1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fscrypt.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/prefetch.h>
20 #include <linux/buffer_head.h> /* for inode_has_buffers */
21 #include <linux/ratelimit.h>
22 #include <linux/list_lru.h>
23 #include <linux/iversion.h>
24 #include <trace/events/writeback.h>
25 #include "internal.h"
26
27 /*
28 * Inode locking rules:
29 *
30 * inode->i_lock protects:
31 * inode->i_state, inode->i_hash, __iget()
32 * Inode LRU list locks protect:
33 * inode->i_sb->s_inode_lru, inode->i_lru
34 * inode->i_sb->s_inode_list_lock protects:
35 * inode->i_sb->s_inodes, inode->i_sb_list
36 * bdi->wb.list_lock protects:
37 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
38 * inode_hash_lock protects:
39 * inode_hashtable, inode->i_hash
40 *
41 * Lock ordering:
42 *
43 * inode->i_sb->s_inode_list_lock
44 * inode->i_lock
45 * Inode LRU list locks
46 *
47 * bdi->wb.list_lock
48 * inode->i_lock
49 *
50 * inode_hash_lock
51 * inode->i_sb->s_inode_list_lock
52 * inode->i_lock
53 *
54 * iunique_lock
55 * inode_hash_lock
56 */
57
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
60 static struct hlist_head *inode_hashtable __read_mostly;
61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
62
63 /*
64 * Empty aops. Can be used for the cases where the user does not
65 * define any of the address_space operations.
66 */
67 const struct address_space_operations empty_aops = {
68 };
69 EXPORT_SYMBOL(empty_aops);
70
71 /*
72 * Statistics gathering..
73 */
74 struct inodes_stat_t inodes_stat;
75
76 static DEFINE_PER_CPU(unsigned long, nr_inodes);
77 static DEFINE_PER_CPU(unsigned long, nr_unused);
78
79 static struct kmem_cache *inode_cachep __read_mostly;
80
get_nr_inodes(void)81 static long get_nr_inodes(void)
82 {
83 int i;
84 long sum = 0;
85 for_each_possible_cpu(i)
86 sum += per_cpu(nr_inodes, i);
87 return sum < 0 ? 0 : sum;
88 }
89
get_nr_inodes_unused(void)90 static inline long get_nr_inodes_unused(void)
91 {
92 int i;
93 long sum = 0;
94 for_each_possible_cpu(i)
95 sum += per_cpu(nr_unused, i);
96 return sum < 0 ? 0 : sum;
97 }
98
get_nr_dirty_inodes(void)99 long get_nr_dirty_inodes(void)
100 {
101 /* not actually dirty inodes, but a wild approximation */
102 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
103 return nr_dirty > 0 ? nr_dirty : 0;
104 }
105
106 /*
107 * Handle nr_inode sysctl
108 */
109 #ifdef CONFIG_SYSCTL
proc_nr_inodes(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)110 int proc_nr_inodes(struct ctl_table *table, int write,
111 void *buffer, size_t *lenp, loff_t *ppos)
112 {
113 inodes_stat.nr_inodes = get_nr_inodes();
114 inodes_stat.nr_unused = get_nr_inodes_unused();
115 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
116 }
117 #endif
118
no_open(struct inode * inode,struct file * file)119 static int no_open(struct inode *inode, struct file *file)
120 {
121 return -ENXIO;
122 }
123
124 /**
125 * inode_init_always - perform inode structure initialisation
126 * @sb: superblock inode belongs to
127 * @inode: inode to initialise
128 *
129 * These are initializations that need to be done on every inode
130 * allocation as the fields are not initialised by slab allocation.
131 */
inode_init_always(struct super_block * sb,struct inode * inode)132 int inode_init_always(struct super_block *sb, struct inode *inode)
133 {
134 static const struct inode_operations empty_iops;
135 static const struct file_operations no_open_fops = {.open = no_open};
136 struct address_space *const mapping = &inode->i_data;
137
138 inode->i_sb = sb;
139 inode->i_blkbits = sb->s_blocksize_bits;
140 inode->i_flags = 0;
141 atomic64_set(&inode->i_sequence, 0);
142 atomic_set(&inode->i_count, 1);
143 inode->i_op = &empty_iops;
144 inode->i_fop = &no_open_fops;
145 inode->__i_nlink = 1;
146 inode->i_opflags = 0;
147 if (sb->s_xattr)
148 inode->i_opflags |= IOP_XATTR;
149 i_uid_write(inode, 0);
150 i_gid_write(inode, 0);
151 atomic_set(&inode->i_writecount, 0);
152 inode->i_size = 0;
153 inode->i_write_hint = WRITE_LIFE_NOT_SET;
154 inode->i_blocks = 0;
155 inode->i_bytes = 0;
156 inode->i_generation = 0;
157 inode->i_pipe = NULL;
158 inode->i_bdev = NULL;
159 inode->i_cdev = NULL;
160 inode->i_link = NULL;
161 inode->i_dir_seq = 0;
162 inode->i_rdev = 0;
163 inode->dirtied_when = 0;
164
165 #ifdef CONFIG_CGROUP_WRITEBACK
166 inode->i_wb_frn_winner = 0;
167 inode->i_wb_frn_avg_time = 0;
168 inode->i_wb_frn_history = 0;
169 #endif
170
171 spin_lock_init(&inode->i_lock);
172 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
173
174 init_rwsem(&inode->i_rwsem);
175 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
176
177 atomic_set(&inode->i_dio_count, 0);
178
179 mapping->a_ops = &empty_aops;
180 mapping->host = inode;
181 mapping->flags = 0;
182 if (sb->s_type->fs_flags & FS_THP_SUPPORT)
183 __set_bit(AS_THP_SUPPORT, &mapping->flags);
184 mapping->wb_err = 0;
185 atomic_set(&mapping->i_mmap_writable, 0);
186 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
187 atomic_set(&mapping->nr_thps, 0);
188 #endif
189 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
190 mapping->private_data = NULL;
191 mapping->writeback_index = 0;
192 inode->i_private = NULL;
193 inode->i_mapping = mapping;
194 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
195 #ifdef CONFIG_FS_POSIX_ACL
196 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
197 #endif
198
199 #ifdef CONFIG_FSNOTIFY
200 inode->i_fsnotify_mask = 0;
201 #endif
202 inode->i_flctx = NULL;
203
204 if (unlikely(security_inode_alloc(inode)))
205 return -ENOMEM;
206 this_cpu_inc(nr_inodes);
207
208 return 0;
209 }
210 EXPORT_SYMBOL(inode_init_always);
211
free_inode_nonrcu(struct inode * inode)212 void free_inode_nonrcu(struct inode *inode)
213 {
214 kmem_cache_free(inode_cachep, inode);
215 }
216 EXPORT_SYMBOL(free_inode_nonrcu);
217
i_callback(struct rcu_head * head)218 static void i_callback(struct rcu_head *head)
219 {
220 struct inode *inode = container_of(head, struct inode, i_rcu);
221 if (inode->free_inode)
222 inode->free_inode(inode);
223 else
224 free_inode_nonrcu(inode);
225 }
226
alloc_inode(struct super_block * sb)227 static struct inode *alloc_inode(struct super_block *sb)
228 {
229 const struct super_operations *ops = sb->s_op;
230 struct inode *inode;
231
232 if (ops->alloc_inode)
233 inode = ops->alloc_inode(sb);
234 else
235 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
236
237 if (!inode)
238 return NULL;
239
240 if (unlikely(inode_init_always(sb, inode))) {
241 if (ops->destroy_inode) {
242 ops->destroy_inode(inode);
243 if (!ops->free_inode)
244 return NULL;
245 }
246 inode->free_inode = ops->free_inode;
247 i_callback(&inode->i_rcu);
248 return NULL;
249 }
250
251 return inode;
252 }
253
__destroy_inode(struct inode * inode)254 void __destroy_inode(struct inode *inode)
255 {
256 BUG_ON(inode_has_buffers(inode));
257 inode_detach_wb(inode);
258 security_inode_free(inode);
259 fsnotify_inode_delete(inode);
260 locks_free_lock_context(inode);
261 if (!inode->i_nlink) {
262 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
263 atomic_long_dec(&inode->i_sb->s_remove_count);
264 }
265
266 #ifdef CONFIG_FS_POSIX_ACL
267 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
268 posix_acl_release(inode->i_acl);
269 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
270 posix_acl_release(inode->i_default_acl);
271 #endif
272 this_cpu_dec(nr_inodes);
273 }
274 EXPORT_SYMBOL(__destroy_inode);
275
destroy_inode(struct inode * inode)276 static void destroy_inode(struct inode *inode)
277 {
278 const struct super_operations *ops = inode->i_sb->s_op;
279
280 BUG_ON(!list_empty(&inode->i_lru));
281 __destroy_inode(inode);
282 if (ops->destroy_inode) {
283 ops->destroy_inode(inode);
284 if (!ops->free_inode)
285 return;
286 }
287 inode->free_inode = ops->free_inode;
288 call_rcu(&inode->i_rcu, i_callback);
289 }
290
291 /**
292 * drop_nlink - directly drop an inode's link count
293 * @inode: inode
294 *
295 * This is a low-level filesystem helper to replace any
296 * direct filesystem manipulation of i_nlink. In cases
297 * where we are attempting to track writes to the
298 * filesystem, a decrement to zero means an imminent
299 * write when the file is truncated and actually unlinked
300 * on the filesystem.
301 */
drop_nlink(struct inode * inode)302 void drop_nlink(struct inode *inode)
303 {
304 WARN_ON(inode->i_nlink == 0);
305 inode->__i_nlink--;
306 if (!inode->i_nlink)
307 atomic_long_inc(&inode->i_sb->s_remove_count);
308 }
309 EXPORT_SYMBOL_NS(drop_nlink, ANDROID_GKI_VFS_EXPORT_ONLY);
310
311 /**
312 * clear_nlink - directly zero an inode's link count
313 * @inode: inode
314 *
315 * This is a low-level filesystem helper to replace any
316 * direct filesystem manipulation of i_nlink. See
317 * drop_nlink() for why we care about i_nlink hitting zero.
318 */
clear_nlink(struct inode * inode)319 void clear_nlink(struct inode *inode)
320 {
321 if (inode->i_nlink) {
322 inode->__i_nlink = 0;
323 atomic_long_inc(&inode->i_sb->s_remove_count);
324 }
325 }
326 EXPORT_SYMBOL(clear_nlink);
327
328 /**
329 * set_nlink - directly set an inode's link count
330 * @inode: inode
331 * @nlink: new nlink (should be non-zero)
332 *
333 * This is a low-level filesystem helper to replace any
334 * direct filesystem manipulation of i_nlink.
335 */
set_nlink(struct inode * inode,unsigned int nlink)336 void set_nlink(struct inode *inode, unsigned int nlink)
337 {
338 if (!nlink) {
339 clear_nlink(inode);
340 } else {
341 /* Yes, some filesystems do change nlink from zero to one */
342 if (inode->i_nlink == 0)
343 atomic_long_dec(&inode->i_sb->s_remove_count);
344
345 inode->__i_nlink = nlink;
346 }
347 }
348 EXPORT_SYMBOL_NS(set_nlink, ANDROID_GKI_VFS_EXPORT_ONLY);
349
350 /**
351 * inc_nlink - directly increment an inode's link count
352 * @inode: inode
353 *
354 * This is a low-level filesystem helper to replace any
355 * direct filesystem manipulation of i_nlink. Currently,
356 * it is only here for parity with dec_nlink().
357 */
inc_nlink(struct inode * inode)358 void inc_nlink(struct inode *inode)
359 {
360 if (unlikely(inode->i_nlink == 0)) {
361 WARN_ON(!(inode->i_state & I_LINKABLE));
362 atomic_long_dec(&inode->i_sb->s_remove_count);
363 }
364
365 inode->__i_nlink++;
366 }
367 EXPORT_SYMBOL(inc_nlink);
368
__address_space_init_once(struct address_space * mapping)369 static void __address_space_init_once(struct address_space *mapping)
370 {
371 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
372 init_rwsem(&mapping->i_mmap_rwsem);
373 INIT_LIST_HEAD(&mapping->private_list);
374 spin_lock_init(&mapping->private_lock);
375 mapping->i_mmap = RB_ROOT_CACHED;
376 }
377
address_space_init_once(struct address_space * mapping)378 void address_space_init_once(struct address_space *mapping)
379 {
380 memset(mapping, 0, sizeof(*mapping));
381 __address_space_init_once(mapping);
382 }
383 EXPORT_SYMBOL(address_space_init_once);
384
385 /*
386 * These are initializations that only need to be done
387 * once, because the fields are idempotent across use
388 * of the inode, so let the slab aware of that.
389 */
inode_init_once(struct inode * inode)390 void inode_init_once(struct inode *inode)
391 {
392 memset(inode, 0, sizeof(*inode));
393 INIT_HLIST_NODE(&inode->i_hash);
394 INIT_LIST_HEAD(&inode->i_devices);
395 INIT_LIST_HEAD(&inode->i_io_list);
396 INIT_LIST_HEAD(&inode->i_wb_list);
397 INIT_LIST_HEAD(&inode->i_lru);
398 __address_space_init_once(&inode->i_data);
399 i_size_ordered_init(inode);
400 }
401 EXPORT_SYMBOL_NS(inode_init_once, ANDROID_GKI_VFS_EXPORT_ONLY);
402
init_once(void * foo)403 static void init_once(void *foo)
404 {
405 struct inode *inode = (struct inode *) foo;
406
407 inode_init_once(inode);
408 }
409
410 /*
411 * inode->i_lock must be held
412 */
__iget(struct inode * inode)413 void __iget(struct inode *inode)
414 {
415 atomic_inc(&inode->i_count);
416 }
417
418 /*
419 * get additional reference to inode; caller must already hold one.
420 */
ihold(struct inode * inode)421 void ihold(struct inode *inode)
422 {
423 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
424 }
425 EXPORT_SYMBOL_NS(ihold, ANDROID_GKI_VFS_EXPORT_ONLY);
426
inode_lru_list_add(struct inode * inode)427 static void inode_lru_list_add(struct inode *inode)
428 {
429 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
430 this_cpu_inc(nr_unused);
431 else
432 inode->i_state |= I_REFERENCED;
433 }
434
435 /*
436 * Add inode to LRU if needed (inode is unused and clean).
437 *
438 * Needs inode->i_lock held.
439 */
inode_add_lru(struct inode * inode)440 void inode_add_lru(struct inode *inode)
441 {
442 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
443 I_FREEING | I_WILL_FREE)) &&
444 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
445 inode_lru_list_add(inode);
446 }
447
448
inode_lru_list_del(struct inode * inode)449 static void inode_lru_list_del(struct inode *inode)
450 {
451
452 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
453 this_cpu_dec(nr_unused);
454 }
455
456 /**
457 * inode_sb_list_add - add inode to the superblock list of inodes
458 * @inode: inode to add
459 */
inode_sb_list_add(struct inode * inode)460 void inode_sb_list_add(struct inode *inode)
461 {
462 spin_lock(&inode->i_sb->s_inode_list_lock);
463 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
464 spin_unlock(&inode->i_sb->s_inode_list_lock);
465 }
466 EXPORT_SYMBOL_GPL(inode_sb_list_add);
467
inode_sb_list_del(struct inode * inode)468 static inline void inode_sb_list_del(struct inode *inode)
469 {
470 if (!list_empty(&inode->i_sb_list)) {
471 spin_lock(&inode->i_sb->s_inode_list_lock);
472 list_del_init(&inode->i_sb_list);
473 spin_unlock(&inode->i_sb->s_inode_list_lock);
474 }
475 }
476
hash(struct super_block * sb,unsigned long hashval)477 static unsigned long hash(struct super_block *sb, unsigned long hashval)
478 {
479 unsigned long tmp;
480
481 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
482 L1_CACHE_BYTES;
483 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
484 return tmp & i_hash_mask;
485 }
486
487 /**
488 * __insert_inode_hash - hash an inode
489 * @inode: unhashed inode
490 * @hashval: unsigned long value used to locate this object in the
491 * inode_hashtable.
492 *
493 * Add an inode to the inode hash for this superblock.
494 */
__insert_inode_hash(struct inode * inode,unsigned long hashval)495 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
496 {
497 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
498
499 spin_lock(&inode_hash_lock);
500 spin_lock(&inode->i_lock);
501 hlist_add_head_rcu(&inode->i_hash, b);
502 spin_unlock(&inode->i_lock);
503 spin_unlock(&inode_hash_lock);
504 }
505 EXPORT_SYMBOL_NS(__insert_inode_hash, ANDROID_GKI_VFS_EXPORT_ONLY);
506
507 /**
508 * __remove_inode_hash - remove an inode from the hash
509 * @inode: inode to unhash
510 *
511 * Remove an inode from the superblock.
512 */
__remove_inode_hash(struct inode * inode)513 void __remove_inode_hash(struct inode *inode)
514 {
515 spin_lock(&inode_hash_lock);
516 spin_lock(&inode->i_lock);
517 hlist_del_init_rcu(&inode->i_hash);
518 spin_unlock(&inode->i_lock);
519 spin_unlock(&inode_hash_lock);
520 }
521 EXPORT_SYMBOL_NS(__remove_inode_hash, ANDROID_GKI_VFS_EXPORT_ONLY);
522
clear_inode(struct inode * inode)523 void clear_inode(struct inode *inode)
524 {
525 /*
526 * We have to cycle the i_pages lock here because reclaim can be in the
527 * process of removing the last page (in __delete_from_page_cache())
528 * and we must not free the mapping under it.
529 */
530 xa_lock_irq(&inode->i_data.i_pages);
531 BUG_ON(inode->i_data.nrpages);
532 BUG_ON(inode->i_data.nrexceptional);
533 xa_unlock_irq(&inode->i_data.i_pages);
534 BUG_ON(!list_empty(&inode->i_data.private_list));
535 BUG_ON(!(inode->i_state & I_FREEING));
536 BUG_ON(inode->i_state & I_CLEAR);
537 BUG_ON(!list_empty(&inode->i_wb_list));
538 /* don't need i_lock here, no concurrent mods to i_state */
539 inode->i_state = I_FREEING | I_CLEAR;
540 }
541 EXPORT_SYMBOL_NS(clear_inode, ANDROID_GKI_VFS_EXPORT_ONLY);
542
543 /*
544 * Free the inode passed in, removing it from the lists it is still connected
545 * to. We remove any pages still attached to the inode and wait for any IO that
546 * is still in progress before finally destroying the inode.
547 *
548 * An inode must already be marked I_FREEING so that we avoid the inode being
549 * moved back onto lists if we race with other code that manipulates the lists
550 * (e.g. writeback_single_inode). The caller is responsible for setting this.
551 *
552 * An inode must already be removed from the LRU list before being evicted from
553 * the cache. This should occur atomically with setting the I_FREEING state
554 * flag, so no inodes here should ever be on the LRU when being evicted.
555 */
evict(struct inode * inode)556 static void evict(struct inode *inode)
557 {
558 const struct super_operations *op = inode->i_sb->s_op;
559
560 BUG_ON(!(inode->i_state & I_FREEING));
561 BUG_ON(!list_empty(&inode->i_lru));
562
563 if (!list_empty(&inode->i_io_list))
564 inode_io_list_del(inode);
565
566 inode_sb_list_del(inode);
567
568 /*
569 * Wait for flusher thread to be done with the inode so that filesystem
570 * does not start destroying it while writeback is still running. Since
571 * the inode has I_FREEING set, flusher thread won't start new work on
572 * the inode. We just have to wait for running writeback to finish.
573 */
574 inode_wait_for_writeback(inode);
575
576 if (op->evict_inode) {
577 op->evict_inode(inode);
578 } else {
579 truncate_inode_pages_final(&inode->i_data);
580 clear_inode(inode);
581 }
582 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
583 bd_forget(inode);
584 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
585 cd_forget(inode);
586
587 remove_inode_hash(inode);
588
589 spin_lock(&inode->i_lock);
590 wake_up_bit(&inode->i_state, __I_NEW);
591 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
592 spin_unlock(&inode->i_lock);
593
594 destroy_inode(inode);
595 }
596
597 /*
598 * dispose_list - dispose of the contents of a local list
599 * @head: the head of the list to free
600 *
601 * Dispose-list gets a local list with local inodes in it, so it doesn't
602 * need to worry about list corruption and SMP locks.
603 */
dispose_list(struct list_head * head)604 static void dispose_list(struct list_head *head)
605 {
606 while (!list_empty(head)) {
607 struct inode *inode;
608
609 inode = list_first_entry(head, struct inode, i_lru);
610 list_del_init(&inode->i_lru);
611
612 evict(inode);
613 cond_resched();
614 }
615 }
616
617 /**
618 * evict_inodes - evict all evictable inodes for a superblock
619 * @sb: superblock to operate on
620 *
621 * Make sure that no inodes with zero refcount are retained. This is
622 * called by superblock shutdown after having SB_ACTIVE flag removed,
623 * so any inode reaching zero refcount during or after that call will
624 * be immediately evicted.
625 */
evict_inodes(struct super_block * sb)626 void evict_inodes(struct super_block *sb)
627 {
628 struct inode *inode, *next;
629 LIST_HEAD(dispose);
630
631 again:
632 spin_lock(&sb->s_inode_list_lock);
633 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
634 if (atomic_read(&inode->i_count))
635 continue;
636
637 spin_lock(&inode->i_lock);
638 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
639 spin_unlock(&inode->i_lock);
640 continue;
641 }
642
643 inode->i_state |= I_FREEING;
644 inode_lru_list_del(inode);
645 spin_unlock(&inode->i_lock);
646 list_add(&inode->i_lru, &dispose);
647
648 /*
649 * We can have a ton of inodes to evict at unmount time given
650 * enough memory, check to see if we need to go to sleep for a
651 * bit so we don't livelock.
652 */
653 if (need_resched()) {
654 spin_unlock(&sb->s_inode_list_lock);
655 cond_resched();
656 dispose_list(&dispose);
657 goto again;
658 }
659 }
660 spin_unlock(&sb->s_inode_list_lock);
661
662 dispose_list(&dispose);
663 }
664 EXPORT_SYMBOL_GPL(evict_inodes);
665
666 /**
667 * invalidate_inodes - attempt to free all inodes on a superblock
668 * @sb: superblock to operate on
669 * @kill_dirty: flag to guide handling of dirty inodes
670 *
671 * Attempts to free all inodes for a given superblock. If there were any
672 * busy inodes return a non-zero value, else zero.
673 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
674 * them as busy.
675 */
invalidate_inodes(struct super_block * sb,bool kill_dirty)676 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
677 {
678 int busy = 0;
679 struct inode *inode, *next;
680 LIST_HEAD(dispose);
681
682 again:
683 spin_lock(&sb->s_inode_list_lock);
684 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
685 spin_lock(&inode->i_lock);
686 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
687 spin_unlock(&inode->i_lock);
688 continue;
689 }
690 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
691 spin_unlock(&inode->i_lock);
692 busy = 1;
693 continue;
694 }
695 if (atomic_read(&inode->i_count)) {
696 spin_unlock(&inode->i_lock);
697 busy = 1;
698 continue;
699 }
700
701 inode->i_state |= I_FREEING;
702 inode_lru_list_del(inode);
703 spin_unlock(&inode->i_lock);
704 list_add(&inode->i_lru, &dispose);
705 if (need_resched()) {
706 spin_unlock(&sb->s_inode_list_lock);
707 cond_resched();
708 dispose_list(&dispose);
709 goto again;
710 }
711 }
712 spin_unlock(&sb->s_inode_list_lock);
713
714 dispose_list(&dispose);
715
716 return busy;
717 }
718
719 /*
720 * Isolate the inode from the LRU in preparation for freeing it.
721 *
722 * Any inodes which are pinned purely because of attached pagecache have their
723 * pagecache removed. If the inode has metadata buffers attached to
724 * mapping->private_list then try to remove them.
725 *
726 * If the inode has the I_REFERENCED flag set, then it means that it has been
727 * used recently - the flag is set in iput_final(). When we encounter such an
728 * inode, clear the flag and move it to the back of the LRU so it gets another
729 * pass through the LRU before it gets reclaimed. This is necessary because of
730 * the fact we are doing lazy LRU updates to minimise lock contention so the
731 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
732 * with this flag set because they are the inodes that are out of order.
733 */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)734 static enum lru_status inode_lru_isolate(struct list_head *item,
735 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
736 {
737 struct list_head *freeable = arg;
738 struct inode *inode = container_of(item, struct inode, i_lru);
739
740 /*
741 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
742 * If we fail to get the lock, just skip it.
743 */
744 if (!spin_trylock(&inode->i_lock))
745 return LRU_SKIP;
746
747 /*
748 * Referenced or dirty inodes are still in use. Give them another pass
749 * through the LRU as we canot reclaim them now.
750 */
751 if (atomic_read(&inode->i_count) ||
752 (inode->i_state & ~I_REFERENCED)) {
753 list_lru_isolate(lru, &inode->i_lru);
754 spin_unlock(&inode->i_lock);
755 this_cpu_dec(nr_unused);
756 return LRU_REMOVED;
757 }
758
759 /* recently referenced inodes get one more pass */
760 if (inode->i_state & I_REFERENCED) {
761 inode->i_state &= ~I_REFERENCED;
762 spin_unlock(&inode->i_lock);
763 return LRU_ROTATE;
764 }
765
766 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
767 __iget(inode);
768 spin_unlock(&inode->i_lock);
769 spin_unlock(lru_lock);
770 if (remove_inode_buffers(inode)) {
771 unsigned long reap;
772 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
773 if (current_is_kswapd())
774 __count_vm_events(KSWAPD_INODESTEAL, reap);
775 else
776 __count_vm_events(PGINODESTEAL, reap);
777 if (current->reclaim_state)
778 current->reclaim_state->reclaimed_slab += reap;
779 }
780 iput(inode);
781 spin_lock(lru_lock);
782 return LRU_RETRY;
783 }
784
785 WARN_ON(inode->i_state & I_NEW);
786 inode->i_state |= I_FREEING;
787 list_lru_isolate_move(lru, &inode->i_lru, freeable);
788 spin_unlock(&inode->i_lock);
789
790 this_cpu_dec(nr_unused);
791 return LRU_REMOVED;
792 }
793
794 /*
795 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
796 * This is called from the superblock shrinker function with a number of inodes
797 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
798 * then are freed outside inode_lock by dispose_list().
799 */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)800 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
801 {
802 LIST_HEAD(freeable);
803 long freed;
804
805 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
806 inode_lru_isolate, &freeable);
807 dispose_list(&freeable);
808 return freed;
809 }
810
811 static void __wait_on_freeing_inode(struct inode *inode);
812 /*
813 * Called with the inode lock held.
814 */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)815 static struct inode *find_inode(struct super_block *sb,
816 struct hlist_head *head,
817 int (*test)(struct inode *, void *),
818 void *data)
819 {
820 struct inode *inode = NULL;
821
822 repeat:
823 hlist_for_each_entry(inode, head, i_hash) {
824 if (inode->i_sb != sb)
825 continue;
826 if (!test(inode, data))
827 continue;
828 spin_lock(&inode->i_lock);
829 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
830 __wait_on_freeing_inode(inode);
831 goto repeat;
832 }
833 if (unlikely(inode->i_state & I_CREATING)) {
834 spin_unlock(&inode->i_lock);
835 return ERR_PTR(-ESTALE);
836 }
837 __iget(inode);
838 spin_unlock(&inode->i_lock);
839 return inode;
840 }
841 return NULL;
842 }
843
844 /*
845 * find_inode_fast is the fast path version of find_inode, see the comment at
846 * iget_locked for details.
847 */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)848 static struct inode *find_inode_fast(struct super_block *sb,
849 struct hlist_head *head, unsigned long ino)
850 {
851 struct inode *inode = NULL;
852
853 repeat:
854 hlist_for_each_entry(inode, head, i_hash) {
855 if (inode->i_ino != ino)
856 continue;
857 if (inode->i_sb != sb)
858 continue;
859 spin_lock(&inode->i_lock);
860 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
861 __wait_on_freeing_inode(inode);
862 goto repeat;
863 }
864 if (unlikely(inode->i_state & I_CREATING)) {
865 spin_unlock(&inode->i_lock);
866 return ERR_PTR(-ESTALE);
867 }
868 __iget(inode);
869 spin_unlock(&inode->i_lock);
870 return inode;
871 }
872 return NULL;
873 }
874
875 /*
876 * Each cpu owns a range of LAST_INO_BATCH numbers.
877 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
878 * to renew the exhausted range.
879 *
880 * This does not significantly increase overflow rate because every CPU can
881 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
882 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
883 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
884 * overflow rate by 2x, which does not seem too significant.
885 *
886 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
887 * error if st_ino won't fit in target struct field. Use 32bit counter
888 * here to attempt to avoid that.
889 */
890 #define LAST_INO_BATCH 1024
891 static DEFINE_PER_CPU(unsigned int, last_ino);
892
get_next_ino(void)893 unsigned int get_next_ino(void)
894 {
895 unsigned int *p = &get_cpu_var(last_ino);
896 unsigned int res = *p;
897
898 #ifdef CONFIG_SMP
899 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
900 static atomic_t shared_last_ino;
901 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
902
903 res = next - LAST_INO_BATCH;
904 }
905 #endif
906
907 res++;
908 /* get_next_ino should not provide a 0 inode number */
909 if (unlikely(!res))
910 res++;
911 *p = res;
912 put_cpu_var(last_ino);
913 return res;
914 }
915 EXPORT_SYMBOL(get_next_ino);
916
917 /**
918 * new_inode_pseudo - obtain an inode
919 * @sb: superblock
920 *
921 * Allocates a new inode for given superblock.
922 * Inode wont be chained in superblock s_inodes list
923 * This means :
924 * - fs can't be unmount
925 * - quotas, fsnotify, writeback can't work
926 */
new_inode_pseudo(struct super_block * sb)927 struct inode *new_inode_pseudo(struct super_block *sb)
928 {
929 struct inode *inode = alloc_inode(sb);
930
931 if (inode) {
932 spin_lock(&inode->i_lock);
933 inode->i_state = 0;
934 spin_unlock(&inode->i_lock);
935 INIT_LIST_HEAD(&inode->i_sb_list);
936 }
937 return inode;
938 }
939
940 /**
941 * new_inode - obtain an inode
942 * @sb: superblock
943 *
944 * Allocates a new inode for given superblock. The default gfp_mask
945 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
946 * If HIGHMEM pages are unsuitable or it is known that pages allocated
947 * for the page cache are not reclaimable or migratable,
948 * mapping_set_gfp_mask() must be called with suitable flags on the
949 * newly created inode's mapping
950 *
951 */
new_inode(struct super_block * sb)952 struct inode *new_inode(struct super_block *sb)
953 {
954 struct inode *inode;
955
956 spin_lock_prefetch(&sb->s_inode_list_lock);
957
958 inode = new_inode_pseudo(sb);
959 if (inode)
960 inode_sb_list_add(inode);
961 return inode;
962 }
963 EXPORT_SYMBOL(new_inode);
964
965 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)966 void lockdep_annotate_inode_mutex_key(struct inode *inode)
967 {
968 if (S_ISDIR(inode->i_mode)) {
969 struct file_system_type *type = inode->i_sb->s_type;
970
971 /* Set new key only if filesystem hasn't already changed it */
972 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
973 /*
974 * ensure nobody is actually holding i_mutex
975 */
976 // mutex_destroy(&inode->i_mutex);
977 init_rwsem(&inode->i_rwsem);
978 lockdep_set_class(&inode->i_rwsem,
979 &type->i_mutex_dir_key);
980 }
981 }
982 }
983 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
984 #endif
985
986 /**
987 * unlock_new_inode - clear the I_NEW state and wake up any waiters
988 * @inode: new inode to unlock
989 *
990 * Called when the inode is fully initialised to clear the new state of the
991 * inode and wake up anyone waiting for the inode to finish initialisation.
992 */
unlock_new_inode(struct inode * inode)993 void unlock_new_inode(struct inode *inode)
994 {
995 lockdep_annotate_inode_mutex_key(inode);
996 spin_lock(&inode->i_lock);
997 WARN_ON(!(inode->i_state & I_NEW));
998 inode->i_state &= ~I_NEW & ~I_CREATING;
999 smp_mb();
1000 wake_up_bit(&inode->i_state, __I_NEW);
1001 spin_unlock(&inode->i_lock);
1002 }
1003 EXPORT_SYMBOL_NS(unlock_new_inode, ANDROID_GKI_VFS_EXPORT_ONLY);
1004
discard_new_inode(struct inode * inode)1005 void discard_new_inode(struct inode *inode)
1006 {
1007 lockdep_annotate_inode_mutex_key(inode);
1008 spin_lock(&inode->i_lock);
1009 WARN_ON(!(inode->i_state & I_NEW));
1010 inode->i_state &= ~I_NEW;
1011 smp_mb();
1012 wake_up_bit(&inode->i_state, __I_NEW);
1013 spin_unlock(&inode->i_lock);
1014 iput(inode);
1015 }
1016 EXPORT_SYMBOL(discard_new_inode);
1017
1018 /**
1019 * lock_two_inodes - lock two inodes (may be regular files but also dirs)
1020 *
1021 * Lock any non-NULL argument. The caller must make sure that if he is passing
1022 * in two directories, one is not ancestor of the other. Zero, one or two
1023 * objects may be locked by this function.
1024 *
1025 * @inode1: first inode to lock
1026 * @inode2: second inode to lock
1027 * @subclass1: inode lock subclass for the first lock obtained
1028 * @subclass2: inode lock subclass for the second lock obtained
1029 */
lock_two_inodes(struct inode * inode1,struct inode * inode2,unsigned subclass1,unsigned subclass2)1030 void lock_two_inodes(struct inode *inode1, struct inode *inode2,
1031 unsigned subclass1, unsigned subclass2)
1032 {
1033 if (!inode1 || !inode2) {
1034 /*
1035 * Make sure @subclass1 will be used for the acquired lock.
1036 * This is not strictly necessary (no current caller cares) but
1037 * let's keep things consistent.
1038 */
1039 if (!inode1)
1040 swap(inode1, inode2);
1041 goto lock;
1042 }
1043
1044 /*
1045 * If one object is directory and the other is not, we must make sure
1046 * to lock directory first as the other object may be its child.
1047 */
1048 if (S_ISDIR(inode2->i_mode) == S_ISDIR(inode1->i_mode)) {
1049 if (inode1 > inode2)
1050 swap(inode1, inode2);
1051 } else if (!S_ISDIR(inode1->i_mode))
1052 swap(inode1, inode2);
1053 lock:
1054 if (inode1)
1055 inode_lock_nested(inode1, subclass1);
1056 if (inode2 && inode2 != inode1)
1057 inode_lock_nested(inode2, subclass2);
1058 }
1059
1060 /**
1061 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1062 *
1063 * Lock any non-NULL argument that is not a directory.
1064 * Zero, one or two objects may be locked by this function.
1065 *
1066 * @inode1: first inode to lock
1067 * @inode2: second inode to lock
1068 */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1069 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1070 {
1071 if (inode1 > inode2)
1072 swap(inode1, inode2);
1073
1074 if (inode1 && !S_ISDIR(inode1->i_mode))
1075 inode_lock(inode1);
1076 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1077 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1078 }
1079 EXPORT_SYMBOL(lock_two_nondirectories);
1080
1081 /**
1082 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1083 * @inode1: first inode to unlock
1084 * @inode2: second inode to unlock
1085 */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1086 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1087 {
1088 if (inode1 && !S_ISDIR(inode1->i_mode))
1089 inode_unlock(inode1);
1090 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1091 inode_unlock(inode2);
1092 }
1093 EXPORT_SYMBOL(unlock_two_nondirectories);
1094
1095 /**
1096 * inode_insert5 - obtain an inode from a mounted file system
1097 * @inode: pre-allocated inode to use for insert to cache
1098 * @hashval: hash value (usually inode number) to get
1099 * @test: callback used for comparisons between inodes
1100 * @set: callback used to initialize a new struct inode
1101 * @data: opaque data pointer to pass to @test and @set
1102 *
1103 * Search for the inode specified by @hashval and @data in the inode cache,
1104 * and if present it is return it with an increased reference count. This is
1105 * a variant of iget5_locked() for callers that don't want to fail on memory
1106 * allocation of inode.
1107 *
1108 * If the inode is not in cache, insert the pre-allocated inode to cache and
1109 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1110 * to fill it in before unlocking it via unlock_new_inode().
1111 *
1112 * Note both @test and @set are called with the inode_hash_lock held, so can't
1113 * sleep.
1114 */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1115 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1116 int (*test)(struct inode *, void *),
1117 int (*set)(struct inode *, void *), void *data)
1118 {
1119 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1120 struct inode *old;
1121 bool creating = inode->i_state & I_CREATING;
1122
1123 again:
1124 spin_lock(&inode_hash_lock);
1125 old = find_inode(inode->i_sb, head, test, data);
1126 if (unlikely(old)) {
1127 /*
1128 * Uhhuh, somebody else created the same inode under us.
1129 * Use the old inode instead of the preallocated one.
1130 */
1131 spin_unlock(&inode_hash_lock);
1132 if (IS_ERR(old))
1133 return NULL;
1134 wait_on_inode(old);
1135 if (unlikely(inode_unhashed(old))) {
1136 iput(old);
1137 goto again;
1138 }
1139 return old;
1140 }
1141
1142 if (set && unlikely(set(inode, data))) {
1143 inode = NULL;
1144 goto unlock;
1145 }
1146
1147 /*
1148 * Return the locked inode with I_NEW set, the
1149 * caller is responsible for filling in the contents
1150 */
1151 spin_lock(&inode->i_lock);
1152 inode->i_state |= I_NEW;
1153 hlist_add_head_rcu(&inode->i_hash, head);
1154 spin_unlock(&inode->i_lock);
1155 if (!creating)
1156 inode_sb_list_add(inode);
1157 unlock:
1158 spin_unlock(&inode_hash_lock);
1159
1160 return inode;
1161 }
1162 EXPORT_SYMBOL(inode_insert5);
1163
1164 /**
1165 * iget5_locked - obtain an inode from a mounted file system
1166 * @sb: super block of file system
1167 * @hashval: hash value (usually inode number) to get
1168 * @test: callback used for comparisons between inodes
1169 * @set: callback used to initialize a new struct inode
1170 * @data: opaque data pointer to pass to @test and @set
1171 *
1172 * Search for the inode specified by @hashval and @data in the inode cache,
1173 * and if present it is return it with an increased reference count. This is
1174 * a generalized version of iget_locked() for file systems where the inode
1175 * number is not sufficient for unique identification of an inode.
1176 *
1177 * If the inode is not in cache, allocate a new inode and return it locked,
1178 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1179 * before unlocking it via unlock_new_inode().
1180 *
1181 * Note both @test and @set are called with the inode_hash_lock held, so can't
1182 * sleep.
1183 */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1184 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1185 int (*test)(struct inode *, void *),
1186 int (*set)(struct inode *, void *), void *data)
1187 {
1188 struct inode *inode = ilookup5(sb, hashval, test, data);
1189
1190 if (!inode) {
1191 struct inode *new = alloc_inode(sb);
1192
1193 if (new) {
1194 new->i_state = 0;
1195 inode = inode_insert5(new, hashval, test, set, data);
1196 if (unlikely(inode != new))
1197 destroy_inode(new);
1198 }
1199 }
1200 return inode;
1201 }
1202 EXPORT_SYMBOL_NS(iget5_locked, ANDROID_GKI_VFS_EXPORT_ONLY);
1203
1204 /**
1205 * iget_locked - obtain an inode from a mounted file system
1206 * @sb: super block of file system
1207 * @ino: inode number to get
1208 *
1209 * Search for the inode specified by @ino in the inode cache and if present
1210 * return it with an increased reference count. This is for file systems
1211 * where the inode number is sufficient for unique identification of an inode.
1212 *
1213 * If the inode is not in cache, allocate a new inode and return it locked,
1214 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1215 * before unlocking it via unlock_new_inode().
1216 */
iget_locked(struct super_block * sb,unsigned long ino)1217 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1218 {
1219 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1220 struct inode *inode;
1221 again:
1222 spin_lock(&inode_hash_lock);
1223 inode = find_inode_fast(sb, head, ino);
1224 spin_unlock(&inode_hash_lock);
1225 if (inode) {
1226 if (IS_ERR(inode))
1227 return NULL;
1228 wait_on_inode(inode);
1229 if (unlikely(inode_unhashed(inode))) {
1230 iput(inode);
1231 goto again;
1232 }
1233 return inode;
1234 }
1235
1236 inode = alloc_inode(sb);
1237 if (inode) {
1238 struct inode *old;
1239
1240 spin_lock(&inode_hash_lock);
1241 /* We released the lock, so.. */
1242 old = find_inode_fast(sb, head, ino);
1243 if (!old) {
1244 inode->i_ino = ino;
1245 spin_lock(&inode->i_lock);
1246 inode->i_state = I_NEW;
1247 hlist_add_head_rcu(&inode->i_hash, head);
1248 spin_unlock(&inode->i_lock);
1249 inode_sb_list_add(inode);
1250 spin_unlock(&inode_hash_lock);
1251
1252 /* Return the locked inode with I_NEW set, the
1253 * caller is responsible for filling in the contents
1254 */
1255 return inode;
1256 }
1257
1258 /*
1259 * Uhhuh, somebody else created the same inode under
1260 * us. Use the old inode instead of the one we just
1261 * allocated.
1262 */
1263 spin_unlock(&inode_hash_lock);
1264 destroy_inode(inode);
1265 if (IS_ERR(old))
1266 return NULL;
1267 inode = old;
1268 wait_on_inode(inode);
1269 if (unlikely(inode_unhashed(inode))) {
1270 iput(inode);
1271 goto again;
1272 }
1273 }
1274 return inode;
1275 }
1276 EXPORT_SYMBOL(iget_locked);
1277
1278 /*
1279 * search the inode cache for a matching inode number.
1280 * If we find one, then the inode number we are trying to
1281 * allocate is not unique and so we should not use it.
1282 *
1283 * Returns 1 if the inode number is unique, 0 if it is not.
1284 */
test_inode_iunique(struct super_block * sb,unsigned long ino)1285 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1286 {
1287 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1288 struct inode *inode;
1289
1290 hlist_for_each_entry_rcu(inode, b, i_hash) {
1291 if (inode->i_ino == ino && inode->i_sb == sb)
1292 return 0;
1293 }
1294 return 1;
1295 }
1296
1297 /**
1298 * iunique - get a unique inode number
1299 * @sb: superblock
1300 * @max_reserved: highest reserved inode number
1301 *
1302 * Obtain an inode number that is unique on the system for a given
1303 * superblock. This is used by file systems that have no natural
1304 * permanent inode numbering system. An inode number is returned that
1305 * is higher than the reserved limit but unique.
1306 *
1307 * BUGS:
1308 * With a large number of inodes live on the file system this function
1309 * currently becomes quite slow.
1310 */
iunique(struct super_block * sb,ino_t max_reserved)1311 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1312 {
1313 /*
1314 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1315 * error if st_ino won't fit in target struct field. Use 32bit counter
1316 * here to attempt to avoid that.
1317 */
1318 static DEFINE_SPINLOCK(iunique_lock);
1319 static unsigned int counter;
1320 ino_t res;
1321
1322 rcu_read_lock();
1323 spin_lock(&iunique_lock);
1324 do {
1325 if (counter <= max_reserved)
1326 counter = max_reserved + 1;
1327 res = counter++;
1328 } while (!test_inode_iunique(sb, res));
1329 spin_unlock(&iunique_lock);
1330 rcu_read_unlock();
1331
1332 return res;
1333 }
1334 EXPORT_SYMBOL_NS(iunique, ANDROID_GKI_VFS_EXPORT_ONLY);
1335
igrab(struct inode * inode)1336 struct inode *igrab(struct inode *inode)
1337 {
1338 spin_lock(&inode->i_lock);
1339 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1340 __iget(inode);
1341 spin_unlock(&inode->i_lock);
1342 } else {
1343 spin_unlock(&inode->i_lock);
1344 /*
1345 * Handle the case where s_op->clear_inode is not been
1346 * called yet, and somebody is calling igrab
1347 * while the inode is getting freed.
1348 */
1349 inode = NULL;
1350 }
1351 return inode;
1352 }
1353 EXPORT_SYMBOL(igrab);
1354
1355 /**
1356 * ilookup5_nowait - search for an inode in the inode cache
1357 * @sb: super block of file system to search
1358 * @hashval: hash value (usually inode number) to search for
1359 * @test: callback used for comparisons between inodes
1360 * @data: opaque data pointer to pass to @test
1361 *
1362 * Search for the inode specified by @hashval and @data in the inode cache.
1363 * If the inode is in the cache, the inode is returned with an incremented
1364 * reference count.
1365 *
1366 * Note: I_NEW is not waited upon so you have to be very careful what you do
1367 * with the returned inode. You probably should be using ilookup5() instead.
1368 *
1369 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1370 */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1371 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1372 int (*test)(struct inode *, void *), void *data)
1373 {
1374 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1375 struct inode *inode;
1376
1377 spin_lock(&inode_hash_lock);
1378 inode = find_inode(sb, head, test, data);
1379 spin_unlock(&inode_hash_lock);
1380
1381 return IS_ERR(inode) ? NULL : inode;
1382 }
1383 EXPORT_SYMBOL(ilookup5_nowait);
1384
1385 /**
1386 * ilookup5 - search for an inode in the inode cache
1387 * @sb: super block of file system to search
1388 * @hashval: hash value (usually inode number) to search for
1389 * @test: callback used for comparisons between inodes
1390 * @data: opaque data pointer to pass to @test
1391 *
1392 * Search for the inode specified by @hashval and @data in the inode cache,
1393 * and if the inode is in the cache, return the inode with an incremented
1394 * reference count. Waits on I_NEW before returning the inode.
1395 * returned with an incremented reference count.
1396 *
1397 * This is a generalized version of ilookup() for file systems where the
1398 * inode number is not sufficient for unique identification of an inode.
1399 *
1400 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1401 */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1402 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1403 int (*test)(struct inode *, void *), void *data)
1404 {
1405 struct inode *inode;
1406 again:
1407 inode = ilookup5_nowait(sb, hashval, test, data);
1408 if (inode) {
1409 wait_on_inode(inode);
1410 if (unlikely(inode_unhashed(inode))) {
1411 iput(inode);
1412 goto again;
1413 }
1414 }
1415 return inode;
1416 }
1417 EXPORT_SYMBOL_NS(ilookup5, ANDROID_GKI_VFS_EXPORT_ONLY);
1418
1419 /**
1420 * ilookup - search for an inode in the inode cache
1421 * @sb: super block of file system to search
1422 * @ino: inode number to search for
1423 *
1424 * Search for the inode @ino in the inode cache, and if the inode is in the
1425 * cache, the inode is returned with an incremented reference count.
1426 */
ilookup(struct super_block * sb,unsigned long ino)1427 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1428 {
1429 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1430 struct inode *inode;
1431 again:
1432 spin_lock(&inode_hash_lock);
1433 inode = find_inode_fast(sb, head, ino);
1434 spin_unlock(&inode_hash_lock);
1435
1436 if (inode) {
1437 if (IS_ERR(inode))
1438 return NULL;
1439 wait_on_inode(inode);
1440 if (unlikely(inode_unhashed(inode))) {
1441 iput(inode);
1442 goto again;
1443 }
1444 }
1445 return inode;
1446 }
1447 EXPORT_SYMBOL(ilookup);
1448
1449 /**
1450 * find_inode_nowait - find an inode in the inode cache
1451 * @sb: super block of file system to search
1452 * @hashval: hash value (usually inode number) to search for
1453 * @match: callback used for comparisons between inodes
1454 * @data: opaque data pointer to pass to @match
1455 *
1456 * Search for the inode specified by @hashval and @data in the inode
1457 * cache, where the helper function @match will return 0 if the inode
1458 * does not match, 1 if the inode does match, and -1 if the search
1459 * should be stopped. The @match function must be responsible for
1460 * taking the i_lock spin_lock and checking i_state for an inode being
1461 * freed or being initialized, and incrementing the reference count
1462 * before returning 1. It also must not sleep, since it is called with
1463 * the inode_hash_lock spinlock held.
1464 *
1465 * This is a even more generalized version of ilookup5() when the
1466 * function must never block --- find_inode() can block in
1467 * __wait_on_freeing_inode() --- or when the caller can not increment
1468 * the reference count because the resulting iput() might cause an
1469 * inode eviction. The tradeoff is that the @match funtion must be
1470 * very carefully implemented.
1471 */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1472 struct inode *find_inode_nowait(struct super_block *sb,
1473 unsigned long hashval,
1474 int (*match)(struct inode *, unsigned long,
1475 void *),
1476 void *data)
1477 {
1478 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1479 struct inode *inode, *ret_inode = NULL;
1480 int mval;
1481
1482 spin_lock(&inode_hash_lock);
1483 hlist_for_each_entry(inode, head, i_hash) {
1484 if (inode->i_sb != sb)
1485 continue;
1486 mval = match(inode, hashval, data);
1487 if (mval == 0)
1488 continue;
1489 if (mval == 1)
1490 ret_inode = inode;
1491 goto out;
1492 }
1493 out:
1494 spin_unlock(&inode_hash_lock);
1495 return ret_inode;
1496 }
1497 EXPORT_SYMBOL(find_inode_nowait);
1498
1499 /**
1500 * find_inode_rcu - find an inode in the inode cache
1501 * @sb: Super block of file system to search
1502 * @hashval: Key to hash
1503 * @test: Function to test match on an inode
1504 * @data: Data for test function
1505 *
1506 * Search for the inode specified by @hashval and @data in the inode cache,
1507 * where the helper function @test will return 0 if the inode does not match
1508 * and 1 if it does. The @test function must be responsible for taking the
1509 * i_lock spin_lock and checking i_state for an inode being freed or being
1510 * initialized.
1511 *
1512 * If successful, this will return the inode for which the @test function
1513 * returned 1 and NULL otherwise.
1514 *
1515 * The @test function is not permitted to take a ref on any inode presented.
1516 * It is also not permitted to sleep.
1517 *
1518 * The caller must hold the RCU read lock.
1519 */
find_inode_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1520 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1521 int (*test)(struct inode *, void *), void *data)
1522 {
1523 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1524 struct inode *inode;
1525
1526 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1527 "suspicious find_inode_rcu() usage");
1528
1529 hlist_for_each_entry_rcu(inode, head, i_hash) {
1530 if (inode->i_sb == sb &&
1531 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1532 test(inode, data))
1533 return inode;
1534 }
1535 return NULL;
1536 }
1537 EXPORT_SYMBOL(find_inode_rcu);
1538
1539 /**
1540 * find_inode_by_rcu - Find an inode in the inode cache
1541 * @sb: Super block of file system to search
1542 * @ino: The inode number to match
1543 *
1544 * Search for the inode specified by @hashval and @data in the inode cache,
1545 * where the helper function @test will return 0 if the inode does not match
1546 * and 1 if it does. The @test function must be responsible for taking the
1547 * i_lock spin_lock and checking i_state for an inode being freed or being
1548 * initialized.
1549 *
1550 * If successful, this will return the inode for which the @test function
1551 * returned 1 and NULL otherwise.
1552 *
1553 * The @test function is not permitted to take a ref on any inode presented.
1554 * It is also not permitted to sleep.
1555 *
1556 * The caller must hold the RCU read lock.
1557 */
find_inode_by_ino_rcu(struct super_block * sb,unsigned long ino)1558 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1559 unsigned long ino)
1560 {
1561 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1562 struct inode *inode;
1563
1564 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1565 "suspicious find_inode_by_ino_rcu() usage");
1566
1567 hlist_for_each_entry_rcu(inode, head, i_hash) {
1568 if (inode->i_ino == ino &&
1569 inode->i_sb == sb &&
1570 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1571 return inode;
1572 }
1573 return NULL;
1574 }
1575 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1576
insert_inode_locked(struct inode * inode)1577 int insert_inode_locked(struct inode *inode)
1578 {
1579 struct super_block *sb = inode->i_sb;
1580 ino_t ino = inode->i_ino;
1581 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1582
1583 while (1) {
1584 struct inode *old = NULL;
1585 spin_lock(&inode_hash_lock);
1586 hlist_for_each_entry(old, head, i_hash) {
1587 if (old->i_ino != ino)
1588 continue;
1589 if (old->i_sb != sb)
1590 continue;
1591 spin_lock(&old->i_lock);
1592 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1593 spin_unlock(&old->i_lock);
1594 continue;
1595 }
1596 break;
1597 }
1598 if (likely(!old)) {
1599 spin_lock(&inode->i_lock);
1600 inode->i_state |= I_NEW | I_CREATING;
1601 hlist_add_head_rcu(&inode->i_hash, head);
1602 spin_unlock(&inode->i_lock);
1603 spin_unlock(&inode_hash_lock);
1604 return 0;
1605 }
1606 if (unlikely(old->i_state & I_CREATING)) {
1607 spin_unlock(&old->i_lock);
1608 spin_unlock(&inode_hash_lock);
1609 return -EBUSY;
1610 }
1611 __iget(old);
1612 spin_unlock(&old->i_lock);
1613 spin_unlock(&inode_hash_lock);
1614 wait_on_inode(old);
1615 if (unlikely(!inode_unhashed(old))) {
1616 iput(old);
1617 return -EBUSY;
1618 }
1619 iput(old);
1620 }
1621 }
1622 EXPORT_SYMBOL(insert_inode_locked);
1623
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1624 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1625 int (*test)(struct inode *, void *), void *data)
1626 {
1627 struct inode *old;
1628
1629 inode->i_state |= I_CREATING;
1630 old = inode_insert5(inode, hashval, test, NULL, data);
1631
1632 if (old != inode) {
1633 iput(old);
1634 return -EBUSY;
1635 }
1636 return 0;
1637 }
1638 EXPORT_SYMBOL(insert_inode_locked4);
1639
1640
generic_delete_inode(struct inode * inode)1641 int generic_delete_inode(struct inode *inode)
1642 {
1643 return 1;
1644 }
1645 EXPORT_SYMBOL(generic_delete_inode);
1646
1647 /*
1648 * Called when we're dropping the last reference
1649 * to an inode.
1650 *
1651 * Call the FS "drop_inode()" function, defaulting to
1652 * the legacy UNIX filesystem behaviour. If it tells
1653 * us to evict inode, do so. Otherwise, retain inode
1654 * in cache if fs is alive, sync and evict if fs is
1655 * shutting down.
1656 */
iput_final(struct inode * inode)1657 static void iput_final(struct inode *inode)
1658 {
1659 struct super_block *sb = inode->i_sb;
1660 const struct super_operations *op = inode->i_sb->s_op;
1661 unsigned long state;
1662 int drop;
1663
1664 WARN_ON(inode->i_state & I_NEW);
1665
1666 if (op->drop_inode)
1667 drop = op->drop_inode(inode);
1668 else
1669 drop = generic_drop_inode(inode);
1670
1671 if (!drop &&
1672 !(inode->i_state & I_DONTCACHE) &&
1673 (sb->s_flags & SB_ACTIVE)) {
1674 inode_add_lru(inode);
1675 spin_unlock(&inode->i_lock);
1676 return;
1677 }
1678
1679 state = inode->i_state;
1680 if (!drop) {
1681 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1682 spin_unlock(&inode->i_lock);
1683
1684 write_inode_now(inode, 1);
1685
1686 spin_lock(&inode->i_lock);
1687 state = inode->i_state;
1688 WARN_ON(state & I_NEW);
1689 state &= ~I_WILL_FREE;
1690 }
1691
1692 WRITE_ONCE(inode->i_state, state | I_FREEING);
1693 if (!list_empty(&inode->i_lru))
1694 inode_lru_list_del(inode);
1695 spin_unlock(&inode->i_lock);
1696
1697 evict(inode);
1698 }
1699
1700 /**
1701 * iput - put an inode
1702 * @inode: inode to put
1703 *
1704 * Puts an inode, dropping its usage count. If the inode use count hits
1705 * zero, the inode is then freed and may also be destroyed.
1706 *
1707 * Consequently, iput() can sleep.
1708 */
iput(struct inode * inode)1709 void iput(struct inode *inode)
1710 {
1711 if (!inode)
1712 return;
1713 BUG_ON(inode->i_state & I_CLEAR);
1714 retry:
1715 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1716 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1717 atomic_inc(&inode->i_count);
1718 spin_unlock(&inode->i_lock);
1719 trace_writeback_lazytime_iput(inode);
1720 mark_inode_dirty_sync(inode);
1721 goto retry;
1722 }
1723 iput_final(inode);
1724 }
1725 }
1726 EXPORT_SYMBOL(iput);
1727
1728 #ifdef CONFIG_BLOCK
1729 /**
1730 * bmap - find a block number in a file
1731 * @inode: inode owning the block number being requested
1732 * @block: pointer containing the block to find
1733 *
1734 * Replaces the value in ``*block`` with the block number on the device holding
1735 * corresponding to the requested block number in the file.
1736 * That is, asked for block 4 of inode 1 the function will replace the
1737 * 4 in ``*block``, with disk block relative to the disk start that holds that
1738 * block of the file.
1739 *
1740 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1741 * hole, returns 0 and ``*block`` is also set to 0.
1742 */
bmap(struct inode * inode,sector_t * block)1743 int bmap(struct inode *inode, sector_t *block)
1744 {
1745 if (!inode->i_mapping->a_ops->bmap)
1746 return -EINVAL;
1747
1748 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1749 return 0;
1750 }
1751 EXPORT_SYMBOL(bmap);
1752 #endif
1753
1754 /*
1755 * With relative atime, only update atime if the previous atime is
1756 * earlier than either the ctime or mtime or if at least a day has
1757 * passed since the last atime update.
1758 */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)1759 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1760 struct timespec64 now)
1761 {
1762
1763 if (!(mnt->mnt_flags & MNT_RELATIME))
1764 return 1;
1765 /*
1766 * Is mtime younger than atime? If yes, update atime:
1767 */
1768 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1769 return 1;
1770 /*
1771 * Is ctime younger than atime? If yes, update atime:
1772 */
1773 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1774 return 1;
1775
1776 /*
1777 * Is the previous atime value older than a day? If yes,
1778 * update atime:
1779 */
1780 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1781 return 1;
1782 /*
1783 * Good, we can skip the atime update:
1784 */
1785 return 0;
1786 }
1787
generic_update_time(struct inode * inode,struct timespec64 * time,int flags)1788 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1789 {
1790 int iflags = I_DIRTY_TIME;
1791 bool dirty = false;
1792
1793 if (flags & S_ATIME)
1794 inode->i_atime = *time;
1795 if (flags & S_VERSION)
1796 dirty = inode_maybe_inc_iversion(inode, false);
1797 if (flags & S_CTIME)
1798 inode->i_ctime = *time;
1799 if (flags & S_MTIME)
1800 inode->i_mtime = *time;
1801 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1802 !(inode->i_sb->s_flags & SB_LAZYTIME))
1803 dirty = true;
1804
1805 if (dirty)
1806 iflags |= I_DIRTY_SYNC;
1807 __mark_inode_dirty(inode, iflags);
1808 return 0;
1809 }
1810 EXPORT_SYMBOL(generic_update_time);
1811
1812 /*
1813 * This does the actual work of updating an inodes time or version. Must have
1814 * had called mnt_want_write() before calling this.
1815 */
inode_update_time(struct inode * inode,struct timespec64 * time,int flags)1816 int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
1817 {
1818 if (inode->i_op->update_time)
1819 return inode->i_op->update_time(inode, time, flags);
1820 return generic_update_time(inode, time, flags);
1821 }
1822 EXPORT_SYMBOL(inode_update_time);
1823
1824 /**
1825 * touch_atime - update the access time
1826 * @path: the &struct path to update
1827 * @inode: inode to update
1828 *
1829 * Update the accessed time on an inode and mark it for writeback.
1830 * This function automatically handles read only file systems and media,
1831 * as well as the "noatime" flag and inode specific "noatime" markers.
1832 */
atime_needs_update(const struct path * path,struct inode * inode)1833 bool atime_needs_update(const struct path *path, struct inode *inode)
1834 {
1835 struct vfsmount *mnt = path->mnt;
1836 struct timespec64 now;
1837
1838 if (inode->i_flags & S_NOATIME)
1839 return false;
1840
1841 /* Atime updates will likely cause i_uid and i_gid to be written
1842 * back improprely if their true value is unknown to the vfs.
1843 */
1844 if (HAS_UNMAPPED_ID(inode))
1845 return false;
1846
1847 if (IS_NOATIME(inode))
1848 return false;
1849 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1850 return false;
1851
1852 if (mnt->mnt_flags & MNT_NOATIME)
1853 return false;
1854 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1855 return false;
1856
1857 now = current_time(inode);
1858
1859 if (!relatime_need_update(mnt, inode, now))
1860 return false;
1861
1862 if (timespec64_equal(&inode->i_atime, &now))
1863 return false;
1864
1865 return true;
1866 }
1867
touch_atime(const struct path * path)1868 void touch_atime(const struct path *path)
1869 {
1870 struct vfsmount *mnt = path->mnt;
1871 struct inode *inode = d_inode(path->dentry);
1872 struct timespec64 now;
1873
1874 if (!atime_needs_update(path, inode))
1875 return;
1876
1877 if (!sb_start_write_trylock(inode->i_sb))
1878 return;
1879
1880 if (__mnt_want_write(mnt) != 0)
1881 goto skip_update;
1882 /*
1883 * File systems can error out when updating inodes if they need to
1884 * allocate new space to modify an inode (such is the case for
1885 * Btrfs), but since we touch atime while walking down the path we
1886 * really don't care if we failed to update the atime of the file,
1887 * so just ignore the return value.
1888 * We may also fail on filesystems that have the ability to make parts
1889 * of the fs read only, e.g. subvolumes in Btrfs.
1890 */
1891 now = current_time(inode);
1892 inode_update_time(inode, &now, S_ATIME);
1893 __mnt_drop_write(mnt);
1894 skip_update:
1895 sb_end_write(inode->i_sb);
1896 }
1897 EXPORT_SYMBOL_NS(touch_atime, ANDROID_GKI_VFS_EXPORT_ONLY);
1898
1899 /*
1900 * Return mask of changes for notify_change() that need to be done as a
1901 * response to write or truncate. Return 0 if nothing has to be changed.
1902 * Negative value on error (change should be denied).
1903 */
dentry_needs_remove_privs(struct dentry * dentry)1904 int dentry_needs_remove_privs(struct dentry *dentry)
1905 {
1906 struct inode *inode = d_inode(dentry);
1907 int mask = 0;
1908 int ret;
1909
1910 if (IS_NOSEC(inode))
1911 return 0;
1912
1913 mask = setattr_should_drop_suidgid(inode);
1914 ret = security_inode_need_killpriv(dentry);
1915 if (ret < 0)
1916 return ret;
1917 if (ret)
1918 mask |= ATTR_KILL_PRIV;
1919 return mask;
1920 }
1921
__remove_privs(struct dentry * dentry,int kill)1922 static int __remove_privs(struct dentry *dentry, int kill)
1923 {
1924 struct iattr newattrs;
1925
1926 newattrs.ia_valid = ATTR_FORCE | kill;
1927 /*
1928 * Note we call this on write, so notify_change will not
1929 * encounter any conflicting delegations:
1930 */
1931 return notify_change(dentry, &newattrs, NULL);
1932 }
1933
1934 /*
1935 * Remove special file priviledges (suid, capabilities) when file is written
1936 * to or truncated.
1937 */
file_remove_privs(struct file * file)1938 int file_remove_privs(struct file *file)
1939 {
1940 struct dentry *dentry = file_dentry(file);
1941 struct inode *inode = file_inode(file);
1942 int kill;
1943 int error = 0;
1944
1945 /*
1946 * Fast path for nothing security related.
1947 * As well for non-regular files, e.g. blkdev inodes.
1948 * For example, blkdev_write_iter() might get here
1949 * trying to remove privs which it is not allowed to.
1950 */
1951 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1952 return 0;
1953
1954 kill = dentry_needs_remove_privs(dentry);
1955 if (kill < 0)
1956 return kill;
1957 if (kill)
1958 error = __remove_privs(dentry, kill);
1959 if (!error)
1960 inode_has_no_xattr(inode);
1961
1962 return error;
1963 }
1964 EXPORT_SYMBOL_NS(file_remove_privs, ANDROID_GKI_VFS_EXPORT_ONLY);
1965
1966 /**
1967 * file_update_time - update mtime and ctime time
1968 * @file: file accessed
1969 *
1970 * Update the mtime and ctime members of an inode and mark the inode
1971 * for writeback. Note that this function is meant exclusively for
1972 * usage in the file write path of filesystems, and filesystems may
1973 * choose to explicitly ignore update via this function with the
1974 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1975 * timestamps are handled by the server. This can return an error for
1976 * file systems who need to allocate space in order to update an inode.
1977 */
1978
file_update_time(struct file * file)1979 int file_update_time(struct file *file)
1980 {
1981 struct inode *inode = file_inode(file);
1982 struct timespec64 now;
1983 int sync_it = 0;
1984 int ret;
1985
1986 /* First try to exhaust all avenues to not sync */
1987 if (IS_NOCMTIME(inode))
1988 return 0;
1989
1990 now = current_time(inode);
1991 if (!timespec64_equal(&inode->i_mtime, &now))
1992 sync_it = S_MTIME;
1993
1994 if (!timespec64_equal(&inode->i_ctime, &now))
1995 sync_it |= S_CTIME;
1996
1997 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1998 sync_it |= S_VERSION;
1999
2000 if (!sync_it)
2001 return 0;
2002
2003 /* Finally allowed to write? Takes lock. */
2004 if (__mnt_want_write_file(file))
2005 return 0;
2006
2007 ret = inode_update_time(inode, &now, sync_it);
2008 __mnt_drop_write_file(file);
2009
2010 return ret;
2011 }
2012 EXPORT_SYMBOL(file_update_time);
2013
2014 /* Caller must hold the file's inode lock */
file_modified(struct file * file)2015 int file_modified(struct file *file)
2016 {
2017 int err;
2018
2019 /*
2020 * Clear the security bits if the process is not being run by root.
2021 * This keeps people from modifying setuid and setgid binaries.
2022 */
2023 err = file_remove_privs(file);
2024 if (err)
2025 return err;
2026
2027 if (unlikely(file->f_mode & FMODE_NOCMTIME))
2028 return 0;
2029
2030 return file_update_time(file);
2031 }
2032 EXPORT_SYMBOL(file_modified);
2033
inode_needs_sync(struct inode * inode)2034 int inode_needs_sync(struct inode *inode)
2035 {
2036 if (IS_SYNC(inode))
2037 return 1;
2038 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2039 return 1;
2040 return 0;
2041 }
2042 EXPORT_SYMBOL(inode_needs_sync);
2043
2044 /*
2045 * If we try to find an inode in the inode hash while it is being
2046 * deleted, we have to wait until the filesystem completes its
2047 * deletion before reporting that it isn't found. This function waits
2048 * until the deletion _might_ have completed. Callers are responsible
2049 * to recheck inode state.
2050 *
2051 * It doesn't matter if I_NEW is not set initially, a call to
2052 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2053 * will DTRT.
2054 */
__wait_on_freeing_inode(struct inode * inode)2055 static void __wait_on_freeing_inode(struct inode *inode)
2056 {
2057 wait_queue_head_t *wq;
2058 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2059 wq = bit_waitqueue(&inode->i_state, __I_NEW);
2060 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2061 spin_unlock(&inode->i_lock);
2062 spin_unlock(&inode_hash_lock);
2063 schedule();
2064 finish_wait(wq, &wait.wq_entry);
2065 spin_lock(&inode_hash_lock);
2066 }
2067
2068 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)2069 static int __init set_ihash_entries(char *str)
2070 {
2071 if (!str)
2072 return 0;
2073 ihash_entries = simple_strtoul(str, &str, 0);
2074 return 1;
2075 }
2076 __setup("ihash_entries=", set_ihash_entries);
2077
2078 /*
2079 * Initialize the waitqueues and inode hash table.
2080 */
inode_init_early(void)2081 void __init inode_init_early(void)
2082 {
2083 /* If hashes are distributed across NUMA nodes, defer
2084 * hash allocation until vmalloc space is available.
2085 */
2086 if (hashdist)
2087 return;
2088
2089 inode_hashtable =
2090 alloc_large_system_hash("Inode-cache",
2091 sizeof(struct hlist_head),
2092 ihash_entries,
2093 14,
2094 HASH_EARLY | HASH_ZERO,
2095 &i_hash_shift,
2096 &i_hash_mask,
2097 0,
2098 0);
2099 }
2100
inode_init(void)2101 void __init inode_init(void)
2102 {
2103 /* inode slab cache */
2104 inode_cachep = kmem_cache_create("inode_cache",
2105 sizeof(struct inode),
2106 0,
2107 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2108 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2109 init_once);
2110
2111 /* Hash may have been set up in inode_init_early */
2112 if (!hashdist)
2113 return;
2114
2115 inode_hashtable =
2116 alloc_large_system_hash("Inode-cache",
2117 sizeof(struct hlist_head),
2118 ihash_entries,
2119 14,
2120 HASH_ZERO,
2121 &i_hash_shift,
2122 &i_hash_mask,
2123 0,
2124 0);
2125 }
2126
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2127 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2128 {
2129 inode->i_mode = mode;
2130 if (S_ISCHR(mode)) {
2131 inode->i_fop = &def_chr_fops;
2132 inode->i_rdev = rdev;
2133 } else if (S_ISBLK(mode)) {
2134 inode->i_fop = &def_blk_fops;
2135 inode->i_rdev = rdev;
2136 } else if (S_ISFIFO(mode))
2137 inode->i_fop = &pipefifo_fops;
2138 else if (S_ISSOCK(mode))
2139 ; /* leave it no_open_fops */
2140 else
2141 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2142 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2143 inode->i_ino);
2144 }
2145 EXPORT_SYMBOL_NS(init_special_inode, ANDROID_GKI_VFS_EXPORT_ONLY);
2146
2147 /**
2148 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2149 * @inode: New inode
2150 * @dir: Directory inode
2151 * @mode: mode of the new inode
2152 */
inode_init_owner(struct inode * inode,const struct inode * dir,umode_t mode)2153 void inode_init_owner(struct inode *inode, const struct inode *dir,
2154 umode_t mode)
2155 {
2156 inode->i_uid = current_fsuid();
2157 if (dir && dir->i_mode & S_ISGID) {
2158 inode->i_gid = dir->i_gid;
2159
2160 /* Directories are special, and always inherit S_ISGID */
2161 if (S_ISDIR(mode))
2162 mode |= S_ISGID;
2163 } else
2164 inode->i_gid = current_fsgid();
2165 inode->i_mode = mode;
2166 }
2167 EXPORT_SYMBOL_NS(inode_init_owner, ANDROID_GKI_VFS_EXPORT_ONLY);
2168
2169 /**
2170 * inode_owner_or_capable - check current task permissions to inode
2171 * @inode: inode being checked
2172 *
2173 * Return true if current either has CAP_FOWNER in a namespace with the
2174 * inode owner uid mapped, or owns the file.
2175 */
inode_owner_or_capable(const struct inode * inode)2176 bool inode_owner_or_capable(const struct inode *inode)
2177 {
2178 struct user_namespace *ns;
2179
2180 if (uid_eq(current_fsuid(), inode->i_uid))
2181 return true;
2182
2183 ns = current_user_ns();
2184 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2185 return true;
2186 return false;
2187 }
2188 EXPORT_SYMBOL(inode_owner_or_capable);
2189
2190 /*
2191 * Direct i/o helper functions
2192 */
__inode_dio_wait(struct inode * inode)2193 static void __inode_dio_wait(struct inode *inode)
2194 {
2195 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2196 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2197
2198 do {
2199 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2200 if (atomic_read(&inode->i_dio_count))
2201 schedule();
2202 } while (atomic_read(&inode->i_dio_count));
2203 finish_wait(wq, &q.wq_entry);
2204 }
2205
2206 /**
2207 * inode_dio_wait - wait for outstanding DIO requests to finish
2208 * @inode: inode to wait for
2209 *
2210 * Waits for all pending direct I/O requests to finish so that we can
2211 * proceed with a truncate or equivalent operation.
2212 *
2213 * Must be called under a lock that serializes taking new references
2214 * to i_dio_count, usually by inode->i_mutex.
2215 */
inode_dio_wait(struct inode * inode)2216 void inode_dio_wait(struct inode *inode)
2217 {
2218 if (atomic_read(&inode->i_dio_count))
2219 __inode_dio_wait(inode);
2220 }
2221 EXPORT_SYMBOL_NS(inode_dio_wait, ANDROID_GKI_VFS_EXPORT_ONLY);
2222
2223 /*
2224 * inode_set_flags - atomically set some inode flags
2225 *
2226 * Note: the caller should be holding i_mutex, or else be sure that
2227 * they have exclusive access to the inode structure (i.e., while the
2228 * inode is being instantiated). The reason for the cmpxchg() loop
2229 * --- which wouldn't be necessary if all code paths which modify
2230 * i_flags actually followed this rule, is that there is at least one
2231 * code path which doesn't today so we use cmpxchg() out of an abundance
2232 * of caution.
2233 *
2234 * In the long run, i_mutex is overkill, and we should probably look
2235 * at using the i_lock spinlock to protect i_flags, and then make sure
2236 * it is so documented in include/linux/fs.h and that all code follows
2237 * the locking convention!!
2238 */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2239 void inode_set_flags(struct inode *inode, unsigned int flags,
2240 unsigned int mask)
2241 {
2242 WARN_ON_ONCE(flags & ~mask);
2243 set_mask_bits(&inode->i_flags, mask, flags);
2244 }
2245 EXPORT_SYMBOL_NS(inode_set_flags, ANDROID_GKI_VFS_EXPORT_ONLY);
2246
inode_nohighmem(struct inode * inode)2247 void inode_nohighmem(struct inode *inode)
2248 {
2249 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2250 }
2251 EXPORT_SYMBOL(inode_nohighmem);
2252
2253 /**
2254 * timestamp_truncate - Truncate timespec to a granularity
2255 * @t: Timespec
2256 * @inode: inode being updated
2257 *
2258 * Truncate a timespec to the granularity supported by the fs
2259 * containing the inode. Always rounds down. gran must
2260 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2261 */
timestamp_truncate(struct timespec64 t,struct inode * inode)2262 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2263 {
2264 struct super_block *sb = inode->i_sb;
2265 unsigned int gran = sb->s_time_gran;
2266
2267 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2268 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2269 t.tv_nsec = 0;
2270
2271 /* Avoid division in the common cases 1 ns and 1 s. */
2272 if (gran == 1)
2273 ; /* nothing */
2274 else if (gran == NSEC_PER_SEC)
2275 t.tv_nsec = 0;
2276 else if (gran > 1 && gran < NSEC_PER_SEC)
2277 t.tv_nsec -= t.tv_nsec % gran;
2278 else
2279 WARN(1, "invalid file time granularity: %u", gran);
2280 return t;
2281 }
2282 EXPORT_SYMBOL_NS(timestamp_truncate, ANDROID_GKI_VFS_EXPORT_ONLY);
2283
2284 /**
2285 * current_time - Return FS time
2286 * @inode: inode.
2287 *
2288 * Return the current time truncated to the time granularity supported by
2289 * the fs.
2290 *
2291 * Note that inode and inode->sb cannot be NULL.
2292 * Otherwise, the function warns and returns time without truncation.
2293 */
current_time(struct inode * inode)2294 struct timespec64 current_time(struct inode *inode)
2295 {
2296 struct timespec64 now;
2297
2298 ktime_get_coarse_real_ts64(&now);
2299
2300 if (unlikely(!inode->i_sb)) {
2301 WARN(1, "current_time() called with uninitialized super_block in the inode");
2302 return now;
2303 }
2304
2305 return timestamp_truncate(now, inode);
2306 }
2307 EXPORT_SYMBOL(current_time);
2308
2309 /*
2310 * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2311 * configurations.
2312 *
2313 * Note: the caller should be holding i_mutex, or else be sure that they have
2314 * exclusive access to the inode structure.
2315 */
vfs_ioc_setflags_prepare(struct inode * inode,unsigned int oldflags,unsigned int flags)2316 int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2317 unsigned int flags)
2318 {
2319 /*
2320 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2321 * the relevant capability.
2322 *
2323 * This test looks nicer. Thanks to Pauline Middelink
2324 */
2325 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2326 !capable(CAP_LINUX_IMMUTABLE))
2327 return -EPERM;
2328
2329 return fscrypt_prepare_setflags(inode, oldflags, flags);
2330 }
2331 EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2332
2333 /*
2334 * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2335 * configurations.
2336 *
2337 * Note: the caller should be holding i_mutex, or else be sure that they have
2338 * exclusive access to the inode structure.
2339 */
vfs_ioc_fssetxattr_check(struct inode * inode,const struct fsxattr * old_fa,struct fsxattr * fa)2340 int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2341 struct fsxattr *fa)
2342 {
2343 /*
2344 * Can't modify an immutable/append-only file unless we have
2345 * appropriate permission.
2346 */
2347 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2348 (FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2349 !capable(CAP_LINUX_IMMUTABLE))
2350 return -EPERM;
2351
2352 /*
2353 * Project Quota ID state is only allowed to change from within the init
2354 * namespace. Enforce that restriction only if we are trying to change
2355 * the quota ID state. Everything else is allowed in user namespaces.
2356 */
2357 if (current_user_ns() != &init_user_ns) {
2358 if (old_fa->fsx_projid != fa->fsx_projid)
2359 return -EINVAL;
2360 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2361 FS_XFLAG_PROJINHERIT)
2362 return -EINVAL;
2363 }
2364
2365 /* Check extent size hints. */
2366 if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2367 return -EINVAL;
2368
2369 if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2370 !S_ISDIR(inode->i_mode))
2371 return -EINVAL;
2372
2373 if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2374 !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2375 return -EINVAL;
2376
2377 /*
2378 * It is only valid to set the DAX flag on regular files and
2379 * directories on filesystems.
2380 */
2381 if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2382 !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2383 return -EINVAL;
2384
2385 /* Extent size hints of zero turn off the flags. */
2386 if (fa->fsx_extsize == 0)
2387 fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2388 if (fa->fsx_cowextsize == 0)
2389 fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2390
2391 return 0;
2392 }
2393 EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);
2394
2395 /**
2396 * inode_set_ctime_current - set the ctime to current_time
2397 * @inode: inode
2398 *
2399 * Set the inode->i_ctime to the current value for the inode. Returns
2400 * the current value that was assigned to i_ctime.
2401 */
inode_set_ctime_current(struct inode * inode)2402 struct timespec64 inode_set_ctime_current(struct inode *inode)
2403 {
2404 struct timespec64 now = current_time(inode);
2405
2406 inode_set_ctime(inode, now.tv_sec, now.tv_nsec);
2407 return now;
2408 }
2409 EXPORT_SYMBOL(inode_set_ctime_current);
2410
2411 /**
2412 * in_group_or_capable - check whether caller is CAP_FSETID privileged
2413 * @inode: inode to check
2414 * @gid: the new/current gid of @inode
2415 *
2416 * Check wether @gid is in the caller's group list or if the caller is
2417 * privileged with CAP_FSETID over @inode. This can be used to determine
2418 * whether the setgid bit can be kept or must be dropped.
2419 *
2420 * Return: true if the caller is sufficiently privileged, false if not.
2421 */
in_group_or_capable(const struct inode * inode,kgid_t gid)2422 bool in_group_or_capable(const struct inode *inode, kgid_t gid)
2423 {
2424 if (in_group_p(gid))
2425 return true;
2426 if (capable_wrt_inode_uidgid(inode, CAP_FSETID))
2427 return true;
2428 return false;
2429 }
2430
2431 /**
2432 * mode_strip_sgid - handle the sgid bit for non-directories
2433 * @dir: parent directory inode
2434 * @mode: mode of the file to be created in @dir
2435 *
2436 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2437 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2438 * either in the group of the parent directory or they have CAP_FSETID
2439 * in their user namespace and are privileged over the parent directory.
2440 * In all other cases, strip the S_ISGID bit from @mode.
2441 *
2442 * Return: the new mode to use for the file
2443 */
mode_strip_sgid(const struct inode * dir,umode_t mode)2444 umode_t mode_strip_sgid(const struct inode *dir, umode_t mode)
2445 {
2446 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2447 return mode;
2448 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2449 return mode;
2450 if (in_group_or_capable(dir, dir->i_gid))
2451 return mode;
2452 return mode & ~S_ISGID;
2453 }
2454 EXPORT_SYMBOL(mode_strip_sgid);
2455