1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
3 * Filename: target_core_transport.c
4 *
5 * This file contains the Generic Target Engine Core.
6 *
7 * (c) Copyright 2002-2013 Datera, Inc.
8 *
9 * Nicholas A. Bellinger <nab@kernel.org>
10 *
11 ******************************************************************************/
12
13 #include <linux/net.h>
14 #include <linux/delay.h>
15 #include <linux/string.h>
16 #include <linux/timer.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/kthread.h>
20 #include <linux/in.h>
21 #include <linux/cdrom.h>
22 #include <linux/module.h>
23 #include <linux/ratelimit.h>
24 #include <linux/vmalloc.h>
25 #include <asm/unaligned.h>
26 #include <net/sock.h>
27 #include <net/tcp.h>
28 #include <scsi/scsi_proto.h>
29 #include <scsi/scsi_common.h>
30
31 #include <target/target_core_base.h>
32 #include <target/target_core_backend.h>
33 #include <target/target_core_fabric.h>
34
35 #include "target_core_internal.h"
36 #include "target_core_alua.h"
37 #include "target_core_pr.h"
38 #include "target_core_ua.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/target.h>
42
43 static struct workqueue_struct *target_completion_wq;
44 static struct kmem_cache *se_sess_cache;
45 struct kmem_cache *se_ua_cache;
46 struct kmem_cache *t10_pr_reg_cache;
47 struct kmem_cache *t10_alua_lu_gp_cache;
48 struct kmem_cache *t10_alua_lu_gp_mem_cache;
49 struct kmem_cache *t10_alua_tg_pt_gp_cache;
50 struct kmem_cache *t10_alua_lba_map_cache;
51 struct kmem_cache *t10_alua_lba_map_mem_cache;
52
53 static void transport_complete_task_attr(struct se_cmd *cmd);
54 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
55 static void transport_handle_queue_full(struct se_cmd *cmd,
56 struct se_device *dev, int err, bool write_pending);
57 static void target_complete_ok_work(struct work_struct *work);
58
init_se_kmem_caches(void)59 int init_se_kmem_caches(void)
60 {
61 se_sess_cache = kmem_cache_create("se_sess_cache",
62 sizeof(struct se_session), __alignof__(struct se_session),
63 0, NULL);
64 if (!se_sess_cache) {
65 pr_err("kmem_cache_create() for struct se_session"
66 " failed\n");
67 goto out;
68 }
69 se_ua_cache = kmem_cache_create("se_ua_cache",
70 sizeof(struct se_ua), __alignof__(struct se_ua),
71 0, NULL);
72 if (!se_ua_cache) {
73 pr_err("kmem_cache_create() for struct se_ua failed\n");
74 goto out_free_sess_cache;
75 }
76 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
77 sizeof(struct t10_pr_registration),
78 __alignof__(struct t10_pr_registration), 0, NULL);
79 if (!t10_pr_reg_cache) {
80 pr_err("kmem_cache_create() for struct t10_pr_registration"
81 " failed\n");
82 goto out_free_ua_cache;
83 }
84 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
85 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
86 0, NULL);
87 if (!t10_alua_lu_gp_cache) {
88 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
89 " failed\n");
90 goto out_free_pr_reg_cache;
91 }
92 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
93 sizeof(struct t10_alua_lu_gp_member),
94 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
95 if (!t10_alua_lu_gp_mem_cache) {
96 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
97 "cache failed\n");
98 goto out_free_lu_gp_cache;
99 }
100 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
101 sizeof(struct t10_alua_tg_pt_gp),
102 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
103 if (!t10_alua_tg_pt_gp_cache) {
104 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
105 "cache failed\n");
106 goto out_free_lu_gp_mem_cache;
107 }
108 t10_alua_lba_map_cache = kmem_cache_create(
109 "t10_alua_lba_map_cache",
110 sizeof(struct t10_alua_lba_map),
111 __alignof__(struct t10_alua_lba_map), 0, NULL);
112 if (!t10_alua_lba_map_cache) {
113 pr_err("kmem_cache_create() for t10_alua_lba_map_"
114 "cache failed\n");
115 goto out_free_tg_pt_gp_cache;
116 }
117 t10_alua_lba_map_mem_cache = kmem_cache_create(
118 "t10_alua_lba_map_mem_cache",
119 sizeof(struct t10_alua_lba_map_member),
120 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
121 if (!t10_alua_lba_map_mem_cache) {
122 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
123 "cache failed\n");
124 goto out_free_lba_map_cache;
125 }
126
127 target_completion_wq = alloc_workqueue("target_completion",
128 WQ_MEM_RECLAIM, 0);
129 if (!target_completion_wq)
130 goto out_free_lba_map_mem_cache;
131
132 return 0;
133
134 out_free_lba_map_mem_cache:
135 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
136 out_free_lba_map_cache:
137 kmem_cache_destroy(t10_alua_lba_map_cache);
138 out_free_tg_pt_gp_cache:
139 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
140 out_free_lu_gp_mem_cache:
141 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
142 out_free_lu_gp_cache:
143 kmem_cache_destroy(t10_alua_lu_gp_cache);
144 out_free_pr_reg_cache:
145 kmem_cache_destroy(t10_pr_reg_cache);
146 out_free_ua_cache:
147 kmem_cache_destroy(se_ua_cache);
148 out_free_sess_cache:
149 kmem_cache_destroy(se_sess_cache);
150 out:
151 return -ENOMEM;
152 }
153
release_se_kmem_caches(void)154 void release_se_kmem_caches(void)
155 {
156 destroy_workqueue(target_completion_wq);
157 kmem_cache_destroy(se_sess_cache);
158 kmem_cache_destroy(se_ua_cache);
159 kmem_cache_destroy(t10_pr_reg_cache);
160 kmem_cache_destroy(t10_alua_lu_gp_cache);
161 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
162 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
163 kmem_cache_destroy(t10_alua_lba_map_cache);
164 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
165 }
166
167 /* This code ensures unique mib indexes are handed out. */
168 static DEFINE_SPINLOCK(scsi_mib_index_lock);
169 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
170
171 /*
172 * Allocate a new row index for the entry type specified
173 */
scsi_get_new_index(scsi_index_t type)174 u32 scsi_get_new_index(scsi_index_t type)
175 {
176 u32 new_index;
177
178 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
179
180 spin_lock(&scsi_mib_index_lock);
181 new_index = ++scsi_mib_index[type];
182 spin_unlock(&scsi_mib_index_lock);
183
184 return new_index;
185 }
186
transport_subsystem_check_init(void)187 void transport_subsystem_check_init(void)
188 {
189 int ret;
190 static int sub_api_initialized;
191
192 if (sub_api_initialized)
193 return;
194
195 ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
196 if (ret != 0)
197 pr_err("Unable to load target_core_iblock\n");
198
199 ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
200 if (ret != 0)
201 pr_err("Unable to load target_core_file\n");
202
203 ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
204 if (ret != 0)
205 pr_err("Unable to load target_core_pscsi\n");
206
207 ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
208 if (ret != 0)
209 pr_err("Unable to load target_core_user\n");
210
211 sub_api_initialized = 1;
212 }
213
target_release_sess_cmd_refcnt(struct percpu_ref * ref)214 static void target_release_sess_cmd_refcnt(struct percpu_ref *ref)
215 {
216 struct se_session *sess = container_of(ref, typeof(*sess), cmd_count);
217
218 wake_up(&sess->cmd_list_wq);
219 }
220
221 /**
222 * transport_init_session - initialize a session object
223 * @se_sess: Session object pointer.
224 *
225 * The caller must have zero-initialized @se_sess before calling this function.
226 */
transport_init_session(struct se_session * se_sess)227 int transport_init_session(struct se_session *se_sess)
228 {
229 INIT_LIST_HEAD(&se_sess->sess_list);
230 INIT_LIST_HEAD(&se_sess->sess_acl_list);
231 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
232 spin_lock_init(&se_sess->sess_cmd_lock);
233 init_waitqueue_head(&se_sess->cmd_list_wq);
234 return percpu_ref_init(&se_sess->cmd_count,
235 target_release_sess_cmd_refcnt, 0, GFP_KERNEL);
236 }
237 EXPORT_SYMBOL(transport_init_session);
238
transport_uninit_session(struct se_session * se_sess)239 void transport_uninit_session(struct se_session *se_sess)
240 {
241 percpu_ref_exit(&se_sess->cmd_count);
242 }
243
244 /**
245 * transport_alloc_session - allocate a session object and initialize it
246 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
247 */
transport_alloc_session(enum target_prot_op sup_prot_ops)248 struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
249 {
250 struct se_session *se_sess;
251 int ret;
252
253 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
254 if (!se_sess) {
255 pr_err("Unable to allocate struct se_session from"
256 " se_sess_cache\n");
257 return ERR_PTR(-ENOMEM);
258 }
259 ret = transport_init_session(se_sess);
260 if (ret < 0) {
261 kmem_cache_free(se_sess_cache, se_sess);
262 return ERR_PTR(ret);
263 }
264 se_sess->sup_prot_ops = sup_prot_ops;
265
266 return se_sess;
267 }
268 EXPORT_SYMBOL(transport_alloc_session);
269
270 /**
271 * transport_alloc_session_tags - allocate target driver private data
272 * @se_sess: Session pointer.
273 * @tag_num: Maximum number of in-flight commands between initiator and target.
274 * @tag_size: Size in bytes of the private data a target driver associates with
275 * each command.
276 */
transport_alloc_session_tags(struct se_session * se_sess,unsigned int tag_num,unsigned int tag_size)277 int transport_alloc_session_tags(struct se_session *se_sess,
278 unsigned int tag_num, unsigned int tag_size)
279 {
280 int rc;
281
282 se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
283 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
284 if (!se_sess->sess_cmd_map) {
285 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
286 return -ENOMEM;
287 }
288
289 rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
290 false, GFP_KERNEL, NUMA_NO_NODE);
291 if (rc < 0) {
292 pr_err("Unable to init se_sess->sess_tag_pool,"
293 " tag_num: %u\n", tag_num);
294 kvfree(se_sess->sess_cmd_map);
295 se_sess->sess_cmd_map = NULL;
296 return -ENOMEM;
297 }
298
299 return 0;
300 }
301 EXPORT_SYMBOL(transport_alloc_session_tags);
302
303 /**
304 * transport_init_session_tags - allocate a session and target driver private data
305 * @tag_num: Maximum number of in-flight commands between initiator and target.
306 * @tag_size: Size in bytes of the private data a target driver associates with
307 * each command.
308 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
309 */
310 static struct se_session *
transport_init_session_tags(unsigned int tag_num,unsigned int tag_size,enum target_prot_op sup_prot_ops)311 transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
312 enum target_prot_op sup_prot_ops)
313 {
314 struct se_session *se_sess;
315 int rc;
316
317 if (tag_num != 0 && !tag_size) {
318 pr_err("init_session_tags called with percpu-ida tag_num:"
319 " %u, but zero tag_size\n", tag_num);
320 return ERR_PTR(-EINVAL);
321 }
322 if (!tag_num && tag_size) {
323 pr_err("init_session_tags called with percpu-ida tag_size:"
324 " %u, but zero tag_num\n", tag_size);
325 return ERR_PTR(-EINVAL);
326 }
327
328 se_sess = transport_alloc_session(sup_prot_ops);
329 if (IS_ERR(se_sess))
330 return se_sess;
331
332 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
333 if (rc < 0) {
334 transport_free_session(se_sess);
335 return ERR_PTR(-ENOMEM);
336 }
337
338 return se_sess;
339 }
340
341 /*
342 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
343 */
__transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)344 void __transport_register_session(
345 struct se_portal_group *se_tpg,
346 struct se_node_acl *se_nacl,
347 struct se_session *se_sess,
348 void *fabric_sess_ptr)
349 {
350 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
351 unsigned char buf[PR_REG_ISID_LEN];
352 unsigned long flags;
353
354 se_sess->se_tpg = se_tpg;
355 se_sess->fabric_sess_ptr = fabric_sess_ptr;
356 /*
357 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
358 *
359 * Only set for struct se_session's that will actually be moving I/O.
360 * eg: *NOT* discovery sessions.
361 */
362 if (se_nacl) {
363 /*
364 *
365 * Determine if fabric allows for T10-PI feature bits exposed to
366 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
367 *
368 * If so, then always save prot_type on a per se_node_acl node
369 * basis and re-instate the previous sess_prot_type to avoid
370 * disabling PI from below any previously initiator side
371 * registered LUNs.
372 */
373 if (se_nacl->saved_prot_type)
374 se_sess->sess_prot_type = se_nacl->saved_prot_type;
375 else if (tfo->tpg_check_prot_fabric_only)
376 se_sess->sess_prot_type = se_nacl->saved_prot_type =
377 tfo->tpg_check_prot_fabric_only(se_tpg);
378 /*
379 * If the fabric module supports an ISID based TransportID,
380 * save this value in binary from the fabric I_T Nexus now.
381 */
382 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
383 memset(&buf[0], 0, PR_REG_ISID_LEN);
384 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
385 &buf[0], PR_REG_ISID_LEN);
386 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
387 }
388
389 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
390 /*
391 * The se_nacl->nacl_sess pointer will be set to the
392 * last active I_T Nexus for each struct se_node_acl.
393 */
394 se_nacl->nacl_sess = se_sess;
395
396 list_add_tail(&se_sess->sess_acl_list,
397 &se_nacl->acl_sess_list);
398 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
399 }
400 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
401
402 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
403 se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
404 }
405 EXPORT_SYMBOL(__transport_register_session);
406
transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)407 void transport_register_session(
408 struct se_portal_group *se_tpg,
409 struct se_node_acl *se_nacl,
410 struct se_session *se_sess,
411 void *fabric_sess_ptr)
412 {
413 unsigned long flags;
414
415 spin_lock_irqsave(&se_tpg->session_lock, flags);
416 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
417 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
418 }
419 EXPORT_SYMBOL(transport_register_session);
420
421 struct se_session *
target_setup_session(struct se_portal_group * tpg,unsigned int tag_num,unsigned int tag_size,enum target_prot_op prot_op,const char * initiatorname,void * private,int (* callback)(struct se_portal_group *,struct se_session *,void *))422 target_setup_session(struct se_portal_group *tpg,
423 unsigned int tag_num, unsigned int tag_size,
424 enum target_prot_op prot_op,
425 const char *initiatorname, void *private,
426 int (*callback)(struct se_portal_group *,
427 struct se_session *, void *))
428 {
429 struct se_session *sess;
430
431 /*
432 * If the fabric driver is using percpu-ida based pre allocation
433 * of I/O descriptor tags, go ahead and perform that setup now..
434 */
435 if (tag_num != 0)
436 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
437 else
438 sess = transport_alloc_session(prot_op);
439
440 if (IS_ERR(sess))
441 return sess;
442
443 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
444 (unsigned char *)initiatorname);
445 if (!sess->se_node_acl) {
446 transport_free_session(sess);
447 return ERR_PTR(-EACCES);
448 }
449 /*
450 * Go ahead and perform any remaining fabric setup that is
451 * required before transport_register_session().
452 */
453 if (callback != NULL) {
454 int rc = callback(tpg, sess, private);
455 if (rc) {
456 transport_free_session(sess);
457 return ERR_PTR(rc);
458 }
459 }
460
461 transport_register_session(tpg, sess->se_node_acl, sess, private);
462 return sess;
463 }
464 EXPORT_SYMBOL(target_setup_session);
465
target_show_dynamic_sessions(struct se_portal_group * se_tpg,char * page)466 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
467 {
468 struct se_session *se_sess;
469 ssize_t len = 0;
470
471 spin_lock_bh(&se_tpg->session_lock);
472 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
473 if (!se_sess->se_node_acl)
474 continue;
475 if (!se_sess->se_node_acl->dynamic_node_acl)
476 continue;
477 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
478 break;
479
480 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
481 se_sess->se_node_acl->initiatorname);
482 len += 1; /* Include NULL terminator */
483 }
484 spin_unlock_bh(&se_tpg->session_lock);
485
486 return len;
487 }
488 EXPORT_SYMBOL(target_show_dynamic_sessions);
489
target_complete_nacl(struct kref * kref)490 static void target_complete_nacl(struct kref *kref)
491 {
492 struct se_node_acl *nacl = container_of(kref,
493 struct se_node_acl, acl_kref);
494 struct se_portal_group *se_tpg = nacl->se_tpg;
495
496 if (!nacl->dynamic_stop) {
497 complete(&nacl->acl_free_comp);
498 return;
499 }
500
501 mutex_lock(&se_tpg->acl_node_mutex);
502 list_del_init(&nacl->acl_list);
503 mutex_unlock(&se_tpg->acl_node_mutex);
504
505 core_tpg_wait_for_nacl_pr_ref(nacl);
506 core_free_device_list_for_node(nacl, se_tpg);
507 kfree(nacl);
508 }
509
target_put_nacl(struct se_node_acl * nacl)510 void target_put_nacl(struct se_node_acl *nacl)
511 {
512 kref_put(&nacl->acl_kref, target_complete_nacl);
513 }
514 EXPORT_SYMBOL(target_put_nacl);
515
transport_deregister_session_configfs(struct se_session * se_sess)516 void transport_deregister_session_configfs(struct se_session *se_sess)
517 {
518 struct se_node_acl *se_nacl;
519 unsigned long flags;
520 /*
521 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
522 */
523 se_nacl = se_sess->se_node_acl;
524 if (se_nacl) {
525 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
526 if (!list_empty(&se_sess->sess_acl_list))
527 list_del_init(&se_sess->sess_acl_list);
528 /*
529 * If the session list is empty, then clear the pointer.
530 * Otherwise, set the struct se_session pointer from the tail
531 * element of the per struct se_node_acl active session list.
532 */
533 if (list_empty(&se_nacl->acl_sess_list))
534 se_nacl->nacl_sess = NULL;
535 else {
536 se_nacl->nacl_sess = container_of(
537 se_nacl->acl_sess_list.prev,
538 struct se_session, sess_acl_list);
539 }
540 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
541 }
542 }
543 EXPORT_SYMBOL(transport_deregister_session_configfs);
544
transport_free_session(struct se_session * se_sess)545 void transport_free_session(struct se_session *se_sess)
546 {
547 struct se_node_acl *se_nacl = se_sess->se_node_acl;
548
549 /*
550 * Drop the se_node_acl->nacl_kref obtained from within
551 * core_tpg_get_initiator_node_acl().
552 */
553 if (se_nacl) {
554 struct se_portal_group *se_tpg = se_nacl->se_tpg;
555 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
556 unsigned long flags;
557
558 se_sess->se_node_acl = NULL;
559
560 /*
561 * Also determine if we need to drop the extra ->cmd_kref if
562 * it had been previously dynamically generated, and
563 * the endpoint is not caching dynamic ACLs.
564 */
565 mutex_lock(&se_tpg->acl_node_mutex);
566 if (se_nacl->dynamic_node_acl &&
567 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
568 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
569 if (list_empty(&se_nacl->acl_sess_list))
570 se_nacl->dynamic_stop = true;
571 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
572
573 if (se_nacl->dynamic_stop)
574 list_del_init(&se_nacl->acl_list);
575 }
576 mutex_unlock(&se_tpg->acl_node_mutex);
577
578 if (se_nacl->dynamic_stop)
579 target_put_nacl(se_nacl);
580
581 target_put_nacl(se_nacl);
582 }
583 if (se_sess->sess_cmd_map) {
584 sbitmap_queue_free(&se_sess->sess_tag_pool);
585 kvfree(se_sess->sess_cmd_map);
586 }
587 transport_uninit_session(se_sess);
588 kmem_cache_free(se_sess_cache, se_sess);
589 }
590 EXPORT_SYMBOL(transport_free_session);
591
target_release_res(struct se_device * dev,void * data)592 static int target_release_res(struct se_device *dev, void *data)
593 {
594 struct se_session *sess = data;
595
596 if (dev->reservation_holder == sess)
597 target_release_reservation(dev);
598 return 0;
599 }
600
transport_deregister_session(struct se_session * se_sess)601 void transport_deregister_session(struct se_session *se_sess)
602 {
603 struct se_portal_group *se_tpg = se_sess->se_tpg;
604 unsigned long flags;
605
606 if (!se_tpg) {
607 transport_free_session(se_sess);
608 return;
609 }
610
611 spin_lock_irqsave(&se_tpg->session_lock, flags);
612 list_del(&se_sess->sess_list);
613 se_sess->se_tpg = NULL;
614 se_sess->fabric_sess_ptr = NULL;
615 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
616
617 /*
618 * Since the session is being removed, release SPC-2
619 * reservations held by the session that is disappearing.
620 */
621 target_for_each_device(target_release_res, se_sess);
622
623 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
624 se_tpg->se_tpg_tfo->fabric_name);
625 /*
626 * If last kref is dropping now for an explicit NodeACL, awake sleeping
627 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
628 * removal context from within transport_free_session() code.
629 *
630 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
631 * to release all remaining generate_node_acl=1 created ACL resources.
632 */
633
634 transport_free_session(se_sess);
635 }
636 EXPORT_SYMBOL(transport_deregister_session);
637
target_remove_session(struct se_session * se_sess)638 void target_remove_session(struct se_session *se_sess)
639 {
640 transport_deregister_session_configfs(se_sess);
641 transport_deregister_session(se_sess);
642 }
643 EXPORT_SYMBOL(target_remove_session);
644
target_remove_from_state_list(struct se_cmd * cmd)645 static void target_remove_from_state_list(struct se_cmd *cmd)
646 {
647 struct se_device *dev = cmd->se_dev;
648 unsigned long flags;
649
650 if (!dev)
651 return;
652
653 spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
654 if (cmd->state_active) {
655 list_del(&cmd->state_list);
656 cmd->state_active = false;
657 }
658 spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
659 }
660
661 /*
662 * This function is called by the target core after the target core has
663 * finished processing a SCSI command or SCSI TMF. Both the regular command
664 * processing code and the code for aborting commands can call this
665 * function. CMD_T_STOP is set if and only if another thread is waiting
666 * inside transport_wait_for_tasks() for t_transport_stop_comp.
667 */
transport_cmd_check_stop_to_fabric(struct se_cmd * cmd)668 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
669 {
670 unsigned long flags;
671
672 target_remove_from_state_list(cmd);
673
674 /*
675 * Clear struct se_cmd->se_lun before the handoff to FE.
676 */
677 cmd->se_lun = NULL;
678
679 spin_lock_irqsave(&cmd->t_state_lock, flags);
680 /*
681 * Determine if frontend context caller is requesting the stopping of
682 * this command for frontend exceptions.
683 */
684 if (cmd->transport_state & CMD_T_STOP) {
685 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
686 __func__, __LINE__, cmd->tag);
687
688 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
689
690 complete_all(&cmd->t_transport_stop_comp);
691 return 1;
692 }
693 cmd->transport_state &= ~CMD_T_ACTIVE;
694 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
695
696 /*
697 * Some fabric modules like tcm_loop can release their internally
698 * allocated I/O reference and struct se_cmd now.
699 *
700 * Fabric modules are expected to return '1' here if the se_cmd being
701 * passed is released at this point, or zero if not being released.
702 */
703 return cmd->se_tfo->check_stop_free(cmd);
704 }
705
transport_lun_remove_cmd(struct se_cmd * cmd)706 static void transport_lun_remove_cmd(struct se_cmd *cmd)
707 {
708 struct se_lun *lun = cmd->se_lun;
709
710 if (!lun)
711 return;
712
713 if (cmpxchg(&cmd->lun_ref_active, true, false))
714 percpu_ref_put(&lun->lun_ref);
715 }
716
target_complete_failure_work(struct work_struct * work)717 static void target_complete_failure_work(struct work_struct *work)
718 {
719 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
720
721 transport_generic_request_failure(cmd,
722 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
723 }
724
725 /*
726 * Used when asking transport to copy Sense Data from the underlying
727 * Linux/SCSI struct scsi_cmnd
728 */
transport_get_sense_buffer(struct se_cmd * cmd)729 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
730 {
731 struct se_device *dev = cmd->se_dev;
732
733 WARN_ON(!cmd->se_lun);
734
735 if (!dev)
736 return NULL;
737
738 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
739 return NULL;
740
741 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
742
743 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
744 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
745 return cmd->sense_buffer;
746 }
747
transport_copy_sense_to_cmd(struct se_cmd * cmd,unsigned char * sense)748 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
749 {
750 unsigned char *cmd_sense_buf;
751 unsigned long flags;
752
753 spin_lock_irqsave(&cmd->t_state_lock, flags);
754 cmd_sense_buf = transport_get_sense_buffer(cmd);
755 if (!cmd_sense_buf) {
756 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
757 return;
758 }
759
760 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
761 memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
762 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
763 }
764 EXPORT_SYMBOL(transport_copy_sense_to_cmd);
765
target_handle_abort(struct se_cmd * cmd)766 static void target_handle_abort(struct se_cmd *cmd)
767 {
768 bool tas = cmd->transport_state & CMD_T_TAS;
769 bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF;
770 int ret;
771
772 pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas);
773
774 if (tas) {
775 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
776 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
777 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
778 cmd->t_task_cdb[0], cmd->tag);
779 trace_target_cmd_complete(cmd);
780 ret = cmd->se_tfo->queue_status(cmd);
781 if (ret) {
782 transport_handle_queue_full(cmd, cmd->se_dev,
783 ret, false);
784 return;
785 }
786 } else {
787 cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED;
788 cmd->se_tfo->queue_tm_rsp(cmd);
789 }
790 } else {
791 /*
792 * Allow the fabric driver to unmap any resources before
793 * releasing the descriptor via TFO->release_cmd().
794 */
795 cmd->se_tfo->aborted_task(cmd);
796 if (ack_kref)
797 WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0);
798 /*
799 * To do: establish a unit attention condition on the I_T
800 * nexus associated with cmd. See also the paragraph "Aborting
801 * commands" in SAM.
802 */
803 }
804
805 WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0);
806
807 transport_lun_remove_cmd(cmd);
808
809 transport_cmd_check_stop_to_fabric(cmd);
810 }
811
target_abort_work(struct work_struct * work)812 static void target_abort_work(struct work_struct *work)
813 {
814 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
815
816 target_handle_abort(cmd);
817 }
818
target_cmd_interrupted(struct se_cmd * cmd)819 static bool target_cmd_interrupted(struct se_cmd *cmd)
820 {
821 int post_ret;
822
823 if (cmd->transport_state & CMD_T_ABORTED) {
824 if (cmd->transport_complete_callback)
825 cmd->transport_complete_callback(cmd, false, &post_ret);
826 INIT_WORK(&cmd->work, target_abort_work);
827 queue_work(target_completion_wq, &cmd->work);
828 return true;
829 } else if (cmd->transport_state & CMD_T_STOP) {
830 if (cmd->transport_complete_callback)
831 cmd->transport_complete_callback(cmd, false, &post_ret);
832 complete_all(&cmd->t_transport_stop_comp);
833 return true;
834 }
835
836 return false;
837 }
838
839 /* May be called from interrupt context so must not sleep. */
target_complete_cmd(struct se_cmd * cmd,u8 scsi_status)840 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
841 {
842 int success;
843 unsigned long flags;
844
845 if (target_cmd_interrupted(cmd))
846 return;
847
848 cmd->scsi_status = scsi_status;
849
850 spin_lock_irqsave(&cmd->t_state_lock, flags);
851 switch (cmd->scsi_status) {
852 case SAM_STAT_CHECK_CONDITION:
853 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
854 success = 1;
855 else
856 success = 0;
857 break;
858 default:
859 success = 1;
860 break;
861 }
862
863 cmd->t_state = TRANSPORT_COMPLETE;
864 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
865 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
866
867 INIT_WORK(&cmd->work, success ? target_complete_ok_work :
868 target_complete_failure_work);
869 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
870 }
871 EXPORT_SYMBOL(target_complete_cmd);
872
target_set_cmd_data_length(struct se_cmd * cmd,int length)873 void target_set_cmd_data_length(struct se_cmd *cmd, int length)
874 {
875 if (length < cmd->data_length) {
876 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
877 cmd->residual_count += cmd->data_length - length;
878 } else {
879 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
880 cmd->residual_count = cmd->data_length - length;
881 }
882
883 cmd->data_length = length;
884 }
885 }
886 EXPORT_SYMBOL(target_set_cmd_data_length);
887
target_complete_cmd_with_length(struct se_cmd * cmd,u8 scsi_status,int length)888 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
889 {
890 if (scsi_status == SAM_STAT_GOOD ||
891 cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) {
892 target_set_cmd_data_length(cmd, length);
893 }
894
895 target_complete_cmd(cmd, scsi_status);
896 }
897 EXPORT_SYMBOL(target_complete_cmd_with_length);
898
target_add_to_state_list(struct se_cmd * cmd)899 static void target_add_to_state_list(struct se_cmd *cmd)
900 {
901 struct se_device *dev = cmd->se_dev;
902 unsigned long flags;
903
904 spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
905 if (!cmd->state_active) {
906 list_add_tail(&cmd->state_list,
907 &dev->queues[cmd->cpuid].state_list);
908 cmd->state_active = true;
909 }
910 spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
911 }
912
913 /*
914 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
915 */
916 static void transport_write_pending_qf(struct se_cmd *cmd);
917 static void transport_complete_qf(struct se_cmd *cmd);
918
target_qf_do_work(struct work_struct * work)919 void target_qf_do_work(struct work_struct *work)
920 {
921 struct se_device *dev = container_of(work, struct se_device,
922 qf_work_queue);
923 LIST_HEAD(qf_cmd_list);
924 struct se_cmd *cmd, *cmd_tmp;
925
926 spin_lock_irq(&dev->qf_cmd_lock);
927 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
928 spin_unlock_irq(&dev->qf_cmd_lock);
929
930 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
931 list_del(&cmd->se_qf_node);
932 atomic_dec_mb(&dev->dev_qf_count);
933
934 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
935 " context: %s\n", cmd->se_tfo->fabric_name, cmd,
936 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
937 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
938 : "UNKNOWN");
939
940 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
941 transport_write_pending_qf(cmd);
942 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
943 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
944 transport_complete_qf(cmd);
945 }
946 }
947
transport_dump_cmd_direction(struct se_cmd * cmd)948 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
949 {
950 switch (cmd->data_direction) {
951 case DMA_NONE:
952 return "NONE";
953 case DMA_FROM_DEVICE:
954 return "READ";
955 case DMA_TO_DEVICE:
956 return "WRITE";
957 case DMA_BIDIRECTIONAL:
958 return "BIDI";
959 default:
960 break;
961 }
962
963 return "UNKNOWN";
964 }
965
transport_dump_dev_state(struct se_device * dev,char * b,int * bl)966 void transport_dump_dev_state(
967 struct se_device *dev,
968 char *b,
969 int *bl)
970 {
971 *bl += sprintf(b + *bl, "Status: ");
972 if (dev->export_count)
973 *bl += sprintf(b + *bl, "ACTIVATED");
974 else
975 *bl += sprintf(b + *bl, "DEACTIVATED");
976
977 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
978 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
979 dev->dev_attrib.block_size,
980 dev->dev_attrib.hw_max_sectors);
981 *bl += sprintf(b + *bl, " ");
982 }
983
transport_dump_vpd_proto_id(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)984 void transport_dump_vpd_proto_id(
985 struct t10_vpd *vpd,
986 unsigned char *p_buf,
987 int p_buf_len)
988 {
989 unsigned char buf[VPD_TMP_BUF_SIZE];
990 int len;
991
992 memset(buf, 0, VPD_TMP_BUF_SIZE);
993 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
994
995 switch (vpd->protocol_identifier) {
996 case 0x00:
997 sprintf(buf+len, "Fibre Channel\n");
998 break;
999 case 0x10:
1000 sprintf(buf+len, "Parallel SCSI\n");
1001 break;
1002 case 0x20:
1003 sprintf(buf+len, "SSA\n");
1004 break;
1005 case 0x30:
1006 sprintf(buf+len, "IEEE 1394\n");
1007 break;
1008 case 0x40:
1009 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1010 " Protocol\n");
1011 break;
1012 case 0x50:
1013 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1014 break;
1015 case 0x60:
1016 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1017 break;
1018 case 0x70:
1019 sprintf(buf+len, "Automation/Drive Interface Transport"
1020 " Protocol\n");
1021 break;
1022 case 0x80:
1023 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1024 break;
1025 default:
1026 sprintf(buf+len, "Unknown 0x%02x\n",
1027 vpd->protocol_identifier);
1028 break;
1029 }
1030
1031 if (p_buf)
1032 strncpy(p_buf, buf, p_buf_len);
1033 else
1034 pr_debug("%s", buf);
1035 }
1036
1037 void
transport_set_vpd_proto_id(struct t10_vpd * vpd,unsigned char * page_83)1038 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1039 {
1040 /*
1041 * Check if the Protocol Identifier Valid (PIV) bit is set..
1042 *
1043 * from spc3r23.pdf section 7.5.1
1044 */
1045 if (page_83[1] & 0x80) {
1046 vpd->protocol_identifier = (page_83[0] & 0xf0);
1047 vpd->protocol_identifier_set = 1;
1048 transport_dump_vpd_proto_id(vpd, NULL, 0);
1049 }
1050 }
1051 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1052
transport_dump_vpd_assoc(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1053 int transport_dump_vpd_assoc(
1054 struct t10_vpd *vpd,
1055 unsigned char *p_buf,
1056 int p_buf_len)
1057 {
1058 unsigned char buf[VPD_TMP_BUF_SIZE];
1059 int ret = 0;
1060 int len;
1061
1062 memset(buf, 0, VPD_TMP_BUF_SIZE);
1063 len = sprintf(buf, "T10 VPD Identifier Association: ");
1064
1065 switch (vpd->association) {
1066 case 0x00:
1067 sprintf(buf+len, "addressed logical unit\n");
1068 break;
1069 case 0x10:
1070 sprintf(buf+len, "target port\n");
1071 break;
1072 case 0x20:
1073 sprintf(buf+len, "SCSI target device\n");
1074 break;
1075 default:
1076 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1077 ret = -EINVAL;
1078 break;
1079 }
1080
1081 if (p_buf)
1082 strncpy(p_buf, buf, p_buf_len);
1083 else
1084 pr_debug("%s", buf);
1085
1086 return ret;
1087 }
1088
transport_set_vpd_assoc(struct t10_vpd * vpd,unsigned char * page_83)1089 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1090 {
1091 /*
1092 * The VPD identification association..
1093 *
1094 * from spc3r23.pdf Section 7.6.3.1 Table 297
1095 */
1096 vpd->association = (page_83[1] & 0x30);
1097 return transport_dump_vpd_assoc(vpd, NULL, 0);
1098 }
1099 EXPORT_SYMBOL(transport_set_vpd_assoc);
1100
transport_dump_vpd_ident_type(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1101 int transport_dump_vpd_ident_type(
1102 struct t10_vpd *vpd,
1103 unsigned char *p_buf,
1104 int p_buf_len)
1105 {
1106 unsigned char buf[VPD_TMP_BUF_SIZE];
1107 int ret = 0;
1108 int len;
1109
1110 memset(buf, 0, VPD_TMP_BUF_SIZE);
1111 len = sprintf(buf, "T10 VPD Identifier Type: ");
1112
1113 switch (vpd->device_identifier_type) {
1114 case 0x00:
1115 sprintf(buf+len, "Vendor specific\n");
1116 break;
1117 case 0x01:
1118 sprintf(buf+len, "T10 Vendor ID based\n");
1119 break;
1120 case 0x02:
1121 sprintf(buf+len, "EUI-64 based\n");
1122 break;
1123 case 0x03:
1124 sprintf(buf+len, "NAA\n");
1125 break;
1126 case 0x04:
1127 sprintf(buf+len, "Relative target port identifier\n");
1128 break;
1129 case 0x08:
1130 sprintf(buf+len, "SCSI name string\n");
1131 break;
1132 default:
1133 sprintf(buf+len, "Unsupported: 0x%02x\n",
1134 vpd->device_identifier_type);
1135 ret = -EINVAL;
1136 break;
1137 }
1138
1139 if (p_buf) {
1140 if (p_buf_len < strlen(buf)+1)
1141 return -EINVAL;
1142 strncpy(p_buf, buf, p_buf_len);
1143 } else {
1144 pr_debug("%s", buf);
1145 }
1146
1147 return ret;
1148 }
1149
transport_set_vpd_ident_type(struct t10_vpd * vpd,unsigned char * page_83)1150 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1151 {
1152 /*
1153 * The VPD identifier type..
1154 *
1155 * from spc3r23.pdf Section 7.6.3.1 Table 298
1156 */
1157 vpd->device_identifier_type = (page_83[1] & 0x0f);
1158 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1159 }
1160 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1161
transport_dump_vpd_ident(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1162 int transport_dump_vpd_ident(
1163 struct t10_vpd *vpd,
1164 unsigned char *p_buf,
1165 int p_buf_len)
1166 {
1167 unsigned char buf[VPD_TMP_BUF_SIZE];
1168 int ret = 0;
1169
1170 memset(buf, 0, VPD_TMP_BUF_SIZE);
1171
1172 switch (vpd->device_identifier_code_set) {
1173 case 0x01: /* Binary */
1174 snprintf(buf, sizeof(buf),
1175 "T10 VPD Binary Device Identifier: %s\n",
1176 &vpd->device_identifier[0]);
1177 break;
1178 case 0x02: /* ASCII */
1179 snprintf(buf, sizeof(buf),
1180 "T10 VPD ASCII Device Identifier: %s\n",
1181 &vpd->device_identifier[0]);
1182 break;
1183 case 0x03: /* UTF-8 */
1184 snprintf(buf, sizeof(buf),
1185 "T10 VPD UTF-8 Device Identifier: %s\n",
1186 &vpd->device_identifier[0]);
1187 break;
1188 default:
1189 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1190 " 0x%02x", vpd->device_identifier_code_set);
1191 ret = -EINVAL;
1192 break;
1193 }
1194
1195 if (p_buf)
1196 strncpy(p_buf, buf, p_buf_len);
1197 else
1198 pr_debug("%s", buf);
1199
1200 return ret;
1201 }
1202
1203 int
transport_set_vpd_ident(struct t10_vpd * vpd,unsigned char * page_83)1204 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1205 {
1206 static const char hex_str[] = "0123456789abcdef";
1207 int j = 0, i = 4; /* offset to start of the identifier */
1208
1209 /*
1210 * The VPD Code Set (encoding)
1211 *
1212 * from spc3r23.pdf Section 7.6.3.1 Table 296
1213 */
1214 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1215 switch (vpd->device_identifier_code_set) {
1216 case 0x01: /* Binary */
1217 vpd->device_identifier[j++] =
1218 hex_str[vpd->device_identifier_type];
1219 while (i < (4 + page_83[3])) {
1220 vpd->device_identifier[j++] =
1221 hex_str[(page_83[i] & 0xf0) >> 4];
1222 vpd->device_identifier[j++] =
1223 hex_str[page_83[i] & 0x0f];
1224 i++;
1225 }
1226 break;
1227 case 0x02: /* ASCII */
1228 case 0x03: /* UTF-8 */
1229 while (i < (4 + page_83[3]))
1230 vpd->device_identifier[j++] = page_83[i++];
1231 break;
1232 default:
1233 break;
1234 }
1235
1236 return transport_dump_vpd_ident(vpd, NULL, 0);
1237 }
1238 EXPORT_SYMBOL(transport_set_vpd_ident);
1239
1240 static sense_reason_t
target_check_max_data_sg_nents(struct se_cmd * cmd,struct se_device * dev,unsigned int size)1241 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1242 unsigned int size)
1243 {
1244 u32 mtl;
1245
1246 if (!cmd->se_tfo->max_data_sg_nents)
1247 return TCM_NO_SENSE;
1248 /*
1249 * Check if fabric enforced maximum SGL entries per I/O descriptor
1250 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1251 * residual_count and reduce original cmd->data_length to maximum
1252 * length based on single PAGE_SIZE entry scatter-lists.
1253 */
1254 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1255 if (cmd->data_length > mtl) {
1256 /*
1257 * If an existing CDB overflow is present, calculate new residual
1258 * based on CDB size minus fabric maximum transfer length.
1259 *
1260 * If an existing CDB underflow is present, calculate new residual
1261 * based on original cmd->data_length minus fabric maximum transfer
1262 * length.
1263 *
1264 * Otherwise, set the underflow residual based on cmd->data_length
1265 * minus fabric maximum transfer length.
1266 */
1267 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1268 cmd->residual_count = (size - mtl);
1269 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1270 u32 orig_dl = size + cmd->residual_count;
1271 cmd->residual_count = (orig_dl - mtl);
1272 } else {
1273 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1274 cmd->residual_count = (cmd->data_length - mtl);
1275 }
1276 cmd->data_length = mtl;
1277 /*
1278 * Reset sbc_check_prot() calculated protection payload
1279 * length based upon the new smaller MTL.
1280 */
1281 if (cmd->prot_length) {
1282 u32 sectors = (mtl / dev->dev_attrib.block_size);
1283 cmd->prot_length = dev->prot_length * sectors;
1284 }
1285 }
1286 return TCM_NO_SENSE;
1287 }
1288
1289 /**
1290 * target_cmd_size_check - Check whether there will be a residual.
1291 * @cmd: SCSI command.
1292 * @size: Data buffer size derived from CDB. The data buffer size provided by
1293 * the SCSI transport driver is available in @cmd->data_length.
1294 *
1295 * Compare the data buffer size from the CDB with the data buffer limit from the transport
1296 * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary.
1297 *
1298 * Note: target drivers set @cmd->data_length by calling transport_init_se_cmd().
1299 *
1300 * Return: TCM_NO_SENSE
1301 */
1302 sense_reason_t
target_cmd_size_check(struct se_cmd * cmd,unsigned int size)1303 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1304 {
1305 struct se_device *dev = cmd->se_dev;
1306
1307 if (cmd->unknown_data_length) {
1308 cmd->data_length = size;
1309 } else if (size != cmd->data_length) {
1310 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1311 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1312 " 0x%02x\n", cmd->se_tfo->fabric_name,
1313 cmd->data_length, size, cmd->t_task_cdb[0]);
1314
1315 if (cmd->data_direction == DMA_TO_DEVICE) {
1316 if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1317 pr_err_ratelimited("Rejecting underflow/overflow"
1318 " for WRITE data CDB\n");
1319 return TCM_INVALID_CDB_FIELD;
1320 }
1321 /*
1322 * Some fabric drivers like iscsi-target still expect to
1323 * always reject overflow writes. Reject this case until
1324 * full fabric driver level support for overflow writes
1325 * is introduced tree-wide.
1326 */
1327 if (size > cmd->data_length) {
1328 pr_err_ratelimited("Rejecting overflow for"
1329 " WRITE control CDB\n");
1330 return TCM_INVALID_CDB_FIELD;
1331 }
1332 }
1333 /*
1334 * Reject READ_* or WRITE_* with overflow/underflow for
1335 * type SCF_SCSI_DATA_CDB.
1336 */
1337 if (dev->dev_attrib.block_size != 512) {
1338 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1339 " CDB on non 512-byte sector setup subsystem"
1340 " plugin: %s\n", dev->transport->name);
1341 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1342 return TCM_INVALID_CDB_FIELD;
1343 }
1344 /*
1345 * For the overflow case keep the existing fabric provided
1346 * ->data_length. Otherwise for the underflow case, reset
1347 * ->data_length to the smaller SCSI expected data transfer
1348 * length.
1349 */
1350 if (size > cmd->data_length) {
1351 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1352 cmd->residual_count = (size - cmd->data_length);
1353 } else {
1354 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1355 cmd->residual_count = (cmd->data_length - size);
1356 cmd->data_length = size;
1357 }
1358 }
1359
1360 return target_check_max_data_sg_nents(cmd, dev, size);
1361
1362 }
1363
1364 /*
1365 * Used by fabric modules containing a local struct se_cmd within their
1366 * fabric dependent per I/O descriptor.
1367 *
1368 * Preserves the value of @cmd->tag.
1369 */
transport_init_se_cmd(struct se_cmd * cmd,const struct target_core_fabric_ops * tfo,struct se_session * se_sess,u32 data_length,int data_direction,int task_attr,unsigned char * sense_buffer,u64 unpacked_lun)1370 void transport_init_se_cmd(
1371 struct se_cmd *cmd,
1372 const struct target_core_fabric_ops *tfo,
1373 struct se_session *se_sess,
1374 u32 data_length,
1375 int data_direction,
1376 int task_attr,
1377 unsigned char *sense_buffer, u64 unpacked_lun)
1378 {
1379 INIT_LIST_HEAD(&cmd->se_delayed_node);
1380 INIT_LIST_HEAD(&cmd->se_qf_node);
1381 INIT_LIST_HEAD(&cmd->se_cmd_list);
1382 INIT_LIST_HEAD(&cmd->state_list);
1383 init_completion(&cmd->t_transport_stop_comp);
1384 cmd->free_compl = NULL;
1385 cmd->abrt_compl = NULL;
1386 spin_lock_init(&cmd->t_state_lock);
1387 INIT_WORK(&cmd->work, NULL);
1388 kref_init(&cmd->cmd_kref);
1389
1390 cmd->se_tfo = tfo;
1391 cmd->se_sess = se_sess;
1392 cmd->data_length = data_length;
1393 cmd->data_direction = data_direction;
1394 cmd->sam_task_attr = task_attr;
1395 cmd->sense_buffer = sense_buffer;
1396 cmd->orig_fe_lun = unpacked_lun;
1397
1398 if (!(cmd->se_cmd_flags & SCF_USE_CPUID))
1399 cmd->cpuid = raw_smp_processor_id();
1400
1401 cmd->state_active = false;
1402 }
1403 EXPORT_SYMBOL(transport_init_se_cmd);
1404
1405 static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd * cmd)1406 transport_check_alloc_task_attr(struct se_cmd *cmd)
1407 {
1408 struct se_device *dev = cmd->se_dev;
1409
1410 /*
1411 * Check if SAM Task Attribute emulation is enabled for this
1412 * struct se_device storage object
1413 */
1414 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1415 return 0;
1416
1417 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1418 pr_debug("SAM Task Attribute ACA"
1419 " emulation is not supported\n");
1420 return TCM_INVALID_CDB_FIELD;
1421 }
1422
1423 return 0;
1424 }
1425
1426 sense_reason_t
target_cmd_init_cdb(struct se_cmd * cmd,unsigned char * cdb)1427 target_cmd_init_cdb(struct se_cmd *cmd, unsigned char *cdb)
1428 {
1429 sense_reason_t ret;
1430
1431 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1432 /*
1433 * Ensure that the received CDB is less than the max (252 + 8) bytes
1434 * for VARIABLE_LENGTH_CMD
1435 */
1436 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1437 pr_err("Received SCSI CDB with command_size: %d that"
1438 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1439 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1440 ret = TCM_INVALID_CDB_FIELD;
1441 goto err;
1442 }
1443 /*
1444 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1445 * allocate the additional extended CDB buffer now.. Otherwise
1446 * setup the pointer from __t_task_cdb to t_task_cdb.
1447 */
1448 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1449 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1450 GFP_KERNEL);
1451 if (!cmd->t_task_cdb) {
1452 pr_err("Unable to allocate cmd->t_task_cdb"
1453 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1454 scsi_command_size(cdb),
1455 (unsigned long)sizeof(cmd->__t_task_cdb));
1456 ret = TCM_OUT_OF_RESOURCES;
1457 goto err;
1458 }
1459 }
1460 /*
1461 * Copy the original CDB into cmd->
1462 */
1463 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1464
1465 trace_target_sequencer_start(cmd);
1466 return 0;
1467
1468 err:
1469 /*
1470 * Copy the CDB here to allow trace_target_cmd_complete() to
1471 * print the cdb to the trace buffers.
1472 */
1473 memcpy(cmd->t_task_cdb, cdb, min(scsi_command_size(cdb),
1474 (unsigned int)TCM_MAX_COMMAND_SIZE));
1475 return ret;
1476 }
1477 EXPORT_SYMBOL(target_cmd_init_cdb);
1478
1479 sense_reason_t
target_cmd_parse_cdb(struct se_cmd * cmd)1480 target_cmd_parse_cdb(struct se_cmd *cmd)
1481 {
1482 struct se_device *dev = cmd->se_dev;
1483 sense_reason_t ret;
1484
1485 ret = dev->transport->parse_cdb(cmd);
1486 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1487 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1488 cmd->se_tfo->fabric_name,
1489 cmd->se_sess->se_node_acl->initiatorname,
1490 cmd->t_task_cdb[0]);
1491 if (ret)
1492 return ret;
1493
1494 ret = transport_check_alloc_task_attr(cmd);
1495 if (ret)
1496 return ret;
1497
1498 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1499 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1500 return 0;
1501 }
1502 EXPORT_SYMBOL(target_cmd_parse_cdb);
1503
1504 /*
1505 * Used by fabric module frontends to queue tasks directly.
1506 * May only be used from process context.
1507 */
transport_handle_cdb_direct(struct se_cmd * cmd)1508 int transport_handle_cdb_direct(
1509 struct se_cmd *cmd)
1510 {
1511 sense_reason_t ret;
1512
1513 if (!cmd->se_lun) {
1514 dump_stack();
1515 pr_err("cmd->se_lun is NULL\n");
1516 return -EINVAL;
1517 }
1518 if (in_interrupt()) {
1519 dump_stack();
1520 pr_err("transport_generic_handle_cdb cannot be called"
1521 " from interrupt context\n");
1522 return -EINVAL;
1523 }
1524 /*
1525 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1526 * outstanding descriptors are handled correctly during shutdown via
1527 * transport_wait_for_tasks()
1528 *
1529 * Also, we don't take cmd->t_state_lock here as we only expect
1530 * this to be called for initial descriptor submission.
1531 */
1532 cmd->t_state = TRANSPORT_NEW_CMD;
1533 cmd->transport_state |= CMD_T_ACTIVE;
1534
1535 /*
1536 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1537 * so follow TRANSPORT_NEW_CMD processing thread context usage
1538 * and call transport_generic_request_failure() if necessary..
1539 */
1540 ret = transport_generic_new_cmd(cmd);
1541 if (ret)
1542 transport_generic_request_failure(cmd, ret);
1543 return 0;
1544 }
1545 EXPORT_SYMBOL(transport_handle_cdb_direct);
1546
1547 sense_reason_t
transport_generic_map_mem_to_cmd(struct se_cmd * cmd,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count)1548 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1549 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1550 {
1551 if (!sgl || !sgl_count)
1552 return 0;
1553
1554 /*
1555 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1556 * scatterlists already have been set to follow what the fabric
1557 * passes for the original expected data transfer length.
1558 */
1559 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1560 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1561 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1562 return TCM_INVALID_CDB_FIELD;
1563 }
1564
1565 cmd->t_data_sg = sgl;
1566 cmd->t_data_nents = sgl_count;
1567 cmd->t_bidi_data_sg = sgl_bidi;
1568 cmd->t_bidi_data_nents = sgl_bidi_count;
1569
1570 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1571 return 0;
1572 }
1573
1574 /**
1575 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1576 * se_cmd + use pre-allocated SGL memory.
1577 *
1578 * @se_cmd: command descriptor to submit
1579 * @se_sess: associated se_sess for endpoint
1580 * @cdb: pointer to SCSI CDB
1581 * @sense: pointer to SCSI sense buffer
1582 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1583 * @data_length: fabric expected data transfer length
1584 * @task_attr: SAM task attribute
1585 * @data_dir: DMA data direction
1586 * @flags: flags for command submission from target_sc_flags_tables
1587 * @sgl: struct scatterlist memory for unidirectional mapping
1588 * @sgl_count: scatterlist count for unidirectional mapping
1589 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1590 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1591 * @sgl_prot: struct scatterlist memory protection information
1592 * @sgl_prot_count: scatterlist count for protection information
1593 *
1594 * Task tags are supported if the caller has set @se_cmd->tag.
1595 *
1596 * Returns non zero to signal active I/O shutdown failure. All other
1597 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1598 * but still return zero here.
1599 *
1600 * This may only be called from process context, and also currently
1601 * assumes internal allocation of fabric payload buffer by target-core.
1602 */
target_submit_cmd_map_sgls(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count,struct scatterlist * sgl_prot,u32 sgl_prot_count)1603 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1604 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1605 u32 data_length, int task_attr, int data_dir, int flags,
1606 struct scatterlist *sgl, u32 sgl_count,
1607 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1608 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1609 {
1610 struct se_portal_group *se_tpg;
1611 sense_reason_t rc;
1612 int ret;
1613
1614 se_tpg = se_sess->se_tpg;
1615 BUG_ON(!se_tpg);
1616 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1617 BUG_ON(in_interrupt());
1618
1619 if (flags & TARGET_SCF_USE_CPUID)
1620 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1621 /*
1622 * Initialize se_cmd for target operation. From this point
1623 * exceptions are handled by sending exception status via
1624 * target_core_fabric_ops->queue_status() callback
1625 */
1626 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1627 data_length, data_dir, task_attr, sense,
1628 unpacked_lun);
1629
1630 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1631 se_cmd->unknown_data_length = 1;
1632 /*
1633 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1634 * se_sess->sess_cmd_list. A second kref_get here is necessary
1635 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1636 * kref_put() to happen during fabric packet acknowledgement.
1637 */
1638 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1639 if (ret)
1640 return ret;
1641 /*
1642 * Signal bidirectional data payloads to target-core
1643 */
1644 if (flags & TARGET_SCF_BIDI_OP)
1645 se_cmd->se_cmd_flags |= SCF_BIDI;
1646
1647 rc = target_cmd_init_cdb(se_cmd, cdb);
1648 if (rc) {
1649 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1650 target_put_sess_cmd(se_cmd);
1651 return 0;
1652 }
1653
1654 /*
1655 * Locate se_lun pointer and attach it to struct se_cmd
1656 */
1657 rc = transport_lookup_cmd_lun(se_cmd);
1658 if (rc) {
1659 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1660 target_put_sess_cmd(se_cmd);
1661 return 0;
1662 }
1663
1664 rc = target_cmd_parse_cdb(se_cmd);
1665 if (rc != 0) {
1666 transport_generic_request_failure(se_cmd, rc);
1667 return 0;
1668 }
1669
1670 /*
1671 * Save pointers for SGLs containing protection information,
1672 * if present.
1673 */
1674 if (sgl_prot_count) {
1675 se_cmd->t_prot_sg = sgl_prot;
1676 se_cmd->t_prot_nents = sgl_prot_count;
1677 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1678 }
1679
1680 /*
1681 * When a non zero sgl_count has been passed perform SGL passthrough
1682 * mapping for pre-allocated fabric memory instead of having target
1683 * core perform an internal SGL allocation..
1684 */
1685 if (sgl_count != 0) {
1686 BUG_ON(!sgl);
1687
1688 /*
1689 * A work-around for tcm_loop as some userspace code via
1690 * scsi-generic do not memset their associated read buffers,
1691 * so go ahead and do that here for type non-data CDBs. Also
1692 * note that this is currently guaranteed to be a single SGL
1693 * for this case by target core in target_setup_cmd_from_cdb()
1694 * -> transport_generic_cmd_sequencer().
1695 */
1696 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1697 se_cmd->data_direction == DMA_FROM_DEVICE) {
1698 unsigned char *buf = NULL;
1699
1700 if (sgl)
1701 buf = kmap(sg_page(sgl)) + sgl->offset;
1702
1703 if (buf) {
1704 memset(buf, 0, sgl->length);
1705 kunmap(sg_page(sgl));
1706 }
1707 }
1708
1709 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1710 sgl_bidi, sgl_bidi_count);
1711 if (rc != 0) {
1712 transport_generic_request_failure(se_cmd, rc);
1713 return 0;
1714 }
1715 }
1716
1717 /*
1718 * Check if we need to delay processing because of ALUA
1719 * Active/NonOptimized primary access state..
1720 */
1721 core_alua_check_nonop_delay(se_cmd);
1722
1723 transport_handle_cdb_direct(se_cmd);
1724 return 0;
1725 }
1726 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1727
1728 /**
1729 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1730 *
1731 * @se_cmd: command descriptor to submit
1732 * @se_sess: associated se_sess for endpoint
1733 * @cdb: pointer to SCSI CDB
1734 * @sense: pointer to SCSI sense buffer
1735 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1736 * @data_length: fabric expected data transfer length
1737 * @task_attr: SAM task attribute
1738 * @data_dir: DMA data direction
1739 * @flags: flags for command submission from target_sc_flags_tables
1740 *
1741 * Task tags are supported if the caller has set @se_cmd->tag.
1742 *
1743 * Returns non zero to signal active I/O shutdown failure. All other
1744 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1745 * but still return zero here.
1746 *
1747 * This may only be called from process context, and also currently
1748 * assumes internal allocation of fabric payload buffer by target-core.
1749 *
1750 * It also assumes interal target core SGL memory allocation.
1751 */
target_submit_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1752 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1753 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1754 u32 data_length, int task_attr, int data_dir, int flags)
1755 {
1756 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1757 unpacked_lun, data_length, task_attr, data_dir,
1758 flags, NULL, 0, NULL, 0, NULL, 0);
1759 }
1760 EXPORT_SYMBOL(target_submit_cmd);
1761
target_complete_tmr_failure(struct work_struct * work)1762 static void target_complete_tmr_failure(struct work_struct *work)
1763 {
1764 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1765
1766 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1767 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1768
1769 transport_lun_remove_cmd(se_cmd);
1770 transport_cmd_check_stop_to_fabric(se_cmd);
1771 }
1772
target_lookup_lun_from_tag(struct se_session * se_sess,u64 tag,u64 * unpacked_lun)1773 static bool target_lookup_lun_from_tag(struct se_session *se_sess, u64 tag,
1774 u64 *unpacked_lun)
1775 {
1776 struct se_cmd *se_cmd;
1777 unsigned long flags;
1778 bool ret = false;
1779
1780 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
1781 list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) {
1782 if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
1783 continue;
1784
1785 if (se_cmd->tag == tag) {
1786 *unpacked_lun = se_cmd->orig_fe_lun;
1787 ret = true;
1788 break;
1789 }
1790 }
1791 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
1792
1793 return ret;
1794 }
1795
1796 /**
1797 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1798 * for TMR CDBs
1799 *
1800 * @se_cmd: command descriptor to submit
1801 * @se_sess: associated se_sess for endpoint
1802 * @sense: pointer to SCSI sense buffer
1803 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1804 * @fabric_tmr_ptr: fabric context for TMR req
1805 * @tm_type: Type of TM request
1806 * @gfp: gfp type for caller
1807 * @tag: referenced task tag for TMR_ABORT_TASK
1808 * @flags: submit cmd flags
1809 *
1810 * Callable from all contexts.
1811 **/
1812
target_submit_tmr(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u64 unpacked_lun,void * fabric_tmr_ptr,unsigned char tm_type,gfp_t gfp,u64 tag,int flags)1813 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1814 unsigned char *sense, u64 unpacked_lun,
1815 void *fabric_tmr_ptr, unsigned char tm_type,
1816 gfp_t gfp, u64 tag, int flags)
1817 {
1818 struct se_portal_group *se_tpg;
1819 int ret;
1820
1821 se_tpg = se_sess->se_tpg;
1822 BUG_ON(!se_tpg);
1823
1824 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1825 0, DMA_NONE, TCM_SIMPLE_TAG, sense, unpacked_lun);
1826 /*
1827 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1828 * allocation failure.
1829 */
1830 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1831 if (ret < 0)
1832 return -ENOMEM;
1833
1834 if (tm_type == TMR_ABORT_TASK)
1835 se_cmd->se_tmr_req->ref_task_tag = tag;
1836
1837 /* See target_submit_cmd for commentary */
1838 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1839 if (ret) {
1840 core_tmr_release_req(se_cmd->se_tmr_req);
1841 return ret;
1842 }
1843 /*
1844 * If this is ABORT_TASK with no explicit fabric provided LUN,
1845 * go ahead and search active session tags for a match to figure
1846 * out unpacked_lun for the original se_cmd.
1847 */
1848 if (tm_type == TMR_ABORT_TASK && (flags & TARGET_SCF_LOOKUP_LUN_FROM_TAG)) {
1849 if (!target_lookup_lun_from_tag(se_sess, tag,
1850 &se_cmd->orig_fe_lun))
1851 goto failure;
1852 }
1853
1854 ret = transport_lookup_tmr_lun(se_cmd);
1855 if (ret)
1856 goto failure;
1857
1858 transport_generic_handle_tmr(se_cmd);
1859 return 0;
1860
1861 /*
1862 * For callback during failure handling, push this work off
1863 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1864 */
1865 failure:
1866 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1867 schedule_work(&se_cmd->work);
1868 return 0;
1869 }
1870 EXPORT_SYMBOL(target_submit_tmr);
1871
1872 /*
1873 * Handle SAM-esque emulation for generic transport request failures.
1874 */
transport_generic_request_failure(struct se_cmd * cmd,sense_reason_t sense_reason)1875 void transport_generic_request_failure(struct se_cmd *cmd,
1876 sense_reason_t sense_reason)
1877 {
1878 int ret = 0, post_ret;
1879
1880 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1881 sense_reason);
1882 target_show_cmd("-----[ ", cmd);
1883
1884 /*
1885 * For SAM Task Attribute emulation for failed struct se_cmd
1886 */
1887 transport_complete_task_attr(cmd);
1888
1889 if (cmd->transport_complete_callback)
1890 cmd->transport_complete_callback(cmd, false, &post_ret);
1891
1892 if (cmd->transport_state & CMD_T_ABORTED) {
1893 INIT_WORK(&cmd->work, target_abort_work);
1894 queue_work(target_completion_wq, &cmd->work);
1895 return;
1896 }
1897
1898 switch (sense_reason) {
1899 case TCM_NON_EXISTENT_LUN:
1900 case TCM_UNSUPPORTED_SCSI_OPCODE:
1901 case TCM_INVALID_CDB_FIELD:
1902 case TCM_INVALID_PARAMETER_LIST:
1903 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1904 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1905 case TCM_UNKNOWN_MODE_PAGE:
1906 case TCM_WRITE_PROTECTED:
1907 case TCM_ADDRESS_OUT_OF_RANGE:
1908 case TCM_CHECK_CONDITION_ABORT_CMD:
1909 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1910 case TCM_CHECK_CONDITION_NOT_READY:
1911 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1912 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1913 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1914 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1915 case TCM_TOO_MANY_TARGET_DESCS:
1916 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
1917 case TCM_TOO_MANY_SEGMENT_DESCS:
1918 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1919 break;
1920 case TCM_OUT_OF_RESOURCES:
1921 cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
1922 goto queue_status;
1923 case TCM_LUN_BUSY:
1924 cmd->scsi_status = SAM_STAT_BUSY;
1925 goto queue_status;
1926 case TCM_RESERVATION_CONFLICT:
1927 /*
1928 * No SENSE Data payload for this case, set SCSI Status
1929 * and queue the response to $FABRIC_MOD.
1930 *
1931 * Uses linux/include/scsi/scsi.h SAM status codes defs
1932 */
1933 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1934 /*
1935 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1936 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1937 * CONFLICT STATUS.
1938 *
1939 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1940 */
1941 if (cmd->se_sess &&
1942 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl
1943 == TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) {
1944 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1945 cmd->orig_fe_lun, 0x2C,
1946 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1947 }
1948
1949 goto queue_status;
1950 default:
1951 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1952 cmd->t_task_cdb[0], sense_reason);
1953 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1954 break;
1955 }
1956
1957 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1958 if (ret)
1959 goto queue_full;
1960
1961 check_stop:
1962 transport_lun_remove_cmd(cmd);
1963 transport_cmd_check_stop_to_fabric(cmd);
1964 return;
1965
1966 queue_status:
1967 trace_target_cmd_complete(cmd);
1968 ret = cmd->se_tfo->queue_status(cmd);
1969 if (!ret)
1970 goto check_stop;
1971 queue_full:
1972 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1973 }
1974 EXPORT_SYMBOL(transport_generic_request_failure);
1975
__target_execute_cmd(struct se_cmd * cmd,bool do_checks)1976 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1977 {
1978 sense_reason_t ret;
1979
1980 if (!cmd->execute_cmd) {
1981 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1982 goto err;
1983 }
1984 if (do_checks) {
1985 /*
1986 * Check for an existing UNIT ATTENTION condition after
1987 * target_handle_task_attr() has done SAM task attr
1988 * checking, and possibly have already defered execution
1989 * out to target_restart_delayed_cmds() context.
1990 */
1991 ret = target_scsi3_ua_check(cmd);
1992 if (ret)
1993 goto err;
1994
1995 ret = target_alua_state_check(cmd);
1996 if (ret)
1997 goto err;
1998
1999 ret = target_check_reservation(cmd);
2000 if (ret) {
2001 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2002 goto err;
2003 }
2004 }
2005
2006 ret = cmd->execute_cmd(cmd);
2007 if (!ret)
2008 return;
2009 err:
2010 spin_lock_irq(&cmd->t_state_lock);
2011 cmd->transport_state &= ~CMD_T_SENT;
2012 spin_unlock_irq(&cmd->t_state_lock);
2013
2014 transport_generic_request_failure(cmd, ret);
2015 }
2016
target_write_prot_action(struct se_cmd * cmd)2017 static int target_write_prot_action(struct se_cmd *cmd)
2018 {
2019 u32 sectors;
2020 /*
2021 * Perform WRITE_INSERT of PI using software emulation when backend
2022 * device has PI enabled, if the transport has not already generated
2023 * PI using hardware WRITE_INSERT offload.
2024 */
2025 switch (cmd->prot_op) {
2026 case TARGET_PROT_DOUT_INSERT:
2027 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
2028 sbc_dif_generate(cmd);
2029 break;
2030 case TARGET_PROT_DOUT_STRIP:
2031 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
2032 break;
2033
2034 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
2035 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2036 sectors, 0, cmd->t_prot_sg, 0);
2037 if (unlikely(cmd->pi_err)) {
2038 spin_lock_irq(&cmd->t_state_lock);
2039 cmd->transport_state &= ~CMD_T_SENT;
2040 spin_unlock_irq(&cmd->t_state_lock);
2041 transport_generic_request_failure(cmd, cmd->pi_err);
2042 return -1;
2043 }
2044 break;
2045 default:
2046 break;
2047 }
2048
2049 return 0;
2050 }
2051
target_handle_task_attr(struct se_cmd * cmd)2052 static bool target_handle_task_attr(struct se_cmd *cmd)
2053 {
2054 struct se_device *dev = cmd->se_dev;
2055
2056 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2057 return false;
2058
2059 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
2060
2061 /*
2062 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2063 * to allow the passed struct se_cmd list of tasks to the front of the list.
2064 */
2065 switch (cmd->sam_task_attr) {
2066 case TCM_HEAD_TAG:
2067 atomic_inc_mb(&dev->non_ordered);
2068 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
2069 cmd->t_task_cdb[0]);
2070 return false;
2071 case TCM_ORDERED_TAG:
2072 atomic_inc_mb(&dev->delayed_cmd_count);
2073
2074 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
2075 cmd->t_task_cdb[0]);
2076 break;
2077 default:
2078 /*
2079 * For SIMPLE and UNTAGGED Task Attribute commands
2080 */
2081 atomic_inc_mb(&dev->non_ordered);
2082
2083 if (atomic_read(&dev->delayed_cmd_count) == 0)
2084 return false;
2085 break;
2086 }
2087
2088 if (cmd->sam_task_attr != TCM_ORDERED_TAG) {
2089 atomic_inc_mb(&dev->delayed_cmd_count);
2090 /*
2091 * We will account for this when we dequeue from the delayed
2092 * list.
2093 */
2094 atomic_dec_mb(&dev->non_ordered);
2095 }
2096
2097 spin_lock(&dev->delayed_cmd_lock);
2098 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
2099 spin_unlock(&dev->delayed_cmd_lock);
2100
2101 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2102 cmd->t_task_cdb[0], cmd->sam_task_attr);
2103 /*
2104 * We may have no non ordered cmds when this function started or we
2105 * could have raced with the last simple/head cmd completing, so kick
2106 * the delayed handler here.
2107 */
2108 schedule_work(&dev->delayed_cmd_work);
2109 return true;
2110 }
2111
target_execute_cmd(struct se_cmd * cmd)2112 void target_execute_cmd(struct se_cmd *cmd)
2113 {
2114 /*
2115 * Determine if frontend context caller is requesting the stopping of
2116 * this command for frontend exceptions.
2117 *
2118 * If the received CDB has already been aborted stop processing it here.
2119 */
2120 if (target_cmd_interrupted(cmd))
2121 return;
2122
2123 spin_lock_irq(&cmd->t_state_lock);
2124 cmd->t_state = TRANSPORT_PROCESSING;
2125 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2126 spin_unlock_irq(&cmd->t_state_lock);
2127
2128 if (target_write_prot_action(cmd))
2129 return;
2130
2131 if (target_handle_task_attr(cmd)) {
2132 spin_lock_irq(&cmd->t_state_lock);
2133 cmd->transport_state &= ~CMD_T_SENT;
2134 spin_unlock_irq(&cmd->t_state_lock);
2135 return;
2136 }
2137
2138 __target_execute_cmd(cmd, true);
2139 }
2140 EXPORT_SYMBOL(target_execute_cmd);
2141
2142 /*
2143 * Process all commands up to the last received ORDERED task attribute which
2144 * requires another blocking boundary
2145 */
target_do_delayed_work(struct work_struct * work)2146 void target_do_delayed_work(struct work_struct *work)
2147 {
2148 struct se_device *dev = container_of(work, struct se_device,
2149 delayed_cmd_work);
2150
2151 spin_lock(&dev->delayed_cmd_lock);
2152 while (!dev->ordered_sync_in_progress) {
2153 struct se_cmd *cmd;
2154
2155 if (list_empty(&dev->delayed_cmd_list))
2156 break;
2157
2158 cmd = list_entry(dev->delayed_cmd_list.next,
2159 struct se_cmd, se_delayed_node);
2160
2161 if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2162 /*
2163 * Check if we started with:
2164 * [ordered] [simple] [ordered]
2165 * and we are now at the last ordered so we have to wait
2166 * for the simple cmd.
2167 */
2168 if (atomic_read(&dev->non_ordered) > 0)
2169 break;
2170
2171 dev->ordered_sync_in_progress = true;
2172 }
2173
2174 list_del(&cmd->se_delayed_node);
2175 atomic_dec_mb(&dev->delayed_cmd_count);
2176 spin_unlock(&dev->delayed_cmd_lock);
2177
2178 if (cmd->sam_task_attr != TCM_ORDERED_TAG)
2179 atomic_inc_mb(&dev->non_ordered);
2180
2181 cmd->transport_state |= CMD_T_SENT;
2182
2183 __target_execute_cmd(cmd, true);
2184
2185 spin_lock(&dev->delayed_cmd_lock);
2186 }
2187 spin_unlock(&dev->delayed_cmd_lock);
2188 }
2189
2190 /*
2191 * Called from I/O completion to determine which dormant/delayed
2192 * and ordered cmds need to have their tasks added to the execution queue.
2193 */
transport_complete_task_attr(struct se_cmd * cmd)2194 static void transport_complete_task_attr(struct se_cmd *cmd)
2195 {
2196 struct se_device *dev = cmd->se_dev;
2197
2198 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2199 return;
2200
2201 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2202 goto restart;
2203
2204 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2205 atomic_dec_mb(&dev->non_ordered);
2206 dev->dev_cur_ordered_id++;
2207 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2208 atomic_dec_mb(&dev->non_ordered);
2209 dev->dev_cur_ordered_id++;
2210 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2211 dev->dev_cur_ordered_id);
2212 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2213 spin_lock(&dev->delayed_cmd_lock);
2214 dev->ordered_sync_in_progress = false;
2215 spin_unlock(&dev->delayed_cmd_lock);
2216
2217 dev->dev_cur_ordered_id++;
2218 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2219 dev->dev_cur_ordered_id);
2220 }
2221 cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2222
2223 restart:
2224 if (atomic_read(&dev->delayed_cmd_count) > 0)
2225 schedule_work(&dev->delayed_cmd_work);
2226 }
2227
transport_complete_qf(struct se_cmd * cmd)2228 static void transport_complete_qf(struct se_cmd *cmd)
2229 {
2230 int ret = 0;
2231
2232 transport_complete_task_attr(cmd);
2233 /*
2234 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2235 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2236 * the same callbacks should not be retried. Return CHECK_CONDITION
2237 * if a scsi_status is not already set.
2238 *
2239 * If a fabric driver ->queue_status() has returned non zero, always
2240 * keep retrying no matter what..
2241 */
2242 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2243 if (cmd->scsi_status)
2244 goto queue_status;
2245
2246 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2247 goto queue_status;
2248 }
2249
2250 /*
2251 * Check if we need to send a sense buffer from
2252 * the struct se_cmd in question. We do NOT want
2253 * to take this path of the IO has been marked as
2254 * needing to be treated like a "normal read". This
2255 * is the case if it's a tape read, and either the
2256 * FM, EOM, or ILI bits are set, but there is no
2257 * sense data.
2258 */
2259 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2260 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2261 goto queue_status;
2262
2263 switch (cmd->data_direction) {
2264 case DMA_FROM_DEVICE:
2265 /* queue status if not treating this as a normal read */
2266 if (cmd->scsi_status &&
2267 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2268 goto queue_status;
2269
2270 trace_target_cmd_complete(cmd);
2271 ret = cmd->se_tfo->queue_data_in(cmd);
2272 break;
2273 case DMA_TO_DEVICE:
2274 if (cmd->se_cmd_flags & SCF_BIDI) {
2275 ret = cmd->se_tfo->queue_data_in(cmd);
2276 break;
2277 }
2278 fallthrough;
2279 case DMA_NONE:
2280 queue_status:
2281 trace_target_cmd_complete(cmd);
2282 ret = cmd->se_tfo->queue_status(cmd);
2283 break;
2284 default:
2285 break;
2286 }
2287
2288 if (ret < 0) {
2289 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2290 return;
2291 }
2292 transport_lun_remove_cmd(cmd);
2293 transport_cmd_check_stop_to_fabric(cmd);
2294 }
2295
transport_handle_queue_full(struct se_cmd * cmd,struct se_device * dev,int err,bool write_pending)2296 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2297 int err, bool write_pending)
2298 {
2299 /*
2300 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2301 * ->queue_data_in() callbacks from new process context.
2302 *
2303 * Otherwise for other errors, transport_complete_qf() will send
2304 * CHECK_CONDITION via ->queue_status() instead of attempting to
2305 * retry associated fabric driver data-transfer callbacks.
2306 */
2307 if (err == -EAGAIN || err == -ENOMEM) {
2308 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2309 TRANSPORT_COMPLETE_QF_OK;
2310 } else {
2311 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2312 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2313 }
2314
2315 spin_lock_irq(&dev->qf_cmd_lock);
2316 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2317 atomic_inc_mb(&dev->dev_qf_count);
2318 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2319
2320 schedule_work(&cmd->se_dev->qf_work_queue);
2321 }
2322
target_read_prot_action(struct se_cmd * cmd)2323 static bool target_read_prot_action(struct se_cmd *cmd)
2324 {
2325 switch (cmd->prot_op) {
2326 case TARGET_PROT_DIN_STRIP:
2327 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2328 u32 sectors = cmd->data_length >>
2329 ilog2(cmd->se_dev->dev_attrib.block_size);
2330
2331 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2332 sectors, 0, cmd->t_prot_sg,
2333 0);
2334 if (cmd->pi_err)
2335 return true;
2336 }
2337 break;
2338 case TARGET_PROT_DIN_INSERT:
2339 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2340 break;
2341
2342 sbc_dif_generate(cmd);
2343 break;
2344 default:
2345 break;
2346 }
2347
2348 return false;
2349 }
2350
target_complete_ok_work(struct work_struct * work)2351 static void target_complete_ok_work(struct work_struct *work)
2352 {
2353 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2354 int ret;
2355
2356 /*
2357 * Check if we need to move delayed/dormant tasks from cmds on the
2358 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2359 * Attribute.
2360 */
2361 transport_complete_task_attr(cmd);
2362
2363 /*
2364 * Check to schedule QUEUE_FULL work, or execute an existing
2365 * cmd->transport_qf_callback()
2366 */
2367 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2368 schedule_work(&cmd->se_dev->qf_work_queue);
2369
2370 /*
2371 * Check if we need to send a sense buffer from
2372 * the struct se_cmd in question. We do NOT want
2373 * to take this path of the IO has been marked as
2374 * needing to be treated like a "normal read". This
2375 * is the case if it's a tape read, and either the
2376 * FM, EOM, or ILI bits are set, but there is no
2377 * sense data.
2378 */
2379 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2380 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2381 WARN_ON(!cmd->scsi_status);
2382 ret = transport_send_check_condition_and_sense(
2383 cmd, 0, 1);
2384 if (ret)
2385 goto queue_full;
2386
2387 transport_lun_remove_cmd(cmd);
2388 transport_cmd_check_stop_to_fabric(cmd);
2389 return;
2390 }
2391 /*
2392 * Check for a callback, used by amongst other things
2393 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2394 */
2395 if (cmd->transport_complete_callback) {
2396 sense_reason_t rc;
2397 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2398 bool zero_dl = !(cmd->data_length);
2399 int post_ret = 0;
2400
2401 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2402 if (!rc && !post_ret) {
2403 if (caw && zero_dl)
2404 goto queue_rsp;
2405
2406 return;
2407 } else if (rc) {
2408 ret = transport_send_check_condition_and_sense(cmd,
2409 rc, 0);
2410 if (ret)
2411 goto queue_full;
2412
2413 transport_lun_remove_cmd(cmd);
2414 transport_cmd_check_stop_to_fabric(cmd);
2415 return;
2416 }
2417 }
2418
2419 queue_rsp:
2420 switch (cmd->data_direction) {
2421 case DMA_FROM_DEVICE:
2422 /*
2423 * if this is a READ-type IO, but SCSI status
2424 * is set, then skip returning data and just
2425 * return the status -- unless this IO is marked
2426 * as needing to be treated as a normal read,
2427 * in which case we want to go ahead and return
2428 * the data. This happens, for example, for tape
2429 * reads with the FM, EOM, or ILI bits set, with
2430 * no sense data.
2431 */
2432 if (cmd->scsi_status &&
2433 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2434 goto queue_status;
2435
2436 atomic_long_add(cmd->data_length,
2437 &cmd->se_lun->lun_stats.tx_data_octets);
2438 /*
2439 * Perform READ_STRIP of PI using software emulation when
2440 * backend had PI enabled, if the transport will not be
2441 * performing hardware READ_STRIP offload.
2442 */
2443 if (target_read_prot_action(cmd)) {
2444 ret = transport_send_check_condition_and_sense(cmd,
2445 cmd->pi_err, 0);
2446 if (ret)
2447 goto queue_full;
2448
2449 transport_lun_remove_cmd(cmd);
2450 transport_cmd_check_stop_to_fabric(cmd);
2451 return;
2452 }
2453
2454 trace_target_cmd_complete(cmd);
2455 ret = cmd->se_tfo->queue_data_in(cmd);
2456 if (ret)
2457 goto queue_full;
2458 break;
2459 case DMA_TO_DEVICE:
2460 atomic_long_add(cmd->data_length,
2461 &cmd->se_lun->lun_stats.rx_data_octets);
2462 /*
2463 * Check if we need to send READ payload for BIDI-COMMAND
2464 */
2465 if (cmd->se_cmd_flags & SCF_BIDI) {
2466 atomic_long_add(cmd->data_length,
2467 &cmd->se_lun->lun_stats.tx_data_octets);
2468 ret = cmd->se_tfo->queue_data_in(cmd);
2469 if (ret)
2470 goto queue_full;
2471 break;
2472 }
2473 fallthrough;
2474 case DMA_NONE:
2475 queue_status:
2476 trace_target_cmd_complete(cmd);
2477 ret = cmd->se_tfo->queue_status(cmd);
2478 if (ret)
2479 goto queue_full;
2480 break;
2481 default:
2482 break;
2483 }
2484
2485 transport_lun_remove_cmd(cmd);
2486 transport_cmd_check_stop_to_fabric(cmd);
2487 return;
2488
2489 queue_full:
2490 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2491 " data_direction: %d\n", cmd, cmd->data_direction);
2492
2493 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2494 }
2495
target_free_sgl(struct scatterlist * sgl,int nents)2496 void target_free_sgl(struct scatterlist *sgl, int nents)
2497 {
2498 sgl_free_n_order(sgl, nents, 0);
2499 }
2500 EXPORT_SYMBOL(target_free_sgl);
2501
transport_reset_sgl_orig(struct se_cmd * cmd)2502 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2503 {
2504 /*
2505 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2506 * emulation, and free + reset pointers if necessary..
2507 */
2508 if (!cmd->t_data_sg_orig)
2509 return;
2510
2511 kfree(cmd->t_data_sg);
2512 cmd->t_data_sg = cmd->t_data_sg_orig;
2513 cmd->t_data_sg_orig = NULL;
2514 cmd->t_data_nents = cmd->t_data_nents_orig;
2515 cmd->t_data_nents_orig = 0;
2516 }
2517
transport_free_pages(struct se_cmd * cmd)2518 static inline void transport_free_pages(struct se_cmd *cmd)
2519 {
2520 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2521 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2522 cmd->t_prot_sg = NULL;
2523 cmd->t_prot_nents = 0;
2524 }
2525
2526 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2527 /*
2528 * Release special case READ buffer payload required for
2529 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2530 */
2531 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2532 target_free_sgl(cmd->t_bidi_data_sg,
2533 cmd->t_bidi_data_nents);
2534 cmd->t_bidi_data_sg = NULL;
2535 cmd->t_bidi_data_nents = 0;
2536 }
2537 transport_reset_sgl_orig(cmd);
2538 return;
2539 }
2540 transport_reset_sgl_orig(cmd);
2541
2542 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2543 cmd->t_data_sg = NULL;
2544 cmd->t_data_nents = 0;
2545
2546 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2547 cmd->t_bidi_data_sg = NULL;
2548 cmd->t_bidi_data_nents = 0;
2549 }
2550
transport_kmap_data_sg(struct se_cmd * cmd)2551 void *transport_kmap_data_sg(struct se_cmd *cmd)
2552 {
2553 struct scatterlist *sg = cmd->t_data_sg;
2554 struct page **pages;
2555 int i;
2556
2557 /*
2558 * We need to take into account a possible offset here for fabrics like
2559 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2560 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2561 */
2562 if (!cmd->t_data_nents)
2563 return NULL;
2564
2565 BUG_ON(!sg);
2566 if (cmd->t_data_nents == 1)
2567 return kmap(sg_page(sg)) + sg->offset;
2568
2569 /* >1 page. use vmap */
2570 pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2571 if (!pages)
2572 return NULL;
2573
2574 /* convert sg[] to pages[] */
2575 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2576 pages[i] = sg_page(sg);
2577 }
2578
2579 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2580 kfree(pages);
2581 if (!cmd->t_data_vmap)
2582 return NULL;
2583
2584 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2585 }
2586 EXPORT_SYMBOL(transport_kmap_data_sg);
2587
transport_kunmap_data_sg(struct se_cmd * cmd)2588 void transport_kunmap_data_sg(struct se_cmd *cmd)
2589 {
2590 if (!cmd->t_data_nents) {
2591 return;
2592 } else if (cmd->t_data_nents == 1) {
2593 kunmap(sg_page(cmd->t_data_sg));
2594 return;
2595 }
2596
2597 vunmap(cmd->t_data_vmap);
2598 cmd->t_data_vmap = NULL;
2599 }
2600 EXPORT_SYMBOL(transport_kunmap_data_sg);
2601
2602 int
target_alloc_sgl(struct scatterlist ** sgl,unsigned int * nents,u32 length,bool zero_page,bool chainable)2603 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2604 bool zero_page, bool chainable)
2605 {
2606 gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2607
2608 *sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
2609 return *sgl ? 0 : -ENOMEM;
2610 }
2611 EXPORT_SYMBOL(target_alloc_sgl);
2612
2613 /*
2614 * Allocate any required resources to execute the command. For writes we
2615 * might not have the payload yet, so notify the fabric via a call to
2616 * ->write_pending instead. Otherwise place it on the execution queue.
2617 */
2618 sense_reason_t
transport_generic_new_cmd(struct se_cmd * cmd)2619 transport_generic_new_cmd(struct se_cmd *cmd)
2620 {
2621 unsigned long flags;
2622 int ret = 0;
2623 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2624
2625 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2626 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2627 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2628 cmd->prot_length, true, false);
2629 if (ret < 0)
2630 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2631 }
2632
2633 /*
2634 * Determine if the TCM fabric module has already allocated physical
2635 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2636 * beforehand.
2637 */
2638 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2639 cmd->data_length) {
2640
2641 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2642 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2643 u32 bidi_length;
2644
2645 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2646 bidi_length = cmd->t_task_nolb *
2647 cmd->se_dev->dev_attrib.block_size;
2648 else
2649 bidi_length = cmd->data_length;
2650
2651 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2652 &cmd->t_bidi_data_nents,
2653 bidi_length, zero_flag, false);
2654 if (ret < 0)
2655 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2656 }
2657
2658 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2659 cmd->data_length, zero_flag, false);
2660 if (ret < 0)
2661 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2662 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2663 cmd->data_length) {
2664 /*
2665 * Special case for COMPARE_AND_WRITE with fabrics
2666 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2667 */
2668 u32 caw_length = cmd->t_task_nolb *
2669 cmd->se_dev->dev_attrib.block_size;
2670
2671 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2672 &cmd->t_bidi_data_nents,
2673 caw_length, zero_flag, false);
2674 if (ret < 0)
2675 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2676 }
2677 /*
2678 * If this command is not a write we can execute it right here,
2679 * for write buffers we need to notify the fabric driver first
2680 * and let it call back once the write buffers are ready.
2681 */
2682 target_add_to_state_list(cmd);
2683 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2684 target_execute_cmd(cmd);
2685 return 0;
2686 }
2687
2688 spin_lock_irqsave(&cmd->t_state_lock, flags);
2689 cmd->t_state = TRANSPORT_WRITE_PENDING;
2690 /*
2691 * Determine if frontend context caller is requesting the stopping of
2692 * this command for frontend exceptions.
2693 */
2694 if (cmd->transport_state & CMD_T_STOP &&
2695 !cmd->se_tfo->write_pending_must_be_called) {
2696 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2697 __func__, __LINE__, cmd->tag);
2698
2699 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2700
2701 complete_all(&cmd->t_transport_stop_comp);
2702 return 0;
2703 }
2704 cmd->transport_state &= ~CMD_T_ACTIVE;
2705 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2706
2707 ret = cmd->se_tfo->write_pending(cmd);
2708 if (ret)
2709 goto queue_full;
2710
2711 return 0;
2712
2713 queue_full:
2714 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2715 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2716 return 0;
2717 }
2718 EXPORT_SYMBOL(transport_generic_new_cmd);
2719
transport_write_pending_qf(struct se_cmd * cmd)2720 static void transport_write_pending_qf(struct se_cmd *cmd)
2721 {
2722 unsigned long flags;
2723 int ret;
2724 bool stop;
2725
2726 spin_lock_irqsave(&cmd->t_state_lock, flags);
2727 stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2728 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2729
2730 if (stop) {
2731 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2732 __func__, __LINE__, cmd->tag);
2733 complete_all(&cmd->t_transport_stop_comp);
2734 return;
2735 }
2736
2737 ret = cmd->se_tfo->write_pending(cmd);
2738 if (ret) {
2739 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2740 cmd);
2741 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2742 }
2743 }
2744
2745 static bool
2746 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2747 unsigned long *flags);
2748
target_wait_free_cmd(struct se_cmd * cmd,bool * aborted,bool * tas)2749 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2750 {
2751 unsigned long flags;
2752
2753 spin_lock_irqsave(&cmd->t_state_lock, flags);
2754 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2755 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2756 }
2757
2758 /*
2759 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
2760 * finished.
2761 */
target_put_cmd_and_wait(struct se_cmd * cmd)2762 void target_put_cmd_and_wait(struct se_cmd *cmd)
2763 {
2764 DECLARE_COMPLETION_ONSTACK(compl);
2765
2766 WARN_ON_ONCE(cmd->abrt_compl);
2767 cmd->abrt_compl = &compl;
2768 target_put_sess_cmd(cmd);
2769 wait_for_completion(&compl);
2770 }
2771
2772 /*
2773 * This function is called by frontend drivers after processing of a command
2774 * has finished.
2775 *
2776 * The protocol for ensuring that either the regular frontend command
2777 * processing flow or target_handle_abort() code drops one reference is as
2778 * follows:
2779 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2780 * the frontend driver to call this function synchronously or asynchronously.
2781 * That will cause one reference to be dropped.
2782 * - During regular command processing the target core sets CMD_T_COMPLETE
2783 * before invoking one of the .queue_*() functions.
2784 * - The code that aborts commands skips commands and TMFs for which
2785 * CMD_T_COMPLETE has been set.
2786 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2787 * commands that will be aborted.
2788 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2789 * transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2790 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2791 * be called and will drop a reference.
2792 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2793 * will be called. target_handle_abort() will drop the final reference.
2794 */
transport_generic_free_cmd(struct se_cmd * cmd,int wait_for_tasks)2795 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2796 {
2797 DECLARE_COMPLETION_ONSTACK(compl);
2798 int ret = 0;
2799 bool aborted = false, tas = false;
2800
2801 if (wait_for_tasks)
2802 target_wait_free_cmd(cmd, &aborted, &tas);
2803
2804 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2805 /*
2806 * Handle WRITE failure case where transport_generic_new_cmd()
2807 * has already added se_cmd to state_list, but fabric has
2808 * failed command before I/O submission.
2809 */
2810 if (cmd->state_active)
2811 target_remove_from_state_list(cmd);
2812
2813 if (cmd->se_lun)
2814 transport_lun_remove_cmd(cmd);
2815 }
2816 if (aborted)
2817 cmd->free_compl = &compl;
2818 ret = target_put_sess_cmd(cmd);
2819 if (aborted) {
2820 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2821 wait_for_completion(&compl);
2822 ret = 1;
2823 }
2824 return ret;
2825 }
2826 EXPORT_SYMBOL(transport_generic_free_cmd);
2827
2828 /**
2829 * target_get_sess_cmd - Add command to active ->sess_cmd_list
2830 * @se_cmd: command descriptor to add
2831 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2832 */
target_get_sess_cmd(struct se_cmd * se_cmd,bool ack_kref)2833 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2834 {
2835 struct se_session *se_sess = se_cmd->se_sess;
2836 unsigned long flags;
2837 int ret = 0;
2838
2839 /*
2840 * Add a second kref if the fabric caller is expecting to handle
2841 * fabric acknowledgement that requires two target_put_sess_cmd()
2842 * invocations before se_cmd descriptor release.
2843 */
2844 if (ack_kref) {
2845 if (!kref_get_unless_zero(&se_cmd->cmd_kref))
2846 return -EINVAL;
2847
2848 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2849 }
2850
2851 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2852 if (se_sess->sess_tearing_down) {
2853 ret = -ESHUTDOWN;
2854 goto out;
2855 }
2856 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2857 percpu_ref_get(&se_sess->cmd_count);
2858 out:
2859 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2860
2861 if (ret && ack_kref)
2862 target_put_sess_cmd(se_cmd);
2863
2864 return ret;
2865 }
2866 EXPORT_SYMBOL(target_get_sess_cmd);
2867
target_free_cmd_mem(struct se_cmd * cmd)2868 static void target_free_cmd_mem(struct se_cmd *cmd)
2869 {
2870 transport_free_pages(cmd);
2871
2872 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2873 core_tmr_release_req(cmd->se_tmr_req);
2874 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2875 kfree(cmd->t_task_cdb);
2876 }
2877
target_release_cmd_kref(struct kref * kref)2878 static void target_release_cmd_kref(struct kref *kref)
2879 {
2880 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2881 struct se_session *se_sess = se_cmd->se_sess;
2882 struct completion *free_compl = se_cmd->free_compl;
2883 struct completion *abrt_compl = se_cmd->abrt_compl;
2884 unsigned long flags;
2885
2886 if (se_sess) {
2887 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2888 list_del_init(&se_cmd->se_cmd_list);
2889 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2890 }
2891
2892 target_free_cmd_mem(se_cmd);
2893 se_cmd->se_tfo->release_cmd(se_cmd);
2894 if (free_compl)
2895 complete(free_compl);
2896 if (abrt_compl)
2897 complete(abrt_compl);
2898
2899 percpu_ref_put(&se_sess->cmd_count);
2900 }
2901
2902 /**
2903 * target_put_sess_cmd - decrease the command reference count
2904 * @se_cmd: command to drop a reference from
2905 *
2906 * Returns 1 if and only if this target_put_sess_cmd() call caused the
2907 * refcount to drop to zero. Returns zero otherwise.
2908 */
target_put_sess_cmd(struct se_cmd * se_cmd)2909 int target_put_sess_cmd(struct se_cmd *se_cmd)
2910 {
2911 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2912 }
2913 EXPORT_SYMBOL(target_put_sess_cmd);
2914
data_dir_name(enum dma_data_direction d)2915 static const char *data_dir_name(enum dma_data_direction d)
2916 {
2917 switch (d) {
2918 case DMA_BIDIRECTIONAL: return "BIDI";
2919 case DMA_TO_DEVICE: return "WRITE";
2920 case DMA_FROM_DEVICE: return "READ";
2921 case DMA_NONE: return "NONE";
2922 }
2923
2924 return "(?)";
2925 }
2926
cmd_state_name(enum transport_state_table t)2927 static const char *cmd_state_name(enum transport_state_table t)
2928 {
2929 switch (t) {
2930 case TRANSPORT_NO_STATE: return "NO_STATE";
2931 case TRANSPORT_NEW_CMD: return "NEW_CMD";
2932 case TRANSPORT_WRITE_PENDING: return "WRITE_PENDING";
2933 case TRANSPORT_PROCESSING: return "PROCESSING";
2934 case TRANSPORT_COMPLETE: return "COMPLETE";
2935 case TRANSPORT_ISTATE_PROCESSING:
2936 return "ISTATE_PROCESSING";
2937 case TRANSPORT_COMPLETE_QF_WP: return "COMPLETE_QF_WP";
2938 case TRANSPORT_COMPLETE_QF_OK: return "COMPLETE_QF_OK";
2939 case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR";
2940 }
2941
2942 return "(?)";
2943 }
2944
target_append_str(char ** str,const char * txt)2945 static void target_append_str(char **str, const char *txt)
2946 {
2947 char *prev = *str;
2948
2949 *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
2950 kstrdup(txt, GFP_ATOMIC);
2951 kfree(prev);
2952 }
2953
2954 /*
2955 * Convert a transport state bitmask into a string. The caller is
2956 * responsible for freeing the returned pointer.
2957 */
target_ts_to_str(u32 ts)2958 static char *target_ts_to_str(u32 ts)
2959 {
2960 char *str = NULL;
2961
2962 if (ts & CMD_T_ABORTED)
2963 target_append_str(&str, "aborted");
2964 if (ts & CMD_T_ACTIVE)
2965 target_append_str(&str, "active");
2966 if (ts & CMD_T_COMPLETE)
2967 target_append_str(&str, "complete");
2968 if (ts & CMD_T_SENT)
2969 target_append_str(&str, "sent");
2970 if (ts & CMD_T_STOP)
2971 target_append_str(&str, "stop");
2972 if (ts & CMD_T_FABRIC_STOP)
2973 target_append_str(&str, "fabric_stop");
2974
2975 return str;
2976 }
2977
target_tmf_name(enum tcm_tmreq_table tmf)2978 static const char *target_tmf_name(enum tcm_tmreq_table tmf)
2979 {
2980 switch (tmf) {
2981 case TMR_ABORT_TASK: return "ABORT_TASK";
2982 case TMR_ABORT_TASK_SET: return "ABORT_TASK_SET";
2983 case TMR_CLEAR_ACA: return "CLEAR_ACA";
2984 case TMR_CLEAR_TASK_SET: return "CLEAR_TASK_SET";
2985 case TMR_LUN_RESET: return "LUN_RESET";
2986 case TMR_TARGET_WARM_RESET: return "TARGET_WARM_RESET";
2987 case TMR_TARGET_COLD_RESET: return "TARGET_COLD_RESET";
2988 case TMR_LUN_RESET_PRO: return "LUN_RESET_PRO";
2989 case TMR_UNKNOWN: break;
2990 }
2991 return "(?)";
2992 }
2993
target_show_cmd(const char * pfx,struct se_cmd * cmd)2994 void target_show_cmd(const char *pfx, struct se_cmd *cmd)
2995 {
2996 char *ts_str = target_ts_to_str(cmd->transport_state);
2997 const u8 *cdb = cmd->t_task_cdb;
2998 struct se_tmr_req *tmf = cmd->se_tmr_req;
2999
3000 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
3001 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
3002 pfx, cdb[0], cdb[1], cmd->tag,
3003 data_dir_name(cmd->data_direction),
3004 cmd->se_tfo->get_cmd_state(cmd),
3005 cmd_state_name(cmd->t_state), cmd->data_length,
3006 kref_read(&cmd->cmd_kref), ts_str);
3007 } else {
3008 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
3009 pfx, target_tmf_name(tmf->function), cmd->tag,
3010 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
3011 cmd_state_name(cmd->t_state),
3012 kref_read(&cmd->cmd_kref), ts_str);
3013 }
3014 kfree(ts_str);
3015 }
3016 EXPORT_SYMBOL(target_show_cmd);
3017
3018 /**
3019 * target_sess_cmd_list_set_waiting - Set sess_tearing_down so no new commands are queued.
3020 * @se_sess: session to flag
3021 */
target_sess_cmd_list_set_waiting(struct se_session * se_sess)3022 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
3023 {
3024 unsigned long flags;
3025
3026 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3027 se_sess->sess_tearing_down = 1;
3028 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3029
3030 percpu_ref_kill(&se_sess->cmd_count);
3031 }
3032 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
3033
3034 /**
3035 * target_wait_for_sess_cmds - Wait for outstanding commands
3036 * @se_sess: session to wait for active I/O
3037 */
target_wait_for_sess_cmds(struct se_session * se_sess)3038 void target_wait_for_sess_cmds(struct se_session *se_sess)
3039 {
3040 struct se_cmd *cmd;
3041 int ret;
3042
3043 WARN_ON_ONCE(!se_sess->sess_tearing_down);
3044
3045 do {
3046 ret = wait_event_timeout(se_sess->cmd_list_wq,
3047 percpu_ref_is_zero(&se_sess->cmd_count),
3048 180 * HZ);
3049 list_for_each_entry(cmd, &se_sess->sess_cmd_list, se_cmd_list)
3050 target_show_cmd("session shutdown: still waiting for ",
3051 cmd);
3052 } while (ret <= 0);
3053 }
3054 EXPORT_SYMBOL(target_wait_for_sess_cmds);
3055
3056 /*
3057 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
3058 * all references to the LUN have been released. Called during LUN shutdown.
3059 */
transport_clear_lun_ref(struct se_lun * lun)3060 void transport_clear_lun_ref(struct se_lun *lun)
3061 {
3062 percpu_ref_kill(&lun->lun_ref);
3063 wait_for_completion(&lun->lun_shutdown_comp);
3064 }
3065
3066 static bool
__transport_wait_for_tasks(struct se_cmd * cmd,bool fabric_stop,bool * aborted,bool * tas,unsigned long * flags)3067 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
3068 bool *aborted, bool *tas, unsigned long *flags)
3069 __releases(&cmd->t_state_lock)
3070 __acquires(&cmd->t_state_lock)
3071 {
3072 lockdep_assert_held(&cmd->t_state_lock);
3073
3074 if (fabric_stop)
3075 cmd->transport_state |= CMD_T_FABRIC_STOP;
3076
3077 if (cmd->transport_state & CMD_T_ABORTED)
3078 *aborted = true;
3079
3080 if (cmd->transport_state & CMD_T_TAS)
3081 *tas = true;
3082
3083 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
3084 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3085 return false;
3086
3087 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3088 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3089 return false;
3090
3091 if (!(cmd->transport_state & CMD_T_ACTIVE))
3092 return false;
3093
3094 if (fabric_stop && *aborted)
3095 return false;
3096
3097 cmd->transport_state |= CMD_T_STOP;
3098
3099 target_show_cmd("wait_for_tasks: Stopping ", cmd);
3100
3101 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
3102
3103 while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
3104 180 * HZ))
3105 target_show_cmd("wait for tasks: ", cmd);
3106
3107 spin_lock_irqsave(&cmd->t_state_lock, *flags);
3108 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3109
3110 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3111 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3112
3113 return true;
3114 }
3115
3116 /**
3117 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3118 * @cmd: command to wait on
3119 */
transport_wait_for_tasks(struct se_cmd * cmd)3120 bool transport_wait_for_tasks(struct se_cmd *cmd)
3121 {
3122 unsigned long flags;
3123 bool ret, aborted = false, tas = false;
3124
3125 spin_lock_irqsave(&cmd->t_state_lock, flags);
3126 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3127 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3128
3129 return ret;
3130 }
3131 EXPORT_SYMBOL(transport_wait_for_tasks);
3132
3133 struct sense_detail {
3134 u8 key;
3135 u8 asc;
3136 u8 ascq;
3137 bool add_sense_info;
3138 };
3139
3140 static const struct sense_detail sense_detail_table[] = {
3141 [TCM_NO_SENSE] = {
3142 .key = NOT_READY
3143 },
3144 [TCM_NON_EXISTENT_LUN] = {
3145 .key = ILLEGAL_REQUEST,
3146 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3147 },
3148 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
3149 .key = ILLEGAL_REQUEST,
3150 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3151 },
3152 [TCM_SECTOR_COUNT_TOO_MANY] = {
3153 .key = ILLEGAL_REQUEST,
3154 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3155 },
3156 [TCM_UNKNOWN_MODE_PAGE] = {
3157 .key = ILLEGAL_REQUEST,
3158 .asc = 0x24, /* INVALID FIELD IN CDB */
3159 },
3160 [TCM_CHECK_CONDITION_ABORT_CMD] = {
3161 .key = ABORTED_COMMAND,
3162 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3163 .ascq = 0x03,
3164 },
3165 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
3166 .key = ABORTED_COMMAND,
3167 .asc = 0x0c, /* WRITE ERROR */
3168 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3169 },
3170 [TCM_INVALID_CDB_FIELD] = {
3171 .key = ILLEGAL_REQUEST,
3172 .asc = 0x24, /* INVALID FIELD IN CDB */
3173 },
3174 [TCM_INVALID_PARAMETER_LIST] = {
3175 .key = ILLEGAL_REQUEST,
3176 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3177 },
3178 [TCM_TOO_MANY_TARGET_DESCS] = {
3179 .key = ILLEGAL_REQUEST,
3180 .asc = 0x26,
3181 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3182 },
3183 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3184 .key = ILLEGAL_REQUEST,
3185 .asc = 0x26,
3186 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3187 },
3188 [TCM_TOO_MANY_SEGMENT_DESCS] = {
3189 .key = ILLEGAL_REQUEST,
3190 .asc = 0x26,
3191 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3192 },
3193 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3194 .key = ILLEGAL_REQUEST,
3195 .asc = 0x26,
3196 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3197 },
3198 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3199 .key = ILLEGAL_REQUEST,
3200 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3201 },
3202 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3203 .key = ILLEGAL_REQUEST,
3204 .asc = 0x0c, /* WRITE ERROR */
3205 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3206 },
3207 [TCM_SERVICE_CRC_ERROR] = {
3208 .key = ABORTED_COMMAND,
3209 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3210 .ascq = 0x05, /* N/A */
3211 },
3212 [TCM_SNACK_REJECTED] = {
3213 .key = ABORTED_COMMAND,
3214 .asc = 0x11, /* READ ERROR */
3215 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3216 },
3217 [TCM_WRITE_PROTECTED] = {
3218 .key = DATA_PROTECT,
3219 .asc = 0x27, /* WRITE PROTECTED */
3220 },
3221 [TCM_ADDRESS_OUT_OF_RANGE] = {
3222 .key = ILLEGAL_REQUEST,
3223 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3224 },
3225 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3226 .key = UNIT_ATTENTION,
3227 },
3228 [TCM_CHECK_CONDITION_NOT_READY] = {
3229 .key = NOT_READY,
3230 },
3231 [TCM_MISCOMPARE_VERIFY] = {
3232 .key = MISCOMPARE,
3233 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3234 .ascq = 0x00,
3235 },
3236 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3237 .key = ABORTED_COMMAND,
3238 .asc = 0x10,
3239 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3240 .add_sense_info = true,
3241 },
3242 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3243 .key = ABORTED_COMMAND,
3244 .asc = 0x10,
3245 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3246 .add_sense_info = true,
3247 },
3248 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3249 .key = ABORTED_COMMAND,
3250 .asc = 0x10,
3251 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3252 .add_sense_info = true,
3253 },
3254 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3255 .key = COPY_ABORTED,
3256 .asc = 0x0d,
3257 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3258
3259 },
3260 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3261 /*
3262 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3263 * Solaris initiators. Returning NOT READY instead means the
3264 * operations will be retried a finite number of times and we
3265 * can survive intermittent errors.
3266 */
3267 .key = NOT_READY,
3268 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3269 },
3270 [TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
3271 /*
3272 * From spc4r22 section5.7.7,5.7.8
3273 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3274 * or a REGISTER AND IGNORE EXISTING KEY service action or
3275 * REGISTER AND MOVE service actionis attempted,
3276 * but there are insufficient device server resources to complete the
3277 * operation, then the command shall be terminated with CHECK CONDITION
3278 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3279 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3280 */
3281 .key = ILLEGAL_REQUEST,
3282 .asc = 0x55,
3283 .ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3284 },
3285 };
3286
3287 /**
3288 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3289 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3290 * be stored.
3291 * @reason: LIO sense reason code. If this argument has the value
3292 * TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3293 * dequeuing a unit attention fails due to multiple commands being processed
3294 * concurrently, set the command status to BUSY.
3295 *
3296 * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3297 */
translate_sense_reason(struct se_cmd * cmd,sense_reason_t reason)3298 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3299 {
3300 const struct sense_detail *sd;
3301 u8 *buffer = cmd->sense_buffer;
3302 int r = (__force int)reason;
3303 u8 key, asc, ascq;
3304 bool desc_format = target_sense_desc_format(cmd->se_dev);
3305
3306 if (r < ARRAY_SIZE(sense_detail_table) && sense_detail_table[r].key)
3307 sd = &sense_detail_table[r];
3308 else
3309 sd = &sense_detail_table[(__force int)
3310 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3311
3312 key = sd->key;
3313 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3314 if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
3315 &ascq)) {
3316 cmd->scsi_status = SAM_STAT_BUSY;
3317 return;
3318 }
3319 } else if (sd->asc == 0) {
3320 WARN_ON_ONCE(cmd->scsi_asc == 0);
3321 asc = cmd->scsi_asc;
3322 ascq = cmd->scsi_ascq;
3323 } else {
3324 asc = sd->asc;
3325 ascq = sd->ascq;
3326 }
3327
3328 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3329 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3330 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
3331 scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3332 if (sd->add_sense_info)
3333 WARN_ON_ONCE(scsi_set_sense_information(buffer,
3334 cmd->scsi_sense_length,
3335 cmd->sense_info) < 0);
3336 }
3337
3338 int
transport_send_check_condition_and_sense(struct se_cmd * cmd,sense_reason_t reason,int from_transport)3339 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3340 sense_reason_t reason, int from_transport)
3341 {
3342 unsigned long flags;
3343
3344 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3345
3346 spin_lock_irqsave(&cmd->t_state_lock, flags);
3347 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3348 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3349 return 0;
3350 }
3351 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3352 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3353
3354 if (!from_transport)
3355 translate_sense_reason(cmd, reason);
3356
3357 trace_target_cmd_complete(cmd);
3358 return cmd->se_tfo->queue_status(cmd);
3359 }
3360 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3361
3362 /**
3363 * target_send_busy - Send SCSI BUSY status back to the initiator
3364 * @cmd: SCSI command for which to send a BUSY reply.
3365 *
3366 * Note: Only call this function if target_submit_cmd*() failed.
3367 */
target_send_busy(struct se_cmd * cmd)3368 int target_send_busy(struct se_cmd *cmd)
3369 {
3370 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3371
3372 cmd->scsi_status = SAM_STAT_BUSY;
3373 trace_target_cmd_complete(cmd);
3374 return cmd->se_tfo->queue_status(cmd);
3375 }
3376 EXPORT_SYMBOL(target_send_busy);
3377
target_tmr_work(struct work_struct * work)3378 static void target_tmr_work(struct work_struct *work)
3379 {
3380 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3381 struct se_device *dev = cmd->se_dev;
3382 struct se_tmr_req *tmr = cmd->se_tmr_req;
3383 int ret;
3384
3385 if (cmd->transport_state & CMD_T_ABORTED)
3386 goto aborted;
3387
3388 switch (tmr->function) {
3389 case TMR_ABORT_TASK:
3390 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3391 break;
3392 case TMR_ABORT_TASK_SET:
3393 case TMR_CLEAR_ACA:
3394 case TMR_CLEAR_TASK_SET:
3395 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3396 break;
3397 case TMR_LUN_RESET:
3398 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3399 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3400 TMR_FUNCTION_REJECTED;
3401 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3402 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3403 cmd->orig_fe_lun, 0x29,
3404 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3405 }
3406 break;
3407 case TMR_TARGET_WARM_RESET:
3408 tmr->response = TMR_FUNCTION_REJECTED;
3409 break;
3410 case TMR_TARGET_COLD_RESET:
3411 tmr->response = TMR_FUNCTION_REJECTED;
3412 break;
3413 default:
3414 pr_err("Unknown TMR function: 0x%02x.\n",
3415 tmr->function);
3416 tmr->response = TMR_FUNCTION_REJECTED;
3417 break;
3418 }
3419
3420 if (cmd->transport_state & CMD_T_ABORTED)
3421 goto aborted;
3422
3423 cmd->se_tfo->queue_tm_rsp(cmd);
3424
3425 transport_lun_remove_cmd(cmd);
3426 transport_cmd_check_stop_to_fabric(cmd);
3427 return;
3428
3429 aborted:
3430 target_handle_abort(cmd);
3431 }
3432
transport_generic_handle_tmr(struct se_cmd * cmd)3433 int transport_generic_handle_tmr(
3434 struct se_cmd *cmd)
3435 {
3436 unsigned long flags;
3437 bool aborted = false;
3438
3439 spin_lock_irqsave(&cmd->se_dev->se_tmr_lock, flags);
3440 list_add_tail(&cmd->se_tmr_req->tmr_list, &cmd->se_dev->dev_tmr_list);
3441 spin_unlock_irqrestore(&cmd->se_dev->se_tmr_lock, flags);
3442
3443 spin_lock_irqsave(&cmd->t_state_lock, flags);
3444 if (cmd->transport_state & CMD_T_ABORTED) {
3445 aborted = true;
3446 } else {
3447 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3448 cmd->transport_state |= CMD_T_ACTIVE;
3449 }
3450 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3451
3452 if (aborted) {
3453 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
3454 cmd->se_tmr_req->function,
3455 cmd->se_tmr_req->ref_task_tag, cmd->tag);
3456 target_handle_abort(cmd);
3457 return 0;
3458 }
3459
3460 INIT_WORK(&cmd->work, target_tmr_work);
3461 schedule_work(&cmd->work);
3462 return 0;
3463 }
3464 EXPORT_SYMBOL(transport_generic_handle_tmr);
3465
3466 bool
target_check_wce(struct se_device * dev)3467 target_check_wce(struct se_device *dev)
3468 {
3469 bool wce = false;
3470
3471 if (dev->transport->get_write_cache)
3472 wce = dev->transport->get_write_cache(dev);
3473 else if (dev->dev_attrib.emulate_write_cache > 0)
3474 wce = true;
3475
3476 return wce;
3477 }
3478
3479 bool
target_check_fua(struct se_device * dev)3480 target_check_fua(struct se_device *dev)
3481 {
3482 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3483 }
3484