• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_INODE_H
7 #define BTRFS_INODE_H
8 
9 #include <linux/hash.h>
10 #include <linux/refcount.h>
11 #include "extent_map.h"
12 #include "extent_io.h"
13 #include "ordered-data.h"
14 #include "delayed-inode.h"
15 
16 /*
17  * ordered_data_close is set by truncate when a file that used
18  * to have good data has been truncated to zero.  When it is set
19  * the btrfs file release call will add this inode to the
20  * ordered operations list so that we make sure to flush out any
21  * new data the application may have written before commit.
22  */
23 enum {
24 	BTRFS_INODE_FLUSH_ON_CLOSE,
25 	BTRFS_INODE_DUMMY,
26 	BTRFS_INODE_IN_DEFRAG,
27 	BTRFS_INODE_HAS_ASYNC_EXTENT,
28 	 /*
29 	  * Always set under the VFS' inode lock, otherwise it can cause races
30 	  * during fsync (we start as a fast fsync and then end up in a full
31 	  * fsync racing with ordered extent completion).
32 	  */
33 	BTRFS_INODE_NEEDS_FULL_SYNC,
34 	BTRFS_INODE_COPY_EVERYTHING,
35 	BTRFS_INODE_IN_DELALLOC_LIST,
36 	BTRFS_INODE_HAS_PROPS,
37 	BTRFS_INODE_SNAPSHOT_FLUSH,
38 	/*
39 	 * Set and used when logging an inode and it serves to signal that an
40 	 * inode does not have xattrs, so subsequent fsyncs can avoid searching
41 	 * for xattrs to log. This bit must be cleared whenever a xattr is added
42 	 * to an inode.
43 	 */
44 	BTRFS_INODE_NO_XATTRS,
45 	/*
46 	 * Set when we are in a context where we need to start a transaction and
47 	 * have dirty pages with the respective file range locked. This is to
48 	 * ensure that when reserving space for the transaction, if we are low
49 	 * on available space and need to flush delalloc, we will not flush
50 	 * delalloc for this inode, because that could result in a deadlock (on
51 	 * the file range, inode's io_tree).
52 	 */
53 	BTRFS_INODE_NO_DELALLOC_FLUSH,
54 };
55 
56 /* in memory btrfs inode */
57 struct btrfs_inode {
58 	/* which subvolume this inode belongs to */
59 	struct btrfs_root *root;
60 
61 	/* key used to find this inode on disk.  This is used by the code
62 	 * to read in roots of subvolumes
63 	 */
64 	struct btrfs_key location;
65 
66 	/*
67 	 * Lock for counters and all fields used to determine if the inode is in
68 	 * the log or not (last_trans, last_sub_trans, last_log_commit,
69 	 * logged_trans).
70 	 */
71 	spinlock_t lock;
72 
73 	/* the extent_tree has caches of all the extent mappings to disk */
74 	struct extent_map_tree extent_tree;
75 
76 	/* the io_tree does range state (DIRTY, LOCKED etc) */
77 	struct extent_io_tree io_tree;
78 
79 	/* special utility tree used to record which mirrors have already been
80 	 * tried when checksums fail for a given block
81 	 */
82 	struct extent_io_tree io_failure_tree;
83 
84 	/*
85 	 * Keep track of where the inode has extent items mapped in order to
86 	 * make sure the i_size adjustments are accurate
87 	 */
88 	struct extent_io_tree file_extent_tree;
89 
90 	/* held while logging the inode in tree-log.c */
91 	struct mutex log_mutex;
92 
93 	/* used to order data wrt metadata */
94 	struct btrfs_ordered_inode_tree ordered_tree;
95 
96 	/* list of all the delalloc inodes in the FS.  There are times we need
97 	 * to write all the delalloc pages to disk, and this list is used
98 	 * to walk them all.
99 	 */
100 	struct list_head delalloc_inodes;
101 
102 	/* node for the red-black tree that links inodes in subvolume root */
103 	struct rb_node rb_node;
104 
105 	unsigned long runtime_flags;
106 
107 	/* Keep track of who's O_SYNC/fsyncing currently */
108 	atomic_t sync_writers;
109 
110 	/* full 64 bit generation number, struct vfs_inode doesn't have a big
111 	 * enough field for this.
112 	 */
113 	u64 generation;
114 
115 	/*
116 	 * transid of the trans_handle that last modified this inode
117 	 */
118 	u64 last_trans;
119 
120 	/*
121 	 * transid that last logged this inode
122 	 */
123 	u64 logged_trans;
124 
125 	/*
126 	 * log transid when this inode was last modified
127 	 */
128 	int last_sub_trans;
129 
130 	/* a local copy of root's last_log_commit */
131 	int last_log_commit;
132 
133 	/* total number of bytes pending delalloc, used by stat to calc the
134 	 * real block usage of the file
135 	 */
136 	u64 delalloc_bytes;
137 
138 	/*
139 	 * Total number of bytes pending delalloc that fall within a file
140 	 * range that is either a hole or beyond EOF (and no prealloc extent
141 	 * exists in the range). This is always <= delalloc_bytes.
142 	 */
143 	u64 new_delalloc_bytes;
144 
145 	/*
146 	 * total number of bytes pending defrag, used by stat to check whether
147 	 * it needs COW.
148 	 */
149 	u64 defrag_bytes;
150 
151 	/*
152 	 * the size of the file stored in the metadata on disk.  data=ordered
153 	 * means the in-memory i_size might be larger than the size on disk
154 	 * because not all the blocks are written yet.
155 	 */
156 	u64 disk_i_size;
157 
158 	/*
159 	 * if this is a directory then index_cnt is the counter for the index
160 	 * number for new files that are created
161 	 */
162 	u64 index_cnt;
163 
164 	/* Cache the directory index number to speed the dir/file remove */
165 	u64 dir_index;
166 
167 	/* the fsync log has some corner cases that mean we have to check
168 	 * directories to see if any unlinks have been done before
169 	 * the directory was logged.  See tree-log.c for all the
170 	 * details
171 	 */
172 	u64 last_unlink_trans;
173 
174 	/*
175 	 * The id/generation of the last transaction where this inode was
176 	 * either the source or the destination of a clone/dedupe operation.
177 	 * Used when logging an inode to know if there are shared extents that
178 	 * need special care when logging checksum items, to avoid duplicate
179 	 * checksum items in a log (which can lead to a corruption where we end
180 	 * up with missing checksum ranges after log replay).
181 	 * Protected by the vfs inode lock.
182 	 */
183 	u64 last_reflink_trans;
184 
185 	/*
186 	 * Number of bytes outstanding that are going to need csums.  This is
187 	 * used in ENOSPC accounting.
188 	 */
189 	u64 csum_bytes;
190 
191 	/* flags field from the on disk inode */
192 	u32 flags;
193 
194 	/*
195 	 * Counters to keep track of the number of extent item's we may use due
196 	 * to delalloc and such.  outstanding_extents is the number of extent
197 	 * items we think we'll end up using, and reserved_extents is the number
198 	 * of extent items we've reserved metadata for.
199 	 */
200 	unsigned outstanding_extents;
201 
202 	struct btrfs_block_rsv block_rsv;
203 
204 	/*
205 	 * Cached values of inode properties
206 	 */
207 	unsigned prop_compress;		/* per-file compression algorithm */
208 	/*
209 	 * Force compression on the file using the defrag ioctl, could be
210 	 * different from prop_compress and takes precedence if set
211 	 */
212 	unsigned defrag_compress;
213 
214 	struct btrfs_delayed_node *delayed_node;
215 
216 	/* File creation time. */
217 	struct timespec64 i_otime;
218 
219 	/* Hook into fs_info->delayed_iputs */
220 	struct list_head delayed_iput;
221 
222 	/*
223 	 * To avoid races between lockless (i_mutex not held) direct IO writes
224 	 * and concurrent fsync requests. Direct IO writes must acquire read
225 	 * access on this semaphore for creating an extent map and its
226 	 * corresponding ordered extent. The fast fsync path must acquire write
227 	 * access on this semaphore before it collects ordered extents and
228 	 * extent maps.
229 	 */
230 	struct rw_semaphore dio_sem;
231 
232 	struct inode vfs_inode;
233 };
234 
btrfs_inode_sectorsize(const struct btrfs_inode * inode)235 static inline u32 btrfs_inode_sectorsize(const struct btrfs_inode *inode)
236 {
237 	return inode->root->fs_info->sectorsize;
238 }
239 
BTRFS_I(const struct inode * inode)240 static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
241 {
242 	return container_of(inode, struct btrfs_inode, vfs_inode);
243 }
244 
btrfs_inode_hash(u64 objectid,const struct btrfs_root * root)245 static inline unsigned long btrfs_inode_hash(u64 objectid,
246 					     const struct btrfs_root *root)
247 {
248 	u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
249 
250 #if BITS_PER_LONG == 32
251 	h = (h >> 32) ^ (h & 0xffffffff);
252 #endif
253 
254 	return (unsigned long)h;
255 }
256 
btrfs_insert_inode_hash(struct inode * inode)257 static inline void btrfs_insert_inode_hash(struct inode *inode)
258 {
259 	unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
260 
261 	__insert_inode_hash(inode, h);
262 }
263 
btrfs_ino(const struct btrfs_inode * inode)264 static inline u64 btrfs_ino(const struct btrfs_inode *inode)
265 {
266 	u64 ino = inode->location.objectid;
267 
268 	/*
269 	 * !ino: btree_inode
270 	 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
271 	 */
272 	if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
273 		ino = inode->vfs_inode.i_ino;
274 	return ino;
275 }
276 
btrfs_i_size_write(struct btrfs_inode * inode,u64 size)277 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
278 {
279 	i_size_write(&inode->vfs_inode, size);
280 	inode->disk_i_size = size;
281 }
282 
btrfs_is_free_space_inode(struct btrfs_inode * inode)283 static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
284 {
285 	struct btrfs_root *root = inode->root;
286 
287 	if (root == root->fs_info->tree_root &&
288 	    btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
289 		return true;
290 	if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
291 		return true;
292 	return false;
293 }
294 
is_data_inode(struct inode * inode)295 static inline bool is_data_inode(struct inode *inode)
296 {
297 	return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID;
298 }
299 
btrfs_mod_outstanding_extents(struct btrfs_inode * inode,int mod)300 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
301 						 int mod)
302 {
303 	lockdep_assert_held(&inode->lock);
304 	inode->outstanding_extents += mod;
305 	if (btrfs_is_free_space_inode(inode))
306 		return;
307 	trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
308 						  mod);
309 }
310 
311 /*
312  * Called every time after doing a buffered, direct IO or memory mapped write.
313  *
314  * This is to ensure that if we write to a file that was previously fsynced in
315  * the current transaction, then try to fsync it again in the same transaction,
316  * we will know that there were changes in the file and that it needs to be
317  * logged.
318  */
btrfs_set_inode_last_sub_trans(struct btrfs_inode * inode)319 static inline void btrfs_set_inode_last_sub_trans(struct btrfs_inode *inode)
320 {
321 	spin_lock(&inode->lock);
322 	inode->last_sub_trans = inode->root->log_transid;
323 	spin_unlock(&inode->lock);
324 }
325 
btrfs_inode_in_log(struct btrfs_inode * inode,u64 generation)326 static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
327 {
328 	int ret = 0;
329 
330 	spin_lock(&inode->lock);
331 	if (inode->logged_trans == generation &&
332 	    inode->last_sub_trans <= inode->last_log_commit &&
333 	    inode->last_sub_trans <= inode->root->last_log_commit) {
334 		/*
335 		 * After a ranged fsync we might have left some extent maps
336 		 * (that fall outside the fsync's range). So return false
337 		 * here if the list isn't empty, to make sure btrfs_log_inode()
338 		 * will be called and process those extent maps.
339 		 */
340 		smp_mb();
341 		if (list_empty(&inode->extent_tree.modified_extents))
342 			ret = 1;
343 	}
344 	spin_unlock(&inode->lock);
345 	return ret;
346 }
347 
348 struct btrfs_dio_private {
349 	struct inode *inode;
350 	u64 logical_offset;
351 	u64 disk_bytenr;
352 	u64 bytes;
353 
354 	/*
355 	 * References to this structure. There is one reference per in-flight
356 	 * bio plus one while we're still setting up.
357 	 */
358 	refcount_t refs;
359 
360 	/* dio_bio came from fs/direct-io.c */
361 	struct bio *dio_bio;
362 
363 	/* Array of checksums */
364 	u8 csums[];
365 };
366 
367 /* Array of bytes with variable length, hexadecimal format 0x1234 */
368 #define CSUM_FMT				"0x%*phN"
369 #define CSUM_FMT_VALUE(size, bytes)		size, bytes
370 
btrfs_print_data_csum_error(struct btrfs_inode * inode,u64 logical_start,u8 * csum,u8 * csum_expected,int mirror_num)371 static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
372 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
373 {
374 	struct btrfs_root *root = inode->root;
375 	struct btrfs_super_block *sb = root->fs_info->super_copy;
376 	const u16 csum_size = btrfs_super_csum_size(sb);
377 
378 	/* Output minus objectid, which is more meaningful */
379 	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID)
380 		btrfs_warn_rl(root->fs_info,
381 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
382 			root->root_key.objectid, btrfs_ino(inode),
383 			logical_start,
384 			CSUM_FMT_VALUE(csum_size, csum),
385 			CSUM_FMT_VALUE(csum_size, csum_expected),
386 			mirror_num);
387 	else
388 		btrfs_warn_rl(root->fs_info,
389 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
390 			root->root_key.objectid, btrfs_ino(inode),
391 			logical_start,
392 			CSUM_FMT_VALUE(csum_size, csum),
393 			CSUM_FMT_VALUE(csum_size, csum_expected),
394 			mirror_num);
395 }
396 
397 #endif
398