1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * MIPS-specific support for Broadcom STB S2/S3/S5 power management
4 *
5 * Copyright (C) 2016-2017 Broadcom
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/printk.h>
10 #include <linux/io.h>
11 #include <linux/of.h>
12 #include <linux/of_address.h>
13 #include <linux/delay.h>
14 #include <linux/suspend.h>
15 #include <asm/bmips.h>
16 #include <asm/tlbflush.h>
17
18 #include "pm.h"
19
20 #define S2_NUM_PARAMS 6
21 #define MAX_NUM_MEMC 3
22
23 /* S3 constants */
24 #define MAX_GP_REGS 16
25 #define MAX_CP0_REGS 32
26 #define NUM_MEMC_CLIENTS 128
27 #define AON_CTRL_RAM_SIZE 128
28 #define BRCMSTB_S3_MAGIC 0x5AFEB007
29
30 #define CLEAR_RESET_MASK 0x01
31
32 /* Index each CP0 register that needs to be saved */
33 #define CONTEXT 0
34 #define USER_LOCAL 1
35 #define PGMK 2
36 #define HWRENA 3
37 #define COMPARE 4
38 #define STATUS 5
39 #define CONFIG 6
40 #define MODE 7
41 #define EDSP 8
42 #define BOOT_VEC 9
43 #define EBASE 10
44
45 struct brcmstb_memc {
46 void __iomem *ddr_phy_base;
47 void __iomem *arb_base;
48 };
49
50 struct brcmstb_pm_control {
51 void __iomem *aon_ctrl_base;
52 void __iomem *aon_sram_base;
53 void __iomem *timers_base;
54 struct brcmstb_memc memcs[MAX_NUM_MEMC];
55 int num_memc;
56 };
57
58 struct brcm_pm_s3_context {
59 u32 cp0_regs[MAX_CP0_REGS];
60 u32 memc0_rts[NUM_MEMC_CLIENTS];
61 u32 sc_boot_vec;
62 };
63
64 struct brcmstb_mem_transfer;
65
66 struct brcmstb_mem_transfer {
67 struct brcmstb_mem_transfer *next;
68 void *src;
69 void *dst;
70 dma_addr_t pa_src;
71 dma_addr_t pa_dst;
72 u32 len;
73 u8 key;
74 u8 mode;
75 u8 src_remapped;
76 u8 dst_remapped;
77 u8 src_dst_remapped;
78 };
79
80 #define AON_SAVE_SRAM(base, idx, val) \
81 __raw_writel(val, base + (idx << 2))
82
83 /* Used for saving registers in asm */
84 u32 gp_regs[MAX_GP_REGS];
85
86 #define BSP_CLOCK_STOP 0x00
87 #define PM_INITIATE 0x01
88
89 static struct brcmstb_pm_control ctrl;
90
brcm_pm_save_cp0_context(struct brcm_pm_s3_context * ctx)91 static void brcm_pm_save_cp0_context(struct brcm_pm_s3_context *ctx)
92 {
93 /* Generic MIPS */
94 ctx->cp0_regs[CONTEXT] = read_c0_context();
95 ctx->cp0_regs[USER_LOCAL] = read_c0_userlocal();
96 ctx->cp0_regs[PGMK] = read_c0_pagemask();
97 ctx->cp0_regs[HWRENA] = read_c0_cache();
98 ctx->cp0_regs[COMPARE] = read_c0_compare();
99 ctx->cp0_regs[STATUS] = read_c0_status();
100
101 /* Broadcom specific */
102 ctx->cp0_regs[CONFIG] = read_c0_brcm_config();
103 ctx->cp0_regs[MODE] = read_c0_brcm_mode();
104 ctx->cp0_regs[EDSP] = read_c0_brcm_edsp();
105 ctx->cp0_regs[BOOT_VEC] = read_c0_brcm_bootvec();
106 ctx->cp0_regs[EBASE] = read_c0_ebase();
107
108 ctx->sc_boot_vec = bmips_read_zscm_reg(0xa0);
109 }
110
brcm_pm_restore_cp0_context(struct brcm_pm_s3_context * ctx)111 static void brcm_pm_restore_cp0_context(struct brcm_pm_s3_context *ctx)
112 {
113 /* Restore cp0 state */
114 bmips_write_zscm_reg(0xa0, ctx->sc_boot_vec);
115
116 /* Generic MIPS */
117 write_c0_context(ctx->cp0_regs[CONTEXT]);
118 write_c0_userlocal(ctx->cp0_regs[USER_LOCAL]);
119 write_c0_pagemask(ctx->cp0_regs[PGMK]);
120 write_c0_cache(ctx->cp0_regs[HWRENA]);
121 write_c0_compare(ctx->cp0_regs[COMPARE]);
122 write_c0_status(ctx->cp0_regs[STATUS]);
123
124 /* Broadcom specific */
125 write_c0_brcm_config(ctx->cp0_regs[CONFIG]);
126 write_c0_brcm_mode(ctx->cp0_regs[MODE]);
127 write_c0_brcm_edsp(ctx->cp0_regs[EDSP]);
128 write_c0_brcm_bootvec(ctx->cp0_regs[BOOT_VEC]);
129 write_c0_ebase(ctx->cp0_regs[EBASE]);
130 }
131
brcmstb_pm_handshake(void)132 static void brcmstb_pm_handshake(void)
133 {
134 void __iomem *base = ctrl.aon_ctrl_base;
135 u32 tmp;
136
137 /* BSP power handshake, v1 */
138 tmp = __raw_readl(base + AON_CTRL_HOST_MISC_CMDS);
139 tmp &= ~1UL;
140 __raw_writel(tmp, base + AON_CTRL_HOST_MISC_CMDS);
141 (void)__raw_readl(base + AON_CTRL_HOST_MISC_CMDS);
142
143 __raw_writel(0, base + AON_CTRL_PM_INITIATE);
144 (void)__raw_readl(base + AON_CTRL_PM_INITIATE);
145 __raw_writel(BSP_CLOCK_STOP | PM_INITIATE,
146 base + AON_CTRL_PM_INITIATE);
147 /*
148 * HACK: BSP may have internal race on the CLOCK_STOP command.
149 * Avoid touching the BSP for a few milliseconds.
150 */
151 mdelay(3);
152 }
153
brcmstb_pm_s5(void)154 static void brcmstb_pm_s5(void)
155 {
156 void __iomem *base = ctrl.aon_ctrl_base;
157
158 brcmstb_pm_handshake();
159
160 /* Clear magic s3 warm-boot value */
161 AON_SAVE_SRAM(ctrl.aon_sram_base, 0, 0);
162
163 /* Set the countdown */
164 __raw_writel(0x10, base + AON_CTRL_PM_CPU_WAIT_COUNT);
165 (void)__raw_readl(base + AON_CTRL_PM_CPU_WAIT_COUNT);
166
167 /* Prepare to S5 cold boot */
168 __raw_writel(PM_COLD_CONFIG, base + AON_CTRL_PM_CTRL);
169 (void)__raw_readl(base + AON_CTRL_PM_CTRL);
170
171 __raw_writel((PM_COLD_CONFIG | PM_PWR_DOWN), base +
172 AON_CTRL_PM_CTRL);
173 (void)__raw_readl(base + AON_CTRL_PM_CTRL);
174
175 __asm__ __volatile__(
176 " wait\n"
177 : : : "memory");
178 }
179
brcmstb_pm_s3(void)180 static int brcmstb_pm_s3(void)
181 {
182 struct brcm_pm_s3_context s3_context;
183 void __iomem *memc_arb_base;
184 unsigned long flags;
185 u32 tmp;
186 int i;
187
188 /* Prepare for s3 */
189 AON_SAVE_SRAM(ctrl.aon_sram_base, 0, BRCMSTB_S3_MAGIC);
190 AON_SAVE_SRAM(ctrl.aon_sram_base, 1, (u32)&s3_reentry);
191 AON_SAVE_SRAM(ctrl.aon_sram_base, 2, 0);
192
193 /* Clear RESET_HISTORY */
194 tmp = __raw_readl(ctrl.aon_ctrl_base + AON_CTRL_RESET_CTRL);
195 tmp &= ~CLEAR_RESET_MASK;
196 __raw_writel(tmp, ctrl.aon_ctrl_base + AON_CTRL_RESET_CTRL);
197
198 local_irq_save(flags);
199
200 /* Inhibit DDR_RSTb pulse for both MMCs*/
201 for (i = 0; i < ctrl.num_memc; i++) {
202 tmp = __raw_readl(ctrl.memcs[i].ddr_phy_base +
203 DDR40_PHY_CONTROL_REGS_0_STANDBY_CTRL);
204
205 tmp &= ~0x0f;
206 __raw_writel(tmp, ctrl.memcs[i].ddr_phy_base +
207 DDR40_PHY_CONTROL_REGS_0_STANDBY_CTRL);
208 tmp |= (0x05 | BIT(5));
209 __raw_writel(tmp, ctrl.memcs[i].ddr_phy_base +
210 DDR40_PHY_CONTROL_REGS_0_STANDBY_CTRL);
211 }
212
213 /* Save CP0 context */
214 brcm_pm_save_cp0_context(&s3_context);
215
216 /* Save RTS(skip debug register) */
217 memc_arb_base = ctrl.memcs[0].arb_base + 4;
218 for (i = 0; i < NUM_MEMC_CLIENTS; i++) {
219 s3_context.memc0_rts[i] = __raw_readl(memc_arb_base);
220 memc_arb_base += 4;
221 }
222
223 /* Save I/O context */
224 local_flush_tlb_all();
225 _dma_cache_wback_inv(0, ~0);
226
227 brcm_pm_do_s3(ctrl.aon_ctrl_base, current_cpu_data.dcache.linesz);
228
229 /* CPU reconfiguration */
230 local_flush_tlb_all();
231 bmips_cpu_setup();
232 cpumask_clear(&bmips_booted_mask);
233
234 /* Restore RTS (skip debug register) */
235 memc_arb_base = ctrl.memcs[0].arb_base + 4;
236 for (i = 0; i < NUM_MEMC_CLIENTS; i++) {
237 __raw_writel(s3_context.memc0_rts[i], memc_arb_base);
238 memc_arb_base += 4;
239 }
240
241 /* restore CP0 context */
242 brcm_pm_restore_cp0_context(&s3_context);
243
244 local_irq_restore(flags);
245
246 return 0;
247 }
248
brcmstb_pm_s2(void)249 static int brcmstb_pm_s2(void)
250 {
251 /*
252 * We need to pass 6 arguments to an assembly function. Lets avoid the
253 * stack and pass arguments in a explicit 4 byte array. The assembly
254 * code assumes all arguments are 4 bytes and arguments are ordered
255 * like so:
256 *
257 * 0: AON_CTRl base register
258 * 1: DDR_PHY base register
259 * 2: TIMERS base resgister
260 * 3: I-Cache line size
261 * 4: Restart vector address
262 * 5: Restart vector size
263 */
264 u32 s2_params[6];
265
266 /* Prepare s2 parameters */
267 s2_params[0] = (u32)ctrl.aon_ctrl_base;
268 s2_params[1] = (u32)ctrl.memcs[0].ddr_phy_base;
269 s2_params[2] = (u32)ctrl.timers_base;
270 s2_params[3] = (u32)current_cpu_data.icache.linesz;
271 s2_params[4] = (u32)BMIPS_WARM_RESTART_VEC;
272 s2_params[5] = (u32)(bmips_smp_int_vec_end -
273 bmips_smp_int_vec);
274
275 /* Drop to standby */
276 brcm_pm_do_s2(s2_params);
277
278 return 0;
279 }
280
brcmstb_pm_standby(bool deep_standby)281 static int brcmstb_pm_standby(bool deep_standby)
282 {
283 brcmstb_pm_handshake();
284
285 /* Send IRQs to BMIPS_WARM_RESTART_VEC */
286 clear_c0_cause(CAUSEF_IV);
287 irq_disable_hazard();
288 set_c0_status(ST0_BEV);
289 irq_disable_hazard();
290
291 if (deep_standby)
292 brcmstb_pm_s3();
293 else
294 brcmstb_pm_s2();
295
296 /* Send IRQs to normal runtime vectors */
297 clear_c0_status(ST0_BEV);
298 irq_disable_hazard();
299 set_c0_cause(CAUSEF_IV);
300 irq_disable_hazard();
301
302 return 0;
303 }
304
brcmstb_pm_enter(suspend_state_t state)305 static int brcmstb_pm_enter(suspend_state_t state)
306 {
307 int ret = -EINVAL;
308
309 switch (state) {
310 case PM_SUSPEND_STANDBY:
311 ret = brcmstb_pm_standby(false);
312 break;
313 case PM_SUSPEND_MEM:
314 ret = brcmstb_pm_standby(true);
315 break;
316 }
317
318 return ret;
319 }
320
brcmstb_pm_valid(suspend_state_t state)321 static int brcmstb_pm_valid(suspend_state_t state)
322 {
323 switch (state) {
324 case PM_SUSPEND_STANDBY:
325 return true;
326 case PM_SUSPEND_MEM:
327 return true;
328 default:
329 return false;
330 }
331 }
332
333 static const struct platform_suspend_ops brcmstb_pm_ops = {
334 .enter = brcmstb_pm_enter,
335 .valid = brcmstb_pm_valid,
336 };
337
338 static const struct of_device_id aon_ctrl_dt_ids[] = {
339 { .compatible = "brcm,brcmstb-aon-ctrl" },
340 { /* sentinel */ }
341 };
342
343 static const struct of_device_id ddr_phy_dt_ids[] = {
344 { .compatible = "brcm,brcmstb-ddr-phy" },
345 { /* sentinel */ }
346 };
347
348 static const struct of_device_id arb_dt_ids[] = {
349 { .compatible = "brcm,brcmstb-memc-arb" },
350 { /* sentinel */ }
351 };
352
353 static const struct of_device_id timers_ids[] = {
354 { .compatible = "brcm,brcmstb-timers" },
355 { /* sentinel */ }
356 };
357
brcmstb_ioremap_node(struct device_node * dn,int index)358 static inline void __iomem *brcmstb_ioremap_node(struct device_node *dn,
359 int index)
360 {
361 return of_io_request_and_map(dn, index, dn->full_name);
362 }
363
brcmstb_ioremap_match(const struct of_device_id * matches,int index,const void ** ofdata)364 static void __iomem *brcmstb_ioremap_match(const struct of_device_id *matches,
365 int index, const void **ofdata)
366 {
367 struct device_node *dn;
368 const struct of_device_id *match;
369
370 dn = of_find_matching_node_and_match(NULL, matches, &match);
371 if (!dn)
372 return ERR_PTR(-EINVAL);
373
374 if (ofdata)
375 *ofdata = match->data;
376
377 return brcmstb_ioremap_node(dn, index);
378 }
379
brcmstb_pm_init(void)380 static int brcmstb_pm_init(void)
381 {
382 struct device_node *dn;
383 void __iomem *base;
384 int i;
385
386 /* AON ctrl registers */
387 base = brcmstb_ioremap_match(aon_ctrl_dt_ids, 0, NULL);
388 if (IS_ERR(base)) {
389 pr_err("error mapping AON_CTRL\n");
390 goto aon_err;
391 }
392 ctrl.aon_ctrl_base = base;
393
394 /* AON SRAM registers */
395 base = brcmstb_ioremap_match(aon_ctrl_dt_ids, 1, NULL);
396 if (IS_ERR(base)) {
397 pr_err("error mapping AON_SRAM\n");
398 goto sram_err;
399 }
400 ctrl.aon_sram_base = base;
401
402 ctrl.num_memc = 0;
403 /* Map MEMC DDR PHY registers */
404 for_each_matching_node(dn, ddr_phy_dt_ids) {
405 i = ctrl.num_memc;
406 if (i >= MAX_NUM_MEMC) {
407 pr_warn("Too many MEMCs (max %d)\n", MAX_NUM_MEMC);
408 break;
409 }
410 base = brcmstb_ioremap_node(dn, 0);
411 if (IS_ERR(base))
412 goto ddr_err;
413
414 ctrl.memcs[i].ddr_phy_base = base;
415 ctrl.num_memc++;
416 }
417
418 /* MEMC ARB registers */
419 base = brcmstb_ioremap_match(arb_dt_ids, 0, NULL);
420 if (IS_ERR(base)) {
421 pr_err("error mapping MEMC ARB\n");
422 goto ddr_err;
423 }
424 ctrl.memcs[0].arb_base = base;
425
426 /* Timer registers */
427 base = brcmstb_ioremap_match(timers_ids, 0, NULL);
428 if (IS_ERR(base)) {
429 pr_err("error mapping timers\n");
430 goto tmr_err;
431 }
432 ctrl.timers_base = base;
433
434 /* s3 cold boot aka s5 */
435 pm_power_off = brcmstb_pm_s5;
436
437 suspend_set_ops(&brcmstb_pm_ops);
438
439 return 0;
440
441 tmr_err:
442 iounmap(ctrl.memcs[0].arb_base);
443 ddr_err:
444 for (i = 0; i < ctrl.num_memc; i++)
445 iounmap(ctrl.memcs[i].ddr_phy_base);
446
447 iounmap(ctrl.aon_sram_base);
448 sram_err:
449 iounmap(ctrl.aon_ctrl_base);
450 aon_err:
451 return PTR_ERR(base);
452 }
453 arch_initcall(brcmstb_pm_init);
454