1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5 *
6 * Copyright (C) 2005, Intec Automation Inc.
7 * Copyright (C) 2014, Freescale Semiconductor, Inc.
8 */
9
10 #include <linux/err.h>
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/mutex.h>
15 #include <linux/math64.h>
16 #include <linux/sizes.h>
17 #include <linux/slab.h>
18
19 #include <linux/mtd/mtd.h>
20 #include <linux/of_platform.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/spi/flash.h>
23 #include <linux/mtd/spi-nor.h>
24
25 #include "core.h"
26
27 /* Define max times to check status register before we give up. */
28
29 /*
30 * For everything but full-chip erase; probably could be much smaller, but kept
31 * around for safety for now
32 */
33 #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
34
35 /*
36 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
37 * for larger flash
38 */
39 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
40
41 #define SPI_NOR_MAX_ADDR_WIDTH 4
42
43 /**
44 * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
45 * transfer
46 * @nor: pointer to 'struct spi_nor'
47 * @op: pointer to 'struct spi_mem_op' template for transfer
48 *
49 * If we have to use the bounce buffer, the data field in @op will be updated.
50 *
51 * Return: true if the bounce buffer is needed, false if not
52 */
spi_nor_spimem_bounce(struct spi_nor * nor,struct spi_mem_op * op)53 static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
54 {
55 /* op->data.buf.in occupies the same memory as op->data.buf.out */
56 if (object_is_on_stack(op->data.buf.in) ||
57 !virt_addr_valid(op->data.buf.in)) {
58 if (op->data.nbytes > nor->bouncebuf_size)
59 op->data.nbytes = nor->bouncebuf_size;
60 op->data.buf.in = nor->bouncebuf;
61 return true;
62 }
63
64 return false;
65 }
66
67 /**
68 * spi_nor_spimem_exec_op() - execute a memory operation
69 * @nor: pointer to 'struct spi_nor'
70 * @op: pointer to 'struct spi_mem_op' template for transfer
71 *
72 * Return: 0 on success, -error otherwise.
73 */
spi_nor_spimem_exec_op(struct spi_nor * nor,struct spi_mem_op * op)74 static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
75 {
76 int error;
77
78 error = spi_mem_adjust_op_size(nor->spimem, op);
79 if (error)
80 return error;
81
82 return spi_mem_exec_op(nor->spimem, op);
83 }
84
85 /**
86 * spi_nor_spimem_read_data() - read data from flash's memory region via
87 * spi-mem
88 * @nor: pointer to 'struct spi_nor'
89 * @from: offset to read from
90 * @len: number of bytes to read
91 * @buf: pointer to dst buffer
92 *
93 * Return: number of bytes read successfully, -errno otherwise
94 */
spi_nor_spimem_read_data(struct spi_nor * nor,loff_t from,size_t len,u8 * buf)95 static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
96 size_t len, u8 *buf)
97 {
98 struct spi_mem_op op =
99 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
100 SPI_MEM_OP_ADDR(nor->addr_width, from, 1),
101 SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
102 SPI_MEM_OP_DATA_IN(len, buf, 1));
103 bool usebouncebuf;
104 ssize_t nbytes;
105 int error;
106
107 /* get transfer protocols. */
108 op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
109 op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
110 op.dummy.buswidth = op.addr.buswidth;
111 op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
112
113 /* convert the dummy cycles to the number of bytes */
114 op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
115
116 usebouncebuf = spi_nor_spimem_bounce(nor, &op);
117
118 if (nor->dirmap.rdesc) {
119 nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
120 op.data.nbytes, op.data.buf.in);
121 } else {
122 error = spi_nor_spimem_exec_op(nor, &op);
123 if (error)
124 return error;
125 nbytes = op.data.nbytes;
126 }
127
128 if (usebouncebuf && nbytes > 0)
129 memcpy(buf, op.data.buf.in, nbytes);
130
131 return nbytes;
132 }
133
134 /**
135 * spi_nor_read_data() - read data from flash memory
136 * @nor: pointer to 'struct spi_nor'
137 * @from: offset to read from
138 * @len: number of bytes to read
139 * @buf: pointer to dst buffer
140 *
141 * Return: number of bytes read successfully, -errno otherwise
142 */
spi_nor_read_data(struct spi_nor * nor,loff_t from,size_t len,u8 * buf)143 ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
144 {
145 if (nor->spimem)
146 return spi_nor_spimem_read_data(nor, from, len, buf);
147
148 return nor->controller_ops->read(nor, from, len, buf);
149 }
150
151 /**
152 * spi_nor_spimem_write_data() - write data to flash memory via
153 * spi-mem
154 * @nor: pointer to 'struct spi_nor'
155 * @to: offset to write to
156 * @len: number of bytes to write
157 * @buf: pointer to src buffer
158 *
159 * Return: number of bytes written successfully, -errno otherwise
160 */
spi_nor_spimem_write_data(struct spi_nor * nor,loff_t to,size_t len,const u8 * buf)161 static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
162 size_t len, const u8 *buf)
163 {
164 struct spi_mem_op op =
165 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
166 SPI_MEM_OP_ADDR(nor->addr_width, to, 1),
167 SPI_MEM_OP_NO_DUMMY,
168 SPI_MEM_OP_DATA_OUT(len, buf, 1));
169 ssize_t nbytes;
170 int error;
171
172 op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
173 op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
174 op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
175
176 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
177 op.addr.nbytes = 0;
178
179 if (spi_nor_spimem_bounce(nor, &op))
180 memcpy(nor->bouncebuf, buf, op.data.nbytes);
181
182 if (nor->dirmap.wdesc) {
183 nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
184 op.data.nbytes, op.data.buf.out);
185 } else {
186 error = spi_nor_spimem_exec_op(nor, &op);
187 if (error)
188 return error;
189 nbytes = op.data.nbytes;
190 }
191
192 return nbytes;
193 }
194
195 /**
196 * spi_nor_write_data() - write data to flash memory
197 * @nor: pointer to 'struct spi_nor'
198 * @to: offset to write to
199 * @len: number of bytes to write
200 * @buf: pointer to src buffer
201 *
202 * Return: number of bytes written successfully, -errno otherwise
203 */
spi_nor_write_data(struct spi_nor * nor,loff_t to,size_t len,const u8 * buf)204 ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
205 const u8 *buf)
206 {
207 if (nor->spimem)
208 return spi_nor_spimem_write_data(nor, to, len, buf);
209
210 return nor->controller_ops->write(nor, to, len, buf);
211 }
212
213 /**
214 * spi_nor_write_enable() - Set write enable latch with Write Enable command.
215 * @nor: pointer to 'struct spi_nor'.
216 *
217 * Return: 0 on success, -errno otherwise.
218 */
spi_nor_write_enable(struct spi_nor * nor)219 int spi_nor_write_enable(struct spi_nor *nor)
220 {
221 int ret;
222
223 if (nor->spimem) {
224 struct spi_mem_op op =
225 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1),
226 SPI_MEM_OP_NO_ADDR,
227 SPI_MEM_OP_NO_DUMMY,
228 SPI_MEM_OP_NO_DATA);
229
230 ret = spi_mem_exec_op(nor->spimem, &op);
231 } else {
232 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREN,
233 NULL, 0);
234 }
235
236 if (ret)
237 dev_dbg(nor->dev, "error %d on Write Enable\n", ret);
238
239 return ret;
240 }
241
242 /**
243 * spi_nor_write_disable() - Send Write Disable instruction to the chip.
244 * @nor: pointer to 'struct spi_nor'.
245 *
246 * Return: 0 on success, -errno otherwise.
247 */
spi_nor_write_disable(struct spi_nor * nor)248 int spi_nor_write_disable(struct spi_nor *nor)
249 {
250 int ret;
251
252 if (nor->spimem) {
253 struct spi_mem_op op =
254 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1),
255 SPI_MEM_OP_NO_ADDR,
256 SPI_MEM_OP_NO_DUMMY,
257 SPI_MEM_OP_NO_DATA);
258
259 ret = spi_mem_exec_op(nor->spimem, &op);
260 } else {
261 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRDI,
262 NULL, 0);
263 }
264
265 if (ret)
266 dev_dbg(nor->dev, "error %d on Write Disable\n", ret);
267
268 return ret;
269 }
270
271 /**
272 * spi_nor_read_sr() - Read the Status Register.
273 * @nor: pointer to 'struct spi_nor'.
274 * @sr: pointer to a DMA-able buffer where the value of the
275 * Status Register will be written.
276 *
277 * Return: 0 on success, -errno otherwise.
278 */
spi_nor_read_sr(struct spi_nor * nor,u8 * sr)279 static int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
280 {
281 int ret;
282
283 if (nor->spimem) {
284 struct spi_mem_op op =
285 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1),
286 SPI_MEM_OP_NO_ADDR,
287 SPI_MEM_OP_NO_DUMMY,
288 SPI_MEM_OP_DATA_IN(1, sr, 1));
289
290 ret = spi_mem_exec_op(nor->spimem, &op);
291 } else {
292 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR,
293 sr, 1);
294 }
295
296 if (ret)
297 dev_dbg(nor->dev, "error %d reading SR\n", ret);
298
299 return ret;
300 }
301
302 /**
303 * spi_nor_read_fsr() - Read the Flag Status Register.
304 * @nor: pointer to 'struct spi_nor'
305 * @fsr: pointer to a DMA-able buffer where the value of the
306 * Flag Status Register will be written.
307 *
308 * Return: 0 on success, -errno otherwise.
309 */
spi_nor_read_fsr(struct spi_nor * nor,u8 * fsr)310 static int spi_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
311 {
312 int ret;
313
314 if (nor->spimem) {
315 struct spi_mem_op op =
316 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 1),
317 SPI_MEM_OP_NO_ADDR,
318 SPI_MEM_OP_NO_DUMMY,
319 SPI_MEM_OP_DATA_IN(1, fsr, 1));
320
321 ret = spi_mem_exec_op(nor->spimem, &op);
322 } else {
323 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDFSR,
324 fsr, 1);
325 }
326
327 if (ret)
328 dev_dbg(nor->dev, "error %d reading FSR\n", ret);
329
330 return ret;
331 }
332
333 /**
334 * spi_nor_read_cr() - Read the Configuration Register using the
335 * SPINOR_OP_RDCR (35h) command.
336 * @nor: pointer to 'struct spi_nor'
337 * @cr: pointer to a DMA-able buffer where the value of the
338 * Configuration Register will be written.
339 *
340 * Return: 0 on success, -errno otherwise.
341 */
spi_nor_read_cr(struct spi_nor * nor,u8 * cr)342 static int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
343 {
344 int ret;
345
346 if (nor->spimem) {
347 struct spi_mem_op op =
348 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDCR, 1),
349 SPI_MEM_OP_NO_ADDR,
350 SPI_MEM_OP_NO_DUMMY,
351 SPI_MEM_OP_DATA_IN(1, cr, 1));
352
353 ret = spi_mem_exec_op(nor->spimem, &op);
354 } else {
355 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDCR, cr, 1);
356 }
357
358 if (ret)
359 dev_dbg(nor->dev, "error %d reading CR\n", ret);
360
361 return ret;
362 }
363
364 /**
365 * spi_nor_set_4byte_addr_mode() - Enter/Exit 4-byte address mode.
366 * @nor: pointer to 'struct spi_nor'.
367 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
368 * address mode.
369 *
370 * Return: 0 on success, -errno otherwise.
371 */
spi_nor_set_4byte_addr_mode(struct spi_nor * nor,bool enable)372 int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
373 {
374 int ret;
375
376 if (nor->spimem) {
377 struct spi_mem_op op =
378 SPI_MEM_OP(SPI_MEM_OP_CMD(enable ?
379 SPINOR_OP_EN4B :
380 SPINOR_OP_EX4B,
381 1),
382 SPI_MEM_OP_NO_ADDR,
383 SPI_MEM_OP_NO_DUMMY,
384 SPI_MEM_OP_NO_DATA);
385
386 ret = spi_mem_exec_op(nor->spimem, &op);
387 } else {
388 ret = nor->controller_ops->write_reg(nor,
389 enable ? SPINOR_OP_EN4B :
390 SPINOR_OP_EX4B,
391 NULL, 0);
392 }
393
394 if (ret)
395 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
396
397 return ret;
398 }
399
400 /**
401 * spansion_set_4byte_addr_mode() - Set 4-byte address mode for Spansion
402 * flashes.
403 * @nor: pointer to 'struct spi_nor'.
404 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
405 * address mode.
406 *
407 * Return: 0 on success, -errno otherwise.
408 */
spansion_set_4byte_addr_mode(struct spi_nor * nor,bool enable)409 static int spansion_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
410 {
411 int ret;
412
413 nor->bouncebuf[0] = enable << 7;
414
415 if (nor->spimem) {
416 struct spi_mem_op op =
417 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_BRWR, 1),
418 SPI_MEM_OP_NO_ADDR,
419 SPI_MEM_OP_NO_DUMMY,
420 SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));
421
422 ret = spi_mem_exec_op(nor->spimem, &op);
423 } else {
424 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_BRWR,
425 nor->bouncebuf, 1);
426 }
427
428 if (ret)
429 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
430
431 return ret;
432 }
433
434 /**
435 * spi_nor_write_ear() - Write Extended Address Register.
436 * @nor: pointer to 'struct spi_nor'.
437 * @ear: value to write to the Extended Address Register.
438 *
439 * Return: 0 on success, -errno otherwise.
440 */
spi_nor_write_ear(struct spi_nor * nor,u8 ear)441 int spi_nor_write_ear(struct spi_nor *nor, u8 ear)
442 {
443 int ret;
444
445 nor->bouncebuf[0] = ear;
446
447 if (nor->spimem) {
448 struct spi_mem_op op =
449 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREAR, 1),
450 SPI_MEM_OP_NO_ADDR,
451 SPI_MEM_OP_NO_DUMMY,
452 SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));
453
454 ret = spi_mem_exec_op(nor->spimem, &op);
455 } else {
456 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREAR,
457 nor->bouncebuf, 1);
458 }
459
460 if (ret)
461 dev_dbg(nor->dev, "error %d writing EAR\n", ret);
462
463 return ret;
464 }
465
466 /**
467 * spi_nor_xread_sr() - Read the Status Register on S3AN flashes.
468 * @nor: pointer to 'struct spi_nor'.
469 * @sr: pointer to a DMA-able buffer where the value of the
470 * Status Register will be written.
471 *
472 * Return: 0 on success, -errno otherwise.
473 */
spi_nor_xread_sr(struct spi_nor * nor,u8 * sr)474 int spi_nor_xread_sr(struct spi_nor *nor, u8 *sr)
475 {
476 int ret;
477
478 if (nor->spimem) {
479 struct spi_mem_op op =
480 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_XRDSR, 1),
481 SPI_MEM_OP_NO_ADDR,
482 SPI_MEM_OP_NO_DUMMY,
483 SPI_MEM_OP_DATA_IN(1, sr, 1));
484
485 ret = spi_mem_exec_op(nor->spimem, &op);
486 } else {
487 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_XRDSR,
488 sr, 1);
489 }
490
491 if (ret)
492 dev_dbg(nor->dev, "error %d reading XRDSR\n", ret);
493
494 return ret;
495 }
496
497 /**
498 * spi_nor_xsr_ready() - Query the Status Register of the S3AN flash to see if
499 * the flash is ready for new commands.
500 * @nor: pointer to 'struct spi_nor'.
501 *
502 * Return: 1 if ready, 0 if not ready, -errno on errors.
503 */
spi_nor_xsr_ready(struct spi_nor * nor)504 static int spi_nor_xsr_ready(struct spi_nor *nor)
505 {
506 int ret;
507
508 ret = spi_nor_xread_sr(nor, nor->bouncebuf);
509 if (ret)
510 return ret;
511
512 return !!(nor->bouncebuf[0] & XSR_RDY);
513 }
514
515 /**
516 * spi_nor_clear_sr() - Clear the Status Register.
517 * @nor: pointer to 'struct spi_nor'.
518 */
spi_nor_clear_sr(struct spi_nor * nor)519 static void spi_nor_clear_sr(struct spi_nor *nor)
520 {
521 int ret;
522
523 if (nor->spimem) {
524 struct spi_mem_op op =
525 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 1),
526 SPI_MEM_OP_NO_ADDR,
527 SPI_MEM_OP_NO_DUMMY,
528 SPI_MEM_OP_NO_DATA);
529
530 ret = spi_mem_exec_op(nor->spimem, &op);
531 } else {
532 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLSR,
533 NULL, 0);
534 }
535
536 if (ret)
537 dev_dbg(nor->dev, "error %d clearing SR\n", ret);
538 }
539
540 /**
541 * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
542 * for new commands.
543 * @nor: pointer to 'struct spi_nor'.
544 *
545 * Return: 1 if ready, 0 if not ready, -errno on errors.
546 */
spi_nor_sr_ready(struct spi_nor * nor)547 static int spi_nor_sr_ready(struct spi_nor *nor)
548 {
549 int ret = spi_nor_read_sr(nor, nor->bouncebuf);
550
551 if (ret)
552 return ret;
553
554 if (nor->flags & SNOR_F_USE_CLSR &&
555 nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
556 if (nor->bouncebuf[0] & SR_E_ERR)
557 dev_err(nor->dev, "Erase Error occurred\n");
558 else
559 dev_err(nor->dev, "Programming Error occurred\n");
560
561 spi_nor_clear_sr(nor);
562
563 /*
564 * WEL bit remains set to one when an erase or page program
565 * error occurs. Issue a Write Disable command to protect
566 * against inadvertent writes that can possibly corrupt the
567 * contents of the memory.
568 */
569 ret = spi_nor_write_disable(nor);
570 if (ret)
571 return ret;
572
573 return -EIO;
574 }
575
576 return !(nor->bouncebuf[0] & SR_WIP);
577 }
578
579 /**
580 * spi_nor_clear_fsr() - Clear the Flag Status Register.
581 * @nor: pointer to 'struct spi_nor'.
582 */
spi_nor_clear_fsr(struct spi_nor * nor)583 static void spi_nor_clear_fsr(struct spi_nor *nor)
584 {
585 int ret;
586
587 if (nor->spimem) {
588 struct spi_mem_op op =
589 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 1),
590 SPI_MEM_OP_NO_ADDR,
591 SPI_MEM_OP_NO_DUMMY,
592 SPI_MEM_OP_NO_DATA);
593
594 ret = spi_mem_exec_op(nor->spimem, &op);
595 } else {
596 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLFSR,
597 NULL, 0);
598 }
599
600 if (ret)
601 dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
602 }
603
604 /**
605 * spi_nor_fsr_ready() - Query the Flag Status Register to see if the flash is
606 * ready for new commands.
607 * @nor: pointer to 'struct spi_nor'.
608 *
609 * Return: 1 if ready, 0 if not ready, -errno on errors.
610 */
spi_nor_fsr_ready(struct spi_nor * nor)611 static int spi_nor_fsr_ready(struct spi_nor *nor)
612 {
613 int ret = spi_nor_read_fsr(nor, nor->bouncebuf);
614
615 if (ret)
616 return ret;
617
618 if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
619 if (nor->bouncebuf[0] & FSR_E_ERR)
620 dev_err(nor->dev, "Erase operation failed.\n");
621 else
622 dev_err(nor->dev, "Program operation failed.\n");
623
624 if (nor->bouncebuf[0] & FSR_PT_ERR)
625 dev_err(nor->dev,
626 "Attempted to modify a protected sector.\n");
627
628 spi_nor_clear_fsr(nor);
629
630 /*
631 * WEL bit remains set to one when an erase or page program
632 * error occurs. Issue a Write Disable command to protect
633 * against inadvertent writes that can possibly corrupt the
634 * contents of the memory.
635 */
636 ret = spi_nor_write_disable(nor);
637 if (ret)
638 return ret;
639
640 return -EIO;
641 }
642
643 return !!(nor->bouncebuf[0] & FSR_READY);
644 }
645
646 /**
647 * spi_nor_ready() - Query the flash to see if it is ready for new commands.
648 * @nor: pointer to 'struct spi_nor'.
649 *
650 * Return: 1 if ready, 0 if not ready, -errno on errors.
651 */
spi_nor_ready(struct spi_nor * nor)652 static int spi_nor_ready(struct spi_nor *nor)
653 {
654 int sr, fsr;
655
656 if (nor->flags & SNOR_F_READY_XSR_RDY)
657 sr = spi_nor_xsr_ready(nor);
658 else
659 sr = spi_nor_sr_ready(nor);
660 if (sr < 0)
661 return sr;
662 fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
663 if (fsr < 0)
664 return fsr;
665 return sr && fsr;
666 }
667
668 /**
669 * spi_nor_wait_till_ready_with_timeout() - Service routine to read the
670 * Status Register until ready, or timeout occurs.
671 * @nor: pointer to "struct spi_nor".
672 * @timeout_jiffies: jiffies to wait until timeout.
673 *
674 * Return: 0 on success, -errno otherwise.
675 */
spi_nor_wait_till_ready_with_timeout(struct spi_nor * nor,unsigned long timeout_jiffies)676 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
677 unsigned long timeout_jiffies)
678 {
679 unsigned long deadline;
680 int timeout = 0, ret;
681
682 deadline = jiffies + timeout_jiffies;
683
684 while (!timeout) {
685 if (time_after_eq(jiffies, deadline))
686 timeout = 1;
687
688 ret = spi_nor_ready(nor);
689 if (ret < 0)
690 return ret;
691 if (ret)
692 return 0;
693
694 cond_resched();
695 }
696
697 dev_dbg(nor->dev, "flash operation timed out\n");
698
699 return -ETIMEDOUT;
700 }
701
702 /**
703 * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
704 * flash to be ready, or timeout occurs.
705 * @nor: pointer to "struct spi_nor".
706 *
707 * Return: 0 on success, -errno otherwise.
708 */
spi_nor_wait_till_ready(struct spi_nor * nor)709 int spi_nor_wait_till_ready(struct spi_nor *nor)
710 {
711 return spi_nor_wait_till_ready_with_timeout(nor,
712 DEFAULT_READY_WAIT_JIFFIES);
713 }
714
715 /**
716 * spi_nor_write_sr() - Write the Status Register.
717 * @nor: pointer to 'struct spi_nor'.
718 * @sr: pointer to DMA-able buffer to write to the Status Register.
719 * @len: number of bytes to write to the Status Register.
720 *
721 * Return: 0 on success, -errno otherwise.
722 */
spi_nor_write_sr(struct spi_nor * nor,const u8 * sr,size_t len)723 static int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
724 {
725 int ret;
726
727 ret = spi_nor_write_enable(nor);
728 if (ret)
729 return ret;
730
731 if (nor->spimem) {
732 struct spi_mem_op op =
733 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1),
734 SPI_MEM_OP_NO_ADDR,
735 SPI_MEM_OP_NO_DUMMY,
736 SPI_MEM_OP_DATA_OUT(len, sr, 1));
737
738 ret = spi_mem_exec_op(nor->spimem, &op);
739 } else {
740 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR,
741 sr, len);
742 }
743
744 if (ret) {
745 dev_dbg(nor->dev, "error %d writing SR\n", ret);
746 return ret;
747 }
748
749 return spi_nor_wait_till_ready(nor);
750 }
751
752 /**
753 * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
754 * ensure that the byte written match the received value.
755 * @nor: pointer to a 'struct spi_nor'.
756 * @sr1: byte value to be written to the Status Register.
757 *
758 * Return: 0 on success, -errno otherwise.
759 */
spi_nor_write_sr1_and_check(struct spi_nor * nor,u8 sr1)760 static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
761 {
762 int ret;
763
764 nor->bouncebuf[0] = sr1;
765
766 ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
767 if (ret)
768 return ret;
769
770 ret = spi_nor_read_sr(nor, nor->bouncebuf);
771 if (ret)
772 return ret;
773
774 if (nor->bouncebuf[0] != sr1) {
775 dev_dbg(nor->dev, "SR1: read back test failed\n");
776 return -EIO;
777 }
778
779 return 0;
780 }
781
782 /**
783 * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
784 * Status Register 2 in one shot. Ensure that the byte written in the Status
785 * Register 1 match the received value, and that the 16-bit Write did not
786 * affect what was already in the Status Register 2.
787 * @nor: pointer to a 'struct spi_nor'.
788 * @sr1: byte value to be written to the Status Register 1.
789 *
790 * Return: 0 on success, -errno otherwise.
791 */
spi_nor_write_16bit_sr_and_check(struct spi_nor * nor,u8 sr1)792 static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
793 {
794 int ret;
795 u8 *sr_cr = nor->bouncebuf;
796 u8 cr_written;
797
798 /* Make sure we don't overwrite the contents of Status Register 2. */
799 if (!(nor->flags & SNOR_F_NO_READ_CR)) {
800 ret = spi_nor_read_cr(nor, &sr_cr[1]);
801 if (ret)
802 return ret;
803 } else if (spi_nor_get_protocol_width(nor->read_proto) == 4 &&
804 spi_nor_get_protocol_width(nor->write_proto) == 4 &&
805 nor->params->quad_enable) {
806 /*
807 * If the Status Register 2 Read command (35h) is not
808 * supported, we should at least be sure we don't
809 * change the value of the SR2 Quad Enable bit.
810 *
811 * When the Quad Enable method is set and the buswidth is 4, we
812 * can safely assume that the value of the QE bit is one, as a
813 * consequence of the nor->params->quad_enable() call.
814 *
815 * According to the JESD216 revB standard, BFPT DWORDS[15],
816 * bits 22:20, the 16-bit Write Status (01h) command is
817 * available just for the cases in which the QE bit is
818 * described in SR2 at BIT(1).
819 */
820 sr_cr[1] = SR2_QUAD_EN_BIT1;
821 } else {
822 sr_cr[1] = 0;
823 }
824
825 sr_cr[0] = sr1;
826
827 ret = spi_nor_write_sr(nor, sr_cr, 2);
828 if (ret)
829 return ret;
830
831 ret = spi_nor_read_sr(nor, sr_cr);
832 if (ret)
833 return ret;
834
835 if (sr1 != sr_cr[0]) {
836 dev_dbg(nor->dev, "SR: Read back test failed\n");
837 return -EIO;
838 }
839
840 if (nor->flags & SNOR_F_NO_READ_CR)
841 return 0;
842
843 cr_written = sr_cr[1];
844
845 ret = spi_nor_read_cr(nor, &sr_cr[1]);
846 if (ret)
847 return ret;
848
849 if (cr_written != sr_cr[1]) {
850 dev_dbg(nor->dev, "CR: read back test failed\n");
851 return -EIO;
852 }
853
854 return 0;
855 }
856
857 /**
858 * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
859 * Configuration Register in one shot. Ensure that the byte written in the
860 * Configuration Register match the received value, and that the 16-bit Write
861 * did not affect what was already in the Status Register 1.
862 * @nor: pointer to a 'struct spi_nor'.
863 * @cr: byte value to be written to the Configuration Register.
864 *
865 * Return: 0 on success, -errno otherwise.
866 */
spi_nor_write_16bit_cr_and_check(struct spi_nor * nor,u8 cr)867 static int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
868 {
869 int ret;
870 u8 *sr_cr = nor->bouncebuf;
871 u8 sr_written;
872
873 /* Keep the current value of the Status Register 1. */
874 ret = spi_nor_read_sr(nor, sr_cr);
875 if (ret)
876 return ret;
877
878 sr_cr[1] = cr;
879
880 ret = spi_nor_write_sr(nor, sr_cr, 2);
881 if (ret)
882 return ret;
883
884 sr_written = sr_cr[0];
885
886 ret = spi_nor_read_sr(nor, sr_cr);
887 if (ret)
888 return ret;
889
890 if (sr_written != sr_cr[0]) {
891 dev_dbg(nor->dev, "SR: Read back test failed\n");
892 return -EIO;
893 }
894
895 if (nor->flags & SNOR_F_NO_READ_CR)
896 return 0;
897
898 ret = spi_nor_read_cr(nor, &sr_cr[1]);
899 if (ret)
900 return ret;
901
902 if (cr != sr_cr[1]) {
903 dev_dbg(nor->dev, "CR: read back test failed\n");
904 return -EIO;
905 }
906
907 return 0;
908 }
909
910 /**
911 * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
912 * the byte written match the received value without affecting other bits in the
913 * Status Register 1 and 2.
914 * @nor: pointer to a 'struct spi_nor'.
915 * @sr1: byte value to be written to the Status Register.
916 *
917 * Return: 0 on success, -errno otherwise.
918 */
spi_nor_write_sr_and_check(struct spi_nor * nor,u8 sr1)919 int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
920 {
921 if (nor->flags & SNOR_F_HAS_16BIT_SR)
922 return spi_nor_write_16bit_sr_and_check(nor, sr1);
923
924 return spi_nor_write_sr1_and_check(nor, sr1);
925 }
926
927 /**
928 * spi_nor_write_sr2() - Write the Status Register 2 using the
929 * SPINOR_OP_WRSR2 (3eh) command.
930 * @nor: pointer to 'struct spi_nor'.
931 * @sr2: pointer to DMA-able buffer to write to the Status Register 2.
932 *
933 * Return: 0 on success, -errno otherwise.
934 */
spi_nor_write_sr2(struct spi_nor * nor,const u8 * sr2)935 static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
936 {
937 int ret;
938
939 ret = spi_nor_write_enable(nor);
940 if (ret)
941 return ret;
942
943 if (nor->spimem) {
944 struct spi_mem_op op =
945 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR2, 1),
946 SPI_MEM_OP_NO_ADDR,
947 SPI_MEM_OP_NO_DUMMY,
948 SPI_MEM_OP_DATA_OUT(1, sr2, 1));
949
950 ret = spi_mem_exec_op(nor->spimem, &op);
951 } else {
952 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR2,
953 sr2, 1);
954 }
955
956 if (ret) {
957 dev_dbg(nor->dev, "error %d writing SR2\n", ret);
958 return ret;
959 }
960
961 return spi_nor_wait_till_ready(nor);
962 }
963
964 /**
965 * spi_nor_read_sr2() - Read the Status Register 2 using the
966 * SPINOR_OP_RDSR2 (3fh) command.
967 * @nor: pointer to 'struct spi_nor'.
968 * @sr2: pointer to DMA-able buffer where the value of the
969 * Status Register 2 will be written.
970 *
971 * Return: 0 on success, -errno otherwise.
972 */
spi_nor_read_sr2(struct spi_nor * nor,u8 * sr2)973 static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
974 {
975 int ret;
976
977 if (nor->spimem) {
978 struct spi_mem_op op =
979 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR2, 1),
980 SPI_MEM_OP_NO_ADDR,
981 SPI_MEM_OP_NO_DUMMY,
982 SPI_MEM_OP_DATA_IN(1, sr2, 1));
983
984 ret = spi_mem_exec_op(nor->spimem, &op);
985 } else {
986 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR2,
987 sr2, 1);
988 }
989
990 if (ret)
991 dev_dbg(nor->dev, "error %d reading SR2\n", ret);
992
993 return ret;
994 }
995
996 /**
997 * spi_nor_erase_chip() - Erase the entire flash memory.
998 * @nor: pointer to 'struct spi_nor'.
999 *
1000 * Return: 0 on success, -errno otherwise.
1001 */
spi_nor_erase_chip(struct spi_nor * nor)1002 static int spi_nor_erase_chip(struct spi_nor *nor)
1003 {
1004 int ret;
1005
1006 dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
1007
1008 if (nor->spimem) {
1009 struct spi_mem_op op =
1010 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CHIP_ERASE, 1),
1011 SPI_MEM_OP_NO_ADDR,
1012 SPI_MEM_OP_NO_DUMMY,
1013 SPI_MEM_OP_NO_DATA);
1014
1015 ret = spi_mem_exec_op(nor->spimem, &op);
1016 } else {
1017 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CHIP_ERASE,
1018 NULL, 0);
1019 }
1020
1021 if (ret)
1022 dev_dbg(nor->dev, "error %d erasing chip\n", ret);
1023
1024 return ret;
1025 }
1026
spi_nor_convert_opcode(u8 opcode,const u8 table[][2],size_t size)1027 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
1028 {
1029 size_t i;
1030
1031 for (i = 0; i < size; i++)
1032 if (table[i][0] == opcode)
1033 return table[i][1];
1034
1035 /* No conversion found, keep input op code. */
1036 return opcode;
1037 }
1038
spi_nor_convert_3to4_read(u8 opcode)1039 u8 spi_nor_convert_3to4_read(u8 opcode)
1040 {
1041 static const u8 spi_nor_3to4_read[][2] = {
1042 { SPINOR_OP_READ, SPINOR_OP_READ_4B },
1043 { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
1044 { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
1045 { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
1046 { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
1047 { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
1048 { SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B },
1049 { SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B },
1050
1051 { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B },
1052 { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B },
1053 { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B },
1054 };
1055
1056 return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
1057 ARRAY_SIZE(spi_nor_3to4_read));
1058 }
1059
spi_nor_convert_3to4_program(u8 opcode)1060 static u8 spi_nor_convert_3to4_program(u8 opcode)
1061 {
1062 static const u8 spi_nor_3to4_program[][2] = {
1063 { SPINOR_OP_PP, SPINOR_OP_PP_4B },
1064 { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
1065 { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
1066 { SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B },
1067 { SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B },
1068 };
1069
1070 return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
1071 ARRAY_SIZE(spi_nor_3to4_program));
1072 }
1073
spi_nor_convert_3to4_erase(u8 opcode)1074 static u8 spi_nor_convert_3to4_erase(u8 opcode)
1075 {
1076 static const u8 spi_nor_3to4_erase[][2] = {
1077 { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
1078 { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
1079 { SPINOR_OP_SE, SPINOR_OP_SE_4B },
1080 };
1081
1082 return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
1083 ARRAY_SIZE(spi_nor_3to4_erase));
1084 }
1085
spi_nor_has_uniform_erase(const struct spi_nor * nor)1086 static bool spi_nor_has_uniform_erase(const struct spi_nor *nor)
1087 {
1088 return !!nor->params->erase_map.uniform_erase_type;
1089 }
1090
spi_nor_set_4byte_opcodes(struct spi_nor * nor)1091 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
1092 {
1093 nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
1094 nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
1095 nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
1096
1097 if (!spi_nor_has_uniform_erase(nor)) {
1098 struct spi_nor_erase_map *map = &nor->params->erase_map;
1099 struct spi_nor_erase_type *erase;
1100 int i;
1101
1102 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1103 erase = &map->erase_type[i];
1104 erase->opcode =
1105 spi_nor_convert_3to4_erase(erase->opcode);
1106 }
1107 }
1108 }
1109
spi_nor_lock_and_prep(struct spi_nor * nor)1110 int spi_nor_lock_and_prep(struct spi_nor *nor)
1111 {
1112 int ret = 0;
1113
1114 mutex_lock(&nor->lock);
1115
1116 if (nor->controller_ops && nor->controller_ops->prepare) {
1117 ret = nor->controller_ops->prepare(nor);
1118 if (ret) {
1119 mutex_unlock(&nor->lock);
1120 return ret;
1121 }
1122 }
1123 return ret;
1124 }
1125
spi_nor_unlock_and_unprep(struct spi_nor * nor)1126 void spi_nor_unlock_and_unprep(struct spi_nor *nor)
1127 {
1128 if (nor->controller_ops && nor->controller_ops->unprepare)
1129 nor->controller_ops->unprepare(nor);
1130 mutex_unlock(&nor->lock);
1131 }
1132
spi_nor_convert_addr(struct spi_nor * nor,loff_t addr)1133 static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr)
1134 {
1135 if (!nor->params->convert_addr)
1136 return addr;
1137
1138 return nor->params->convert_addr(nor, addr);
1139 }
1140
1141 /*
1142 * Initiate the erasure of a single sector
1143 */
spi_nor_erase_sector(struct spi_nor * nor,u32 addr)1144 static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
1145 {
1146 int i;
1147
1148 addr = spi_nor_convert_addr(nor, addr);
1149
1150 if (nor->spimem) {
1151 struct spi_mem_op op =
1152 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 1),
1153 SPI_MEM_OP_ADDR(nor->addr_width, addr, 1),
1154 SPI_MEM_OP_NO_DUMMY,
1155 SPI_MEM_OP_NO_DATA);
1156
1157 return spi_mem_exec_op(nor->spimem, &op);
1158 } else if (nor->controller_ops->erase) {
1159 return nor->controller_ops->erase(nor, addr);
1160 }
1161
1162 /*
1163 * Default implementation, if driver doesn't have a specialized HW
1164 * control
1165 */
1166 for (i = nor->addr_width - 1; i >= 0; i--) {
1167 nor->bouncebuf[i] = addr & 0xff;
1168 addr >>= 8;
1169 }
1170
1171 return nor->controller_ops->write_reg(nor, nor->erase_opcode,
1172 nor->bouncebuf, nor->addr_width);
1173 }
1174
1175 /**
1176 * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
1177 * @erase: pointer to a structure that describes a SPI NOR erase type
1178 * @dividend: dividend value
1179 * @remainder: pointer to u32 remainder (will be updated)
1180 *
1181 * Return: the result of the division
1182 */
spi_nor_div_by_erase_size(const struct spi_nor_erase_type * erase,u64 dividend,u32 * remainder)1183 static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
1184 u64 dividend, u32 *remainder)
1185 {
1186 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
1187 *remainder = (u32)dividend & erase->size_mask;
1188 return dividend >> erase->size_shift;
1189 }
1190
1191 /**
1192 * spi_nor_find_best_erase_type() - find the best erase type for the given
1193 * offset in the serial flash memory and the
1194 * number of bytes to erase. The region in
1195 * which the address fits is expected to be
1196 * provided.
1197 * @map: the erase map of the SPI NOR
1198 * @region: pointer to a structure that describes a SPI NOR erase region
1199 * @addr: offset in the serial flash memory
1200 * @len: number of bytes to erase
1201 *
1202 * Return: a pointer to the best fitted erase type, NULL otherwise.
1203 */
1204 static const struct spi_nor_erase_type *
spi_nor_find_best_erase_type(const struct spi_nor_erase_map * map,const struct spi_nor_erase_region * region,u64 addr,u32 len)1205 spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
1206 const struct spi_nor_erase_region *region,
1207 u64 addr, u32 len)
1208 {
1209 const struct spi_nor_erase_type *erase;
1210 u32 rem;
1211 int i;
1212 u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
1213
1214 /*
1215 * Erase types are ordered by size, with the smallest erase type at
1216 * index 0.
1217 */
1218 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
1219 /* Does the erase region support the tested erase type? */
1220 if (!(erase_mask & BIT(i)))
1221 continue;
1222
1223 erase = &map->erase_type[i];
1224 if (!erase->size)
1225 continue;
1226
1227 /* Alignment is not mandatory for overlaid regions */
1228 if (region->offset & SNOR_OVERLAID_REGION &&
1229 region->size <= len)
1230 return erase;
1231
1232 /* Don't erase more than what the user has asked for. */
1233 if (erase->size > len)
1234 continue;
1235
1236 spi_nor_div_by_erase_size(erase, addr, &rem);
1237 if (rem)
1238 continue;
1239 else
1240 return erase;
1241 }
1242
1243 return NULL;
1244 }
1245
spi_nor_region_is_last(const struct spi_nor_erase_region * region)1246 static u64 spi_nor_region_is_last(const struct spi_nor_erase_region *region)
1247 {
1248 return region->offset & SNOR_LAST_REGION;
1249 }
1250
spi_nor_region_end(const struct spi_nor_erase_region * region)1251 static u64 spi_nor_region_end(const struct spi_nor_erase_region *region)
1252 {
1253 return (region->offset & ~SNOR_ERASE_FLAGS_MASK) + region->size;
1254 }
1255
1256 /**
1257 * spi_nor_region_next() - get the next spi nor region
1258 * @region: pointer to a structure that describes a SPI NOR erase region
1259 *
1260 * Return: the next spi nor region or NULL if last region.
1261 */
1262 struct spi_nor_erase_region *
spi_nor_region_next(struct spi_nor_erase_region * region)1263 spi_nor_region_next(struct spi_nor_erase_region *region)
1264 {
1265 if (spi_nor_region_is_last(region))
1266 return NULL;
1267 region++;
1268 return region;
1269 }
1270
1271 /**
1272 * spi_nor_find_erase_region() - find the region of the serial flash memory in
1273 * which the offset fits
1274 * @map: the erase map of the SPI NOR
1275 * @addr: offset in the serial flash memory
1276 *
1277 * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
1278 * otherwise.
1279 */
1280 static struct spi_nor_erase_region *
spi_nor_find_erase_region(const struct spi_nor_erase_map * map,u64 addr)1281 spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
1282 {
1283 struct spi_nor_erase_region *region = map->regions;
1284 u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1285 u64 region_end = region_start + region->size;
1286
1287 while (addr < region_start || addr >= region_end) {
1288 region = spi_nor_region_next(region);
1289 if (!region)
1290 return ERR_PTR(-EINVAL);
1291
1292 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1293 region_end = region_start + region->size;
1294 }
1295
1296 return region;
1297 }
1298
1299 /**
1300 * spi_nor_init_erase_cmd() - initialize an erase command
1301 * @region: pointer to a structure that describes a SPI NOR erase region
1302 * @erase: pointer to a structure that describes a SPI NOR erase type
1303 *
1304 * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
1305 * otherwise.
1306 */
1307 static struct spi_nor_erase_command *
spi_nor_init_erase_cmd(const struct spi_nor_erase_region * region,const struct spi_nor_erase_type * erase)1308 spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
1309 const struct spi_nor_erase_type *erase)
1310 {
1311 struct spi_nor_erase_command *cmd;
1312
1313 cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
1314 if (!cmd)
1315 return ERR_PTR(-ENOMEM);
1316
1317 INIT_LIST_HEAD(&cmd->list);
1318 cmd->opcode = erase->opcode;
1319 cmd->count = 1;
1320
1321 if (region->offset & SNOR_OVERLAID_REGION)
1322 cmd->size = region->size;
1323 else
1324 cmd->size = erase->size;
1325
1326 return cmd;
1327 }
1328
1329 /**
1330 * spi_nor_destroy_erase_cmd_list() - destroy erase command list
1331 * @erase_list: list of erase commands
1332 */
spi_nor_destroy_erase_cmd_list(struct list_head * erase_list)1333 static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
1334 {
1335 struct spi_nor_erase_command *cmd, *next;
1336
1337 list_for_each_entry_safe(cmd, next, erase_list, list) {
1338 list_del(&cmd->list);
1339 kfree(cmd);
1340 }
1341 }
1342
1343 /**
1344 * spi_nor_init_erase_cmd_list() - initialize erase command list
1345 * @nor: pointer to a 'struct spi_nor'
1346 * @erase_list: list of erase commands to be executed once we validate that the
1347 * erase can be performed
1348 * @addr: offset in the serial flash memory
1349 * @len: number of bytes to erase
1350 *
1351 * Builds the list of best fitted erase commands and verifies if the erase can
1352 * be performed.
1353 *
1354 * Return: 0 on success, -errno otherwise.
1355 */
spi_nor_init_erase_cmd_list(struct spi_nor * nor,struct list_head * erase_list,u64 addr,u32 len)1356 static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
1357 struct list_head *erase_list,
1358 u64 addr, u32 len)
1359 {
1360 const struct spi_nor_erase_map *map = &nor->params->erase_map;
1361 const struct spi_nor_erase_type *erase, *prev_erase = NULL;
1362 struct spi_nor_erase_region *region;
1363 struct spi_nor_erase_command *cmd = NULL;
1364 u64 region_end;
1365 int ret = -EINVAL;
1366
1367 region = spi_nor_find_erase_region(map, addr);
1368 if (IS_ERR(region))
1369 return PTR_ERR(region);
1370
1371 region_end = spi_nor_region_end(region);
1372
1373 while (len) {
1374 erase = spi_nor_find_best_erase_type(map, region, addr, len);
1375 if (!erase)
1376 goto destroy_erase_cmd_list;
1377
1378 if (prev_erase != erase ||
1379 erase->size != cmd->size ||
1380 region->offset & SNOR_OVERLAID_REGION) {
1381 cmd = spi_nor_init_erase_cmd(region, erase);
1382 if (IS_ERR(cmd)) {
1383 ret = PTR_ERR(cmd);
1384 goto destroy_erase_cmd_list;
1385 }
1386
1387 list_add_tail(&cmd->list, erase_list);
1388 } else {
1389 cmd->count++;
1390 }
1391
1392 addr += cmd->size;
1393 len -= cmd->size;
1394
1395 if (len && addr >= region_end) {
1396 region = spi_nor_region_next(region);
1397 if (!region)
1398 goto destroy_erase_cmd_list;
1399 region_end = spi_nor_region_end(region);
1400 }
1401
1402 prev_erase = erase;
1403 }
1404
1405 return 0;
1406
1407 destroy_erase_cmd_list:
1408 spi_nor_destroy_erase_cmd_list(erase_list);
1409 return ret;
1410 }
1411
1412 /**
1413 * spi_nor_erase_multi_sectors() - perform a non-uniform erase
1414 * @nor: pointer to a 'struct spi_nor'
1415 * @addr: offset in the serial flash memory
1416 * @len: number of bytes to erase
1417 *
1418 * Build a list of best fitted erase commands and execute it once we validate
1419 * that the erase can be performed.
1420 *
1421 * Return: 0 on success, -errno otherwise.
1422 */
spi_nor_erase_multi_sectors(struct spi_nor * nor,u64 addr,u32 len)1423 static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
1424 {
1425 LIST_HEAD(erase_list);
1426 struct spi_nor_erase_command *cmd, *next;
1427 int ret;
1428
1429 ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
1430 if (ret)
1431 return ret;
1432
1433 list_for_each_entry_safe(cmd, next, &erase_list, list) {
1434 nor->erase_opcode = cmd->opcode;
1435 while (cmd->count) {
1436 ret = spi_nor_write_enable(nor);
1437 if (ret)
1438 goto destroy_erase_cmd_list;
1439
1440 ret = spi_nor_erase_sector(nor, addr);
1441 if (ret)
1442 goto destroy_erase_cmd_list;
1443
1444 addr += cmd->size;
1445 cmd->count--;
1446
1447 ret = spi_nor_wait_till_ready(nor);
1448 if (ret)
1449 goto destroy_erase_cmd_list;
1450 }
1451 list_del(&cmd->list);
1452 kfree(cmd);
1453 }
1454
1455 return 0;
1456
1457 destroy_erase_cmd_list:
1458 spi_nor_destroy_erase_cmd_list(&erase_list);
1459 return ret;
1460 }
1461
1462 /*
1463 * Erase an address range on the nor chip. The address range may extend
1464 * one or more erase sectors. Return an error is there is a problem erasing.
1465 */
spi_nor_erase(struct mtd_info * mtd,struct erase_info * instr)1466 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
1467 {
1468 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1469 u32 addr, len;
1470 uint32_t rem;
1471 int ret;
1472
1473 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
1474 (long long)instr->len);
1475
1476 if (spi_nor_has_uniform_erase(nor)) {
1477 div_u64_rem(instr->len, mtd->erasesize, &rem);
1478 if (rem)
1479 return -EINVAL;
1480 }
1481
1482 addr = instr->addr;
1483 len = instr->len;
1484
1485 ret = spi_nor_lock_and_prep(nor);
1486 if (ret)
1487 return ret;
1488
1489 /* whole-chip erase? */
1490 if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
1491 unsigned long timeout;
1492
1493 ret = spi_nor_write_enable(nor);
1494 if (ret)
1495 goto erase_err;
1496
1497 ret = spi_nor_erase_chip(nor);
1498 if (ret)
1499 goto erase_err;
1500
1501 /*
1502 * Scale the timeout linearly with the size of the flash, with
1503 * a minimum calibrated to an old 2MB flash. We could try to
1504 * pull these from CFI/SFDP, but these values should be good
1505 * enough for now.
1506 */
1507 timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
1508 CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
1509 (unsigned long)(mtd->size / SZ_2M));
1510 ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1511 if (ret)
1512 goto erase_err;
1513
1514 /* REVISIT in some cases we could speed up erasing large regions
1515 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
1516 * to use "small sector erase", but that's not always optimal.
1517 */
1518
1519 /* "sector"-at-a-time erase */
1520 } else if (spi_nor_has_uniform_erase(nor)) {
1521 while (len) {
1522 ret = spi_nor_write_enable(nor);
1523 if (ret)
1524 goto erase_err;
1525
1526 ret = spi_nor_erase_sector(nor, addr);
1527 if (ret)
1528 goto erase_err;
1529
1530 addr += mtd->erasesize;
1531 len -= mtd->erasesize;
1532
1533 ret = spi_nor_wait_till_ready(nor);
1534 if (ret)
1535 goto erase_err;
1536 }
1537
1538 /* erase multiple sectors */
1539 } else {
1540 ret = spi_nor_erase_multi_sectors(nor, addr, len);
1541 if (ret)
1542 goto erase_err;
1543 }
1544
1545 ret = spi_nor_write_disable(nor);
1546
1547 erase_err:
1548 spi_nor_unlock_and_unprep(nor);
1549
1550 return ret;
1551 }
1552
spi_nor_get_sr_bp_mask(struct spi_nor * nor)1553 static u8 spi_nor_get_sr_bp_mask(struct spi_nor *nor)
1554 {
1555 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1556
1557 if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6)
1558 return mask | SR_BP3_BIT6;
1559
1560 if (nor->flags & SNOR_F_HAS_4BIT_BP)
1561 return mask | SR_BP3;
1562
1563 return mask;
1564 }
1565
spi_nor_get_sr_tb_mask(struct spi_nor * nor)1566 static u8 spi_nor_get_sr_tb_mask(struct spi_nor *nor)
1567 {
1568 if (nor->flags & SNOR_F_HAS_SR_TB_BIT6)
1569 return SR_TB_BIT6;
1570 else
1571 return SR_TB_BIT5;
1572 }
1573
spi_nor_get_min_prot_length_sr(struct spi_nor * nor)1574 static u64 spi_nor_get_min_prot_length_sr(struct spi_nor *nor)
1575 {
1576 unsigned int bp_slots, bp_slots_needed;
1577 u8 mask = spi_nor_get_sr_bp_mask(nor);
1578
1579 /* Reserved one for "protect none" and one for "protect all". */
1580 bp_slots = (1 << hweight8(mask)) - 2;
1581 bp_slots_needed = ilog2(nor->info->n_sectors);
1582
1583 if (bp_slots_needed > bp_slots)
1584 return nor->info->sector_size <<
1585 (bp_slots_needed - bp_slots);
1586 else
1587 return nor->info->sector_size;
1588 }
1589
spi_nor_get_locked_range_sr(struct spi_nor * nor,u8 sr,loff_t * ofs,uint64_t * len)1590 static void spi_nor_get_locked_range_sr(struct spi_nor *nor, u8 sr, loff_t *ofs,
1591 uint64_t *len)
1592 {
1593 struct mtd_info *mtd = &nor->mtd;
1594 u64 min_prot_len;
1595 u8 mask = spi_nor_get_sr_bp_mask(nor);
1596 u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
1597 u8 bp, val = sr & mask;
1598
1599 if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3_BIT6)
1600 val = (val & ~SR_BP3_BIT6) | SR_BP3;
1601
1602 bp = val >> SR_BP_SHIFT;
1603
1604 if (!bp) {
1605 /* No protection */
1606 *ofs = 0;
1607 *len = 0;
1608 return;
1609 }
1610
1611 min_prot_len = spi_nor_get_min_prot_length_sr(nor);
1612 *len = min_prot_len << (bp - 1);
1613
1614 if (*len > mtd->size)
1615 *len = mtd->size;
1616
1617 if (nor->flags & SNOR_F_HAS_SR_TB && sr & tb_mask)
1618 *ofs = 0;
1619 else
1620 *ofs = mtd->size - *len;
1621 }
1622
1623 /*
1624 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
1625 * @locked is false); 0 otherwise
1626 */
spi_nor_check_lock_status_sr(struct spi_nor * nor,loff_t ofs,uint64_t len,u8 sr,bool locked)1627 static int spi_nor_check_lock_status_sr(struct spi_nor *nor, loff_t ofs,
1628 uint64_t len, u8 sr, bool locked)
1629 {
1630 loff_t lock_offs;
1631 uint64_t lock_len;
1632
1633 if (!len)
1634 return 1;
1635
1636 spi_nor_get_locked_range_sr(nor, sr, &lock_offs, &lock_len);
1637
1638 if (locked)
1639 /* Requested range is a sub-range of locked range */
1640 return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
1641 else
1642 /* Requested range does not overlap with locked range */
1643 return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
1644 }
1645
spi_nor_is_locked_sr(struct spi_nor * nor,loff_t ofs,uint64_t len,u8 sr)1646 static int spi_nor_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
1647 u8 sr)
1648 {
1649 return spi_nor_check_lock_status_sr(nor, ofs, len, sr, true);
1650 }
1651
spi_nor_is_unlocked_sr(struct spi_nor * nor,loff_t ofs,uint64_t len,u8 sr)1652 static int spi_nor_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
1653 u8 sr)
1654 {
1655 return spi_nor_check_lock_status_sr(nor, ofs, len, sr, false);
1656 }
1657
1658 /*
1659 * Lock a region of the flash. Compatible with ST Micro and similar flash.
1660 * Supports the block protection bits BP{0,1,2}/BP{0,1,2,3} in the status
1661 * register
1662 * (SR). Does not support these features found in newer SR bitfields:
1663 * - SEC: sector/block protect - only handle SEC=0 (block protect)
1664 * - CMP: complement protect - only support CMP=0 (range is not complemented)
1665 *
1666 * Support for the following is provided conditionally for some flash:
1667 * - TB: top/bottom protect
1668 *
1669 * Sample table portion for 8MB flash (Winbond w25q64fw):
1670 *
1671 * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
1672 * --------------------------------------------------------------------------
1673 * X | X | 0 | 0 | 0 | NONE | NONE
1674 * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
1675 * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
1676 * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
1677 * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
1678 * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
1679 * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
1680 * X | X | 1 | 1 | 1 | 8 MB | ALL
1681 * ------|-------|-------|-------|-------|---------------|-------------------
1682 * 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64
1683 * 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32
1684 * 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16
1685 * 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8
1686 * 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4
1687 * 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2
1688 *
1689 * Returns negative on errors, 0 on success.
1690 */
spi_nor_sr_lock(struct spi_nor * nor,loff_t ofs,uint64_t len)1691 static int spi_nor_sr_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1692 {
1693 struct mtd_info *mtd = &nor->mtd;
1694 u64 min_prot_len;
1695 int ret, status_old, status_new;
1696 u8 mask = spi_nor_get_sr_bp_mask(nor);
1697 u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
1698 u8 pow, val;
1699 loff_t lock_len;
1700 bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
1701 bool use_top;
1702
1703 ret = spi_nor_read_sr(nor, nor->bouncebuf);
1704 if (ret)
1705 return ret;
1706
1707 status_old = nor->bouncebuf[0];
1708
1709 /* If nothing in our range is unlocked, we don't need to do anything */
1710 if (spi_nor_is_locked_sr(nor, ofs, len, status_old))
1711 return 0;
1712
1713 /* If anything below us is unlocked, we can't use 'bottom' protection */
1714 if (!spi_nor_is_locked_sr(nor, 0, ofs, status_old))
1715 can_be_bottom = false;
1716
1717 /* If anything above us is unlocked, we can't use 'top' protection */
1718 if (!spi_nor_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
1719 status_old))
1720 can_be_top = false;
1721
1722 if (!can_be_bottom && !can_be_top)
1723 return -EINVAL;
1724
1725 /* Prefer top, if both are valid */
1726 use_top = can_be_top;
1727
1728 /* lock_len: length of region that should end up locked */
1729 if (use_top)
1730 lock_len = mtd->size - ofs;
1731 else
1732 lock_len = ofs + len;
1733
1734 if (lock_len == mtd->size) {
1735 val = mask;
1736 } else {
1737 min_prot_len = spi_nor_get_min_prot_length_sr(nor);
1738 pow = ilog2(lock_len) - ilog2(min_prot_len) + 1;
1739 val = pow << SR_BP_SHIFT;
1740
1741 if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3)
1742 val = (val & ~SR_BP3) | SR_BP3_BIT6;
1743
1744 if (val & ~mask)
1745 return -EINVAL;
1746
1747 /* Don't "lock" with no region! */
1748 if (!(val & mask))
1749 return -EINVAL;
1750 }
1751
1752 status_new = (status_old & ~mask & ~tb_mask) | val;
1753
1754 /* Disallow further writes if WP pin is asserted */
1755 status_new |= SR_SRWD;
1756
1757 if (!use_top)
1758 status_new |= tb_mask;
1759
1760 /* Don't bother if they're the same */
1761 if (status_new == status_old)
1762 return 0;
1763
1764 /* Only modify protection if it will not unlock other areas */
1765 if ((status_new & mask) < (status_old & mask))
1766 return -EINVAL;
1767
1768 return spi_nor_write_sr_and_check(nor, status_new);
1769 }
1770
1771 /*
1772 * Unlock a region of the flash. See spi_nor_sr_lock() for more info
1773 *
1774 * Returns negative on errors, 0 on success.
1775 */
spi_nor_sr_unlock(struct spi_nor * nor,loff_t ofs,uint64_t len)1776 static int spi_nor_sr_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1777 {
1778 struct mtd_info *mtd = &nor->mtd;
1779 u64 min_prot_len;
1780 int ret, status_old, status_new;
1781 u8 mask = spi_nor_get_sr_bp_mask(nor);
1782 u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
1783 u8 pow, val;
1784 loff_t lock_len;
1785 bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
1786 bool use_top;
1787
1788 ret = spi_nor_read_sr(nor, nor->bouncebuf);
1789 if (ret)
1790 return ret;
1791
1792 status_old = nor->bouncebuf[0];
1793
1794 /* If nothing in our range is locked, we don't need to do anything */
1795 if (spi_nor_is_unlocked_sr(nor, ofs, len, status_old))
1796 return 0;
1797
1798 /* If anything below us is locked, we can't use 'top' protection */
1799 if (!spi_nor_is_unlocked_sr(nor, 0, ofs, status_old))
1800 can_be_top = false;
1801
1802 /* If anything above us is locked, we can't use 'bottom' protection */
1803 if (!spi_nor_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
1804 status_old))
1805 can_be_bottom = false;
1806
1807 if (!can_be_bottom && !can_be_top)
1808 return -EINVAL;
1809
1810 /* Prefer top, if both are valid */
1811 use_top = can_be_top;
1812
1813 /* lock_len: length of region that should remain locked */
1814 if (use_top)
1815 lock_len = mtd->size - (ofs + len);
1816 else
1817 lock_len = ofs;
1818
1819 if (lock_len == 0) {
1820 val = 0; /* fully unlocked */
1821 } else {
1822 min_prot_len = spi_nor_get_min_prot_length_sr(nor);
1823 pow = ilog2(lock_len) - ilog2(min_prot_len) + 1;
1824 val = pow << SR_BP_SHIFT;
1825
1826 if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3)
1827 val = (val & ~SR_BP3) | SR_BP3_BIT6;
1828
1829 /* Some power-of-two sizes are not supported */
1830 if (val & ~mask)
1831 return -EINVAL;
1832 }
1833
1834 status_new = (status_old & ~mask & ~tb_mask) | val;
1835
1836 /* Don't protect status register if we're fully unlocked */
1837 if (lock_len == 0)
1838 status_new &= ~SR_SRWD;
1839
1840 if (!use_top)
1841 status_new |= tb_mask;
1842
1843 /* Don't bother if they're the same */
1844 if (status_new == status_old)
1845 return 0;
1846
1847 /* Only modify protection if it will not lock other areas */
1848 if ((status_new & mask) > (status_old & mask))
1849 return -EINVAL;
1850
1851 return spi_nor_write_sr_and_check(nor, status_new);
1852 }
1853
1854 /*
1855 * Check if a region of the flash is (completely) locked. See spi_nor_sr_lock()
1856 * for more info.
1857 *
1858 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
1859 * negative on errors.
1860 */
spi_nor_sr_is_locked(struct spi_nor * nor,loff_t ofs,uint64_t len)1861 static int spi_nor_sr_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
1862 {
1863 int ret;
1864
1865 ret = spi_nor_read_sr(nor, nor->bouncebuf);
1866 if (ret)
1867 return ret;
1868
1869 return spi_nor_is_locked_sr(nor, ofs, len, nor->bouncebuf[0]);
1870 }
1871
1872 static const struct spi_nor_locking_ops spi_nor_sr_locking_ops = {
1873 .lock = spi_nor_sr_lock,
1874 .unlock = spi_nor_sr_unlock,
1875 .is_locked = spi_nor_sr_is_locked,
1876 };
1877
spi_nor_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1878 static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1879 {
1880 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1881 int ret;
1882
1883 ret = spi_nor_lock_and_prep(nor);
1884 if (ret)
1885 return ret;
1886
1887 ret = nor->params->locking_ops->lock(nor, ofs, len);
1888
1889 spi_nor_unlock_and_unprep(nor);
1890 return ret;
1891 }
1892
spi_nor_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1893 static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1894 {
1895 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1896 int ret;
1897
1898 ret = spi_nor_lock_and_prep(nor);
1899 if (ret)
1900 return ret;
1901
1902 ret = nor->params->locking_ops->unlock(nor, ofs, len);
1903
1904 spi_nor_unlock_and_unprep(nor);
1905 return ret;
1906 }
1907
spi_nor_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)1908 static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1909 {
1910 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1911 int ret;
1912
1913 ret = spi_nor_lock_and_prep(nor);
1914 if (ret)
1915 return ret;
1916
1917 ret = nor->params->locking_ops->is_locked(nor, ofs, len);
1918
1919 spi_nor_unlock_and_unprep(nor);
1920 return ret;
1921 }
1922
1923 /**
1924 * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
1925 * Register 1.
1926 * @nor: pointer to a 'struct spi_nor'
1927 *
1928 * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
1929 *
1930 * Return: 0 on success, -errno otherwise.
1931 */
spi_nor_sr1_bit6_quad_enable(struct spi_nor * nor)1932 int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
1933 {
1934 int ret;
1935
1936 ret = spi_nor_read_sr(nor, nor->bouncebuf);
1937 if (ret)
1938 return ret;
1939
1940 if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
1941 return 0;
1942
1943 nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
1944
1945 return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
1946 }
1947
1948 /**
1949 * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
1950 * Register 2.
1951 * @nor: pointer to a 'struct spi_nor'.
1952 *
1953 * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
1954 *
1955 * Return: 0 on success, -errno otherwise.
1956 */
spi_nor_sr2_bit1_quad_enable(struct spi_nor * nor)1957 int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
1958 {
1959 int ret;
1960
1961 if (nor->flags & SNOR_F_NO_READ_CR)
1962 return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
1963
1964 ret = spi_nor_read_cr(nor, nor->bouncebuf);
1965 if (ret)
1966 return ret;
1967
1968 if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
1969 return 0;
1970
1971 nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;
1972
1973 return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
1974 }
1975
1976 /**
1977 * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
1978 * @nor: pointer to a 'struct spi_nor'
1979 *
1980 * Set the Quad Enable (QE) bit in the Status Register 2.
1981 *
1982 * This is one of the procedures to set the QE bit described in the SFDP
1983 * (JESD216 rev B) specification but no manufacturer using this procedure has
1984 * been identified yet, hence the name of the function.
1985 *
1986 * Return: 0 on success, -errno otherwise.
1987 */
spi_nor_sr2_bit7_quad_enable(struct spi_nor * nor)1988 int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
1989 {
1990 u8 *sr2 = nor->bouncebuf;
1991 int ret;
1992 u8 sr2_written;
1993
1994 /* Check current Quad Enable bit value. */
1995 ret = spi_nor_read_sr2(nor, sr2);
1996 if (ret)
1997 return ret;
1998 if (*sr2 & SR2_QUAD_EN_BIT7)
1999 return 0;
2000
2001 /* Update the Quad Enable bit. */
2002 *sr2 |= SR2_QUAD_EN_BIT7;
2003
2004 ret = spi_nor_write_sr2(nor, sr2);
2005 if (ret)
2006 return ret;
2007
2008 sr2_written = *sr2;
2009
2010 /* Read back and check it. */
2011 ret = spi_nor_read_sr2(nor, sr2);
2012 if (ret)
2013 return ret;
2014
2015 if (*sr2 != sr2_written) {
2016 dev_dbg(nor->dev, "SR2: Read back test failed\n");
2017 return -EIO;
2018 }
2019
2020 return 0;
2021 }
2022
2023 static const struct spi_nor_manufacturer *manufacturers[] = {
2024 &spi_nor_atmel,
2025 &spi_nor_catalyst,
2026 &spi_nor_eon,
2027 &spi_nor_esmt,
2028 &spi_nor_everspin,
2029 &spi_nor_fujitsu,
2030 &spi_nor_gigadevice,
2031 &spi_nor_intel,
2032 &spi_nor_issi,
2033 &spi_nor_macronix,
2034 &spi_nor_micron,
2035 &spi_nor_st,
2036 &spi_nor_spansion,
2037 &spi_nor_sst,
2038 &spi_nor_winbond,
2039 &spi_nor_xilinx,
2040 &spi_nor_xmc,
2041 };
2042
2043 static const struct flash_info *
spi_nor_search_part_by_id(const struct flash_info * parts,unsigned int nparts,const u8 * id)2044 spi_nor_search_part_by_id(const struct flash_info *parts, unsigned int nparts,
2045 const u8 *id)
2046 {
2047 unsigned int i;
2048
2049 for (i = 0; i < nparts; i++) {
2050 if (parts[i].id_len &&
2051 !memcmp(parts[i].id, id, parts[i].id_len))
2052 return &parts[i];
2053 }
2054
2055 return NULL;
2056 }
2057
spi_nor_read_id(struct spi_nor * nor)2058 static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
2059 {
2060 const struct flash_info *info;
2061 u8 *id = nor->bouncebuf;
2062 unsigned int i;
2063 int ret;
2064
2065 if (nor->spimem) {
2066 struct spi_mem_op op =
2067 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
2068 SPI_MEM_OP_NO_ADDR,
2069 SPI_MEM_OP_NO_DUMMY,
2070 SPI_MEM_OP_DATA_IN(SPI_NOR_MAX_ID_LEN, id, 1));
2071
2072 ret = spi_mem_exec_op(nor->spimem, &op);
2073 } else {
2074 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
2075 SPI_NOR_MAX_ID_LEN);
2076 }
2077 if (ret) {
2078 dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
2079 return ERR_PTR(ret);
2080 }
2081
2082 for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
2083 info = spi_nor_search_part_by_id(manufacturers[i]->parts,
2084 manufacturers[i]->nparts,
2085 id);
2086 if (info) {
2087 nor->manufacturer = manufacturers[i];
2088 return info;
2089 }
2090 }
2091
2092 dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
2093 SPI_NOR_MAX_ID_LEN, id);
2094 return ERR_PTR(-ENODEV);
2095 }
2096
spi_nor_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)2097 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
2098 size_t *retlen, u_char *buf)
2099 {
2100 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2101 ssize_t ret;
2102
2103 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
2104
2105 ret = spi_nor_lock_and_prep(nor);
2106 if (ret)
2107 return ret;
2108
2109 while (len) {
2110 loff_t addr = from;
2111
2112 addr = spi_nor_convert_addr(nor, addr);
2113
2114 ret = spi_nor_read_data(nor, addr, len, buf);
2115 if (ret == 0) {
2116 /* We shouldn't see 0-length reads */
2117 ret = -EIO;
2118 goto read_err;
2119 }
2120 if (ret < 0)
2121 goto read_err;
2122
2123 WARN_ON(ret > len);
2124 *retlen += ret;
2125 buf += ret;
2126 from += ret;
2127 len -= ret;
2128 }
2129 ret = 0;
2130
2131 read_err:
2132 spi_nor_unlock_and_unprep(nor);
2133 return ret;
2134 }
2135
2136 /*
2137 * Write an address range to the nor chip. Data must be written in
2138 * FLASH_PAGESIZE chunks. The address range may be any size provided
2139 * it is within the physical boundaries.
2140 */
spi_nor_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2141 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
2142 size_t *retlen, const u_char *buf)
2143 {
2144 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2145 size_t page_offset, page_remain, i;
2146 ssize_t ret;
2147
2148 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
2149
2150 ret = spi_nor_lock_and_prep(nor);
2151 if (ret)
2152 return ret;
2153
2154 for (i = 0; i < len; ) {
2155 ssize_t written;
2156 loff_t addr = to + i;
2157
2158 /*
2159 * If page_size is a power of two, the offset can be quickly
2160 * calculated with an AND operation. On the other cases we
2161 * need to do a modulus operation (more expensive).
2162 * Power of two numbers have only one bit set and we can use
2163 * the instruction hweight32 to detect if we need to do a
2164 * modulus (do_div()) or not.
2165 */
2166 if (hweight32(nor->page_size) == 1) {
2167 page_offset = addr & (nor->page_size - 1);
2168 } else {
2169 uint64_t aux = addr;
2170
2171 page_offset = do_div(aux, nor->page_size);
2172 }
2173 /* the size of data remaining on the first page */
2174 page_remain = min_t(size_t,
2175 nor->page_size - page_offset, len - i);
2176
2177 addr = spi_nor_convert_addr(nor, addr);
2178
2179 ret = spi_nor_write_enable(nor);
2180 if (ret)
2181 goto write_err;
2182
2183 ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
2184 if (ret < 0)
2185 goto write_err;
2186 written = ret;
2187
2188 ret = spi_nor_wait_till_ready(nor);
2189 if (ret)
2190 goto write_err;
2191 *retlen += written;
2192 i += written;
2193 }
2194
2195 write_err:
2196 spi_nor_unlock_and_unprep(nor);
2197 return ret;
2198 }
2199
spi_nor_check(struct spi_nor * nor)2200 static int spi_nor_check(struct spi_nor *nor)
2201 {
2202 if (!nor->dev ||
2203 (!nor->spimem && !nor->controller_ops) ||
2204 (!nor->spimem && nor->controller_ops &&
2205 (!nor->controller_ops->read ||
2206 !nor->controller_ops->write ||
2207 !nor->controller_ops->read_reg ||
2208 !nor->controller_ops->write_reg))) {
2209 pr_err("spi-nor: please fill all the necessary fields!\n");
2210 return -EINVAL;
2211 }
2212
2213 if (nor->spimem && nor->controller_ops) {
2214 dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
2215 return -EINVAL;
2216 }
2217
2218 return 0;
2219 }
2220
2221 static void
spi_nor_set_read_settings(struct spi_nor_read_command * read,u8 num_mode_clocks,u8 num_wait_states,u8 opcode,enum spi_nor_protocol proto)2222 spi_nor_set_read_settings(struct spi_nor_read_command *read,
2223 u8 num_mode_clocks,
2224 u8 num_wait_states,
2225 u8 opcode,
2226 enum spi_nor_protocol proto)
2227 {
2228 read->num_mode_clocks = num_mode_clocks;
2229 read->num_wait_states = num_wait_states;
2230 read->opcode = opcode;
2231 read->proto = proto;
2232 }
2233
spi_nor_set_pp_settings(struct spi_nor_pp_command * pp,u8 opcode,enum spi_nor_protocol proto)2234 void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
2235 enum spi_nor_protocol proto)
2236 {
2237 pp->opcode = opcode;
2238 pp->proto = proto;
2239 }
2240
spi_nor_hwcaps2cmd(u32 hwcaps,const int table[][2],size_t size)2241 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2242 {
2243 size_t i;
2244
2245 for (i = 0; i < size; i++)
2246 if (table[i][0] == (int)hwcaps)
2247 return table[i][1];
2248
2249 return -EINVAL;
2250 }
2251
spi_nor_hwcaps_read2cmd(u32 hwcaps)2252 int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2253 {
2254 static const int hwcaps_read2cmd[][2] = {
2255 { SNOR_HWCAPS_READ, SNOR_CMD_READ },
2256 { SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST },
2257 { SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR },
2258 { SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 },
2259 { SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 },
2260 { SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 },
2261 { SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR },
2262 { SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 },
2263 { SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 },
2264 { SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 },
2265 { SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR },
2266 { SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 },
2267 { SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 },
2268 { SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 },
2269 { SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR },
2270 };
2271
2272 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2273 ARRAY_SIZE(hwcaps_read2cmd));
2274 }
2275
spi_nor_hwcaps_pp2cmd(u32 hwcaps)2276 static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2277 {
2278 static const int hwcaps_pp2cmd[][2] = {
2279 { SNOR_HWCAPS_PP, SNOR_CMD_PP },
2280 { SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 },
2281 { SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 },
2282 { SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 },
2283 { SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 },
2284 { SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 },
2285 { SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 },
2286 };
2287
2288 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2289 ARRAY_SIZE(hwcaps_pp2cmd));
2290 }
2291
2292 /**
2293 * spi_nor_spimem_check_op - check if the operation is supported
2294 * by controller
2295 *@nor: pointer to a 'struct spi_nor'
2296 *@op: pointer to op template to be checked
2297 *
2298 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2299 */
spi_nor_spimem_check_op(struct spi_nor * nor,struct spi_mem_op * op)2300 static int spi_nor_spimem_check_op(struct spi_nor *nor,
2301 struct spi_mem_op *op)
2302 {
2303 /*
2304 * First test with 4 address bytes. The opcode itself might
2305 * be a 3B addressing opcode but we don't care, because
2306 * SPI controller implementation should not check the opcode,
2307 * but just the sequence.
2308 */
2309 op->addr.nbytes = 4;
2310 if (!spi_mem_supports_op(nor->spimem, op)) {
2311 if (nor->mtd.size > SZ_16M)
2312 return -ENOTSUPP;
2313
2314 /* If flash size <= 16MB, 3 address bytes are sufficient */
2315 op->addr.nbytes = 3;
2316 if (!spi_mem_supports_op(nor->spimem, op))
2317 return -ENOTSUPP;
2318 }
2319
2320 return 0;
2321 }
2322
2323 /**
2324 * spi_nor_spimem_check_readop - check if the read op is supported
2325 * by controller
2326 *@nor: pointer to a 'struct spi_nor'
2327 *@read: pointer to op template to be checked
2328 *
2329 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2330 */
spi_nor_spimem_check_readop(struct spi_nor * nor,const struct spi_nor_read_command * read)2331 static int spi_nor_spimem_check_readop(struct spi_nor *nor,
2332 const struct spi_nor_read_command *read)
2333 {
2334 struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 1),
2335 SPI_MEM_OP_ADDR(3, 0, 1),
2336 SPI_MEM_OP_DUMMY(0, 1),
2337 SPI_MEM_OP_DATA_IN(0, NULL, 1));
2338
2339 op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(read->proto);
2340 op.addr.buswidth = spi_nor_get_protocol_addr_nbits(read->proto);
2341 op.data.buswidth = spi_nor_get_protocol_data_nbits(read->proto);
2342 op.dummy.buswidth = op.addr.buswidth;
2343 op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
2344 op.dummy.buswidth / 8;
2345
2346 return spi_nor_spimem_check_op(nor, &op);
2347 }
2348
2349 /**
2350 * spi_nor_spimem_check_pp - check if the page program op is supported
2351 * by controller
2352 *@nor: pointer to a 'struct spi_nor'
2353 *@pp: pointer to op template to be checked
2354 *
2355 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2356 */
spi_nor_spimem_check_pp(struct spi_nor * nor,const struct spi_nor_pp_command * pp)2357 static int spi_nor_spimem_check_pp(struct spi_nor *nor,
2358 const struct spi_nor_pp_command *pp)
2359 {
2360 struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 1),
2361 SPI_MEM_OP_ADDR(3, 0, 1),
2362 SPI_MEM_OP_NO_DUMMY,
2363 SPI_MEM_OP_DATA_OUT(0, NULL, 1));
2364
2365 op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(pp->proto);
2366 op.addr.buswidth = spi_nor_get_protocol_addr_nbits(pp->proto);
2367 op.data.buswidth = spi_nor_get_protocol_data_nbits(pp->proto);
2368
2369 return spi_nor_spimem_check_op(nor, &op);
2370 }
2371
2372 /**
2373 * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
2374 * based on SPI controller capabilities
2375 * @nor: pointer to a 'struct spi_nor'
2376 * @hwcaps: pointer to resulting capabilities after adjusting
2377 * according to controller and flash's capability
2378 */
2379 static void
spi_nor_spimem_adjust_hwcaps(struct spi_nor * nor,u32 * hwcaps)2380 spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
2381 {
2382 struct spi_nor_flash_parameter *params = nor->params;
2383 unsigned int cap;
2384
2385 /* DTR modes are not supported yet, mask them all. */
2386 *hwcaps &= ~SNOR_HWCAPS_DTR;
2387
2388 /* X-X-X modes are not supported yet, mask them all. */
2389 *hwcaps &= ~SNOR_HWCAPS_X_X_X;
2390
2391 for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
2392 int rdidx, ppidx;
2393
2394 if (!(*hwcaps & BIT(cap)))
2395 continue;
2396
2397 rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
2398 if (rdidx >= 0 &&
2399 spi_nor_spimem_check_readop(nor, ¶ms->reads[rdidx]))
2400 *hwcaps &= ~BIT(cap);
2401
2402 ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
2403 if (ppidx < 0)
2404 continue;
2405
2406 if (spi_nor_spimem_check_pp(nor,
2407 ¶ms->page_programs[ppidx]))
2408 *hwcaps &= ~BIT(cap);
2409 }
2410 }
2411
2412 /**
2413 * spi_nor_set_erase_type() - set a SPI NOR erase type
2414 * @erase: pointer to a structure that describes a SPI NOR erase type
2415 * @size: the size of the sector/block erased by the erase type
2416 * @opcode: the SPI command op code to erase the sector/block
2417 */
spi_nor_set_erase_type(struct spi_nor_erase_type * erase,u32 size,u8 opcode)2418 void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
2419 u8 opcode)
2420 {
2421 erase->size = size;
2422 erase->opcode = opcode;
2423 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
2424 erase->size_shift = ffs(erase->size) - 1;
2425 erase->size_mask = (1 << erase->size_shift) - 1;
2426 }
2427
2428 /**
2429 * spi_nor_mask_erase_type() - mask out a SPI NOR erase type
2430 * @erase: pointer to a structure that describes a SPI NOR erase type
2431 */
spi_nor_mask_erase_type(struct spi_nor_erase_type * erase)2432 void spi_nor_mask_erase_type(struct spi_nor_erase_type *erase)
2433 {
2434 erase->size = 0;
2435 }
2436
2437 /**
2438 * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
2439 * @map: the erase map of the SPI NOR
2440 * @erase_mask: bitmask encoding erase types that can erase the entire
2441 * flash memory
2442 * @flash_size: the spi nor flash memory size
2443 */
spi_nor_init_uniform_erase_map(struct spi_nor_erase_map * map,u8 erase_mask,u64 flash_size)2444 void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
2445 u8 erase_mask, u64 flash_size)
2446 {
2447 /* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
2448 map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
2449 SNOR_LAST_REGION;
2450 map->uniform_region.size = flash_size;
2451 map->regions = &map->uniform_region;
2452 map->uniform_erase_type = erase_mask;
2453 }
2454
spi_nor_post_bfpt_fixups(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt,struct spi_nor_flash_parameter * params)2455 int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
2456 const struct sfdp_parameter_header *bfpt_header,
2457 const struct sfdp_bfpt *bfpt,
2458 struct spi_nor_flash_parameter *params)
2459 {
2460 int ret;
2461
2462 if (nor->manufacturer && nor->manufacturer->fixups &&
2463 nor->manufacturer->fixups->post_bfpt) {
2464 ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
2465 bfpt, params);
2466 if (ret)
2467 return ret;
2468 }
2469
2470 if (nor->info->fixups && nor->info->fixups->post_bfpt)
2471 return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt,
2472 params);
2473
2474 return 0;
2475 }
2476
spi_nor_select_read(struct spi_nor * nor,u32 shared_hwcaps)2477 static int spi_nor_select_read(struct spi_nor *nor,
2478 u32 shared_hwcaps)
2479 {
2480 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2481 const struct spi_nor_read_command *read;
2482
2483 if (best_match < 0)
2484 return -EINVAL;
2485
2486 cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2487 if (cmd < 0)
2488 return -EINVAL;
2489
2490 read = &nor->params->reads[cmd];
2491 nor->read_opcode = read->opcode;
2492 nor->read_proto = read->proto;
2493
2494 /*
2495 * In the SPI NOR framework, we don't need to make the difference
2496 * between mode clock cycles and wait state clock cycles.
2497 * Indeed, the value of the mode clock cycles is used by a QSPI
2498 * flash memory to know whether it should enter or leave its 0-4-4
2499 * (Continuous Read / XIP) mode.
2500 * eXecution In Place is out of the scope of the mtd sub-system.
2501 * Hence we choose to merge both mode and wait state clock cycles
2502 * into the so called dummy clock cycles.
2503 */
2504 nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
2505 return 0;
2506 }
2507
spi_nor_select_pp(struct spi_nor * nor,u32 shared_hwcaps)2508 static int spi_nor_select_pp(struct spi_nor *nor,
2509 u32 shared_hwcaps)
2510 {
2511 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
2512 const struct spi_nor_pp_command *pp;
2513
2514 if (best_match < 0)
2515 return -EINVAL;
2516
2517 cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
2518 if (cmd < 0)
2519 return -EINVAL;
2520
2521 pp = &nor->params->page_programs[cmd];
2522 nor->program_opcode = pp->opcode;
2523 nor->write_proto = pp->proto;
2524 return 0;
2525 }
2526
2527 /**
2528 * spi_nor_select_uniform_erase() - select optimum uniform erase type
2529 * @map: the erase map of the SPI NOR
2530 * @wanted_size: the erase type size to search for. Contains the value of
2531 * info->sector_size or of the "small sector" size in case
2532 * CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined.
2533 *
2534 * Once the optimum uniform sector erase command is found, disable all the
2535 * other.
2536 *
2537 * Return: pointer to erase type on success, NULL otherwise.
2538 */
2539 static const struct spi_nor_erase_type *
spi_nor_select_uniform_erase(struct spi_nor_erase_map * map,const u32 wanted_size)2540 spi_nor_select_uniform_erase(struct spi_nor_erase_map *map,
2541 const u32 wanted_size)
2542 {
2543 const struct spi_nor_erase_type *tested_erase, *erase = NULL;
2544 int i;
2545 u8 uniform_erase_type = map->uniform_erase_type;
2546
2547 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2548 if (!(uniform_erase_type & BIT(i)))
2549 continue;
2550
2551 tested_erase = &map->erase_type[i];
2552
2553 /*
2554 * If the current erase size is the one, stop here:
2555 * we have found the right uniform Sector Erase command.
2556 */
2557 if (tested_erase->size == wanted_size) {
2558 erase = tested_erase;
2559 break;
2560 }
2561
2562 /*
2563 * Otherwise, the current erase size is still a valid canditate.
2564 * Select the biggest valid candidate.
2565 */
2566 if (!erase && tested_erase->size)
2567 erase = tested_erase;
2568 /* keep iterating to find the wanted_size */
2569 }
2570
2571 if (!erase)
2572 return NULL;
2573
2574 /* Disable all other Sector Erase commands. */
2575 map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
2576 map->uniform_erase_type |= BIT(erase - map->erase_type);
2577 return erase;
2578 }
2579
spi_nor_select_erase(struct spi_nor * nor)2580 static int spi_nor_select_erase(struct spi_nor *nor)
2581 {
2582 struct spi_nor_erase_map *map = &nor->params->erase_map;
2583 const struct spi_nor_erase_type *erase = NULL;
2584 struct mtd_info *mtd = &nor->mtd;
2585 u32 wanted_size = nor->info->sector_size;
2586 int i;
2587
2588 /*
2589 * The previous implementation handling Sector Erase commands assumed
2590 * that the SPI flash memory has an uniform layout then used only one
2591 * of the supported erase sizes for all Sector Erase commands.
2592 * So to be backward compatible, the new implementation also tries to
2593 * manage the SPI flash memory as uniform with a single erase sector
2594 * size, when possible.
2595 */
2596 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
2597 /* prefer "small sector" erase if possible */
2598 wanted_size = 4096u;
2599 #endif
2600
2601 if (spi_nor_has_uniform_erase(nor)) {
2602 erase = spi_nor_select_uniform_erase(map, wanted_size);
2603 if (!erase)
2604 return -EINVAL;
2605 nor->erase_opcode = erase->opcode;
2606 mtd->erasesize = erase->size;
2607 return 0;
2608 }
2609
2610 /*
2611 * For non-uniform SPI flash memory, set mtd->erasesize to the
2612 * maximum erase sector size. No need to set nor->erase_opcode.
2613 */
2614 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2615 if (map->erase_type[i].size) {
2616 erase = &map->erase_type[i];
2617 break;
2618 }
2619 }
2620
2621 if (!erase)
2622 return -EINVAL;
2623
2624 mtd->erasesize = erase->size;
2625 return 0;
2626 }
2627
spi_nor_default_setup(struct spi_nor * nor,const struct spi_nor_hwcaps * hwcaps)2628 static int spi_nor_default_setup(struct spi_nor *nor,
2629 const struct spi_nor_hwcaps *hwcaps)
2630 {
2631 struct spi_nor_flash_parameter *params = nor->params;
2632 u32 ignored_mask, shared_mask;
2633 int err;
2634
2635 /*
2636 * Keep only the hardware capabilities supported by both the SPI
2637 * controller and the SPI flash memory.
2638 */
2639 shared_mask = hwcaps->mask & params->hwcaps.mask;
2640
2641 if (nor->spimem) {
2642 /*
2643 * When called from spi_nor_probe(), all caps are set and we
2644 * need to discard some of them based on what the SPI
2645 * controller actually supports (using spi_mem_supports_op()).
2646 */
2647 spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
2648 } else {
2649 /*
2650 * SPI n-n-n protocols are not supported when the SPI
2651 * controller directly implements the spi_nor interface.
2652 * Yet another reason to switch to spi-mem.
2653 */
2654 ignored_mask = SNOR_HWCAPS_X_X_X;
2655 if (shared_mask & ignored_mask) {
2656 dev_dbg(nor->dev,
2657 "SPI n-n-n protocols are not supported.\n");
2658 shared_mask &= ~ignored_mask;
2659 }
2660 }
2661
2662 /* Select the (Fast) Read command. */
2663 err = spi_nor_select_read(nor, shared_mask);
2664 if (err) {
2665 dev_dbg(nor->dev,
2666 "can't select read settings supported by both the SPI controller and memory.\n");
2667 return err;
2668 }
2669
2670 /* Select the Page Program command. */
2671 err = spi_nor_select_pp(nor, shared_mask);
2672 if (err) {
2673 dev_dbg(nor->dev,
2674 "can't select write settings supported by both the SPI controller and memory.\n");
2675 return err;
2676 }
2677
2678 /* Select the Sector Erase command. */
2679 err = spi_nor_select_erase(nor);
2680 if (err) {
2681 dev_dbg(nor->dev,
2682 "can't select erase settings supported by both the SPI controller and memory.\n");
2683 return err;
2684 }
2685
2686 return 0;
2687 }
2688
spi_nor_setup(struct spi_nor * nor,const struct spi_nor_hwcaps * hwcaps)2689 static int spi_nor_setup(struct spi_nor *nor,
2690 const struct spi_nor_hwcaps *hwcaps)
2691 {
2692 if (!nor->params->setup)
2693 return 0;
2694
2695 return nor->params->setup(nor, hwcaps);
2696 }
2697
2698 /**
2699 * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
2700 * settings based on MFR register and ->default_init() hook.
2701 * @nor: pointer to a 'struct spi_nor'.
2702 */
spi_nor_manufacturer_init_params(struct spi_nor * nor)2703 static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
2704 {
2705 if (nor->manufacturer && nor->manufacturer->fixups &&
2706 nor->manufacturer->fixups->default_init)
2707 nor->manufacturer->fixups->default_init(nor);
2708
2709 if (nor->info->fixups && nor->info->fixups->default_init)
2710 nor->info->fixups->default_init(nor);
2711 }
2712
2713 /**
2714 * spi_nor_sfdp_init_params() - Initialize the flash's parameters and settings
2715 * based on JESD216 SFDP standard.
2716 * @nor: pointer to a 'struct spi_nor'.
2717 *
2718 * The method has a roll-back mechanism: in case the SFDP parsing fails, the
2719 * legacy flash parameters and settings will be restored.
2720 */
spi_nor_sfdp_init_params(struct spi_nor * nor)2721 static void spi_nor_sfdp_init_params(struct spi_nor *nor)
2722 {
2723 struct spi_nor_flash_parameter sfdp_params;
2724
2725 memcpy(&sfdp_params, nor->params, sizeof(sfdp_params));
2726
2727 if (spi_nor_parse_sfdp(nor, nor->params)) {
2728 memcpy(nor->params, &sfdp_params, sizeof(*nor->params));
2729 nor->addr_width = 0;
2730 nor->flags &= ~SNOR_F_4B_OPCODES;
2731 }
2732 }
2733
2734 /**
2735 * spi_nor_info_init_params() - Initialize the flash's parameters and settings
2736 * based on nor->info data.
2737 * @nor: pointer to a 'struct spi_nor'.
2738 */
spi_nor_info_init_params(struct spi_nor * nor)2739 static void spi_nor_info_init_params(struct spi_nor *nor)
2740 {
2741 struct spi_nor_flash_parameter *params = nor->params;
2742 struct spi_nor_erase_map *map = ¶ms->erase_map;
2743 const struct flash_info *info = nor->info;
2744 struct device_node *np = spi_nor_get_flash_node(nor);
2745 u8 i, erase_mask;
2746
2747 /* Initialize legacy flash parameters and settings. */
2748 params->quad_enable = spi_nor_sr2_bit1_quad_enable;
2749 params->set_4byte_addr_mode = spansion_set_4byte_addr_mode;
2750 params->setup = spi_nor_default_setup;
2751 /* Default to 16-bit Write Status (01h) Command */
2752 nor->flags |= SNOR_F_HAS_16BIT_SR;
2753
2754 /* Set SPI NOR sizes. */
2755 params->size = (u64)info->sector_size * info->n_sectors;
2756 params->page_size = info->page_size;
2757
2758 if (!(info->flags & SPI_NOR_NO_FR)) {
2759 /* Default to Fast Read for DT and non-DT platform devices. */
2760 params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
2761
2762 /* Mask out Fast Read if not requested at DT instantiation. */
2763 if (np && !of_property_read_bool(np, "m25p,fast-read"))
2764 params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
2765 }
2766
2767 /* (Fast) Read settings. */
2768 params->hwcaps.mask |= SNOR_HWCAPS_READ;
2769 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ],
2770 0, 0, SPINOR_OP_READ,
2771 SNOR_PROTO_1_1_1);
2772
2773 if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
2774 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST],
2775 0, 8, SPINOR_OP_READ_FAST,
2776 SNOR_PROTO_1_1_1);
2777
2778 if (info->flags & SPI_NOR_DUAL_READ) {
2779 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2780 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2],
2781 0, 8, SPINOR_OP_READ_1_1_2,
2782 SNOR_PROTO_1_1_2);
2783 }
2784
2785 if (info->flags & SPI_NOR_QUAD_READ) {
2786 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2787 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4],
2788 0, 8, SPINOR_OP_READ_1_1_4,
2789 SNOR_PROTO_1_1_4);
2790 }
2791
2792 if (info->flags & SPI_NOR_OCTAL_READ) {
2793 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
2794 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8],
2795 0, 8, SPINOR_OP_READ_1_1_8,
2796 SNOR_PROTO_1_1_8);
2797 }
2798
2799 /* Page Program settings. */
2800 params->hwcaps.mask |= SNOR_HWCAPS_PP;
2801 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP],
2802 SPINOR_OP_PP, SNOR_PROTO_1_1_1);
2803
2804 /*
2805 * Sector Erase settings. Sort Erase Types in ascending order, with the
2806 * smallest erase size starting at BIT(0).
2807 */
2808 erase_mask = 0;
2809 i = 0;
2810 if (info->flags & SECT_4K_PMC) {
2811 erase_mask |= BIT(i);
2812 spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2813 SPINOR_OP_BE_4K_PMC);
2814 i++;
2815 } else if (info->flags & SECT_4K) {
2816 erase_mask |= BIT(i);
2817 spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2818 SPINOR_OP_BE_4K);
2819 i++;
2820 }
2821 erase_mask |= BIT(i);
2822 spi_nor_set_erase_type(&map->erase_type[i], info->sector_size,
2823 SPINOR_OP_SE);
2824 spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
2825 }
2826
2827 /**
2828 * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
2829 * after SFDP has been parsed (is also called for SPI NORs that do not
2830 * support RDSFDP).
2831 * @nor: pointer to a 'struct spi_nor'
2832 *
2833 * Typically used to tweak various parameters that could not be extracted by
2834 * other means (i.e. when information provided by the SFDP/flash_info tables
2835 * are incomplete or wrong).
2836 */
spi_nor_post_sfdp_fixups(struct spi_nor * nor)2837 static void spi_nor_post_sfdp_fixups(struct spi_nor *nor)
2838 {
2839 if (nor->manufacturer && nor->manufacturer->fixups &&
2840 nor->manufacturer->fixups->post_sfdp)
2841 nor->manufacturer->fixups->post_sfdp(nor);
2842
2843 if (nor->info->fixups && nor->info->fixups->post_sfdp)
2844 nor->info->fixups->post_sfdp(nor);
2845 }
2846
2847 /**
2848 * spi_nor_late_init_params() - Late initialization of default flash parameters.
2849 * @nor: pointer to a 'struct spi_nor'
2850 *
2851 * Used to set default flash parameters and settings when the ->default_init()
2852 * hook or the SFDP parser let voids.
2853 */
spi_nor_late_init_params(struct spi_nor * nor)2854 static void spi_nor_late_init_params(struct spi_nor *nor)
2855 {
2856 /*
2857 * NOR protection support. When locking_ops are not provided, we pick
2858 * the default ones.
2859 */
2860 if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops)
2861 nor->params->locking_ops = &spi_nor_sr_locking_ops;
2862 }
2863
2864 /**
2865 * spi_nor_init_params() - Initialize the flash's parameters and settings.
2866 * @nor: pointer to a 'struct spi_nor'.
2867 *
2868 * The flash parameters and settings are initialized based on a sequence of
2869 * calls that are ordered by priority:
2870 *
2871 * 1/ Default flash parameters initialization. The initializations are done
2872 * based on nor->info data:
2873 * spi_nor_info_init_params()
2874 *
2875 * which can be overwritten by:
2876 * 2/ Manufacturer flash parameters initialization. The initializations are
2877 * done based on MFR register, or when the decisions can not be done solely
2878 * based on MFR, by using specific flash_info tweeks, ->default_init():
2879 * spi_nor_manufacturer_init_params()
2880 *
2881 * which can be overwritten by:
2882 * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
2883 * should be more accurate that the above.
2884 * spi_nor_sfdp_init_params()
2885 *
2886 * Please note that there is a ->post_bfpt() fixup hook that can overwrite
2887 * the flash parameters and settings immediately after parsing the Basic
2888 * Flash Parameter Table.
2889 *
2890 * which can be overwritten by:
2891 * 4/ Post SFDP flash parameters initialization. Used to tweak various
2892 * parameters that could not be extracted by other means (i.e. when
2893 * information provided by the SFDP/flash_info tables are incomplete or
2894 * wrong).
2895 * spi_nor_post_sfdp_fixups()
2896 *
2897 * 5/ Late default flash parameters initialization, used when the
2898 * ->default_init() hook or the SFDP parser do not set specific params.
2899 * spi_nor_late_init_params()
2900 */
spi_nor_init_params(struct spi_nor * nor)2901 static int spi_nor_init_params(struct spi_nor *nor)
2902 {
2903 nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL);
2904 if (!nor->params)
2905 return -ENOMEM;
2906
2907 spi_nor_info_init_params(nor);
2908
2909 spi_nor_manufacturer_init_params(nor);
2910
2911 if ((nor->info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
2912 !(nor->info->flags & SPI_NOR_SKIP_SFDP))
2913 spi_nor_sfdp_init_params(nor);
2914
2915 spi_nor_post_sfdp_fixups(nor);
2916
2917 spi_nor_late_init_params(nor);
2918
2919 return 0;
2920 }
2921
2922 /**
2923 * spi_nor_quad_enable() - enable Quad I/O if needed.
2924 * @nor: pointer to a 'struct spi_nor'
2925 *
2926 * Return: 0 on success, -errno otherwise.
2927 */
spi_nor_quad_enable(struct spi_nor * nor)2928 static int spi_nor_quad_enable(struct spi_nor *nor)
2929 {
2930 if (!nor->params->quad_enable)
2931 return 0;
2932
2933 if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
2934 spi_nor_get_protocol_width(nor->write_proto) == 4))
2935 return 0;
2936
2937 return nor->params->quad_enable(nor);
2938 }
2939
2940 /**
2941 * spi_nor_try_unlock_all() - Tries to unlock the entire flash memory array.
2942 * @nor: pointer to a 'struct spi_nor'.
2943 *
2944 * Some SPI NOR flashes are write protected by default after a power-on reset
2945 * cycle, in order to avoid inadvertent writes during power-up. Backward
2946 * compatibility imposes to unlock the entire flash memory array at power-up
2947 * by default.
2948 *
2949 * Unprotecting the entire flash array will fail for boards which are hardware
2950 * write-protected. Thus any errors are ignored.
2951 */
spi_nor_try_unlock_all(struct spi_nor * nor)2952 static void spi_nor_try_unlock_all(struct spi_nor *nor)
2953 {
2954 int ret;
2955
2956 if (!(nor->flags & SNOR_F_HAS_LOCK))
2957 return;
2958
2959 ret = spi_nor_unlock(&nor->mtd, 0, nor->params->size);
2960 if (ret)
2961 dev_dbg(nor->dev, "Failed to unlock the entire flash memory array\n");
2962 }
2963
spi_nor_init(struct spi_nor * nor)2964 static int spi_nor_init(struct spi_nor *nor)
2965 {
2966 int err;
2967
2968 err = spi_nor_quad_enable(nor);
2969 if (err) {
2970 dev_dbg(nor->dev, "quad mode not supported\n");
2971 return err;
2972 }
2973
2974 spi_nor_try_unlock_all(nor);
2975
2976 if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES)) {
2977 /*
2978 * If the RESET# pin isn't hooked up properly, or the system
2979 * otherwise doesn't perform a reset command in the boot
2980 * sequence, it's impossible to 100% protect against unexpected
2981 * reboots (e.g., crashes). Warn the user (or hopefully, system
2982 * designer) that this is bad.
2983 */
2984 WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
2985 "enabling reset hack; may not recover from unexpected reboots\n");
2986 nor->params->set_4byte_addr_mode(nor, true);
2987 }
2988
2989 return 0;
2990 }
2991
2992 /* mtd resume handler */
spi_nor_resume(struct mtd_info * mtd)2993 static void spi_nor_resume(struct mtd_info *mtd)
2994 {
2995 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2996 struct device *dev = nor->dev;
2997 int ret;
2998
2999 /* re-initialize the nor chip */
3000 ret = spi_nor_init(nor);
3001 if (ret)
3002 dev_err(dev, "resume() failed\n");
3003 }
3004
spi_nor_get_device(struct mtd_info * mtd)3005 static int spi_nor_get_device(struct mtd_info *mtd)
3006 {
3007 struct mtd_info *master = mtd_get_master(mtd);
3008 struct spi_nor *nor = mtd_to_spi_nor(master);
3009 struct device *dev;
3010
3011 if (nor->spimem)
3012 dev = nor->spimem->spi->controller->dev.parent;
3013 else
3014 dev = nor->dev;
3015
3016 if (!try_module_get(dev->driver->owner))
3017 return -ENODEV;
3018
3019 return 0;
3020 }
3021
spi_nor_put_device(struct mtd_info * mtd)3022 static void spi_nor_put_device(struct mtd_info *mtd)
3023 {
3024 struct mtd_info *master = mtd_get_master(mtd);
3025 struct spi_nor *nor = mtd_to_spi_nor(master);
3026 struct device *dev;
3027
3028 if (nor->spimem)
3029 dev = nor->spimem->spi->controller->dev.parent;
3030 else
3031 dev = nor->dev;
3032
3033 module_put(dev->driver->owner);
3034 }
3035
spi_nor_restore(struct spi_nor * nor)3036 void spi_nor_restore(struct spi_nor *nor)
3037 {
3038 /* restore the addressing mode */
3039 if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
3040 nor->flags & SNOR_F_BROKEN_RESET)
3041 nor->params->set_4byte_addr_mode(nor, false);
3042 }
3043 EXPORT_SYMBOL_GPL(spi_nor_restore);
3044
spi_nor_match_id(struct spi_nor * nor,const char * name)3045 static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
3046 const char *name)
3047 {
3048 unsigned int i, j;
3049
3050 for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
3051 for (j = 0; j < manufacturers[i]->nparts; j++) {
3052 if (!strcmp(name, manufacturers[i]->parts[j].name)) {
3053 nor->manufacturer = manufacturers[i];
3054 return &manufacturers[i]->parts[j];
3055 }
3056 }
3057 }
3058
3059 return NULL;
3060 }
3061
spi_nor_set_addr_width(struct spi_nor * nor)3062 static int spi_nor_set_addr_width(struct spi_nor *nor)
3063 {
3064 if (nor->addr_width) {
3065 /* already configured from SFDP */
3066 } else if (nor->info->addr_width) {
3067 nor->addr_width = nor->info->addr_width;
3068 } else {
3069 nor->addr_width = 3;
3070 }
3071
3072 if (nor->addr_width == 3 && nor->mtd.size > 0x1000000) {
3073 /* enable 4-byte addressing if the device exceeds 16MiB */
3074 nor->addr_width = 4;
3075 }
3076
3077 if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
3078 dev_dbg(nor->dev, "address width is too large: %u\n",
3079 nor->addr_width);
3080 return -EINVAL;
3081 }
3082
3083 /* Set 4byte opcodes when possible. */
3084 if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES &&
3085 !(nor->flags & SNOR_F_HAS_4BAIT))
3086 spi_nor_set_4byte_opcodes(nor);
3087
3088 return 0;
3089 }
3090
spi_nor_debugfs_init(struct spi_nor * nor,const struct flash_info * info)3091 static void spi_nor_debugfs_init(struct spi_nor *nor,
3092 const struct flash_info *info)
3093 {
3094 struct mtd_info *mtd = &nor->mtd;
3095
3096 mtd->dbg.partname = info->name;
3097 mtd->dbg.partid = devm_kasprintf(nor->dev, GFP_KERNEL, "spi-nor:%*phN",
3098 info->id_len, info->id);
3099 }
3100
spi_nor_get_flash_info(struct spi_nor * nor,const char * name)3101 static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
3102 const char *name)
3103 {
3104 const struct flash_info *info = NULL;
3105
3106 if (name)
3107 info = spi_nor_match_id(nor, name);
3108 /* Try to auto-detect if chip name wasn't specified or not found */
3109 if (!info)
3110 info = spi_nor_read_id(nor);
3111 if (IS_ERR_OR_NULL(info))
3112 return ERR_PTR(-ENOENT);
3113
3114 /*
3115 * If caller has specified name of flash model that can normally be
3116 * detected using JEDEC, let's verify it.
3117 */
3118 if (name && info->id_len) {
3119 const struct flash_info *jinfo;
3120
3121 jinfo = spi_nor_read_id(nor);
3122 if (IS_ERR(jinfo)) {
3123 return jinfo;
3124 } else if (jinfo != info) {
3125 /*
3126 * JEDEC knows better, so overwrite platform ID. We
3127 * can't trust partitions any longer, but we'll let
3128 * mtd apply them anyway, since some partitions may be
3129 * marked read-only, and we don't want to lose that
3130 * information, even if it's not 100% accurate.
3131 */
3132 dev_warn(nor->dev, "found %s, expected %s\n",
3133 jinfo->name, info->name);
3134 info = jinfo;
3135 }
3136 }
3137
3138 return info;
3139 }
3140
spi_nor_scan(struct spi_nor * nor,const char * name,const struct spi_nor_hwcaps * hwcaps)3141 int spi_nor_scan(struct spi_nor *nor, const char *name,
3142 const struct spi_nor_hwcaps *hwcaps)
3143 {
3144 const struct flash_info *info;
3145 struct device *dev = nor->dev;
3146 struct mtd_info *mtd = &nor->mtd;
3147 struct device_node *np = spi_nor_get_flash_node(nor);
3148 int ret;
3149 int i;
3150
3151 ret = spi_nor_check(nor);
3152 if (ret)
3153 return ret;
3154
3155 /* Reset SPI protocol for all commands. */
3156 nor->reg_proto = SNOR_PROTO_1_1_1;
3157 nor->read_proto = SNOR_PROTO_1_1_1;
3158 nor->write_proto = SNOR_PROTO_1_1_1;
3159
3160 /*
3161 * We need the bounce buffer early to read/write registers when going
3162 * through the spi-mem layer (buffers have to be DMA-able).
3163 * For spi-mem drivers, we'll reallocate a new buffer if
3164 * nor->page_size turns out to be greater than PAGE_SIZE (which
3165 * shouldn't happen before long since NOR pages are usually less
3166 * than 1KB) after spi_nor_scan() returns.
3167 */
3168 nor->bouncebuf_size = PAGE_SIZE;
3169 nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
3170 GFP_KERNEL);
3171 if (!nor->bouncebuf)
3172 return -ENOMEM;
3173
3174 info = spi_nor_get_flash_info(nor, name);
3175 if (IS_ERR(info))
3176 return PTR_ERR(info);
3177
3178 nor->info = info;
3179
3180 spi_nor_debugfs_init(nor, info);
3181
3182 mutex_init(&nor->lock);
3183
3184 /*
3185 * Make sure the XSR_RDY flag is set before calling
3186 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
3187 * with Atmel SPI NOR.
3188 */
3189 if (info->flags & SPI_NOR_XSR_RDY)
3190 nor->flags |= SNOR_F_READY_XSR_RDY;
3191
3192 if (info->flags & SPI_NOR_HAS_LOCK)
3193 nor->flags |= SNOR_F_HAS_LOCK;
3194
3195 mtd->_write = spi_nor_write;
3196
3197 /* Init flash parameters based on flash_info struct and SFDP */
3198 ret = spi_nor_init_params(nor);
3199 if (ret)
3200 return ret;
3201
3202 if (!mtd->name)
3203 mtd->name = dev_name(dev);
3204 mtd->priv = nor;
3205 mtd->type = MTD_NORFLASH;
3206 mtd->writesize = 1;
3207 mtd->flags = MTD_CAP_NORFLASH;
3208 mtd->size = nor->params->size;
3209 mtd->_erase = spi_nor_erase;
3210 mtd->_read = spi_nor_read;
3211 mtd->_resume = spi_nor_resume;
3212 mtd->_get_device = spi_nor_get_device;
3213 mtd->_put_device = spi_nor_put_device;
3214
3215 if (nor->params->locking_ops) {
3216 mtd->_lock = spi_nor_lock;
3217 mtd->_unlock = spi_nor_unlock;
3218 mtd->_is_locked = spi_nor_is_locked;
3219 }
3220
3221 if (info->flags & USE_FSR)
3222 nor->flags |= SNOR_F_USE_FSR;
3223 if (info->flags & SPI_NOR_HAS_TB) {
3224 nor->flags |= SNOR_F_HAS_SR_TB;
3225 if (info->flags & SPI_NOR_TB_SR_BIT6)
3226 nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
3227 }
3228
3229 if (info->flags & NO_CHIP_ERASE)
3230 nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
3231 if (info->flags & USE_CLSR)
3232 nor->flags |= SNOR_F_USE_CLSR;
3233
3234 if (info->flags & SPI_NOR_4BIT_BP) {
3235 nor->flags |= SNOR_F_HAS_4BIT_BP;
3236 if (info->flags & SPI_NOR_BP3_SR_BIT6)
3237 nor->flags |= SNOR_F_HAS_SR_BP3_BIT6;
3238 }
3239
3240 if (info->flags & SPI_NOR_NO_ERASE)
3241 mtd->flags |= MTD_NO_ERASE;
3242
3243 mtd->dev.parent = dev;
3244 nor->page_size = nor->params->page_size;
3245 mtd->writebufsize = nor->page_size;
3246
3247 if (of_property_read_bool(np, "broken-flash-reset"))
3248 nor->flags |= SNOR_F_BROKEN_RESET;
3249
3250 /*
3251 * Configure the SPI memory:
3252 * - select op codes for (Fast) Read, Page Program and Sector Erase.
3253 * - set the number of dummy cycles (mode cycles + wait states).
3254 * - set the SPI protocols for register and memory accesses.
3255 */
3256 ret = spi_nor_setup(nor, hwcaps);
3257 if (ret)
3258 return ret;
3259
3260 if (info->flags & SPI_NOR_4B_OPCODES)
3261 nor->flags |= SNOR_F_4B_OPCODES;
3262
3263 ret = spi_nor_set_addr_width(nor);
3264 if (ret)
3265 return ret;
3266
3267 /* Send all the required SPI flash commands to initialize device */
3268 ret = spi_nor_init(nor);
3269 if (ret)
3270 return ret;
3271
3272 dev_info(dev, "%s (%lld Kbytes)\n", info->name,
3273 (long long)mtd->size >> 10);
3274
3275 dev_dbg(dev,
3276 "mtd .name = %s, .size = 0x%llx (%lldMiB), "
3277 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
3278 mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
3279 mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
3280
3281 if (mtd->numeraseregions)
3282 for (i = 0; i < mtd->numeraseregions; i++)
3283 dev_dbg(dev,
3284 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
3285 ".erasesize = 0x%.8x (%uKiB), "
3286 ".numblocks = %d }\n",
3287 i, (long long)mtd->eraseregions[i].offset,
3288 mtd->eraseregions[i].erasesize,
3289 mtd->eraseregions[i].erasesize / 1024,
3290 mtd->eraseregions[i].numblocks);
3291 return 0;
3292 }
3293 EXPORT_SYMBOL_GPL(spi_nor_scan);
3294
spi_nor_create_read_dirmap(struct spi_nor * nor)3295 static int spi_nor_create_read_dirmap(struct spi_nor *nor)
3296 {
3297 struct spi_mem_dirmap_info info = {
3298 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
3299 SPI_MEM_OP_ADDR(nor->addr_width, 0, 1),
3300 SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
3301 SPI_MEM_OP_DATA_IN(0, NULL, 1)),
3302 .offset = 0,
3303 .length = nor->mtd.size,
3304 };
3305 struct spi_mem_op *op = &info.op_tmpl;
3306
3307 /* get transfer protocols. */
3308 op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
3309 op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
3310 op->dummy.buswidth = op->addr.buswidth;
3311 op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
3312
3313 /* convert the dummy cycles to the number of bytes */
3314 op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;
3315
3316 nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3317 &info);
3318 return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
3319 }
3320
spi_nor_create_write_dirmap(struct spi_nor * nor)3321 static int spi_nor_create_write_dirmap(struct spi_nor *nor)
3322 {
3323 struct spi_mem_dirmap_info info = {
3324 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
3325 SPI_MEM_OP_ADDR(nor->addr_width, 0, 1),
3326 SPI_MEM_OP_NO_DUMMY,
3327 SPI_MEM_OP_DATA_OUT(0, NULL, 1)),
3328 .offset = 0,
3329 .length = nor->mtd.size,
3330 };
3331 struct spi_mem_op *op = &info.op_tmpl;
3332
3333 /* get transfer protocols. */
3334 op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
3335 op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
3336 op->dummy.buswidth = op->addr.buswidth;
3337 op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
3338
3339 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
3340 op->addr.nbytes = 0;
3341
3342 nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3343 &info);
3344 return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
3345 }
3346
spi_nor_probe(struct spi_mem * spimem)3347 static int spi_nor_probe(struct spi_mem *spimem)
3348 {
3349 struct spi_device *spi = spimem->spi;
3350 struct flash_platform_data *data = dev_get_platdata(&spi->dev);
3351 struct spi_nor *nor;
3352 /*
3353 * Enable all caps by default. The core will mask them after
3354 * checking what's really supported using spi_mem_supports_op().
3355 */
3356 const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
3357 char *flash_name;
3358 int ret;
3359
3360 nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
3361 if (!nor)
3362 return -ENOMEM;
3363
3364 nor->spimem = spimem;
3365 nor->dev = &spi->dev;
3366 spi_nor_set_flash_node(nor, spi->dev.of_node);
3367
3368 spi_mem_set_drvdata(spimem, nor);
3369
3370 if (data && data->name)
3371 nor->mtd.name = data->name;
3372
3373 if (!nor->mtd.name)
3374 nor->mtd.name = spi_mem_get_name(spimem);
3375
3376 /*
3377 * For some (historical?) reason many platforms provide two different
3378 * names in flash_platform_data: "name" and "type". Quite often name is
3379 * set to "m25p80" and then "type" provides a real chip name.
3380 * If that's the case, respect "type" and ignore a "name".
3381 */
3382 if (data && data->type)
3383 flash_name = data->type;
3384 else if (!strcmp(spi->modalias, "spi-nor"))
3385 flash_name = NULL; /* auto-detect */
3386 else
3387 flash_name = spi->modalias;
3388
3389 ret = spi_nor_scan(nor, flash_name, &hwcaps);
3390 if (ret)
3391 return ret;
3392
3393 /*
3394 * None of the existing parts have > 512B pages, but let's play safe
3395 * and add this logic so that if anyone ever adds support for such
3396 * a NOR we don't end up with buffer overflows.
3397 */
3398 if (nor->page_size > PAGE_SIZE) {
3399 nor->bouncebuf_size = nor->page_size;
3400 devm_kfree(nor->dev, nor->bouncebuf);
3401 nor->bouncebuf = devm_kmalloc(nor->dev,
3402 nor->bouncebuf_size,
3403 GFP_KERNEL);
3404 if (!nor->bouncebuf)
3405 return -ENOMEM;
3406 }
3407
3408 ret = spi_nor_create_read_dirmap(nor);
3409 if (ret)
3410 return ret;
3411
3412 ret = spi_nor_create_write_dirmap(nor);
3413 if (ret)
3414 return ret;
3415
3416 return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
3417 data ? data->nr_parts : 0);
3418 }
3419
spi_nor_remove(struct spi_mem * spimem)3420 static int spi_nor_remove(struct spi_mem *spimem)
3421 {
3422 struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3423
3424 spi_nor_restore(nor);
3425
3426 /* Clean up MTD stuff. */
3427 return mtd_device_unregister(&nor->mtd);
3428 }
3429
spi_nor_shutdown(struct spi_mem * spimem)3430 static void spi_nor_shutdown(struct spi_mem *spimem)
3431 {
3432 struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3433
3434 spi_nor_restore(nor);
3435 }
3436
3437 /*
3438 * Do NOT add to this array without reading the following:
3439 *
3440 * Historically, many flash devices are bound to this driver by their name. But
3441 * since most of these flash are compatible to some extent, and their
3442 * differences can often be differentiated by the JEDEC read-ID command, we
3443 * encourage new users to add support to the spi-nor library, and simply bind
3444 * against a generic string here (e.g., "jedec,spi-nor").
3445 *
3446 * Many flash names are kept here in this list (as well as in spi-nor.c) to
3447 * keep them available as module aliases for existing platforms.
3448 */
3449 static const struct spi_device_id spi_nor_dev_ids[] = {
3450 /*
3451 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
3452 * hack around the fact that the SPI core does not provide uevent
3453 * matching for .of_match_table
3454 */
3455 {"spi-nor"},
3456
3457 /*
3458 * Entries not used in DTs that should be safe to drop after replacing
3459 * them with "spi-nor" in platform data.
3460 */
3461 {"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"},
3462
3463 /*
3464 * Entries that were used in DTs without "jedec,spi-nor" fallback and
3465 * should be kept for backward compatibility.
3466 */
3467 {"at25df321a"}, {"at25df641"}, {"at26df081a"},
3468 {"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"},
3469 {"mx25l25635e"},{"mx66l51235l"},
3470 {"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"},
3471 {"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"},
3472 {"s25fl064k"},
3473 {"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
3474 {"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"},
3475 {"m25p64"}, {"m25p128"},
3476 {"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"},
3477 {"w25q80bl"}, {"w25q128"}, {"w25q256"},
3478
3479 /* Flashes that can't be detected using JEDEC */
3480 {"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"},
3481 {"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"},
3482 {"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"},
3483
3484 /* Everspin MRAMs (non-JEDEC) */
3485 { "mr25h128" }, /* 128 Kib, 40 MHz */
3486 { "mr25h256" }, /* 256 Kib, 40 MHz */
3487 { "mr25h10" }, /* 1 Mib, 40 MHz */
3488 { "mr25h40" }, /* 4 Mib, 40 MHz */
3489
3490 { },
3491 };
3492 MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
3493
3494 static const struct of_device_id spi_nor_of_table[] = {
3495 /*
3496 * Generic compatibility for SPI NOR that can be identified by the
3497 * JEDEC READ ID opcode (0x9F). Use this, if possible.
3498 */
3499 { .compatible = "jedec,spi-nor" },
3500 { /* sentinel */ },
3501 };
3502 MODULE_DEVICE_TABLE(of, spi_nor_of_table);
3503
3504 /*
3505 * REVISIT: many of these chips have deep power-down modes, which
3506 * should clearly be entered on suspend() to minimize power use.
3507 * And also when they're otherwise idle...
3508 */
3509 static struct spi_mem_driver spi_nor_driver = {
3510 .spidrv = {
3511 .driver = {
3512 .name = "spi-nor",
3513 .of_match_table = spi_nor_of_table,
3514 },
3515 .id_table = spi_nor_dev_ids,
3516 },
3517 .probe = spi_nor_probe,
3518 .remove = spi_nor_remove,
3519 .shutdown = spi_nor_shutdown,
3520 };
3521 module_spi_mem_driver(spi_nor_driver);
3522
3523 MODULE_LICENSE("GPL v2");
3524 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
3525 MODULE_AUTHOR("Mike Lavender");
3526 MODULE_DESCRIPTION("framework for SPI NOR");
3527