• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36 
37 #include <trace/events/scsi.h>
38 
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42 
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54 
55 static struct kmem_cache *scsi_sense_cache;
56 static struct kmem_cache *scsi_sense_isadma_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58 
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60 
61 static inline struct kmem_cache *
scsi_select_sense_cache(bool unchecked_isa_dma)62 scsi_select_sense_cache(bool unchecked_isa_dma)
63 {
64 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
65 }
66 
scsi_free_sense_buffer(bool unchecked_isa_dma,unsigned char * sense_buffer)67 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
68 				   unsigned char *sense_buffer)
69 {
70 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
71 			sense_buffer);
72 }
73 
scsi_alloc_sense_buffer(bool unchecked_isa_dma,gfp_t gfp_mask,int numa_node)74 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
75 	gfp_t gfp_mask, int numa_node)
76 {
77 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
78 				     gfp_mask, numa_node);
79 }
80 
scsi_init_sense_cache(struct Scsi_Host * shost)81 int scsi_init_sense_cache(struct Scsi_Host *shost)
82 {
83 	struct kmem_cache *cache;
84 	int ret = 0;
85 
86 	mutex_lock(&scsi_sense_cache_mutex);
87 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
88 	if (cache)
89 		goto exit;
90 
91 	if (shost->unchecked_isa_dma) {
92 		scsi_sense_isadma_cache =
93 			kmem_cache_create("scsi_sense_cache(DMA)",
94 				SCSI_SENSE_BUFFERSIZE, 0,
95 				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
96 		if (!scsi_sense_isadma_cache)
97 			ret = -ENOMEM;
98 	} else {
99 		scsi_sense_cache =
100 			kmem_cache_create_usercopy("scsi_sense_cache",
101 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
102 				0, SCSI_SENSE_BUFFERSIZE, NULL);
103 		if (!scsi_sense_cache)
104 			ret = -ENOMEM;
105 	}
106  exit:
107 	mutex_unlock(&scsi_sense_cache_mutex);
108 	return ret;
109 }
110 
111 /*
112  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
113  * not change behaviour from the previous unplug mechanism, experimentation
114  * may prove this needs changing.
115  */
116 #define SCSI_QUEUE_DELAY	3
117 
118 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)119 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
120 {
121 	struct Scsi_Host *host = cmd->device->host;
122 	struct scsi_device *device = cmd->device;
123 	struct scsi_target *starget = scsi_target(device);
124 
125 	/*
126 	 * Set the appropriate busy bit for the device/host.
127 	 *
128 	 * If the host/device isn't busy, assume that something actually
129 	 * completed, and that we should be able to queue a command now.
130 	 *
131 	 * Note that the prior mid-layer assumption that any host could
132 	 * always queue at least one command is now broken.  The mid-layer
133 	 * will implement a user specifiable stall (see
134 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
135 	 * if a command is requeued with no other commands outstanding
136 	 * either for the device or for the host.
137 	 */
138 	switch (reason) {
139 	case SCSI_MLQUEUE_HOST_BUSY:
140 		atomic_set(&host->host_blocked, host->max_host_blocked);
141 		break;
142 	case SCSI_MLQUEUE_DEVICE_BUSY:
143 	case SCSI_MLQUEUE_EH_RETRY:
144 		atomic_set(&device->device_blocked,
145 			   device->max_device_blocked);
146 		break;
147 	case SCSI_MLQUEUE_TARGET_BUSY:
148 		atomic_set(&starget->target_blocked,
149 			   starget->max_target_blocked);
150 		break;
151 	}
152 }
153 
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd)154 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
155 {
156 	if (cmd->request->rq_flags & RQF_DONTPREP) {
157 		cmd->request->rq_flags &= ~RQF_DONTPREP;
158 		scsi_mq_uninit_cmd(cmd);
159 	} else {
160 		WARN_ON_ONCE(true);
161 	}
162 	blk_mq_requeue_request(cmd->request, true);
163 }
164 
165 /**
166  * __scsi_queue_insert - private queue insertion
167  * @cmd: The SCSI command being requeued
168  * @reason:  The reason for the requeue
169  * @unbusy: Whether the queue should be unbusied
170  *
171  * This is a private queue insertion.  The public interface
172  * scsi_queue_insert() always assumes the queue should be unbusied
173  * because it's always called before the completion.  This function is
174  * for a requeue after completion, which should only occur in this
175  * file.
176  */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,bool unbusy)177 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
178 {
179 	struct scsi_device *device = cmd->device;
180 
181 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
182 		"Inserting command %p into mlqueue\n", cmd));
183 
184 	scsi_set_blocked(cmd, reason);
185 
186 	/*
187 	 * Decrement the counters, since these commands are no longer
188 	 * active on the host/device.
189 	 */
190 	if (unbusy)
191 		scsi_device_unbusy(device, cmd);
192 
193 	/*
194 	 * Requeue this command.  It will go before all other commands
195 	 * that are already in the queue. Schedule requeue work under
196 	 * lock such that the kblockd_schedule_work() call happens
197 	 * before blk_cleanup_queue() finishes.
198 	 */
199 	cmd->result = 0;
200 
201 	blk_mq_requeue_request(cmd->request, true);
202 }
203 
204 /**
205  * scsi_queue_insert - Reinsert a command in the queue.
206  * @cmd:    command that we are adding to queue.
207  * @reason: why we are inserting command to queue.
208  *
209  * We do this for one of two cases. Either the host is busy and it cannot accept
210  * any more commands for the time being, or the device returned QUEUE_FULL and
211  * can accept no more commands.
212  *
213  * Context: This could be called either from an interrupt context or a normal
214  * process context.
215  */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)216 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
217 {
218 	__scsi_queue_insert(cmd, reason, true);
219 }
220 
221 
222 /**
223  * __scsi_execute - insert request and wait for the result
224  * @sdev:	scsi device
225  * @cmd:	scsi command
226  * @data_direction: data direction
227  * @buffer:	data buffer
228  * @bufflen:	len of buffer
229  * @sense:	optional sense buffer
230  * @sshdr:	optional decoded sense header
231  * @timeout:	request timeout in seconds
232  * @retries:	number of times to retry request
233  * @flags:	flags for ->cmd_flags
234  * @rq_flags:	flags for ->rq_flags
235  * @resid:	optional residual length
236  *
237  * Returns the scsi_cmnd result field if a command was executed, or a negative
238  * Linux error code if we didn't get that far.
239  */
__scsi_execute(struct scsi_device * sdev,const unsigned char * cmd,int data_direction,void * buffer,unsigned bufflen,unsigned char * sense,struct scsi_sense_hdr * sshdr,int timeout,int retries,u64 flags,req_flags_t rq_flags,int * resid)240 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
241 		 int data_direction, void *buffer, unsigned bufflen,
242 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
243 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
244 		 int *resid)
245 {
246 	struct request *req;
247 	struct scsi_request *rq;
248 	int ret = DRIVER_ERROR << 24;
249 
250 	req = blk_get_request(sdev->request_queue,
251 			data_direction == DMA_TO_DEVICE ?
252 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN,
253 			rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
254 	if (IS_ERR(req))
255 		return ret;
256 	rq = scsi_req(req);
257 
258 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
259 					buffer, bufflen, GFP_NOIO))
260 		goto out;
261 
262 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
263 	memcpy(rq->cmd, cmd, rq->cmd_len);
264 	rq->retries = retries;
265 	req->timeout = timeout;
266 	req->cmd_flags |= flags;
267 	req->rq_flags |= rq_flags | RQF_QUIET;
268 
269 	/*
270 	 * head injection *required* here otherwise quiesce won't work
271 	 */
272 	blk_execute_rq(req->q, NULL, req, 1);
273 
274 	/*
275 	 * Some devices (USB mass-storage in particular) may transfer
276 	 * garbage data together with a residue indicating that the data
277 	 * is invalid.  Prevent the garbage from being misinterpreted
278 	 * and prevent security leaks by zeroing out the excess data.
279 	 */
280 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
281 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
282 
283 	if (resid)
284 		*resid = rq->resid_len;
285 	if (sense && rq->sense_len)
286 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
287 	if (sshdr)
288 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
289 	ret = rq->result;
290  out:
291 	blk_put_request(req);
292 
293 	return ret;
294 }
295 EXPORT_SYMBOL(__scsi_execute);
296 
297 /*
298  * Wake up the error handler if necessary. Avoid as follows that the error
299  * handler is not woken up if host in-flight requests number ==
300  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
301  * with an RCU read lock in this function to ensure that this function in
302  * its entirety either finishes before scsi_eh_scmd_add() increases the
303  * host_failed counter or that it notices the shost state change made by
304  * scsi_eh_scmd_add().
305  */
scsi_dec_host_busy(struct Scsi_Host * shost,struct scsi_cmnd * cmd)306 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
307 {
308 	unsigned long flags;
309 
310 	rcu_read_lock();
311 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
312 	if (unlikely(scsi_host_in_recovery(shost))) {
313 		spin_lock_irqsave(shost->host_lock, flags);
314 		if (shost->host_failed || shost->host_eh_scheduled)
315 			scsi_eh_wakeup(shost);
316 		spin_unlock_irqrestore(shost->host_lock, flags);
317 	}
318 	rcu_read_unlock();
319 }
320 
scsi_device_unbusy(struct scsi_device * sdev,struct scsi_cmnd * cmd)321 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
322 {
323 	struct Scsi_Host *shost = sdev->host;
324 	struct scsi_target *starget = scsi_target(sdev);
325 
326 	scsi_dec_host_busy(shost, cmd);
327 
328 	if (starget->can_queue > 0)
329 		atomic_dec(&starget->target_busy);
330 
331 	atomic_dec(&sdev->device_busy);
332 }
333 
scsi_kick_queue(struct request_queue * q)334 static void scsi_kick_queue(struct request_queue *q)
335 {
336 	blk_mq_run_hw_queues(q, false);
337 }
338 
339 /*
340  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
341  * and call blk_run_queue for all the scsi_devices on the target -
342  * including current_sdev first.
343  *
344  * Called with *no* scsi locks held.
345  */
scsi_single_lun_run(struct scsi_device * current_sdev)346 static void scsi_single_lun_run(struct scsi_device *current_sdev)
347 {
348 	struct Scsi_Host *shost = current_sdev->host;
349 	struct scsi_device *sdev, *tmp;
350 	struct scsi_target *starget = scsi_target(current_sdev);
351 	unsigned long flags;
352 
353 	spin_lock_irqsave(shost->host_lock, flags);
354 	starget->starget_sdev_user = NULL;
355 	spin_unlock_irqrestore(shost->host_lock, flags);
356 
357 	/*
358 	 * Call blk_run_queue for all LUNs on the target, starting with
359 	 * current_sdev. We race with others (to set starget_sdev_user),
360 	 * but in most cases, we will be first. Ideally, each LU on the
361 	 * target would get some limited time or requests on the target.
362 	 */
363 	scsi_kick_queue(current_sdev->request_queue);
364 
365 	spin_lock_irqsave(shost->host_lock, flags);
366 	if (starget->starget_sdev_user)
367 		goto out;
368 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
369 			same_target_siblings) {
370 		if (sdev == current_sdev)
371 			continue;
372 		if (scsi_device_get(sdev))
373 			continue;
374 
375 		spin_unlock_irqrestore(shost->host_lock, flags);
376 		scsi_kick_queue(sdev->request_queue);
377 		spin_lock_irqsave(shost->host_lock, flags);
378 
379 		scsi_device_put(sdev);
380 	}
381  out:
382 	spin_unlock_irqrestore(shost->host_lock, flags);
383 }
384 
scsi_device_is_busy(struct scsi_device * sdev)385 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
386 {
387 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
388 		return true;
389 	if (atomic_read(&sdev->device_blocked) > 0)
390 		return true;
391 	return false;
392 }
393 
scsi_target_is_busy(struct scsi_target * starget)394 static inline bool scsi_target_is_busy(struct scsi_target *starget)
395 {
396 	if (starget->can_queue > 0) {
397 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
398 			return true;
399 		if (atomic_read(&starget->target_blocked) > 0)
400 			return true;
401 	}
402 	return false;
403 }
404 
scsi_host_is_busy(struct Scsi_Host * shost)405 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
406 {
407 	if (atomic_read(&shost->host_blocked) > 0)
408 		return true;
409 	if (shost->host_self_blocked)
410 		return true;
411 	return false;
412 }
413 
scsi_starved_list_run(struct Scsi_Host * shost)414 static void scsi_starved_list_run(struct Scsi_Host *shost)
415 {
416 	LIST_HEAD(starved_list);
417 	struct scsi_device *sdev;
418 	unsigned long flags;
419 
420 	spin_lock_irqsave(shost->host_lock, flags);
421 	list_splice_init(&shost->starved_list, &starved_list);
422 
423 	while (!list_empty(&starved_list)) {
424 		struct request_queue *slq;
425 
426 		/*
427 		 * As long as shost is accepting commands and we have
428 		 * starved queues, call blk_run_queue. scsi_request_fn
429 		 * drops the queue_lock and can add us back to the
430 		 * starved_list.
431 		 *
432 		 * host_lock protects the starved_list and starved_entry.
433 		 * scsi_request_fn must get the host_lock before checking
434 		 * or modifying starved_list or starved_entry.
435 		 */
436 		if (scsi_host_is_busy(shost))
437 			break;
438 
439 		sdev = list_entry(starved_list.next,
440 				  struct scsi_device, starved_entry);
441 		list_del_init(&sdev->starved_entry);
442 		if (scsi_target_is_busy(scsi_target(sdev))) {
443 			list_move_tail(&sdev->starved_entry,
444 				       &shost->starved_list);
445 			continue;
446 		}
447 
448 		/*
449 		 * Once we drop the host lock, a racing scsi_remove_device()
450 		 * call may remove the sdev from the starved list and destroy
451 		 * it and the queue.  Mitigate by taking a reference to the
452 		 * queue and never touching the sdev again after we drop the
453 		 * host lock.  Note: if __scsi_remove_device() invokes
454 		 * blk_cleanup_queue() before the queue is run from this
455 		 * function then blk_run_queue() will return immediately since
456 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
457 		 */
458 		slq = sdev->request_queue;
459 		if (!blk_get_queue(slq))
460 			continue;
461 		spin_unlock_irqrestore(shost->host_lock, flags);
462 
463 		scsi_kick_queue(slq);
464 		blk_put_queue(slq);
465 
466 		spin_lock_irqsave(shost->host_lock, flags);
467 	}
468 	/* put any unprocessed entries back */
469 	list_splice(&starved_list, &shost->starved_list);
470 	spin_unlock_irqrestore(shost->host_lock, flags);
471 }
472 
473 /**
474  * scsi_run_queue - Select a proper request queue to serve next.
475  * @q:  last request's queue
476  *
477  * The previous command was completely finished, start a new one if possible.
478  */
scsi_run_queue(struct request_queue * q)479 static void scsi_run_queue(struct request_queue *q)
480 {
481 	struct scsi_device *sdev = q->queuedata;
482 
483 	if (scsi_target(sdev)->single_lun)
484 		scsi_single_lun_run(sdev);
485 	if (!list_empty(&sdev->host->starved_list))
486 		scsi_starved_list_run(sdev->host);
487 
488 	blk_mq_run_hw_queues(q, false);
489 }
490 
scsi_requeue_run_queue(struct work_struct * work)491 void scsi_requeue_run_queue(struct work_struct *work)
492 {
493 	struct scsi_device *sdev;
494 	struct request_queue *q;
495 
496 	sdev = container_of(work, struct scsi_device, requeue_work);
497 	q = sdev->request_queue;
498 	scsi_run_queue(q);
499 }
500 
scsi_run_host_queues(struct Scsi_Host * shost)501 void scsi_run_host_queues(struct Scsi_Host *shost)
502 {
503 	struct scsi_device *sdev;
504 
505 	shost_for_each_device(sdev, shost)
506 		scsi_run_queue(sdev->request_queue);
507 }
508 
scsi_uninit_cmd(struct scsi_cmnd * cmd)509 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
510 {
511 	if (!blk_rq_is_passthrough(cmd->request)) {
512 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
513 
514 		if (drv->uninit_command)
515 			drv->uninit_command(cmd);
516 	}
517 }
518 
scsi_free_sgtables(struct scsi_cmnd * cmd)519 void scsi_free_sgtables(struct scsi_cmnd *cmd)
520 {
521 	if (cmd->sdb.table.nents)
522 		sg_free_table_chained(&cmd->sdb.table,
523 				SCSI_INLINE_SG_CNT);
524 	if (scsi_prot_sg_count(cmd))
525 		sg_free_table_chained(&cmd->prot_sdb->table,
526 				SCSI_INLINE_PROT_SG_CNT);
527 }
528 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
529 
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)530 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
531 {
532 	scsi_free_sgtables(cmd);
533 	scsi_uninit_cmd(cmd);
534 }
535 
scsi_run_queue_async(struct scsi_device * sdev)536 static void scsi_run_queue_async(struct scsi_device *sdev)
537 {
538 	if (scsi_target(sdev)->single_lun ||
539 	    !list_empty(&sdev->host->starved_list)) {
540 		kblockd_schedule_work(&sdev->requeue_work);
541 	} else {
542 		/*
543 		 * smp_mb() present in sbitmap_queue_clear() or implied in
544 		 * .end_io is for ordering writing .device_busy in
545 		 * scsi_device_unbusy() and reading sdev->restarts.
546 		 */
547 		int old = atomic_read(&sdev->restarts);
548 
549 		/*
550 		 * ->restarts has to be kept as non-zero if new budget
551 		 *  contention occurs.
552 		 *
553 		 *  No need to run queue when either another re-run
554 		 *  queue wins in updating ->restarts or a new budget
555 		 *  contention occurs.
556 		 */
557 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
558 			blk_mq_run_hw_queues(sdev->request_queue, true);
559 	}
560 }
561 
562 /* Returns false when no more bytes to process, true if there are more */
scsi_end_request(struct request * req,blk_status_t error,unsigned int bytes)563 static bool scsi_end_request(struct request *req, blk_status_t error,
564 		unsigned int bytes)
565 {
566 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
567 	struct scsi_device *sdev = cmd->device;
568 	struct request_queue *q = sdev->request_queue;
569 
570 	if (blk_update_request(req, error, bytes))
571 		return true;
572 
573 	if (blk_queue_add_random(q))
574 		add_disk_randomness(req->rq_disk);
575 
576 	if (!blk_rq_is_scsi(req)) {
577 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
578 		cmd->flags &= ~SCMD_INITIALIZED;
579 	}
580 
581 	/*
582 	 * Calling rcu_barrier() is not necessary here because the
583 	 * SCSI error handler guarantees that the function called by
584 	 * call_rcu() has been called before scsi_end_request() is
585 	 * called.
586 	 */
587 	destroy_rcu_head(&cmd->rcu);
588 
589 	/*
590 	 * In the MQ case the command gets freed by __blk_mq_end_request,
591 	 * so we have to do all cleanup that depends on it earlier.
592 	 *
593 	 * We also can't kick the queues from irq context, so we
594 	 * will have to defer it to a workqueue.
595 	 */
596 	scsi_mq_uninit_cmd(cmd);
597 
598 	/*
599 	 * queue is still alive, so grab the ref for preventing it
600 	 * from being cleaned up during running queue.
601 	 */
602 	percpu_ref_get(&q->q_usage_counter);
603 
604 	__blk_mq_end_request(req, error);
605 
606 	scsi_run_queue_async(sdev);
607 
608 	percpu_ref_put(&q->q_usage_counter);
609 	return false;
610 }
611 
612 /**
613  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
614  * @cmd:	SCSI command
615  * @result:	scsi error code
616  *
617  * Translate a SCSI result code into a blk_status_t value. May reset the host
618  * byte of @cmd->result.
619  */
scsi_result_to_blk_status(struct scsi_cmnd * cmd,int result)620 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
621 {
622 	switch (host_byte(result)) {
623 	case DID_OK:
624 		/*
625 		 * Also check the other bytes than the status byte in result
626 		 * to handle the case when a SCSI LLD sets result to
627 		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
628 		 */
629 		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
630 			return BLK_STS_OK;
631 		return BLK_STS_IOERR;
632 	case DID_TRANSPORT_FAILFAST:
633 		return BLK_STS_TRANSPORT;
634 	case DID_TARGET_FAILURE:
635 		set_host_byte(cmd, DID_OK);
636 		return BLK_STS_TARGET;
637 	case DID_NEXUS_FAILURE:
638 		set_host_byte(cmd, DID_OK);
639 		return BLK_STS_NEXUS;
640 	case DID_ALLOC_FAILURE:
641 		set_host_byte(cmd, DID_OK);
642 		return BLK_STS_NOSPC;
643 	case DID_MEDIUM_ERROR:
644 		set_host_byte(cmd, DID_OK);
645 		return BLK_STS_MEDIUM;
646 	default:
647 		return BLK_STS_IOERR;
648 	}
649 }
650 
651 /* Helper for scsi_io_completion() when "reprep" action required. */
scsi_io_completion_reprep(struct scsi_cmnd * cmd,struct request_queue * q)652 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
653 				      struct request_queue *q)
654 {
655 	/* A new command will be prepared and issued. */
656 	scsi_mq_requeue_cmd(cmd);
657 }
658 
scsi_cmd_runtime_exceeced(struct scsi_cmnd * cmd)659 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
660 {
661 	struct request *req = cmd->request;
662 	unsigned long wait_for;
663 
664 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
665 		return false;
666 
667 	wait_for = (cmd->allowed + 1) * req->timeout;
668 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
669 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
670 			    wait_for/HZ);
671 		return true;
672 	}
673 	return false;
674 }
675 
676 /* Helper for scsi_io_completion() when special action required. */
scsi_io_completion_action(struct scsi_cmnd * cmd,int result)677 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
678 {
679 	struct request_queue *q = cmd->device->request_queue;
680 	struct request *req = cmd->request;
681 	int level = 0;
682 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
683 	      ACTION_DELAYED_RETRY} action;
684 	struct scsi_sense_hdr sshdr;
685 	bool sense_valid;
686 	bool sense_current = true;      /* false implies "deferred sense" */
687 	blk_status_t blk_stat;
688 
689 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
690 	if (sense_valid)
691 		sense_current = !scsi_sense_is_deferred(&sshdr);
692 
693 	blk_stat = scsi_result_to_blk_status(cmd, result);
694 
695 	if (host_byte(result) == DID_RESET) {
696 		/* Third party bus reset or reset for error recovery
697 		 * reasons.  Just retry the command and see what
698 		 * happens.
699 		 */
700 		action = ACTION_RETRY;
701 	} else if (sense_valid && sense_current) {
702 		switch (sshdr.sense_key) {
703 		case UNIT_ATTENTION:
704 			if (cmd->device->removable) {
705 				/* Detected disc change.  Set a bit
706 				 * and quietly refuse further access.
707 				 */
708 				cmd->device->changed = 1;
709 				action = ACTION_FAIL;
710 			} else {
711 				/* Must have been a power glitch, or a
712 				 * bus reset.  Could not have been a
713 				 * media change, so we just retry the
714 				 * command and see what happens.
715 				 */
716 				action = ACTION_RETRY;
717 			}
718 			break;
719 		case ILLEGAL_REQUEST:
720 			/* If we had an ILLEGAL REQUEST returned, then
721 			 * we may have performed an unsupported
722 			 * command.  The only thing this should be
723 			 * would be a ten byte read where only a six
724 			 * byte read was supported.  Also, on a system
725 			 * where READ CAPACITY failed, we may have
726 			 * read past the end of the disk.
727 			 */
728 			if ((cmd->device->use_10_for_rw &&
729 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
730 			    (cmd->cmnd[0] == READ_10 ||
731 			     cmd->cmnd[0] == WRITE_10)) {
732 				/* This will issue a new 6-byte command. */
733 				cmd->device->use_10_for_rw = 0;
734 				action = ACTION_REPREP;
735 			} else if (sshdr.asc == 0x10) /* DIX */ {
736 				action = ACTION_FAIL;
737 				blk_stat = BLK_STS_PROTECTION;
738 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
739 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
740 				action = ACTION_FAIL;
741 				blk_stat = BLK_STS_TARGET;
742 			} else
743 				action = ACTION_FAIL;
744 			break;
745 		case ABORTED_COMMAND:
746 			action = ACTION_FAIL;
747 			if (sshdr.asc == 0x10) /* DIF */
748 				blk_stat = BLK_STS_PROTECTION;
749 			break;
750 		case NOT_READY:
751 			/* If the device is in the process of becoming
752 			 * ready, or has a temporary blockage, retry.
753 			 */
754 			if (sshdr.asc == 0x04) {
755 				switch (sshdr.ascq) {
756 				case 0x01: /* becoming ready */
757 				case 0x04: /* format in progress */
758 				case 0x05: /* rebuild in progress */
759 				case 0x06: /* recalculation in progress */
760 				case 0x07: /* operation in progress */
761 				case 0x08: /* Long write in progress */
762 				case 0x09: /* self test in progress */
763 				case 0x11: /* notify (enable spinup) required */
764 				case 0x14: /* space allocation in progress */
765 				case 0x1a: /* start stop unit in progress */
766 				case 0x1b: /* sanitize in progress */
767 				case 0x1d: /* configuration in progress */
768 				case 0x24: /* depopulation in progress */
769 					action = ACTION_DELAYED_RETRY;
770 					break;
771 				default:
772 					action = ACTION_FAIL;
773 					break;
774 				}
775 			} else
776 				action = ACTION_FAIL;
777 			break;
778 		case VOLUME_OVERFLOW:
779 			/* See SSC3rXX or current. */
780 			action = ACTION_FAIL;
781 			break;
782 		case DATA_PROTECT:
783 			action = ACTION_FAIL;
784 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
785 			    (sshdr.asc == 0x55 &&
786 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
787 				/* Insufficient zone resources */
788 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
789 			}
790 			break;
791 		default:
792 			action = ACTION_FAIL;
793 			break;
794 		}
795 	} else
796 		action = ACTION_FAIL;
797 
798 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
799 		action = ACTION_FAIL;
800 
801 	switch (action) {
802 	case ACTION_FAIL:
803 		/* Give up and fail the remainder of the request */
804 		if (!(req->rq_flags & RQF_QUIET)) {
805 			static DEFINE_RATELIMIT_STATE(_rs,
806 					DEFAULT_RATELIMIT_INTERVAL,
807 					DEFAULT_RATELIMIT_BURST);
808 
809 			if (unlikely(scsi_logging_level))
810 				level =
811 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
812 						    SCSI_LOG_MLCOMPLETE_BITS);
813 
814 			/*
815 			 * if logging is enabled the failure will be printed
816 			 * in scsi_log_completion(), so avoid duplicate messages
817 			 */
818 			if (!level && __ratelimit(&_rs)) {
819 				scsi_print_result(cmd, NULL, FAILED);
820 				if (driver_byte(result) == DRIVER_SENSE)
821 					scsi_print_sense(cmd);
822 				scsi_print_command(cmd);
823 			}
824 		}
825 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
826 			return;
827 		fallthrough;
828 	case ACTION_REPREP:
829 		scsi_io_completion_reprep(cmd, q);
830 		break;
831 	case ACTION_RETRY:
832 		/* Retry the same command immediately */
833 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
834 		break;
835 	case ACTION_DELAYED_RETRY:
836 		/* Retry the same command after a delay */
837 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
838 		break;
839 	}
840 }
841 
842 /*
843  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
844  * new result that may suppress further error checking. Also modifies
845  * *blk_statp in some cases.
846  */
scsi_io_completion_nz_result(struct scsi_cmnd * cmd,int result,blk_status_t * blk_statp)847 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
848 					blk_status_t *blk_statp)
849 {
850 	bool sense_valid;
851 	bool sense_current = true;	/* false implies "deferred sense" */
852 	struct request *req = cmd->request;
853 	struct scsi_sense_hdr sshdr;
854 
855 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
856 	if (sense_valid)
857 		sense_current = !scsi_sense_is_deferred(&sshdr);
858 
859 	if (blk_rq_is_passthrough(req)) {
860 		if (sense_valid) {
861 			/*
862 			 * SG_IO wants current and deferred errors
863 			 */
864 			scsi_req(req)->sense_len =
865 				min(8 + cmd->sense_buffer[7],
866 				    SCSI_SENSE_BUFFERSIZE);
867 		}
868 		if (sense_current)
869 			*blk_statp = scsi_result_to_blk_status(cmd, result);
870 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
871 		/*
872 		 * Flush commands do not transfers any data, and thus cannot use
873 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
874 		 * This sets *blk_statp explicitly for the problem case.
875 		 */
876 		*blk_statp = scsi_result_to_blk_status(cmd, result);
877 	}
878 	/*
879 	 * Recovered errors need reporting, but they're always treated as
880 	 * success, so fiddle the result code here.  For passthrough requests
881 	 * we already took a copy of the original into sreq->result which
882 	 * is what gets returned to the user
883 	 */
884 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
885 		bool do_print = true;
886 		/*
887 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
888 		 * skip print since caller wants ATA registers. Only occurs
889 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
890 		 */
891 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
892 			do_print = false;
893 		else if (req->rq_flags & RQF_QUIET)
894 			do_print = false;
895 		if (do_print)
896 			scsi_print_sense(cmd);
897 		result = 0;
898 		/* for passthrough, *blk_statp may be set */
899 		*blk_statp = BLK_STS_OK;
900 	}
901 	/*
902 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
903 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
904 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
905 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
906 	 * intermediate statuses (both obsolete in SAM-4) as good.
907 	 */
908 	if (status_byte(result) && scsi_status_is_good(result)) {
909 		result = 0;
910 		*blk_statp = BLK_STS_OK;
911 	}
912 	return result;
913 }
914 
915 /**
916  * scsi_io_completion - Completion processing for SCSI commands.
917  * @cmd:	command that is finished.
918  * @good_bytes:	number of processed bytes.
919  *
920  * We will finish off the specified number of sectors. If we are done, the
921  * command block will be released and the queue function will be goosed. If we
922  * are not done then we have to figure out what to do next:
923  *
924  *   a) We can call scsi_io_completion_reprep().  The request will be
925  *	unprepared and put back on the queue.  Then a new command will
926  *	be created for it.  This should be used if we made forward
927  *	progress, or if we want to switch from READ(10) to READ(6) for
928  *	example.
929  *
930  *   b) We can call scsi_io_completion_action().  The request will be
931  *	put back on the queue and retried using the same command as
932  *	before, possibly after a delay.
933  *
934  *   c) We can call scsi_end_request() with blk_stat other than
935  *	BLK_STS_OK, to fail the remainder of the request.
936  */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)937 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
938 {
939 	int result = cmd->result;
940 	struct request_queue *q = cmd->device->request_queue;
941 	struct request *req = cmd->request;
942 	blk_status_t blk_stat = BLK_STS_OK;
943 
944 	if (unlikely(result))	/* a nz result may or may not be an error */
945 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
946 
947 	if (unlikely(blk_rq_is_passthrough(req))) {
948 		/*
949 		 * scsi_result_to_blk_status may have reset the host_byte
950 		 */
951 		scsi_req(req)->result = cmd->result;
952 	}
953 
954 	/*
955 	 * Next deal with any sectors which we were able to correctly
956 	 * handle.
957 	 */
958 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
959 		"%u sectors total, %d bytes done.\n",
960 		blk_rq_sectors(req), good_bytes));
961 
962 	/*
963 	 * Failed, zero length commands always need to drop down
964 	 * to retry code. Fast path should return in this block.
965 	 */
966 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
967 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
968 			return; /* no bytes remaining */
969 	}
970 
971 	/* Kill remainder if no retries. */
972 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
973 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
974 			WARN_ONCE(true,
975 			    "Bytes remaining after failed, no-retry command");
976 		return;
977 	}
978 
979 	/*
980 	 * If there had been no error, but we have leftover bytes in the
981 	 * requeues just queue the command up again.
982 	 */
983 	if (likely(result == 0))
984 		scsi_io_completion_reprep(cmd, q);
985 	else
986 		scsi_io_completion_action(cmd, result);
987 }
988 
scsi_cmd_needs_dma_drain(struct scsi_device * sdev,struct request * rq)989 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
990 		struct request *rq)
991 {
992 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
993 	       !op_is_write(req_op(rq)) &&
994 	       sdev->host->hostt->dma_need_drain(rq);
995 }
996 
997 /**
998  * scsi_alloc_sgtables - allocate S/G tables for a command
999  * @cmd:  command descriptor we wish to initialize
1000  *
1001  * Returns:
1002  * * BLK_STS_OK       - on success
1003  * * BLK_STS_RESOURCE - if the failure is retryable
1004  * * BLK_STS_IOERR    - if the failure is fatal
1005  */
scsi_alloc_sgtables(struct scsi_cmnd * cmd)1006 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1007 {
1008 	struct scsi_device *sdev = cmd->device;
1009 	struct request *rq = cmd->request;
1010 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1011 	struct scatterlist *last_sg = NULL;
1012 	blk_status_t ret;
1013 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1014 	int count;
1015 
1016 	if (WARN_ON_ONCE(!nr_segs))
1017 		return BLK_STS_IOERR;
1018 
1019 	/*
1020 	 * Make sure there is space for the drain.  The driver must adjust
1021 	 * max_hw_segments to be prepared for this.
1022 	 */
1023 	if (need_drain)
1024 		nr_segs++;
1025 
1026 	/*
1027 	 * If sg table allocation fails, requeue request later.
1028 	 */
1029 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1030 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1031 		return BLK_STS_RESOURCE;
1032 
1033 	/*
1034 	 * Next, walk the list, and fill in the addresses and sizes of
1035 	 * each segment.
1036 	 */
1037 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1038 
1039 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1040 		unsigned int pad_len =
1041 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1042 
1043 		last_sg->length += pad_len;
1044 		cmd->extra_len += pad_len;
1045 	}
1046 
1047 	if (need_drain) {
1048 		sg_unmark_end(last_sg);
1049 		last_sg = sg_next(last_sg);
1050 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1051 		sg_mark_end(last_sg);
1052 
1053 		cmd->extra_len += sdev->dma_drain_len;
1054 		count++;
1055 	}
1056 
1057 	BUG_ON(count > cmd->sdb.table.nents);
1058 	cmd->sdb.table.nents = count;
1059 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1060 
1061 	if (blk_integrity_rq(rq)) {
1062 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1063 		int ivecs;
1064 
1065 		if (WARN_ON_ONCE(!prot_sdb)) {
1066 			/*
1067 			 * This can happen if someone (e.g. multipath)
1068 			 * queues a command to a device on an adapter
1069 			 * that does not support DIX.
1070 			 */
1071 			ret = BLK_STS_IOERR;
1072 			goto out_free_sgtables;
1073 		}
1074 
1075 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1076 
1077 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1078 				prot_sdb->table.sgl,
1079 				SCSI_INLINE_PROT_SG_CNT)) {
1080 			ret = BLK_STS_RESOURCE;
1081 			goto out_free_sgtables;
1082 		}
1083 
1084 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1085 						prot_sdb->table.sgl);
1086 		BUG_ON(count > ivecs);
1087 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1088 
1089 		cmd->prot_sdb = prot_sdb;
1090 		cmd->prot_sdb->table.nents = count;
1091 	}
1092 
1093 	return BLK_STS_OK;
1094 out_free_sgtables:
1095 	scsi_free_sgtables(cmd);
1096 	return ret;
1097 }
1098 EXPORT_SYMBOL(scsi_alloc_sgtables);
1099 
1100 /**
1101  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1102  * @rq: Request associated with the SCSI command to be initialized.
1103  *
1104  * This function initializes the members of struct scsi_cmnd that must be
1105  * initialized before request processing starts and that won't be
1106  * reinitialized if a SCSI command is requeued.
1107  *
1108  * Called from inside blk_get_request() for pass-through requests and from
1109  * inside scsi_init_command() for filesystem requests.
1110  */
scsi_initialize_rq(struct request * rq)1111 static void scsi_initialize_rq(struct request *rq)
1112 {
1113 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1114 
1115 	scsi_req_init(&cmd->req);
1116 	init_rcu_head(&cmd->rcu);
1117 	cmd->jiffies_at_alloc = jiffies;
1118 	cmd->retries = 0;
1119 }
1120 
1121 /*
1122  * Only called when the request isn't completed by SCSI, and not freed by
1123  * SCSI
1124  */
scsi_cleanup_rq(struct request * rq)1125 static void scsi_cleanup_rq(struct request *rq)
1126 {
1127 	if (rq->rq_flags & RQF_DONTPREP) {
1128 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1129 		rq->rq_flags &= ~RQF_DONTPREP;
1130 	}
1131 }
1132 
1133 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
scsi_init_command(struct scsi_device * dev,struct scsi_cmnd * cmd)1134 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1135 {
1136 	void *buf = cmd->sense_buffer;
1137 	void *prot = cmd->prot_sdb;
1138 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1139 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1140 	unsigned long jiffies_at_alloc;
1141 	int retries, to_clear;
1142 	bool in_flight;
1143 
1144 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1145 		flags |= SCMD_INITIALIZED;
1146 		scsi_initialize_rq(rq);
1147 	}
1148 
1149 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1150 	retries = cmd->retries;
1151 	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1152 	/*
1153 	 * Zero out the cmd, except for the embedded scsi_request. Only clear
1154 	 * the driver-private command data if the LLD does not supply a
1155 	 * function to initialize that data.
1156 	 */
1157 	to_clear = sizeof(*cmd) - sizeof(cmd->req);
1158 	if (!dev->host->hostt->init_cmd_priv)
1159 		to_clear += dev->host->hostt->cmd_size;
1160 	memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1161 
1162 	cmd->device = dev;
1163 	cmd->sense_buffer = buf;
1164 	cmd->prot_sdb = prot;
1165 	cmd->flags = flags;
1166 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1167 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1168 	cmd->retries = retries;
1169 	if (in_flight)
1170 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1171 
1172 }
1173 
scsi_setup_scsi_cmnd(struct scsi_device * sdev,struct request * req)1174 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1175 		struct request *req)
1176 {
1177 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1178 
1179 	/*
1180 	 * Passthrough requests may transfer data, in which case they must
1181 	 * a bio attached to them.  Or they might contain a SCSI command
1182 	 * that does not transfer data, in which case they may optionally
1183 	 * submit a request without an attached bio.
1184 	 */
1185 	if (req->bio) {
1186 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1187 		if (unlikely(ret != BLK_STS_OK))
1188 			return ret;
1189 	} else {
1190 		BUG_ON(blk_rq_bytes(req));
1191 
1192 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1193 	}
1194 
1195 	cmd->cmd_len = scsi_req(req)->cmd_len;
1196 	cmd->cmnd = scsi_req(req)->cmd;
1197 	cmd->transfersize = blk_rq_bytes(req);
1198 	cmd->allowed = scsi_req(req)->retries;
1199 	return BLK_STS_OK;
1200 }
1201 
1202 static blk_status_t
scsi_device_state_check(struct scsi_device * sdev,struct request * req)1203 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1204 {
1205 	switch (sdev->sdev_state) {
1206 	case SDEV_CREATED:
1207 		return BLK_STS_OK;
1208 	case SDEV_OFFLINE:
1209 	case SDEV_TRANSPORT_OFFLINE:
1210 		/*
1211 		 * If the device is offline we refuse to process any
1212 		 * commands.  The device must be brought online
1213 		 * before trying any recovery commands.
1214 		 */
1215 		if (!sdev->offline_already) {
1216 			sdev->offline_already = true;
1217 			sdev_printk(KERN_ERR, sdev,
1218 				    "rejecting I/O to offline device\n");
1219 		}
1220 		return BLK_STS_IOERR;
1221 	case SDEV_DEL:
1222 		/*
1223 		 * If the device is fully deleted, we refuse to
1224 		 * process any commands as well.
1225 		 */
1226 		sdev_printk(KERN_ERR, sdev,
1227 			    "rejecting I/O to dead device\n");
1228 		return BLK_STS_IOERR;
1229 	case SDEV_BLOCK:
1230 	case SDEV_CREATED_BLOCK:
1231 		return BLK_STS_RESOURCE;
1232 	case SDEV_QUIESCE:
1233 		/*
1234 		 * If the device is blocked we only accept power management
1235 		 * commands.
1236 		 */
1237 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1238 			return BLK_STS_RESOURCE;
1239 		return BLK_STS_OK;
1240 	default:
1241 		/*
1242 		 * For any other not fully online state we only allow
1243 		 * power management commands.
1244 		 */
1245 		if (req && !(req->rq_flags & RQF_PM))
1246 			return BLK_STS_IOERR;
1247 		return BLK_STS_OK;
1248 	}
1249 }
1250 
1251 /*
1252  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1253  * return 0.
1254  *
1255  * Called with the queue_lock held.
1256  */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1257 static inline int scsi_dev_queue_ready(struct request_queue *q,
1258 				  struct scsi_device *sdev)
1259 {
1260 	unsigned int busy;
1261 
1262 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1263 	if (atomic_read(&sdev->device_blocked)) {
1264 		if (busy)
1265 			goto out_dec;
1266 
1267 		/*
1268 		 * unblock after device_blocked iterates to zero
1269 		 */
1270 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1271 			goto out_dec;
1272 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1273 				   "unblocking device at zero depth\n"));
1274 	}
1275 
1276 	if (busy >= sdev->queue_depth)
1277 		goto out_dec;
1278 
1279 	return 1;
1280 out_dec:
1281 	atomic_dec(&sdev->device_busy);
1282 	return 0;
1283 }
1284 
1285 /*
1286  * scsi_target_queue_ready: checks if there we can send commands to target
1287  * @sdev: scsi device on starget to check.
1288  */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1289 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1290 					   struct scsi_device *sdev)
1291 {
1292 	struct scsi_target *starget = scsi_target(sdev);
1293 	unsigned int busy;
1294 
1295 	if (starget->single_lun) {
1296 		spin_lock_irq(shost->host_lock);
1297 		if (starget->starget_sdev_user &&
1298 		    starget->starget_sdev_user != sdev) {
1299 			spin_unlock_irq(shost->host_lock);
1300 			return 0;
1301 		}
1302 		starget->starget_sdev_user = sdev;
1303 		spin_unlock_irq(shost->host_lock);
1304 	}
1305 
1306 	if (starget->can_queue <= 0)
1307 		return 1;
1308 
1309 	busy = atomic_inc_return(&starget->target_busy) - 1;
1310 	if (atomic_read(&starget->target_blocked) > 0) {
1311 		if (busy)
1312 			goto starved;
1313 
1314 		/*
1315 		 * unblock after target_blocked iterates to zero
1316 		 */
1317 		if (atomic_dec_return(&starget->target_blocked) > 0)
1318 			goto out_dec;
1319 
1320 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1321 				 "unblocking target at zero depth\n"));
1322 	}
1323 
1324 	if (busy >= starget->can_queue)
1325 		goto starved;
1326 
1327 	return 1;
1328 
1329 starved:
1330 	spin_lock_irq(shost->host_lock);
1331 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1332 	spin_unlock_irq(shost->host_lock);
1333 out_dec:
1334 	if (starget->can_queue > 0)
1335 		atomic_dec(&starget->target_busy);
1336 	return 0;
1337 }
1338 
1339 /*
1340  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1341  * return 0. We must end up running the queue again whenever 0 is
1342  * returned, else IO can hang.
1343  */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev,struct scsi_cmnd * cmd)1344 static inline int scsi_host_queue_ready(struct request_queue *q,
1345 				   struct Scsi_Host *shost,
1346 				   struct scsi_device *sdev,
1347 				   struct scsi_cmnd *cmd)
1348 {
1349 	if (atomic_read(&shost->host_blocked) > 0) {
1350 		if (scsi_host_busy(shost) > 0)
1351 			goto starved;
1352 
1353 		/*
1354 		 * unblock after host_blocked iterates to zero
1355 		 */
1356 		if (atomic_dec_return(&shost->host_blocked) > 0)
1357 			goto out_dec;
1358 
1359 		SCSI_LOG_MLQUEUE(3,
1360 			shost_printk(KERN_INFO, shost,
1361 				     "unblocking host at zero depth\n"));
1362 	}
1363 
1364 	if (shost->host_self_blocked)
1365 		goto starved;
1366 
1367 	/* We're OK to process the command, so we can't be starved */
1368 	if (!list_empty(&sdev->starved_entry)) {
1369 		spin_lock_irq(shost->host_lock);
1370 		if (!list_empty(&sdev->starved_entry))
1371 			list_del_init(&sdev->starved_entry);
1372 		spin_unlock_irq(shost->host_lock);
1373 	}
1374 
1375 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1376 
1377 	return 1;
1378 
1379 starved:
1380 	spin_lock_irq(shost->host_lock);
1381 	if (list_empty(&sdev->starved_entry))
1382 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1383 	spin_unlock_irq(shost->host_lock);
1384 out_dec:
1385 	scsi_dec_host_busy(shost, cmd);
1386 	return 0;
1387 }
1388 
1389 /*
1390  * Busy state exporting function for request stacking drivers.
1391  *
1392  * For efficiency, no lock is taken to check the busy state of
1393  * shost/starget/sdev, since the returned value is not guaranteed and
1394  * may be changed after request stacking drivers call the function,
1395  * regardless of taking lock or not.
1396  *
1397  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1398  * needs to return 'not busy'. Otherwise, request stacking drivers
1399  * may hold requests forever.
1400  */
scsi_mq_lld_busy(struct request_queue * q)1401 static bool scsi_mq_lld_busy(struct request_queue *q)
1402 {
1403 	struct scsi_device *sdev = q->queuedata;
1404 	struct Scsi_Host *shost;
1405 
1406 	if (blk_queue_dying(q))
1407 		return false;
1408 
1409 	shost = sdev->host;
1410 
1411 	/*
1412 	 * Ignore host/starget busy state.
1413 	 * Since block layer does not have a concept of fairness across
1414 	 * multiple queues, congestion of host/starget needs to be handled
1415 	 * in SCSI layer.
1416 	 */
1417 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1418 		return true;
1419 
1420 	return false;
1421 }
1422 
scsi_softirq_done(struct request * rq)1423 static void scsi_softirq_done(struct request *rq)
1424 {
1425 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1426 	int disposition;
1427 
1428 	INIT_LIST_HEAD(&cmd->eh_entry);
1429 
1430 	atomic_inc(&cmd->device->iodone_cnt);
1431 	if (cmd->result)
1432 		atomic_inc(&cmd->device->ioerr_cnt);
1433 
1434 	disposition = scsi_decide_disposition(cmd);
1435 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1436 		disposition = SUCCESS;
1437 
1438 	scsi_log_completion(cmd, disposition);
1439 
1440 	switch (disposition) {
1441 	case SUCCESS:
1442 		scsi_finish_command(cmd);
1443 		break;
1444 	case NEEDS_RETRY:
1445 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1446 		break;
1447 	case ADD_TO_MLQUEUE:
1448 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1449 		break;
1450 	default:
1451 		scsi_eh_scmd_add(cmd);
1452 		break;
1453 	}
1454 }
1455 
1456 /**
1457  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1458  * @cmd: command block we are dispatching.
1459  *
1460  * Return: nonzero return request was rejected and device's queue needs to be
1461  * plugged.
1462  */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1463 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1464 {
1465 	struct Scsi_Host *host = cmd->device->host;
1466 	int rtn = 0;
1467 
1468 	atomic_inc(&cmd->device->iorequest_cnt);
1469 
1470 	/* check if the device is still usable */
1471 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1472 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1473 		 * returns an immediate error upwards, and signals
1474 		 * that the device is no longer present */
1475 		cmd->result = DID_NO_CONNECT << 16;
1476 		goto done;
1477 	}
1478 
1479 	/* Check to see if the scsi lld made this device blocked. */
1480 	if (unlikely(scsi_device_blocked(cmd->device))) {
1481 		/*
1482 		 * in blocked state, the command is just put back on
1483 		 * the device queue.  The suspend state has already
1484 		 * blocked the queue so future requests should not
1485 		 * occur until the device transitions out of the
1486 		 * suspend state.
1487 		 */
1488 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1489 			"queuecommand : device blocked\n"));
1490 		atomic_dec(&cmd->device->iorequest_cnt);
1491 		return SCSI_MLQUEUE_DEVICE_BUSY;
1492 	}
1493 
1494 	/* Store the LUN value in cmnd, if needed. */
1495 	if (cmd->device->lun_in_cdb)
1496 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1497 			       (cmd->device->lun << 5 & 0xe0);
1498 
1499 	scsi_log_send(cmd);
1500 
1501 	/*
1502 	 * Before we queue this command, check if the command
1503 	 * length exceeds what the host adapter can handle.
1504 	 */
1505 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1506 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1507 			       "queuecommand : command too long. "
1508 			       "cdb_size=%d host->max_cmd_len=%d\n",
1509 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1510 		cmd->result = (DID_ABORT << 16);
1511 		goto done;
1512 	}
1513 
1514 	if (unlikely(host->shost_state == SHOST_DEL)) {
1515 		cmd->result = (DID_NO_CONNECT << 16);
1516 		goto done;
1517 
1518 	}
1519 
1520 	trace_scsi_dispatch_cmd_start(cmd);
1521 	rtn = host->hostt->queuecommand(host, cmd);
1522 	if (rtn) {
1523 		atomic_dec(&cmd->device->iorequest_cnt);
1524 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1525 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1526 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1527 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1528 
1529 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1530 			"queuecommand : request rejected\n"));
1531 	}
1532 
1533 	return rtn;
1534  done:
1535 	cmd->scsi_done(cmd);
1536 	return 0;
1537 }
1538 
1539 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
scsi_mq_inline_sgl_size(struct Scsi_Host * shost)1540 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1541 {
1542 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1543 		sizeof(struct scatterlist);
1544 }
1545 
scsi_prepare_cmd(struct request * req)1546 static blk_status_t scsi_prepare_cmd(struct request *req)
1547 {
1548 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1549 	struct scsi_device *sdev = req->q->queuedata;
1550 	struct Scsi_Host *shost = sdev->host;
1551 	struct scatterlist *sg;
1552 
1553 	scsi_init_command(sdev, cmd);
1554 
1555 	cmd->request = req;
1556 	cmd->tag = req->tag;
1557 	cmd->prot_op = SCSI_PROT_NORMAL;
1558 	if (blk_rq_bytes(req))
1559 		cmd->sc_data_direction = rq_dma_dir(req);
1560 	else
1561 		cmd->sc_data_direction = DMA_NONE;
1562 
1563 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1564 	cmd->sdb.table.sgl = sg;
1565 
1566 	if (scsi_host_get_prot(shost)) {
1567 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1568 
1569 		cmd->prot_sdb->table.sgl =
1570 			(struct scatterlist *)(cmd->prot_sdb + 1);
1571 	}
1572 
1573 	/*
1574 	 * Special handling for passthrough commands, which don't go to the ULP
1575 	 * at all:
1576 	 */
1577 	if (blk_rq_is_scsi(req))
1578 		return scsi_setup_scsi_cmnd(sdev, req);
1579 
1580 	if (sdev->handler && sdev->handler->prep_fn) {
1581 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1582 
1583 		if (ret != BLK_STS_OK)
1584 			return ret;
1585 	}
1586 
1587 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1588 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1589 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1590 }
1591 
scsi_mq_done(struct scsi_cmnd * cmd)1592 static void scsi_mq_done(struct scsi_cmnd *cmd)
1593 {
1594 	if (unlikely(blk_should_fake_timeout(cmd->request->q)))
1595 		return;
1596 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1597 		return;
1598 	trace_scsi_dispatch_cmd_done(cmd);
1599 	blk_mq_complete_request(cmd->request);
1600 }
1601 
scsi_mq_put_budget(struct request_queue * q)1602 static void scsi_mq_put_budget(struct request_queue *q)
1603 {
1604 	struct scsi_device *sdev = q->queuedata;
1605 
1606 	atomic_dec(&sdev->device_busy);
1607 }
1608 
scsi_mq_get_budget(struct request_queue * q)1609 static bool scsi_mq_get_budget(struct request_queue *q)
1610 {
1611 	struct scsi_device *sdev = q->queuedata;
1612 
1613 	if (scsi_dev_queue_ready(q, sdev))
1614 		return true;
1615 
1616 	atomic_inc(&sdev->restarts);
1617 
1618 	/*
1619 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1620 	 * .restarts must be incremented before .device_busy is read because the
1621 	 * code in scsi_run_queue_async() depends on the order of these operations.
1622 	 */
1623 	smp_mb__after_atomic();
1624 
1625 	/*
1626 	 * If all in-flight requests originated from this LUN are completed
1627 	 * before reading .device_busy, sdev->device_busy will be observed as
1628 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1629 	 * soon. Otherwise, completion of one of these requests will observe
1630 	 * the .restarts flag, and the request queue will be run for handling
1631 	 * this request, see scsi_end_request().
1632 	 */
1633 	if (unlikely(atomic_read(&sdev->device_busy) == 0 &&
1634 				!scsi_device_blocked(sdev)))
1635 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1636 	return false;
1637 }
1638 
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1639 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1640 			 const struct blk_mq_queue_data *bd)
1641 {
1642 	struct request *req = bd->rq;
1643 	struct request_queue *q = req->q;
1644 	struct scsi_device *sdev = q->queuedata;
1645 	struct Scsi_Host *shost = sdev->host;
1646 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1647 	blk_status_t ret;
1648 	int reason;
1649 
1650 	/*
1651 	 * If the device is not in running state we will reject some or all
1652 	 * commands.
1653 	 */
1654 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1655 		ret = scsi_device_state_check(sdev, req);
1656 		if (ret != BLK_STS_OK)
1657 			goto out_put_budget;
1658 	}
1659 
1660 	ret = BLK_STS_RESOURCE;
1661 	if (!scsi_target_queue_ready(shost, sdev))
1662 		goto out_put_budget;
1663 	if (unlikely(scsi_host_in_recovery(shost))) {
1664 		if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1665 			ret = BLK_STS_IOERR;
1666 		goto out_dec_target_busy;
1667 	}
1668 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1669 		goto out_dec_target_busy;
1670 
1671 	if (!(req->rq_flags & RQF_DONTPREP)) {
1672 		ret = scsi_prepare_cmd(req);
1673 		if (ret != BLK_STS_OK)
1674 			goto out_dec_host_busy;
1675 		req->rq_flags |= RQF_DONTPREP;
1676 	} else {
1677 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1678 	}
1679 
1680 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1681 	if (sdev->simple_tags)
1682 		cmd->flags |= SCMD_TAGGED;
1683 	if (bd->last)
1684 		cmd->flags |= SCMD_LAST;
1685 
1686 	scsi_set_resid(cmd, 0);
1687 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1688 	cmd->scsi_done = scsi_mq_done;
1689 
1690 	blk_mq_start_request(req);
1691 	reason = scsi_dispatch_cmd(cmd);
1692 	if (reason) {
1693 		scsi_set_blocked(cmd, reason);
1694 		ret = BLK_STS_RESOURCE;
1695 		goto out_dec_host_busy;
1696 	}
1697 
1698 	return BLK_STS_OK;
1699 
1700 out_dec_host_busy:
1701 	scsi_dec_host_busy(shost, cmd);
1702 out_dec_target_busy:
1703 	if (scsi_target(sdev)->can_queue > 0)
1704 		atomic_dec(&scsi_target(sdev)->target_busy);
1705 out_put_budget:
1706 	scsi_mq_put_budget(q);
1707 	switch (ret) {
1708 	case BLK_STS_OK:
1709 		break;
1710 	case BLK_STS_RESOURCE:
1711 	case BLK_STS_ZONE_RESOURCE:
1712 		if (scsi_device_blocked(sdev))
1713 			ret = BLK_STS_DEV_RESOURCE;
1714 		break;
1715 	default:
1716 		if (unlikely(!scsi_device_online(sdev)))
1717 			scsi_req(req)->result = DID_NO_CONNECT << 16;
1718 		else
1719 			scsi_req(req)->result = DID_ERROR << 16;
1720 		/*
1721 		 * Make sure to release all allocated resources when
1722 		 * we hit an error, as we will never see this command
1723 		 * again.
1724 		 */
1725 		if (req->rq_flags & RQF_DONTPREP)
1726 			scsi_mq_uninit_cmd(cmd);
1727 		scsi_run_queue_async(sdev);
1728 		break;
1729 	}
1730 	return ret;
1731 }
1732 
scsi_timeout(struct request * req,bool reserved)1733 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1734 		bool reserved)
1735 {
1736 	if (reserved)
1737 		return BLK_EH_RESET_TIMER;
1738 	return scsi_times_out(req);
1739 }
1740 
scsi_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1741 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1742 				unsigned int hctx_idx, unsigned int numa_node)
1743 {
1744 	struct Scsi_Host *shost = set->driver_data;
1745 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1746 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1747 	struct scatterlist *sg;
1748 	int ret = 0;
1749 
1750 	if (unchecked_isa_dma)
1751 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1752 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1753 						    GFP_KERNEL, numa_node);
1754 	if (!cmd->sense_buffer)
1755 		return -ENOMEM;
1756 	cmd->req.sense = cmd->sense_buffer;
1757 
1758 	if (scsi_host_get_prot(shost)) {
1759 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1760 			shost->hostt->cmd_size;
1761 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1762 	}
1763 
1764 	if (shost->hostt->init_cmd_priv) {
1765 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1766 		if (ret < 0)
1767 			scsi_free_sense_buffer(unchecked_isa_dma,
1768 					       cmd->sense_buffer);
1769 	}
1770 
1771 	return ret;
1772 }
1773 
scsi_mq_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1774 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1775 				 unsigned int hctx_idx)
1776 {
1777 	struct Scsi_Host *shost = set->driver_data;
1778 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1779 
1780 	if (shost->hostt->exit_cmd_priv)
1781 		shost->hostt->exit_cmd_priv(shost, cmd);
1782 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1783 			       cmd->sense_buffer);
1784 }
1785 
1786 
scsi_mq_poll(struct blk_mq_hw_ctx * hctx)1787 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx)
1788 {
1789 	struct request_queue *q = hctx->queue;
1790 	struct scsi_device *sdev = q->queuedata;
1791 	struct Scsi_Host *shost = sdev->host;
1792 
1793 	if (shost->hostt->mq_poll)
1794 		return shost->hostt->mq_poll(shost, hctx->queue_num);
1795 
1796 	return 0;
1797 }
1798 
scsi_map_queues(struct blk_mq_tag_set * set)1799 static int scsi_map_queues(struct blk_mq_tag_set *set)
1800 {
1801 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1802 
1803 	if (shost->hostt->map_queues)
1804 		return shost->hostt->map_queues(shost);
1805 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1806 }
1807 
__scsi_init_queue(struct Scsi_Host * shost,struct request_queue * q)1808 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1809 {
1810 	struct device *dev = shost->dma_dev;
1811 
1812 	/*
1813 	 * this limit is imposed by hardware restrictions
1814 	 */
1815 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1816 					SG_MAX_SEGMENTS));
1817 
1818 	if (scsi_host_prot_dma(shost)) {
1819 		shost->sg_prot_tablesize =
1820 			min_not_zero(shost->sg_prot_tablesize,
1821 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1822 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1823 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1824 	}
1825 
1826 	if (dev->dma_mask) {
1827 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1828 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1829 	}
1830 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1831 	if (shost->unchecked_isa_dma)
1832 		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1833 	blk_queue_segment_boundary(q, shost->dma_boundary);
1834 	dma_set_seg_boundary(dev, shost->dma_boundary);
1835 
1836 	blk_queue_max_segment_size(q, shost->max_segment_size);
1837 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1838 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1839 
1840 	/*
1841 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1842 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1843 	 * which is set by the platform.
1844 	 *
1845 	 * Devices that require a bigger alignment can increase it later.
1846 	 */
1847 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1848 }
1849 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1850 
1851 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1852 	.get_budget	= scsi_mq_get_budget,
1853 	.put_budget	= scsi_mq_put_budget,
1854 	.queue_rq	= scsi_queue_rq,
1855 	.complete	= scsi_softirq_done,
1856 	.timeout	= scsi_timeout,
1857 #ifdef CONFIG_BLK_DEBUG_FS
1858 	.show_rq	= scsi_show_rq,
1859 #endif
1860 	.init_request	= scsi_mq_init_request,
1861 	.exit_request	= scsi_mq_exit_request,
1862 	.initialize_rq_fn = scsi_initialize_rq,
1863 	.cleanup_rq	= scsi_cleanup_rq,
1864 	.busy		= scsi_mq_lld_busy,
1865 	.map_queues	= scsi_map_queues,
1866 	.poll		= scsi_mq_poll,
1867 };
1868 
1869 
scsi_commit_rqs(struct blk_mq_hw_ctx * hctx)1870 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1871 {
1872 	struct request_queue *q = hctx->queue;
1873 	struct scsi_device *sdev = q->queuedata;
1874 	struct Scsi_Host *shost = sdev->host;
1875 
1876 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1877 }
1878 
1879 static const struct blk_mq_ops scsi_mq_ops = {
1880 	.get_budget	= scsi_mq_get_budget,
1881 	.put_budget	= scsi_mq_put_budget,
1882 	.queue_rq	= scsi_queue_rq,
1883 	.commit_rqs	= scsi_commit_rqs,
1884 	.complete	= scsi_softirq_done,
1885 	.timeout	= scsi_timeout,
1886 #ifdef CONFIG_BLK_DEBUG_FS
1887 	.show_rq	= scsi_show_rq,
1888 #endif
1889 	.init_request	= scsi_mq_init_request,
1890 	.exit_request	= scsi_mq_exit_request,
1891 	.initialize_rq_fn = scsi_initialize_rq,
1892 	.cleanup_rq	= scsi_cleanup_rq,
1893 	.busy		= scsi_mq_lld_busy,
1894 	.map_queues	= scsi_map_queues,
1895 	.poll		= scsi_mq_poll,
1896 };
1897 
scsi_mq_alloc_queue(struct scsi_device * sdev)1898 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1899 {
1900 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1901 	if (IS_ERR(sdev->request_queue))
1902 		return NULL;
1903 
1904 	sdev->request_queue->queuedata = sdev;
1905 	__scsi_init_queue(sdev->host, sdev->request_queue);
1906 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1907 	return sdev->request_queue;
1908 }
1909 
scsi_mq_setup_tags(struct Scsi_Host * shost)1910 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1911 {
1912 	unsigned int cmd_size, sgl_size;
1913 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1914 	unsigned int reserved_tags = shost->hostt->reserved_tags;
1915 
1916 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1917 				scsi_mq_inline_sgl_size(shost));
1918 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1919 	if (scsi_host_get_prot(shost))
1920 		cmd_size += sizeof(struct scsi_data_buffer) +
1921 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1922 
1923 	memset(tag_set, 0, sizeof(*tag_set));
1924 	if (shost->hostt->commit_rqs)
1925 		tag_set->ops = &scsi_mq_ops;
1926 	else
1927 		tag_set->ops = &scsi_mq_ops_no_commit;
1928 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1929 	tag_set->nr_maps = shost->nr_maps ? : 1;
1930 	tag_set->queue_depth = shost->can_queue + reserved_tags;
1931 	tag_set->reserved_tags = reserved_tags;
1932 	tag_set->cmd_size = cmd_size;
1933 	tag_set->numa_node = NUMA_NO_NODE;
1934 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1935 	tag_set->flags |=
1936 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1937 	tag_set->driver_data = shost;
1938 	if (shost->host_tagset)
1939 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1940 
1941 	return blk_mq_alloc_tag_set(tag_set);
1942 }
1943 
scsi_mq_destroy_tags(struct Scsi_Host * shost)1944 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1945 {
1946 	blk_mq_free_tag_set(&shost->tag_set);
1947 }
1948 
1949 /**
1950  * scsi_device_from_queue - return sdev associated with a request_queue
1951  * @q: The request queue to return the sdev from
1952  *
1953  * Return the sdev associated with a request queue or NULL if the
1954  * request_queue does not reference a SCSI device.
1955  */
scsi_device_from_queue(struct request_queue * q)1956 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1957 {
1958 	struct scsi_device *sdev = NULL;
1959 
1960 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1961 	    q->mq_ops == &scsi_mq_ops)
1962 		sdev = q->queuedata;
1963 	if (!sdev || !get_device(&sdev->sdev_gendev))
1964 		sdev = NULL;
1965 
1966 	return sdev;
1967 }
1968 
1969 /**
1970  * scsi_block_requests - Utility function used by low-level drivers to prevent
1971  * further commands from being queued to the device.
1972  * @shost:  host in question
1973  *
1974  * There is no timer nor any other means by which the requests get unblocked
1975  * other than the low-level driver calling scsi_unblock_requests().
1976  */
scsi_block_requests(struct Scsi_Host * shost)1977 void scsi_block_requests(struct Scsi_Host *shost)
1978 {
1979 	shost->host_self_blocked = 1;
1980 }
1981 EXPORT_SYMBOL(scsi_block_requests);
1982 
1983 /**
1984  * scsi_unblock_requests - Utility function used by low-level drivers to allow
1985  * further commands to be queued to the device.
1986  * @shost:  host in question
1987  *
1988  * There is no timer nor any other means by which the requests get unblocked
1989  * other than the low-level driver calling scsi_unblock_requests(). This is done
1990  * as an API function so that changes to the internals of the scsi mid-layer
1991  * won't require wholesale changes to drivers that use this feature.
1992  */
scsi_unblock_requests(struct Scsi_Host * shost)1993 void scsi_unblock_requests(struct Scsi_Host *shost)
1994 {
1995 	shost->host_self_blocked = 0;
1996 	scsi_run_host_queues(shost);
1997 }
1998 EXPORT_SYMBOL(scsi_unblock_requests);
1999 
scsi_exit_queue(void)2000 void scsi_exit_queue(void)
2001 {
2002 	kmem_cache_destroy(scsi_sense_cache);
2003 	kmem_cache_destroy(scsi_sense_isadma_cache);
2004 }
2005 
2006 /**
2007  *	scsi_mode_select - issue a mode select
2008  *	@sdev:	SCSI device to be queried
2009  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2010  *	@sp:	Save page bit (0 == don't save, 1 == save)
2011  *	@modepage: mode page being requested
2012  *	@buffer: request buffer (may not be smaller than eight bytes)
2013  *	@len:	length of request buffer.
2014  *	@timeout: command timeout
2015  *	@retries: number of retries before failing
2016  *	@data: returns a structure abstracting the mode header data
2017  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2018  *		must be SCSI_SENSE_BUFFERSIZE big.
2019  *
2020  *	Returns zero if successful; negative error number or scsi
2021  *	status on error
2022  *
2023  */
2024 int
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2025 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2026 		 unsigned char *buffer, int len, int timeout, int retries,
2027 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2028 {
2029 	unsigned char cmd[10];
2030 	unsigned char *real_buffer;
2031 	int ret;
2032 
2033 	memset(cmd, 0, sizeof(cmd));
2034 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2035 
2036 	if (sdev->use_10_for_ms) {
2037 		if (len > 65535)
2038 			return -EINVAL;
2039 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2040 		if (!real_buffer)
2041 			return -ENOMEM;
2042 		memcpy(real_buffer + 8, buffer, len);
2043 		len += 8;
2044 		real_buffer[0] = 0;
2045 		real_buffer[1] = 0;
2046 		real_buffer[2] = data->medium_type;
2047 		real_buffer[3] = data->device_specific;
2048 		real_buffer[4] = data->longlba ? 0x01 : 0;
2049 		real_buffer[5] = 0;
2050 		real_buffer[6] = data->block_descriptor_length >> 8;
2051 		real_buffer[7] = data->block_descriptor_length;
2052 
2053 		cmd[0] = MODE_SELECT_10;
2054 		cmd[7] = len >> 8;
2055 		cmd[8] = len;
2056 	} else {
2057 		if (len > 255 || data->block_descriptor_length > 255 ||
2058 		    data->longlba)
2059 			return -EINVAL;
2060 
2061 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2062 		if (!real_buffer)
2063 			return -ENOMEM;
2064 		memcpy(real_buffer + 4, buffer, len);
2065 		len += 4;
2066 		real_buffer[0] = 0;
2067 		real_buffer[1] = data->medium_type;
2068 		real_buffer[2] = data->device_specific;
2069 		real_buffer[3] = data->block_descriptor_length;
2070 
2071 		cmd[0] = MODE_SELECT;
2072 		cmd[4] = len;
2073 	}
2074 
2075 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2076 			       sshdr, timeout, retries, NULL);
2077 	kfree(real_buffer);
2078 	return ret;
2079 }
2080 EXPORT_SYMBOL_GPL(scsi_mode_select);
2081 
2082 /**
2083  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2084  *	@sdev:	SCSI device to be queried
2085  *	@dbd:	set if mode sense will allow block descriptors to be returned
2086  *	@modepage: mode page being requested
2087  *	@buffer: request buffer (may not be smaller than eight bytes)
2088  *	@len:	length of request buffer.
2089  *	@timeout: command timeout
2090  *	@retries: number of retries before failing
2091  *	@data: returns a structure abstracting the mode header data
2092  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2093  *		must be SCSI_SENSE_BUFFERSIZE big.
2094  *
2095  *	Returns zero if successful, or a negative error number on failure
2096  */
2097 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2098 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2099 		  unsigned char *buffer, int len, int timeout, int retries,
2100 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2101 {
2102 	unsigned char cmd[12];
2103 	int use_10_for_ms;
2104 	int header_length;
2105 	int result, retry_count = retries;
2106 	struct scsi_sense_hdr my_sshdr;
2107 
2108 	memset(data, 0, sizeof(*data));
2109 	memset(&cmd[0], 0, 12);
2110 
2111 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2112 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2113 	cmd[2] = modepage;
2114 
2115 	/* caller might not be interested in sense, but we need it */
2116 	if (!sshdr)
2117 		sshdr = &my_sshdr;
2118 
2119  retry:
2120 	use_10_for_ms = sdev->use_10_for_ms;
2121 
2122 	if (use_10_for_ms) {
2123 		if (len < 8)
2124 			len = 8;
2125 
2126 		cmd[0] = MODE_SENSE_10;
2127 		cmd[8] = len;
2128 		header_length = 8;
2129 	} else {
2130 		if (len < 4)
2131 			len = 4;
2132 
2133 		cmd[0] = MODE_SENSE;
2134 		cmd[4] = len;
2135 		header_length = 4;
2136 	}
2137 
2138 	memset(buffer, 0, len);
2139 
2140 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2141 				  sshdr, timeout, retries, NULL);
2142 	if (result < 0)
2143 		return result;
2144 
2145 	/* This code looks awful: what it's doing is making sure an
2146 	 * ILLEGAL REQUEST sense return identifies the actual command
2147 	 * byte as the problem.  MODE_SENSE commands can return
2148 	 * ILLEGAL REQUEST if the code page isn't supported */
2149 
2150 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2151 	    driver_byte(result) == DRIVER_SENSE) {
2152 		if (scsi_sense_valid(sshdr)) {
2153 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2154 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2155 				/*
2156 				 * Invalid command operation code
2157 				 */
2158 				sdev->use_10_for_ms = 0;
2159 				goto retry;
2160 			}
2161 		}
2162 	}
2163 
2164 	if (scsi_status_is_good(result)) {
2165 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2166 			     (modepage == 6 || modepage == 8))) {
2167 			/* Initio breakage? */
2168 			header_length = 0;
2169 			data->length = 13;
2170 			data->medium_type = 0;
2171 			data->device_specific = 0;
2172 			data->longlba = 0;
2173 			data->block_descriptor_length = 0;
2174 		} else if (use_10_for_ms) {
2175 			data->length = buffer[0]*256 + buffer[1] + 2;
2176 			data->medium_type = buffer[2];
2177 			data->device_specific = buffer[3];
2178 			data->longlba = buffer[4] & 0x01;
2179 			data->block_descriptor_length = buffer[6]*256
2180 				+ buffer[7];
2181 		} else {
2182 			data->length = buffer[0] + 1;
2183 			data->medium_type = buffer[1];
2184 			data->device_specific = buffer[2];
2185 			data->block_descriptor_length = buffer[3];
2186 		}
2187 		data->header_length = header_length;
2188 		result = 0;
2189 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2190 		   scsi_sense_valid(sshdr) &&
2191 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2192 		retry_count--;
2193 		goto retry;
2194 	}
2195 	if (result > 0)
2196 		result = -EIO;
2197 	return result;
2198 }
2199 EXPORT_SYMBOL(scsi_mode_sense);
2200 
2201 /**
2202  *	scsi_test_unit_ready - test if unit is ready
2203  *	@sdev:	scsi device to change the state of.
2204  *	@timeout: command timeout
2205  *	@retries: number of retries before failing
2206  *	@sshdr: outpout pointer for decoded sense information.
2207  *
2208  *	Returns zero if unsuccessful or an error if TUR failed.  For
2209  *	removable media, UNIT_ATTENTION sets ->changed flag.
2210  **/
2211 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr)2212 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2213 		     struct scsi_sense_hdr *sshdr)
2214 {
2215 	char cmd[] = {
2216 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2217 	};
2218 	int result;
2219 
2220 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2221 	do {
2222 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2223 					  timeout, 1, NULL);
2224 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2225 		    sshdr->sense_key == UNIT_ATTENTION)
2226 			sdev->changed = 1;
2227 	} while (scsi_sense_valid(sshdr) &&
2228 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2229 
2230 	return result;
2231 }
2232 EXPORT_SYMBOL(scsi_test_unit_ready);
2233 
2234 /**
2235  *	scsi_device_set_state - Take the given device through the device state model.
2236  *	@sdev:	scsi device to change the state of.
2237  *	@state:	state to change to.
2238  *
2239  *	Returns zero if successful or an error if the requested
2240  *	transition is illegal.
2241  */
2242 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2243 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2244 {
2245 	enum scsi_device_state oldstate = sdev->sdev_state;
2246 
2247 	if (state == oldstate)
2248 		return 0;
2249 
2250 	switch (state) {
2251 	case SDEV_CREATED:
2252 		switch (oldstate) {
2253 		case SDEV_CREATED_BLOCK:
2254 			break;
2255 		default:
2256 			goto illegal;
2257 		}
2258 		break;
2259 
2260 	case SDEV_RUNNING:
2261 		switch (oldstate) {
2262 		case SDEV_CREATED:
2263 		case SDEV_OFFLINE:
2264 		case SDEV_TRANSPORT_OFFLINE:
2265 		case SDEV_QUIESCE:
2266 		case SDEV_BLOCK:
2267 			break;
2268 		default:
2269 			goto illegal;
2270 		}
2271 		break;
2272 
2273 	case SDEV_QUIESCE:
2274 		switch (oldstate) {
2275 		case SDEV_RUNNING:
2276 		case SDEV_OFFLINE:
2277 		case SDEV_TRANSPORT_OFFLINE:
2278 			break;
2279 		default:
2280 			goto illegal;
2281 		}
2282 		break;
2283 
2284 	case SDEV_OFFLINE:
2285 	case SDEV_TRANSPORT_OFFLINE:
2286 		switch (oldstate) {
2287 		case SDEV_CREATED:
2288 		case SDEV_RUNNING:
2289 		case SDEV_QUIESCE:
2290 		case SDEV_BLOCK:
2291 			break;
2292 		default:
2293 			goto illegal;
2294 		}
2295 		break;
2296 
2297 	case SDEV_BLOCK:
2298 		switch (oldstate) {
2299 		case SDEV_RUNNING:
2300 		case SDEV_CREATED_BLOCK:
2301 		case SDEV_QUIESCE:
2302 		case SDEV_OFFLINE:
2303 			break;
2304 		default:
2305 			goto illegal;
2306 		}
2307 		break;
2308 
2309 	case SDEV_CREATED_BLOCK:
2310 		switch (oldstate) {
2311 		case SDEV_CREATED:
2312 			break;
2313 		default:
2314 			goto illegal;
2315 		}
2316 		break;
2317 
2318 	case SDEV_CANCEL:
2319 		switch (oldstate) {
2320 		case SDEV_CREATED:
2321 		case SDEV_RUNNING:
2322 		case SDEV_QUIESCE:
2323 		case SDEV_OFFLINE:
2324 		case SDEV_TRANSPORT_OFFLINE:
2325 			break;
2326 		default:
2327 			goto illegal;
2328 		}
2329 		break;
2330 
2331 	case SDEV_DEL:
2332 		switch (oldstate) {
2333 		case SDEV_CREATED:
2334 		case SDEV_RUNNING:
2335 		case SDEV_OFFLINE:
2336 		case SDEV_TRANSPORT_OFFLINE:
2337 		case SDEV_CANCEL:
2338 		case SDEV_BLOCK:
2339 		case SDEV_CREATED_BLOCK:
2340 			break;
2341 		default:
2342 			goto illegal;
2343 		}
2344 		break;
2345 
2346 	}
2347 	sdev->offline_already = false;
2348 	sdev->sdev_state = state;
2349 	return 0;
2350 
2351  illegal:
2352 	SCSI_LOG_ERROR_RECOVERY(1,
2353 				sdev_printk(KERN_ERR, sdev,
2354 					    "Illegal state transition %s->%s",
2355 					    scsi_device_state_name(oldstate),
2356 					    scsi_device_state_name(state))
2357 				);
2358 	return -EINVAL;
2359 }
2360 EXPORT_SYMBOL(scsi_device_set_state);
2361 
2362 /**
2363  * 	sdev_evt_emit - emit a single SCSI device uevent
2364  *	@sdev: associated SCSI device
2365  *	@evt: event to emit
2366  *
2367  *	Send a single uevent (scsi_event) to the associated scsi_device.
2368  */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2369 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2370 {
2371 	int idx = 0;
2372 	char *envp[3];
2373 
2374 	switch (evt->evt_type) {
2375 	case SDEV_EVT_MEDIA_CHANGE:
2376 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2377 		break;
2378 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2379 		scsi_rescan_device(&sdev->sdev_gendev);
2380 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2381 		break;
2382 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2383 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2384 		break;
2385 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2386 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2387 		break;
2388 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2389 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2390 		break;
2391 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2392 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2393 		break;
2394 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2395 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2396 		break;
2397 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2398 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2399 		break;
2400 	default:
2401 		/* do nothing */
2402 		break;
2403 	}
2404 
2405 	envp[idx++] = NULL;
2406 
2407 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2408 }
2409 
2410 /**
2411  * 	sdev_evt_thread - send a uevent for each scsi event
2412  *	@work: work struct for scsi_device
2413  *
2414  *	Dispatch queued events to their associated scsi_device kobjects
2415  *	as uevents.
2416  */
scsi_evt_thread(struct work_struct * work)2417 void scsi_evt_thread(struct work_struct *work)
2418 {
2419 	struct scsi_device *sdev;
2420 	enum scsi_device_event evt_type;
2421 	LIST_HEAD(event_list);
2422 
2423 	sdev = container_of(work, struct scsi_device, event_work);
2424 
2425 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2426 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2427 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2428 
2429 	while (1) {
2430 		struct scsi_event *evt;
2431 		struct list_head *this, *tmp;
2432 		unsigned long flags;
2433 
2434 		spin_lock_irqsave(&sdev->list_lock, flags);
2435 		list_splice_init(&sdev->event_list, &event_list);
2436 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2437 
2438 		if (list_empty(&event_list))
2439 			break;
2440 
2441 		list_for_each_safe(this, tmp, &event_list) {
2442 			evt = list_entry(this, struct scsi_event, node);
2443 			list_del(&evt->node);
2444 			scsi_evt_emit(sdev, evt);
2445 			kfree(evt);
2446 		}
2447 	}
2448 }
2449 
2450 /**
2451  * 	sdev_evt_send - send asserted event to uevent thread
2452  *	@sdev: scsi_device event occurred on
2453  *	@evt: event to send
2454  *
2455  *	Assert scsi device event asynchronously.
2456  */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2457 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2458 {
2459 	unsigned long flags;
2460 
2461 #if 0
2462 	/* FIXME: currently this check eliminates all media change events
2463 	 * for polled devices.  Need to update to discriminate between AN
2464 	 * and polled events */
2465 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2466 		kfree(evt);
2467 		return;
2468 	}
2469 #endif
2470 
2471 	spin_lock_irqsave(&sdev->list_lock, flags);
2472 	list_add_tail(&evt->node, &sdev->event_list);
2473 	schedule_work(&sdev->event_work);
2474 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2475 }
2476 EXPORT_SYMBOL_GPL(sdev_evt_send);
2477 
2478 /**
2479  * 	sdev_evt_alloc - allocate a new scsi event
2480  *	@evt_type: type of event to allocate
2481  *	@gfpflags: GFP flags for allocation
2482  *
2483  *	Allocates and returns a new scsi_event.
2484  */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2485 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2486 				  gfp_t gfpflags)
2487 {
2488 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2489 	if (!evt)
2490 		return NULL;
2491 
2492 	evt->evt_type = evt_type;
2493 	INIT_LIST_HEAD(&evt->node);
2494 
2495 	/* evt_type-specific initialization, if any */
2496 	switch (evt_type) {
2497 	case SDEV_EVT_MEDIA_CHANGE:
2498 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2499 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2500 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2501 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2502 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2503 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2504 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2505 	default:
2506 		/* do nothing */
2507 		break;
2508 	}
2509 
2510 	return evt;
2511 }
2512 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2513 
2514 /**
2515  * 	sdev_evt_send_simple - send asserted event to uevent thread
2516  *	@sdev: scsi_device event occurred on
2517  *	@evt_type: type of event to send
2518  *	@gfpflags: GFP flags for allocation
2519  *
2520  *	Assert scsi device event asynchronously, given an event type.
2521  */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2522 void sdev_evt_send_simple(struct scsi_device *sdev,
2523 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2524 {
2525 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2526 	if (!evt) {
2527 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2528 			    evt_type);
2529 		return;
2530 	}
2531 
2532 	sdev_evt_send(sdev, evt);
2533 }
2534 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2535 
2536 /**
2537  *	scsi_device_quiesce - Block all commands except power management.
2538  *	@sdev:	scsi device to quiesce.
2539  *
2540  *	This works by trying to transition to the SDEV_QUIESCE state
2541  *	(which must be a legal transition).  When the device is in this
2542  *	state, only power management requests will be accepted, all others will
2543  *	be deferred.
2544  *
2545  *	Must be called with user context, may sleep.
2546  *
2547  *	Returns zero if unsuccessful or an error if not.
2548  */
2549 int
scsi_device_quiesce(struct scsi_device * sdev)2550 scsi_device_quiesce(struct scsi_device *sdev)
2551 {
2552 	struct request_queue *q = sdev->request_queue;
2553 	int err;
2554 
2555 	/*
2556 	 * It is allowed to call scsi_device_quiesce() multiple times from
2557 	 * the same context but concurrent scsi_device_quiesce() calls are
2558 	 * not allowed.
2559 	 */
2560 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2561 
2562 	if (sdev->quiesced_by == current)
2563 		return 0;
2564 
2565 	blk_set_pm_only(q);
2566 
2567 	blk_mq_freeze_queue(q);
2568 	/*
2569 	 * Ensure that the effect of blk_set_pm_only() will be visible
2570 	 * for percpu_ref_tryget() callers that occur after the queue
2571 	 * unfreeze even if the queue was already frozen before this function
2572 	 * was called. See also https://lwn.net/Articles/573497/.
2573 	 */
2574 	synchronize_rcu();
2575 	blk_mq_unfreeze_queue(q);
2576 
2577 	mutex_lock(&sdev->state_mutex);
2578 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2579 	if (err == 0)
2580 		sdev->quiesced_by = current;
2581 	else
2582 		blk_clear_pm_only(q);
2583 	mutex_unlock(&sdev->state_mutex);
2584 
2585 	return err;
2586 }
2587 EXPORT_SYMBOL(scsi_device_quiesce);
2588 
2589 /**
2590  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2591  *	@sdev:	scsi device to resume.
2592  *
2593  *	Moves the device from quiesced back to running and restarts the
2594  *	queues.
2595  *
2596  *	Must be called with user context, may sleep.
2597  */
scsi_device_resume(struct scsi_device * sdev)2598 void scsi_device_resume(struct scsi_device *sdev)
2599 {
2600 	/* check if the device state was mutated prior to resume, and if
2601 	 * so assume the state is being managed elsewhere (for example
2602 	 * device deleted during suspend)
2603 	 */
2604 	mutex_lock(&sdev->state_mutex);
2605 	if (sdev->sdev_state == SDEV_QUIESCE)
2606 		scsi_device_set_state(sdev, SDEV_RUNNING);
2607 	if (sdev->quiesced_by) {
2608 		sdev->quiesced_by = NULL;
2609 		blk_clear_pm_only(sdev->request_queue);
2610 	}
2611 	mutex_unlock(&sdev->state_mutex);
2612 }
2613 EXPORT_SYMBOL(scsi_device_resume);
2614 
2615 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2616 device_quiesce_fn(struct scsi_device *sdev, void *data)
2617 {
2618 	scsi_device_quiesce(sdev);
2619 }
2620 
2621 void
scsi_target_quiesce(struct scsi_target * starget)2622 scsi_target_quiesce(struct scsi_target *starget)
2623 {
2624 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2625 }
2626 EXPORT_SYMBOL(scsi_target_quiesce);
2627 
2628 static void
device_resume_fn(struct scsi_device * sdev,void * data)2629 device_resume_fn(struct scsi_device *sdev, void *data)
2630 {
2631 	scsi_device_resume(sdev);
2632 }
2633 
2634 void
scsi_target_resume(struct scsi_target * starget)2635 scsi_target_resume(struct scsi_target *starget)
2636 {
2637 	starget_for_each_device(starget, NULL, device_resume_fn);
2638 }
2639 EXPORT_SYMBOL(scsi_target_resume);
2640 
2641 /**
2642  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2643  * @sdev: device to block
2644  *
2645  * Pause SCSI command processing on the specified device. Does not sleep.
2646  *
2647  * Returns zero if successful or a negative error code upon failure.
2648  *
2649  * Notes:
2650  * This routine transitions the device to the SDEV_BLOCK state (which must be
2651  * a legal transition). When the device is in this state, command processing
2652  * is paused until the device leaves the SDEV_BLOCK state. See also
2653  * scsi_internal_device_unblock_nowait().
2654  */
scsi_internal_device_block_nowait(struct scsi_device * sdev)2655 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2656 {
2657 	struct request_queue *q = sdev->request_queue;
2658 	int err = 0;
2659 
2660 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2661 	if (err) {
2662 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2663 
2664 		if (err)
2665 			return err;
2666 	}
2667 
2668 	/*
2669 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2670 	 * block layer from calling the midlayer with this device's
2671 	 * request queue.
2672 	 */
2673 	blk_mq_quiesce_queue_nowait(q);
2674 	return 0;
2675 }
2676 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2677 
2678 /**
2679  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2680  * @sdev: device to block
2681  *
2682  * Pause SCSI command processing on the specified device and wait until all
2683  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2684  *
2685  * Returns zero if successful or a negative error code upon failure.
2686  *
2687  * Note:
2688  * This routine transitions the device to the SDEV_BLOCK state (which must be
2689  * a legal transition). When the device is in this state, command processing
2690  * is paused until the device leaves the SDEV_BLOCK state. See also
2691  * scsi_internal_device_unblock().
2692  */
scsi_internal_device_block(struct scsi_device * sdev)2693 static int scsi_internal_device_block(struct scsi_device *sdev)
2694 {
2695 	struct request_queue *q = sdev->request_queue;
2696 	int err;
2697 
2698 	mutex_lock(&sdev->state_mutex);
2699 	err = scsi_internal_device_block_nowait(sdev);
2700 	if (err == 0)
2701 		blk_mq_quiesce_queue(q);
2702 	mutex_unlock(&sdev->state_mutex);
2703 
2704 	return err;
2705 }
2706 
scsi_start_queue(struct scsi_device * sdev)2707 void scsi_start_queue(struct scsi_device *sdev)
2708 {
2709 	struct request_queue *q = sdev->request_queue;
2710 
2711 	blk_mq_unquiesce_queue(q);
2712 }
2713 
2714 /**
2715  * scsi_internal_device_unblock_nowait - resume a device after a block request
2716  * @sdev:	device to resume
2717  * @new_state:	state to set the device to after unblocking
2718  *
2719  * Restart the device queue for a previously suspended SCSI device. Does not
2720  * sleep.
2721  *
2722  * Returns zero if successful or a negative error code upon failure.
2723  *
2724  * Notes:
2725  * This routine transitions the device to the SDEV_RUNNING state or to one of
2726  * the offline states (which must be a legal transition) allowing the midlayer
2727  * to goose the queue for this device.
2728  */
scsi_internal_device_unblock_nowait(struct scsi_device * sdev,enum scsi_device_state new_state)2729 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2730 					enum scsi_device_state new_state)
2731 {
2732 	switch (new_state) {
2733 	case SDEV_RUNNING:
2734 	case SDEV_TRANSPORT_OFFLINE:
2735 		break;
2736 	default:
2737 		return -EINVAL;
2738 	}
2739 
2740 	/*
2741 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2742 	 * offlined states and goose the device queue if successful.
2743 	 */
2744 	switch (sdev->sdev_state) {
2745 	case SDEV_BLOCK:
2746 	case SDEV_TRANSPORT_OFFLINE:
2747 		sdev->sdev_state = new_state;
2748 		break;
2749 	case SDEV_CREATED_BLOCK:
2750 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2751 		    new_state == SDEV_OFFLINE)
2752 			sdev->sdev_state = new_state;
2753 		else
2754 			sdev->sdev_state = SDEV_CREATED;
2755 		break;
2756 	case SDEV_CANCEL:
2757 	case SDEV_OFFLINE:
2758 		break;
2759 	default:
2760 		return -EINVAL;
2761 	}
2762 	scsi_start_queue(sdev);
2763 
2764 	return 0;
2765 }
2766 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2767 
2768 /**
2769  * scsi_internal_device_unblock - resume a device after a block request
2770  * @sdev:	device to resume
2771  * @new_state:	state to set the device to after unblocking
2772  *
2773  * Restart the device queue for a previously suspended SCSI device. May sleep.
2774  *
2775  * Returns zero if successful or a negative error code upon failure.
2776  *
2777  * Notes:
2778  * This routine transitions the device to the SDEV_RUNNING state or to one of
2779  * the offline states (which must be a legal transition) allowing the midlayer
2780  * to goose the queue for this device.
2781  */
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)2782 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2783 					enum scsi_device_state new_state)
2784 {
2785 	int ret;
2786 
2787 	mutex_lock(&sdev->state_mutex);
2788 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2789 	mutex_unlock(&sdev->state_mutex);
2790 
2791 	return ret;
2792 }
2793 
2794 static void
device_block(struct scsi_device * sdev,void * data)2795 device_block(struct scsi_device *sdev, void *data)
2796 {
2797 	int ret;
2798 
2799 	ret = scsi_internal_device_block(sdev);
2800 
2801 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2802 		  dev_name(&sdev->sdev_gendev), ret);
2803 }
2804 
2805 static int
target_block(struct device * dev,void * data)2806 target_block(struct device *dev, void *data)
2807 {
2808 	if (scsi_is_target_device(dev))
2809 		starget_for_each_device(to_scsi_target(dev), NULL,
2810 					device_block);
2811 	return 0;
2812 }
2813 
2814 void
scsi_target_block(struct device * dev)2815 scsi_target_block(struct device *dev)
2816 {
2817 	if (scsi_is_target_device(dev))
2818 		starget_for_each_device(to_scsi_target(dev), NULL,
2819 					device_block);
2820 	else
2821 		device_for_each_child(dev, NULL, target_block);
2822 }
2823 EXPORT_SYMBOL_GPL(scsi_target_block);
2824 
2825 static void
device_unblock(struct scsi_device * sdev,void * data)2826 device_unblock(struct scsi_device *sdev, void *data)
2827 {
2828 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2829 }
2830 
2831 static int
target_unblock(struct device * dev,void * data)2832 target_unblock(struct device *dev, void *data)
2833 {
2834 	if (scsi_is_target_device(dev))
2835 		starget_for_each_device(to_scsi_target(dev), data,
2836 					device_unblock);
2837 	return 0;
2838 }
2839 
2840 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)2841 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2842 {
2843 	if (scsi_is_target_device(dev))
2844 		starget_for_each_device(to_scsi_target(dev), &new_state,
2845 					device_unblock);
2846 	else
2847 		device_for_each_child(dev, &new_state, target_unblock);
2848 }
2849 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2850 
2851 int
scsi_host_block(struct Scsi_Host * shost)2852 scsi_host_block(struct Scsi_Host *shost)
2853 {
2854 	struct scsi_device *sdev;
2855 	int ret = 0;
2856 
2857 	/*
2858 	 * Call scsi_internal_device_block_nowait so we can avoid
2859 	 * calling synchronize_rcu() for each LUN.
2860 	 */
2861 	shost_for_each_device(sdev, shost) {
2862 		mutex_lock(&sdev->state_mutex);
2863 		ret = scsi_internal_device_block_nowait(sdev);
2864 		mutex_unlock(&sdev->state_mutex);
2865 		if (ret) {
2866 			scsi_device_put(sdev);
2867 			break;
2868 		}
2869 	}
2870 
2871 	/*
2872 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2873 	 * calling synchronize_rcu() once is enough.
2874 	 */
2875 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2876 
2877 	if (!ret)
2878 		synchronize_rcu();
2879 
2880 	return ret;
2881 }
2882 EXPORT_SYMBOL_GPL(scsi_host_block);
2883 
2884 int
scsi_host_unblock(struct Scsi_Host * shost,int new_state)2885 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2886 {
2887 	struct scsi_device *sdev;
2888 	int ret = 0;
2889 
2890 	shost_for_each_device(sdev, shost) {
2891 		ret = scsi_internal_device_unblock(sdev, new_state);
2892 		if (ret) {
2893 			scsi_device_put(sdev);
2894 			break;
2895 		}
2896 	}
2897 	return ret;
2898 }
2899 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2900 
2901 /**
2902  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2903  * @sgl:	scatter-gather list
2904  * @sg_count:	number of segments in sg
2905  * @offset:	offset in bytes into sg, on return offset into the mapped area
2906  * @len:	bytes to map, on return number of bytes mapped
2907  *
2908  * Returns virtual address of the start of the mapped page
2909  */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)2910 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2911 			  size_t *offset, size_t *len)
2912 {
2913 	int i;
2914 	size_t sg_len = 0, len_complete = 0;
2915 	struct scatterlist *sg;
2916 	struct page *page;
2917 
2918 	WARN_ON(!irqs_disabled());
2919 
2920 	for_each_sg(sgl, sg, sg_count, i) {
2921 		len_complete = sg_len; /* Complete sg-entries */
2922 		sg_len += sg->length;
2923 		if (sg_len > *offset)
2924 			break;
2925 	}
2926 
2927 	if (unlikely(i == sg_count)) {
2928 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2929 			"elements %d\n",
2930 		       __func__, sg_len, *offset, sg_count);
2931 		WARN_ON(1);
2932 		return NULL;
2933 	}
2934 
2935 	/* Offset starting from the beginning of first page in this sg-entry */
2936 	*offset = *offset - len_complete + sg->offset;
2937 
2938 	/* Assumption: contiguous pages can be accessed as "page + i" */
2939 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2940 	*offset &= ~PAGE_MASK;
2941 
2942 	/* Bytes in this sg-entry from *offset to the end of the page */
2943 	sg_len = PAGE_SIZE - *offset;
2944 	if (*len > sg_len)
2945 		*len = sg_len;
2946 
2947 	return kmap_atomic(page);
2948 }
2949 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2950 
2951 /**
2952  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2953  * @virt:	virtual address to be unmapped
2954  */
scsi_kunmap_atomic_sg(void * virt)2955 void scsi_kunmap_atomic_sg(void *virt)
2956 {
2957 	kunmap_atomic(virt);
2958 }
2959 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2960 
sdev_disable_disk_events(struct scsi_device * sdev)2961 void sdev_disable_disk_events(struct scsi_device *sdev)
2962 {
2963 	atomic_inc(&sdev->disk_events_disable_depth);
2964 }
2965 EXPORT_SYMBOL(sdev_disable_disk_events);
2966 
sdev_enable_disk_events(struct scsi_device * sdev)2967 void sdev_enable_disk_events(struct scsi_device *sdev)
2968 {
2969 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2970 		return;
2971 	atomic_dec(&sdev->disk_events_disable_depth);
2972 }
2973 EXPORT_SYMBOL(sdev_enable_disk_events);
2974 
designator_prio(const unsigned char * d)2975 static unsigned char designator_prio(const unsigned char *d)
2976 {
2977 	if (d[1] & 0x30)
2978 		/* not associated with LUN */
2979 		return 0;
2980 
2981 	if (d[3] == 0)
2982 		/* invalid length */
2983 		return 0;
2984 
2985 	/*
2986 	 * Order of preference for lun descriptor:
2987 	 * - SCSI name string
2988 	 * - NAA IEEE Registered Extended
2989 	 * - EUI-64 based 16-byte
2990 	 * - EUI-64 based 12-byte
2991 	 * - NAA IEEE Registered
2992 	 * - NAA IEEE Extended
2993 	 * - EUI-64 based 8-byte
2994 	 * - SCSI name string (truncated)
2995 	 * - T10 Vendor ID
2996 	 * as longer descriptors reduce the likelyhood
2997 	 * of identification clashes.
2998 	 */
2999 
3000 	switch (d[1] & 0xf) {
3001 	case 8:
3002 		/* SCSI name string, variable-length UTF-8 */
3003 		return 9;
3004 	case 3:
3005 		switch (d[4] >> 4) {
3006 		case 6:
3007 			/* NAA registered extended */
3008 			return 8;
3009 		case 5:
3010 			/* NAA registered */
3011 			return 5;
3012 		case 4:
3013 			/* NAA extended */
3014 			return 4;
3015 		case 3:
3016 			/* NAA locally assigned */
3017 			return 1;
3018 		default:
3019 			break;
3020 		}
3021 		break;
3022 	case 2:
3023 		switch (d[3]) {
3024 		case 16:
3025 			/* EUI64-based, 16 byte */
3026 			return 7;
3027 		case 12:
3028 			/* EUI64-based, 12 byte */
3029 			return 6;
3030 		case 8:
3031 			/* EUI64-based, 8 byte */
3032 			return 3;
3033 		default:
3034 			break;
3035 		}
3036 		break;
3037 	case 1:
3038 		/* T10 vendor ID */
3039 		return 1;
3040 	default:
3041 		break;
3042 	}
3043 
3044 	return 0;
3045 }
3046 
3047 /**
3048  * scsi_vpd_lun_id - return a unique device identification
3049  * @sdev: SCSI device
3050  * @id:   buffer for the identification
3051  * @id_len:  length of the buffer
3052  *
3053  * Copies a unique device identification into @id based
3054  * on the information in the VPD page 0x83 of the device.
3055  * The string will be formatted as a SCSI name string.
3056  *
3057  * Returns the length of the identification or error on failure.
3058  * If the identifier is longer than the supplied buffer the actual
3059  * identifier length is returned and the buffer is not zero-padded.
3060  */
scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)3061 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3062 {
3063 	u8 cur_id_prio = 0;
3064 	u8 cur_id_size = 0;
3065 	const unsigned char *d, *cur_id_str;
3066 	const struct scsi_vpd *vpd_pg83;
3067 	int id_size = -EINVAL;
3068 
3069 	rcu_read_lock();
3070 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3071 	if (!vpd_pg83) {
3072 		rcu_read_unlock();
3073 		return -ENXIO;
3074 	}
3075 
3076 	/* The id string must be at least 20 bytes + terminating NULL byte */
3077 	if (id_len < 21) {
3078 		rcu_read_unlock();
3079 		return -EINVAL;
3080 	}
3081 
3082 	memset(id, 0, id_len);
3083 	d = vpd_pg83->data + 4;
3084 	while (d < vpd_pg83->data + vpd_pg83->len) {
3085 		u8 prio = designator_prio(d);
3086 
3087 		if (prio == 0 || cur_id_prio > prio)
3088 			goto next_desig;
3089 
3090 		switch (d[1] & 0xf) {
3091 		case 0x1:
3092 			/* T10 Vendor ID */
3093 			if (cur_id_size > d[3])
3094 				break;
3095 			cur_id_prio = prio;
3096 			cur_id_size = d[3];
3097 			if (cur_id_size + 4 > id_len)
3098 				cur_id_size = id_len - 4;
3099 			cur_id_str = d + 4;
3100 			id_size = snprintf(id, id_len, "t10.%*pE",
3101 					   cur_id_size, cur_id_str);
3102 			break;
3103 		case 0x2:
3104 			/* EUI-64 */
3105 			cur_id_prio = prio;
3106 			cur_id_size = d[3];
3107 			cur_id_str = d + 4;
3108 			switch (cur_id_size) {
3109 			case 8:
3110 				id_size = snprintf(id, id_len,
3111 						   "eui.%8phN",
3112 						   cur_id_str);
3113 				break;
3114 			case 12:
3115 				id_size = snprintf(id, id_len,
3116 						   "eui.%12phN",
3117 						   cur_id_str);
3118 				break;
3119 			case 16:
3120 				id_size = snprintf(id, id_len,
3121 						   "eui.%16phN",
3122 						   cur_id_str);
3123 				break;
3124 			default:
3125 				break;
3126 			}
3127 			break;
3128 		case 0x3:
3129 			/* NAA */
3130 			cur_id_prio = prio;
3131 			cur_id_size = d[3];
3132 			cur_id_str = d + 4;
3133 			switch (cur_id_size) {
3134 			case 8:
3135 				id_size = snprintf(id, id_len,
3136 						   "naa.%8phN",
3137 						   cur_id_str);
3138 				break;
3139 			case 16:
3140 				id_size = snprintf(id, id_len,
3141 						   "naa.%16phN",
3142 						   cur_id_str);
3143 				break;
3144 			default:
3145 				break;
3146 			}
3147 			break;
3148 		case 0x8:
3149 			/* SCSI name string */
3150 			if (cur_id_size > d[3])
3151 				break;
3152 			/* Prefer others for truncated descriptor */
3153 			if (d[3] > id_len) {
3154 				prio = 2;
3155 				if (cur_id_prio > prio)
3156 					break;
3157 			}
3158 			cur_id_prio = prio;
3159 			cur_id_size = id_size = d[3];
3160 			cur_id_str = d + 4;
3161 			if (cur_id_size >= id_len)
3162 				cur_id_size = id_len - 1;
3163 			memcpy(id, cur_id_str, cur_id_size);
3164 			break;
3165 		default:
3166 			break;
3167 		}
3168 next_desig:
3169 		d += d[3] + 4;
3170 	}
3171 	rcu_read_unlock();
3172 
3173 	return id_size;
3174 }
3175 EXPORT_SYMBOL(scsi_vpd_lun_id);
3176 
3177 /*
3178  * scsi_vpd_tpg_id - return a target port group identifier
3179  * @sdev: SCSI device
3180  *
3181  * Returns the Target Port Group identifier from the information
3182  * froom VPD page 0x83 of the device.
3183  *
3184  * Returns the identifier or error on failure.
3185  */
scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3186 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3187 {
3188 	const unsigned char *d;
3189 	const struct scsi_vpd *vpd_pg83;
3190 	int group_id = -EAGAIN, rel_port = -1;
3191 
3192 	rcu_read_lock();
3193 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3194 	if (!vpd_pg83) {
3195 		rcu_read_unlock();
3196 		return -ENXIO;
3197 	}
3198 
3199 	d = vpd_pg83->data + 4;
3200 	while (d < vpd_pg83->data + vpd_pg83->len) {
3201 		switch (d[1] & 0xf) {
3202 		case 0x4:
3203 			/* Relative target port */
3204 			rel_port = get_unaligned_be16(&d[6]);
3205 			break;
3206 		case 0x5:
3207 			/* Target port group */
3208 			group_id = get_unaligned_be16(&d[6]);
3209 			break;
3210 		default:
3211 			break;
3212 		}
3213 		d += d[3] + 4;
3214 	}
3215 	rcu_read_unlock();
3216 
3217 	if (group_id >= 0 && rel_id && rel_port != -1)
3218 		*rel_id = rel_port;
3219 
3220 	return group_id;
3221 }
3222 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3223