1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 * Copyright (C) 2006, 2007 University of Szeged, Hungary
7 *
8 * Authors: Artem Bityutskiy (Битюцкий Артём)
9 * Adrian Hunter
10 * Zoltan Sogor
11 */
12
13 /*
14 * This file implements UBIFS I/O subsystem which provides various I/O-related
15 * helper functions (reading/writing/checking/validating nodes) and implements
16 * write-buffering support. Write buffers help to save space which otherwise
17 * would have been wasted for padding to the nearest minimal I/O unit boundary.
18 * Instead, data first goes to the write-buffer and is flushed when the
19 * buffer is full or when it is not used for some time (by timer). This is
20 * similar to the mechanism is used by JFFS2.
21 *
22 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
23 * write size (@c->max_write_size). The latter is the maximum amount of bytes
24 * the underlying flash is able to program at a time, and writing in
25 * @c->max_write_size units should presumably be faster. Obviously,
26 * @c->min_io_size <= @c->max_write_size. Write-buffers are of
27 * @c->max_write_size bytes in size for maximum performance. However, when a
28 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
29 * boundary) which contains data is written, not the whole write-buffer,
30 * because this is more space-efficient.
31 *
32 * This optimization adds few complications to the code. Indeed, on the one
33 * hand, we want to write in optimal @c->max_write_size bytes chunks, which
34 * also means aligning writes at the @c->max_write_size bytes offsets. On the
35 * other hand, we do not want to waste space when synchronizing the write
36 * buffer, so during synchronization we writes in smaller chunks. And this makes
37 * the next write offset to be not aligned to @c->max_write_size bytes. So the
38 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
39 * to @c->max_write_size bytes again. We do this by temporarily shrinking
40 * write-buffer size (@wbuf->size).
41 *
42 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
43 * mutexes defined inside these objects. Since sometimes upper-level code
44 * has to lock the write-buffer (e.g. journal space reservation code), many
45 * functions related to write-buffers have "nolock" suffix which means that the
46 * caller has to lock the write-buffer before calling this function.
47 *
48 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
49 * aligned, UBIFS starts the next node from the aligned address, and the padded
50 * bytes may contain any rubbish. In other words, UBIFS does not put padding
51 * bytes in those small gaps. Common headers of nodes store real node lengths,
52 * not aligned lengths. Indexing nodes also store real lengths in branches.
53 *
54 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
55 * uses padding nodes or padding bytes, if the padding node does not fit.
56 *
57 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
58 * they are read from the flash media.
59 */
60
61 #include <linux/crc32.h>
62 #include <linux/slab.h>
63 #include "ubifs.h"
64
65 /**
66 * ubifs_ro_mode - switch UBIFS to read read-only mode.
67 * @c: UBIFS file-system description object
68 * @err: error code which is the reason of switching to R/O mode
69 */
ubifs_ro_mode(struct ubifs_info * c,int err)70 void ubifs_ro_mode(struct ubifs_info *c, int err)
71 {
72 if (!c->ro_error) {
73 c->ro_error = 1;
74 c->no_chk_data_crc = 0;
75 c->vfs_sb->s_flags |= SB_RDONLY;
76 ubifs_warn(c, "switched to read-only mode, error %d", err);
77 dump_stack();
78 }
79 }
80
81 /*
82 * Below are simple wrappers over UBI I/O functions which include some
83 * additional checks and UBIFS debugging stuff. See corresponding UBI function
84 * for more information.
85 */
86
ubifs_leb_read(const struct ubifs_info * c,int lnum,void * buf,int offs,int len,int even_ebadmsg)87 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
88 int len, int even_ebadmsg)
89 {
90 int err;
91
92 err = ubi_read(c->ubi, lnum, buf, offs, len);
93 /*
94 * In case of %-EBADMSG print the error message only if the
95 * @even_ebadmsg is true.
96 */
97 if (err && (err != -EBADMSG || even_ebadmsg)) {
98 ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d",
99 len, lnum, offs, err);
100 dump_stack();
101 }
102 return err;
103 }
104
ubifs_leb_write(struct ubifs_info * c,int lnum,const void * buf,int offs,int len)105 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
106 int len)
107 {
108 int err;
109
110 ubifs_assert(c, !c->ro_media && !c->ro_mount);
111 if (c->ro_error)
112 return -EROFS;
113 if (!dbg_is_tst_rcvry(c))
114 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
115 else
116 err = dbg_leb_write(c, lnum, buf, offs, len);
117 if (err) {
118 ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d",
119 len, lnum, offs, err);
120 ubifs_ro_mode(c, err);
121 dump_stack();
122 }
123 return err;
124 }
125
ubifs_leb_change(struct ubifs_info * c,int lnum,const void * buf,int len)126 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
127 {
128 int err;
129
130 ubifs_assert(c, !c->ro_media && !c->ro_mount);
131 if (c->ro_error)
132 return -EROFS;
133 if (!dbg_is_tst_rcvry(c))
134 err = ubi_leb_change(c->ubi, lnum, buf, len);
135 else
136 err = dbg_leb_change(c, lnum, buf, len);
137 if (err) {
138 ubifs_err(c, "changing %d bytes in LEB %d failed, error %d",
139 len, lnum, err);
140 ubifs_ro_mode(c, err);
141 dump_stack();
142 }
143 return err;
144 }
145
ubifs_leb_unmap(struct ubifs_info * c,int lnum)146 int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
147 {
148 int err;
149
150 ubifs_assert(c, !c->ro_media && !c->ro_mount);
151 if (c->ro_error)
152 return -EROFS;
153 if (!dbg_is_tst_rcvry(c))
154 err = ubi_leb_unmap(c->ubi, lnum);
155 else
156 err = dbg_leb_unmap(c, lnum);
157 if (err) {
158 ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err);
159 ubifs_ro_mode(c, err);
160 dump_stack();
161 }
162 return err;
163 }
164
ubifs_leb_map(struct ubifs_info * c,int lnum)165 int ubifs_leb_map(struct ubifs_info *c, int lnum)
166 {
167 int err;
168
169 ubifs_assert(c, !c->ro_media && !c->ro_mount);
170 if (c->ro_error)
171 return -EROFS;
172 if (!dbg_is_tst_rcvry(c))
173 err = ubi_leb_map(c->ubi, lnum);
174 else
175 err = dbg_leb_map(c, lnum);
176 if (err) {
177 ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err);
178 ubifs_ro_mode(c, err);
179 dump_stack();
180 }
181 return err;
182 }
183
ubifs_is_mapped(const struct ubifs_info * c,int lnum)184 int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
185 {
186 int err;
187
188 err = ubi_is_mapped(c->ubi, lnum);
189 if (err < 0) {
190 ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d",
191 lnum, err);
192 dump_stack();
193 }
194 return err;
195 }
196
197 /**
198 * ubifs_check_node - check node.
199 * @c: UBIFS file-system description object
200 * @buf: node to check
201 * @lnum: logical eraseblock number
202 * @offs: offset within the logical eraseblock
203 * @quiet: print no messages
204 * @must_chk_crc: indicates whether to always check the CRC
205 *
206 * This function checks node magic number and CRC checksum. This function also
207 * validates node length to prevent UBIFS from becoming crazy when an attacker
208 * feeds it a file-system image with incorrect nodes. For example, too large
209 * node length in the common header could cause UBIFS to read memory outside of
210 * allocated buffer when checking the CRC checksum.
211 *
212 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
213 * true, which is controlled by corresponding UBIFS mount option. However, if
214 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
215 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
216 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
217 * is checked. This is because during mounting or re-mounting from R/O mode to
218 * R/W mode we may read journal nodes (when replying the journal or doing the
219 * recovery) and the journal nodes may potentially be corrupted, so checking is
220 * required.
221 *
222 * This function returns zero in case of success and %-EUCLEAN in case of bad
223 * CRC or magic.
224 */
ubifs_check_node(const struct ubifs_info * c,const void * buf,int lnum,int offs,int quiet,int must_chk_crc)225 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
226 int offs, int quiet, int must_chk_crc)
227 {
228 int err = -EINVAL, type, node_len, dump_node = 1;
229 uint32_t crc, node_crc, magic;
230 const struct ubifs_ch *ch = buf;
231
232 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
233 ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
234
235 magic = le32_to_cpu(ch->magic);
236 if (magic != UBIFS_NODE_MAGIC) {
237 if (!quiet)
238 ubifs_err(c, "bad magic %#08x, expected %#08x",
239 magic, UBIFS_NODE_MAGIC);
240 err = -EUCLEAN;
241 goto out;
242 }
243
244 type = ch->node_type;
245 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
246 if (!quiet)
247 ubifs_err(c, "bad node type %d", type);
248 goto out;
249 }
250
251 node_len = le32_to_cpu(ch->len);
252 if (node_len + offs > c->leb_size)
253 goto out_len;
254
255 if (c->ranges[type].max_len == 0) {
256 if (node_len != c->ranges[type].len)
257 goto out_len;
258 } else if (node_len < c->ranges[type].min_len ||
259 node_len > c->ranges[type].max_len)
260 goto out_len;
261
262 if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
263 !c->remounting_rw && c->no_chk_data_crc)
264 return 0;
265
266 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
267 node_crc = le32_to_cpu(ch->crc);
268 if (crc != node_crc) {
269 if (!quiet)
270 ubifs_err(c, "bad CRC: calculated %#08x, read %#08x",
271 crc, node_crc);
272 err = -EUCLEAN;
273 goto out;
274 }
275
276 return 0;
277
278 out_len:
279 if (!quiet)
280 ubifs_err(c, "bad node length %d", node_len);
281 if (type == UBIFS_DATA_NODE && node_len > UBIFS_DATA_NODE_SZ)
282 dump_node = 0;
283 out:
284 if (!quiet) {
285 ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
286 if (dump_node) {
287 ubifs_dump_node(c, buf);
288 } else {
289 int safe_len = min3(node_len, c->leb_size - offs,
290 (int)UBIFS_MAX_DATA_NODE_SZ);
291 pr_err("\tprevent out-of-bounds memory access\n");
292 pr_err("\ttruncated data node length %d\n", safe_len);
293 pr_err("\tcorrupted data node:\n");
294 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
295 buf, safe_len, 0);
296 }
297 dump_stack();
298 }
299 return err;
300 }
301
302 /**
303 * ubifs_pad - pad flash space.
304 * @c: UBIFS file-system description object
305 * @buf: buffer to put padding to
306 * @pad: how many bytes to pad
307 *
308 * The flash media obliges us to write only in chunks of %c->min_io_size and
309 * when we have to write less data we add padding node to the write-buffer and
310 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
311 * media is being scanned. If the amount of wasted space is not enough to fit a
312 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
313 * pattern (%UBIFS_PADDING_BYTE).
314 *
315 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
316 * used.
317 */
ubifs_pad(const struct ubifs_info * c,void * buf,int pad)318 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
319 {
320 uint32_t crc;
321
322 ubifs_assert(c, pad >= 0);
323
324 if (pad >= UBIFS_PAD_NODE_SZ) {
325 struct ubifs_ch *ch = buf;
326 struct ubifs_pad_node *pad_node = buf;
327
328 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
329 ch->node_type = UBIFS_PAD_NODE;
330 ch->group_type = UBIFS_NO_NODE_GROUP;
331 ch->padding[0] = ch->padding[1] = 0;
332 ch->sqnum = 0;
333 ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
334 pad -= UBIFS_PAD_NODE_SZ;
335 pad_node->pad_len = cpu_to_le32(pad);
336 crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
337 ch->crc = cpu_to_le32(crc);
338 memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
339 } else if (pad > 0)
340 /* Too little space, padding node won't fit */
341 memset(buf, UBIFS_PADDING_BYTE, pad);
342 }
343
344 /**
345 * next_sqnum - get next sequence number.
346 * @c: UBIFS file-system description object
347 */
next_sqnum(struct ubifs_info * c)348 static unsigned long long next_sqnum(struct ubifs_info *c)
349 {
350 unsigned long long sqnum;
351
352 spin_lock(&c->cnt_lock);
353 sqnum = ++c->max_sqnum;
354 spin_unlock(&c->cnt_lock);
355
356 if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
357 if (sqnum >= SQNUM_WATERMARK) {
358 ubifs_err(c, "sequence number overflow %llu, end of life",
359 sqnum);
360 ubifs_ro_mode(c, -EINVAL);
361 }
362 ubifs_warn(c, "running out of sequence numbers, end of life soon");
363 }
364
365 return sqnum;
366 }
367
ubifs_init_node(struct ubifs_info * c,void * node,int len,int pad)368 void ubifs_init_node(struct ubifs_info *c, void *node, int len, int pad)
369 {
370 struct ubifs_ch *ch = node;
371 unsigned long long sqnum = next_sqnum(c);
372
373 ubifs_assert(c, len >= UBIFS_CH_SZ);
374
375 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
376 ch->len = cpu_to_le32(len);
377 ch->group_type = UBIFS_NO_NODE_GROUP;
378 ch->sqnum = cpu_to_le64(sqnum);
379 ch->padding[0] = ch->padding[1] = 0;
380
381 if (pad) {
382 len = ALIGN(len, 8);
383 pad = ALIGN(len, c->min_io_size) - len;
384 ubifs_pad(c, node + len, pad);
385 }
386 }
387
ubifs_crc_node(struct ubifs_info * c,void * node,int len)388 void ubifs_crc_node(struct ubifs_info *c, void *node, int len)
389 {
390 struct ubifs_ch *ch = node;
391 uint32_t crc;
392
393 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
394 ch->crc = cpu_to_le32(crc);
395 }
396
397 /**
398 * ubifs_prepare_node_hmac - prepare node to be written to flash.
399 * @c: UBIFS file-system description object
400 * @node: the node to pad
401 * @len: node length
402 * @hmac_offs: offset of the HMAC in the node
403 * @pad: if the buffer has to be padded
404 *
405 * This function prepares node at @node to be written to the media - it
406 * calculates node CRC, fills the common header, and adds proper padding up to
407 * the next minimum I/O unit if @pad is not zero. if @hmac_offs is positive then
408 * a HMAC is inserted into the node at the given offset.
409 *
410 * This function returns 0 for success or a negative error code otherwise.
411 */
ubifs_prepare_node_hmac(struct ubifs_info * c,void * node,int len,int hmac_offs,int pad)412 int ubifs_prepare_node_hmac(struct ubifs_info *c, void *node, int len,
413 int hmac_offs, int pad)
414 {
415 int err;
416
417 ubifs_init_node(c, node, len, pad);
418
419 if (hmac_offs > 0) {
420 err = ubifs_node_insert_hmac(c, node, len, hmac_offs);
421 if (err)
422 return err;
423 }
424
425 ubifs_crc_node(c, node, len);
426
427 return 0;
428 }
429
430 /**
431 * ubifs_prepare_node - prepare node to be written to flash.
432 * @c: UBIFS file-system description object
433 * @node: the node to pad
434 * @len: node length
435 * @pad: if the buffer has to be padded
436 *
437 * This function prepares node at @node to be written to the media - it
438 * calculates node CRC, fills the common header, and adds proper padding up to
439 * the next minimum I/O unit if @pad is not zero.
440 */
ubifs_prepare_node(struct ubifs_info * c,void * node,int len,int pad)441 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
442 {
443 /*
444 * Deliberately ignore return value since this function can only fail
445 * when a hmac offset is given.
446 */
447 ubifs_prepare_node_hmac(c, node, len, 0, pad);
448 }
449
450 /**
451 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
452 * @c: UBIFS file-system description object
453 * @node: the node to pad
454 * @len: node length
455 * @last: indicates the last node of the group
456 *
457 * This function prepares node at @node to be written to the media - it
458 * calculates node CRC and fills the common header.
459 */
ubifs_prep_grp_node(struct ubifs_info * c,void * node,int len,int last)460 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
461 {
462 uint32_t crc;
463 struct ubifs_ch *ch = node;
464 unsigned long long sqnum = next_sqnum(c);
465
466 ubifs_assert(c, len >= UBIFS_CH_SZ);
467
468 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
469 ch->len = cpu_to_le32(len);
470 if (last)
471 ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
472 else
473 ch->group_type = UBIFS_IN_NODE_GROUP;
474 ch->sqnum = cpu_to_le64(sqnum);
475 ch->padding[0] = ch->padding[1] = 0;
476 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
477 ch->crc = cpu_to_le32(crc);
478 }
479
480 /**
481 * wbuf_timer_callback - write-buffer timer callback function.
482 * @timer: timer data (write-buffer descriptor)
483 *
484 * This function is called when the write-buffer timer expires.
485 */
wbuf_timer_callback_nolock(struct hrtimer * timer)486 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
487 {
488 struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
489
490 dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
491 wbuf->need_sync = 1;
492 wbuf->c->need_wbuf_sync = 1;
493 ubifs_wake_up_bgt(wbuf->c);
494 return HRTIMER_NORESTART;
495 }
496
497 /**
498 * new_wbuf_timer - start new write-buffer timer.
499 * @c: UBIFS file-system description object
500 * @wbuf: write-buffer descriptor
501 */
new_wbuf_timer_nolock(struct ubifs_info * c,struct ubifs_wbuf * wbuf)502 static void new_wbuf_timer_nolock(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
503 {
504 ktime_t softlimit = ms_to_ktime(dirty_writeback_interval * 10);
505 unsigned long long delta = dirty_writeback_interval;
506
507 /* centi to milli, milli to nano, then 10% */
508 delta *= 10ULL * NSEC_PER_MSEC / 10ULL;
509
510 ubifs_assert(c, !hrtimer_active(&wbuf->timer));
511 ubifs_assert(c, delta <= ULONG_MAX);
512
513 if (wbuf->no_timer)
514 return;
515 dbg_io("set timer for jhead %s, %llu-%llu millisecs",
516 dbg_jhead(wbuf->jhead),
517 div_u64(ktime_to_ns(softlimit), USEC_PER_SEC),
518 div_u64(ktime_to_ns(softlimit) + delta, USEC_PER_SEC));
519 hrtimer_start_range_ns(&wbuf->timer, softlimit, delta,
520 HRTIMER_MODE_REL);
521 }
522
523 /**
524 * cancel_wbuf_timer - cancel write-buffer timer.
525 * @wbuf: write-buffer descriptor
526 */
cancel_wbuf_timer_nolock(struct ubifs_wbuf * wbuf)527 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
528 {
529 if (wbuf->no_timer)
530 return;
531 wbuf->need_sync = 0;
532 hrtimer_cancel(&wbuf->timer);
533 }
534
535 /**
536 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
537 * @wbuf: write-buffer to synchronize
538 *
539 * This function synchronizes write-buffer @buf and returns zero in case of
540 * success or a negative error code in case of failure.
541 *
542 * Note, although write-buffers are of @c->max_write_size, this function does
543 * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
544 * if the write-buffer is only partially filled with data, only the used part
545 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
546 * This way we waste less space.
547 */
ubifs_wbuf_sync_nolock(struct ubifs_wbuf * wbuf)548 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
549 {
550 struct ubifs_info *c = wbuf->c;
551 int err, dirt, sync_len;
552
553 cancel_wbuf_timer_nolock(wbuf);
554 if (!wbuf->used || wbuf->lnum == -1)
555 /* Write-buffer is empty or not seeked */
556 return 0;
557
558 dbg_io("LEB %d:%d, %d bytes, jhead %s",
559 wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
560 ubifs_assert(c, !(wbuf->avail & 7));
561 ubifs_assert(c, wbuf->offs + wbuf->size <= c->leb_size);
562 ubifs_assert(c, wbuf->size >= c->min_io_size);
563 ubifs_assert(c, wbuf->size <= c->max_write_size);
564 ubifs_assert(c, wbuf->size % c->min_io_size == 0);
565 ubifs_assert(c, !c->ro_media && !c->ro_mount);
566 if (c->leb_size - wbuf->offs >= c->max_write_size)
567 ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
568
569 if (c->ro_error)
570 return -EROFS;
571
572 /*
573 * Do not write whole write buffer but write only the minimum necessary
574 * amount of min. I/O units.
575 */
576 sync_len = ALIGN(wbuf->used, c->min_io_size);
577 dirt = sync_len - wbuf->used;
578 if (dirt)
579 ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
580 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
581 if (err)
582 return err;
583
584 spin_lock(&wbuf->lock);
585 wbuf->offs += sync_len;
586 /*
587 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
588 * But our goal is to optimize writes and make sure we write in
589 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
590 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
591 * sure that @wbuf->offs + @wbuf->size is aligned to
592 * @c->max_write_size. This way we make sure that after next
593 * write-buffer flush we are again at the optimal offset (aligned to
594 * @c->max_write_size).
595 */
596 if (c->leb_size - wbuf->offs < c->max_write_size)
597 wbuf->size = c->leb_size - wbuf->offs;
598 else if (wbuf->offs & (c->max_write_size - 1))
599 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
600 else
601 wbuf->size = c->max_write_size;
602 wbuf->avail = wbuf->size;
603 wbuf->used = 0;
604 wbuf->next_ino = 0;
605 spin_unlock(&wbuf->lock);
606
607 if (wbuf->sync_callback)
608 err = wbuf->sync_callback(c, wbuf->lnum,
609 c->leb_size - wbuf->offs, dirt);
610 return err;
611 }
612
613 /**
614 * ubifs_wbuf_seek_nolock - seek write-buffer.
615 * @wbuf: write-buffer
616 * @lnum: logical eraseblock number to seek to
617 * @offs: logical eraseblock offset to seek to
618 *
619 * This function targets the write-buffer to logical eraseblock @lnum:@offs.
620 * The write-buffer has to be empty. Returns zero in case of success and a
621 * negative error code in case of failure.
622 */
ubifs_wbuf_seek_nolock(struct ubifs_wbuf * wbuf,int lnum,int offs)623 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
624 {
625 const struct ubifs_info *c = wbuf->c;
626
627 dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
628 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt);
629 ubifs_assert(c, offs >= 0 && offs <= c->leb_size);
630 ubifs_assert(c, offs % c->min_io_size == 0 && !(offs & 7));
631 ubifs_assert(c, lnum != wbuf->lnum);
632 ubifs_assert(c, wbuf->used == 0);
633
634 spin_lock(&wbuf->lock);
635 wbuf->lnum = lnum;
636 wbuf->offs = offs;
637 if (c->leb_size - wbuf->offs < c->max_write_size)
638 wbuf->size = c->leb_size - wbuf->offs;
639 else if (wbuf->offs & (c->max_write_size - 1))
640 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
641 else
642 wbuf->size = c->max_write_size;
643 wbuf->avail = wbuf->size;
644 wbuf->used = 0;
645 spin_unlock(&wbuf->lock);
646
647 return 0;
648 }
649
650 /**
651 * ubifs_bg_wbufs_sync - synchronize write-buffers.
652 * @c: UBIFS file-system description object
653 *
654 * This function is called by background thread to synchronize write-buffers.
655 * Returns zero in case of success and a negative error code in case of
656 * failure.
657 */
ubifs_bg_wbufs_sync(struct ubifs_info * c)658 int ubifs_bg_wbufs_sync(struct ubifs_info *c)
659 {
660 int err, i;
661
662 ubifs_assert(c, !c->ro_media && !c->ro_mount);
663 if (!c->need_wbuf_sync)
664 return 0;
665 c->need_wbuf_sync = 0;
666
667 if (c->ro_error) {
668 err = -EROFS;
669 goto out_timers;
670 }
671
672 dbg_io("synchronize");
673 for (i = 0; i < c->jhead_cnt; i++) {
674 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
675
676 cond_resched();
677
678 /*
679 * If the mutex is locked then wbuf is being changed, so
680 * synchronization is not necessary.
681 */
682 if (mutex_is_locked(&wbuf->io_mutex))
683 continue;
684
685 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
686 if (!wbuf->need_sync) {
687 mutex_unlock(&wbuf->io_mutex);
688 continue;
689 }
690
691 err = ubifs_wbuf_sync_nolock(wbuf);
692 mutex_unlock(&wbuf->io_mutex);
693 if (err) {
694 ubifs_err(c, "cannot sync write-buffer, error %d", err);
695 ubifs_ro_mode(c, err);
696 goto out_timers;
697 }
698 }
699
700 return 0;
701
702 out_timers:
703 /* Cancel all timers to prevent repeated errors */
704 for (i = 0; i < c->jhead_cnt; i++) {
705 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
706
707 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
708 cancel_wbuf_timer_nolock(wbuf);
709 mutex_unlock(&wbuf->io_mutex);
710 }
711 return err;
712 }
713
714 /**
715 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
716 * @wbuf: write-buffer
717 * @buf: node to write
718 * @len: node length
719 *
720 * This function writes data to flash via write-buffer @wbuf. This means that
721 * the last piece of the node won't reach the flash media immediately if it
722 * does not take whole max. write unit (@c->max_write_size). Instead, the node
723 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
724 * because more data are appended to the write-buffer).
725 *
726 * This function returns zero in case of success and a negative error code in
727 * case of failure. If the node cannot be written because there is no more
728 * space in this logical eraseblock, %-ENOSPC is returned.
729 */
ubifs_wbuf_write_nolock(struct ubifs_wbuf * wbuf,void * buf,int len)730 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
731 {
732 struct ubifs_info *c = wbuf->c;
733 int err, written, n, aligned_len = ALIGN(len, 8);
734
735 dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
736 dbg_ntype(((struct ubifs_ch *)buf)->node_type),
737 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
738 ubifs_assert(c, len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
739 ubifs_assert(c, wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
740 ubifs_assert(c, !(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
741 ubifs_assert(c, wbuf->avail > 0 && wbuf->avail <= wbuf->size);
742 ubifs_assert(c, wbuf->size >= c->min_io_size);
743 ubifs_assert(c, wbuf->size <= c->max_write_size);
744 ubifs_assert(c, wbuf->size % c->min_io_size == 0);
745 ubifs_assert(c, mutex_is_locked(&wbuf->io_mutex));
746 ubifs_assert(c, !c->ro_media && !c->ro_mount);
747 ubifs_assert(c, !c->space_fixup);
748 if (c->leb_size - wbuf->offs >= c->max_write_size)
749 ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
750
751 if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
752 err = -ENOSPC;
753 goto out;
754 }
755
756 cancel_wbuf_timer_nolock(wbuf);
757
758 if (c->ro_error)
759 return -EROFS;
760
761 if (aligned_len <= wbuf->avail) {
762 /*
763 * The node is not very large and fits entirely within
764 * write-buffer.
765 */
766 memcpy(wbuf->buf + wbuf->used, buf, len);
767 if (aligned_len > len) {
768 ubifs_assert(c, aligned_len - len < 8);
769 ubifs_pad(c, wbuf->buf + wbuf->used + len, aligned_len - len);
770 }
771
772 if (aligned_len == wbuf->avail) {
773 dbg_io("flush jhead %s wbuf to LEB %d:%d",
774 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
775 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
776 wbuf->offs, wbuf->size);
777 if (err)
778 goto out;
779
780 spin_lock(&wbuf->lock);
781 wbuf->offs += wbuf->size;
782 if (c->leb_size - wbuf->offs >= c->max_write_size)
783 wbuf->size = c->max_write_size;
784 else
785 wbuf->size = c->leb_size - wbuf->offs;
786 wbuf->avail = wbuf->size;
787 wbuf->used = 0;
788 wbuf->next_ino = 0;
789 spin_unlock(&wbuf->lock);
790 } else {
791 spin_lock(&wbuf->lock);
792 wbuf->avail -= aligned_len;
793 wbuf->used += aligned_len;
794 spin_unlock(&wbuf->lock);
795 }
796
797 goto exit;
798 }
799
800 written = 0;
801
802 if (wbuf->used) {
803 /*
804 * The node is large enough and does not fit entirely within
805 * current available space. We have to fill and flush
806 * write-buffer and switch to the next max. write unit.
807 */
808 dbg_io("flush jhead %s wbuf to LEB %d:%d",
809 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
810 memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
811 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
812 wbuf->size);
813 if (err)
814 goto out;
815
816 wbuf->offs += wbuf->size;
817 len -= wbuf->avail;
818 aligned_len -= wbuf->avail;
819 written += wbuf->avail;
820 } else if (wbuf->offs & (c->max_write_size - 1)) {
821 /*
822 * The write-buffer offset is not aligned to
823 * @c->max_write_size and @wbuf->size is less than
824 * @c->max_write_size. Write @wbuf->size bytes to make sure the
825 * following writes are done in optimal @c->max_write_size
826 * chunks.
827 */
828 dbg_io("write %d bytes to LEB %d:%d",
829 wbuf->size, wbuf->lnum, wbuf->offs);
830 err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
831 wbuf->size);
832 if (err)
833 goto out;
834
835 wbuf->offs += wbuf->size;
836 len -= wbuf->size;
837 aligned_len -= wbuf->size;
838 written += wbuf->size;
839 }
840
841 /*
842 * The remaining data may take more whole max. write units, so write the
843 * remains multiple to max. write unit size directly to the flash media.
844 * We align node length to 8-byte boundary because we anyway flash wbuf
845 * if the remaining space is less than 8 bytes.
846 */
847 n = aligned_len >> c->max_write_shift;
848 if (n) {
849 int m = n - 1;
850
851 dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
852 wbuf->offs);
853
854 if (m) {
855 /* '(n-1)<<c->max_write_shift < len' is always true. */
856 m <<= c->max_write_shift;
857 err = ubifs_leb_write(c, wbuf->lnum, buf + written,
858 wbuf->offs, m);
859 if (err)
860 goto out;
861 wbuf->offs += m;
862 aligned_len -= m;
863 len -= m;
864 written += m;
865 }
866
867 /*
868 * The non-written len of buf may be less than 'n' because
869 * parameter 'len' is not 8 bytes aligned, so here we read
870 * min(len, n) bytes from buf.
871 */
872 n = 1 << c->max_write_shift;
873 memcpy(wbuf->buf, buf + written, min(len, n));
874 if (n > len) {
875 ubifs_assert(c, n - len < 8);
876 ubifs_pad(c, wbuf->buf + len, n - len);
877 }
878
879 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, n);
880 if (err)
881 goto out;
882 wbuf->offs += n;
883 aligned_len -= n;
884 len -= min(len, n);
885 written += n;
886 }
887
888 spin_lock(&wbuf->lock);
889 if (aligned_len) {
890 /*
891 * And now we have what's left and what does not take whole
892 * max. write unit, so write it to the write-buffer and we are
893 * done.
894 */
895 memcpy(wbuf->buf, buf + written, len);
896 if (aligned_len > len) {
897 ubifs_assert(c, aligned_len - len < 8);
898 ubifs_pad(c, wbuf->buf + len, aligned_len - len);
899 }
900 }
901
902 if (c->leb_size - wbuf->offs >= c->max_write_size)
903 wbuf->size = c->max_write_size;
904 else
905 wbuf->size = c->leb_size - wbuf->offs;
906 wbuf->avail = wbuf->size - aligned_len;
907 wbuf->used = aligned_len;
908 wbuf->next_ino = 0;
909 spin_unlock(&wbuf->lock);
910
911 exit:
912 if (wbuf->sync_callback) {
913 int free = c->leb_size - wbuf->offs - wbuf->used;
914
915 err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
916 if (err)
917 goto out;
918 }
919
920 if (wbuf->used)
921 new_wbuf_timer_nolock(c, wbuf);
922
923 return 0;
924
925 out:
926 ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d",
927 len, wbuf->lnum, wbuf->offs, err);
928 ubifs_dump_node(c, buf);
929 dump_stack();
930 ubifs_dump_leb(c, wbuf->lnum);
931 return err;
932 }
933
934 /**
935 * ubifs_write_node_hmac - write node to the media.
936 * @c: UBIFS file-system description object
937 * @buf: the node to write
938 * @len: node length
939 * @lnum: logical eraseblock number
940 * @offs: offset within the logical eraseblock
941 * @hmac_offs: offset of the HMAC within the node
942 *
943 * This function automatically fills node magic number, assigns sequence
944 * number, and calculates node CRC checksum. The length of the @buf buffer has
945 * to be aligned to the minimal I/O unit size. This function automatically
946 * appends padding node and padding bytes if needed. Returns zero in case of
947 * success and a negative error code in case of failure.
948 */
ubifs_write_node_hmac(struct ubifs_info * c,void * buf,int len,int lnum,int offs,int hmac_offs)949 int ubifs_write_node_hmac(struct ubifs_info *c, void *buf, int len, int lnum,
950 int offs, int hmac_offs)
951 {
952 int err, buf_len = ALIGN(len, c->min_io_size);
953
954 dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
955 lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
956 buf_len);
957 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
958 ubifs_assert(c, offs % c->min_io_size == 0 && offs < c->leb_size);
959 ubifs_assert(c, !c->ro_media && !c->ro_mount);
960 ubifs_assert(c, !c->space_fixup);
961
962 if (c->ro_error)
963 return -EROFS;
964
965 err = ubifs_prepare_node_hmac(c, buf, len, hmac_offs, 1);
966 if (err)
967 return err;
968
969 err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
970 if (err)
971 ubifs_dump_node(c, buf);
972
973 return err;
974 }
975
976 /**
977 * ubifs_write_node - write node to the media.
978 * @c: UBIFS file-system description object
979 * @buf: the node to write
980 * @len: node length
981 * @lnum: logical eraseblock number
982 * @offs: offset within the logical eraseblock
983 *
984 * This function automatically fills node magic number, assigns sequence
985 * number, and calculates node CRC checksum. The length of the @buf buffer has
986 * to be aligned to the minimal I/O unit size. This function automatically
987 * appends padding node and padding bytes if needed. Returns zero in case of
988 * success and a negative error code in case of failure.
989 */
ubifs_write_node(struct ubifs_info * c,void * buf,int len,int lnum,int offs)990 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
991 int offs)
992 {
993 return ubifs_write_node_hmac(c, buf, len, lnum, offs, -1);
994 }
995
996 /**
997 * ubifs_read_node_wbuf - read node from the media or write-buffer.
998 * @wbuf: wbuf to check for un-written data
999 * @buf: buffer to read to
1000 * @type: node type
1001 * @len: node length
1002 * @lnum: logical eraseblock number
1003 * @offs: offset within the logical eraseblock
1004 *
1005 * This function reads a node of known type and length, checks it and stores
1006 * in @buf. If the node partially or fully sits in the write-buffer, this
1007 * function takes data from the buffer, otherwise it reads the flash media.
1008 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
1009 * error code in case of failure.
1010 */
ubifs_read_node_wbuf(struct ubifs_wbuf * wbuf,void * buf,int type,int len,int lnum,int offs)1011 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
1012 int lnum, int offs)
1013 {
1014 const struct ubifs_info *c = wbuf->c;
1015 int err, rlen, overlap;
1016 struct ubifs_ch *ch = buf;
1017
1018 dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
1019 dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
1020 ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1021 ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1022 ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
1023
1024 spin_lock(&wbuf->lock);
1025 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1026 if (!overlap) {
1027 /* We may safely unlock the write-buffer and read the data */
1028 spin_unlock(&wbuf->lock);
1029 return ubifs_read_node(c, buf, type, len, lnum, offs);
1030 }
1031
1032 /* Don't read under wbuf */
1033 rlen = wbuf->offs - offs;
1034 if (rlen < 0)
1035 rlen = 0;
1036
1037 /* Copy the rest from the write-buffer */
1038 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1039 spin_unlock(&wbuf->lock);
1040
1041 if (rlen > 0) {
1042 /* Read everything that goes before write-buffer */
1043 err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1044 if (err && err != -EBADMSG)
1045 return err;
1046 }
1047
1048 if (type != ch->node_type) {
1049 ubifs_err(c, "bad node type (%d but expected %d)",
1050 ch->node_type, type);
1051 goto out;
1052 }
1053
1054 err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
1055 if (err) {
1056 ubifs_err(c, "expected node type %d", type);
1057 return err;
1058 }
1059
1060 rlen = le32_to_cpu(ch->len);
1061 if (rlen != len) {
1062 ubifs_err(c, "bad node length %d, expected %d", rlen, len);
1063 goto out;
1064 }
1065
1066 return 0;
1067
1068 out:
1069 ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
1070 ubifs_dump_node(c, buf);
1071 dump_stack();
1072 return -EINVAL;
1073 }
1074
1075 /**
1076 * ubifs_read_node - read node.
1077 * @c: UBIFS file-system description object
1078 * @buf: buffer to read to
1079 * @type: node type
1080 * @len: node length (not aligned)
1081 * @lnum: logical eraseblock number
1082 * @offs: offset within the logical eraseblock
1083 *
1084 * This function reads a node of known type and and length, checks it and
1085 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
1086 * and a negative error code in case of failure.
1087 */
ubifs_read_node(const struct ubifs_info * c,void * buf,int type,int len,int lnum,int offs)1088 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
1089 int lnum, int offs)
1090 {
1091 int err, l;
1092 struct ubifs_ch *ch = buf;
1093
1094 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
1095 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1096 ubifs_assert(c, len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
1097 ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1098 ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
1099
1100 err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
1101 if (err && err != -EBADMSG)
1102 return err;
1103
1104 if (type != ch->node_type) {
1105 ubifs_errc(c, "bad node type (%d but expected %d)",
1106 ch->node_type, type);
1107 goto out;
1108 }
1109
1110 err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
1111 if (err) {
1112 ubifs_errc(c, "expected node type %d", type);
1113 return err;
1114 }
1115
1116 l = le32_to_cpu(ch->len);
1117 if (l != len) {
1118 ubifs_errc(c, "bad node length %d, expected %d", l, len);
1119 goto out;
1120 }
1121
1122 return 0;
1123
1124 out:
1125 ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum,
1126 offs, ubi_is_mapped(c->ubi, lnum));
1127 if (!c->probing) {
1128 ubifs_dump_node(c, buf);
1129 dump_stack();
1130 }
1131 return -EINVAL;
1132 }
1133
1134 /**
1135 * ubifs_wbuf_init - initialize write-buffer.
1136 * @c: UBIFS file-system description object
1137 * @wbuf: write-buffer to initialize
1138 *
1139 * This function initializes write-buffer. Returns zero in case of success
1140 * %-ENOMEM in case of failure.
1141 */
ubifs_wbuf_init(struct ubifs_info * c,struct ubifs_wbuf * wbuf)1142 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
1143 {
1144 size_t size;
1145
1146 wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1147 if (!wbuf->buf)
1148 return -ENOMEM;
1149
1150 size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1151 wbuf->inodes = kmalloc(size, GFP_KERNEL);
1152 if (!wbuf->inodes) {
1153 kfree(wbuf->buf);
1154 wbuf->buf = NULL;
1155 return -ENOMEM;
1156 }
1157
1158 wbuf->used = 0;
1159 wbuf->lnum = wbuf->offs = -1;
1160 /*
1161 * If the LEB starts at the max. write size aligned address, then
1162 * write-buffer size has to be set to @c->max_write_size. Otherwise,
1163 * set it to something smaller so that it ends at the closest max.
1164 * write size boundary.
1165 */
1166 size = c->max_write_size - (c->leb_start % c->max_write_size);
1167 wbuf->avail = wbuf->size = size;
1168 wbuf->sync_callback = NULL;
1169 mutex_init(&wbuf->io_mutex);
1170 spin_lock_init(&wbuf->lock);
1171 wbuf->c = c;
1172 wbuf->next_ino = 0;
1173
1174 hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1175 wbuf->timer.function = wbuf_timer_callback_nolock;
1176 return 0;
1177 }
1178
1179 /**
1180 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1181 * @wbuf: the write-buffer where to add
1182 * @inum: the inode number
1183 *
1184 * This function adds an inode number to the inode array of the write-buffer.
1185 */
ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf * wbuf,ino_t inum)1186 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
1187 {
1188 if (!wbuf->buf)
1189 /* NOR flash or something similar */
1190 return;
1191
1192 spin_lock(&wbuf->lock);
1193 if (wbuf->used)
1194 wbuf->inodes[wbuf->next_ino++] = inum;
1195 spin_unlock(&wbuf->lock);
1196 }
1197
1198 /**
1199 * wbuf_has_ino - returns if the wbuf contains data from the inode.
1200 * @wbuf: the write-buffer
1201 * @inum: the inode number
1202 *
1203 * This function returns with %1 if the write-buffer contains some data from the
1204 * given inode otherwise it returns with %0.
1205 */
wbuf_has_ino(struct ubifs_wbuf * wbuf,ino_t inum)1206 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1207 {
1208 int i, ret = 0;
1209
1210 spin_lock(&wbuf->lock);
1211 for (i = 0; i < wbuf->next_ino; i++)
1212 if (inum == wbuf->inodes[i]) {
1213 ret = 1;
1214 break;
1215 }
1216 spin_unlock(&wbuf->lock);
1217
1218 return ret;
1219 }
1220
1221 /**
1222 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1223 * @c: UBIFS file-system description object
1224 * @inode: inode to synchronize
1225 *
1226 * This function synchronizes write-buffers which contain nodes belonging to
1227 * @inode. Returns zero in case of success and a negative error code in case of
1228 * failure.
1229 */
ubifs_sync_wbufs_by_inode(struct ubifs_info * c,struct inode * inode)1230 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
1231 {
1232 int i, err = 0;
1233
1234 for (i = 0; i < c->jhead_cnt; i++) {
1235 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1236
1237 if (i == GCHD)
1238 /*
1239 * GC head is special, do not look at it. Even if the
1240 * head contains something related to this inode, it is
1241 * a _copy_ of corresponding on-flash node which sits
1242 * somewhere else.
1243 */
1244 continue;
1245
1246 if (!wbuf_has_ino(wbuf, inode->i_ino))
1247 continue;
1248
1249 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1250 if (wbuf_has_ino(wbuf, inode->i_ino))
1251 err = ubifs_wbuf_sync_nolock(wbuf);
1252 mutex_unlock(&wbuf->io_mutex);
1253
1254 if (err) {
1255 ubifs_ro_mode(c, err);
1256 return err;
1257 }
1258 }
1259 return 0;
1260 }
1261