 int status;
46
47 /*
48 * Don't enable the radio twice.
49 * And check if the hardware button has been disabled.
50 */
51 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
52 return 0;
53
54 /*
55 * Initialize all data queues.
56 */
57 rt2x00queue_init_queues(rt2x00dev);
58
59 /*
60 * Enable radio.
61 */
62 status =
63 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
64 if (status)
65 return status;
66
67 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
68
69 rt2x00leds_led_radio(rt2x00dev, true);
70 rt2x00led_led_activity(rt2x00dev, true);
71
72 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
73
74 /*
75 * Enable queues.
76 */
77 rt2x00queue_start_queues(rt2x00dev);
78 rt2x00link_start_tuner(rt2x00dev);
79
80 /*
81 * Start watchdog monitoring.
82 */
83 rt2x00link_start_watchdog(rt2x00dev);
84
85 return 0;
86 }
87
rt2x00lib_disable_radio(struct rt2x00_dev * rt2x00dev)88 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
89 {
90 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
91 return;
92
93 /*
94 * Stop watchdog monitoring.
95 */
96 rt2x00link_stop_watchdog(rt2x00dev);
97
98 /*
99 * Stop all queues
100 */
101 rt2x00link_stop_tuner(rt2x00dev);
102 rt2x00queue_stop_queues(rt2x00dev);
103 rt2x00queue_flush_queues(rt2x00dev, true);
104 rt2x00queue_stop_queue(rt2x00dev->bcn);
105
106 /*
107 * Disable radio.
108 */
109 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
110 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
111 rt2x00led_led_activity(rt2x00dev, false);
112 rt2x00leds_led_radio(rt2x00dev, false);
113 }
114
rt2x00lib_intf_scheduled_iter(void * data,u8 * mac,struct ieee80211_vif * vif)115 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
116 struct ieee80211_vif *vif)
117 {
118 struct rt2x00_dev *rt2x00dev = data;
119 struct rt2x00_intf *intf = vif_to_intf(vif);
120
121 /*
122 * It is possible the radio was disabled while the work had been
123 * scheduled. If that happens we should return here immediately,
124 * note that in the spinlock protected area above the delayed_flags
125 * have been cleared correctly.
126 */
127 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
128 return;
129
130 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
131 mutex_lock(&intf->beacon_skb_mutex);
132 rt2x00queue_update_beacon(rt2x00dev, vif);
133 mutex_unlock(&intf->beacon_skb_mutex);
134 }
135 }
136
rt2x00lib_intf_scheduled(struct work_struct * work)137 static void rt2x00lib_intf_scheduled(struct work_struct *work)
138 {
139 struct rt2x00_dev *rt2x00dev =
140 container_of(work, struct rt2x00_dev, intf_work);
141
142 /*
143 * Iterate over each interface and perform the
144 * requested configurations.
145 */
146 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
147 IEEE80211_IFACE_ITER_RESUME_ALL,
148 rt2x00lib_intf_scheduled_iter,
149 rt2x00dev);
150 }
151
rt2x00lib_autowakeup(struct work_struct * work)152 static void rt2x00lib_autowakeup(struct work_struct *work)
153 {
154 struct rt2x00_dev *rt2x00dev =
155 container_of(work, struct rt2x00_dev, autowakeup_work.work);
156
157 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
158 return;
159
160 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
161 rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
162 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
163 }
164
165 /*
166 * Interrupt context handlers.
167 */
rt2x00lib_bc_buffer_iter(void * data,u8 * mac,struct ieee80211_vif * vif)168 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
169 struct ieee80211_vif *vif)
170 {
171 struct ieee80211_tx_control control = {};
172 struct rt2x00_dev *rt2x00dev = data;
173 struct sk_buff *skb;
174
175 /*
176 * Only AP mode interfaces do broad- and multicast buffering
177 */
178 if (vif->type != NL80211_IFTYPE_AP)
179 return;
180
181 /*
182 * Send out buffered broad- and multicast frames
183 */
184 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
185 while (skb) {
186 rt2x00mac_tx(rt2x00dev->hw, &control, skb);
187 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
188 }
189 }
190
rt2x00lib_beaconupdate_iter(void * data,u8 * mac,struct ieee80211_vif * vif)191 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
192 struct ieee80211_vif *vif)
193 {
194 struct rt2x00_dev *rt2x00dev = data;
195
196 if (vif->type != NL80211_IFTYPE_AP &&
197 vif->type != NL80211_IFTYPE_ADHOC &&
198 vif->type != NL80211_IFTYPE_MESH_POINT &&
199 vif->type != NL80211_IFTYPE_WDS)
200 return;
201
202 /*
203 * Update the beacon without locking. This is safe on PCI devices
204 * as they only update the beacon periodically here. This should
205 * never be called for USB devices.
206 */
207 WARN_ON(rt2x00_is_usb(rt2x00dev));
208 rt2x00queue_update_beacon(rt2x00dev, vif);
209 }
210
rt2x00lib_beacondone(struct rt2x00_dev * rt2x00dev)211 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
212 {
213 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
214 return;
215
216 /* send buffered bc/mc frames out for every bssid */
217 ieee80211_iterate_active_interfaces_atomic(
218 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
219 rt2x00lib_bc_buffer_iter, rt2x00dev);
220 /*
221 * Devices with pre tbtt interrupt don't need to update the beacon
222 * here as they will fetch the next beacon directly prior to
223 * transmission.
224 */
225 if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
226 return;
227
228 /* fetch next beacon */
229 ieee80211_iterate_active_interfaces_atomic(
230 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
231 rt2x00lib_beaconupdate_iter, rt2x00dev);
232 }
233 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
234
rt2x00lib_pretbtt(struct rt2x00_dev * rt2x00dev)235 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
236 {
237 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
238 return;
239
240 /* fetch next beacon */
241 ieee80211_iterate_active_interfaces_atomic(
242 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
243 rt2x00lib_beaconupdate_iter, rt2x00dev);
244 }
245 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
246
rt2x00lib_dmastart(struct queue_entry * entry)247 void rt2x00lib_dmastart(struct queue_entry *entry)
248 {
249 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
250 rt2x00queue_index_inc(entry, Q_INDEX);
251 }
252 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
253
rt2x00lib_dmadone(struct queue_entry * entry)254 void rt2x00lib_dmadone(struct queue_entry *entry)
255 {
256 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
257 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
258 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
259 }
260 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
261
rt2x00lib_txdone_bar_status(struct queue_entry * entry)262 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
263 {
264 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
265 struct ieee80211_bar *bar = (void *) entry->skb->data;
266 struct rt2x00_bar_list_entry *bar_entry;
267 int ret;
268
269 if (likely(!ieee80211_is_back_req(bar->frame_control)))
270 return 0;
271
272 /*
273 * Unlike all other frames, the status report for BARs does
274 * not directly come from the hardware as it is incapable of
275 * matching a BA to a previously send BAR. The hardware will
276 * report all BARs as if they weren't acked at all.
277 *
278 * Instead the RX-path will scan for incoming BAs and set the
279 * block_acked flag if it sees one that was likely caused by
280 * a BAR from us.
281 *
282 * Remove remaining BARs here and return their status for
283 * TX done processing.
284 */
285 ret = 0;
286 rcu_read_lock();
287 list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
288 if (bar_entry->entry != entry)
289 continue;
290
291 spin_lock_bh(&rt2x00dev->bar_list_lock);
292 /* Return whether this BAR was blockacked or not */
293 ret = bar_entry->block_acked;
294 /* Remove the BAR from our checklist */
295 list_del_rcu(&bar_entry->list);
296 spin_unlock_bh(&rt2x00dev->bar_list_lock);
297 kfree_rcu(bar_entry, head);
298
299 break;
300 }
301 rcu_read_unlock();
302
303 return ret;
304 }
305
rt2x00lib_fill_tx_status(struct rt2x00_dev * rt2x00dev,struct ieee80211_tx_info * tx_info,struct skb_frame_desc * skbdesc,struct txdone_entry_desc * txdesc,bool success)306 static void rt2x00lib_fill_tx_status(struct rt2x00_dev *rt2x00dev,
307 struct ieee80211_tx_info *tx_info,
308 struct skb_frame_desc *skbdesc,
309 struct txdone_entry_desc *txdesc,
310 bool success)
311 {
312 u8 rate_idx, rate_flags, retry_rates;
313 int i;
314
315 rate_idx = skbdesc->tx_rate_idx;
316 rate_flags = skbdesc->tx_rate_flags;
317 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
318 (txdesc->retry + 1) : 1;
319
320 /*
321 * Initialize TX status
322 */
323 memset(&tx_info->status, 0, sizeof(tx_info->status));
324 tx_info->status.ack_signal = 0;
325
326 /*
327 * Frame was send with retries, hardware tried
328 * different rates to send out the frame, at each
329 * retry it lowered the rate 1 step except when the
330 * lowest rate was used.
331 */
332 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
333 tx_info->status.rates[i].idx = rate_idx - i;
334 tx_info->status.rates[i].flags = rate_flags;
335
336 if (rate_idx - i == 0) {
337 /*
338 * The lowest rate (index 0) was used until the
339 * number of max retries was reached.
340 */
341 tx_info->status.rates[i].count = retry_rates - i;
342 i++;
343 break;
344 }
345 tx_info->status.rates[i].count = 1;
346 }
347 if (i < (IEEE80211_TX_MAX_RATES - 1))
348 tx_info->status.rates[i].idx = -1; /* terminate */
349
350 if (test_bit(TXDONE_NO_ACK_REQ, &txdesc->flags))
351 tx_info->flags |= IEEE80211_TX_CTL_NO_ACK;
352
353 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
354 if (success)
355 tx_info->flags |= IEEE80211_TX_STAT_ACK;
356 else
357 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
358 }
359
360 /*
361 * Every single frame has it's own tx status, hence report
362 * every frame as ampdu of size 1.
363 *
364 * TODO: if we can find out how many frames were aggregated
365 * by the hw we could provide the real ampdu_len to mac80211
366 * which would allow the rc algorithm to better decide on
367 * which rates are suitable.
368 */
369 if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
370 tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
371 tx_info->flags |= IEEE80211_TX_STAT_AMPDU |
372 IEEE80211_TX_CTL_AMPDU;
373 tx_info->status.ampdu_len = 1;
374 tx_info->status.ampdu_ack_len = success ? 1 : 0;
375 }
376
377 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
378 if (success)
379 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
380 else
381 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
382 }
383 }
384
rt2x00lib_clear_entry(struct rt2x00_dev * rt2x00dev,struct queue_entry * entry)385 static void rt2x00lib_clear_entry(struct rt2x00_dev *rt2x00dev,
386 struct queue_entry *entry)
387 {
388 /*
389 * Make this entry available for reuse.
390 */
391 entry->skb = NULL;
392 entry->flags = 0;
393
394 rt2x00dev->ops->lib->clear_entry(entry);
395
396 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
397
398 /*
399 * If the data queue was below the threshold before the txdone
400 * handler we must make sure the packet queue in the mac80211 stack
401 * is reenabled when the txdone handler has finished. This has to be
402 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
403 * before it was stopped.
404 */
405 spin_lock_bh(&entry->queue->tx_lock);
406 if (!rt2x00queue_threshold(entry->queue))
407 rt2x00queue_unpause_queue(entry->queue);
408 spin_unlock_bh(&entry->queue->tx_lock);
409 }
410
rt2x00lib_txdone_nomatch(struct queue_entry * entry,struct txdone_entry_desc * txdesc)411 void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
412 struct txdone_entry_desc *txdesc)
413 {
414 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
415 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
416 struct ieee80211_tx_info txinfo = {};
417 bool success;
418
419 /*
420 * Unmap the skb.
421 */
422 rt2x00queue_unmap_skb(entry);
423
424 /*
425 * Signal that the TX descriptor is no longer in the skb.
426 */
427 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
428
429 /*
430 * Send frame to debugfs immediately, after this call is completed
431 * we are going to overwrite the skb->cb array.
432 */
433 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
434
435 /*
436 * Determine if the frame has been successfully transmitted and
437 * remove BARs from our check list while checking for their
438 * TX status.
439 */
440 success =
441 rt2x00lib_txdone_bar_status(entry) ||
442 test_bit(TXDONE_SUCCESS, &txdesc->flags);
443
444 if (!test_bit(TXDONE_UNKNOWN, &txdesc->flags)) {
445 /*
446 * Update TX statistics.
447 */
448 rt2x00dev->link.qual.tx_success += success;
449 rt2x00dev->link.qual.tx_failed += !success;
450
451 rt2x00lib_fill_tx_status(rt2x00dev, &txinfo, skbdesc, txdesc,
452 success);
453 ieee80211_tx_status_noskb(rt2x00dev->hw, skbdesc->sta, &txinfo);
454 }
455
456 dev_kfree_skb_any(entry->skb);
457 rt2x00lib_clear_entry(rt2x00dev, entry);
458 }
459 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_nomatch);
460
rt2x00lib_txdone(struct queue_entry * entry,struct txdone_entry_desc * txdesc)461 void rt2x00lib_txdone(struct queue_entry *entry,
462 struct txdone_entry_desc *txdesc)
463 {
464 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
465 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
466 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
467 u8 skbdesc_flags = skbdesc->flags;
468 unsigned int header_length;
469 bool success;
470
471 /*
472 * Unmap the skb.
473 */
474 rt2x00queue_unmap_skb(entry);
475
476 /*
477 * Remove the extra tx headroom from the skb.
478 */
479 skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
480
481 /*
482 * Signal that the TX descriptor is no longer in the skb.
483 */
484 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
485
486 /*
487 * Determine the length of 802.11 header.
488 */
489 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
490
491 /*
492 * Remove L2 padding which was added during
493 */
494 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
495 rt2x00queue_remove_l2pad(entry->skb, header_length);
496
497 /*
498 * If the IV/EIV data was stripped from the frame before it was
499 * passed to the hardware, we should now reinsert it again because
500 * mac80211 will expect the same data to be present it the
501 * frame as it was passed to us.
502 */
503 if (rt2x00_has_cap_hw_crypto(rt2x00dev))
504 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
505
506 /*
507 * Send frame to debugfs immediately, after this call is completed
508 * we are going to overwrite the skb->cb array.
509 */
510 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
511
512 /*
513 * Determine if the frame has been successfully transmitted and
514 * remove BARs from our check list while checking for their
515 * TX status.
516 */
517 success =
518 rt2x00lib_txdone_bar_status(entry) ||
519 test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
520 test_bit(TXDONE_UNKNOWN, &txdesc->flags);
521
522 /*
523 * Update TX statistics.
524 */
525 rt2x00dev->link.qual.tx_success += success;
526 rt2x00dev->link.qual.tx_failed += !success;
527
528 rt2x00lib_fill_tx_status(rt2x00dev, tx_info, skbdesc, txdesc, success);
529
530 /*
531 * Only send the status report to mac80211 when it's a frame
532 * that originated in mac80211. If this was a extra frame coming
533 * through a mac80211 library call (RTS/CTS) then we should not
534 * send the status report back.
535 */
536 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
537 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
538 ieee80211_tx_status(rt2x00dev->hw, entry->skb);
539 else
540 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
541 } else {
542 dev_kfree_skb_any(entry->skb);
543 }
544
545 rt2x00lib_clear_entry(rt2x00dev, entry);
546 }
547 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
548
rt2x00lib_txdone_noinfo(struct queue_entry * entry,u32 status)549 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
550 {
551 struct txdone_entry_desc txdesc;
552
553 txdesc.flags = 0;
554 __set_bit(status, &txdesc.flags);
555 txdesc.retry = 0;
556
557 rt2x00lib_txdone(entry, &txdesc);
558 }
559 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
560
rt2x00lib_find_ie(u8 * data,unsigned int len,u8 ie)561 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
562 {
563 struct ieee80211_mgmt *mgmt = (void *)data;
564 u8 *pos, *end;
565
566 pos = (u8 *)mgmt->u.beacon.variable;
567 end = data + len;
568 while (pos < end) {
569 if (pos + 2 + pos[1] > end)
570 return NULL;
571
572 if (pos[0] == ie)
573 return pos;
574
575 pos += 2 + pos[1];
576 }
577
578 return NULL;
579 }
580
rt2x00lib_sleep(struct work_struct * work)581 static void rt2x00lib_sleep(struct work_struct *work)
582 {
583 struct rt2x00_dev *rt2x00dev =
584 container_of(work, struct rt2x00_dev, sleep_work);
585
586 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
587 return;
588
589 /*
590 * Check again is powersaving is enabled, to prevent races from delayed
591 * work execution.
592 */
593 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
594 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
595 IEEE80211_CONF_CHANGE_PS);
596 }
597
rt2x00lib_rxdone_check_ba(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct rxdone_entry_desc * rxdesc)598 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
599 struct sk_buff *skb,
600 struct rxdone_entry_desc *rxdesc)
601 {
602 struct rt2x00_bar_list_entry *entry;
603 struct ieee80211_bar *ba = (void *)skb->data;
604
605 if (likely(!ieee80211_is_back(ba->frame_control)))
606 return;
607
608 if (rxdesc->size < sizeof(*ba) + FCS_LEN)
609 return;
610
611 rcu_read_lock();
612 list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
613
614 if (ba->start_seq_num != entry->start_seq_num)
615 continue;
616
617 #define TID_CHECK(a, b) ( \
618 ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \
619 ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \
620
621 if (!TID_CHECK(ba->control, entry->control))
622 continue;
623
624 #undef TID_CHECK
625
626 if (!ether_addr_equal_64bits(ba->ra, entry->ta))
627 continue;
628
629 if (!ether_addr_equal_64bits(ba->ta, entry->ra))
630 continue;
631
632 /* Mark BAR since we received the according BA */
633 spin_lock_bh(&rt2x00dev->bar_list_lock);
634 entry->block_acked = 1;
635 spin_unlock_bh(&rt2x00dev->bar_list_lock);
636 break;
637 }
638 rcu_read_unlock();
639
640 }
641
rt2x00lib_rxdone_check_ps(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct rxdone_entry_desc * rxdesc)642 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
643 struct sk_buff *skb,
644 struct rxdone_entry_desc *rxdesc)
645 {
646 struct ieee80211_hdr *hdr = (void *) skb->data;
647 struct ieee80211_tim_ie *tim_ie;
648 u8 *tim;
649 u8 tim_len;
650 bool cam;
651
652 /* If this is not a beacon, or if mac80211 has no powersaving
653 * configured, or if the device is already in powersaving mode
654 * we can exit now. */
655 if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
656 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
657 return;
658
659 /* min. beacon length + FCS_LEN */
660 if (skb->len <= 40 + FCS_LEN)
661 return;
662
663 /* and only beacons from the associated BSSID, please */
664 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
665 !rt2x00dev->aid)
666 return;
667
668 rt2x00dev->last_beacon = jiffies;
669
670 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
671 if (!tim)
672 return;
673
674 if (tim[1] < sizeof(*tim_ie))
675 return;
676
677 tim_len = tim[1];
678 tim_ie = (struct ieee80211_tim_ie *) &tim[2];
679
680 /* Check whenever the PHY can be turned off again. */
681
682 /* 1. What about buffered unicast traffic for our AID? */
683 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
684
685 /* 2. Maybe the AP wants to send multicast/broadcast data? */
686 cam |= (tim_ie->bitmap_ctrl & 0x01);
687
688 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
689 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
690 }
691
rt2x00lib_rxdone_read_signal(struct rt2x00_dev * rt2x00dev,struct rxdone_entry_desc * rxdesc)692 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
693 struct rxdone_entry_desc *rxdesc)
694 {
695 struct ieee80211_supported_band *sband;
696 const struct rt2x00_rate *rate;
697 unsigned int i;
698 int signal = rxdesc->signal;
699 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
700
701 switch (rxdesc->rate_mode) {
702 case RATE_MODE_CCK:
703 case RATE_MODE_OFDM:
704 /*
705 * For non-HT rates the MCS value needs to contain the
706 * actually used rate modulation (CCK or OFDM).
707 */
708 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
709 signal = RATE_MCS(rxdesc->rate_mode, signal);
710
711 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
712 for (i = 0; i < sband->n_bitrates; i++) {
713 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
714 if (((type == RXDONE_SIGNAL_PLCP) &&
715 (rate->plcp == signal)) ||
716 ((type == RXDONE_SIGNAL_BITRATE) &&
717 (rate->bitrate == signal)) ||
718 ((type == RXDONE_SIGNAL_MCS) &&
719 (rate->mcs == signal))) {
720 return i;
721 }
722 }
723 break;
724 case RATE_MODE_HT_MIX:
725 case RATE_MODE_HT_GREENFIELD:
726 if (signal >= 0 && signal <= 76)
727 return signal;
728 break;
729 default:
730 break;
731 }
732
733 rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
734 rxdesc->rate_mode, signal, type);
735 return 0;
736 }
737
rt2x00lib_rxdone(struct queue_entry * entry,gfp_t gfp)738 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
739 {
740 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
741 struct rxdone_entry_desc rxdesc;
742 struct sk_buff *skb;
743 struct ieee80211_rx_status *rx_status;
744 unsigned int header_length;
745 int rate_idx;
746
747 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
748 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
749 goto submit_entry;
750
751 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
752 goto submit_entry;
753
754 /*
755 * Allocate a new sk_buffer. If no new buffer available, drop the
756 * received frame and reuse the existing buffer.
757 */
758 skb = rt2x00queue_alloc_rxskb(entry, gfp);
759 if (!skb)
760 goto submit_entry;
761
762 /*
763 * Unmap the skb.
764 */
765 rt2x00queue_unmap_skb(entry);
766
767 /*
768 * Extract the RXD details.
769 */
770 memset(&rxdesc, 0, sizeof(rxdesc));
771 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
772
773 /*
774 * Check for valid size in case we get corrupted descriptor from
775 * hardware.
776 */
777 if (unlikely(rxdesc.size == 0 ||
778 rxdesc.size > entry->queue->data_size)) {
779 rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
780 rxdesc.size, entry->queue->data_size);
781 dev_kfree_skb(entry->skb);
782 goto renew_skb;
783 }
784
785 /*
786 * The data behind the ieee80211 header must be
787 * aligned on a 4 byte boundary.
788 */
789 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
790
791 /*
792 * Hardware might have stripped the IV/EIV/ICV data,
793 * in that case it is possible that the data was
794 * provided separately (through hardware descriptor)
795 * in which case we should reinsert the data into the frame.
796 */
797 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
798 (rxdesc.flags & RX_FLAG_IV_STRIPPED))
799 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
800 &rxdesc);
801 else if (header_length &&
802 (rxdesc.size > header_length) &&
803 (rxdesc.dev_flags & RXDONE_L2PAD))
804 rt2x00queue_remove_l2pad(entry->skb, header_length);
805
806 /* Trim buffer to correct size */
807 skb_trim(entry->skb, rxdesc.size);
808
809 /*
810 * Translate the signal to the correct bitrate index.
811 */
812 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
813 if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
814 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
815 rxdesc.encoding = RX_ENC_HT;
816
817 /*
818 * Check if this is a beacon, and more frames have been
819 * buffered while we were in powersaving mode.
820 */
821 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
822
823 /*
824 * Check for incoming BlockAcks to match to the BlockAckReqs
825 * we've send out.
826 */
827 rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
828
829 /*
830 * Update extra components
831 */
832 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
833 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
834 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry);
835
836 /*
837 * Initialize RX status information, and send frame
838 * to mac80211.
839 */
840 rx_status = IEEE80211_SKB_RXCB(entry->skb);
841
842 /* Ensure that all fields of rx_status are initialized
843 * properly. The skb->cb array was used for driver
844 * specific informations, so rx_status might contain
845 * garbage.
846 */
847 memset(rx_status, 0, sizeof(*rx_status));
848
849 rx_status->mactime = rxdesc.timestamp;
850 rx_status->band = rt2x00dev->curr_band;
851 rx_status->freq = rt2x00dev->curr_freq;
852 rx_status->rate_idx = rate_idx;
853 rx_status->signal = rxdesc.rssi;
854 rx_status->flag = rxdesc.flags;
855 rx_status->enc_flags = rxdesc.enc_flags;
856 rx_status->encoding = rxdesc.encoding;
857 rx_status->bw = rxdesc.bw;
858 rx_status->antenna = rt2x00dev->link.ant.active.rx;
859
860 ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
861
862 renew_skb:
863 /*
864 * Replace the skb with the freshly allocated one.
865 */
866 entry->skb = skb;
867
868 submit_entry:
869 entry->flags = 0;
870 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
871 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
872 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
873 rt2x00dev->ops->lib->clear_entry(entry);
874 }
875 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
876
877 /*
878 * Driver initialization handlers.
879 */
880 const struct rt2x00_rate rt2x00_supported_rates[12] = {
881 {
882 .flags = DEV_RATE_CCK,
883 .bitrate = 10,
884 .ratemask = BIT(0),
885 .plcp = 0x00,
886 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
887 },
888 {
889 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
890 .bitrate = 20,
891 .ratemask = BIT(1),
892 .plcp = 0x01,
893 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
894 },
895 {
896 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
897 .bitrate = 55,
898 .ratemask = BIT(2),
899 .plcp = 0x02,
900 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
901 },
902 {
903 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
904 .bitrate = 110,
905 .ratemask = BIT(3),
906 .plcp = 0x03,
907 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
908 },
909 {
910 .flags = DEV_RATE_OFDM,
911 .bitrate = 60,
912 .ratemask = BIT(4),
913 .plcp = 0x0b,
914 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
915 },
916 {
917 .flags = DEV_RATE_OFDM,
918 .bitrate = 90,
919 .ratemask = BIT(5),
920 .plcp = 0x0f,
921 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
922 },
923 {
924 .flags = DEV_RATE_OFDM,
925 .bitrate = 120,
926 .ratemask = BIT(6),
927 .plcp = 0x0a,
928 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
929 },
930 {
931 .flags = DEV_RATE_OFDM,
932 .bitrate = 180,
933 .ratemask = BIT(7),
934 .plcp = 0x0e,
935 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
936 },
937 {
938 .flags = DEV_RATE_OFDM,
939 .bitrate = 240,
940 .ratemask = BIT(8),
941 .plcp = 0x09,
942 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
943 },
944 {
945 .flags = DEV_RATE_OFDM,
946 .bitrate = 360,
947 .ratemask = BIT(9),
948 .plcp = 0x0d,
949 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
950 },
951 {
952 .flags = DEV_RATE_OFDM,
953 .bitrate = 480,
954 .ratemask = BIT(10),
955 .plcp = 0x08,
956 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
957 },
958 {
959 .flags = DEV_RATE_OFDM,
960 .bitrate = 540,
961 .ratemask = BIT(11),
962 .plcp = 0x0c,
963 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
964 },
965 };
966
rt2x00lib_channel(struct ieee80211_channel * entry,const int channel,const int tx_power,const int value)967 static void rt2x00lib_channel(struct ieee80211_channel *entry,
968 const int channel, const int tx_power,
969 const int value)
970 {
971 /* XXX: this assumption about the band is wrong for 802.11j */
972 entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
973 entry->center_freq = ieee80211_channel_to_frequency(channel,
974 entry->band);
975 entry->hw_value = value;
976 entry->max_power = tx_power;
977 entry->max_antenna_gain = 0xff;
978 }
979
rt2x00lib_rate(struct ieee80211_rate * entry,const u16 index,const struct rt2x00_rate * rate)980 static void rt2x00lib_rate(struct ieee80211_rate *entry,
981 const u16 index, const struct rt2x00_rate *rate)
982 {
983 entry->flags = 0;
984 entry->bitrate = rate->bitrate;
985 entry->hw_value = index;
986 entry->hw_value_short = index;
987
988 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
989 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
990 }
991
rt2x00lib_set_mac_address(struct rt2x00_dev * rt2x00dev,u8 * eeprom_mac_addr)992 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr)
993 {
994 const char *mac_addr;
995
996 mac_addr = of_get_mac_address(rt2x00dev->dev->of_node);
997 if (!IS_ERR(mac_addr))
998 ether_addr_copy(eeprom_mac_addr, mac_addr);
999
1000 if (!is_valid_ether_addr(eeprom_mac_addr)) {
1001 eth_random_addr(eeprom_mac_addr);
1002 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr);
1003 }
1004 }
1005 EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address);
1006
rt2x00lib_probe_hw_modes(struct rt2x00_dev * rt2x00dev,struct hw_mode_spec * spec)1007 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
1008 struct hw_mode_spec *spec)
1009 {
1010 struct ieee80211_hw *hw = rt2x00dev->hw;
1011 struct ieee80211_channel *channels;
1012 struct ieee80211_rate *rates;
1013 unsigned int num_rates;
1014 unsigned int i;
1015
1016 num_rates = 0;
1017 if (spec->supported_rates & SUPPORT_RATE_CCK)
1018 num_rates += 4;
1019 if (spec->supported_rates & SUPPORT_RATE_OFDM)
1020 num_rates += 8;
1021
1022 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
1023 if (!channels)
1024 return -ENOMEM;
1025
1026 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
1027 if (!rates)
1028 goto exit_free_channels;
1029
1030 /*
1031 * Initialize Rate list.
1032 */
1033 for (i = 0; i < num_rates; i++)
1034 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
1035
1036 /*
1037 * Initialize Channel list.
1038 */
1039 for (i = 0; i < spec->num_channels; i++) {
1040 rt2x00lib_channel(&channels[i],
1041 spec->channels[i].channel,
1042 spec->channels_info[i].max_power, i);
1043 }
1044
1045 /*
1046 * Intitialize 802.11b, 802.11g
1047 * Rates: CCK, OFDM.
1048 * Channels: 2.4 GHz
1049 */
1050 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
1051 rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14;
1052 rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates;
1053 rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels;
1054 rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates;
1055 hw->wiphy->bands[NL80211_BAND_2GHZ] =
1056 &rt2x00dev->bands[NL80211_BAND_2GHZ];
1057 memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap,
1058 &spec->ht, sizeof(spec->ht));
1059 }
1060
1061 /*
1062 * Intitialize 802.11a
1063 * Rates: OFDM.
1064 * Channels: OFDM, UNII, HiperLAN2.
1065 */
1066 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
1067 rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels =
1068 spec->num_channels - 14;
1069 rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates =
1070 num_rates - 4;
1071 rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14];
1072 rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4];
1073 hw->wiphy->bands[NL80211_BAND_5GHZ] =
1074 &rt2x00dev->bands[NL80211_BAND_5GHZ];
1075 memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap,
1076 &spec->ht, sizeof(spec->ht));
1077 }
1078
1079 return 0;
1080
1081 exit_free_channels:
1082 kfree(channels);
1083 rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1084 return -ENOMEM;
1085 }
1086
rt2x00lib_remove_hw(struct rt2x00_dev * rt2x00dev)1087 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1088 {
1089 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1090 ieee80211_unregister_hw(rt2x00dev->hw);
1091
1092 if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) {
1093 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels);
1094 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates);
1095 rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL;
1096 rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL;
1097 }
1098
1099 kfree(rt2x00dev->spec.channels_info);
1100 }
1101
rt2x00lib_probe_hw(struct rt2x00_dev * rt2x00dev)1102 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1103 {
1104 struct hw_mode_spec *spec = &rt2x00dev->spec;
1105 int status;
1106
1107 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1108 return 0;
1109
1110 /*
1111 * Initialize HW modes.
1112 */
1113 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1114 if (status)
1115 return status;
1116
1117 /*
1118 * Initialize HW fields.
1119 */
1120 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1121
1122 /*
1123 * Initialize extra TX headroom required.
1124 */
1125 rt2x00dev->hw->extra_tx_headroom =
1126 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1127 rt2x00dev->extra_tx_headroom);
1128
1129 /*
1130 * Take TX headroom required for alignment into account.
1131 */
1132 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
1133 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1134 else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
1135 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1136
1137 /*
1138 * Tell mac80211 about the size of our private STA structure.
1139 */
1140 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1141
1142 /*
1143 * Allocate tx status FIFO for driver use.
1144 */
1145 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
1146 /*
1147 * Allocate the txstatus fifo. In the worst case the tx
1148 * status fifo has to hold the tx status of all entries
1149 * in all tx queues. Hence, calculate the kfifo size as
1150 * tx_queues * entry_num and round up to the nearest
1151 * power of 2.
1152 */
1153 int kfifo_size =
1154 roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1155 rt2x00dev->tx->limit *
1156 sizeof(u32));
1157
1158 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1159 GFP_KERNEL);
1160 if (status)
1161 return status;
1162 }
1163
1164 /*
1165 * Initialize tasklets if used by the driver. Tasklets are
1166 * disabled until the interrupts are turned on. The driver
1167 * has to handle that.
1168 */
1169 #define RT2X00_TASKLET_INIT(taskletname) \
1170 if (rt2x00dev->ops->lib->taskletname) { \
1171 tasklet_setup(&rt2x00dev->taskletname, \
1172 rt2x00dev->ops->lib->taskletname); \
1173 }
1174
1175 RT2X00_TASKLET_INIT(txstatus_tasklet);
1176 RT2X00_TASKLET_INIT(pretbtt_tasklet);
1177 RT2X00_TASKLET_INIT(tbtt_tasklet);
1178 RT2X00_TASKLET_INIT(rxdone_tasklet);
1179 RT2X00_TASKLET_INIT(autowake_tasklet);
1180
1181 #undef RT2X00_TASKLET_INIT
1182
1183 /*
1184 * Register HW.
1185 */
1186 status = ieee80211_register_hw(rt2x00dev->hw);
1187 if (status)
1188 return status;
1189
1190 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1191
1192 return 0;
1193 }
1194
1195 /*
1196 * Initialization/uninitialization handlers.
1197 */
rt2x00lib_uninitialize(struct rt2x00_dev * rt2x00dev)1198 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1199 {
1200 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1201 return;
1202
1203 /*
1204 * Stop rfkill polling.
1205 */
1206 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1207 rt2x00rfkill_unregister(rt2x00dev);
1208
1209 /*
1210 * Allow the HW to uninitialize.
1211 */
1212 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1213
1214 /*
1215 * Free allocated queue entries.
1216 */
1217 rt2x00queue_uninitialize(rt2x00dev);
1218 }
1219
rt2x00lib_initialize(struct rt2x00_dev * rt2x00dev)1220 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1221 {
1222 int status;
1223
1224 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1225 return 0;
1226
1227 /*
1228 * Allocate all queue entries.
1229 */
1230 status = rt2x00queue_initialize(rt2x00dev);
1231 if (status)
1232 return status;
1233
1234 /*
1235 * Initialize the device.
1236 */
1237 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1238 if (status) {
1239 rt2x00queue_uninitialize(rt2x00dev);
1240 return status;
1241 }
1242
1243 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1244
1245 /*
1246 * Start rfkill polling.
1247 */
1248 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1249 rt2x00rfkill_register(rt2x00dev);
1250
1251 return 0;
1252 }
1253
rt2x00lib_start(struct rt2x00_dev * rt2x00dev)1254 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1255 {
1256 int retval = 0;
1257
1258 /*
1259 * If this is the first interface which is added,
1260 * we should load the firmware now.
1261 */
1262 retval = rt2x00lib_load_firmware(rt2x00dev);
1263 if (retval)
1264 goto out;
1265
1266 /*
1267 * Initialize the device.
1268 */
1269 retval = rt2x00lib_initialize(rt2x00dev);
1270 if (retval)
1271 goto out;
1272
1273 rt2x00dev->intf_ap_count = 0;
1274 rt2x00dev->intf_sta_count = 0;
1275 rt2x00dev->intf_associated = 0;
1276 rt2x00dev->intf_beaconing = 0;
1277
1278 /* Enable the radio */
1279 retval = rt2x00lib_enable_radio(rt2x00dev);
1280 if (retval)
1281 goto out;
1282
1283 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1284
1285 out:
1286 return retval;
1287 }
1288
rt2x00lib_stop(struct rt2x00_dev * rt2x00dev)1289 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1290 {
1291 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1292 return;
1293
1294 /*
1295 * Perhaps we can add something smarter here,
1296 * but for now just disabling the radio should do.
1297 */
1298 rt2x00lib_disable_radio(rt2x00dev);
1299
1300 rt2x00dev->intf_ap_count = 0;
1301 rt2x00dev->intf_sta_count = 0;
1302 rt2x00dev->intf_associated = 0;
1303 rt2x00dev->intf_beaconing = 0;
1304 }
1305
rt2x00lib_set_if_combinations(struct rt2x00_dev * rt2x00dev)1306 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1307 {
1308 struct ieee80211_iface_limit *if_limit;
1309 struct ieee80211_iface_combination *if_combination;
1310
1311 if (rt2x00dev->ops->max_ap_intf < 2)
1312 return;
1313
1314 /*
1315 * Build up AP interface limits structure.
1316 */
1317 if_limit = &rt2x00dev->if_limits_ap;
1318 if_limit->max = rt2x00dev->ops->max_ap_intf;
1319 if_limit->types = BIT(NL80211_IFTYPE_AP);
1320 #ifdef CONFIG_MAC80211_MESH
1321 if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1322 #endif
1323
1324 /*
1325 * Build up AP interface combinations structure.
1326 */
1327 if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1328 if_combination->limits = if_limit;
1329 if_combination->n_limits = 1;
1330 if_combination->max_interfaces = if_limit->max;
1331 if_combination->num_different_channels = 1;
1332
1333 /*
1334 * Finally, specify the possible combinations to mac80211.
1335 */
1336 rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1337 rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1338 }
1339
rt2x00dev_extra_tx_headroom(struct rt2x00_dev * rt2x00dev)1340 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1341 {
1342 if (WARN_ON(!rt2x00dev->tx))
1343 return 0;
1344
1345 if (rt2x00_is_usb(rt2x00dev))
1346 return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1347
1348 return rt2x00dev->tx[0].winfo_size;
1349 }
1350
1351 /*
1352 * driver allocation handlers.
1353 */
rt2x00lib_probe_dev(struct rt2x00_dev * rt2x00dev)1354 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1355 {
1356 int retval = -ENOMEM;
1357
1358 /*
1359 * Set possible interface combinations.
1360 */
1361 rt2x00lib_set_if_combinations(rt2x00dev);
1362
1363 /*
1364 * Allocate the driver data memory, if necessary.
1365 */
1366 if (rt2x00dev->ops->drv_data_size > 0) {
1367 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1368 GFP_KERNEL);
1369 if (!rt2x00dev->drv_data) {
1370 retval = -ENOMEM;
1371 goto exit;
1372 }
1373 }
1374
1375 spin_lock_init(&rt2x00dev->irqmask_lock);
1376 mutex_init(&rt2x00dev->csr_mutex);
1377 mutex_init(&rt2x00dev->conf_mutex);
1378 INIT_LIST_HEAD(&rt2x00dev->bar_list);
1379 spin_lock_init(&rt2x00dev->bar_list_lock);
1380 hrtimer_init(&rt2x00dev->txstatus_timer, CLOCK_MONOTONIC,
1381 HRTIMER_MODE_REL);
1382
1383 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1384
1385 /*
1386 * Make room for rt2x00_intf inside the per-interface
1387 * structure ieee80211_vif.
1388 */
1389 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1390
1391 /*
1392 * rt2x00 devices can only use the last n bits of the MAC address
1393 * for virtual interfaces.
1394 */
1395 rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1396 (rt2x00dev->ops->max_ap_intf - 1);
1397
1398 /*
1399 * Initialize work.
1400 */
1401 rt2x00dev->workqueue =
1402 alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1403 if (!rt2x00dev->workqueue) {
1404 retval = -ENOMEM;
1405 goto exit;
1406 }
1407
1408 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1409 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1410 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1411
1412 /*
1413 * Let the driver probe the device to detect the capabilities.
1414 */
1415 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1416 if (retval) {
1417 rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1418 goto exit;
1419 }
1420
1421 /*
1422 * Allocate queue array.
1423 */
1424 retval = rt2x00queue_allocate(rt2x00dev);
1425 if (retval)
1426 goto exit;
1427
1428 /* Cache TX headroom value */
1429 rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1430
1431 /*
1432 * Determine which operating modes are supported, all modes
1433 * which require beaconing, depend on the availability of
1434 * beacon entries.
1435 */
1436 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1437 if (rt2x00dev->bcn->limit > 0)
1438 rt2x00dev->hw->wiphy->interface_modes |=
1439 BIT(NL80211_IFTYPE_ADHOC) |
1440 #ifdef CONFIG_MAC80211_MESH
1441 BIT(NL80211_IFTYPE_MESH_POINT) |
1442 #endif
1443 #ifdef CONFIG_WIRELESS_WDS
1444 BIT(NL80211_IFTYPE_WDS) |
1445 #endif
1446 BIT(NL80211_IFTYPE_AP);
1447
1448 rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1449
1450 wiphy_ext_feature_set(rt2x00dev->hw->wiphy,
1451 NL80211_EXT_FEATURE_CQM_RSSI_LIST);
1452
1453 /*
1454 * Initialize ieee80211 structure.
1455 */
1456 retval = rt2x00lib_probe_hw(rt2x00dev);
1457 if (retval) {
1458 rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1459 goto exit;
1460 }
1461
1462 /*
1463 * Register extra components.
1464 */
1465 rt2x00link_register(rt2x00dev);
1466 rt2x00leds_register(rt2x00dev);
1467 rt2x00debug_register(rt2x00dev);
1468
1469 /*
1470 * Start rfkill polling.
1471 */
1472 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1473 rt2x00rfkill_register(rt2x00dev);
1474
1475 return 0;
1476
1477 exit:
1478 rt2x00lib_remove_dev(rt2x00dev);
1479
1480 return retval;
1481 }
1482 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1483
rt2x00lib_remove_dev(struct rt2x00_dev * rt2x00dev)1484 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1485 {
1486 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1487
1488 /*
1489 * Stop rfkill polling.
1490 */
1491 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1492 rt2x00rfkill_unregister(rt2x00dev);
1493
1494 /*
1495 * Disable radio.
1496 */
1497 rt2x00lib_disable_radio(rt2x00dev);
1498
1499 /*
1500 * Stop all work.
1501 */
1502 cancel_work_sync(&rt2x00dev->intf_work);
1503 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1504 cancel_work_sync(&rt2x00dev->sleep_work);
1505
1506 hrtimer_cancel(&rt2x00dev->txstatus_timer);
1507
1508 /*
1509 * Kill the tx status tasklet.
1510 */
1511 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1512 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1513 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1514 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1515 tasklet_kill(&rt2x00dev->autowake_tasklet);
1516
1517 /*
1518 * Uninitialize device.
1519 */
1520 rt2x00lib_uninitialize(rt2x00dev);
1521
1522 if (rt2x00dev->workqueue)
1523 destroy_workqueue(rt2x00dev->workqueue);
1524
1525 /*
1526 * Free the tx status fifo.
1527 */
1528 kfifo_free(&rt2x00dev->txstatus_fifo);
1529
1530 /*
1531 * Free extra components
1532 */
1533 rt2x00debug_deregister(rt2x00dev);
1534 rt2x00leds_unregister(rt2x00dev);
1535
1536 /*
1537 * Free ieee80211_hw memory.
1538 */
1539 rt2x00lib_remove_hw(rt2x00dev);
1540
1541 /*
1542 * Free firmware image.
1543 */
1544 rt2x00lib_free_firmware(rt2x00dev);
1545
1546 /*
1547 * Free queue structures.
1548 */
1549 rt2x00queue_free(rt2x00dev);
1550
1551 /*
1552 * Free the driver data.
1553 */
1554 kfree(rt2x00dev->drv_data);
1555 }
1556 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1557
1558 /*
1559 * Device state handlers
1560 */
rt2x00lib_suspend(struct rt2x00_dev * rt2x00dev)1561 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev)
1562 {
1563 rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1564
1565 /*
1566 * Prevent mac80211 from accessing driver while suspended.
1567 */
1568 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1569 return 0;
1570
1571 /*
1572 * Cleanup as much as possible.
1573 */
1574 rt2x00lib_uninitialize(rt2x00dev);
1575
1576 /*
1577 * Suspend/disable extra components.
1578 */
1579 rt2x00leds_suspend(rt2x00dev);
1580 rt2x00debug_deregister(rt2x00dev);
1581
1582 /*
1583 * Set device mode to sleep for power management,
1584 * on some hardware this call seems to consistently fail.
1585 * From the specifications it is hard to tell why it fails,
1586 * and if this is a "bad thing".
1587 * Overall it is safe to just ignore the failure and
1588 * continue suspending. The only downside is that the
1589 * device will not be in optimal power save mode, but with
1590 * the radio and the other components already disabled the
1591 * device is as good as disabled.
1592 */
1593 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1594 rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1595
1596 return 0;
1597 }
1598 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1599
rt2x00lib_resume(struct rt2x00_dev * rt2x00dev)1600 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1601 {
1602 rt2x00_dbg(rt2x00dev, "Waking up\n");
1603
1604 /*
1605 * Restore/enable extra components.
1606 */
1607 rt2x00debug_register(rt2x00dev);
1608 rt2x00leds_resume(rt2x00dev);
1609
1610 /*
1611 * We are ready again to receive requests from mac80211.
1612 */
1613 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1614
1615 return 0;
1616 }
1617 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1618
1619 /*
1620 * rt2x00lib module information.
1621 */
1622 MODULE_AUTHOR(DRV_PROJECT);
1623 MODULE_VERSION(DRV_VERSION);
1624 MODULE_DESCRIPTION("rt2x00 library");
1625 MODULE_LICENSE("GPL");
1626