1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent-io-tree.h"
18 #include "extent_map.h"
19 #include "ctree.h"
20 #include "btrfs_inode.h"
21 #include "volumes.h"
22 #include "check-integrity.h"
23 #include "locking.h"
24 #include "rcu-string.h"
25 #include "backref.h"
26 #include "disk-io.h"
27
28 static struct kmem_cache *extent_state_cache;
29 static struct kmem_cache *extent_buffer_cache;
30 static struct bio_set btrfs_bioset;
31
extent_state_in_tree(const struct extent_state * state)32 static inline bool extent_state_in_tree(const struct extent_state *state)
33 {
34 return !RB_EMPTY_NODE(&state->rb_node);
35 }
36
37 #ifdef CONFIG_BTRFS_DEBUG
38 static LIST_HEAD(states);
39 static DEFINE_SPINLOCK(leak_lock);
40
btrfs_leak_debug_add(spinlock_t * lock,struct list_head * new,struct list_head * head)41 static inline void btrfs_leak_debug_add(spinlock_t *lock,
42 struct list_head *new,
43 struct list_head *head)
44 {
45 unsigned long flags;
46
47 spin_lock_irqsave(lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(lock, flags);
50 }
51
btrfs_leak_debug_del(spinlock_t * lock,struct list_head * entry)52 static inline void btrfs_leak_debug_del(spinlock_t *lock,
53 struct list_head *entry)
54 {
55 unsigned long flags;
56
57 spin_lock_irqsave(lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(lock, flags);
60 }
61
btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info * fs_info)62 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
63 {
64 struct extent_buffer *eb;
65 unsigned long flags;
66
67 /*
68 * If we didn't get into open_ctree our allocated_ebs will not be
69 * initialized, so just skip this.
70 */
71 if (!fs_info->allocated_ebs.next)
72 return;
73
74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 while (!list_empty(&fs_info->allocated_ebs)) {
76 eb = list_first_entry(&fs_info->allocated_ebs,
77 struct extent_buffer, leak_list);
78 pr_err(
79 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 btrfs_header_owner(eb));
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
86 }
87
btrfs_extent_state_leak_debug_check(void)88 static inline void btrfs_extent_state_leak_debug_check(void)
89 {
90 struct extent_state *state;
91
92 while (!list_empty(&states)) {
93 state = list_entry(states.next, struct extent_state, leak_list);
94 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
95 state->start, state->end, state->state,
96 extent_state_in_tree(state),
97 refcount_read(&state->refs));
98 list_del(&state->leak_list);
99 kmem_cache_free(extent_state_cache, state);
100 }
101 }
102
103 #define btrfs_debug_check_extent_io_range(tree, start, end) \
104 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
__btrfs_debug_check_extent_io_range(const char * caller,struct extent_io_tree * tree,u64 start,u64 end)105 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
106 struct extent_io_tree *tree, u64 start, u64 end)
107 {
108 struct inode *inode = tree->private_data;
109 u64 isize;
110
111 if (!inode || !is_data_inode(inode))
112 return;
113
114 isize = i_size_read(inode);
115 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
116 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
117 "%s: ino %llu isize %llu odd range [%llu,%llu]",
118 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
119 }
120 }
121 #else
122 #define btrfs_leak_debug_add(lock, new, head) do {} while (0)
123 #define btrfs_leak_debug_del(lock, entry) do {} while (0)
124 #define btrfs_extent_state_leak_debug_check() do {} while (0)
125 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
126 #endif
127
128 struct tree_entry {
129 u64 start;
130 u64 end;
131 struct rb_node rb_node;
132 };
133
134 struct extent_page_data {
135 struct bio *bio;
136 /* tells writepage not to lock the state bits for this range
137 * it still does the unlocking
138 */
139 unsigned int extent_locked:1;
140
141 /* tells the submit_bio code to use REQ_SYNC */
142 unsigned int sync_io:1;
143 };
144
add_extent_changeset(struct extent_state * state,unsigned bits,struct extent_changeset * changeset,int set)145 static int add_extent_changeset(struct extent_state *state, unsigned bits,
146 struct extent_changeset *changeset,
147 int set)
148 {
149 int ret;
150
151 if (!changeset)
152 return 0;
153 if (set && (state->state & bits) == bits)
154 return 0;
155 if (!set && (state->state & bits) == 0)
156 return 0;
157 changeset->bytes_changed += state->end - state->start + 1;
158 ret = ulist_add(&changeset->range_changed, state->start, state->end,
159 GFP_ATOMIC);
160 return ret;
161 }
162
submit_one_bio(struct bio * bio,int mirror_num,unsigned long bio_flags)163 int __must_check submit_one_bio(struct bio *bio, int mirror_num,
164 unsigned long bio_flags)
165 {
166 blk_status_t ret = 0;
167 struct extent_io_tree *tree = bio->bi_private;
168
169 bio->bi_private = NULL;
170
171 if (is_data_inode(tree->private_data))
172 ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
173 bio_flags);
174 else
175 ret = btrfs_submit_metadata_bio(tree->private_data, bio,
176 mirror_num, bio_flags);
177
178 return blk_status_to_errno(ret);
179 }
180
181 /* Cleanup unsubmitted bios */
end_write_bio(struct extent_page_data * epd,int ret)182 static void end_write_bio(struct extent_page_data *epd, int ret)
183 {
184 if (epd->bio) {
185 epd->bio->bi_status = errno_to_blk_status(ret);
186 bio_endio(epd->bio);
187 epd->bio = NULL;
188 }
189 }
190
191 /*
192 * Submit bio from extent page data via submit_one_bio
193 *
194 * Return 0 if everything is OK.
195 * Return <0 for error.
196 */
flush_write_bio(struct extent_page_data * epd)197 static int __must_check flush_write_bio(struct extent_page_data *epd)
198 {
199 int ret = 0;
200
201 if (epd->bio) {
202 ret = submit_one_bio(epd->bio, 0, 0);
203 /*
204 * Clean up of epd->bio is handled by its endio function.
205 * And endio is either triggered by successful bio execution
206 * or the error handler of submit bio hook.
207 * So at this point, no matter what happened, we don't need
208 * to clean up epd->bio.
209 */
210 epd->bio = NULL;
211 }
212 return ret;
213 }
214
extent_state_cache_init(void)215 int __init extent_state_cache_init(void)
216 {
217 extent_state_cache = kmem_cache_create("btrfs_extent_state",
218 sizeof(struct extent_state), 0,
219 SLAB_MEM_SPREAD, NULL);
220 if (!extent_state_cache)
221 return -ENOMEM;
222 return 0;
223 }
224
extent_io_init(void)225 int __init extent_io_init(void)
226 {
227 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
228 sizeof(struct extent_buffer), 0,
229 SLAB_MEM_SPREAD, NULL);
230 if (!extent_buffer_cache)
231 return -ENOMEM;
232
233 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
234 offsetof(struct btrfs_io_bio, bio),
235 BIOSET_NEED_BVECS))
236 goto free_buffer_cache;
237
238 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
239 goto free_bioset;
240
241 return 0;
242
243 free_bioset:
244 bioset_exit(&btrfs_bioset);
245
246 free_buffer_cache:
247 kmem_cache_destroy(extent_buffer_cache);
248 extent_buffer_cache = NULL;
249 return -ENOMEM;
250 }
251
extent_state_cache_exit(void)252 void __cold extent_state_cache_exit(void)
253 {
254 btrfs_extent_state_leak_debug_check();
255 kmem_cache_destroy(extent_state_cache);
256 }
257
extent_io_exit(void)258 void __cold extent_io_exit(void)
259 {
260 /*
261 * Make sure all delayed rcu free are flushed before we
262 * destroy caches.
263 */
264 rcu_barrier();
265 kmem_cache_destroy(extent_buffer_cache);
266 bioset_exit(&btrfs_bioset);
267 }
268
269 /*
270 * For the file_extent_tree, we want to hold the inode lock when we lookup and
271 * update the disk_i_size, but lockdep will complain because our io_tree we hold
272 * the tree lock and get the inode lock when setting delalloc. These two things
273 * are unrelated, so make a class for the file_extent_tree so we don't get the
274 * two locking patterns mixed up.
275 */
276 static struct lock_class_key file_extent_tree_class;
277
extent_io_tree_init(struct btrfs_fs_info * fs_info,struct extent_io_tree * tree,unsigned int owner,void * private_data)278 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
279 struct extent_io_tree *tree, unsigned int owner,
280 void *private_data)
281 {
282 tree->fs_info = fs_info;
283 tree->state = RB_ROOT;
284 tree->dirty_bytes = 0;
285 spin_lock_init(&tree->lock);
286 tree->private_data = private_data;
287 tree->owner = owner;
288 if (owner == IO_TREE_INODE_FILE_EXTENT)
289 lockdep_set_class(&tree->lock, &file_extent_tree_class);
290 }
291
extent_io_tree_release(struct extent_io_tree * tree)292 void extent_io_tree_release(struct extent_io_tree *tree)
293 {
294 spin_lock(&tree->lock);
295 /*
296 * Do a single barrier for the waitqueue_active check here, the state
297 * of the waitqueue should not change once extent_io_tree_release is
298 * called.
299 */
300 smp_mb();
301 while (!RB_EMPTY_ROOT(&tree->state)) {
302 struct rb_node *node;
303 struct extent_state *state;
304
305 node = rb_first(&tree->state);
306 state = rb_entry(node, struct extent_state, rb_node);
307 rb_erase(&state->rb_node, &tree->state);
308 RB_CLEAR_NODE(&state->rb_node);
309 /*
310 * btree io trees aren't supposed to have tasks waiting for
311 * changes in the flags of extent states ever.
312 */
313 ASSERT(!waitqueue_active(&state->wq));
314 free_extent_state(state);
315
316 cond_resched_lock(&tree->lock);
317 }
318 spin_unlock(&tree->lock);
319 }
320
alloc_extent_state(gfp_t mask)321 static struct extent_state *alloc_extent_state(gfp_t mask)
322 {
323 struct extent_state *state;
324
325 /*
326 * The given mask might be not appropriate for the slab allocator,
327 * drop the unsupported bits
328 */
329 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
330 state = kmem_cache_alloc(extent_state_cache, mask);
331 if (!state)
332 return state;
333 state->state = 0;
334 state->failrec = NULL;
335 RB_CLEAR_NODE(&state->rb_node);
336 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
337 refcount_set(&state->refs, 1);
338 init_waitqueue_head(&state->wq);
339 trace_alloc_extent_state(state, mask, _RET_IP_);
340 return state;
341 }
342
free_extent_state(struct extent_state * state)343 void free_extent_state(struct extent_state *state)
344 {
345 if (!state)
346 return;
347 if (refcount_dec_and_test(&state->refs)) {
348 WARN_ON(extent_state_in_tree(state));
349 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
350 trace_free_extent_state(state, _RET_IP_);
351 kmem_cache_free(extent_state_cache, state);
352 }
353 }
354
tree_insert(struct rb_root * root,struct rb_node * search_start,u64 offset,struct rb_node * node,struct rb_node *** p_in,struct rb_node ** parent_in)355 static struct rb_node *tree_insert(struct rb_root *root,
356 struct rb_node *search_start,
357 u64 offset,
358 struct rb_node *node,
359 struct rb_node ***p_in,
360 struct rb_node **parent_in)
361 {
362 struct rb_node **p;
363 struct rb_node *parent = NULL;
364 struct tree_entry *entry;
365
366 if (p_in && parent_in) {
367 p = *p_in;
368 parent = *parent_in;
369 goto do_insert;
370 }
371
372 p = search_start ? &search_start : &root->rb_node;
373 while (*p) {
374 parent = *p;
375 entry = rb_entry(parent, struct tree_entry, rb_node);
376
377 if (offset < entry->start)
378 p = &(*p)->rb_left;
379 else if (offset > entry->end)
380 p = &(*p)->rb_right;
381 else
382 return parent;
383 }
384
385 do_insert:
386 rb_link_node(node, parent, p);
387 rb_insert_color(node, root);
388 return NULL;
389 }
390
391 /**
392 * __etree_search - searche @tree for an entry that contains @offset. Such
393 * entry would have entry->start <= offset && entry->end >= offset.
394 *
395 * @tree - the tree to search
396 * @offset - offset that should fall within an entry in @tree
397 * @next_ret - pointer to the first entry whose range ends after @offset
398 * @prev - pointer to the first entry whose range begins before @offset
399 * @p_ret - pointer where new node should be anchored (used when inserting an
400 * entry in the tree)
401 * @parent_ret - points to entry which would have been the parent of the entry,
402 * containing @offset
403 *
404 * This function returns a pointer to the entry that contains @offset byte
405 * address. If no such entry exists, then NULL is returned and the other
406 * pointer arguments to the function are filled, otherwise the found entry is
407 * returned and other pointers are left untouched.
408 */
__etree_search(struct extent_io_tree * tree,u64 offset,struct rb_node ** next_ret,struct rb_node ** prev_ret,struct rb_node *** p_ret,struct rb_node ** parent_ret)409 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
410 struct rb_node **next_ret,
411 struct rb_node **prev_ret,
412 struct rb_node ***p_ret,
413 struct rb_node **parent_ret)
414 {
415 struct rb_root *root = &tree->state;
416 struct rb_node **n = &root->rb_node;
417 struct rb_node *prev = NULL;
418 struct rb_node *orig_prev = NULL;
419 struct tree_entry *entry;
420 struct tree_entry *prev_entry = NULL;
421
422 while (*n) {
423 prev = *n;
424 entry = rb_entry(prev, struct tree_entry, rb_node);
425 prev_entry = entry;
426
427 if (offset < entry->start)
428 n = &(*n)->rb_left;
429 else if (offset > entry->end)
430 n = &(*n)->rb_right;
431 else
432 return *n;
433 }
434
435 if (p_ret)
436 *p_ret = n;
437 if (parent_ret)
438 *parent_ret = prev;
439
440 if (next_ret) {
441 orig_prev = prev;
442 while (prev && offset > prev_entry->end) {
443 prev = rb_next(prev);
444 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
445 }
446 *next_ret = prev;
447 prev = orig_prev;
448 }
449
450 if (prev_ret) {
451 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
452 while (prev && offset < prev_entry->start) {
453 prev = rb_prev(prev);
454 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455 }
456 *prev_ret = prev;
457 }
458 return NULL;
459 }
460
461 static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree * tree,u64 offset,struct rb_node *** p_ret,struct rb_node ** parent_ret)462 tree_search_for_insert(struct extent_io_tree *tree,
463 u64 offset,
464 struct rb_node ***p_ret,
465 struct rb_node **parent_ret)
466 {
467 struct rb_node *next= NULL;
468 struct rb_node *ret;
469
470 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
471 if (!ret)
472 return next;
473 return ret;
474 }
475
tree_search(struct extent_io_tree * tree,u64 offset)476 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
477 u64 offset)
478 {
479 return tree_search_for_insert(tree, offset, NULL, NULL);
480 }
481
482 /*
483 * utility function to look for merge candidates inside a given range.
484 * Any extents with matching state are merged together into a single
485 * extent in the tree. Extents with EXTENT_IO in their state field
486 * are not merged because the end_io handlers need to be able to do
487 * operations on them without sleeping (or doing allocations/splits).
488 *
489 * This should be called with the tree lock held.
490 */
merge_state(struct extent_io_tree * tree,struct extent_state * state)491 static void merge_state(struct extent_io_tree *tree,
492 struct extent_state *state)
493 {
494 struct extent_state *other;
495 struct rb_node *other_node;
496
497 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
498 return;
499
500 other_node = rb_prev(&state->rb_node);
501 if (other_node) {
502 other = rb_entry(other_node, struct extent_state, rb_node);
503 if (other->end == state->start - 1 &&
504 other->state == state->state) {
505 if (tree->private_data &&
506 is_data_inode(tree->private_data))
507 btrfs_merge_delalloc_extent(tree->private_data,
508 state, other);
509 state->start = other->start;
510 rb_erase(&other->rb_node, &tree->state);
511 RB_CLEAR_NODE(&other->rb_node);
512 free_extent_state(other);
513 }
514 }
515 other_node = rb_next(&state->rb_node);
516 if (other_node) {
517 other = rb_entry(other_node, struct extent_state, rb_node);
518 if (other->start == state->end + 1 &&
519 other->state == state->state) {
520 if (tree->private_data &&
521 is_data_inode(tree->private_data))
522 btrfs_merge_delalloc_extent(tree->private_data,
523 state, other);
524 state->end = other->end;
525 rb_erase(&other->rb_node, &tree->state);
526 RB_CLEAR_NODE(&other->rb_node);
527 free_extent_state(other);
528 }
529 }
530 }
531
532 static void set_state_bits(struct extent_io_tree *tree,
533 struct extent_state *state, unsigned *bits,
534 struct extent_changeset *changeset);
535
536 /*
537 * insert an extent_state struct into the tree. 'bits' are set on the
538 * struct before it is inserted.
539 *
540 * This may return -EEXIST if the extent is already there, in which case the
541 * state struct is freed.
542 *
543 * The tree lock is not taken internally. This is a utility function and
544 * probably isn't what you want to call (see set/clear_extent_bit).
545 */
insert_state(struct extent_io_tree * tree,struct extent_state * state,u64 start,u64 end,struct rb_node *** p,struct rb_node ** parent,unsigned * bits,struct extent_changeset * changeset)546 static int insert_state(struct extent_io_tree *tree,
547 struct extent_state *state, u64 start, u64 end,
548 struct rb_node ***p,
549 struct rb_node **parent,
550 unsigned *bits, struct extent_changeset *changeset)
551 {
552 struct rb_node *node;
553
554 if (end < start) {
555 btrfs_err(tree->fs_info,
556 "insert state: end < start %llu %llu", end, start);
557 WARN_ON(1);
558 }
559 state->start = start;
560 state->end = end;
561
562 set_state_bits(tree, state, bits, changeset);
563
564 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
565 if (node) {
566 struct extent_state *found;
567 found = rb_entry(node, struct extent_state, rb_node);
568 btrfs_err(tree->fs_info,
569 "found node %llu %llu on insert of %llu %llu",
570 found->start, found->end, start, end);
571 return -EEXIST;
572 }
573 merge_state(tree, state);
574 return 0;
575 }
576
577 /*
578 * split a given extent state struct in two, inserting the preallocated
579 * struct 'prealloc' as the newly created second half. 'split' indicates an
580 * offset inside 'orig' where it should be split.
581 *
582 * Before calling,
583 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
584 * are two extent state structs in the tree:
585 * prealloc: [orig->start, split - 1]
586 * orig: [ split, orig->end ]
587 *
588 * The tree locks are not taken by this function. They need to be held
589 * by the caller.
590 */
split_state(struct extent_io_tree * tree,struct extent_state * orig,struct extent_state * prealloc,u64 split)591 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
592 struct extent_state *prealloc, u64 split)
593 {
594 struct rb_node *node;
595
596 if (tree->private_data && is_data_inode(tree->private_data))
597 btrfs_split_delalloc_extent(tree->private_data, orig, split);
598
599 prealloc->start = orig->start;
600 prealloc->end = split - 1;
601 prealloc->state = orig->state;
602 orig->start = split;
603
604 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
605 &prealloc->rb_node, NULL, NULL);
606 if (node) {
607 free_extent_state(prealloc);
608 return -EEXIST;
609 }
610 return 0;
611 }
612
next_state(struct extent_state * state)613 static struct extent_state *next_state(struct extent_state *state)
614 {
615 struct rb_node *next = rb_next(&state->rb_node);
616 if (next)
617 return rb_entry(next, struct extent_state, rb_node);
618 else
619 return NULL;
620 }
621
622 /*
623 * utility function to clear some bits in an extent state struct.
624 * it will optionally wake up anyone waiting on this state (wake == 1).
625 *
626 * If no bits are set on the state struct after clearing things, the
627 * struct is freed and removed from the tree
628 */
clear_state_bit(struct extent_io_tree * tree,struct extent_state * state,unsigned * bits,int wake,struct extent_changeset * changeset)629 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
630 struct extent_state *state,
631 unsigned *bits, int wake,
632 struct extent_changeset *changeset)
633 {
634 struct extent_state *next;
635 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
636 int ret;
637
638 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
639 u64 range = state->end - state->start + 1;
640 WARN_ON(range > tree->dirty_bytes);
641 tree->dirty_bytes -= range;
642 }
643
644 if (tree->private_data && is_data_inode(tree->private_data))
645 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
646
647 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
648 BUG_ON(ret < 0);
649 state->state &= ~bits_to_clear;
650 if (wake)
651 wake_up(&state->wq);
652 if (state->state == 0) {
653 next = next_state(state);
654 if (extent_state_in_tree(state)) {
655 rb_erase(&state->rb_node, &tree->state);
656 RB_CLEAR_NODE(&state->rb_node);
657 free_extent_state(state);
658 } else {
659 WARN_ON(1);
660 }
661 } else {
662 merge_state(tree, state);
663 next = next_state(state);
664 }
665 return next;
666 }
667
668 static struct extent_state *
alloc_extent_state_atomic(struct extent_state * prealloc)669 alloc_extent_state_atomic(struct extent_state *prealloc)
670 {
671 if (!prealloc)
672 prealloc = alloc_extent_state(GFP_ATOMIC);
673
674 return prealloc;
675 }
676
extent_io_tree_panic(struct extent_io_tree * tree,int err)677 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
678 {
679 btrfs_panic(tree->fs_info, err,
680 "locking error: extent tree was modified by another thread while locked");
681 }
682
683 /*
684 * clear some bits on a range in the tree. This may require splitting
685 * or inserting elements in the tree, so the gfp mask is used to
686 * indicate which allocations or sleeping are allowed.
687 *
688 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
689 * the given range from the tree regardless of state (ie for truncate).
690 *
691 * the range [start, end] is inclusive.
692 *
693 * This takes the tree lock, and returns 0 on success and < 0 on error.
694 */
__clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,int wake,int delete,struct extent_state ** cached_state,gfp_t mask,struct extent_changeset * changeset)695 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
696 unsigned bits, int wake, int delete,
697 struct extent_state **cached_state,
698 gfp_t mask, struct extent_changeset *changeset)
699 {
700 struct extent_state *state;
701 struct extent_state *cached;
702 struct extent_state *prealloc = NULL;
703 struct rb_node *node;
704 u64 last_end;
705 int err;
706 int clear = 0;
707
708 btrfs_debug_check_extent_io_range(tree, start, end);
709 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
710
711 if (bits & EXTENT_DELALLOC)
712 bits |= EXTENT_NORESERVE;
713
714 if (delete)
715 bits |= ~EXTENT_CTLBITS;
716
717 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
718 clear = 1;
719 again:
720 if (!prealloc && gfpflags_allow_blocking(mask)) {
721 /*
722 * Don't care for allocation failure here because we might end
723 * up not needing the pre-allocated extent state at all, which
724 * is the case if we only have in the tree extent states that
725 * cover our input range and don't cover too any other range.
726 * If we end up needing a new extent state we allocate it later.
727 */
728 prealloc = alloc_extent_state(mask);
729 }
730
731 spin_lock(&tree->lock);
732 if (cached_state) {
733 cached = *cached_state;
734
735 if (clear) {
736 *cached_state = NULL;
737 cached_state = NULL;
738 }
739
740 if (cached && extent_state_in_tree(cached) &&
741 cached->start <= start && cached->end > start) {
742 if (clear)
743 refcount_dec(&cached->refs);
744 state = cached;
745 goto hit_next;
746 }
747 if (clear)
748 free_extent_state(cached);
749 }
750 /*
751 * this search will find the extents that end after
752 * our range starts
753 */
754 node = tree_search(tree, start);
755 if (!node)
756 goto out;
757 state = rb_entry(node, struct extent_state, rb_node);
758 hit_next:
759 if (state->start > end)
760 goto out;
761 WARN_ON(state->end < start);
762 last_end = state->end;
763
764 /* the state doesn't have the wanted bits, go ahead */
765 if (!(state->state & bits)) {
766 state = next_state(state);
767 goto next;
768 }
769
770 /*
771 * | ---- desired range ---- |
772 * | state | or
773 * | ------------- state -------------- |
774 *
775 * We need to split the extent we found, and may flip
776 * bits on second half.
777 *
778 * If the extent we found extends past our range, we
779 * just split and search again. It'll get split again
780 * the next time though.
781 *
782 * If the extent we found is inside our range, we clear
783 * the desired bit on it.
784 */
785
786 if (state->start < start) {
787 prealloc = alloc_extent_state_atomic(prealloc);
788 BUG_ON(!prealloc);
789 err = split_state(tree, state, prealloc, start);
790 if (err)
791 extent_io_tree_panic(tree, err);
792
793 prealloc = NULL;
794 if (err)
795 goto out;
796 if (state->end <= end) {
797 state = clear_state_bit(tree, state, &bits, wake,
798 changeset);
799 goto next;
800 }
801 goto search_again;
802 }
803 /*
804 * | ---- desired range ---- |
805 * | state |
806 * We need to split the extent, and clear the bit
807 * on the first half
808 */
809 if (state->start <= end && state->end > end) {
810 prealloc = alloc_extent_state_atomic(prealloc);
811 BUG_ON(!prealloc);
812 err = split_state(tree, state, prealloc, end + 1);
813 if (err)
814 extent_io_tree_panic(tree, err);
815
816 if (wake)
817 wake_up(&state->wq);
818
819 clear_state_bit(tree, prealloc, &bits, wake, changeset);
820
821 prealloc = NULL;
822 goto out;
823 }
824
825 state = clear_state_bit(tree, state, &bits, wake, changeset);
826 next:
827 if (last_end == (u64)-1)
828 goto out;
829 start = last_end + 1;
830 if (start <= end && state && !need_resched())
831 goto hit_next;
832
833 search_again:
834 if (start > end)
835 goto out;
836 spin_unlock(&tree->lock);
837 if (gfpflags_allow_blocking(mask))
838 cond_resched();
839 goto again;
840
841 out:
842 spin_unlock(&tree->lock);
843 if (prealloc)
844 free_extent_state(prealloc);
845
846 return 0;
847
848 }
849
wait_on_state(struct extent_io_tree * tree,struct extent_state * state)850 static void wait_on_state(struct extent_io_tree *tree,
851 struct extent_state *state)
852 __releases(tree->lock)
853 __acquires(tree->lock)
854 {
855 DEFINE_WAIT(wait);
856 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
857 spin_unlock(&tree->lock);
858 schedule();
859 spin_lock(&tree->lock);
860 finish_wait(&state->wq, &wait);
861 }
862
863 /*
864 * waits for one or more bits to clear on a range in the state tree.
865 * The range [start, end] is inclusive.
866 * The tree lock is taken by this function
867 */
wait_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned long bits)868 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
869 unsigned long bits)
870 {
871 struct extent_state *state;
872 struct rb_node *node;
873
874 btrfs_debug_check_extent_io_range(tree, start, end);
875
876 spin_lock(&tree->lock);
877 again:
878 while (1) {
879 /*
880 * this search will find all the extents that end after
881 * our range starts
882 */
883 node = tree_search(tree, start);
884 process_node:
885 if (!node)
886 break;
887
888 state = rb_entry(node, struct extent_state, rb_node);
889
890 if (state->start > end)
891 goto out;
892
893 if (state->state & bits) {
894 start = state->start;
895 refcount_inc(&state->refs);
896 wait_on_state(tree, state);
897 free_extent_state(state);
898 goto again;
899 }
900 start = state->end + 1;
901
902 if (start > end)
903 break;
904
905 if (!cond_resched_lock(&tree->lock)) {
906 node = rb_next(node);
907 goto process_node;
908 }
909 }
910 out:
911 spin_unlock(&tree->lock);
912 }
913
set_state_bits(struct extent_io_tree * tree,struct extent_state * state,unsigned * bits,struct extent_changeset * changeset)914 static void set_state_bits(struct extent_io_tree *tree,
915 struct extent_state *state,
916 unsigned *bits, struct extent_changeset *changeset)
917 {
918 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
919 int ret;
920
921 if (tree->private_data && is_data_inode(tree->private_data))
922 btrfs_set_delalloc_extent(tree->private_data, state, bits);
923
924 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
925 u64 range = state->end - state->start + 1;
926 tree->dirty_bytes += range;
927 }
928 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
929 BUG_ON(ret < 0);
930 state->state |= bits_to_set;
931 }
932
cache_state_if_flags(struct extent_state * state,struct extent_state ** cached_ptr,unsigned flags)933 static void cache_state_if_flags(struct extent_state *state,
934 struct extent_state **cached_ptr,
935 unsigned flags)
936 {
937 if (cached_ptr && !(*cached_ptr)) {
938 if (!flags || (state->state & flags)) {
939 *cached_ptr = state;
940 refcount_inc(&state->refs);
941 }
942 }
943 }
944
cache_state(struct extent_state * state,struct extent_state ** cached_ptr)945 static void cache_state(struct extent_state *state,
946 struct extent_state **cached_ptr)
947 {
948 return cache_state_if_flags(state, cached_ptr,
949 EXTENT_LOCKED | EXTENT_BOUNDARY);
950 }
951
952 /*
953 * set some bits on a range in the tree. This may require allocations or
954 * sleeping, so the gfp mask is used to indicate what is allowed.
955 *
956 * If any of the exclusive bits are set, this will fail with -EEXIST if some
957 * part of the range already has the desired bits set. The start of the
958 * existing range is returned in failed_start in this case.
959 *
960 * [start, end] is inclusive This takes the tree lock.
961 */
962
963 static int __must_check
__set_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,unsigned exclusive_bits,u64 * failed_start,struct extent_state ** cached_state,gfp_t mask,struct extent_changeset * changeset)964 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
965 unsigned bits, unsigned exclusive_bits,
966 u64 *failed_start, struct extent_state **cached_state,
967 gfp_t mask, struct extent_changeset *changeset)
968 {
969 struct extent_state *state;
970 struct extent_state *prealloc = NULL;
971 struct rb_node *node;
972 struct rb_node **p;
973 struct rb_node *parent;
974 int err = 0;
975 u64 last_start;
976 u64 last_end;
977
978 btrfs_debug_check_extent_io_range(tree, start, end);
979 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
980
981 again:
982 if (!prealloc && gfpflags_allow_blocking(mask)) {
983 /*
984 * Don't care for allocation failure here because we might end
985 * up not needing the pre-allocated extent state at all, which
986 * is the case if we only have in the tree extent states that
987 * cover our input range and don't cover too any other range.
988 * If we end up needing a new extent state we allocate it later.
989 */
990 prealloc = alloc_extent_state(mask);
991 }
992
993 spin_lock(&tree->lock);
994 if (cached_state && *cached_state) {
995 state = *cached_state;
996 if (state->start <= start && state->end > start &&
997 extent_state_in_tree(state)) {
998 node = &state->rb_node;
999 goto hit_next;
1000 }
1001 }
1002 /*
1003 * this search will find all the extents that end after
1004 * our range starts.
1005 */
1006 node = tree_search_for_insert(tree, start, &p, &parent);
1007 if (!node) {
1008 prealloc = alloc_extent_state_atomic(prealloc);
1009 BUG_ON(!prealloc);
1010 err = insert_state(tree, prealloc, start, end,
1011 &p, &parent, &bits, changeset);
1012 if (err)
1013 extent_io_tree_panic(tree, err);
1014
1015 cache_state(prealloc, cached_state);
1016 prealloc = NULL;
1017 goto out;
1018 }
1019 state = rb_entry(node, struct extent_state, rb_node);
1020 hit_next:
1021 last_start = state->start;
1022 last_end = state->end;
1023
1024 /*
1025 * | ---- desired range ---- |
1026 * | state |
1027 *
1028 * Just lock what we found and keep going
1029 */
1030 if (state->start == start && state->end <= end) {
1031 if (state->state & exclusive_bits) {
1032 *failed_start = state->start;
1033 err = -EEXIST;
1034 goto out;
1035 }
1036
1037 set_state_bits(tree, state, &bits, changeset);
1038 cache_state(state, cached_state);
1039 merge_state(tree, state);
1040 if (last_end == (u64)-1)
1041 goto out;
1042 start = last_end + 1;
1043 state = next_state(state);
1044 if (start < end && state && state->start == start &&
1045 !need_resched())
1046 goto hit_next;
1047 goto search_again;
1048 }
1049
1050 /*
1051 * | ---- desired range ---- |
1052 * | state |
1053 * or
1054 * | ------------- state -------------- |
1055 *
1056 * We need to split the extent we found, and may flip bits on
1057 * second half.
1058 *
1059 * If the extent we found extends past our
1060 * range, we just split and search again. It'll get split
1061 * again the next time though.
1062 *
1063 * If the extent we found is inside our range, we set the
1064 * desired bit on it.
1065 */
1066 if (state->start < start) {
1067 if (state->state & exclusive_bits) {
1068 *failed_start = start;
1069 err = -EEXIST;
1070 goto out;
1071 }
1072
1073 /*
1074 * If this extent already has all the bits we want set, then
1075 * skip it, not necessary to split it or do anything with it.
1076 */
1077 if ((state->state & bits) == bits) {
1078 start = state->end + 1;
1079 cache_state(state, cached_state);
1080 goto search_again;
1081 }
1082
1083 prealloc = alloc_extent_state_atomic(prealloc);
1084 BUG_ON(!prealloc);
1085 err = split_state(tree, state, prealloc, start);
1086 if (err)
1087 extent_io_tree_panic(tree, err);
1088
1089 prealloc = NULL;
1090 if (err)
1091 goto out;
1092 if (state->end <= end) {
1093 set_state_bits(tree, state, &bits, changeset);
1094 cache_state(state, cached_state);
1095 merge_state(tree, state);
1096 if (last_end == (u64)-1)
1097 goto out;
1098 start = last_end + 1;
1099 state = next_state(state);
1100 if (start < end && state && state->start == start &&
1101 !need_resched())
1102 goto hit_next;
1103 }
1104 goto search_again;
1105 }
1106 /*
1107 * | ---- desired range ---- |
1108 * | state | or | state |
1109 *
1110 * There's a hole, we need to insert something in it and
1111 * ignore the extent we found.
1112 */
1113 if (state->start > start) {
1114 u64 this_end;
1115 if (end < last_start)
1116 this_end = end;
1117 else
1118 this_end = last_start - 1;
1119
1120 prealloc = alloc_extent_state_atomic(prealloc);
1121 BUG_ON(!prealloc);
1122
1123 /*
1124 * Avoid to free 'prealloc' if it can be merged with
1125 * the later extent.
1126 */
1127 err = insert_state(tree, prealloc, start, this_end,
1128 NULL, NULL, &bits, changeset);
1129 if (err)
1130 extent_io_tree_panic(tree, err);
1131
1132 cache_state(prealloc, cached_state);
1133 prealloc = NULL;
1134 start = this_end + 1;
1135 goto search_again;
1136 }
1137 /*
1138 * | ---- desired range ---- |
1139 * | state |
1140 * We need to split the extent, and set the bit
1141 * on the first half
1142 */
1143 if (state->start <= end && state->end > end) {
1144 if (state->state & exclusive_bits) {
1145 *failed_start = start;
1146 err = -EEXIST;
1147 goto out;
1148 }
1149
1150 prealloc = alloc_extent_state_atomic(prealloc);
1151 BUG_ON(!prealloc);
1152 err = split_state(tree, state, prealloc, end + 1);
1153 if (err)
1154 extent_io_tree_panic(tree, err);
1155
1156 set_state_bits(tree, prealloc, &bits, changeset);
1157 cache_state(prealloc, cached_state);
1158 merge_state(tree, prealloc);
1159 prealloc = NULL;
1160 goto out;
1161 }
1162
1163 search_again:
1164 if (start > end)
1165 goto out;
1166 spin_unlock(&tree->lock);
1167 if (gfpflags_allow_blocking(mask))
1168 cond_resched();
1169 goto again;
1170
1171 out:
1172 spin_unlock(&tree->lock);
1173 if (prealloc)
1174 free_extent_state(prealloc);
1175
1176 return err;
1177
1178 }
1179
set_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,u64 * failed_start,struct extent_state ** cached_state,gfp_t mask)1180 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1181 unsigned bits, u64 * failed_start,
1182 struct extent_state **cached_state, gfp_t mask)
1183 {
1184 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1185 cached_state, mask, NULL);
1186 }
1187
1188
1189 /**
1190 * convert_extent_bit - convert all bits in a given range from one bit to
1191 * another
1192 * @tree: the io tree to search
1193 * @start: the start offset in bytes
1194 * @end: the end offset in bytes (inclusive)
1195 * @bits: the bits to set in this range
1196 * @clear_bits: the bits to clear in this range
1197 * @cached_state: state that we're going to cache
1198 *
1199 * This will go through and set bits for the given range. If any states exist
1200 * already in this range they are set with the given bit and cleared of the
1201 * clear_bits. This is only meant to be used by things that are mergeable, ie
1202 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1203 * boundary bits like LOCK.
1204 *
1205 * All allocations are done with GFP_NOFS.
1206 */
convert_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,unsigned clear_bits,struct extent_state ** cached_state)1207 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1208 unsigned bits, unsigned clear_bits,
1209 struct extent_state **cached_state)
1210 {
1211 struct extent_state *state;
1212 struct extent_state *prealloc = NULL;
1213 struct rb_node *node;
1214 struct rb_node **p;
1215 struct rb_node *parent;
1216 int err = 0;
1217 u64 last_start;
1218 u64 last_end;
1219 bool first_iteration = true;
1220
1221 btrfs_debug_check_extent_io_range(tree, start, end);
1222 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1223 clear_bits);
1224
1225 again:
1226 if (!prealloc) {
1227 /*
1228 * Best effort, don't worry if extent state allocation fails
1229 * here for the first iteration. We might have a cached state
1230 * that matches exactly the target range, in which case no
1231 * extent state allocations are needed. We'll only know this
1232 * after locking the tree.
1233 */
1234 prealloc = alloc_extent_state(GFP_NOFS);
1235 if (!prealloc && !first_iteration)
1236 return -ENOMEM;
1237 }
1238
1239 spin_lock(&tree->lock);
1240 if (cached_state && *cached_state) {
1241 state = *cached_state;
1242 if (state->start <= start && state->end > start &&
1243 extent_state_in_tree(state)) {
1244 node = &state->rb_node;
1245 goto hit_next;
1246 }
1247 }
1248
1249 /*
1250 * this search will find all the extents that end after
1251 * our range starts.
1252 */
1253 node = tree_search_for_insert(tree, start, &p, &parent);
1254 if (!node) {
1255 prealloc = alloc_extent_state_atomic(prealloc);
1256 if (!prealloc) {
1257 err = -ENOMEM;
1258 goto out;
1259 }
1260 err = insert_state(tree, prealloc, start, end,
1261 &p, &parent, &bits, NULL);
1262 if (err)
1263 extent_io_tree_panic(tree, err);
1264 cache_state(prealloc, cached_state);
1265 prealloc = NULL;
1266 goto out;
1267 }
1268 state = rb_entry(node, struct extent_state, rb_node);
1269 hit_next:
1270 last_start = state->start;
1271 last_end = state->end;
1272
1273 /*
1274 * | ---- desired range ---- |
1275 * | state |
1276 *
1277 * Just lock what we found and keep going
1278 */
1279 if (state->start == start && state->end <= end) {
1280 set_state_bits(tree, state, &bits, NULL);
1281 cache_state(state, cached_state);
1282 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1283 if (last_end == (u64)-1)
1284 goto out;
1285 start = last_end + 1;
1286 if (start < end && state && state->start == start &&
1287 !need_resched())
1288 goto hit_next;
1289 goto search_again;
1290 }
1291
1292 /*
1293 * | ---- desired range ---- |
1294 * | state |
1295 * or
1296 * | ------------- state -------------- |
1297 *
1298 * We need to split the extent we found, and may flip bits on
1299 * second half.
1300 *
1301 * If the extent we found extends past our
1302 * range, we just split and search again. It'll get split
1303 * again the next time though.
1304 *
1305 * If the extent we found is inside our range, we set the
1306 * desired bit on it.
1307 */
1308 if (state->start < start) {
1309 prealloc = alloc_extent_state_atomic(prealloc);
1310 if (!prealloc) {
1311 err = -ENOMEM;
1312 goto out;
1313 }
1314 err = split_state(tree, state, prealloc, start);
1315 if (err)
1316 extent_io_tree_panic(tree, err);
1317 prealloc = NULL;
1318 if (err)
1319 goto out;
1320 if (state->end <= end) {
1321 set_state_bits(tree, state, &bits, NULL);
1322 cache_state(state, cached_state);
1323 state = clear_state_bit(tree, state, &clear_bits, 0,
1324 NULL);
1325 if (last_end == (u64)-1)
1326 goto out;
1327 start = last_end + 1;
1328 if (start < end && state && state->start == start &&
1329 !need_resched())
1330 goto hit_next;
1331 }
1332 goto search_again;
1333 }
1334 /*
1335 * | ---- desired range ---- |
1336 * | state | or | state |
1337 *
1338 * There's a hole, we need to insert something in it and
1339 * ignore the extent we found.
1340 */
1341 if (state->start > start) {
1342 u64 this_end;
1343 if (end < last_start)
1344 this_end = end;
1345 else
1346 this_end = last_start - 1;
1347
1348 prealloc = alloc_extent_state_atomic(prealloc);
1349 if (!prealloc) {
1350 err = -ENOMEM;
1351 goto out;
1352 }
1353
1354 /*
1355 * Avoid to free 'prealloc' if it can be merged with
1356 * the later extent.
1357 */
1358 err = insert_state(tree, prealloc, start, this_end,
1359 NULL, NULL, &bits, NULL);
1360 if (err)
1361 extent_io_tree_panic(tree, err);
1362 cache_state(prealloc, cached_state);
1363 prealloc = NULL;
1364 start = this_end + 1;
1365 goto search_again;
1366 }
1367 /*
1368 * | ---- desired range ---- |
1369 * | state |
1370 * We need to split the extent, and set the bit
1371 * on the first half
1372 */
1373 if (state->start <= end && state->end > end) {
1374 prealloc = alloc_extent_state_atomic(prealloc);
1375 if (!prealloc) {
1376 err = -ENOMEM;
1377 goto out;
1378 }
1379
1380 err = split_state(tree, state, prealloc, end + 1);
1381 if (err)
1382 extent_io_tree_panic(tree, err);
1383
1384 set_state_bits(tree, prealloc, &bits, NULL);
1385 cache_state(prealloc, cached_state);
1386 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1387 prealloc = NULL;
1388 goto out;
1389 }
1390
1391 search_again:
1392 if (start > end)
1393 goto out;
1394 spin_unlock(&tree->lock);
1395 cond_resched();
1396 first_iteration = false;
1397 goto again;
1398
1399 out:
1400 spin_unlock(&tree->lock);
1401 if (prealloc)
1402 free_extent_state(prealloc);
1403
1404 return err;
1405 }
1406
1407 /* wrappers around set/clear extent bit */
set_record_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,struct extent_changeset * changeset)1408 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1409 unsigned bits, struct extent_changeset *changeset)
1410 {
1411 /*
1412 * We don't support EXTENT_LOCKED yet, as current changeset will
1413 * record any bits changed, so for EXTENT_LOCKED case, it will
1414 * either fail with -EEXIST or changeset will record the whole
1415 * range.
1416 */
1417 BUG_ON(bits & EXTENT_LOCKED);
1418
1419 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1420 changeset);
1421 }
1422
set_extent_bits_nowait(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits)1423 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1424 unsigned bits)
1425 {
1426 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1427 GFP_NOWAIT, NULL);
1428 }
1429
clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,int wake,int delete,struct extent_state ** cached)1430 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1431 unsigned bits, int wake, int delete,
1432 struct extent_state **cached)
1433 {
1434 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1435 cached, GFP_NOFS, NULL);
1436 }
1437
clear_record_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,struct extent_changeset * changeset)1438 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1439 unsigned bits, struct extent_changeset *changeset)
1440 {
1441 /*
1442 * Don't support EXTENT_LOCKED case, same reason as
1443 * set_record_extent_bits().
1444 */
1445 BUG_ON(bits & EXTENT_LOCKED);
1446
1447 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1448 changeset);
1449 }
1450
1451 /*
1452 * either insert or lock state struct between start and end use mask to tell
1453 * us if waiting is desired.
1454 */
lock_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,struct extent_state ** cached_state)1455 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1456 struct extent_state **cached_state)
1457 {
1458 int err;
1459 u64 failed_start;
1460
1461 while (1) {
1462 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1463 EXTENT_LOCKED, &failed_start,
1464 cached_state, GFP_NOFS, NULL);
1465 if (err == -EEXIST) {
1466 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1467 start = failed_start;
1468 } else
1469 break;
1470 WARN_ON(start > end);
1471 }
1472 return err;
1473 }
1474
try_lock_extent(struct extent_io_tree * tree,u64 start,u64 end)1475 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1476 {
1477 int err;
1478 u64 failed_start;
1479
1480 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1481 &failed_start, NULL, GFP_NOFS, NULL);
1482 if (err == -EEXIST) {
1483 if (failed_start > start)
1484 clear_extent_bit(tree, start, failed_start - 1,
1485 EXTENT_LOCKED, 1, 0, NULL);
1486 return 0;
1487 }
1488 return 1;
1489 }
1490
extent_range_clear_dirty_for_io(struct inode * inode,u64 start,u64 end)1491 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1492 {
1493 unsigned long index = start >> PAGE_SHIFT;
1494 unsigned long end_index = end >> PAGE_SHIFT;
1495 struct page *page;
1496
1497 while (index <= end_index) {
1498 page = find_get_page(inode->i_mapping, index);
1499 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1500 clear_page_dirty_for_io(page);
1501 put_page(page);
1502 index++;
1503 }
1504 }
1505
extent_range_redirty_for_io(struct inode * inode,u64 start,u64 end)1506 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1507 {
1508 unsigned long index = start >> PAGE_SHIFT;
1509 unsigned long end_index = end >> PAGE_SHIFT;
1510 struct page *page;
1511
1512 while (index <= end_index) {
1513 page = find_get_page(inode->i_mapping, index);
1514 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1515 __set_page_dirty_nobuffers(page);
1516 account_page_redirty(page);
1517 put_page(page);
1518 index++;
1519 }
1520 }
1521
1522 /* find the first state struct with 'bits' set after 'start', and
1523 * return it. tree->lock must be held. NULL will returned if
1524 * nothing was found after 'start'
1525 */
1526 static struct extent_state *
find_first_extent_bit_state(struct extent_io_tree * tree,u64 start,unsigned bits)1527 find_first_extent_bit_state(struct extent_io_tree *tree,
1528 u64 start, unsigned bits)
1529 {
1530 struct rb_node *node;
1531 struct extent_state *state;
1532
1533 /*
1534 * this search will find all the extents that end after
1535 * our range starts.
1536 */
1537 node = tree_search(tree, start);
1538 if (!node)
1539 goto out;
1540
1541 while (1) {
1542 state = rb_entry(node, struct extent_state, rb_node);
1543 if (state->end >= start && (state->state & bits))
1544 return state;
1545
1546 node = rb_next(node);
1547 if (!node)
1548 break;
1549 }
1550 out:
1551 return NULL;
1552 }
1553
1554 /*
1555 * find the first offset in the io tree with 'bits' set. zero is
1556 * returned if we find something, and *start_ret and *end_ret are
1557 * set to reflect the state struct that was found.
1558 *
1559 * If nothing was found, 1 is returned. If found something, return 0.
1560 */
find_first_extent_bit(struct extent_io_tree * tree,u64 start,u64 * start_ret,u64 * end_ret,unsigned bits,struct extent_state ** cached_state)1561 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1562 u64 *start_ret, u64 *end_ret, unsigned bits,
1563 struct extent_state **cached_state)
1564 {
1565 struct extent_state *state;
1566 int ret = 1;
1567
1568 spin_lock(&tree->lock);
1569 if (cached_state && *cached_state) {
1570 state = *cached_state;
1571 if (state->end == start - 1 && extent_state_in_tree(state)) {
1572 while ((state = next_state(state)) != NULL) {
1573 if (state->state & bits)
1574 goto got_it;
1575 }
1576 free_extent_state(*cached_state);
1577 *cached_state = NULL;
1578 goto out;
1579 }
1580 free_extent_state(*cached_state);
1581 *cached_state = NULL;
1582 }
1583
1584 state = find_first_extent_bit_state(tree, start, bits);
1585 got_it:
1586 if (state) {
1587 cache_state_if_flags(state, cached_state, 0);
1588 *start_ret = state->start;
1589 *end_ret = state->end;
1590 ret = 0;
1591 }
1592 out:
1593 spin_unlock(&tree->lock);
1594 return ret;
1595 }
1596
1597 /**
1598 * find_contiguous_extent_bit: find a contiguous area of bits
1599 * @tree - io tree to check
1600 * @start - offset to start the search from
1601 * @start_ret - the first offset we found with the bits set
1602 * @end_ret - the final contiguous range of the bits that were set
1603 * @bits - bits to look for
1604 *
1605 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1606 * to set bits appropriately, and then merge them again. During this time it
1607 * will drop the tree->lock, so use this helper if you want to find the actual
1608 * contiguous area for given bits. We will search to the first bit we find, and
1609 * then walk down the tree until we find a non-contiguous area. The area
1610 * returned will be the full contiguous area with the bits set.
1611 */
find_contiguous_extent_bit(struct extent_io_tree * tree,u64 start,u64 * start_ret,u64 * end_ret,unsigned bits)1612 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1613 u64 *start_ret, u64 *end_ret, unsigned bits)
1614 {
1615 struct extent_state *state;
1616 int ret = 1;
1617
1618 spin_lock(&tree->lock);
1619 state = find_first_extent_bit_state(tree, start, bits);
1620 if (state) {
1621 *start_ret = state->start;
1622 *end_ret = state->end;
1623 while ((state = next_state(state)) != NULL) {
1624 if (state->start > (*end_ret + 1))
1625 break;
1626 *end_ret = state->end;
1627 }
1628 ret = 0;
1629 }
1630 spin_unlock(&tree->lock);
1631 return ret;
1632 }
1633
1634 /**
1635 * find_first_clear_extent_bit - find the first range that has @bits not set.
1636 * This range could start before @start.
1637 *
1638 * @tree - the tree to search
1639 * @start - the offset at/after which the found extent should start
1640 * @start_ret - records the beginning of the range
1641 * @end_ret - records the end of the range (inclusive)
1642 * @bits - the set of bits which must be unset
1643 *
1644 * Since unallocated range is also considered one which doesn't have the bits
1645 * set it's possible that @end_ret contains -1, this happens in case the range
1646 * spans (last_range_end, end of device]. In this case it's up to the caller to
1647 * trim @end_ret to the appropriate size.
1648 */
find_first_clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 * start_ret,u64 * end_ret,unsigned bits)1649 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1650 u64 *start_ret, u64 *end_ret, unsigned bits)
1651 {
1652 struct extent_state *state;
1653 struct rb_node *node, *prev = NULL, *next;
1654
1655 spin_lock(&tree->lock);
1656
1657 /* Find first extent with bits cleared */
1658 while (1) {
1659 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1660 if (!node && !next && !prev) {
1661 /*
1662 * Tree is completely empty, send full range and let
1663 * caller deal with it
1664 */
1665 *start_ret = 0;
1666 *end_ret = -1;
1667 goto out;
1668 } else if (!node && !next) {
1669 /*
1670 * We are past the last allocated chunk, set start at
1671 * the end of the last extent.
1672 */
1673 state = rb_entry(prev, struct extent_state, rb_node);
1674 *start_ret = state->end + 1;
1675 *end_ret = -1;
1676 goto out;
1677 } else if (!node) {
1678 node = next;
1679 }
1680 /*
1681 * At this point 'node' either contains 'start' or start is
1682 * before 'node'
1683 */
1684 state = rb_entry(node, struct extent_state, rb_node);
1685
1686 if (in_range(start, state->start, state->end - state->start + 1)) {
1687 if (state->state & bits) {
1688 /*
1689 * |--range with bits sets--|
1690 * |
1691 * start
1692 */
1693 start = state->end + 1;
1694 } else {
1695 /*
1696 * 'start' falls within a range that doesn't
1697 * have the bits set, so take its start as
1698 * the beginning of the desired range
1699 *
1700 * |--range with bits cleared----|
1701 * |
1702 * start
1703 */
1704 *start_ret = state->start;
1705 break;
1706 }
1707 } else {
1708 /*
1709 * |---prev range---|---hole/unset---|---node range---|
1710 * |
1711 * start
1712 *
1713 * or
1714 *
1715 * |---hole/unset--||--first node--|
1716 * 0 |
1717 * start
1718 */
1719 if (prev) {
1720 state = rb_entry(prev, struct extent_state,
1721 rb_node);
1722 *start_ret = state->end + 1;
1723 } else {
1724 *start_ret = 0;
1725 }
1726 break;
1727 }
1728 }
1729
1730 /*
1731 * Find the longest stretch from start until an entry which has the
1732 * bits set
1733 */
1734 while (1) {
1735 state = rb_entry(node, struct extent_state, rb_node);
1736 if (state->end >= start && !(state->state & bits)) {
1737 *end_ret = state->end;
1738 } else {
1739 *end_ret = state->start - 1;
1740 break;
1741 }
1742
1743 node = rb_next(node);
1744 if (!node)
1745 break;
1746 }
1747 out:
1748 spin_unlock(&tree->lock);
1749 }
1750
1751 /*
1752 * find a contiguous range of bytes in the file marked as delalloc, not
1753 * more than 'max_bytes'. start and end are used to return the range,
1754 *
1755 * true is returned if we find something, false if nothing was in the tree
1756 */
btrfs_find_delalloc_range(struct extent_io_tree * tree,u64 * start,u64 * end,u64 max_bytes,struct extent_state ** cached_state)1757 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1758 u64 *end, u64 max_bytes,
1759 struct extent_state **cached_state)
1760 {
1761 struct rb_node *node;
1762 struct extent_state *state;
1763 u64 cur_start = *start;
1764 bool found = false;
1765 u64 total_bytes = 0;
1766
1767 spin_lock(&tree->lock);
1768
1769 /*
1770 * this search will find all the extents that end after
1771 * our range starts.
1772 */
1773 node = tree_search(tree, cur_start);
1774 if (!node) {
1775 *end = (u64)-1;
1776 goto out;
1777 }
1778
1779 while (1) {
1780 state = rb_entry(node, struct extent_state, rb_node);
1781 if (found && (state->start != cur_start ||
1782 (state->state & EXTENT_BOUNDARY))) {
1783 goto out;
1784 }
1785 if (!(state->state & EXTENT_DELALLOC)) {
1786 if (!found)
1787 *end = state->end;
1788 goto out;
1789 }
1790 if (!found) {
1791 *start = state->start;
1792 *cached_state = state;
1793 refcount_inc(&state->refs);
1794 }
1795 found = true;
1796 *end = state->end;
1797 cur_start = state->end + 1;
1798 node = rb_next(node);
1799 total_bytes += state->end - state->start + 1;
1800 if (total_bytes >= max_bytes)
1801 break;
1802 if (!node)
1803 break;
1804 }
1805 out:
1806 spin_unlock(&tree->lock);
1807 return found;
1808 }
1809
1810 static int __process_pages_contig(struct address_space *mapping,
1811 struct page *locked_page,
1812 pgoff_t start_index, pgoff_t end_index,
1813 unsigned long page_ops, pgoff_t *index_ret);
1814
__unlock_for_delalloc(struct inode * inode,struct page * locked_page,u64 start,u64 end)1815 static noinline void __unlock_for_delalloc(struct inode *inode,
1816 struct page *locked_page,
1817 u64 start, u64 end)
1818 {
1819 unsigned long index = start >> PAGE_SHIFT;
1820 unsigned long end_index = end >> PAGE_SHIFT;
1821
1822 ASSERT(locked_page);
1823 if (index == locked_page->index && end_index == index)
1824 return;
1825
1826 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1827 PAGE_UNLOCK, NULL);
1828 }
1829
lock_delalloc_pages(struct inode * inode,struct page * locked_page,u64 delalloc_start,u64 delalloc_end)1830 static noinline int lock_delalloc_pages(struct inode *inode,
1831 struct page *locked_page,
1832 u64 delalloc_start,
1833 u64 delalloc_end)
1834 {
1835 unsigned long index = delalloc_start >> PAGE_SHIFT;
1836 unsigned long index_ret = index;
1837 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1838 int ret;
1839
1840 ASSERT(locked_page);
1841 if (index == locked_page->index && index == end_index)
1842 return 0;
1843
1844 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1845 end_index, PAGE_LOCK, &index_ret);
1846 if (ret == -EAGAIN)
1847 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1848 (u64)index_ret << PAGE_SHIFT);
1849 return ret;
1850 }
1851
1852 /*
1853 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1854 * more than @max_bytes. @Start and @end are used to return the range,
1855 *
1856 * Return: true if we find something
1857 * false if nothing was in the tree
1858 */
1859 EXPORT_FOR_TESTS
find_lock_delalloc_range(struct inode * inode,struct page * locked_page,u64 * start,u64 * end)1860 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1861 struct page *locked_page, u64 *start,
1862 u64 *end)
1863 {
1864 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1865 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1866 u64 delalloc_start;
1867 u64 delalloc_end;
1868 bool found;
1869 struct extent_state *cached_state = NULL;
1870 int ret;
1871 int loops = 0;
1872
1873 again:
1874 /* step one, find a bunch of delalloc bytes starting at start */
1875 delalloc_start = *start;
1876 delalloc_end = 0;
1877 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1878 max_bytes, &cached_state);
1879 if (!found || delalloc_end <= *start) {
1880 *start = delalloc_start;
1881 *end = delalloc_end;
1882 free_extent_state(cached_state);
1883 return false;
1884 }
1885
1886 /*
1887 * start comes from the offset of locked_page. We have to lock
1888 * pages in order, so we can't process delalloc bytes before
1889 * locked_page
1890 */
1891 if (delalloc_start < *start)
1892 delalloc_start = *start;
1893
1894 /*
1895 * make sure to limit the number of pages we try to lock down
1896 */
1897 if (delalloc_end + 1 - delalloc_start > max_bytes)
1898 delalloc_end = delalloc_start + max_bytes - 1;
1899
1900 /* step two, lock all the pages after the page that has start */
1901 ret = lock_delalloc_pages(inode, locked_page,
1902 delalloc_start, delalloc_end);
1903 ASSERT(!ret || ret == -EAGAIN);
1904 if (ret == -EAGAIN) {
1905 /* some of the pages are gone, lets avoid looping by
1906 * shortening the size of the delalloc range we're searching
1907 */
1908 free_extent_state(cached_state);
1909 cached_state = NULL;
1910 if (!loops) {
1911 max_bytes = PAGE_SIZE;
1912 loops = 1;
1913 goto again;
1914 } else {
1915 found = false;
1916 goto out_failed;
1917 }
1918 }
1919
1920 /* step three, lock the state bits for the whole range */
1921 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1922
1923 /* then test to make sure it is all still delalloc */
1924 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1925 EXTENT_DELALLOC, 1, cached_state);
1926 if (!ret) {
1927 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1928 &cached_state);
1929 __unlock_for_delalloc(inode, locked_page,
1930 delalloc_start, delalloc_end);
1931 cond_resched();
1932 goto again;
1933 }
1934 free_extent_state(cached_state);
1935 *start = delalloc_start;
1936 *end = delalloc_end;
1937 out_failed:
1938 return found;
1939 }
1940
__process_pages_contig(struct address_space * mapping,struct page * locked_page,pgoff_t start_index,pgoff_t end_index,unsigned long page_ops,pgoff_t * index_ret)1941 static int __process_pages_contig(struct address_space *mapping,
1942 struct page *locked_page,
1943 pgoff_t start_index, pgoff_t end_index,
1944 unsigned long page_ops, pgoff_t *index_ret)
1945 {
1946 unsigned long nr_pages = end_index - start_index + 1;
1947 unsigned long pages_locked = 0;
1948 pgoff_t index = start_index;
1949 struct page *pages[16];
1950 unsigned ret;
1951 int err = 0;
1952 int i;
1953
1954 if (page_ops & PAGE_LOCK) {
1955 ASSERT(page_ops == PAGE_LOCK);
1956 ASSERT(index_ret && *index_ret == start_index);
1957 }
1958
1959 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1960 mapping_set_error(mapping, -EIO);
1961
1962 while (nr_pages > 0) {
1963 ret = find_get_pages_contig(mapping, index,
1964 min_t(unsigned long,
1965 nr_pages, ARRAY_SIZE(pages)), pages);
1966 if (ret == 0) {
1967 /*
1968 * Only if we're going to lock these pages,
1969 * can we find nothing at @index.
1970 */
1971 ASSERT(page_ops & PAGE_LOCK);
1972 err = -EAGAIN;
1973 goto out;
1974 }
1975
1976 for (i = 0; i < ret; i++) {
1977 if (page_ops & PAGE_SET_PRIVATE2)
1978 SetPagePrivate2(pages[i]);
1979
1980 if (locked_page && pages[i] == locked_page) {
1981 put_page(pages[i]);
1982 pages_locked++;
1983 continue;
1984 }
1985 if (page_ops & PAGE_CLEAR_DIRTY)
1986 clear_page_dirty_for_io(pages[i]);
1987 if (page_ops & PAGE_SET_WRITEBACK)
1988 set_page_writeback(pages[i]);
1989 if (page_ops & PAGE_SET_ERROR)
1990 SetPageError(pages[i]);
1991 if (page_ops & PAGE_END_WRITEBACK)
1992 end_page_writeback(pages[i]);
1993 if (page_ops & PAGE_UNLOCK)
1994 unlock_page(pages[i]);
1995 if (page_ops & PAGE_LOCK) {
1996 lock_page(pages[i]);
1997 if (!PageDirty(pages[i]) ||
1998 pages[i]->mapping != mapping) {
1999 unlock_page(pages[i]);
2000 for (; i < ret; i++)
2001 put_page(pages[i]);
2002 err = -EAGAIN;
2003 goto out;
2004 }
2005 }
2006 put_page(pages[i]);
2007 pages_locked++;
2008 }
2009 nr_pages -= ret;
2010 index += ret;
2011 cond_resched();
2012 }
2013 out:
2014 if (err && index_ret)
2015 *index_ret = start_index + pages_locked - 1;
2016 return err;
2017 }
2018
extent_clear_unlock_delalloc(struct btrfs_inode * inode,u64 start,u64 end,struct page * locked_page,unsigned clear_bits,unsigned long page_ops)2019 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2020 struct page *locked_page,
2021 unsigned clear_bits,
2022 unsigned long page_ops)
2023 {
2024 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2025
2026 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2027 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2028 page_ops, NULL);
2029 }
2030
2031 /*
2032 * count the number of bytes in the tree that have a given bit(s)
2033 * set. This can be fairly slow, except for EXTENT_DIRTY which is
2034 * cached. The total number found is returned.
2035 */
count_range_bits(struct extent_io_tree * tree,u64 * start,u64 search_end,u64 max_bytes,unsigned bits,int contig)2036 u64 count_range_bits(struct extent_io_tree *tree,
2037 u64 *start, u64 search_end, u64 max_bytes,
2038 unsigned bits, int contig)
2039 {
2040 struct rb_node *node;
2041 struct extent_state *state;
2042 u64 cur_start = *start;
2043 u64 total_bytes = 0;
2044 u64 last = 0;
2045 int found = 0;
2046
2047 if (WARN_ON(search_end <= cur_start))
2048 return 0;
2049
2050 spin_lock(&tree->lock);
2051 if (cur_start == 0 && bits == EXTENT_DIRTY) {
2052 total_bytes = tree->dirty_bytes;
2053 goto out;
2054 }
2055 /*
2056 * this search will find all the extents that end after
2057 * our range starts.
2058 */
2059 node = tree_search(tree, cur_start);
2060 if (!node)
2061 goto out;
2062
2063 while (1) {
2064 state = rb_entry(node, struct extent_state, rb_node);
2065 if (state->start > search_end)
2066 break;
2067 if (contig && found && state->start > last + 1)
2068 break;
2069 if (state->end >= cur_start && (state->state & bits) == bits) {
2070 total_bytes += min(search_end, state->end) + 1 -
2071 max(cur_start, state->start);
2072 if (total_bytes >= max_bytes)
2073 break;
2074 if (!found) {
2075 *start = max(cur_start, state->start);
2076 found = 1;
2077 }
2078 last = state->end;
2079 } else if (contig && found) {
2080 break;
2081 }
2082 node = rb_next(node);
2083 if (!node)
2084 break;
2085 }
2086 out:
2087 spin_unlock(&tree->lock);
2088 return total_bytes;
2089 }
2090
2091 /*
2092 * set the private field for a given byte offset in the tree. If there isn't
2093 * an extent_state there already, this does nothing.
2094 */
set_state_failrec(struct extent_io_tree * tree,u64 start,struct io_failure_record * failrec)2095 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2096 struct io_failure_record *failrec)
2097 {
2098 struct rb_node *node;
2099 struct extent_state *state;
2100 int ret = 0;
2101
2102 spin_lock(&tree->lock);
2103 /*
2104 * this search will find all the extents that end after
2105 * our range starts.
2106 */
2107 node = tree_search(tree, start);
2108 if (!node) {
2109 ret = -ENOENT;
2110 goto out;
2111 }
2112 state = rb_entry(node, struct extent_state, rb_node);
2113 if (state->start != start) {
2114 ret = -ENOENT;
2115 goto out;
2116 }
2117 state->failrec = failrec;
2118 out:
2119 spin_unlock(&tree->lock);
2120 return ret;
2121 }
2122
get_state_failrec(struct extent_io_tree * tree,u64 start)2123 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2124 {
2125 struct rb_node *node;
2126 struct extent_state *state;
2127 struct io_failure_record *failrec;
2128
2129 spin_lock(&tree->lock);
2130 /*
2131 * this search will find all the extents that end after
2132 * our range starts.
2133 */
2134 node = tree_search(tree, start);
2135 if (!node) {
2136 failrec = ERR_PTR(-ENOENT);
2137 goto out;
2138 }
2139 state = rb_entry(node, struct extent_state, rb_node);
2140 if (state->start != start) {
2141 failrec = ERR_PTR(-ENOENT);
2142 goto out;
2143 }
2144
2145 failrec = state->failrec;
2146 out:
2147 spin_unlock(&tree->lock);
2148 return failrec;
2149 }
2150
2151 /*
2152 * searches a range in the state tree for a given mask.
2153 * If 'filled' == 1, this returns 1 only if every extent in the tree
2154 * has the bits set. Otherwise, 1 is returned if any bit in the
2155 * range is found set.
2156 */
test_range_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,int filled,struct extent_state * cached)2157 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2158 unsigned bits, int filled, struct extent_state *cached)
2159 {
2160 struct extent_state *state = NULL;
2161 struct rb_node *node;
2162 int bitset = 0;
2163
2164 spin_lock(&tree->lock);
2165 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2166 cached->end > start)
2167 node = &cached->rb_node;
2168 else
2169 node = tree_search(tree, start);
2170 while (node && start <= end) {
2171 state = rb_entry(node, struct extent_state, rb_node);
2172
2173 if (filled && state->start > start) {
2174 bitset = 0;
2175 break;
2176 }
2177
2178 if (state->start > end)
2179 break;
2180
2181 if (state->state & bits) {
2182 bitset = 1;
2183 if (!filled)
2184 break;
2185 } else if (filled) {
2186 bitset = 0;
2187 break;
2188 }
2189
2190 if (state->end == (u64)-1)
2191 break;
2192
2193 start = state->end + 1;
2194 if (start > end)
2195 break;
2196 node = rb_next(node);
2197 if (!node) {
2198 if (filled)
2199 bitset = 0;
2200 break;
2201 }
2202 }
2203 spin_unlock(&tree->lock);
2204 return bitset;
2205 }
2206
2207 /*
2208 * helper function to set a given page up to date if all the
2209 * extents in the tree for that page are up to date
2210 */
check_page_uptodate(struct extent_io_tree * tree,struct page * page)2211 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2212 {
2213 u64 start = page_offset(page);
2214 u64 end = start + PAGE_SIZE - 1;
2215 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2216 SetPageUptodate(page);
2217 }
2218
free_io_failure(struct extent_io_tree * failure_tree,struct extent_io_tree * io_tree,struct io_failure_record * rec)2219 int free_io_failure(struct extent_io_tree *failure_tree,
2220 struct extent_io_tree *io_tree,
2221 struct io_failure_record *rec)
2222 {
2223 int ret;
2224 int err = 0;
2225
2226 set_state_failrec(failure_tree, rec->start, NULL);
2227 ret = clear_extent_bits(failure_tree, rec->start,
2228 rec->start + rec->len - 1,
2229 EXTENT_LOCKED | EXTENT_DIRTY);
2230 if (ret)
2231 err = ret;
2232
2233 ret = clear_extent_bits(io_tree, rec->start,
2234 rec->start + rec->len - 1,
2235 EXTENT_DAMAGED);
2236 if (ret && !err)
2237 err = ret;
2238
2239 kfree(rec);
2240 return err;
2241 }
2242
2243 /*
2244 * this bypasses the standard btrfs submit functions deliberately, as
2245 * the standard behavior is to write all copies in a raid setup. here we only
2246 * want to write the one bad copy. so we do the mapping for ourselves and issue
2247 * submit_bio directly.
2248 * to avoid any synchronization issues, wait for the data after writing, which
2249 * actually prevents the read that triggered the error from finishing.
2250 * currently, there can be no more than two copies of every data bit. thus,
2251 * exactly one rewrite is required.
2252 */
repair_io_failure(struct btrfs_fs_info * fs_info,u64 ino,u64 start,u64 length,u64 logical,struct page * page,unsigned int pg_offset,int mirror_num)2253 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2254 u64 length, u64 logical, struct page *page,
2255 unsigned int pg_offset, int mirror_num)
2256 {
2257 struct bio *bio;
2258 struct btrfs_device *dev;
2259 u64 map_length = 0;
2260 u64 sector;
2261 struct btrfs_bio *bbio = NULL;
2262 int ret;
2263
2264 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2265 BUG_ON(!mirror_num);
2266
2267 bio = btrfs_io_bio_alloc(1);
2268 bio->bi_iter.bi_size = 0;
2269 map_length = length;
2270
2271 /*
2272 * Avoid races with device replace and make sure our bbio has devices
2273 * associated to its stripes that don't go away while we are doing the
2274 * read repair operation.
2275 */
2276 btrfs_bio_counter_inc_blocked(fs_info);
2277 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2278 /*
2279 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2280 * to update all raid stripes, but here we just want to correct
2281 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2282 * stripe's dev and sector.
2283 */
2284 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2285 &map_length, &bbio, 0);
2286 if (ret) {
2287 btrfs_bio_counter_dec(fs_info);
2288 bio_put(bio);
2289 return -EIO;
2290 }
2291 ASSERT(bbio->mirror_num == 1);
2292 } else {
2293 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2294 &map_length, &bbio, mirror_num);
2295 if (ret) {
2296 btrfs_bio_counter_dec(fs_info);
2297 bio_put(bio);
2298 return -EIO;
2299 }
2300 BUG_ON(mirror_num != bbio->mirror_num);
2301 }
2302
2303 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2304 bio->bi_iter.bi_sector = sector;
2305 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2306 btrfs_put_bbio(bbio);
2307 if (!dev || !dev->bdev ||
2308 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2309 btrfs_bio_counter_dec(fs_info);
2310 bio_put(bio);
2311 return -EIO;
2312 }
2313 bio_set_dev(bio, dev->bdev);
2314 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2315 bio_add_page(bio, page, length, pg_offset);
2316
2317 if (btrfsic_submit_bio_wait(bio)) {
2318 /* try to remap that extent elsewhere? */
2319 btrfs_bio_counter_dec(fs_info);
2320 bio_put(bio);
2321 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2322 return -EIO;
2323 }
2324
2325 btrfs_info_rl_in_rcu(fs_info,
2326 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2327 ino, start,
2328 rcu_str_deref(dev->name), sector);
2329 btrfs_bio_counter_dec(fs_info);
2330 bio_put(bio);
2331 return 0;
2332 }
2333
btrfs_repair_eb_io_failure(const struct extent_buffer * eb,int mirror_num)2334 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2335 {
2336 struct btrfs_fs_info *fs_info = eb->fs_info;
2337 u64 start = eb->start;
2338 int i, num_pages = num_extent_pages(eb);
2339 int ret = 0;
2340
2341 if (sb_rdonly(fs_info->sb))
2342 return -EROFS;
2343
2344 for (i = 0; i < num_pages; i++) {
2345 struct page *p = eb->pages[i];
2346
2347 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2348 start - page_offset(p), mirror_num);
2349 if (ret)
2350 break;
2351 start += PAGE_SIZE;
2352 }
2353
2354 return ret;
2355 }
2356
2357 /*
2358 * each time an IO finishes, we do a fast check in the IO failure tree
2359 * to see if we need to process or clean up an io_failure_record
2360 */
clean_io_failure(struct btrfs_fs_info * fs_info,struct extent_io_tree * failure_tree,struct extent_io_tree * io_tree,u64 start,struct page * page,u64 ino,unsigned int pg_offset)2361 int clean_io_failure(struct btrfs_fs_info *fs_info,
2362 struct extent_io_tree *failure_tree,
2363 struct extent_io_tree *io_tree, u64 start,
2364 struct page *page, u64 ino, unsigned int pg_offset)
2365 {
2366 u64 private;
2367 struct io_failure_record *failrec;
2368 struct extent_state *state;
2369 int num_copies;
2370 int ret;
2371
2372 private = 0;
2373 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2374 EXTENT_DIRTY, 0);
2375 if (!ret)
2376 return 0;
2377
2378 failrec = get_state_failrec(failure_tree, start);
2379 if (IS_ERR(failrec))
2380 return 0;
2381
2382 BUG_ON(!failrec->this_mirror);
2383
2384 if (failrec->in_validation) {
2385 /* there was no real error, just free the record */
2386 btrfs_debug(fs_info,
2387 "clean_io_failure: freeing dummy error at %llu",
2388 failrec->start);
2389 goto out;
2390 }
2391 if (sb_rdonly(fs_info->sb))
2392 goto out;
2393
2394 spin_lock(&io_tree->lock);
2395 state = find_first_extent_bit_state(io_tree,
2396 failrec->start,
2397 EXTENT_LOCKED);
2398 spin_unlock(&io_tree->lock);
2399
2400 if (state && state->start <= failrec->start &&
2401 state->end >= failrec->start + failrec->len - 1) {
2402 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2403 failrec->len);
2404 if (num_copies > 1) {
2405 repair_io_failure(fs_info, ino, start, failrec->len,
2406 failrec->logical, page, pg_offset,
2407 failrec->failed_mirror);
2408 }
2409 }
2410
2411 out:
2412 free_io_failure(failure_tree, io_tree, failrec);
2413
2414 return 0;
2415 }
2416
2417 /*
2418 * Can be called when
2419 * - hold extent lock
2420 * - under ordered extent
2421 * - the inode is freeing
2422 */
btrfs_free_io_failure_record(struct btrfs_inode * inode,u64 start,u64 end)2423 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2424 {
2425 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2426 struct io_failure_record *failrec;
2427 struct extent_state *state, *next;
2428
2429 if (RB_EMPTY_ROOT(&failure_tree->state))
2430 return;
2431
2432 spin_lock(&failure_tree->lock);
2433 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2434 while (state) {
2435 if (state->start > end)
2436 break;
2437
2438 ASSERT(state->end <= end);
2439
2440 next = next_state(state);
2441
2442 failrec = state->failrec;
2443 free_extent_state(state);
2444 kfree(failrec);
2445
2446 state = next;
2447 }
2448 spin_unlock(&failure_tree->lock);
2449 }
2450
btrfs_get_io_failure_record(struct inode * inode,u64 start,u64 end)2451 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2452 u64 start, u64 end)
2453 {
2454 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2455 struct io_failure_record *failrec;
2456 struct extent_map *em;
2457 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2458 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2459 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2460 int ret;
2461 u64 logical;
2462
2463 failrec = get_state_failrec(failure_tree, start);
2464 if (!IS_ERR(failrec)) {
2465 btrfs_debug(fs_info,
2466 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2467 failrec->logical, failrec->start, failrec->len,
2468 failrec->in_validation);
2469 /*
2470 * when data can be on disk more than twice, add to failrec here
2471 * (e.g. with a list for failed_mirror) to make
2472 * clean_io_failure() clean all those errors at once.
2473 */
2474
2475 return failrec;
2476 }
2477
2478 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2479 if (!failrec)
2480 return ERR_PTR(-ENOMEM);
2481
2482 failrec->start = start;
2483 failrec->len = end - start + 1;
2484 failrec->this_mirror = 0;
2485 failrec->bio_flags = 0;
2486 failrec->in_validation = 0;
2487
2488 read_lock(&em_tree->lock);
2489 em = lookup_extent_mapping(em_tree, start, failrec->len);
2490 if (!em) {
2491 read_unlock(&em_tree->lock);
2492 kfree(failrec);
2493 return ERR_PTR(-EIO);
2494 }
2495
2496 if (em->start > start || em->start + em->len <= start) {
2497 free_extent_map(em);
2498 em = NULL;
2499 }
2500 read_unlock(&em_tree->lock);
2501 if (!em) {
2502 kfree(failrec);
2503 return ERR_PTR(-EIO);
2504 }
2505
2506 logical = start - em->start;
2507 logical = em->block_start + logical;
2508 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2509 logical = em->block_start;
2510 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2511 extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2512 }
2513
2514 btrfs_debug(fs_info,
2515 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2516 logical, start, failrec->len);
2517
2518 failrec->logical = logical;
2519 free_extent_map(em);
2520
2521 /* Set the bits in the private failure tree */
2522 ret = set_extent_bits(failure_tree, start, end,
2523 EXTENT_LOCKED | EXTENT_DIRTY);
2524 if (ret >= 0) {
2525 ret = set_state_failrec(failure_tree, start, failrec);
2526 /* Set the bits in the inode's tree */
2527 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2528 } else if (ret < 0) {
2529 kfree(failrec);
2530 return ERR_PTR(ret);
2531 }
2532
2533 return failrec;
2534 }
2535
btrfs_check_repairable(struct inode * inode,bool needs_validation,struct io_failure_record * failrec,int failed_mirror)2536 static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
2537 struct io_failure_record *failrec,
2538 int failed_mirror)
2539 {
2540 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2541 int num_copies;
2542
2543 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2544 if (num_copies == 1) {
2545 /*
2546 * we only have a single copy of the data, so don't bother with
2547 * all the retry and error correction code that follows. no
2548 * matter what the error is, it is very likely to persist.
2549 */
2550 btrfs_debug(fs_info,
2551 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2552 num_copies, failrec->this_mirror, failed_mirror);
2553 return false;
2554 }
2555
2556 /*
2557 * there are two premises:
2558 * a) deliver good data to the caller
2559 * b) correct the bad sectors on disk
2560 */
2561 if (needs_validation) {
2562 /*
2563 * to fulfill b), we need to know the exact failing sectors, as
2564 * we don't want to rewrite any more than the failed ones. thus,
2565 * we need separate read requests for the failed bio
2566 *
2567 * if the following BUG_ON triggers, our validation request got
2568 * merged. we need separate requests for our algorithm to work.
2569 */
2570 BUG_ON(failrec->in_validation);
2571 failrec->in_validation = 1;
2572 failrec->this_mirror = failed_mirror;
2573 } else {
2574 /*
2575 * we're ready to fulfill a) and b) alongside. get a good copy
2576 * of the failed sector and if we succeed, we have setup
2577 * everything for repair_io_failure to do the rest for us.
2578 */
2579 if (failrec->in_validation) {
2580 BUG_ON(failrec->this_mirror != failed_mirror);
2581 failrec->in_validation = 0;
2582 failrec->this_mirror = 0;
2583 }
2584 failrec->failed_mirror = failed_mirror;
2585 failrec->this_mirror++;
2586 if (failrec->this_mirror == failed_mirror)
2587 failrec->this_mirror++;
2588 }
2589
2590 if (failrec->this_mirror > num_copies) {
2591 btrfs_debug(fs_info,
2592 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2593 num_copies, failrec->this_mirror, failed_mirror);
2594 return false;
2595 }
2596
2597 return true;
2598 }
2599
btrfs_io_needs_validation(struct inode * inode,struct bio * bio)2600 static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2601 {
2602 u64 len = 0;
2603 const u32 blocksize = inode->i_sb->s_blocksize;
2604
2605 /*
2606 * If bi_status is BLK_STS_OK, then this was a checksum error, not an
2607 * I/O error. In this case, we already know exactly which sector was
2608 * bad, so we don't need to validate.
2609 */
2610 if (bio->bi_status == BLK_STS_OK)
2611 return false;
2612
2613 /*
2614 * We need to validate each sector individually if the failed I/O was
2615 * for multiple sectors.
2616 *
2617 * There are a few possible bios that can end up here:
2618 * 1. A buffered read bio, which is not cloned.
2619 * 2. A direct I/O read bio, which is cloned.
2620 * 3. A (buffered or direct) repair bio, which is not cloned.
2621 *
2622 * For cloned bios (case 2), we can get the size from
2623 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
2624 * it from the bvecs.
2625 */
2626 if (bio_flagged(bio, BIO_CLONED)) {
2627 if (btrfs_io_bio(bio)->iter.bi_size > blocksize)
2628 return true;
2629 } else {
2630 struct bio_vec *bvec;
2631 int i;
2632
2633 bio_for_each_bvec_all(bvec, bio, i) {
2634 len += bvec->bv_len;
2635 if (len > blocksize)
2636 return true;
2637 }
2638 }
2639 return false;
2640 }
2641
btrfs_submit_read_repair(struct inode * inode,struct bio * failed_bio,u64 phy_offset,struct page * page,unsigned int pgoff,u64 start,u64 end,int failed_mirror,submit_bio_hook_t * submit_bio_hook)2642 blk_status_t btrfs_submit_read_repair(struct inode *inode,
2643 struct bio *failed_bio, u64 phy_offset,
2644 struct page *page, unsigned int pgoff,
2645 u64 start, u64 end, int failed_mirror,
2646 submit_bio_hook_t *submit_bio_hook)
2647 {
2648 struct io_failure_record *failrec;
2649 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2650 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2651 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2652 struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2653 const int icsum = phy_offset >> inode->i_sb->s_blocksize_bits;
2654 bool need_validation;
2655 struct bio *repair_bio;
2656 struct btrfs_io_bio *repair_io_bio;
2657 blk_status_t status;
2658
2659 btrfs_debug(fs_info,
2660 "repair read error: read error at %llu", start);
2661
2662 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2663
2664 failrec = btrfs_get_io_failure_record(inode, start, end);
2665 if (IS_ERR(failrec))
2666 return errno_to_blk_status(PTR_ERR(failrec));
2667
2668 need_validation = btrfs_io_needs_validation(inode, failed_bio);
2669
2670 if (!btrfs_check_repairable(inode, need_validation, failrec,
2671 failed_mirror)) {
2672 free_io_failure(failure_tree, tree, failrec);
2673 return BLK_STS_IOERR;
2674 }
2675
2676 repair_bio = btrfs_io_bio_alloc(1);
2677 repair_io_bio = btrfs_io_bio(repair_bio);
2678 repair_bio->bi_opf = REQ_OP_READ;
2679 if (need_validation)
2680 repair_bio->bi_opf |= REQ_FAILFAST_DEV;
2681 repair_bio->bi_end_io = failed_bio->bi_end_io;
2682 repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2683 repair_bio->bi_private = failed_bio->bi_private;
2684
2685 if (failed_io_bio->csum) {
2686 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2687
2688 repair_io_bio->csum = repair_io_bio->csum_inline;
2689 memcpy(repair_io_bio->csum,
2690 failed_io_bio->csum + csum_size * icsum, csum_size);
2691 }
2692
2693 bio_add_page(repair_bio, page, failrec->len, pgoff);
2694 repair_io_bio->logical = failrec->start;
2695 repair_io_bio->iter = repair_bio->bi_iter;
2696
2697 btrfs_debug(btrfs_sb(inode->i_sb),
2698 "repair read error: submitting new read to mirror %d, in_validation=%d",
2699 failrec->this_mirror, failrec->in_validation);
2700
2701 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2702 failrec->bio_flags);
2703 if (status) {
2704 free_io_failure(failure_tree, tree, failrec);
2705 bio_put(repair_bio);
2706 }
2707 return status;
2708 }
2709
2710 /* lots and lots of room for performance fixes in the end_bio funcs */
2711
end_extent_writepage(struct page * page,int err,u64 start,u64 end)2712 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2713 {
2714 int uptodate = (err == 0);
2715 int ret = 0;
2716
2717 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2718
2719 if (!uptodate) {
2720 ClearPageUptodate(page);
2721 SetPageError(page);
2722 ret = err < 0 ? err : -EIO;
2723 mapping_set_error(page->mapping, ret);
2724 }
2725 }
2726
2727 /*
2728 * after a writepage IO is done, we need to:
2729 * clear the uptodate bits on error
2730 * clear the writeback bits in the extent tree for this IO
2731 * end_page_writeback if the page has no more pending IO
2732 *
2733 * Scheduling is not allowed, so the extent state tree is expected
2734 * to have one and only one object corresponding to this IO.
2735 */
end_bio_extent_writepage(struct bio * bio)2736 static void end_bio_extent_writepage(struct bio *bio)
2737 {
2738 int error = blk_status_to_errno(bio->bi_status);
2739 struct bio_vec *bvec;
2740 u64 start;
2741 u64 end;
2742 struct bvec_iter_all iter_all;
2743
2744 ASSERT(!bio_flagged(bio, BIO_CLONED));
2745 bio_for_each_segment_all(bvec, bio, iter_all) {
2746 struct page *page = bvec->bv_page;
2747 struct inode *inode = page->mapping->host;
2748 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2749
2750 /* We always issue full-page reads, but if some block
2751 * in a page fails to read, blk_update_request() will
2752 * advance bv_offset and adjust bv_len to compensate.
2753 * Print a warning for nonzero offsets, and an error
2754 * if they don't add up to a full page. */
2755 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2756 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2757 btrfs_err(fs_info,
2758 "partial page write in btrfs with offset %u and length %u",
2759 bvec->bv_offset, bvec->bv_len);
2760 else
2761 btrfs_info(fs_info,
2762 "incomplete page write in btrfs with offset %u and length %u",
2763 bvec->bv_offset, bvec->bv_len);
2764 }
2765
2766 start = page_offset(page);
2767 end = start + bvec->bv_offset + bvec->bv_len - 1;
2768
2769 end_extent_writepage(page, error, start, end);
2770 end_page_writeback(page);
2771 }
2772
2773 bio_put(bio);
2774 }
2775
2776 static void
endio_readpage_release_extent(struct extent_io_tree * tree,u64 start,u64 len,int uptodate)2777 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2778 int uptodate)
2779 {
2780 struct extent_state *cached = NULL;
2781 u64 end = start + len - 1;
2782
2783 if (uptodate && tree->track_uptodate)
2784 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2785 unlock_extent_cached_atomic(tree, start, end, &cached);
2786 }
2787
2788 /*
2789 * after a readpage IO is done, we need to:
2790 * clear the uptodate bits on error
2791 * set the uptodate bits if things worked
2792 * set the page up to date if all extents in the tree are uptodate
2793 * clear the lock bit in the extent tree
2794 * unlock the page if there are no other extents locked for it
2795 *
2796 * Scheduling is not allowed, so the extent state tree is expected
2797 * to have one and only one object corresponding to this IO.
2798 */
end_bio_extent_readpage(struct bio * bio)2799 static void end_bio_extent_readpage(struct bio *bio)
2800 {
2801 struct bio_vec *bvec;
2802 int uptodate = !bio->bi_status;
2803 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2804 struct extent_io_tree *tree, *failure_tree;
2805 u64 offset = 0;
2806 u64 start;
2807 u64 end;
2808 u64 len;
2809 u64 extent_start = 0;
2810 u64 extent_len = 0;
2811 int mirror;
2812 int ret;
2813 struct bvec_iter_all iter_all;
2814
2815 ASSERT(!bio_flagged(bio, BIO_CLONED));
2816 bio_for_each_segment_all(bvec, bio, iter_all) {
2817 struct page *page = bvec->bv_page;
2818 struct inode *inode = page->mapping->host;
2819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2820
2821 btrfs_debug(fs_info,
2822 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2823 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2824 io_bio->mirror_num);
2825 tree = &BTRFS_I(inode)->io_tree;
2826 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2827
2828 /* We always issue full-page reads, but if some block
2829 * in a page fails to read, blk_update_request() will
2830 * advance bv_offset and adjust bv_len to compensate.
2831 * Print a warning for nonzero offsets, and an error
2832 * if they don't add up to a full page. */
2833 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2834 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2835 btrfs_err(fs_info,
2836 "partial page read in btrfs with offset %u and length %u",
2837 bvec->bv_offset, bvec->bv_len);
2838 else
2839 btrfs_info(fs_info,
2840 "incomplete page read in btrfs with offset %u and length %u",
2841 bvec->bv_offset, bvec->bv_len);
2842 }
2843
2844 start = page_offset(page);
2845 end = start + bvec->bv_offset + bvec->bv_len - 1;
2846 len = bvec->bv_len;
2847
2848 mirror = io_bio->mirror_num;
2849 if (likely(uptodate)) {
2850 if (is_data_inode(inode))
2851 ret = btrfs_verify_data_csum(io_bio, offset, page,
2852 start, end, mirror);
2853 else
2854 ret = btrfs_validate_metadata_buffer(io_bio,
2855 offset, page, start, end, mirror);
2856 if (ret)
2857 uptodate = 0;
2858 else
2859 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2860 failure_tree, tree, start,
2861 page,
2862 btrfs_ino(BTRFS_I(inode)), 0);
2863 }
2864
2865 if (likely(uptodate))
2866 goto readpage_ok;
2867
2868 if (is_data_inode(inode)) {
2869
2870 /*
2871 * The generic bio_readpage_error handles errors the
2872 * following way: If possible, new read requests are
2873 * created and submitted and will end up in
2874 * end_bio_extent_readpage as well (if we're lucky,
2875 * not in the !uptodate case). In that case it returns
2876 * 0 and we just go on with the next page in our bio.
2877 * If it can't handle the error it will return -EIO and
2878 * we remain responsible for that page.
2879 */
2880 if (!btrfs_submit_read_repair(inode, bio, offset, page,
2881 start - page_offset(page),
2882 start, end, mirror,
2883 btrfs_submit_data_bio)) {
2884 uptodate = !bio->bi_status;
2885 offset += len;
2886 continue;
2887 }
2888 } else {
2889 struct extent_buffer *eb;
2890
2891 eb = (struct extent_buffer *)page->private;
2892 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2893 eb->read_mirror = mirror;
2894 atomic_dec(&eb->io_pages);
2895 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2896 &eb->bflags))
2897 btree_readahead_hook(eb, -EIO);
2898 }
2899 readpage_ok:
2900 if (likely(uptodate)) {
2901 loff_t i_size = i_size_read(inode);
2902 pgoff_t end_index = i_size >> PAGE_SHIFT;
2903 unsigned off;
2904
2905 /* Zero out the end if this page straddles i_size */
2906 off = offset_in_page(i_size);
2907 if (page->index == end_index && off)
2908 zero_user_segment(page, off, PAGE_SIZE);
2909 SetPageUptodate(page);
2910 } else {
2911 ClearPageUptodate(page);
2912 SetPageError(page);
2913 }
2914 unlock_page(page);
2915 offset += len;
2916
2917 if (unlikely(!uptodate)) {
2918 if (extent_len) {
2919 endio_readpage_release_extent(tree,
2920 extent_start,
2921 extent_len, 1);
2922 extent_start = 0;
2923 extent_len = 0;
2924 }
2925 endio_readpage_release_extent(tree, start,
2926 end - start + 1, 0);
2927 } else if (!extent_len) {
2928 extent_start = start;
2929 extent_len = end + 1 - start;
2930 } else if (extent_start + extent_len == start) {
2931 extent_len += end + 1 - start;
2932 } else {
2933 endio_readpage_release_extent(tree, extent_start,
2934 extent_len, uptodate);
2935 extent_start = start;
2936 extent_len = end + 1 - start;
2937 }
2938 }
2939
2940 if (extent_len)
2941 endio_readpage_release_extent(tree, extent_start, extent_len,
2942 uptodate);
2943 btrfs_io_bio_free_csum(io_bio);
2944 bio_put(bio);
2945 }
2946
2947 /*
2948 * Initialize the members up to but not including 'bio'. Use after allocating a
2949 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2950 * 'bio' because use of __GFP_ZERO is not supported.
2951 */
btrfs_io_bio_init(struct btrfs_io_bio * btrfs_bio)2952 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2953 {
2954 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2955 }
2956
2957 /*
2958 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2959 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2960 * for the appropriate container_of magic
2961 */
btrfs_bio_alloc(u64 first_byte)2962 struct bio *btrfs_bio_alloc(u64 first_byte)
2963 {
2964 struct bio *bio;
2965
2966 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2967 bio->bi_iter.bi_sector = first_byte >> 9;
2968 btrfs_io_bio_init(btrfs_io_bio(bio));
2969 return bio;
2970 }
2971
btrfs_bio_clone(struct bio * bio)2972 struct bio *btrfs_bio_clone(struct bio *bio)
2973 {
2974 struct btrfs_io_bio *btrfs_bio;
2975 struct bio *new;
2976
2977 /* Bio allocation backed by a bioset does not fail */
2978 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2979 btrfs_bio = btrfs_io_bio(new);
2980 btrfs_io_bio_init(btrfs_bio);
2981 btrfs_bio->iter = bio->bi_iter;
2982 return new;
2983 }
2984
btrfs_io_bio_alloc(unsigned int nr_iovecs)2985 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2986 {
2987 struct bio *bio;
2988
2989 /* Bio allocation backed by a bioset does not fail */
2990 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2991 btrfs_io_bio_init(btrfs_io_bio(bio));
2992 return bio;
2993 }
2994
btrfs_bio_clone_partial(struct bio * orig,int offset,int size)2995 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2996 {
2997 struct bio *bio;
2998 struct btrfs_io_bio *btrfs_bio;
2999
3000 /* this will never fail when it's backed by a bioset */
3001 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3002 ASSERT(bio);
3003
3004 btrfs_bio = btrfs_io_bio(bio);
3005 btrfs_io_bio_init(btrfs_bio);
3006
3007 bio_trim(bio, offset >> 9, size >> 9);
3008 btrfs_bio->iter = bio->bi_iter;
3009 return bio;
3010 }
3011
3012 /*
3013 * @opf: bio REQ_OP_* and REQ_* flags as one value
3014 * @wbc: optional writeback control for io accounting
3015 * @page: page to add to the bio
3016 * @pg_offset: offset of the new bio or to check whether we are adding
3017 * a contiguous page to the previous one
3018 * @size: portion of page that we want to write
3019 * @offset: starting offset in the page
3020 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
3021 * @end_io_func: end_io callback for new bio
3022 * @mirror_num: desired mirror to read/write
3023 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3024 * @bio_flags: flags of the current bio to see if we can merge them
3025 */
submit_extent_page(unsigned int opf,struct writeback_control * wbc,struct page * page,u64 offset,size_t size,unsigned long pg_offset,struct bio ** bio_ret,bio_end_io_t end_io_func,int mirror_num,unsigned long prev_bio_flags,unsigned long bio_flags,bool force_bio_submit)3026 static int submit_extent_page(unsigned int opf,
3027 struct writeback_control *wbc,
3028 struct page *page, u64 offset,
3029 size_t size, unsigned long pg_offset,
3030 struct bio **bio_ret,
3031 bio_end_io_t end_io_func,
3032 int mirror_num,
3033 unsigned long prev_bio_flags,
3034 unsigned long bio_flags,
3035 bool force_bio_submit)
3036 {
3037 int ret = 0;
3038 struct bio *bio;
3039 size_t page_size = min_t(size_t, size, PAGE_SIZE);
3040 sector_t sector = offset >> 9;
3041 struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
3042
3043 ASSERT(bio_ret);
3044
3045 if (*bio_ret) {
3046 bool contig;
3047 bool can_merge = true;
3048
3049 bio = *bio_ret;
3050 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
3051 contig = bio->bi_iter.bi_sector == sector;
3052 else
3053 contig = bio_end_sector(bio) == sector;
3054
3055 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
3056 can_merge = false;
3057
3058 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
3059 force_bio_submit ||
3060 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
3061 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3062 if (ret < 0) {
3063 *bio_ret = NULL;
3064 return ret;
3065 }
3066 bio = NULL;
3067 } else {
3068 if (wbc)
3069 wbc_account_cgroup_owner(wbc, page, page_size);
3070 return 0;
3071 }
3072 }
3073
3074 bio = btrfs_bio_alloc(offset);
3075 bio_add_page(bio, page, page_size, pg_offset);
3076 bio->bi_end_io = end_io_func;
3077 bio->bi_private = tree;
3078 bio->bi_write_hint = page->mapping->host->i_write_hint;
3079 bio->bi_opf = opf;
3080 if (wbc) {
3081 struct block_device *bdev;
3082
3083 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3084 bio_set_dev(bio, bdev);
3085 wbc_init_bio(wbc, bio);
3086 wbc_account_cgroup_owner(wbc, page, page_size);
3087 }
3088
3089 *bio_ret = bio;
3090
3091 return ret;
3092 }
3093
attach_extent_buffer_page(struct extent_buffer * eb,struct page * page)3094 static void attach_extent_buffer_page(struct extent_buffer *eb,
3095 struct page *page)
3096 {
3097 if (!PagePrivate(page))
3098 attach_page_private(page, eb);
3099 else
3100 WARN_ON(page->private != (unsigned long)eb);
3101 }
3102
set_page_extent_mapped(struct page * page)3103 void set_page_extent_mapped(struct page *page)
3104 {
3105 if (!PagePrivate(page))
3106 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3107 }
3108
3109 static struct extent_map *
__get_extent_map(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,struct extent_map ** em_cached)3110 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3111 u64 start, u64 len, struct extent_map **em_cached)
3112 {
3113 struct extent_map *em;
3114
3115 if (em_cached && *em_cached) {
3116 em = *em_cached;
3117 if (extent_map_in_tree(em) && start >= em->start &&
3118 start < extent_map_end(em)) {
3119 refcount_inc(&em->refs);
3120 return em;
3121 }
3122
3123 free_extent_map(em);
3124 *em_cached = NULL;
3125 }
3126
3127 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3128 if (em_cached && !IS_ERR_OR_NULL(em)) {
3129 BUG_ON(*em_cached);
3130 refcount_inc(&em->refs);
3131 *em_cached = em;
3132 }
3133 return em;
3134 }
3135 /*
3136 * basic readpage implementation. Locked extent state structs are inserted
3137 * into the tree that are removed when the IO is done (by the end_io
3138 * handlers)
3139 * XXX JDM: This needs looking at to ensure proper page locking
3140 * return 0 on success, otherwise return error
3141 */
btrfs_do_readpage(struct page * page,struct extent_map ** em_cached,struct bio ** bio,unsigned long * bio_flags,unsigned int read_flags,u64 * prev_em_start)3142 int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3143 struct bio **bio, unsigned long *bio_flags,
3144 unsigned int read_flags, u64 *prev_em_start)
3145 {
3146 struct inode *inode = page->mapping->host;
3147 u64 start = page_offset(page);
3148 const u64 end = start + PAGE_SIZE - 1;
3149 u64 cur = start;
3150 u64 extent_offset;
3151 u64 last_byte = i_size_read(inode);
3152 u64 block_start;
3153 u64 cur_end;
3154 struct extent_map *em;
3155 int ret = 0;
3156 int nr = 0;
3157 size_t pg_offset = 0;
3158 size_t iosize;
3159 size_t disk_io_size;
3160 size_t blocksize = inode->i_sb->s_blocksize;
3161 unsigned long this_bio_flag = 0;
3162 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3163
3164 set_page_extent_mapped(page);
3165
3166 if (!PageUptodate(page)) {
3167 if (cleancache_get_page(page) == 0) {
3168 BUG_ON(blocksize != PAGE_SIZE);
3169 unlock_extent(tree, start, end);
3170 goto out;
3171 }
3172 }
3173
3174 if (page->index == last_byte >> PAGE_SHIFT) {
3175 char *userpage;
3176 size_t zero_offset = offset_in_page(last_byte);
3177
3178 if (zero_offset) {
3179 iosize = PAGE_SIZE - zero_offset;
3180 userpage = kmap_atomic(page);
3181 memset(userpage + zero_offset, 0, iosize);
3182 flush_dcache_page(page);
3183 kunmap_atomic(userpage);
3184 }
3185 }
3186 while (cur <= end) {
3187 bool force_bio_submit = false;
3188 u64 offset;
3189
3190 if (cur >= last_byte) {
3191 char *userpage;
3192 struct extent_state *cached = NULL;
3193
3194 iosize = PAGE_SIZE - pg_offset;
3195 userpage = kmap_atomic(page);
3196 memset(userpage + pg_offset, 0, iosize);
3197 flush_dcache_page(page);
3198 kunmap_atomic(userpage);
3199 set_extent_uptodate(tree, cur, cur + iosize - 1,
3200 &cached, GFP_NOFS);
3201 unlock_extent_cached(tree, cur,
3202 cur + iosize - 1, &cached);
3203 break;
3204 }
3205 em = __get_extent_map(inode, page, pg_offset, cur,
3206 end - cur + 1, em_cached);
3207 if (IS_ERR_OR_NULL(em)) {
3208 SetPageError(page);
3209 unlock_extent(tree, cur, end);
3210 break;
3211 }
3212 extent_offset = cur - em->start;
3213 BUG_ON(extent_map_end(em) <= cur);
3214 BUG_ON(end < cur);
3215
3216 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3217 this_bio_flag |= EXTENT_BIO_COMPRESSED;
3218 extent_set_compress_type(&this_bio_flag,
3219 em->compress_type);
3220 }
3221
3222 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3223 cur_end = min(extent_map_end(em) - 1, end);
3224 iosize = ALIGN(iosize, blocksize);
3225 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3226 disk_io_size = em->block_len;
3227 offset = em->block_start;
3228 } else {
3229 offset = em->block_start + extent_offset;
3230 disk_io_size = iosize;
3231 }
3232 block_start = em->block_start;
3233 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3234 block_start = EXTENT_MAP_HOLE;
3235
3236 /*
3237 * If we have a file range that points to a compressed extent
3238 * and it's followed by a consecutive file range that points
3239 * to the same compressed extent (possibly with a different
3240 * offset and/or length, so it either points to the whole extent
3241 * or only part of it), we must make sure we do not submit a
3242 * single bio to populate the pages for the 2 ranges because
3243 * this makes the compressed extent read zero out the pages
3244 * belonging to the 2nd range. Imagine the following scenario:
3245 *
3246 * File layout
3247 * [0 - 8K] [8K - 24K]
3248 * | |
3249 * | |
3250 * points to extent X, points to extent X,
3251 * offset 4K, length of 8K offset 0, length 16K
3252 *
3253 * [extent X, compressed length = 4K uncompressed length = 16K]
3254 *
3255 * If the bio to read the compressed extent covers both ranges,
3256 * it will decompress extent X into the pages belonging to the
3257 * first range and then it will stop, zeroing out the remaining
3258 * pages that belong to the other range that points to extent X.
3259 * So here we make sure we submit 2 bios, one for the first
3260 * range and another one for the third range. Both will target
3261 * the same physical extent from disk, but we can't currently
3262 * make the compressed bio endio callback populate the pages
3263 * for both ranges because each compressed bio is tightly
3264 * coupled with a single extent map, and each range can have
3265 * an extent map with a different offset value relative to the
3266 * uncompressed data of our extent and different lengths. This
3267 * is a corner case so we prioritize correctness over
3268 * non-optimal behavior (submitting 2 bios for the same extent).
3269 */
3270 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3271 prev_em_start && *prev_em_start != (u64)-1 &&
3272 *prev_em_start != em->start)
3273 force_bio_submit = true;
3274
3275 if (prev_em_start)
3276 *prev_em_start = em->start;
3277
3278 free_extent_map(em);
3279 em = NULL;
3280
3281 /* we've found a hole, just zero and go on */
3282 if (block_start == EXTENT_MAP_HOLE) {
3283 char *userpage;
3284 struct extent_state *cached = NULL;
3285
3286 userpage = kmap_atomic(page);
3287 memset(userpage + pg_offset, 0, iosize);
3288 flush_dcache_page(page);
3289 kunmap_atomic(userpage);
3290
3291 set_extent_uptodate(tree, cur, cur + iosize - 1,
3292 &cached, GFP_NOFS);
3293 unlock_extent_cached(tree, cur,
3294 cur + iosize - 1, &cached);
3295 cur = cur + iosize;
3296 pg_offset += iosize;
3297 continue;
3298 }
3299 /* the get_extent function already copied into the page */
3300 if (test_range_bit(tree, cur, cur_end,
3301 EXTENT_UPTODATE, 1, NULL)) {
3302 check_page_uptodate(tree, page);
3303 unlock_extent(tree, cur, cur + iosize - 1);
3304 cur = cur + iosize;
3305 pg_offset += iosize;
3306 continue;
3307 }
3308 /* we have an inline extent but it didn't get marked up
3309 * to date. Error out
3310 */
3311 if (block_start == EXTENT_MAP_INLINE) {
3312 SetPageError(page);
3313 unlock_extent(tree, cur, cur + iosize - 1);
3314 cur = cur + iosize;
3315 pg_offset += iosize;
3316 continue;
3317 }
3318
3319 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3320 page, offset, disk_io_size,
3321 pg_offset, bio,
3322 end_bio_extent_readpage, 0,
3323 *bio_flags,
3324 this_bio_flag,
3325 force_bio_submit);
3326 if (!ret) {
3327 nr++;
3328 *bio_flags = this_bio_flag;
3329 } else {
3330 SetPageError(page);
3331 unlock_extent(tree, cur, cur + iosize - 1);
3332 goto out;
3333 }
3334 cur = cur + iosize;
3335 pg_offset += iosize;
3336 }
3337 out:
3338 if (!nr) {
3339 if (!PageError(page))
3340 SetPageUptodate(page);
3341 unlock_page(page);
3342 }
3343 return ret;
3344 }
3345
contiguous_readpages(struct page * pages[],int nr_pages,u64 start,u64 end,struct extent_map ** em_cached,struct bio ** bio,unsigned long * bio_flags,u64 * prev_em_start)3346 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3347 u64 start, u64 end,
3348 struct extent_map **em_cached,
3349 struct bio **bio,
3350 unsigned long *bio_flags,
3351 u64 *prev_em_start)
3352 {
3353 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3354 int index;
3355
3356 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3357
3358 for (index = 0; index < nr_pages; index++) {
3359 btrfs_do_readpage(pages[index], em_cached, bio, bio_flags,
3360 REQ_RAHEAD, prev_em_start);
3361 put_page(pages[index]);
3362 }
3363 }
3364
update_nr_written(struct writeback_control * wbc,unsigned long nr_written)3365 static void update_nr_written(struct writeback_control *wbc,
3366 unsigned long nr_written)
3367 {
3368 wbc->nr_to_write -= nr_written;
3369 }
3370
3371 /*
3372 * helper for __extent_writepage, doing all of the delayed allocation setup.
3373 *
3374 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3375 * to write the page (copy into inline extent). In this case the IO has
3376 * been started and the page is already unlocked.
3377 *
3378 * This returns 0 if all went well (page still locked)
3379 * This returns < 0 if there were errors (page still locked)
3380 */
writepage_delalloc(struct btrfs_inode * inode,struct page * page,struct writeback_control * wbc,u64 delalloc_start,unsigned long * nr_written)3381 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3382 struct page *page, struct writeback_control *wbc,
3383 u64 delalloc_start, unsigned long *nr_written)
3384 {
3385 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3386 bool found;
3387 u64 delalloc_to_write = 0;
3388 u64 delalloc_end = 0;
3389 int ret;
3390 int page_started = 0;
3391
3392
3393 while (delalloc_end < page_end) {
3394 found = find_lock_delalloc_range(&inode->vfs_inode, page,
3395 &delalloc_start,
3396 &delalloc_end);
3397 if (!found) {
3398 delalloc_start = delalloc_end + 1;
3399 continue;
3400 }
3401 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3402 delalloc_end, &page_started, nr_written, wbc);
3403 if (ret) {
3404 SetPageError(page);
3405 /*
3406 * btrfs_run_delalloc_range should return < 0 for error
3407 * but just in case, we use > 0 here meaning the IO is
3408 * started, so we don't want to return > 0 unless
3409 * things are going well.
3410 */
3411 return ret < 0 ? ret : -EIO;
3412 }
3413 /*
3414 * delalloc_end is already one less than the total length, so
3415 * we don't subtract one from PAGE_SIZE
3416 */
3417 delalloc_to_write += (delalloc_end - delalloc_start +
3418 PAGE_SIZE) >> PAGE_SHIFT;
3419 delalloc_start = delalloc_end + 1;
3420 }
3421 if (wbc->nr_to_write < delalloc_to_write) {
3422 int thresh = 8192;
3423
3424 if (delalloc_to_write < thresh * 2)
3425 thresh = delalloc_to_write;
3426 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3427 thresh);
3428 }
3429
3430 /* did the fill delalloc function already unlock and start
3431 * the IO?
3432 */
3433 if (page_started) {
3434 /*
3435 * we've unlocked the page, so we can't update
3436 * the mapping's writeback index, just update
3437 * nr_to_write.
3438 */
3439 wbc->nr_to_write -= *nr_written;
3440 return 1;
3441 }
3442
3443 return 0;
3444 }
3445
3446 /*
3447 * helper for __extent_writepage. This calls the writepage start hooks,
3448 * and does the loop to map the page into extents and bios.
3449 *
3450 * We return 1 if the IO is started and the page is unlocked,
3451 * 0 if all went well (page still locked)
3452 * < 0 if there were errors (page still locked)
3453 */
__extent_writepage_io(struct btrfs_inode * inode,struct page * page,struct writeback_control * wbc,struct extent_page_data * epd,loff_t i_size,unsigned long nr_written,int * nr_ret)3454 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3455 struct page *page,
3456 struct writeback_control *wbc,
3457 struct extent_page_data *epd,
3458 loff_t i_size,
3459 unsigned long nr_written,
3460 int *nr_ret)
3461 {
3462 struct extent_io_tree *tree = &inode->io_tree;
3463 u64 start = page_offset(page);
3464 u64 page_end = start + PAGE_SIZE - 1;
3465 u64 end;
3466 u64 cur = start;
3467 u64 extent_offset;
3468 u64 block_start;
3469 u64 iosize;
3470 struct extent_map *em;
3471 size_t pg_offset = 0;
3472 size_t blocksize;
3473 int ret = 0;
3474 int nr = 0;
3475 const unsigned int write_flags = wbc_to_write_flags(wbc);
3476 bool compressed;
3477
3478 ret = btrfs_writepage_cow_fixup(page, start, page_end);
3479 if (ret) {
3480 /* Fixup worker will requeue */
3481 redirty_page_for_writepage(wbc, page);
3482 update_nr_written(wbc, nr_written);
3483 unlock_page(page);
3484 return 1;
3485 }
3486
3487 /*
3488 * we don't want to touch the inode after unlocking the page,
3489 * so we update the mapping writeback index now
3490 */
3491 update_nr_written(wbc, nr_written + 1);
3492
3493 end = page_end;
3494 blocksize = inode->vfs_inode.i_sb->s_blocksize;
3495
3496 while (cur <= end) {
3497 u64 em_end;
3498 u64 offset;
3499
3500 if (cur >= i_size) {
3501 btrfs_writepage_endio_finish_ordered(page, cur,
3502 page_end, 1);
3503 break;
3504 }
3505 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3506 if (IS_ERR_OR_NULL(em)) {
3507 SetPageError(page);
3508 ret = PTR_ERR_OR_ZERO(em);
3509 break;
3510 }
3511
3512 extent_offset = cur - em->start;
3513 em_end = extent_map_end(em);
3514 BUG_ON(em_end <= cur);
3515 BUG_ON(end < cur);
3516 iosize = min(em_end - cur, end - cur + 1);
3517 iosize = ALIGN(iosize, blocksize);
3518 offset = em->block_start + extent_offset;
3519 block_start = em->block_start;
3520 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3521 free_extent_map(em);
3522 em = NULL;
3523
3524 /*
3525 * compressed and inline extents are written through other
3526 * paths in the FS
3527 */
3528 if (compressed || block_start == EXTENT_MAP_HOLE ||
3529 block_start == EXTENT_MAP_INLINE) {
3530 if (compressed)
3531 nr++;
3532 else
3533 btrfs_writepage_endio_finish_ordered(page, cur,
3534 cur + iosize - 1, 1);
3535 cur += iosize;
3536 pg_offset += iosize;
3537 continue;
3538 }
3539
3540 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3541 if (!PageWriteback(page)) {
3542 btrfs_err(inode->root->fs_info,
3543 "page %lu not writeback, cur %llu end %llu",
3544 page->index, cur, end);
3545 }
3546
3547 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3548 page, offset, iosize, pg_offset,
3549 &epd->bio,
3550 end_bio_extent_writepage,
3551 0, 0, 0, false);
3552 if (ret) {
3553 SetPageError(page);
3554 if (PageWriteback(page))
3555 end_page_writeback(page);
3556 }
3557
3558 cur = cur + iosize;
3559 pg_offset += iosize;
3560 nr++;
3561 }
3562 *nr_ret = nr;
3563 return ret;
3564 }
3565
3566 /*
3567 * the writepage semantics are similar to regular writepage. extent
3568 * records are inserted to lock ranges in the tree, and as dirty areas
3569 * are found, they are marked writeback. Then the lock bits are removed
3570 * and the end_io handler clears the writeback ranges
3571 *
3572 * Return 0 if everything goes well.
3573 * Return <0 for error.
3574 */
__extent_writepage(struct page * page,struct writeback_control * wbc,struct extent_page_data * epd)3575 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3576 struct extent_page_data *epd)
3577 {
3578 struct inode *inode = page->mapping->host;
3579 u64 start = page_offset(page);
3580 u64 page_end = start + PAGE_SIZE - 1;
3581 int ret;
3582 int nr = 0;
3583 size_t pg_offset;
3584 loff_t i_size = i_size_read(inode);
3585 unsigned long end_index = i_size >> PAGE_SHIFT;
3586 unsigned long nr_written = 0;
3587
3588 trace___extent_writepage(page, inode, wbc);
3589
3590 WARN_ON(!PageLocked(page));
3591
3592 ClearPageError(page);
3593
3594 pg_offset = offset_in_page(i_size);
3595 if (page->index > end_index ||
3596 (page->index == end_index && !pg_offset)) {
3597 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3598 unlock_page(page);
3599 return 0;
3600 }
3601
3602 if (page->index == end_index) {
3603 char *userpage;
3604
3605 userpage = kmap_atomic(page);
3606 memset(userpage + pg_offset, 0,
3607 PAGE_SIZE - pg_offset);
3608 kunmap_atomic(userpage);
3609 flush_dcache_page(page);
3610 }
3611
3612 set_page_extent_mapped(page);
3613
3614 if (!epd->extent_locked) {
3615 ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
3616 &nr_written);
3617 if (ret == 1)
3618 return 0;
3619 if (ret)
3620 goto done;
3621 }
3622
3623 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
3624 nr_written, &nr);
3625 if (ret == 1)
3626 return 0;
3627
3628 done:
3629 if (nr == 0) {
3630 /* make sure the mapping tag for page dirty gets cleared */
3631 set_page_writeback(page);
3632 end_page_writeback(page);
3633 }
3634 if (PageError(page)) {
3635 ret = ret < 0 ? ret : -EIO;
3636 end_extent_writepage(page, ret, start, page_end);
3637 }
3638 unlock_page(page);
3639 ASSERT(ret <= 0);
3640 return ret;
3641 }
3642
wait_on_extent_buffer_writeback(struct extent_buffer * eb)3643 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3644 {
3645 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3646 TASK_UNINTERRUPTIBLE);
3647 }
3648
end_extent_buffer_writeback(struct extent_buffer * eb)3649 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3650 {
3651 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3652 smp_mb__after_atomic();
3653 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3654 }
3655
3656 /*
3657 * Lock eb pages and flush the bio if we can't the locks
3658 *
3659 * Return 0 if nothing went wrong
3660 * Return >0 is same as 0, except bio is not submitted
3661 * Return <0 if something went wrong, no page is locked
3662 */
lock_extent_buffer_for_io(struct extent_buffer * eb,struct extent_page_data * epd)3663 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3664 struct extent_page_data *epd)
3665 {
3666 struct btrfs_fs_info *fs_info = eb->fs_info;
3667 int i, num_pages, failed_page_nr;
3668 int flush = 0;
3669 int ret = 0;
3670
3671 if (!btrfs_try_tree_write_lock(eb)) {
3672 ret = flush_write_bio(epd);
3673 if (ret < 0)
3674 return ret;
3675 flush = 1;
3676 btrfs_tree_lock(eb);
3677 }
3678
3679 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3680 btrfs_tree_unlock(eb);
3681 if (!epd->sync_io)
3682 return 0;
3683 if (!flush) {
3684 ret = flush_write_bio(epd);
3685 if (ret < 0)
3686 return ret;
3687 flush = 1;
3688 }
3689 while (1) {
3690 wait_on_extent_buffer_writeback(eb);
3691 btrfs_tree_lock(eb);
3692 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3693 break;
3694 btrfs_tree_unlock(eb);
3695 }
3696 }
3697
3698 /*
3699 * We need to do this to prevent races in people who check if the eb is
3700 * under IO since we can end up having no IO bits set for a short period
3701 * of time.
3702 */
3703 spin_lock(&eb->refs_lock);
3704 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3705 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3706 spin_unlock(&eb->refs_lock);
3707 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3708 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3709 -eb->len,
3710 fs_info->dirty_metadata_batch);
3711 ret = 1;
3712 } else {
3713 spin_unlock(&eb->refs_lock);
3714 }
3715
3716 btrfs_tree_unlock(eb);
3717
3718 if (!ret)
3719 return ret;
3720
3721 num_pages = num_extent_pages(eb);
3722 for (i = 0; i < num_pages; i++) {
3723 struct page *p = eb->pages[i];
3724
3725 if (!trylock_page(p)) {
3726 if (!flush) {
3727 int err;
3728
3729 err = flush_write_bio(epd);
3730 if (err < 0) {
3731 ret = err;
3732 failed_page_nr = i;
3733 goto err_unlock;
3734 }
3735 flush = 1;
3736 }
3737 lock_page(p);
3738 }
3739 }
3740
3741 return ret;
3742 err_unlock:
3743 /* Unlock already locked pages */
3744 for (i = 0; i < failed_page_nr; i++)
3745 unlock_page(eb->pages[i]);
3746 /*
3747 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3748 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3749 * be made and undo everything done before.
3750 */
3751 btrfs_tree_lock(eb);
3752 spin_lock(&eb->refs_lock);
3753 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3754 end_extent_buffer_writeback(eb);
3755 spin_unlock(&eb->refs_lock);
3756 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3757 fs_info->dirty_metadata_batch);
3758 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3759 btrfs_tree_unlock(eb);
3760 return ret;
3761 }
3762
set_btree_ioerr(struct page * page)3763 static void set_btree_ioerr(struct page *page)
3764 {
3765 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3766 struct btrfs_fs_info *fs_info;
3767
3768 SetPageError(page);
3769 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3770 return;
3771
3772 /*
3773 * A read may stumble upon this buffer later, make sure that it gets an
3774 * error and knows there was an error.
3775 */
3776 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3777
3778 /*
3779 * If we error out, we should add back the dirty_metadata_bytes
3780 * to make it consistent.
3781 */
3782 fs_info = eb->fs_info;
3783 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3784 eb->len, fs_info->dirty_metadata_batch);
3785
3786 /*
3787 * If writeback for a btree extent that doesn't belong to a log tree
3788 * failed, increment the counter transaction->eb_write_errors.
3789 * We do this because while the transaction is running and before it's
3790 * committing (when we call filemap_fdata[write|wait]_range against
3791 * the btree inode), we might have
3792 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3793 * returns an error or an error happens during writeback, when we're
3794 * committing the transaction we wouldn't know about it, since the pages
3795 * can be no longer dirty nor marked anymore for writeback (if a
3796 * subsequent modification to the extent buffer didn't happen before the
3797 * transaction commit), which makes filemap_fdata[write|wait]_range not
3798 * able to find the pages tagged with SetPageError at transaction
3799 * commit time. So if this happens we must abort the transaction,
3800 * otherwise we commit a super block with btree roots that point to
3801 * btree nodes/leafs whose content on disk is invalid - either garbage
3802 * or the content of some node/leaf from a past generation that got
3803 * cowed or deleted and is no longer valid.
3804 *
3805 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3806 * not be enough - we need to distinguish between log tree extents vs
3807 * non-log tree extents, and the next filemap_fdatawait_range() call
3808 * will catch and clear such errors in the mapping - and that call might
3809 * be from a log sync and not from a transaction commit. Also, checking
3810 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3811 * not done and would not be reliable - the eb might have been released
3812 * from memory and reading it back again means that flag would not be
3813 * set (since it's a runtime flag, not persisted on disk).
3814 *
3815 * Using the flags below in the btree inode also makes us achieve the
3816 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3817 * writeback for all dirty pages and before filemap_fdatawait_range()
3818 * is called, the writeback for all dirty pages had already finished
3819 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3820 * filemap_fdatawait_range() would return success, as it could not know
3821 * that writeback errors happened (the pages were no longer tagged for
3822 * writeback).
3823 */
3824 switch (eb->log_index) {
3825 case -1:
3826 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3827 break;
3828 case 0:
3829 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3830 break;
3831 case 1:
3832 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3833 break;
3834 default:
3835 BUG(); /* unexpected, logic error */
3836 }
3837 }
3838
end_bio_extent_buffer_writepage(struct bio * bio)3839 static void end_bio_extent_buffer_writepage(struct bio *bio)
3840 {
3841 struct bio_vec *bvec;
3842 struct extent_buffer *eb;
3843 int done;
3844 struct bvec_iter_all iter_all;
3845
3846 ASSERT(!bio_flagged(bio, BIO_CLONED));
3847 bio_for_each_segment_all(bvec, bio, iter_all) {
3848 struct page *page = bvec->bv_page;
3849
3850 eb = (struct extent_buffer *)page->private;
3851 BUG_ON(!eb);
3852 done = atomic_dec_and_test(&eb->io_pages);
3853
3854 if (bio->bi_status ||
3855 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3856 ClearPageUptodate(page);
3857 set_btree_ioerr(page);
3858 }
3859
3860 end_page_writeback(page);
3861
3862 if (!done)
3863 continue;
3864
3865 end_extent_buffer_writeback(eb);
3866 }
3867
3868 bio_put(bio);
3869 }
3870
write_one_eb(struct extent_buffer * eb,struct writeback_control * wbc,struct extent_page_data * epd)3871 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3872 struct writeback_control *wbc,
3873 struct extent_page_data *epd)
3874 {
3875 u64 offset = eb->start;
3876 u32 nritems;
3877 int i, num_pages;
3878 unsigned long start, end;
3879 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3880 int ret = 0;
3881
3882 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3883 num_pages = num_extent_pages(eb);
3884 atomic_set(&eb->io_pages, num_pages);
3885
3886 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3887 nritems = btrfs_header_nritems(eb);
3888 if (btrfs_header_level(eb) > 0) {
3889 end = btrfs_node_key_ptr_offset(nritems);
3890
3891 memzero_extent_buffer(eb, end, eb->len - end);
3892 } else {
3893 /*
3894 * leaf:
3895 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3896 */
3897 start = btrfs_item_nr_offset(nritems);
3898 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3899 memzero_extent_buffer(eb, start, end - start);
3900 }
3901
3902 for (i = 0; i < num_pages; i++) {
3903 struct page *p = eb->pages[i];
3904
3905 clear_page_dirty_for_io(p);
3906 set_page_writeback(p);
3907 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3908 p, offset, PAGE_SIZE, 0,
3909 &epd->bio,
3910 end_bio_extent_buffer_writepage,
3911 0, 0, 0, false);
3912 if (ret) {
3913 set_btree_ioerr(p);
3914 if (PageWriteback(p))
3915 end_page_writeback(p);
3916 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3917 end_extent_buffer_writeback(eb);
3918 ret = -EIO;
3919 break;
3920 }
3921 offset += PAGE_SIZE;
3922 update_nr_written(wbc, 1);
3923 unlock_page(p);
3924 }
3925
3926 if (unlikely(ret)) {
3927 for (; i < num_pages; i++) {
3928 struct page *p = eb->pages[i];
3929 clear_page_dirty_for_io(p);
3930 unlock_page(p);
3931 }
3932 }
3933
3934 return ret;
3935 }
3936
btree_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc)3937 int btree_write_cache_pages(struct address_space *mapping,
3938 struct writeback_control *wbc)
3939 {
3940 struct extent_buffer *eb, *prev_eb = NULL;
3941 struct extent_page_data epd = {
3942 .bio = NULL,
3943 .extent_locked = 0,
3944 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3945 };
3946 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3947 int ret = 0;
3948 int done = 0;
3949 int nr_to_write_done = 0;
3950 struct pagevec pvec;
3951 int nr_pages;
3952 pgoff_t index;
3953 pgoff_t end; /* Inclusive */
3954 int scanned = 0;
3955 xa_mark_t tag;
3956
3957 pagevec_init(&pvec);
3958 if (wbc->range_cyclic) {
3959 index = mapping->writeback_index; /* Start from prev offset */
3960 end = -1;
3961 /*
3962 * Start from the beginning does not need to cycle over the
3963 * range, mark it as scanned.
3964 */
3965 scanned = (index == 0);
3966 } else {
3967 index = wbc->range_start >> PAGE_SHIFT;
3968 end = wbc->range_end >> PAGE_SHIFT;
3969 scanned = 1;
3970 }
3971 if (wbc->sync_mode == WB_SYNC_ALL)
3972 tag = PAGECACHE_TAG_TOWRITE;
3973 else
3974 tag = PAGECACHE_TAG_DIRTY;
3975 retry:
3976 if (wbc->sync_mode == WB_SYNC_ALL)
3977 tag_pages_for_writeback(mapping, index, end);
3978 while (!done && !nr_to_write_done && (index <= end) &&
3979 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3980 tag))) {
3981 unsigned i;
3982
3983 for (i = 0; i < nr_pages; i++) {
3984 struct page *page = pvec.pages[i];
3985
3986 if (!PagePrivate(page))
3987 continue;
3988
3989 spin_lock(&mapping->private_lock);
3990 if (!PagePrivate(page)) {
3991 spin_unlock(&mapping->private_lock);
3992 continue;
3993 }
3994
3995 eb = (struct extent_buffer *)page->private;
3996
3997 /*
3998 * Shouldn't happen and normally this would be a BUG_ON
3999 * but no sense in crashing the users box for something
4000 * we can survive anyway.
4001 */
4002 if (WARN_ON(!eb)) {
4003 spin_unlock(&mapping->private_lock);
4004 continue;
4005 }
4006
4007 if (eb == prev_eb) {
4008 spin_unlock(&mapping->private_lock);
4009 continue;
4010 }
4011
4012 ret = atomic_inc_not_zero(&eb->refs);
4013 spin_unlock(&mapping->private_lock);
4014 if (!ret)
4015 continue;
4016
4017 prev_eb = eb;
4018 ret = lock_extent_buffer_for_io(eb, &epd);
4019 if (!ret) {
4020 free_extent_buffer(eb);
4021 continue;
4022 } else if (ret < 0) {
4023 done = 1;
4024 free_extent_buffer(eb);
4025 break;
4026 }
4027
4028 ret = write_one_eb(eb, wbc, &epd);
4029 if (ret) {
4030 done = 1;
4031 free_extent_buffer(eb);
4032 break;
4033 }
4034 free_extent_buffer(eb);
4035
4036 /*
4037 * The filesystem may choose to bump up nr_to_write.
4038 * We have to make sure to honor the new nr_to_write
4039 * at any time.
4040 */
4041 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
4042 wbc->nr_to_write <= 0);
4043 }
4044 pagevec_release(&pvec);
4045 cond_resched();
4046 }
4047 if (!scanned && !done) {
4048 /*
4049 * We hit the last page and there is more work to be done: wrap
4050 * back to the start of the file
4051 */
4052 scanned = 1;
4053 index = 0;
4054 goto retry;
4055 }
4056 ASSERT(ret <= 0);
4057 if (ret < 0) {
4058 end_write_bio(&epd, ret);
4059 return ret;
4060 }
4061 /*
4062 * If something went wrong, don't allow any metadata write bio to be
4063 * submitted.
4064 *
4065 * This would prevent use-after-free if we had dirty pages not
4066 * cleaned up, which can still happen by fuzzed images.
4067 *
4068 * - Bad extent tree
4069 * Allowing existing tree block to be allocated for other trees.
4070 *
4071 * - Log tree operations
4072 * Exiting tree blocks get allocated to log tree, bumps its
4073 * generation, then get cleaned in tree re-balance.
4074 * Such tree block will not be written back, since it's clean,
4075 * thus no WRITTEN flag set.
4076 * And after log writes back, this tree block is not traced by
4077 * any dirty extent_io_tree.
4078 *
4079 * - Offending tree block gets re-dirtied from its original owner
4080 * Since it has bumped generation, no WRITTEN flag, it can be
4081 * reused without COWing. This tree block will not be traced
4082 * by btrfs_transaction::dirty_pages.
4083 *
4084 * Now such dirty tree block will not be cleaned by any dirty
4085 * extent io tree. Thus we don't want to submit such wild eb
4086 * if the fs already has error.
4087 */
4088 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4089 ret = flush_write_bio(&epd);
4090 } else {
4091 ret = -EROFS;
4092 end_write_bio(&epd, ret);
4093 }
4094 return ret;
4095 }
4096
4097 /**
4098 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4099 * @mapping: address space structure to write
4100 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4101 * @data: data passed to __extent_writepage function
4102 *
4103 * If a page is already under I/O, write_cache_pages() skips it, even
4104 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4105 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4106 * and msync() need to guarantee that all the data which was dirty at the time
4107 * the call was made get new I/O started against them. If wbc->sync_mode is
4108 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4109 * existing IO to complete.
4110 */
extent_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,struct extent_page_data * epd)4111 static int extent_write_cache_pages(struct address_space *mapping,
4112 struct writeback_control *wbc,
4113 struct extent_page_data *epd)
4114 {
4115 struct inode *inode = mapping->host;
4116 int ret = 0;
4117 int done = 0;
4118 int nr_to_write_done = 0;
4119 struct pagevec pvec;
4120 int nr_pages;
4121 pgoff_t index;
4122 pgoff_t end; /* Inclusive */
4123 pgoff_t done_index;
4124 int range_whole = 0;
4125 int scanned = 0;
4126 xa_mark_t tag;
4127
4128 /*
4129 * We have to hold onto the inode so that ordered extents can do their
4130 * work when the IO finishes. The alternative to this is failing to add
4131 * an ordered extent if the igrab() fails there and that is a huge pain
4132 * to deal with, so instead just hold onto the inode throughout the
4133 * writepages operation. If it fails here we are freeing up the inode
4134 * anyway and we'd rather not waste our time writing out stuff that is
4135 * going to be truncated anyway.
4136 */
4137 if (!igrab(inode))
4138 return 0;
4139
4140 pagevec_init(&pvec);
4141 if (wbc->range_cyclic) {
4142 index = mapping->writeback_index; /* Start from prev offset */
4143 end = -1;
4144 /*
4145 * Start from the beginning does not need to cycle over the
4146 * range, mark it as scanned.
4147 */
4148 scanned = (index == 0);
4149 } else {
4150 index = wbc->range_start >> PAGE_SHIFT;
4151 end = wbc->range_end >> PAGE_SHIFT;
4152 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4153 range_whole = 1;
4154 scanned = 1;
4155 }
4156
4157 /*
4158 * We do the tagged writepage as long as the snapshot flush bit is set
4159 * and we are the first one who do the filemap_flush() on this inode.
4160 *
4161 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4162 * not race in and drop the bit.
4163 */
4164 if (range_whole && wbc->nr_to_write == LONG_MAX &&
4165 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4166 &BTRFS_I(inode)->runtime_flags))
4167 wbc->tagged_writepages = 1;
4168
4169 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4170 tag = PAGECACHE_TAG_TOWRITE;
4171 else
4172 tag = PAGECACHE_TAG_DIRTY;
4173 retry:
4174 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4175 tag_pages_for_writeback(mapping, index, end);
4176 done_index = index;
4177 while (!done && !nr_to_write_done && (index <= end) &&
4178 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4179 &index, end, tag))) {
4180 unsigned i;
4181
4182 for (i = 0; i < nr_pages; i++) {
4183 struct page *page = pvec.pages[i];
4184
4185 done_index = page->index + 1;
4186 /*
4187 * At this point we hold neither the i_pages lock nor
4188 * the page lock: the page may be truncated or
4189 * invalidated (changing page->mapping to NULL),
4190 * or even swizzled back from swapper_space to
4191 * tmpfs file mapping
4192 */
4193 if (!trylock_page(page)) {
4194 ret = flush_write_bio(epd);
4195 BUG_ON(ret < 0);
4196 lock_page(page);
4197 }
4198
4199 if (unlikely(page->mapping != mapping)) {
4200 unlock_page(page);
4201 continue;
4202 }
4203
4204 if (wbc->sync_mode != WB_SYNC_NONE) {
4205 if (PageWriteback(page)) {
4206 ret = flush_write_bio(epd);
4207 BUG_ON(ret < 0);
4208 }
4209 wait_on_page_writeback(page);
4210 }
4211
4212 if (PageWriteback(page) ||
4213 !clear_page_dirty_for_io(page)) {
4214 unlock_page(page);
4215 continue;
4216 }
4217
4218 ret = __extent_writepage(page, wbc, epd);
4219 if (ret < 0) {
4220 done = 1;
4221 break;
4222 }
4223
4224 /*
4225 * the filesystem may choose to bump up nr_to_write.
4226 * We have to make sure to honor the new nr_to_write
4227 * at any time
4228 */
4229 nr_to_write_done = wbc->nr_to_write <= 0;
4230 }
4231 pagevec_release(&pvec);
4232 cond_resched();
4233 }
4234 if (!scanned && !done) {
4235 /*
4236 * We hit the last page and there is more work to be done: wrap
4237 * back to the start of the file
4238 */
4239 scanned = 1;
4240 index = 0;
4241
4242 /*
4243 * If we're looping we could run into a page that is locked by a
4244 * writer and that writer could be waiting on writeback for a
4245 * page in our current bio, and thus deadlock, so flush the
4246 * write bio here.
4247 */
4248 ret = flush_write_bio(epd);
4249 if (!ret)
4250 goto retry;
4251 }
4252
4253 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4254 mapping->writeback_index = done_index;
4255
4256 btrfs_add_delayed_iput(inode);
4257 return ret;
4258 }
4259
extent_write_full_page(struct page * page,struct writeback_control * wbc)4260 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4261 {
4262 int ret;
4263 struct extent_page_data epd = {
4264 .bio = NULL,
4265 .extent_locked = 0,
4266 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4267 };
4268
4269 ret = __extent_writepage(page, wbc, &epd);
4270 ASSERT(ret <= 0);
4271 if (ret < 0) {
4272 end_write_bio(&epd, ret);
4273 return ret;
4274 }
4275
4276 ret = flush_write_bio(&epd);
4277 ASSERT(ret <= 0);
4278 return ret;
4279 }
4280
extent_write_locked_range(struct inode * inode,u64 start,u64 end,int mode)4281 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4282 int mode)
4283 {
4284 int ret = 0;
4285 struct address_space *mapping = inode->i_mapping;
4286 struct page *page;
4287 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4288 PAGE_SHIFT;
4289
4290 struct extent_page_data epd = {
4291 .bio = NULL,
4292 .extent_locked = 1,
4293 .sync_io = mode == WB_SYNC_ALL,
4294 };
4295 struct writeback_control wbc_writepages = {
4296 .sync_mode = mode,
4297 .nr_to_write = nr_pages * 2,
4298 .range_start = start,
4299 .range_end = end + 1,
4300 /* We're called from an async helper function */
4301 .punt_to_cgroup = 1,
4302 .no_cgroup_owner = 1,
4303 };
4304
4305 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4306 while (start <= end) {
4307 page = find_get_page(mapping, start >> PAGE_SHIFT);
4308 if (clear_page_dirty_for_io(page))
4309 ret = __extent_writepage(page, &wbc_writepages, &epd);
4310 else {
4311 btrfs_writepage_endio_finish_ordered(page, start,
4312 start + PAGE_SIZE - 1, 1);
4313 unlock_page(page);
4314 }
4315 put_page(page);
4316 start += PAGE_SIZE;
4317 }
4318
4319 ASSERT(ret <= 0);
4320 if (ret == 0)
4321 ret = flush_write_bio(&epd);
4322 else
4323 end_write_bio(&epd, ret);
4324
4325 wbc_detach_inode(&wbc_writepages);
4326 return ret;
4327 }
4328
extent_writepages(struct address_space * mapping,struct writeback_control * wbc)4329 int extent_writepages(struct address_space *mapping,
4330 struct writeback_control *wbc)
4331 {
4332 int ret = 0;
4333 struct extent_page_data epd = {
4334 .bio = NULL,
4335 .extent_locked = 0,
4336 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4337 };
4338
4339 ret = extent_write_cache_pages(mapping, wbc, &epd);
4340 ASSERT(ret <= 0);
4341 if (ret < 0) {
4342 end_write_bio(&epd, ret);
4343 return ret;
4344 }
4345 ret = flush_write_bio(&epd);
4346 return ret;
4347 }
4348
extent_readahead(struct readahead_control * rac)4349 void extent_readahead(struct readahead_control *rac)
4350 {
4351 struct bio *bio = NULL;
4352 unsigned long bio_flags = 0;
4353 struct page *pagepool[16];
4354 struct extent_map *em_cached = NULL;
4355 u64 prev_em_start = (u64)-1;
4356 int nr;
4357
4358 while ((nr = readahead_page_batch(rac, pagepool))) {
4359 u64 contig_start = page_offset(pagepool[0]);
4360 u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1;
4361
4362 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4363
4364 contiguous_readpages(pagepool, nr, contig_start, contig_end,
4365 &em_cached, &bio, &bio_flags, &prev_em_start);
4366 }
4367
4368 if (em_cached)
4369 free_extent_map(em_cached);
4370
4371 if (bio) {
4372 if (submit_one_bio(bio, 0, bio_flags))
4373 return;
4374 }
4375 }
4376
4377 /*
4378 * basic invalidatepage code, this waits on any locked or writeback
4379 * ranges corresponding to the page, and then deletes any extent state
4380 * records from the tree
4381 */
extent_invalidatepage(struct extent_io_tree * tree,struct page * page,unsigned long offset)4382 int extent_invalidatepage(struct extent_io_tree *tree,
4383 struct page *page, unsigned long offset)
4384 {
4385 struct extent_state *cached_state = NULL;
4386 u64 start = page_offset(page);
4387 u64 end = start + PAGE_SIZE - 1;
4388 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4389
4390 start += ALIGN(offset, blocksize);
4391 if (start > end)
4392 return 0;
4393
4394 lock_extent_bits(tree, start, end, &cached_state);
4395 wait_on_page_writeback(page);
4396 clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4397 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4398 return 0;
4399 }
4400
4401 /*
4402 * a helper for releasepage, this tests for areas of the page that
4403 * are locked or under IO and drops the related state bits if it is safe
4404 * to drop the page.
4405 */
try_release_extent_state(struct extent_io_tree * tree,struct page * page,gfp_t mask)4406 static int try_release_extent_state(struct extent_io_tree *tree,
4407 struct page *page, gfp_t mask)
4408 {
4409 u64 start = page_offset(page);
4410 u64 end = start + PAGE_SIZE - 1;
4411 int ret = 1;
4412
4413 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4414 ret = 0;
4415 } else {
4416 /*
4417 * at this point we can safely clear everything except the
4418 * locked bit and the nodatasum bit
4419 */
4420 ret = __clear_extent_bit(tree, start, end,
4421 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4422 0, 0, NULL, mask, NULL);
4423
4424 /* if clear_extent_bit failed for enomem reasons,
4425 * we can't allow the release to continue.
4426 */
4427 if (ret < 0)
4428 ret = 0;
4429 else
4430 ret = 1;
4431 }
4432 return ret;
4433 }
4434
4435 /*
4436 * a helper for releasepage. As long as there are no locked extents
4437 * in the range corresponding to the page, both state records and extent
4438 * map records are removed
4439 */
try_release_extent_mapping(struct page * page,gfp_t mask)4440 int try_release_extent_mapping(struct page *page, gfp_t mask)
4441 {
4442 struct extent_map *em;
4443 u64 start = page_offset(page);
4444 u64 end = start + PAGE_SIZE - 1;
4445 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4446 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4447 struct extent_map_tree *map = &btrfs_inode->extent_tree;
4448
4449 if (gfpflags_allow_blocking(mask) &&
4450 page->mapping->host->i_size > SZ_16M) {
4451 u64 len;
4452 while (start <= end) {
4453 struct btrfs_fs_info *fs_info;
4454 u64 cur_gen;
4455
4456 len = end - start + 1;
4457 write_lock(&map->lock);
4458 em = lookup_extent_mapping(map, start, len);
4459 if (!em) {
4460 write_unlock(&map->lock);
4461 break;
4462 }
4463 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4464 em->start != start) {
4465 write_unlock(&map->lock);
4466 free_extent_map(em);
4467 break;
4468 }
4469 if (test_range_bit(tree, em->start,
4470 extent_map_end(em) - 1,
4471 EXTENT_LOCKED, 0, NULL))
4472 goto next;
4473 /*
4474 * If it's not in the list of modified extents, used
4475 * by a fast fsync, we can remove it. If it's being
4476 * logged we can safely remove it since fsync took an
4477 * extra reference on the em.
4478 */
4479 if (list_empty(&em->list) ||
4480 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
4481 goto remove_em;
4482 /*
4483 * If it's in the list of modified extents, remove it
4484 * only if its generation is older then the current one,
4485 * in which case we don't need it for a fast fsync.
4486 * Otherwise don't remove it, we could be racing with an
4487 * ongoing fast fsync that could miss the new extent.
4488 */
4489 fs_info = btrfs_inode->root->fs_info;
4490 spin_lock(&fs_info->trans_lock);
4491 cur_gen = fs_info->generation;
4492 spin_unlock(&fs_info->trans_lock);
4493 if (em->generation >= cur_gen)
4494 goto next;
4495 remove_em:
4496 /*
4497 * We only remove extent maps that are not in the list of
4498 * modified extents or that are in the list but with a
4499 * generation lower then the current generation, so there
4500 * is no need to set the full fsync flag on the inode (it
4501 * hurts the fsync performance for workloads with a data
4502 * size that exceeds or is close to the system's memory).
4503 */
4504 remove_extent_mapping(map, em);
4505 /* once for the rb tree */
4506 free_extent_map(em);
4507 next:
4508 start = extent_map_end(em);
4509 write_unlock(&map->lock);
4510
4511 /* once for us */
4512 free_extent_map(em);
4513
4514 cond_resched(); /* Allow large-extent preemption. */
4515 }
4516 }
4517 return try_release_extent_state(tree, page, mask);
4518 }
4519
4520 /*
4521 * helper function for fiemap, which doesn't want to see any holes.
4522 * This maps until we find something past 'last'
4523 */
get_extent_skip_holes(struct btrfs_inode * inode,u64 offset,u64 last)4524 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
4525 u64 offset, u64 last)
4526 {
4527 u64 sectorsize = btrfs_inode_sectorsize(inode);
4528 struct extent_map *em;
4529 u64 len;
4530
4531 if (offset >= last)
4532 return NULL;
4533
4534 while (1) {
4535 len = last - offset;
4536 if (len == 0)
4537 break;
4538 len = ALIGN(len, sectorsize);
4539 em = btrfs_get_extent_fiemap(inode, offset, len);
4540 if (IS_ERR_OR_NULL(em))
4541 return em;
4542
4543 /* if this isn't a hole return it */
4544 if (em->block_start != EXTENT_MAP_HOLE)
4545 return em;
4546
4547 /* this is a hole, advance to the next extent */
4548 offset = extent_map_end(em);
4549 free_extent_map(em);
4550 if (offset >= last)
4551 break;
4552 }
4553 return NULL;
4554 }
4555
4556 /*
4557 * To cache previous fiemap extent
4558 *
4559 * Will be used for merging fiemap extent
4560 */
4561 struct fiemap_cache {
4562 u64 offset;
4563 u64 phys;
4564 u64 len;
4565 u32 flags;
4566 bool cached;
4567 };
4568
4569 /*
4570 * Helper to submit fiemap extent.
4571 *
4572 * Will try to merge current fiemap extent specified by @offset, @phys,
4573 * @len and @flags with cached one.
4574 * And only when we fails to merge, cached one will be submitted as
4575 * fiemap extent.
4576 *
4577 * Return value is the same as fiemap_fill_next_extent().
4578 */
emit_fiemap_extent(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache,u64 offset,u64 phys,u64 len,u32 flags)4579 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4580 struct fiemap_cache *cache,
4581 u64 offset, u64 phys, u64 len, u32 flags)
4582 {
4583 int ret = 0;
4584
4585 if (!cache->cached)
4586 goto assign;
4587
4588 /*
4589 * Sanity check, extent_fiemap() should have ensured that new
4590 * fiemap extent won't overlap with cached one.
4591 * Not recoverable.
4592 *
4593 * NOTE: Physical address can overlap, due to compression
4594 */
4595 if (cache->offset + cache->len > offset) {
4596 WARN_ON(1);
4597 return -EINVAL;
4598 }
4599
4600 /*
4601 * Only merges fiemap extents if
4602 * 1) Their logical addresses are continuous
4603 *
4604 * 2) Their physical addresses are continuous
4605 * So truly compressed (physical size smaller than logical size)
4606 * extents won't get merged with each other
4607 *
4608 * 3) Share same flags except FIEMAP_EXTENT_LAST
4609 * So regular extent won't get merged with prealloc extent
4610 */
4611 if (cache->offset + cache->len == offset &&
4612 cache->phys + cache->len == phys &&
4613 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4614 (flags & ~FIEMAP_EXTENT_LAST)) {
4615 cache->len += len;
4616 cache->flags |= flags;
4617 goto try_submit_last;
4618 }
4619
4620 /* Not mergeable, need to submit cached one */
4621 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4622 cache->len, cache->flags);
4623 cache->cached = false;
4624 if (ret)
4625 return ret;
4626 assign:
4627 cache->cached = true;
4628 cache->offset = offset;
4629 cache->phys = phys;
4630 cache->len = len;
4631 cache->flags = flags;
4632 try_submit_last:
4633 if (cache->flags & FIEMAP_EXTENT_LAST) {
4634 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4635 cache->phys, cache->len, cache->flags);
4636 cache->cached = false;
4637 }
4638 return ret;
4639 }
4640
4641 /*
4642 * Emit last fiemap cache
4643 *
4644 * The last fiemap cache may still be cached in the following case:
4645 * 0 4k 8k
4646 * |<- Fiemap range ->|
4647 * |<------------ First extent ----------->|
4648 *
4649 * In this case, the first extent range will be cached but not emitted.
4650 * So we must emit it before ending extent_fiemap().
4651 */
emit_last_fiemap_cache(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache)4652 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4653 struct fiemap_cache *cache)
4654 {
4655 int ret;
4656
4657 if (!cache->cached)
4658 return 0;
4659
4660 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4661 cache->len, cache->flags);
4662 cache->cached = false;
4663 if (ret > 0)
4664 ret = 0;
4665 return ret;
4666 }
4667
extent_fiemap(struct btrfs_inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)4668 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
4669 u64 start, u64 len)
4670 {
4671 int ret = 0;
4672 u64 off;
4673 u64 max = start + len;
4674 u32 flags = 0;
4675 u32 found_type;
4676 u64 last;
4677 u64 last_for_get_extent = 0;
4678 u64 disko = 0;
4679 u64 isize = i_size_read(&inode->vfs_inode);
4680 struct btrfs_key found_key;
4681 struct extent_map *em = NULL;
4682 struct extent_state *cached_state = NULL;
4683 struct btrfs_path *path;
4684 struct btrfs_root *root = inode->root;
4685 struct fiemap_cache cache = { 0 };
4686 struct ulist *roots;
4687 struct ulist *tmp_ulist;
4688 int end = 0;
4689 u64 em_start = 0;
4690 u64 em_len = 0;
4691 u64 em_end = 0;
4692
4693 if (len == 0)
4694 return -EINVAL;
4695
4696 path = btrfs_alloc_path();
4697 if (!path)
4698 return -ENOMEM;
4699 path->leave_spinning = 1;
4700
4701 roots = ulist_alloc(GFP_KERNEL);
4702 tmp_ulist = ulist_alloc(GFP_KERNEL);
4703 if (!roots || !tmp_ulist) {
4704 ret = -ENOMEM;
4705 goto out_free_ulist;
4706 }
4707
4708 /*
4709 * We can't initialize that to 'start' as this could miss extents due
4710 * to extent item merging
4711 */
4712 off = 0;
4713 start = round_down(start, btrfs_inode_sectorsize(inode));
4714 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4715
4716 /*
4717 * lookup the last file extent. We're not using i_size here
4718 * because there might be preallocation past i_size
4719 */
4720 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4721 0);
4722 if (ret < 0) {
4723 goto out_free_ulist;
4724 } else {
4725 WARN_ON(!ret);
4726 if (ret == 1)
4727 ret = 0;
4728 }
4729
4730 path->slots[0]--;
4731 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4732 found_type = found_key.type;
4733
4734 /* No extents, but there might be delalloc bits */
4735 if (found_key.objectid != btrfs_ino(inode) ||
4736 found_type != BTRFS_EXTENT_DATA_KEY) {
4737 /* have to trust i_size as the end */
4738 last = (u64)-1;
4739 last_for_get_extent = isize;
4740 } else {
4741 /*
4742 * remember the start of the last extent. There are a
4743 * bunch of different factors that go into the length of the
4744 * extent, so its much less complex to remember where it started
4745 */
4746 last = found_key.offset;
4747 last_for_get_extent = last + 1;
4748 }
4749 btrfs_release_path(path);
4750
4751 /*
4752 * we might have some extents allocated but more delalloc past those
4753 * extents. so, we trust isize unless the start of the last extent is
4754 * beyond isize
4755 */
4756 if (last < isize) {
4757 last = (u64)-1;
4758 last_for_get_extent = isize;
4759 }
4760
4761 lock_extent_bits(&inode->io_tree, start, start + len - 1,
4762 &cached_state);
4763
4764 em = get_extent_skip_holes(inode, start, last_for_get_extent);
4765 if (!em)
4766 goto out;
4767 if (IS_ERR(em)) {
4768 ret = PTR_ERR(em);
4769 goto out;
4770 }
4771
4772 while (!end) {
4773 u64 offset_in_extent = 0;
4774
4775 /* break if the extent we found is outside the range */
4776 if (em->start >= max || extent_map_end(em) < off)
4777 break;
4778
4779 /*
4780 * get_extent may return an extent that starts before our
4781 * requested range. We have to make sure the ranges
4782 * we return to fiemap always move forward and don't
4783 * overlap, so adjust the offsets here
4784 */
4785 em_start = max(em->start, off);
4786
4787 /*
4788 * record the offset from the start of the extent
4789 * for adjusting the disk offset below. Only do this if the
4790 * extent isn't compressed since our in ram offset may be past
4791 * what we have actually allocated on disk.
4792 */
4793 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4794 offset_in_extent = em_start - em->start;
4795 em_end = extent_map_end(em);
4796 em_len = em_end - em_start;
4797 flags = 0;
4798 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4799 disko = em->block_start + offset_in_extent;
4800 else
4801 disko = 0;
4802
4803 /*
4804 * bump off for our next call to get_extent
4805 */
4806 off = extent_map_end(em);
4807 if (off >= max)
4808 end = 1;
4809
4810 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4811 end = 1;
4812 flags |= FIEMAP_EXTENT_LAST;
4813 } else if (em->block_start == EXTENT_MAP_INLINE) {
4814 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4815 FIEMAP_EXTENT_NOT_ALIGNED);
4816 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4817 flags |= (FIEMAP_EXTENT_DELALLOC |
4818 FIEMAP_EXTENT_UNKNOWN);
4819 } else if (fieinfo->fi_extents_max) {
4820 u64 bytenr = em->block_start -
4821 (em->start - em->orig_start);
4822
4823 /*
4824 * As btrfs supports shared space, this information
4825 * can be exported to userspace tools via
4826 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4827 * then we're just getting a count and we can skip the
4828 * lookup stuff.
4829 */
4830 ret = btrfs_check_shared(root, btrfs_ino(inode),
4831 bytenr, roots, tmp_ulist);
4832 if (ret < 0)
4833 goto out_free;
4834 if (ret)
4835 flags |= FIEMAP_EXTENT_SHARED;
4836 ret = 0;
4837 }
4838 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4839 flags |= FIEMAP_EXTENT_ENCODED;
4840 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4841 flags |= FIEMAP_EXTENT_UNWRITTEN;
4842
4843 free_extent_map(em);
4844 em = NULL;
4845 if ((em_start >= last) || em_len == (u64)-1 ||
4846 (last == (u64)-1 && isize <= em_end)) {
4847 flags |= FIEMAP_EXTENT_LAST;
4848 end = 1;
4849 }
4850
4851 /* now scan forward to see if this is really the last extent. */
4852 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4853 if (IS_ERR(em)) {
4854 ret = PTR_ERR(em);
4855 goto out;
4856 }
4857 if (!em) {
4858 flags |= FIEMAP_EXTENT_LAST;
4859 end = 1;
4860 }
4861 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4862 em_len, flags);
4863 if (ret) {
4864 if (ret == 1)
4865 ret = 0;
4866 goto out_free;
4867 }
4868 }
4869 out_free:
4870 if (!ret)
4871 ret = emit_last_fiemap_cache(fieinfo, &cache);
4872 free_extent_map(em);
4873 out:
4874 unlock_extent_cached(&inode->io_tree, start, start + len - 1,
4875 &cached_state);
4876
4877 out_free_ulist:
4878 btrfs_free_path(path);
4879 ulist_free(roots);
4880 ulist_free(tmp_ulist);
4881 return ret;
4882 }
4883
__free_extent_buffer(struct extent_buffer * eb)4884 static void __free_extent_buffer(struct extent_buffer *eb)
4885 {
4886 kmem_cache_free(extent_buffer_cache, eb);
4887 }
4888
extent_buffer_under_io(const struct extent_buffer * eb)4889 int extent_buffer_under_io(const struct extent_buffer *eb)
4890 {
4891 return (atomic_read(&eb->io_pages) ||
4892 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4893 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4894 }
4895
4896 /*
4897 * Release all pages attached to the extent buffer.
4898 */
btrfs_release_extent_buffer_pages(struct extent_buffer * eb)4899 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4900 {
4901 int i;
4902 int num_pages;
4903 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4904
4905 BUG_ON(extent_buffer_under_io(eb));
4906
4907 num_pages = num_extent_pages(eb);
4908 for (i = 0; i < num_pages; i++) {
4909 struct page *page = eb->pages[i];
4910
4911 if (!page)
4912 continue;
4913 if (mapped)
4914 spin_lock(&page->mapping->private_lock);
4915 /*
4916 * We do this since we'll remove the pages after we've
4917 * removed the eb from the radix tree, so we could race
4918 * and have this page now attached to the new eb. So
4919 * only clear page_private if it's still connected to
4920 * this eb.
4921 */
4922 if (PagePrivate(page) &&
4923 page->private == (unsigned long)eb) {
4924 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4925 BUG_ON(PageDirty(page));
4926 BUG_ON(PageWriteback(page));
4927 /*
4928 * We need to make sure we haven't be attached
4929 * to a new eb.
4930 */
4931 detach_page_private(page);
4932 }
4933
4934 if (mapped)
4935 spin_unlock(&page->mapping->private_lock);
4936
4937 /* One for when we allocated the page */
4938 put_page(page);
4939 }
4940 }
4941
4942 /*
4943 * Helper for releasing the extent buffer.
4944 */
btrfs_release_extent_buffer(struct extent_buffer * eb)4945 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4946 {
4947 btrfs_release_extent_buffer_pages(eb);
4948 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
4949 __free_extent_buffer(eb);
4950 }
4951
4952 static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)4953 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4954 unsigned long len)
4955 {
4956 struct extent_buffer *eb = NULL;
4957
4958 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4959 eb->start = start;
4960 eb->len = len;
4961 eb->fs_info = fs_info;
4962 eb->bflags = 0;
4963 rwlock_init(&eb->lock);
4964 atomic_set(&eb->blocking_readers, 0);
4965 eb->blocking_writers = 0;
4966 eb->lock_recursed = false;
4967 init_waitqueue_head(&eb->write_lock_wq);
4968 init_waitqueue_head(&eb->read_lock_wq);
4969
4970 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
4971 &fs_info->allocated_ebs);
4972
4973 spin_lock_init(&eb->refs_lock);
4974 atomic_set(&eb->refs, 1);
4975 atomic_set(&eb->io_pages, 0);
4976
4977 /*
4978 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4979 */
4980 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4981 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4982 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4983
4984 #ifdef CONFIG_BTRFS_DEBUG
4985 eb->spinning_writers = 0;
4986 atomic_set(&eb->spinning_readers, 0);
4987 atomic_set(&eb->read_locks, 0);
4988 eb->write_locks = 0;
4989 #endif
4990
4991 return eb;
4992 }
4993
btrfs_clone_extent_buffer(const struct extent_buffer * src)4994 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
4995 {
4996 int i;
4997 struct page *p;
4998 struct extent_buffer *new;
4999 int num_pages = num_extent_pages(src);
5000
5001 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5002 if (new == NULL)
5003 return NULL;
5004
5005 for (i = 0; i < num_pages; i++) {
5006 p = alloc_page(GFP_NOFS);
5007 if (!p) {
5008 btrfs_release_extent_buffer(new);
5009 return NULL;
5010 }
5011 attach_extent_buffer_page(new, p);
5012 WARN_ON(PageDirty(p));
5013 SetPageUptodate(p);
5014 new->pages[i] = p;
5015 copy_page(page_address(p), page_address(src->pages[i]));
5016 }
5017
5018 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
5019 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5020
5021 return new;
5022 }
5023
__alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)5024 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5025 u64 start, unsigned long len)
5026 {
5027 struct extent_buffer *eb;
5028 int num_pages;
5029 int i;
5030
5031 eb = __alloc_extent_buffer(fs_info, start, len);
5032 if (!eb)
5033 return NULL;
5034
5035 num_pages = num_extent_pages(eb);
5036 for (i = 0; i < num_pages; i++) {
5037 eb->pages[i] = alloc_page(GFP_NOFS);
5038 if (!eb->pages[i])
5039 goto err;
5040 }
5041 set_extent_buffer_uptodate(eb);
5042 btrfs_set_header_nritems(eb, 0);
5043 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5044
5045 return eb;
5046 err:
5047 for (; i > 0; i--)
5048 __free_page(eb->pages[i - 1]);
5049 __free_extent_buffer(eb);
5050 return NULL;
5051 }
5052
alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)5053 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5054 u64 start)
5055 {
5056 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5057 }
5058
check_buffer_tree_ref(struct extent_buffer * eb)5059 static void check_buffer_tree_ref(struct extent_buffer *eb)
5060 {
5061 int refs;
5062 /*
5063 * The TREE_REF bit is first set when the extent_buffer is added
5064 * to the radix tree. It is also reset, if unset, when a new reference
5065 * is created by find_extent_buffer.
5066 *
5067 * It is only cleared in two cases: freeing the last non-tree
5068 * reference to the extent_buffer when its STALE bit is set or
5069 * calling releasepage when the tree reference is the only reference.
5070 *
5071 * In both cases, care is taken to ensure that the extent_buffer's
5072 * pages are not under io. However, releasepage can be concurrently
5073 * called with creating new references, which is prone to race
5074 * conditions between the calls to check_buffer_tree_ref in those
5075 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5076 *
5077 * The actual lifetime of the extent_buffer in the radix tree is
5078 * adequately protected by the refcount, but the TREE_REF bit and
5079 * its corresponding reference are not. To protect against this
5080 * class of races, we call check_buffer_tree_ref from the codepaths
5081 * which trigger io after they set eb->io_pages. Note that once io is
5082 * initiated, TREE_REF can no longer be cleared, so that is the
5083 * moment at which any such race is best fixed.
5084 */
5085 refs = atomic_read(&eb->refs);
5086 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5087 return;
5088
5089 spin_lock(&eb->refs_lock);
5090 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5091 atomic_inc(&eb->refs);
5092 spin_unlock(&eb->refs_lock);
5093 }
5094
mark_extent_buffer_accessed(struct extent_buffer * eb,struct page * accessed)5095 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5096 struct page *accessed)
5097 {
5098 int num_pages, i;
5099
5100 check_buffer_tree_ref(eb);
5101
5102 num_pages = num_extent_pages(eb);
5103 for (i = 0; i < num_pages; i++) {
5104 struct page *p = eb->pages[i];
5105
5106 if (p != accessed)
5107 mark_page_accessed(p);
5108 }
5109 }
5110
find_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)5111 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5112 u64 start)
5113 {
5114 struct extent_buffer *eb;
5115
5116 rcu_read_lock();
5117 eb = radix_tree_lookup(&fs_info->buffer_radix,
5118 start >> PAGE_SHIFT);
5119 if (eb && atomic_inc_not_zero(&eb->refs)) {
5120 rcu_read_unlock();
5121 /*
5122 * Lock our eb's refs_lock to avoid races with
5123 * free_extent_buffer. When we get our eb it might be flagged
5124 * with EXTENT_BUFFER_STALE and another task running
5125 * free_extent_buffer might have seen that flag set,
5126 * eb->refs == 2, that the buffer isn't under IO (dirty and
5127 * writeback flags not set) and it's still in the tree (flag
5128 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5129 * of decrementing the extent buffer's reference count twice.
5130 * So here we could race and increment the eb's reference count,
5131 * clear its stale flag, mark it as dirty and drop our reference
5132 * before the other task finishes executing free_extent_buffer,
5133 * which would later result in an attempt to free an extent
5134 * buffer that is dirty.
5135 */
5136 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5137 spin_lock(&eb->refs_lock);
5138 spin_unlock(&eb->refs_lock);
5139 }
5140 mark_extent_buffer_accessed(eb, NULL);
5141 return eb;
5142 }
5143 rcu_read_unlock();
5144
5145 return NULL;
5146 }
5147
5148 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
alloc_test_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)5149 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5150 u64 start)
5151 {
5152 struct extent_buffer *eb, *exists = NULL;
5153 int ret;
5154
5155 eb = find_extent_buffer(fs_info, start);
5156 if (eb)
5157 return eb;
5158 eb = alloc_dummy_extent_buffer(fs_info, start);
5159 if (!eb)
5160 return ERR_PTR(-ENOMEM);
5161 eb->fs_info = fs_info;
5162 again:
5163 ret = radix_tree_preload(GFP_NOFS);
5164 if (ret) {
5165 exists = ERR_PTR(ret);
5166 goto free_eb;
5167 }
5168 spin_lock(&fs_info->buffer_lock);
5169 ret = radix_tree_insert(&fs_info->buffer_radix,
5170 start >> PAGE_SHIFT, eb);
5171 spin_unlock(&fs_info->buffer_lock);
5172 radix_tree_preload_end();
5173 if (ret == -EEXIST) {
5174 exists = find_extent_buffer(fs_info, start);
5175 if (exists)
5176 goto free_eb;
5177 else
5178 goto again;
5179 }
5180 check_buffer_tree_ref(eb);
5181 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5182
5183 return eb;
5184 free_eb:
5185 btrfs_release_extent_buffer(eb);
5186 return exists;
5187 }
5188 #endif
5189
alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)5190 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5191 u64 start)
5192 {
5193 unsigned long len = fs_info->nodesize;
5194 int num_pages;
5195 int i;
5196 unsigned long index = start >> PAGE_SHIFT;
5197 struct extent_buffer *eb;
5198 struct extent_buffer *exists = NULL;
5199 struct page *p;
5200 struct address_space *mapping = fs_info->btree_inode->i_mapping;
5201 int uptodate = 1;
5202 int ret;
5203
5204 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5205 btrfs_err(fs_info, "bad tree block start %llu", start);
5206 return ERR_PTR(-EINVAL);
5207 }
5208
5209 eb = find_extent_buffer(fs_info, start);
5210 if (eb)
5211 return eb;
5212
5213 eb = __alloc_extent_buffer(fs_info, start, len);
5214 if (!eb)
5215 return ERR_PTR(-ENOMEM);
5216
5217 num_pages = num_extent_pages(eb);
5218 for (i = 0; i < num_pages; i++, index++) {
5219 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5220 if (!p) {
5221 exists = ERR_PTR(-ENOMEM);
5222 goto free_eb;
5223 }
5224
5225 spin_lock(&mapping->private_lock);
5226 if (PagePrivate(p)) {
5227 /*
5228 * We could have already allocated an eb for this page
5229 * and attached one so lets see if we can get a ref on
5230 * the existing eb, and if we can we know it's good and
5231 * we can just return that one, else we know we can just
5232 * overwrite page->private.
5233 */
5234 exists = (struct extent_buffer *)p->private;
5235 if (atomic_inc_not_zero(&exists->refs)) {
5236 spin_unlock(&mapping->private_lock);
5237 unlock_page(p);
5238 put_page(p);
5239 mark_extent_buffer_accessed(exists, p);
5240 goto free_eb;
5241 }
5242 exists = NULL;
5243
5244 /*
5245 * Do this so attach doesn't complain and we need to
5246 * drop the ref the old guy had.
5247 */
5248 ClearPagePrivate(p);
5249 WARN_ON(PageDirty(p));
5250 put_page(p);
5251 }
5252 attach_extent_buffer_page(eb, p);
5253 spin_unlock(&mapping->private_lock);
5254 WARN_ON(PageDirty(p));
5255 eb->pages[i] = p;
5256 if (!PageUptodate(p))
5257 uptodate = 0;
5258
5259 /*
5260 * We can't unlock the pages just yet since the extent buffer
5261 * hasn't been properly inserted in the radix tree, this
5262 * opens a race with btree_releasepage which can free a page
5263 * while we are still filling in all pages for the buffer and
5264 * we could crash.
5265 */
5266 }
5267 if (uptodate)
5268 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5269 again:
5270 ret = radix_tree_preload(GFP_NOFS);
5271 if (ret) {
5272 exists = ERR_PTR(ret);
5273 goto free_eb;
5274 }
5275
5276 spin_lock(&fs_info->buffer_lock);
5277 ret = radix_tree_insert(&fs_info->buffer_radix,
5278 start >> PAGE_SHIFT, eb);
5279 spin_unlock(&fs_info->buffer_lock);
5280 radix_tree_preload_end();
5281 if (ret == -EEXIST) {
5282 exists = find_extent_buffer(fs_info, start);
5283 if (exists)
5284 goto free_eb;
5285 else
5286 goto again;
5287 }
5288 /* add one reference for the tree */
5289 check_buffer_tree_ref(eb);
5290 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5291
5292 /*
5293 * Now it's safe to unlock the pages because any calls to
5294 * btree_releasepage will correctly detect that a page belongs to a
5295 * live buffer and won't free them prematurely.
5296 */
5297 for (i = 0; i < num_pages; i++)
5298 unlock_page(eb->pages[i]);
5299 return eb;
5300
5301 free_eb:
5302 WARN_ON(!atomic_dec_and_test(&eb->refs));
5303 for (i = 0; i < num_pages; i++) {
5304 if (eb->pages[i])
5305 unlock_page(eb->pages[i]);
5306 }
5307
5308 btrfs_release_extent_buffer(eb);
5309 return exists;
5310 }
5311
btrfs_release_extent_buffer_rcu(struct rcu_head * head)5312 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5313 {
5314 struct extent_buffer *eb =
5315 container_of(head, struct extent_buffer, rcu_head);
5316
5317 __free_extent_buffer(eb);
5318 }
5319
release_extent_buffer(struct extent_buffer * eb)5320 static int release_extent_buffer(struct extent_buffer *eb)
5321 __releases(&eb->refs_lock)
5322 {
5323 lockdep_assert_held(&eb->refs_lock);
5324
5325 WARN_ON(atomic_read(&eb->refs) == 0);
5326 if (atomic_dec_and_test(&eb->refs)) {
5327 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5328 struct btrfs_fs_info *fs_info = eb->fs_info;
5329
5330 spin_unlock(&eb->refs_lock);
5331
5332 spin_lock(&fs_info->buffer_lock);
5333 radix_tree_delete(&fs_info->buffer_radix,
5334 eb->start >> PAGE_SHIFT);
5335 spin_unlock(&fs_info->buffer_lock);
5336 } else {
5337 spin_unlock(&eb->refs_lock);
5338 }
5339
5340 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5341 /* Should be safe to release our pages at this point */
5342 btrfs_release_extent_buffer_pages(eb);
5343 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5344 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5345 __free_extent_buffer(eb);
5346 return 1;
5347 }
5348 #endif
5349 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5350 return 1;
5351 }
5352 spin_unlock(&eb->refs_lock);
5353
5354 return 0;
5355 }
5356
free_extent_buffer(struct extent_buffer * eb)5357 void free_extent_buffer(struct extent_buffer *eb)
5358 {
5359 int refs;
5360 int old;
5361 if (!eb)
5362 return;
5363
5364 while (1) {
5365 refs = atomic_read(&eb->refs);
5366 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5367 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5368 refs == 1))
5369 break;
5370 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5371 if (old == refs)
5372 return;
5373 }
5374
5375 spin_lock(&eb->refs_lock);
5376 if (atomic_read(&eb->refs) == 2 &&
5377 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5378 !extent_buffer_under_io(eb) &&
5379 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5380 atomic_dec(&eb->refs);
5381
5382 /*
5383 * I know this is terrible, but it's temporary until we stop tracking
5384 * the uptodate bits and such for the extent buffers.
5385 */
5386 release_extent_buffer(eb);
5387 }
5388
free_extent_buffer_stale(struct extent_buffer * eb)5389 void free_extent_buffer_stale(struct extent_buffer *eb)
5390 {
5391 if (!eb)
5392 return;
5393
5394 spin_lock(&eb->refs_lock);
5395 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5396
5397 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5398 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5399 atomic_dec(&eb->refs);
5400 release_extent_buffer(eb);
5401 }
5402
clear_extent_buffer_dirty(const struct extent_buffer * eb)5403 void clear_extent_buffer_dirty(const struct extent_buffer *eb)
5404 {
5405 int i;
5406 int num_pages;
5407 struct page *page;
5408
5409 num_pages = num_extent_pages(eb);
5410
5411 for (i = 0; i < num_pages; i++) {
5412 page = eb->pages[i];
5413 if (!PageDirty(page))
5414 continue;
5415
5416 lock_page(page);
5417 WARN_ON(!PagePrivate(page));
5418
5419 clear_page_dirty_for_io(page);
5420 xa_lock_irq(&page->mapping->i_pages);
5421 if (!PageDirty(page))
5422 __xa_clear_mark(&page->mapping->i_pages,
5423 page_index(page), PAGECACHE_TAG_DIRTY);
5424 xa_unlock_irq(&page->mapping->i_pages);
5425 ClearPageError(page);
5426 unlock_page(page);
5427 }
5428 WARN_ON(atomic_read(&eb->refs) == 0);
5429 }
5430
set_extent_buffer_dirty(struct extent_buffer * eb)5431 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5432 {
5433 int i;
5434 int num_pages;
5435 bool was_dirty;
5436
5437 check_buffer_tree_ref(eb);
5438
5439 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5440
5441 num_pages = num_extent_pages(eb);
5442 WARN_ON(atomic_read(&eb->refs) == 0);
5443 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5444
5445 if (!was_dirty)
5446 for (i = 0; i < num_pages; i++)
5447 set_page_dirty(eb->pages[i]);
5448
5449 #ifdef CONFIG_BTRFS_DEBUG
5450 for (i = 0; i < num_pages; i++)
5451 ASSERT(PageDirty(eb->pages[i]));
5452 #endif
5453
5454 return was_dirty;
5455 }
5456
clear_extent_buffer_uptodate(struct extent_buffer * eb)5457 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5458 {
5459 int i;
5460 struct page *page;
5461 int num_pages;
5462
5463 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5464 num_pages = num_extent_pages(eb);
5465 for (i = 0; i < num_pages; i++) {
5466 page = eb->pages[i];
5467 if (page)
5468 ClearPageUptodate(page);
5469 }
5470 }
5471
set_extent_buffer_uptodate(struct extent_buffer * eb)5472 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5473 {
5474 int i;
5475 struct page *page;
5476 int num_pages;
5477
5478 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5479 num_pages = num_extent_pages(eb);
5480 for (i = 0; i < num_pages; i++) {
5481 page = eb->pages[i];
5482 SetPageUptodate(page);
5483 }
5484 }
5485
read_extent_buffer_pages(struct extent_buffer * eb,int wait,int mirror_num)5486 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5487 {
5488 int i;
5489 struct page *page;
5490 int err;
5491 int ret = 0;
5492 int locked_pages = 0;
5493 int all_uptodate = 1;
5494 int num_pages;
5495 unsigned long num_reads = 0;
5496 struct bio *bio = NULL;
5497 unsigned long bio_flags = 0;
5498
5499 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5500 return 0;
5501
5502 num_pages = num_extent_pages(eb);
5503 for (i = 0; i < num_pages; i++) {
5504 page = eb->pages[i];
5505 if (wait == WAIT_NONE) {
5506 if (!trylock_page(page))
5507 goto unlock_exit;
5508 } else {
5509 lock_page(page);
5510 }
5511 locked_pages++;
5512 }
5513 /*
5514 * We need to firstly lock all pages to make sure that
5515 * the uptodate bit of our pages won't be affected by
5516 * clear_extent_buffer_uptodate().
5517 */
5518 for (i = 0; i < num_pages; i++) {
5519 page = eb->pages[i];
5520 if (!PageUptodate(page)) {
5521 num_reads++;
5522 all_uptodate = 0;
5523 }
5524 }
5525
5526 if (all_uptodate) {
5527 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5528 goto unlock_exit;
5529 }
5530
5531 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5532 eb->read_mirror = 0;
5533 atomic_set(&eb->io_pages, num_reads);
5534 /*
5535 * It is possible for releasepage to clear the TREE_REF bit before we
5536 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5537 */
5538 check_buffer_tree_ref(eb);
5539 for (i = 0; i < num_pages; i++) {
5540 page = eb->pages[i];
5541
5542 if (!PageUptodate(page)) {
5543 if (ret) {
5544 atomic_dec(&eb->io_pages);
5545 unlock_page(page);
5546 continue;
5547 }
5548
5549 ClearPageError(page);
5550 err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
5551 page, page_offset(page), PAGE_SIZE, 0,
5552 &bio, end_bio_extent_readpage,
5553 mirror_num, 0, 0, false);
5554 if (err) {
5555 /*
5556 * We failed to submit the bio so it's the
5557 * caller's responsibility to perform cleanup
5558 * i.e unlock page/set error bit.
5559 */
5560 ret = err;
5561 SetPageError(page);
5562 unlock_page(page);
5563 atomic_dec(&eb->io_pages);
5564 }
5565 } else {
5566 unlock_page(page);
5567 }
5568 }
5569
5570 if (bio) {
5571 err = submit_one_bio(bio, mirror_num, bio_flags);
5572 if (err)
5573 return err;
5574 }
5575
5576 if (ret || wait != WAIT_COMPLETE)
5577 return ret;
5578
5579 for (i = 0; i < num_pages; i++) {
5580 page = eb->pages[i];
5581 wait_on_page_locked(page);
5582 if (!PageUptodate(page))
5583 ret = -EIO;
5584 }
5585
5586 return ret;
5587
5588 unlock_exit:
5589 while (locked_pages > 0) {
5590 locked_pages--;
5591 page = eb->pages[locked_pages];
5592 unlock_page(page);
5593 }
5594 return ret;
5595 }
5596
report_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)5597 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
5598 unsigned long len)
5599 {
5600 btrfs_warn(eb->fs_info,
5601 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
5602 eb->start, eb->len, start, len);
5603 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5604
5605 return true;
5606 }
5607
5608 /*
5609 * Check if the [start, start + len) range is valid before reading/writing
5610 * the eb.
5611 * NOTE: @start and @len are offset inside the eb, not logical address.
5612 *
5613 * Caller should not touch the dst/src memory if this function returns error.
5614 */
check_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)5615 static inline int check_eb_range(const struct extent_buffer *eb,
5616 unsigned long start, unsigned long len)
5617 {
5618 unsigned long offset;
5619
5620 /* start, start + len should not go beyond eb->len nor overflow */
5621 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
5622 return report_eb_range(eb, start, len);
5623
5624 return false;
5625 }
5626
read_extent_buffer(const struct extent_buffer * eb,void * dstv,unsigned long start,unsigned long len)5627 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5628 unsigned long start, unsigned long len)
5629 {
5630 size_t cur;
5631 size_t offset;
5632 struct page *page;
5633 char *kaddr;
5634 char *dst = (char *)dstv;
5635 unsigned long i = start >> PAGE_SHIFT;
5636
5637 if (check_eb_range(eb, start, len)) {
5638 /*
5639 * Invalid range hit, reset the memory, so callers won't get
5640 * some random garbage for their uninitialzed memory.
5641 */
5642 memset(dstv, 0, len);
5643 return;
5644 }
5645
5646 offset = offset_in_page(start);
5647
5648 while (len > 0) {
5649 page = eb->pages[i];
5650
5651 cur = min(len, (PAGE_SIZE - offset));
5652 kaddr = page_address(page);
5653 memcpy(dst, kaddr + offset, cur);
5654
5655 dst += cur;
5656 len -= cur;
5657 offset = 0;
5658 i++;
5659 }
5660 }
5661
read_extent_buffer_to_user_nofault(const struct extent_buffer * eb,void __user * dstv,unsigned long start,unsigned long len)5662 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5663 void __user *dstv,
5664 unsigned long start, unsigned long len)
5665 {
5666 size_t cur;
5667 size_t offset;
5668 struct page *page;
5669 char *kaddr;
5670 char __user *dst = (char __user *)dstv;
5671 unsigned long i = start >> PAGE_SHIFT;
5672 int ret = 0;
5673
5674 WARN_ON(start > eb->len);
5675 WARN_ON(start + len > eb->start + eb->len);
5676
5677 offset = offset_in_page(start);
5678
5679 while (len > 0) {
5680 page = eb->pages[i];
5681
5682 cur = min(len, (PAGE_SIZE - offset));
5683 kaddr = page_address(page);
5684 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
5685 ret = -EFAULT;
5686 break;
5687 }
5688
5689 dst += cur;
5690 len -= cur;
5691 offset = 0;
5692 i++;
5693 }
5694
5695 return ret;
5696 }
5697
memcmp_extent_buffer(const struct extent_buffer * eb,const void * ptrv,unsigned long start,unsigned long len)5698 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5699 unsigned long start, unsigned long len)
5700 {
5701 size_t cur;
5702 size_t offset;
5703 struct page *page;
5704 char *kaddr;
5705 char *ptr = (char *)ptrv;
5706 unsigned long i = start >> PAGE_SHIFT;
5707 int ret = 0;
5708
5709 if (check_eb_range(eb, start, len))
5710 return -EINVAL;
5711
5712 offset = offset_in_page(start);
5713
5714 while (len > 0) {
5715 page = eb->pages[i];
5716
5717 cur = min(len, (PAGE_SIZE - offset));
5718
5719 kaddr = page_address(page);
5720 ret = memcmp(ptr, kaddr + offset, cur);
5721 if (ret)
5722 break;
5723
5724 ptr += cur;
5725 len -= cur;
5726 offset = 0;
5727 i++;
5728 }
5729 return ret;
5730 }
5731
write_extent_buffer_chunk_tree_uuid(const struct extent_buffer * eb,const void * srcv)5732 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5733 const void *srcv)
5734 {
5735 char *kaddr;
5736
5737 WARN_ON(!PageUptodate(eb->pages[0]));
5738 kaddr = page_address(eb->pages[0]);
5739 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5740 BTRFS_FSID_SIZE);
5741 }
5742
write_extent_buffer_fsid(const struct extent_buffer * eb,const void * srcv)5743 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5744 {
5745 char *kaddr;
5746
5747 WARN_ON(!PageUptodate(eb->pages[0]));
5748 kaddr = page_address(eb->pages[0]);
5749 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5750 BTRFS_FSID_SIZE);
5751 }
5752
write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len)5753 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5754 unsigned long start, unsigned long len)
5755 {
5756 size_t cur;
5757 size_t offset;
5758 struct page *page;
5759 char *kaddr;
5760 char *src = (char *)srcv;
5761 unsigned long i = start >> PAGE_SHIFT;
5762
5763 if (check_eb_range(eb, start, len))
5764 return;
5765
5766 offset = offset_in_page(start);
5767
5768 while (len > 0) {
5769 page = eb->pages[i];
5770 WARN_ON(!PageUptodate(page));
5771
5772 cur = min(len, PAGE_SIZE - offset);
5773 kaddr = page_address(page);
5774 memcpy(kaddr + offset, src, cur);
5775
5776 src += cur;
5777 len -= cur;
5778 offset = 0;
5779 i++;
5780 }
5781 }
5782
memzero_extent_buffer(const struct extent_buffer * eb,unsigned long start,unsigned long len)5783 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5784 unsigned long len)
5785 {
5786 size_t cur;
5787 size_t offset;
5788 struct page *page;
5789 char *kaddr;
5790 unsigned long i = start >> PAGE_SHIFT;
5791
5792 if (check_eb_range(eb, start, len))
5793 return;
5794
5795 offset = offset_in_page(start);
5796
5797 while (len > 0) {
5798 page = eb->pages[i];
5799 WARN_ON(!PageUptodate(page));
5800
5801 cur = min(len, PAGE_SIZE - offset);
5802 kaddr = page_address(page);
5803 memset(kaddr + offset, 0, cur);
5804
5805 len -= cur;
5806 offset = 0;
5807 i++;
5808 }
5809 }
5810
copy_extent_buffer_full(const struct extent_buffer * dst,const struct extent_buffer * src)5811 void copy_extent_buffer_full(const struct extent_buffer *dst,
5812 const struct extent_buffer *src)
5813 {
5814 int i;
5815 int num_pages;
5816
5817 ASSERT(dst->len == src->len);
5818
5819 num_pages = num_extent_pages(dst);
5820 for (i = 0; i < num_pages; i++)
5821 copy_page(page_address(dst->pages[i]),
5822 page_address(src->pages[i]));
5823 }
5824
copy_extent_buffer(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5825 void copy_extent_buffer(const struct extent_buffer *dst,
5826 const struct extent_buffer *src,
5827 unsigned long dst_offset, unsigned long src_offset,
5828 unsigned long len)
5829 {
5830 u64 dst_len = dst->len;
5831 size_t cur;
5832 size_t offset;
5833 struct page *page;
5834 char *kaddr;
5835 unsigned long i = dst_offset >> PAGE_SHIFT;
5836
5837 if (check_eb_range(dst, dst_offset, len) ||
5838 check_eb_range(src, src_offset, len))
5839 return;
5840
5841 WARN_ON(src->len != dst_len);
5842
5843 offset = offset_in_page(dst_offset);
5844
5845 while (len > 0) {
5846 page = dst->pages[i];
5847 WARN_ON(!PageUptodate(page));
5848
5849 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5850
5851 kaddr = page_address(page);
5852 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5853
5854 src_offset += cur;
5855 len -= cur;
5856 offset = 0;
5857 i++;
5858 }
5859 }
5860
5861 /*
5862 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5863 * given bit number
5864 * @eb: the extent buffer
5865 * @start: offset of the bitmap item in the extent buffer
5866 * @nr: bit number
5867 * @page_index: return index of the page in the extent buffer that contains the
5868 * given bit number
5869 * @page_offset: return offset into the page given by page_index
5870 *
5871 * This helper hides the ugliness of finding the byte in an extent buffer which
5872 * contains a given bit.
5873 */
eb_bitmap_offset(const struct extent_buffer * eb,unsigned long start,unsigned long nr,unsigned long * page_index,size_t * page_offset)5874 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
5875 unsigned long start, unsigned long nr,
5876 unsigned long *page_index,
5877 size_t *page_offset)
5878 {
5879 size_t byte_offset = BIT_BYTE(nr);
5880 size_t offset;
5881
5882 /*
5883 * The byte we want is the offset of the extent buffer + the offset of
5884 * the bitmap item in the extent buffer + the offset of the byte in the
5885 * bitmap item.
5886 */
5887 offset = start + byte_offset;
5888
5889 *page_index = offset >> PAGE_SHIFT;
5890 *page_offset = offset_in_page(offset);
5891 }
5892
5893 /**
5894 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5895 * @eb: the extent buffer
5896 * @start: offset of the bitmap item in the extent buffer
5897 * @nr: bit number to test
5898 */
extent_buffer_test_bit(const struct extent_buffer * eb,unsigned long start,unsigned long nr)5899 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
5900 unsigned long nr)
5901 {
5902 u8 *kaddr;
5903 struct page *page;
5904 unsigned long i;
5905 size_t offset;
5906
5907 eb_bitmap_offset(eb, start, nr, &i, &offset);
5908 page = eb->pages[i];
5909 WARN_ON(!PageUptodate(page));
5910 kaddr = page_address(page);
5911 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5912 }
5913
5914 /**
5915 * extent_buffer_bitmap_set - set an area of a bitmap
5916 * @eb: the extent buffer
5917 * @start: offset of the bitmap item in the extent buffer
5918 * @pos: bit number of the first bit
5919 * @len: number of bits to set
5920 */
extent_buffer_bitmap_set(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)5921 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
5922 unsigned long pos, unsigned long len)
5923 {
5924 u8 *kaddr;
5925 struct page *page;
5926 unsigned long i;
5927 size_t offset;
5928 const unsigned int size = pos + len;
5929 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5930 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5931
5932 eb_bitmap_offset(eb, start, pos, &i, &offset);
5933 page = eb->pages[i];
5934 WARN_ON(!PageUptodate(page));
5935 kaddr = page_address(page);
5936
5937 while (len >= bits_to_set) {
5938 kaddr[offset] |= mask_to_set;
5939 len -= bits_to_set;
5940 bits_to_set = BITS_PER_BYTE;
5941 mask_to_set = ~0;
5942 if (++offset >= PAGE_SIZE && len > 0) {
5943 offset = 0;
5944 page = eb->pages[++i];
5945 WARN_ON(!PageUptodate(page));
5946 kaddr = page_address(page);
5947 }
5948 }
5949 if (len) {
5950 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5951 kaddr[offset] |= mask_to_set;
5952 }
5953 }
5954
5955
5956 /**
5957 * extent_buffer_bitmap_clear - clear an area of a bitmap
5958 * @eb: the extent buffer
5959 * @start: offset of the bitmap item in the extent buffer
5960 * @pos: bit number of the first bit
5961 * @len: number of bits to clear
5962 */
extent_buffer_bitmap_clear(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)5963 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5964 unsigned long start, unsigned long pos,
5965 unsigned long len)
5966 {
5967 u8 *kaddr;
5968 struct page *page;
5969 unsigned long i;
5970 size_t offset;
5971 const unsigned int size = pos + len;
5972 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5973 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5974
5975 eb_bitmap_offset(eb, start, pos, &i, &offset);
5976 page = eb->pages[i];
5977 WARN_ON(!PageUptodate(page));
5978 kaddr = page_address(page);
5979
5980 while (len >= bits_to_clear) {
5981 kaddr[offset] &= ~mask_to_clear;
5982 len -= bits_to_clear;
5983 bits_to_clear = BITS_PER_BYTE;
5984 mask_to_clear = ~0;
5985 if (++offset >= PAGE_SIZE && len > 0) {
5986 offset = 0;
5987 page = eb->pages[++i];
5988 WARN_ON(!PageUptodate(page));
5989 kaddr = page_address(page);
5990 }
5991 }
5992 if (len) {
5993 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5994 kaddr[offset] &= ~mask_to_clear;
5995 }
5996 }
5997
areas_overlap(unsigned long src,unsigned long dst,unsigned long len)5998 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5999 {
6000 unsigned long distance = (src > dst) ? src - dst : dst - src;
6001 return distance < len;
6002 }
6003
copy_pages(struct page * dst_page,struct page * src_page,unsigned long dst_off,unsigned long src_off,unsigned long len)6004 static void copy_pages(struct page *dst_page, struct page *src_page,
6005 unsigned long dst_off, unsigned long src_off,
6006 unsigned long len)
6007 {
6008 char *dst_kaddr = page_address(dst_page);
6009 char *src_kaddr;
6010 int must_memmove = 0;
6011
6012 if (dst_page != src_page) {
6013 src_kaddr = page_address(src_page);
6014 } else {
6015 src_kaddr = dst_kaddr;
6016 if (areas_overlap(src_off, dst_off, len))
6017 must_memmove = 1;
6018 }
6019
6020 if (must_memmove)
6021 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6022 else
6023 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6024 }
6025
memcpy_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)6026 void memcpy_extent_buffer(const struct extent_buffer *dst,
6027 unsigned long dst_offset, unsigned long src_offset,
6028 unsigned long len)
6029 {
6030 size_t cur;
6031 size_t dst_off_in_page;
6032 size_t src_off_in_page;
6033 unsigned long dst_i;
6034 unsigned long src_i;
6035
6036 if (check_eb_range(dst, dst_offset, len) ||
6037 check_eb_range(dst, src_offset, len))
6038 return;
6039
6040 while (len > 0) {
6041 dst_off_in_page = offset_in_page(dst_offset);
6042 src_off_in_page = offset_in_page(src_offset);
6043
6044 dst_i = dst_offset >> PAGE_SHIFT;
6045 src_i = src_offset >> PAGE_SHIFT;
6046
6047 cur = min(len, (unsigned long)(PAGE_SIZE -
6048 src_off_in_page));
6049 cur = min_t(unsigned long, cur,
6050 (unsigned long)(PAGE_SIZE - dst_off_in_page));
6051
6052 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6053 dst_off_in_page, src_off_in_page, cur);
6054
6055 src_offset += cur;
6056 dst_offset += cur;
6057 len -= cur;
6058 }
6059 }
6060
memmove_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)6061 void memmove_extent_buffer(const struct extent_buffer *dst,
6062 unsigned long dst_offset, unsigned long src_offset,
6063 unsigned long len)
6064 {
6065 size_t cur;
6066 size_t dst_off_in_page;
6067 size_t src_off_in_page;
6068 unsigned long dst_end = dst_offset + len - 1;
6069 unsigned long src_end = src_offset + len - 1;
6070 unsigned long dst_i;
6071 unsigned long src_i;
6072
6073 if (check_eb_range(dst, dst_offset, len) ||
6074 check_eb_range(dst, src_offset, len))
6075 return;
6076 if (dst_offset < src_offset) {
6077 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6078 return;
6079 }
6080 while (len > 0) {
6081 dst_i = dst_end >> PAGE_SHIFT;
6082 src_i = src_end >> PAGE_SHIFT;
6083
6084 dst_off_in_page = offset_in_page(dst_end);
6085 src_off_in_page = offset_in_page(src_end);
6086
6087 cur = min_t(unsigned long, len, src_off_in_page + 1);
6088 cur = min(cur, dst_off_in_page + 1);
6089 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6090 dst_off_in_page - cur + 1,
6091 src_off_in_page - cur + 1, cur);
6092
6093 dst_end -= cur;
6094 src_end -= cur;
6095 len -= cur;
6096 }
6097 }
6098
try_release_extent_buffer(struct page * page)6099 int try_release_extent_buffer(struct page *page)
6100 {
6101 struct extent_buffer *eb;
6102
6103 /*
6104 * We need to make sure nobody is attaching this page to an eb right
6105 * now.
6106 */
6107 spin_lock(&page->mapping->private_lock);
6108 if (!PagePrivate(page)) {
6109 spin_unlock(&page->mapping->private_lock);
6110 return 1;
6111 }
6112
6113 eb = (struct extent_buffer *)page->private;
6114 BUG_ON(!eb);
6115
6116 /*
6117 * This is a little awful but should be ok, we need to make sure that
6118 * the eb doesn't disappear out from under us while we're looking at
6119 * this page.
6120 */
6121 spin_lock(&eb->refs_lock);
6122 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6123 spin_unlock(&eb->refs_lock);
6124 spin_unlock(&page->mapping->private_lock);
6125 return 0;
6126 }
6127 spin_unlock(&page->mapping->private_lock);
6128
6129 /*
6130 * If tree ref isn't set then we know the ref on this eb is a real ref,
6131 * so just return, this page will likely be freed soon anyway.
6132 */
6133 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6134 spin_unlock(&eb->refs_lock);
6135 return 0;
6136 }
6137
6138 return release_extent_buffer(eb);
6139 }
6140