1 // SPDX-License-Identifier: ISC
2 /*
3 * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
4 * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
5 */
6
7 #include <linux/moduleparam.h>
8 #include <linux/if_arp.h>
9 #include <linux/etherdevice.h>
10 #include <linux/rtnetlink.h>
11
12 #include "wil6210.h"
13 #include "txrx.h"
14 #include "txrx_edma.h"
15 #include "wmi.h"
16 #include "boot_loader.h"
17
18 #define WAIT_FOR_HALP_VOTE_MS 100
19 #define WAIT_FOR_SCAN_ABORT_MS 1000
20 #define WIL_DEFAULT_NUM_RX_STATUS_RINGS 1
21 #define WIL_BOARD_FILE_MAX_NAMELEN 128
22
23 bool debug_fw; /* = false; */
24 module_param(debug_fw, bool, 0444);
25 MODULE_PARM_DESC(debug_fw, " do not perform card reset. For FW debug");
26
27 static u8 oob_mode;
28 module_param(oob_mode, byte, 0444);
29 MODULE_PARM_DESC(oob_mode,
30 " enable out of the box (OOB) mode in FW, for diagnostics and certification");
31
32 bool no_fw_recovery;
33 module_param(no_fw_recovery, bool, 0644);
34 MODULE_PARM_DESC(no_fw_recovery, " disable automatic FW error recovery");
35
36 /* if not set via modparam, will be set to default value of 1/8 of
37 * rx ring size during init flow
38 */
39 unsigned short rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_INIT;
40 module_param(rx_ring_overflow_thrsh, ushort, 0444);
41 MODULE_PARM_DESC(rx_ring_overflow_thrsh,
42 " RX ring overflow threshold in descriptors.");
43
44 /* We allow allocation of more than 1 page buffers to support large packets.
45 * It is suboptimal behavior performance wise in case MTU above page size.
46 */
47 unsigned int mtu_max = TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
mtu_max_set(const char * val,const struct kernel_param * kp)48 static int mtu_max_set(const char *val, const struct kernel_param *kp)
49 {
50 int ret;
51
52 /* sets mtu_max directly. no need to restore it in case of
53 * illegal value since we assume this will fail insmod
54 */
55 ret = param_set_uint(val, kp);
56 if (ret)
57 return ret;
58
59 if (mtu_max < 68 || mtu_max > WIL_MAX_ETH_MTU)
60 ret = -EINVAL;
61
62 return ret;
63 }
64
65 static const struct kernel_param_ops mtu_max_ops = {
66 .set = mtu_max_set,
67 .get = param_get_uint,
68 };
69
70 module_param_cb(mtu_max, &mtu_max_ops, &mtu_max, 0444);
71 MODULE_PARM_DESC(mtu_max, " Max MTU value.");
72
73 static uint rx_ring_order;
74 static uint tx_ring_order = WIL_TX_RING_SIZE_ORDER_DEFAULT;
75 static uint bcast_ring_order = WIL_BCAST_RING_SIZE_ORDER_DEFAULT;
76
ring_order_set(const char * val,const struct kernel_param * kp)77 static int ring_order_set(const char *val, const struct kernel_param *kp)
78 {
79 int ret;
80 uint x;
81
82 ret = kstrtouint(val, 0, &x);
83 if (ret)
84 return ret;
85
86 if ((x < WIL_RING_SIZE_ORDER_MIN) || (x > WIL_RING_SIZE_ORDER_MAX))
87 return -EINVAL;
88
89 *((uint *)kp->arg) = x;
90
91 return 0;
92 }
93
94 static const struct kernel_param_ops ring_order_ops = {
95 .set = ring_order_set,
96 .get = param_get_uint,
97 };
98
99 module_param_cb(rx_ring_order, &ring_order_ops, &rx_ring_order, 0444);
100 MODULE_PARM_DESC(rx_ring_order, " Rx ring order; size = 1 << order");
101 module_param_cb(tx_ring_order, &ring_order_ops, &tx_ring_order, 0444);
102 MODULE_PARM_DESC(tx_ring_order, " Tx ring order; size = 1 << order");
103 module_param_cb(bcast_ring_order, &ring_order_ops, &bcast_ring_order, 0444);
104 MODULE_PARM_DESC(bcast_ring_order, " Bcast ring order; size = 1 << order");
105
106 enum {
107 WIL_BOOT_ERR,
108 WIL_BOOT_VANILLA,
109 WIL_BOOT_PRODUCTION,
110 WIL_BOOT_DEVELOPMENT,
111 };
112
113 enum {
114 WIL_SIG_STATUS_VANILLA = 0x0,
115 WIL_SIG_STATUS_DEVELOPMENT = 0x1,
116 WIL_SIG_STATUS_PRODUCTION = 0x2,
117 WIL_SIG_STATUS_CORRUPTED_PRODUCTION = 0x3,
118 };
119
120 #define RST_DELAY (20) /* msec, for loop in @wil_wait_device_ready */
121 #define RST_COUNT (1 + 1000/RST_DELAY) /* round up to be above 1 sec total */
122
123 #define PMU_READY_DELAY_MS (4) /* ms, for sleep in @wil_wait_device_ready */
124
125 #define OTP_HW_DELAY (200) /* usec, loop in @wil_wait_device_ready_talyn_mb */
126 /* round up to be above 2 ms total */
127 #define OTP_HW_COUNT (1 + 2000 / OTP_HW_DELAY)
128
129 /*
130 * Due to a hardware issue,
131 * one has to read/write to/from NIC in 32-bit chunks;
132 * regular memcpy_fromio and siblings will
133 * not work on 64-bit platform - it uses 64-bit transactions
134 *
135 * Force 32-bit transactions to enable NIC on 64-bit platforms
136 *
137 * To avoid byte swap on big endian host, __raw_{read|write}l
138 * should be used - {read|write}l would swap bytes to provide
139 * little endian on PCI value in host endianness.
140 */
wil_memcpy_fromio_32(void * dst,const volatile void __iomem * src,size_t count)141 void wil_memcpy_fromio_32(void *dst, const volatile void __iomem *src,
142 size_t count)
143 {
144 u32 *d = dst;
145 const volatile u32 __iomem *s = src;
146
147 for (; count >= 4; count -= 4)
148 *d++ = __raw_readl(s++);
149
150 if (unlikely(count)) {
151 /* count can be 1..3 */
152 u32 tmp = __raw_readl(s);
153
154 memcpy(d, &tmp, count);
155 }
156 }
157
wil_memcpy_toio_32(volatile void __iomem * dst,const void * src,size_t count)158 void wil_memcpy_toio_32(volatile void __iomem *dst, const void *src,
159 size_t count)
160 {
161 volatile u32 __iomem *d = dst;
162 const u32 *s = src;
163
164 for (; count >= 4; count -= 4)
165 __raw_writel(*s++, d++);
166
167 if (unlikely(count)) {
168 /* count can be 1..3 */
169 u32 tmp = 0;
170
171 memcpy(&tmp, s, count);
172 __raw_writel(tmp, d);
173 }
174 }
175
176 /* Device memory access is prohibited while reset or suspend.
177 * wil_mem_access_lock protects accessing device memory in these cases
178 */
wil_mem_access_lock(struct wil6210_priv * wil)179 int wil_mem_access_lock(struct wil6210_priv *wil)
180 {
181 if (!down_read_trylock(&wil->mem_lock))
182 return -EBUSY;
183
184 if (test_bit(wil_status_suspending, wil->status) ||
185 test_bit(wil_status_suspended, wil->status)) {
186 up_read(&wil->mem_lock);
187 return -EBUSY;
188 }
189
190 return 0;
191 }
192
wil_mem_access_unlock(struct wil6210_priv * wil)193 void wil_mem_access_unlock(struct wil6210_priv *wil)
194 {
195 up_read(&wil->mem_lock);
196 }
197
wil_ring_fini_tx(struct wil6210_priv * wil,int id)198 static void wil_ring_fini_tx(struct wil6210_priv *wil, int id)
199 {
200 struct wil_ring *ring = &wil->ring_tx[id];
201 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
202
203 lockdep_assert_held(&wil->mutex);
204
205 if (!ring->va)
206 return;
207
208 wil_dbg_misc(wil, "vring_fini_tx: id=%d\n", id);
209
210 spin_lock_bh(&txdata->lock);
211 txdata->dot1x_open = false;
212 txdata->mid = U8_MAX;
213 txdata->enabled = 0; /* no Tx can be in progress or start anew */
214 spin_unlock_bh(&txdata->lock);
215 /* napi_synchronize waits for completion of the current NAPI but will
216 * not prevent the next NAPI run.
217 * Add a memory barrier to guarantee that txdata->enabled is zeroed
218 * before napi_synchronize so that the next scheduled NAPI will not
219 * handle this vring
220 */
221 wmb();
222 /* make sure NAPI won't touch this vring */
223 if (test_bit(wil_status_napi_en, wil->status))
224 napi_synchronize(&wil->napi_tx);
225
226 wil->txrx_ops.ring_fini_tx(wil, ring);
227 }
228
wil_vif_is_connected(struct wil6210_priv * wil,u8 mid)229 static bool wil_vif_is_connected(struct wil6210_priv *wil, u8 mid)
230 {
231 int i;
232
233 for (i = 0; i < wil->max_assoc_sta; i++) {
234 if (wil->sta[i].mid == mid &&
235 wil->sta[i].status == wil_sta_connected)
236 return true;
237 }
238
239 return false;
240 }
241
wil_disconnect_cid_complete(struct wil6210_vif * vif,int cid,u16 reason_code)242 static void wil_disconnect_cid_complete(struct wil6210_vif *vif, int cid,
243 u16 reason_code)
244 __acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock)
245 {
246 uint i;
247 struct wil6210_priv *wil = vif_to_wil(vif);
248 struct net_device *ndev = vif_to_ndev(vif);
249 struct wireless_dev *wdev = vif_to_wdev(vif);
250 struct wil_sta_info *sta = &wil->sta[cid];
251 int min_ring_id = wil_get_min_tx_ring_id(wil);
252
253 might_sleep();
254 wil_dbg_misc(wil,
255 "disconnect_cid_complete: CID %d, MID %d, status %d\n",
256 cid, sta->mid, sta->status);
257 /* inform upper layers */
258 if (sta->status != wil_sta_unused) {
259 if (vif->mid != sta->mid) {
260 wil_err(wil, "STA MID mismatch with VIF MID(%d)\n",
261 vif->mid);
262 }
263
264 switch (wdev->iftype) {
265 case NL80211_IFTYPE_AP:
266 case NL80211_IFTYPE_P2P_GO:
267 /* AP-like interface */
268 cfg80211_del_sta(ndev, sta->addr, GFP_KERNEL);
269 break;
270 default:
271 break;
272 }
273 sta->status = wil_sta_unused;
274 sta->mid = U8_MAX;
275 }
276 /* reorder buffers */
277 for (i = 0; i < WIL_STA_TID_NUM; i++) {
278 struct wil_tid_ampdu_rx *r;
279
280 spin_lock_bh(&sta->tid_rx_lock);
281
282 r = sta->tid_rx[i];
283 sta->tid_rx[i] = NULL;
284 wil_tid_ampdu_rx_free(wil, r);
285
286 spin_unlock_bh(&sta->tid_rx_lock);
287 }
288 /* crypto context */
289 memset(sta->tid_crypto_rx, 0, sizeof(sta->tid_crypto_rx));
290 memset(&sta->group_crypto_rx, 0, sizeof(sta->group_crypto_rx));
291 /* release vrings */
292 for (i = min_ring_id; i < ARRAY_SIZE(wil->ring_tx); i++) {
293 if (wil->ring2cid_tid[i][0] == cid)
294 wil_ring_fini_tx(wil, i);
295 }
296 /* statistics */
297 memset(&sta->stats, 0, sizeof(sta->stats));
298 sta->stats.tx_latency_min_us = U32_MAX;
299 }
300
_wil6210_disconnect_complete(struct wil6210_vif * vif,const u8 * bssid,u16 reason_code)301 static void _wil6210_disconnect_complete(struct wil6210_vif *vif,
302 const u8 *bssid, u16 reason_code)
303 {
304 struct wil6210_priv *wil = vif_to_wil(vif);
305 int cid = -ENOENT;
306 struct net_device *ndev;
307 struct wireless_dev *wdev;
308
309 ndev = vif_to_ndev(vif);
310 wdev = vif_to_wdev(vif);
311
312 might_sleep();
313 wil_info(wil, "disconnect_complete: bssid=%pM, reason=%d\n",
314 bssid, reason_code);
315
316 /* Cases are:
317 * - disconnect single STA, still connected
318 * - disconnect single STA, already disconnected
319 * - disconnect all
320 *
321 * For "disconnect all", there are 3 options:
322 * - bssid == NULL
323 * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
324 * - bssid is our MAC address
325 */
326 if (bssid && !is_broadcast_ether_addr(bssid) &&
327 !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
328 cid = wil_find_cid(wil, vif->mid, bssid);
329 wil_dbg_misc(wil,
330 "Disconnect complete %pM, CID=%d, reason=%d\n",
331 bssid, cid, reason_code);
332 if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */
333 wil_disconnect_cid_complete(vif, cid, reason_code);
334 } else { /* all */
335 wil_dbg_misc(wil, "Disconnect complete all\n");
336 for (cid = 0; cid < wil->max_assoc_sta; cid++)
337 wil_disconnect_cid_complete(vif, cid, reason_code);
338 }
339
340 /* link state */
341 switch (wdev->iftype) {
342 case NL80211_IFTYPE_STATION:
343 case NL80211_IFTYPE_P2P_CLIENT:
344 wil_bcast_fini(vif);
345 wil_update_net_queues_bh(wil, vif, NULL, true);
346 netif_carrier_off(ndev);
347 if (!wil_has_other_active_ifaces(wil, ndev, false, true))
348 wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
349
350 if (test_and_clear_bit(wil_vif_fwconnected, vif->status)) {
351 atomic_dec(&wil->connected_vifs);
352 cfg80211_disconnected(ndev, reason_code,
353 NULL, 0,
354 vif->locally_generated_disc,
355 GFP_KERNEL);
356 vif->locally_generated_disc = false;
357 } else if (test_bit(wil_vif_fwconnecting, vif->status)) {
358 cfg80211_connect_result(ndev, bssid, NULL, 0, NULL, 0,
359 WLAN_STATUS_UNSPECIFIED_FAILURE,
360 GFP_KERNEL);
361 vif->bss = NULL;
362 }
363 clear_bit(wil_vif_fwconnecting, vif->status);
364 clear_bit(wil_vif_ft_roam, vif->status);
365 vif->ptk_rekey_state = WIL_REKEY_IDLE;
366
367 break;
368 case NL80211_IFTYPE_AP:
369 case NL80211_IFTYPE_P2P_GO:
370 if (!wil_vif_is_connected(wil, vif->mid)) {
371 wil_update_net_queues_bh(wil, vif, NULL, true);
372 if (test_and_clear_bit(wil_vif_fwconnected,
373 vif->status))
374 atomic_dec(&wil->connected_vifs);
375 } else {
376 wil_update_net_queues_bh(wil, vif, NULL, false);
377 }
378 break;
379 default:
380 break;
381 }
382 }
383
wil_disconnect_cid(struct wil6210_vif * vif,int cid,u16 reason_code)384 static int wil_disconnect_cid(struct wil6210_vif *vif, int cid,
385 u16 reason_code)
386 {
387 struct wil6210_priv *wil = vif_to_wil(vif);
388 struct wireless_dev *wdev = vif_to_wdev(vif);
389 struct wil_sta_info *sta = &wil->sta[cid];
390 bool del_sta = false;
391
392 might_sleep();
393 wil_dbg_misc(wil, "disconnect_cid: CID %d, MID %d, status %d\n",
394 cid, sta->mid, sta->status);
395
396 if (sta->status == wil_sta_unused)
397 return 0;
398
399 if (vif->mid != sta->mid) {
400 wil_err(wil, "STA MID mismatch with VIF MID(%d)\n", vif->mid);
401 return -EINVAL;
402 }
403
404 /* inform lower layers */
405 if (wdev->iftype == NL80211_IFTYPE_AP && disable_ap_sme)
406 del_sta = true;
407
408 /* disconnect by sending command disconnect/del_sta and wait
409 * synchronously for WMI_DISCONNECT_EVENTID event.
410 */
411 return wmi_disconnect_sta(vif, sta->addr, reason_code, del_sta);
412 }
413
_wil6210_disconnect(struct wil6210_vif * vif,const u8 * bssid,u16 reason_code)414 static void _wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
415 u16 reason_code)
416 {
417 struct wil6210_priv *wil;
418 struct net_device *ndev;
419 int cid = -ENOENT;
420
421 if (unlikely(!vif))
422 return;
423
424 wil = vif_to_wil(vif);
425 ndev = vif_to_ndev(vif);
426
427 might_sleep();
428 wil_info(wil, "disconnect bssid=%pM, reason=%d\n", bssid, reason_code);
429
430 /* Cases are:
431 * - disconnect single STA, still connected
432 * - disconnect single STA, already disconnected
433 * - disconnect all
434 *
435 * For "disconnect all", there are 3 options:
436 * - bssid == NULL
437 * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
438 * - bssid is our MAC address
439 */
440 if (bssid && !is_broadcast_ether_addr(bssid) &&
441 !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
442 cid = wil_find_cid(wil, vif->mid, bssid);
443 wil_dbg_misc(wil, "Disconnect %pM, CID=%d, reason=%d\n",
444 bssid, cid, reason_code);
445 if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */
446 wil_disconnect_cid(vif, cid, reason_code);
447 } else { /* all */
448 wil_dbg_misc(wil, "Disconnect all\n");
449 for (cid = 0; cid < wil->max_assoc_sta; cid++)
450 wil_disconnect_cid(vif, cid, reason_code);
451 }
452
453 /* call event handler manually after processing wmi_call,
454 * to avoid deadlock - disconnect event handler acquires
455 * wil->mutex while it is already held here
456 */
457 _wil6210_disconnect_complete(vif, bssid, reason_code);
458 }
459
wil_disconnect_worker(struct work_struct * work)460 void wil_disconnect_worker(struct work_struct *work)
461 {
462 struct wil6210_vif *vif = container_of(work,
463 struct wil6210_vif, disconnect_worker);
464 struct wil6210_priv *wil = vif_to_wil(vif);
465 struct net_device *ndev = vif_to_ndev(vif);
466 int rc;
467 struct {
468 struct wmi_cmd_hdr wmi;
469 struct wmi_disconnect_event evt;
470 } __packed reply;
471
472 if (test_bit(wil_vif_fwconnected, vif->status))
473 /* connect succeeded after all */
474 return;
475
476 if (!test_bit(wil_vif_fwconnecting, vif->status))
477 /* already disconnected */
478 return;
479
480 memset(&reply, 0, sizeof(reply));
481
482 rc = wmi_call(wil, WMI_DISCONNECT_CMDID, vif->mid, NULL, 0,
483 WMI_DISCONNECT_EVENTID, &reply, sizeof(reply),
484 WIL6210_DISCONNECT_TO_MS);
485 if (rc) {
486 wil_err(wil, "disconnect error %d\n", rc);
487 return;
488 }
489
490 wil_update_net_queues_bh(wil, vif, NULL, true);
491 netif_carrier_off(ndev);
492 cfg80211_connect_result(ndev, NULL, NULL, 0, NULL, 0,
493 WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL);
494 clear_bit(wil_vif_fwconnecting, vif->status);
495 }
496
wil_wait_for_recovery(struct wil6210_priv * wil)497 static int wil_wait_for_recovery(struct wil6210_priv *wil)
498 {
499 if (wait_event_interruptible(wil->wq, wil->recovery_state !=
500 fw_recovery_pending)) {
501 wil_err(wil, "Interrupt, canceling recovery\n");
502 return -ERESTARTSYS;
503 }
504 if (wil->recovery_state != fw_recovery_running) {
505 wil_info(wil, "Recovery cancelled\n");
506 return -EINTR;
507 }
508 wil_info(wil, "Proceed with recovery\n");
509 return 0;
510 }
511
wil_set_recovery_state(struct wil6210_priv * wil,int state)512 void wil_set_recovery_state(struct wil6210_priv *wil, int state)
513 {
514 wil_dbg_misc(wil, "set_recovery_state: %d -> %d\n",
515 wil->recovery_state, state);
516
517 wil->recovery_state = state;
518 wake_up_interruptible(&wil->wq);
519 }
520
wil_is_recovery_blocked(struct wil6210_priv * wil)521 bool wil_is_recovery_blocked(struct wil6210_priv *wil)
522 {
523 return no_fw_recovery && (wil->recovery_state == fw_recovery_pending);
524 }
525
wil_fw_error_worker(struct work_struct * work)526 static void wil_fw_error_worker(struct work_struct *work)
527 {
528 struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
529 fw_error_worker);
530 struct net_device *ndev = wil->main_ndev;
531 struct wireless_dev *wdev;
532
533 wil_dbg_misc(wil, "fw error worker\n");
534
535 if (!ndev || !(ndev->flags & IFF_UP)) {
536 wil_info(wil, "No recovery - interface is down\n");
537 return;
538 }
539 wdev = ndev->ieee80211_ptr;
540
541 /* increment @recovery_count if less then WIL6210_FW_RECOVERY_TO
542 * passed since last recovery attempt
543 */
544 if (time_is_after_jiffies(wil->last_fw_recovery +
545 WIL6210_FW_RECOVERY_TO))
546 wil->recovery_count++;
547 else
548 wil->recovery_count = 1; /* fw was alive for a long time */
549
550 if (wil->recovery_count > WIL6210_FW_RECOVERY_RETRIES) {
551 wil_err(wil, "too many recovery attempts (%d), giving up\n",
552 wil->recovery_count);
553 return;
554 }
555
556 wil->last_fw_recovery = jiffies;
557
558 wil_info(wil, "fw error recovery requested (try %d)...\n",
559 wil->recovery_count);
560 if (!no_fw_recovery)
561 wil->recovery_state = fw_recovery_running;
562 if (wil_wait_for_recovery(wil) != 0)
563 return;
564
565 rtnl_lock();
566 mutex_lock(&wil->mutex);
567 /* Needs adaptation for multiple VIFs
568 * need to go over all VIFs and consider the appropriate
569 * recovery because each one can have different iftype.
570 */
571 switch (wdev->iftype) {
572 case NL80211_IFTYPE_STATION:
573 case NL80211_IFTYPE_P2P_CLIENT:
574 case NL80211_IFTYPE_MONITOR:
575 /* silent recovery, upper layers will see disconnect */
576 __wil_down(wil);
577 __wil_up(wil);
578 break;
579 case NL80211_IFTYPE_AP:
580 case NL80211_IFTYPE_P2P_GO:
581 if (no_fw_recovery) /* upper layers do recovery */
582 break;
583 /* silent recovery, upper layers will see disconnect */
584 __wil_down(wil);
585 __wil_up(wil);
586 mutex_unlock(&wil->mutex);
587 wil_cfg80211_ap_recovery(wil);
588 mutex_lock(&wil->mutex);
589 wil_info(wil, "... completed\n");
590 break;
591 default:
592 wil_err(wil, "No recovery - unknown interface type %d\n",
593 wdev->iftype);
594 break;
595 }
596
597 mutex_unlock(&wil->mutex);
598 rtnl_unlock();
599 }
600
wil_find_free_ring(struct wil6210_priv * wil)601 static int wil_find_free_ring(struct wil6210_priv *wil)
602 {
603 int i;
604 int min_ring_id = wil_get_min_tx_ring_id(wil);
605
606 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
607 if (!wil->ring_tx[i].va)
608 return i;
609 }
610 return -EINVAL;
611 }
612
wil_ring_init_tx(struct wil6210_vif * vif,int cid)613 int wil_ring_init_tx(struct wil6210_vif *vif, int cid)
614 {
615 struct wil6210_priv *wil = vif_to_wil(vif);
616 int rc = -EINVAL, ringid;
617
618 if (cid < 0) {
619 wil_err(wil, "No connection pending\n");
620 goto out;
621 }
622 ringid = wil_find_free_ring(wil);
623 if (ringid < 0) {
624 wil_err(wil, "No free vring found\n");
625 goto out;
626 }
627
628 wil_dbg_wmi(wil, "Configure for connection CID %d MID %d ring %d\n",
629 cid, vif->mid, ringid);
630
631 rc = wil->txrx_ops.ring_init_tx(vif, ringid, 1 << tx_ring_order,
632 cid, 0);
633 if (rc)
634 wil_err(wil, "init TX for CID %d MID %d vring %d failed\n",
635 cid, vif->mid, ringid);
636
637 out:
638 return rc;
639 }
640
wil_bcast_init(struct wil6210_vif * vif)641 int wil_bcast_init(struct wil6210_vif *vif)
642 {
643 struct wil6210_priv *wil = vif_to_wil(vif);
644 int ri = vif->bcast_ring, rc;
645
646 if (ri >= 0 && wil->ring_tx[ri].va)
647 return 0;
648
649 ri = wil_find_free_ring(wil);
650 if (ri < 0)
651 return ri;
652
653 vif->bcast_ring = ri;
654 rc = wil->txrx_ops.ring_init_bcast(vif, ri, 1 << bcast_ring_order);
655 if (rc)
656 vif->bcast_ring = -1;
657
658 return rc;
659 }
660
wil_bcast_fini(struct wil6210_vif * vif)661 void wil_bcast_fini(struct wil6210_vif *vif)
662 {
663 struct wil6210_priv *wil = vif_to_wil(vif);
664 int ri = vif->bcast_ring;
665
666 if (ri < 0)
667 return;
668
669 vif->bcast_ring = -1;
670 wil_ring_fini_tx(wil, ri);
671 }
672
wil_bcast_fini_all(struct wil6210_priv * wil)673 void wil_bcast_fini_all(struct wil6210_priv *wil)
674 {
675 int i;
676 struct wil6210_vif *vif;
677
678 for (i = 0; i < GET_MAX_VIFS(wil); i++) {
679 vif = wil->vifs[i];
680 if (vif)
681 wil_bcast_fini(vif);
682 }
683 }
684
wil_priv_init(struct wil6210_priv * wil)685 int wil_priv_init(struct wil6210_priv *wil)
686 {
687 uint i;
688
689 wil_dbg_misc(wil, "priv_init\n");
690
691 memset(wil->sta, 0, sizeof(wil->sta));
692 for (i = 0; i < WIL6210_MAX_CID; i++) {
693 spin_lock_init(&wil->sta[i].tid_rx_lock);
694 wil->sta[i].mid = U8_MAX;
695 }
696
697 for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
698 spin_lock_init(&wil->ring_tx_data[i].lock);
699 wil->ring2cid_tid[i][0] = WIL6210_MAX_CID;
700 }
701
702 mutex_init(&wil->mutex);
703 mutex_init(&wil->vif_mutex);
704 mutex_init(&wil->wmi_mutex);
705 mutex_init(&wil->halp.lock);
706
707 init_completion(&wil->wmi_ready);
708 init_completion(&wil->wmi_call);
709 init_completion(&wil->halp.comp);
710
711 INIT_WORK(&wil->wmi_event_worker, wmi_event_worker);
712 INIT_WORK(&wil->fw_error_worker, wil_fw_error_worker);
713
714 INIT_LIST_HEAD(&wil->pending_wmi_ev);
715 spin_lock_init(&wil->wmi_ev_lock);
716 spin_lock_init(&wil->net_queue_lock);
717 spin_lock_init(&wil->eap_lock);
718
719 init_waitqueue_head(&wil->wq);
720 init_rwsem(&wil->mem_lock);
721
722 wil->wmi_wq = create_singlethread_workqueue(WIL_NAME "_wmi");
723 if (!wil->wmi_wq)
724 return -EAGAIN;
725
726 wil->wq_service = create_singlethread_workqueue(WIL_NAME "_service");
727 if (!wil->wq_service)
728 goto out_wmi_wq;
729
730 wil->last_fw_recovery = jiffies;
731 wil->tx_interframe_timeout = WIL6210_ITR_TX_INTERFRAME_TIMEOUT_DEFAULT;
732 wil->rx_interframe_timeout = WIL6210_ITR_RX_INTERFRAME_TIMEOUT_DEFAULT;
733 wil->tx_max_burst_duration = WIL6210_ITR_TX_MAX_BURST_DURATION_DEFAULT;
734 wil->rx_max_burst_duration = WIL6210_ITR_RX_MAX_BURST_DURATION_DEFAULT;
735
736 if (rx_ring_overflow_thrsh == WIL6210_RX_HIGH_TRSH_INIT)
737 rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_DEFAULT;
738
739 wil->ps_profile = WMI_PS_PROFILE_TYPE_DEFAULT;
740
741 wil->wakeup_trigger = WMI_WAKEUP_TRIGGER_UCAST |
742 WMI_WAKEUP_TRIGGER_BCAST;
743 memset(&wil->suspend_stats, 0, sizeof(wil->suspend_stats));
744 wil->ring_idle_trsh = 16;
745
746 wil->reply_mid = U8_MAX;
747 wil->max_vifs = 1;
748 wil->max_assoc_sta = max_assoc_sta;
749
750 /* edma configuration can be updated via debugfs before allocation */
751 wil->num_rx_status_rings = WIL_DEFAULT_NUM_RX_STATUS_RINGS;
752 wil->tx_status_ring_order = WIL_TX_SRING_SIZE_ORDER_DEFAULT;
753
754 /* Rx status ring size should be bigger than the number of RX buffers
755 * in order to prevent backpressure on the status ring, which may
756 * cause HW freeze.
757 */
758 wil->rx_status_ring_order = WIL_RX_SRING_SIZE_ORDER_DEFAULT;
759 /* Number of RX buffer IDs should be bigger than the RX descriptor
760 * ring size as in HW reorder flow, the HW can consume additional
761 * buffers before releasing the previous ones.
762 */
763 wil->rx_buff_id_count = WIL_RX_BUFF_ARR_SIZE_DEFAULT;
764
765 wil->amsdu_en = true;
766
767 return 0;
768
769 out_wmi_wq:
770 destroy_workqueue(wil->wmi_wq);
771
772 return -EAGAIN;
773 }
774
wil6210_bus_request(struct wil6210_priv * wil,u32 kbps)775 void wil6210_bus_request(struct wil6210_priv *wil, u32 kbps)
776 {
777 if (wil->platform_ops.bus_request) {
778 wil->bus_request_kbps = kbps;
779 wil->platform_ops.bus_request(wil->platform_handle, kbps);
780 }
781 }
782
783 /**
784 * wil6210_disconnect - disconnect one connection
785 * @vif: virtual interface context
786 * @bssid: peer to disconnect, NULL to disconnect all
787 * @reason_code: Reason code for the Disassociation frame
788 *
789 * Disconnect and release associated resources. Issue WMI
790 * command(s) to trigger MAC disconnect. When command was issued
791 * successfully, call the wil6210_disconnect_complete function
792 * to handle the event synchronously
793 */
wil6210_disconnect(struct wil6210_vif * vif,const u8 * bssid,u16 reason_code)794 void wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
795 u16 reason_code)
796 {
797 struct wil6210_priv *wil = vif_to_wil(vif);
798
799 wil_dbg_misc(wil, "disconnecting\n");
800
801 del_timer_sync(&vif->connect_timer);
802 _wil6210_disconnect(vif, bssid, reason_code);
803 }
804
805 /**
806 * wil6210_disconnect_complete - handle disconnect event
807 * @vif: virtual interface context
808 * @bssid: peer to disconnect, NULL to disconnect all
809 * @reason_code: Reason code for the Disassociation frame
810 *
811 * Release associated resources and indicate upper layers the
812 * connection is terminated.
813 */
wil6210_disconnect_complete(struct wil6210_vif * vif,const u8 * bssid,u16 reason_code)814 void wil6210_disconnect_complete(struct wil6210_vif *vif, const u8 *bssid,
815 u16 reason_code)
816 {
817 struct wil6210_priv *wil = vif_to_wil(vif);
818
819 wil_dbg_misc(wil, "got disconnect\n");
820
821 del_timer_sync(&vif->connect_timer);
822 _wil6210_disconnect_complete(vif, bssid, reason_code);
823 }
824
wil_priv_deinit(struct wil6210_priv * wil)825 void wil_priv_deinit(struct wil6210_priv *wil)
826 {
827 wil_dbg_misc(wil, "priv_deinit\n");
828
829 wil_set_recovery_state(wil, fw_recovery_idle);
830 cancel_work_sync(&wil->fw_error_worker);
831 wmi_event_flush(wil);
832 destroy_workqueue(wil->wq_service);
833 destroy_workqueue(wil->wmi_wq);
834 kfree(wil->brd_info);
835 }
836
wil_shutdown_bl(struct wil6210_priv * wil)837 static void wil_shutdown_bl(struct wil6210_priv *wil)
838 {
839 u32 val;
840
841 wil_s(wil, RGF_USER_BL +
842 offsetof(struct bl_dedicated_registers_v1,
843 bl_shutdown_handshake), BL_SHUTDOWN_HS_GRTD);
844
845 usleep_range(100, 150);
846
847 val = wil_r(wil, RGF_USER_BL +
848 offsetof(struct bl_dedicated_registers_v1,
849 bl_shutdown_handshake));
850 if (val & BL_SHUTDOWN_HS_RTD) {
851 wil_dbg_misc(wil, "BL is ready for halt\n");
852 return;
853 }
854
855 wil_err(wil, "BL did not report ready for halt\n");
856 }
857
858 /* this format is used by ARC embedded CPU for instruction memory */
ARC_me_imm32(u32 d)859 static inline u32 ARC_me_imm32(u32 d)
860 {
861 return ((d & 0xffff0000) >> 16) | ((d & 0x0000ffff) << 16);
862 }
863
864 /* defines access to interrupt vectors for wil_freeze_bl */
865 #define ARC_IRQ_VECTOR_OFFSET(N) ((N) * 8)
866 /* ARC long jump instruction */
867 #define ARC_JAL_INST (0x20200f80)
868
wil_freeze_bl(struct wil6210_priv * wil)869 static void wil_freeze_bl(struct wil6210_priv *wil)
870 {
871 u32 jal, upc, saved;
872 u32 ivt3 = ARC_IRQ_VECTOR_OFFSET(3);
873
874 jal = wil_r(wil, wil->iccm_base + ivt3);
875 if (jal != ARC_me_imm32(ARC_JAL_INST)) {
876 wil_dbg_misc(wil, "invalid IVT entry found, skipping\n");
877 return;
878 }
879
880 /* prevent the target from entering deep sleep
881 * and disabling memory access
882 */
883 saved = wil_r(wil, RGF_USER_USAGE_8);
884 wil_w(wil, RGF_USER_USAGE_8, saved | BIT_USER_PREVENT_DEEP_SLEEP);
885 usleep_range(20, 25); /* let the BL process the bit */
886
887 /* redirect to endless loop in the INT_L1 context and let it trap */
888 wil_w(wil, wil->iccm_base + ivt3 + 4, ARC_me_imm32(ivt3));
889 usleep_range(20, 25); /* let the BL get into the trap */
890
891 /* verify the BL is frozen */
892 upc = wil_r(wil, RGF_USER_CPU_PC);
893 if (upc < ivt3 || (upc > (ivt3 + 8)))
894 wil_dbg_misc(wil, "BL freeze failed, PC=0x%08X\n", upc);
895
896 wil_w(wil, RGF_USER_USAGE_8, saved);
897 }
898
wil_bl_prepare_halt(struct wil6210_priv * wil)899 static void wil_bl_prepare_halt(struct wil6210_priv *wil)
900 {
901 u32 tmp, ver;
902
903 /* before halting device CPU driver must make sure BL is not accessing
904 * host memory. This is done differently depending on BL version:
905 * 1. For very old BL versions the procedure is skipped
906 * (not supported).
907 * 2. For old BL version we use a special trick to freeze the BL
908 * 3. For new BL versions we shutdown the BL using handshake procedure.
909 */
910 tmp = wil_r(wil, RGF_USER_BL +
911 offsetof(struct bl_dedicated_registers_v0,
912 boot_loader_struct_version));
913 if (!tmp) {
914 wil_dbg_misc(wil, "old BL, skipping halt preparation\n");
915 return;
916 }
917
918 tmp = wil_r(wil, RGF_USER_BL +
919 offsetof(struct bl_dedicated_registers_v1,
920 bl_shutdown_handshake));
921 ver = BL_SHUTDOWN_HS_PROT_VER(tmp);
922
923 if (ver > 0)
924 wil_shutdown_bl(wil);
925 else
926 wil_freeze_bl(wil);
927 }
928
wil_halt_cpu(struct wil6210_priv * wil)929 static inline void wil_halt_cpu(struct wil6210_priv *wil)
930 {
931 if (wil->hw_version >= HW_VER_TALYN_MB) {
932 wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB,
933 BIT_USER_USER_CPU_MAN_RST);
934 wil_w(wil, RGF_USER_MAC_CPU_0_TALYN_MB,
935 BIT_USER_MAC_CPU_MAN_RST);
936 } else {
937 wil_w(wil, RGF_USER_USER_CPU_0, BIT_USER_USER_CPU_MAN_RST);
938 wil_w(wil, RGF_USER_MAC_CPU_0, BIT_USER_MAC_CPU_MAN_RST);
939 }
940 }
941
wil_release_cpu(struct wil6210_priv * wil)942 static inline void wil_release_cpu(struct wil6210_priv *wil)
943 {
944 /* Start CPU */
945 if (wil->hw_version >= HW_VER_TALYN_MB)
946 wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB, 1);
947 else
948 wil_w(wil, RGF_USER_USER_CPU_0, 1);
949 }
950
wil_set_oob_mode(struct wil6210_priv * wil,u8 mode)951 static void wil_set_oob_mode(struct wil6210_priv *wil, u8 mode)
952 {
953 wil_info(wil, "oob_mode to %d\n", mode);
954 switch (mode) {
955 case 0:
956 wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE |
957 BIT_USER_OOB_R2_MODE);
958 break;
959 case 1:
960 wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
961 wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
962 break;
963 case 2:
964 wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
965 wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
966 break;
967 default:
968 wil_err(wil, "invalid oob_mode: %d\n", mode);
969 }
970 }
971
wil_wait_device_ready(struct wil6210_priv * wil,int no_flash)972 static int wil_wait_device_ready(struct wil6210_priv *wil, int no_flash)
973 {
974 int delay = 0;
975 u32 x, x1 = 0;
976
977 /* wait until device ready. */
978 if (no_flash) {
979 msleep(PMU_READY_DELAY_MS);
980
981 wil_dbg_misc(wil, "Reset completed\n");
982 } else {
983 do {
984 msleep(RST_DELAY);
985 x = wil_r(wil, RGF_USER_BL +
986 offsetof(struct bl_dedicated_registers_v0,
987 boot_loader_ready));
988 if (x1 != x) {
989 wil_dbg_misc(wil, "BL.ready 0x%08x => 0x%08x\n",
990 x1, x);
991 x1 = x;
992 }
993 if (delay++ > RST_COUNT) {
994 wil_err(wil, "Reset not completed, bl.ready 0x%08x\n",
995 x);
996 return -ETIME;
997 }
998 } while (x != BL_READY);
999
1000 wil_dbg_misc(wil, "Reset completed in %d ms\n",
1001 delay * RST_DELAY);
1002 }
1003
1004 return 0;
1005 }
1006
wil_wait_device_ready_talyn_mb(struct wil6210_priv * wil)1007 static int wil_wait_device_ready_talyn_mb(struct wil6210_priv *wil)
1008 {
1009 u32 otp_hw;
1010 u8 signature_status;
1011 bool otp_signature_err;
1012 bool hw_section_done;
1013 u32 otp_qc_secured;
1014 int delay = 0;
1015
1016 /* Wait for OTP signature test to complete */
1017 usleep_range(2000, 2200);
1018
1019 wil->boot_config = WIL_BOOT_ERR;
1020
1021 /* Poll until OTP signature status is valid.
1022 * In vanilla and development modes, when signature test is complete
1023 * HW sets BIT_OTP_SIGNATURE_ERR_TALYN_MB.
1024 * In production mode BIT_OTP_SIGNATURE_ERR_TALYN_MB remains 0, poll
1025 * for signature status change to 2 or 3.
1026 */
1027 do {
1028 otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
1029 signature_status = WIL_GET_BITS(otp_hw, 8, 9);
1030 otp_signature_err = otp_hw & BIT_OTP_SIGNATURE_ERR_TALYN_MB;
1031
1032 if (otp_signature_err &&
1033 signature_status == WIL_SIG_STATUS_VANILLA) {
1034 wil->boot_config = WIL_BOOT_VANILLA;
1035 break;
1036 }
1037 if (otp_signature_err &&
1038 signature_status == WIL_SIG_STATUS_DEVELOPMENT) {
1039 wil->boot_config = WIL_BOOT_DEVELOPMENT;
1040 break;
1041 }
1042 if (!otp_signature_err &&
1043 signature_status == WIL_SIG_STATUS_PRODUCTION) {
1044 wil->boot_config = WIL_BOOT_PRODUCTION;
1045 break;
1046 }
1047 if (!otp_signature_err &&
1048 signature_status ==
1049 WIL_SIG_STATUS_CORRUPTED_PRODUCTION) {
1050 /* Unrecognized OTP signature found. Possibly a
1051 * corrupted production signature, access control
1052 * is applied as in production mode, therefore
1053 * do not fail
1054 */
1055 wil->boot_config = WIL_BOOT_PRODUCTION;
1056 break;
1057 }
1058 if (delay++ > OTP_HW_COUNT)
1059 break;
1060
1061 usleep_range(OTP_HW_DELAY, OTP_HW_DELAY + 10);
1062 } while (!otp_signature_err && signature_status == 0);
1063
1064 if (wil->boot_config == WIL_BOOT_ERR) {
1065 wil_err(wil,
1066 "invalid boot config, signature_status %d otp_signature_err %d\n",
1067 signature_status, otp_signature_err);
1068 return -ETIME;
1069 }
1070
1071 wil_dbg_misc(wil,
1072 "signature test done in %d usec, otp_hw 0x%x, boot_config %d\n",
1073 delay * OTP_HW_DELAY, otp_hw, wil->boot_config);
1074
1075 if (wil->boot_config == WIL_BOOT_VANILLA)
1076 /* Assuming not SPI boot (currently not supported) */
1077 goto out;
1078
1079 hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
1080 delay = 0;
1081
1082 while (!hw_section_done) {
1083 msleep(RST_DELAY);
1084
1085 otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
1086 hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
1087
1088 if (delay++ > RST_COUNT) {
1089 wil_err(wil, "TO waiting for hw_section_done\n");
1090 return -ETIME;
1091 }
1092 }
1093
1094 wil_dbg_misc(wil, "HW section done in %d ms\n", delay * RST_DELAY);
1095
1096 otp_qc_secured = wil_r(wil, RGF_OTP_QC_SECURED);
1097 wil->secured_boot = otp_qc_secured & BIT_BOOT_FROM_ROM ? 1 : 0;
1098 wil_dbg_misc(wil, "secured boot is %sabled\n",
1099 wil->secured_boot ? "en" : "dis");
1100
1101 out:
1102 wil_dbg_misc(wil, "Reset completed\n");
1103
1104 return 0;
1105 }
1106
wil_target_reset(struct wil6210_priv * wil,int no_flash)1107 static int wil_target_reset(struct wil6210_priv *wil, int no_flash)
1108 {
1109 u32 x;
1110 int rc;
1111
1112 wil_dbg_misc(wil, "Resetting \"%s\"...\n", wil->hw_name);
1113
1114 if (wil->hw_version < HW_VER_TALYN) {
1115 /* Clear MAC link up */
1116 wil_s(wil, RGF_HP_CTRL, BIT(15));
1117 wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0,
1118 BIT_HPAL_PERST_FROM_PAD);
1119 wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_CAR_PERST_RST);
1120 }
1121
1122 wil_halt_cpu(wil);
1123
1124 if (!no_flash) {
1125 /* clear all boot loader "ready" bits */
1126 wil_w(wil, RGF_USER_BL +
1127 offsetof(struct bl_dedicated_registers_v0,
1128 boot_loader_ready), 0);
1129 /* this should be safe to write even with old BLs */
1130 wil_w(wil, RGF_USER_BL +
1131 offsetof(struct bl_dedicated_registers_v1,
1132 bl_shutdown_handshake), 0);
1133 }
1134 /* Clear Fw Download notification */
1135 wil_c(wil, RGF_USER_USAGE_6, BIT(0));
1136
1137 wil_s(wil, RGF_CAF_OSC_CONTROL, BIT_CAF_OSC_XTAL_EN);
1138 /* XTAL stabilization should take about 3ms */
1139 usleep_range(5000, 7000);
1140 x = wil_r(wil, RGF_CAF_PLL_LOCK_STATUS);
1141 if (!(x & BIT_CAF_OSC_DIG_XTAL_STABLE)) {
1142 wil_err(wil, "Xtal stabilization timeout\n"
1143 "RGF_CAF_PLL_LOCK_STATUS = 0x%08x\n", x);
1144 return -ETIME;
1145 }
1146 /* switch 10k to XTAL*/
1147 wil_c(wil, RGF_USER_SPARROW_M_4, BIT_SPARROW_M_4_SEL_SLEEP_OR_REF);
1148 /* 40 MHz */
1149 wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_CAR_AHB_SW_SEL);
1150
1151 wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x3ff81f);
1152 wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0xf);
1153
1154 if (wil->hw_version >= HW_VER_TALYN_MB) {
1155 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x7e000000);
1156 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1157 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0xc00000f0);
1158 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1159 } else {
1160 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0xfe000000);
1161 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1162 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x000000f0);
1163 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1164 }
1165
1166 wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x0);
1167 wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0x0);
1168
1169 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0);
1170 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0);
1171 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0);
1172 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1173
1174 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x00000003);
1175 /* reset A2 PCIE AHB */
1176 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x00008000);
1177
1178 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1179
1180 if (wil->hw_version == HW_VER_TALYN_MB)
1181 rc = wil_wait_device_ready_talyn_mb(wil);
1182 else
1183 rc = wil_wait_device_ready(wil, no_flash);
1184 if (rc)
1185 return rc;
1186
1187 wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_RST_PWGD);
1188
1189 /* enable fix for HW bug related to the SA/DA swap in AP Rx */
1190 wil_s(wil, RGF_DMA_OFUL_NID_0, BIT_DMA_OFUL_NID_0_RX_EXT_TR_EN |
1191 BIT_DMA_OFUL_NID_0_RX_EXT_A3_SRC);
1192
1193 if (wil->hw_version < HW_VER_TALYN_MB && no_flash) {
1194 /* Reset OTP HW vectors to fit 40MHz */
1195 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME1, 0x60001);
1196 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME2, 0x20027);
1197 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME3, 0x1);
1198 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME4, 0x20027);
1199 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME5, 0x30003);
1200 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME6, 0x20002);
1201 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME7, 0x60001);
1202 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME8, 0x60001);
1203 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME9, 0x60001);
1204 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME10, 0x60001);
1205 wil_w(wil, RGF_USER_XPM_RD_DOUT_SAMPLE_TIME, 0x57);
1206 }
1207
1208 return 0;
1209 }
1210
wil_collect_fw_info(struct wil6210_priv * wil)1211 static void wil_collect_fw_info(struct wil6210_priv *wil)
1212 {
1213 struct wiphy *wiphy = wil_to_wiphy(wil);
1214 u8 retry_short;
1215 int rc;
1216
1217 wil_refresh_fw_capabilities(wil);
1218
1219 rc = wmi_get_mgmt_retry(wil, &retry_short);
1220 if (!rc) {
1221 wiphy->retry_short = retry_short;
1222 wil_dbg_misc(wil, "FW retry_short: %d\n", retry_short);
1223 }
1224 }
1225
wil_refresh_fw_capabilities(struct wil6210_priv * wil)1226 void wil_refresh_fw_capabilities(struct wil6210_priv *wil)
1227 {
1228 struct wiphy *wiphy = wil_to_wiphy(wil);
1229 int features;
1230
1231 wil->keep_radio_on_during_sleep =
1232 test_bit(WIL_PLATFORM_CAPA_RADIO_ON_IN_SUSPEND,
1233 wil->platform_capa) &&
1234 test_bit(WMI_FW_CAPABILITY_D3_SUSPEND, wil->fw_capabilities);
1235
1236 wil_info(wil, "keep_radio_on_during_sleep (%d)\n",
1237 wil->keep_radio_on_during_sleep);
1238
1239 if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
1240 wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
1241 else
1242 wiphy->signal_type = CFG80211_SIGNAL_TYPE_UNSPEC;
1243
1244 if (test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities)) {
1245 wiphy->max_sched_scan_reqs = 1;
1246 wiphy->max_sched_scan_ssids = WMI_MAX_PNO_SSID_NUM;
1247 wiphy->max_match_sets = WMI_MAX_PNO_SSID_NUM;
1248 wiphy->max_sched_scan_ie_len = WMI_MAX_IE_LEN;
1249 wiphy->max_sched_scan_plans = WMI_MAX_PLANS_NUM;
1250 }
1251
1252 if (test_bit(WMI_FW_CAPABILITY_TX_REQ_EXT, wil->fw_capabilities))
1253 wiphy->flags |= WIPHY_FLAG_OFFCHAN_TX;
1254
1255 if (wil->platform_ops.set_features) {
1256 features = (test_bit(WMI_FW_CAPABILITY_REF_CLOCK_CONTROL,
1257 wil->fw_capabilities) &&
1258 test_bit(WIL_PLATFORM_CAPA_EXT_CLK,
1259 wil->platform_capa)) ?
1260 BIT(WIL_PLATFORM_FEATURE_FW_EXT_CLK_CONTROL) : 0;
1261
1262 if (wil->n_msi == 3)
1263 features |= BIT(WIL_PLATFORM_FEATURE_TRIPLE_MSI);
1264
1265 wil->platform_ops.set_features(wil->platform_handle, features);
1266 }
1267
1268 if (test_bit(WMI_FW_CAPABILITY_BACK_WIN_SIZE_64,
1269 wil->fw_capabilities)) {
1270 wil->max_agg_wsize = WIL_MAX_AGG_WSIZE_64;
1271 wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE_128;
1272 } else {
1273 wil->max_agg_wsize = WIL_MAX_AGG_WSIZE;
1274 wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE;
1275 }
1276
1277 update_supported_bands(wil);
1278 }
1279
wil_mbox_ring_le2cpus(struct wil6210_mbox_ring * r)1280 void wil_mbox_ring_le2cpus(struct wil6210_mbox_ring *r)
1281 {
1282 le32_to_cpus(&r->base);
1283 le16_to_cpus(&r->entry_size);
1284 le16_to_cpus(&r->size);
1285 le32_to_cpus(&r->tail);
1286 le32_to_cpus(&r->head);
1287 }
1288
1289 /* construct actual board file name to use */
wil_get_board_file(struct wil6210_priv * wil,char * buf,size_t len)1290 void wil_get_board_file(struct wil6210_priv *wil, char *buf, size_t len)
1291 {
1292 const char *board_file;
1293 const char *wil_talyn_fw_name = ftm_mode ? WIL_FW_NAME_FTM_TALYN :
1294 WIL_FW_NAME_TALYN;
1295
1296 if (wil->board_file) {
1297 board_file = wil->board_file;
1298 } else {
1299 /* If specific FW file is used for Talyn,
1300 * use specific board file
1301 */
1302 if (strcmp(wil->wil_fw_name, wil_talyn_fw_name) == 0)
1303 board_file = WIL_BRD_NAME_TALYN;
1304 else
1305 board_file = WIL_BOARD_FILE_NAME;
1306 }
1307
1308 strlcpy(buf, board_file, len);
1309 }
1310
wil_get_bl_info(struct wil6210_priv * wil)1311 static int wil_get_bl_info(struct wil6210_priv *wil)
1312 {
1313 struct net_device *ndev = wil->main_ndev;
1314 struct wiphy *wiphy = wil_to_wiphy(wil);
1315 union {
1316 struct bl_dedicated_registers_v0 bl0;
1317 struct bl_dedicated_registers_v1 bl1;
1318 } bl;
1319 u32 bl_ver;
1320 u8 *mac;
1321 u16 rf_status;
1322
1323 wil_memcpy_fromio_32(&bl, wil->csr + HOSTADDR(RGF_USER_BL),
1324 sizeof(bl));
1325 bl_ver = le32_to_cpu(bl.bl0.boot_loader_struct_version);
1326 mac = bl.bl0.mac_address;
1327
1328 if (bl_ver == 0) {
1329 le32_to_cpus(&bl.bl0.rf_type);
1330 le32_to_cpus(&bl.bl0.baseband_type);
1331 rf_status = 0; /* actually, unknown */
1332 wil_info(wil,
1333 "Boot Loader struct v%d: MAC = %pM RF = 0x%08x bband = 0x%08x\n",
1334 bl_ver, mac,
1335 bl.bl0.rf_type, bl.bl0.baseband_type);
1336 wil_info(wil, "Boot Loader build unknown for struct v0\n");
1337 } else {
1338 le16_to_cpus(&bl.bl1.rf_type);
1339 rf_status = le16_to_cpu(bl.bl1.rf_status);
1340 le32_to_cpus(&bl.bl1.baseband_type);
1341 le16_to_cpus(&bl.bl1.bl_version_subminor);
1342 le16_to_cpus(&bl.bl1.bl_version_build);
1343 wil_info(wil,
1344 "Boot Loader struct v%d: MAC = %pM RF = 0x%04x (status 0x%04x) bband = 0x%08x\n",
1345 bl_ver, mac,
1346 bl.bl1.rf_type, rf_status,
1347 bl.bl1.baseband_type);
1348 wil_info(wil, "Boot Loader build %d.%d.%d.%d\n",
1349 bl.bl1.bl_version_major, bl.bl1.bl_version_minor,
1350 bl.bl1.bl_version_subminor, bl.bl1.bl_version_build);
1351 }
1352
1353 if (!is_valid_ether_addr(mac)) {
1354 wil_err(wil, "BL: Invalid MAC %pM\n", mac);
1355 return -EINVAL;
1356 }
1357
1358 ether_addr_copy(ndev->perm_addr, mac);
1359 ether_addr_copy(wiphy->perm_addr, mac);
1360 if (!is_valid_ether_addr(ndev->dev_addr))
1361 ether_addr_copy(ndev->dev_addr, mac);
1362
1363 if (rf_status) {/* bad RF cable? */
1364 wil_err(wil, "RF communication error 0x%04x",
1365 rf_status);
1366 return -EAGAIN;
1367 }
1368
1369 return 0;
1370 }
1371
wil_bl_crash_info(struct wil6210_priv * wil,bool is_err)1372 static void wil_bl_crash_info(struct wil6210_priv *wil, bool is_err)
1373 {
1374 u32 bl_assert_code, bl_assert_blink, bl_magic_number;
1375 u32 bl_ver = wil_r(wil, RGF_USER_BL +
1376 offsetof(struct bl_dedicated_registers_v0,
1377 boot_loader_struct_version));
1378
1379 if (bl_ver < 2)
1380 return;
1381
1382 bl_assert_code = wil_r(wil, RGF_USER_BL +
1383 offsetof(struct bl_dedicated_registers_v1,
1384 bl_assert_code));
1385 bl_assert_blink = wil_r(wil, RGF_USER_BL +
1386 offsetof(struct bl_dedicated_registers_v1,
1387 bl_assert_blink));
1388 bl_magic_number = wil_r(wil, RGF_USER_BL +
1389 offsetof(struct bl_dedicated_registers_v1,
1390 bl_magic_number));
1391
1392 if (is_err) {
1393 wil_err(wil,
1394 "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1395 bl_assert_code, bl_assert_blink, bl_magic_number);
1396 } else {
1397 wil_dbg_misc(wil,
1398 "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1399 bl_assert_code, bl_assert_blink, bl_magic_number);
1400 }
1401 }
1402
wil_get_otp_info(struct wil6210_priv * wil)1403 static int wil_get_otp_info(struct wil6210_priv *wil)
1404 {
1405 struct net_device *ndev = wil->main_ndev;
1406 struct wiphy *wiphy = wil_to_wiphy(wil);
1407 u8 mac[8];
1408 int mac_addr;
1409
1410 /* OEM MAC has precedence */
1411 mac_addr = RGF_OTP_OEM_MAC;
1412 wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr), sizeof(mac));
1413
1414 if (is_valid_ether_addr(mac)) {
1415 wil_info(wil, "using OEM MAC %pM\n", mac);
1416 } else {
1417 if (wil->hw_version >= HW_VER_TALYN_MB)
1418 mac_addr = RGF_OTP_MAC_TALYN_MB;
1419 else
1420 mac_addr = RGF_OTP_MAC;
1421
1422 wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr),
1423 sizeof(mac));
1424 }
1425
1426 if (!is_valid_ether_addr(mac)) {
1427 wil_err(wil, "Invalid MAC %pM\n", mac);
1428 return -EINVAL;
1429 }
1430
1431 ether_addr_copy(ndev->perm_addr, mac);
1432 ether_addr_copy(wiphy->perm_addr, mac);
1433 if (!is_valid_ether_addr(ndev->dev_addr))
1434 ether_addr_copy(ndev->dev_addr, mac);
1435
1436 return 0;
1437 }
1438
wil_wait_for_fw_ready(struct wil6210_priv * wil)1439 static int wil_wait_for_fw_ready(struct wil6210_priv *wil)
1440 {
1441 ulong to = msecs_to_jiffies(2000);
1442 ulong left = wait_for_completion_timeout(&wil->wmi_ready, to);
1443
1444 if (0 == left) {
1445 wil_err(wil, "Firmware not ready\n");
1446 return -ETIME;
1447 } else {
1448 wil_info(wil, "FW ready after %d ms. HW version 0x%08x\n",
1449 jiffies_to_msecs(to-left), wil->hw_version);
1450 }
1451 return 0;
1452 }
1453
wil_abort_scan(struct wil6210_vif * vif,bool sync)1454 void wil_abort_scan(struct wil6210_vif *vif, bool sync)
1455 {
1456 struct wil6210_priv *wil = vif_to_wil(vif);
1457 int rc;
1458 struct cfg80211_scan_info info = {
1459 .aborted = true,
1460 };
1461
1462 lockdep_assert_held(&wil->vif_mutex);
1463
1464 if (!vif->scan_request)
1465 return;
1466
1467 wil_dbg_misc(wil, "Abort scan_request 0x%p\n", vif->scan_request);
1468 del_timer_sync(&vif->scan_timer);
1469 mutex_unlock(&wil->vif_mutex);
1470 rc = wmi_abort_scan(vif);
1471 if (!rc && sync)
1472 wait_event_interruptible_timeout(wil->wq, !vif->scan_request,
1473 msecs_to_jiffies(
1474 WAIT_FOR_SCAN_ABORT_MS));
1475
1476 mutex_lock(&wil->vif_mutex);
1477 if (vif->scan_request) {
1478 cfg80211_scan_done(vif->scan_request, &info);
1479 vif->scan_request = NULL;
1480 }
1481 }
1482
wil_abort_scan_all_vifs(struct wil6210_priv * wil,bool sync)1483 void wil_abort_scan_all_vifs(struct wil6210_priv *wil, bool sync)
1484 {
1485 int i;
1486
1487 lockdep_assert_held(&wil->vif_mutex);
1488
1489 for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1490 struct wil6210_vif *vif = wil->vifs[i];
1491
1492 if (vif)
1493 wil_abort_scan(vif, sync);
1494 }
1495 }
1496
wil_ps_update(struct wil6210_priv * wil,enum wmi_ps_profile_type ps_profile)1497 int wil_ps_update(struct wil6210_priv *wil, enum wmi_ps_profile_type ps_profile)
1498 {
1499 int rc;
1500
1501 if (!test_bit(WMI_FW_CAPABILITY_PS_CONFIG, wil->fw_capabilities)) {
1502 wil_err(wil, "set_power_mgmt not supported\n");
1503 return -EOPNOTSUPP;
1504 }
1505
1506 rc = wmi_ps_dev_profile_cfg(wil, ps_profile);
1507 if (rc)
1508 wil_err(wil, "wmi_ps_dev_profile_cfg failed (%d)\n", rc);
1509 else
1510 wil->ps_profile = ps_profile;
1511
1512 return rc;
1513 }
1514
wil_pre_fw_config(struct wil6210_priv * wil)1515 static void wil_pre_fw_config(struct wil6210_priv *wil)
1516 {
1517 wil_clear_fw_log_addr(wil);
1518 /* Mark FW as loaded from host */
1519 wil_s(wil, RGF_USER_USAGE_6, 1);
1520
1521 /* clear any interrupts which on-card-firmware
1522 * may have set
1523 */
1524 wil6210_clear_irq(wil);
1525 /* CAF_ICR - clear and mask */
1526 /* it is W1C, clear by writing back same value */
1527 if (wil->hw_version < HW_VER_TALYN_MB) {
1528 wil_s(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, ICR), 0);
1529 wil_w(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, IMV), ~0);
1530 }
1531 /* clear PAL_UNIT_ICR (potential D0->D3 leftover)
1532 * In Talyn-MB host cannot access this register due to
1533 * access control, hence PAL_UNIT_ICR is cleared by the FW
1534 */
1535 if (wil->hw_version < HW_VER_TALYN_MB)
1536 wil_s(wil, RGF_PAL_UNIT_ICR + offsetof(struct RGF_ICR, ICR),
1537 0);
1538
1539 if (wil->fw_calib_result > 0) {
1540 __le32 val = cpu_to_le32(wil->fw_calib_result |
1541 (CALIB_RESULT_SIGNATURE << 8));
1542 wil_w(wil, RGF_USER_FW_CALIB_RESULT, (u32 __force)val);
1543 }
1544 }
1545
wil_restore_vifs(struct wil6210_priv * wil)1546 static int wil_restore_vifs(struct wil6210_priv *wil)
1547 {
1548 struct wil6210_vif *vif;
1549 struct net_device *ndev;
1550 struct wireless_dev *wdev;
1551 int i, rc;
1552
1553 for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1554 vif = wil->vifs[i];
1555 if (!vif)
1556 continue;
1557 vif->ap_isolate = 0;
1558 if (vif->mid) {
1559 ndev = vif_to_ndev(vif);
1560 wdev = vif_to_wdev(vif);
1561 rc = wmi_port_allocate(wil, vif->mid, ndev->dev_addr,
1562 wdev->iftype);
1563 if (rc) {
1564 wil_err(wil, "fail to restore VIF %d type %d, rc %d\n",
1565 i, wdev->iftype, rc);
1566 return rc;
1567 }
1568 }
1569 }
1570
1571 return 0;
1572 }
1573
1574 /*
1575 * Clear FW and ucode log start addr to indicate FW log is not ready. The host
1576 * driver clears the addresses before FW starts and FW initializes the address
1577 * when it is ready to send logs.
1578 */
wil_clear_fw_log_addr(struct wil6210_priv * wil)1579 void wil_clear_fw_log_addr(struct wil6210_priv *wil)
1580 {
1581 /* FW log addr */
1582 wil_w(wil, RGF_USER_USAGE_1, 0);
1583 /* ucode log addr */
1584 wil_w(wil, RGF_USER_USAGE_2, 0);
1585 wil_dbg_misc(wil, "Cleared FW and ucode log address");
1586 }
1587
1588 /*
1589 * We reset all the structures, and we reset the UMAC.
1590 * After calling this routine, you're expected to reload
1591 * the firmware.
1592 */
wil_reset(struct wil6210_priv * wil,bool load_fw)1593 int wil_reset(struct wil6210_priv *wil, bool load_fw)
1594 {
1595 int rc, i;
1596 unsigned long status_flags = BIT(wil_status_resetting);
1597 int no_flash;
1598 struct wil6210_vif *vif;
1599
1600 wil_dbg_misc(wil, "reset\n");
1601
1602 WARN_ON(!mutex_is_locked(&wil->mutex));
1603 WARN_ON(test_bit(wil_status_napi_en, wil->status));
1604
1605 if (debug_fw) {
1606 static const u8 mac[ETH_ALEN] = {
1607 0x00, 0xde, 0xad, 0x12, 0x34, 0x56,
1608 };
1609 struct net_device *ndev = wil->main_ndev;
1610
1611 ether_addr_copy(ndev->perm_addr, mac);
1612 ether_addr_copy(ndev->dev_addr, ndev->perm_addr);
1613 return 0;
1614 }
1615
1616 if (wil->hw_version == HW_VER_UNKNOWN)
1617 return -ENODEV;
1618
1619 if (test_bit(WIL_PLATFORM_CAPA_T_PWR_ON_0, wil->platform_capa) &&
1620 wil->hw_version < HW_VER_TALYN_MB) {
1621 wil_dbg_misc(wil, "Notify FW to set T_POWER_ON=0\n");
1622 wil_s(wil, RGF_USER_USAGE_8, BIT_USER_SUPPORT_T_POWER_ON_0);
1623 }
1624
1625 if (test_bit(WIL_PLATFORM_CAPA_EXT_CLK, wil->platform_capa)) {
1626 wil_dbg_misc(wil, "Notify FW on ext clock configuration\n");
1627 wil_s(wil, RGF_USER_USAGE_8, BIT_USER_EXT_CLK);
1628 }
1629
1630 if (wil->platform_ops.notify) {
1631 rc = wil->platform_ops.notify(wil->platform_handle,
1632 WIL_PLATFORM_EVT_PRE_RESET);
1633 if (rc)
1634 wil_err(wil, "PRE_RESET platform notify failed, rc %d\n",
1635 rc);
1636 }
1637
1638 set_bit(wil_status_resetting, wil->status);
1639 mutex_lock(&wil->vif_mutex);
1640 wil_abort_scan_all_vifs(wil, false);
1641 mutex_unlock(&wil->vif_mutex);
1642
1643 for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1644 vif = wil->vifs[i];
1645 if (vif) {
1646 cancel_work_sync(&vif->disconnect_worker);
1647 wil6210_disconnect(vif, NULL,
1648 WLAN_REASON_DEAUTH_LEAVING);
1649 vif->ptk_rekey_state = WIL_REKEY_IDLE;
1650 }
1651 }
1652 wil_bcast_fini_all(wil);
1653
1654 /* Disable device led before reset*/
1655 wmi_led_cfg(wil, false);
1656
1657 down_write(&wil->mem_lock);
1658
1659 /* prevent NAPI from being scheduled and prevent wmi commands */
1660 mutex_lock(&wil->wmi_mutex);
1661 if (test_bit(wil_status_suspending, wil->status))
1662 status_flags |= BIT(wil_status_suspending);
1663 bitmap_and(wil->status, wil->status, &status_flags,
1664 wil_status_last);
1665 wil_dbg_misc(wil, "wil->status (0x%lx)\n", *wil->status);
1666 mutex_unlock(&wil->wmi_mutex);
1667
1668 wil_mask_irq(wil);
1669
1670 wmi_event_flush(wil);
1671
1672 flush_workqueue(wil->wq_service);
1673 flush_workqueue(wil->wmi_wq);
1674
1675 no_flash = test_bit(hw_capa_no_flash, wil->hw_capa);
1676 if (!no_flash)
1677 wil_bl_crash_info(wil, false);
1678 wil_disable_irq(wil);
1679 rc = wil_target_reset(wil, no_flash);
1680 wil6210_clear_irq(wil);
1681 wil_enable_irq(wil);
1682 wil->txrx_ops.rx_fini(wil);
1683 wil->txrx_ops.tx_fini(wil);
1684 if (rc) {
1685 if (!no_flash)
1686 wil_bl_crash_info(wil, true);
1687 goto out;
1688 }
1689
1690 if (no_flash) {
1691 rc = wil_get_otp_info(wil);
1692 } else {
1693 rc = wil_get_bl_info(wil);
1694 if (rc == -EAGAIN && !load_fw)
1695 /* ignore RF error if not going up */
1696 rc = 0;
1697 }
1698 if (rc)
1699 goto out;
1700
1701 wil_set_oob_mode(wil, oob_mode);
1702 if (load_fw) {
1703 char board_file[WIL_BOARD_FILE_MAX_NAMELEN];
1704
1705 if (wil->secured_boot) {
1706 wil_err(wil, "secured boot is not supported\n");
1707 up_write(&wil->mem_lock);
1708 return -ENOTSUPP;
1709 }
1710
1711 board_file[0] = '\0';
1712 wil_get_board_file(wil, board_file, sizeof(board_file));
1713 wil_info(wil, "Use firmware <%s> + board <%s>\n",
1714 wil->wil_fw_name, board_file);
1715
1716 if (!no_flash)
1717 wil_bl_prepare_halt(wil);
1718
1719 wil_halt_cpu(wil);
1720 memset(wil->fw_version, 0, sizeof(wil->fw_version));
1721 /* Loading f/w from the file */
1722 rc = wil_request_firmware(wil, wil->wil_fw_name, true);
1723 if (rc)
1724 goto out;
1725 if (wil->num_of_brd_entries)
1726 rc = wil_request_board(wil, board_file);
1727 else
1728 rc = wil_request_firmware(wil, board_file, true);
1729 if (rc)
1730 goto out;
1731
1732 wil_pre_fw_config(wil);
1733 wil_release_cpu(wil);
1734 }
1735
1736 /* init after reset */
1737 reinit_completion(&wil->wmi_ready);
1738 reinit_completion(&wil->wmi_call);
1739 reinit_completion(&wil->halp.comp);
1740
1741 clear_bit(wil_status_resetting, wil->status);
1742
1743 up_write(&wil->mem_lock);
1744
1745 if (load_fw) {
1746 wil_unmask_irq(wil);
1747
1748 /* we just started MAC, wait for FW ready */
1749 rc = wil_wait_for_fw_ready(wil);
1750 if (rc)
1751 return rc;
1752
1753 /* check FW is responsive */
1754 rc = wmi_echo(wil);
1755 if (rc) {
1756 wil_err(wil, "wmi_echo failed, rc %d\n", rc);
1757 return rc;
1758 }
1759
1760 wil->txrx_ops.configure_interrupt_moderation(wil);
1761
1762 /* Enable OFU rdy valid bug fix, to prevent hang in oful34_rx
1763 * while there is back-pressure from Host during RX
1764 */
1765 if (wil->hw_version >= HW_VER_TALYN_MB)
1766 wil_s(wil, RGF_DMA_MISC_CTL,
1767 BIT_OFUL34_RDY_VALID_BUG_FIX_EN);
1768
1769 rc = wil_restore_vifs(wil);
1770 if (rc) {
1771 wil_err(wil, "failed to restore vifs, rc %d\n", rc);
1772 return rc;
1773 }
1774
1775 wil_collect_fw_info(wil);
1776
1777 if (wil->ps_profile != WMI_PS_PROFILE_TYPE_DEFAULT)
1778 wil_ps_update(wil, wil->ps_profile);
1779
1780 if (wil->platform_ops.notify) {
1781 rc = wil->platform_ops.notify(wil->platform_handle,
1782 WIL_PLATFORM_EVT_FW_RDY);
1783 if (rc) {
1784 wil_err(wil, "FW_RDY notify failed, rc %d\n",
1785 rc);
1786 rc = 0;
1787 }
1788 }
1789 }
1790
1791 return rc;
1792
1793 out:
1794 up_write(&wil->mem_lock);
1795 clear_bit(wil_status_resetting, wil->status);
1796 return rc;
1797 }
1798
wil_fw_error_recovery(struct wil6210_priv * wil)1799 void wil_fw_error_recovery(struct wil6210_priv *wil)
1800 {
1801 wil_dbg_misc(wil, "starting fw error recovery\n");
1802
1803 if (test_bit(wil_status_resetting, wil->status)) {
1804 wil_info(wil, "Reset already in progress\n");
1805 return;
1806 }
1807
1808 wil->recovery_state = fw_recovery_pending;
1809 schedule_work(&wil->fw_error_worker);
1810 }
1811
__wil_up(struct wil6210_priv * wil)1812 int __wil_up(struct wil6210_priv *wil)
1813 {
1814 struct net_device *ndev = wil->main_ndev;
1815 struct wireless_dev *wdev = ndev->ieee80211_ptr;
1816 int rc;
1817
1818 WARN_ON(!mutex_is_locked(&wil->mutex));
1819
1820 rc = wil_reset(wil, true);
1821 if (rc)
1822 return rc;
1823
1824 /* Rx RING. After MAC and beacon */
1825 if (rx_ring_order == 0)
1826 rx_ring_order = wil->hw_version < HW_VER_TALYN_MB ?
1827 WIL_RX_RING_SIZE_ORDER_DEFAULT :
1828 WIL_RX_RING_SIZE_ORDER_TALYN_DEFAULT;
1829
1830 rc = wil->txrx_ops.rx_init(wil, rx_ring_order);
1831 if (rc)
1832 return rc;
1833
1834 rc = wil->txrx_ops.tx_init(wil);
1835 if (rc)
1836 return rc;
1837
1838 switch (wdev->iftype) {
1839 case NL80211_IFTYPE_STATION:
1840 wil_dbg_misc(wil, "type: STATION\n");
1841 ndev->type = ARPHRD_ETHER;
1842 break;
1843 case NL80211_IFTYPE_AP:
1844 wil_dbg_misc(wil, "type: AP\n");
1845 ndev->type = ARPHRD_ETHER;
1846 break;
1847 case NL80211_IFTYPE_P2P_CLIENT:
1848 wil_dbg_misc(wil, "type: P2P_CLIENT\n");
1849 ndev->type = ARPHRD_ETHER;
1850 break;
1851 case NL80211_IFTYPE_P2P_GO:
1852 wil_dbg_misc(wil, "type: P2P_GO\n");
1853 ndev->type = ARPHRD_ETHER;
1854 break;
1855 case NL80211_IFTYPE_MONITOR:
1856 wil_dbg_misc(wil, "type: Monitor\n");
1857 ndev->type = ARPHRD_IEEE80211_RADIOTAP;
1858 /* ARPHRD_IEEE80211 or ARPHRD_IEEE80211_RADIOTAP ? */
1859 break;
1860 default:
1861 return -EOPNOTSUPP;
1862 }
1863
1864 /* MAC address - pre-requisite for other commands */
1865 wmi_set_mac_address(wil, ndev->dev_addr);
1866
1867 wil_dbg_misc(wil, "NAPI enable\n");
1868 napi_enable(&wil->napi_rx);
1869 napi_enable(&wil->napi_tx);
1870 set_bit(wil_status_napi_en, wil->status);
1871
1872 wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
1873
1874 return 0;
1875 }
1876
wil_up(struct wil6210_priv * wil)1877 int wil_up(struct wil6210_priv *wil)
1878 {
1879 int rc;
1880
1881 wil_dbg_misc(wil, "up\n");
1882
1883 mutex_lock(&wil->mutex);
1884 rc = __wil_up(wil);
1885 mutex_unlock(&wil->mutex);
1886
1887 return rc;
1888 }
1889
__wil_down(struct wil6210_priv * wil)1890 int __wil_down(struct wil6210_priv *wil)
1891 {
1892 int rc;
1893 WARN_ON(!mutex_is_locked(&wil->mutex));
1894
1895 set_bit(wil_status_resetting, wil->status);
1896
1897 wil6210_bus_request(wil, 0);
1898
1899 wil_disable_irq(wil);
1900 if (test_and_clear_bit(wil_status_napi_en, wil->status)) {
1901 napi_disable(&wil->napi_rx);
1902 napi_disable(&wil->napi_tx);
1903 wil_dbg_misc(wil, "NAPI disable\n");
1904 }
1905 wil_enable_irq(wil);
1906
1907 mutex_lock(&wil->vif_mutex);
1908 wil_p2p_stop_radio_operations(wil);
1909 wil_abort_scan_all_vifs(wil, false);
1910 mutex_unlock(&wil->vif_mutex);
1911
1912 rc = wil_reset(wil, false);
1913
1914 return rc;
1915 }
1916
wil_down(struct wil6210_priv * wil)1917 int wil_down(struct wil6210_priv *wil)
1918 {
1919 int rc;
1920
1921 wil_dbg_misc(wil, "down\n");
1922
1923 wil_set_recovery_state(wil, fw_recovery_idle);
1924 mutex_lock(&wil->mutex);
1925 rc = __wil_down(wil);
1926 mutex_unlock(&wil->mutex);
1927
1928 return rc;
1929 }
1930
wil_find_cid(struct wil6210_priv * wil,u8 mid,const u8 * mac)1931 int wil_find_cid(struct wil6210_priv *wil, u8 mid, const u8 *mac)
1932 {
1933 int i;
1934 int rc = -ENOENT;
1935
1936 for (i = 0; i < wil->max_assoc_sta; i++) {
1937 if (wil->sta[i].mid == mid &&
1938 wil->sta[i].status != wil_sta_unused &&
1939 ether_addr_equal(wil->sta[i].addr, mac)) {
1940 rc = i;
1941 break;
1942 }
1943 }
1944
1945 return rc;
1946 }
1947
wil_halp_vote(struct wil6210_priv * wil)1948 void wil_halp_vote(struct wil6210_priv *wil)
1949 {
1950 unsigned long rc;
1951 unsigned long to_jiffies = msecs_to_jiffies(WAIT_FOR_HALP_VOTE_MS);
1952
1953 if (wil->hw_version >= HW_VER_TALYN_MB)
1954 return;
1955
1956 mutex_lock(&wil->halp.lock);
1957
1958 wil_dbg_irq(wil, "halp_vote: start, HALP ref_cnt (%d)\n",
1959 wil->halp.ref_cnt);
1960
1961 if (++wil->halp.ref_cnt == 1) {
1962 reinit_completion(&wil->halp.comp);
1963 /* mark to IRQ context to handle HALP ICR */
1964 wil->halp.handle_icr = true;
1965 wil6210_set_halp(wil);
1966 rc = wait_for_completion_timeout(&wil->halp.comp, to_jiffies);
1967 if (!rc) {
1968 wil_err(wil, "HALP vote timed out\n");
1969 /* Mask HALP as done in case the interrupt is raised */
1970 wil->halp.handle_icr = false;
1971 wil6210_mask_halp(wil);
1972 } else {
1973 wil_dbg_irq(wil,
1974 "halp_vote: HALP vote completed after %d ms\n",
1975 jiffies_to_msecs(to_jiffies - rc));
1976 }
1977 }
1978
1979 wil_dbg_irq(wil, "halp_vote: end, HALP ref_cnt (%d)\n",
1980 wil->halp.ref_cnt);
1981
1982 mutex_unlock(&wil->halp.lock);
1983 }
1984
wil_halp_unvote(struct wil6210_priv * wil)1985 void wil_halp_unvote(struct wil6210_priv *wil)
1986 {
1987 if (wil->hw_version >= HW_VER_TALYN_MB)
1988 return;
1989
1990 WARN_ON(wil->halp.ref_cnt == 0);
1991
1992 mutex_lock(&wil->halp.lock);
1993
1994 wil_dbg_irq(wil, "halp_unvote: start, HALP ref_cnt (%d)\n",
1995 wil->halp.ref_cnt);
1996
1997 if (--wil->halp.ref_cnt == 0) {
1998 wil6210_clear_halp(wil);
1999 wil_dbg_irq(wil, "HALP unvote\n");
2000 }
2001
2002 wil_dbg_irq(wil, "halp_unvote:end, HALP ref_cnt (%d)\n",
2003 wil->halp.ref_cnt);
2004
2005 mutex_unlock(&wil->halp.lock);
2006 }
2007
wil_init_txrx_ops(struct wil6210_priv * wil)2008 void wil_init_txrx_ops(struct wil6210_priv *wil)
2009 {
2010 if (wil->use_enhanced_dma_hw)
2011 wil_init_txrx_ops_edma(wil);
2012 else
2013 wil_init_txrx_ops_legacy_dma(wil);
2014 }
2015