1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2006-2009 Freescale Semicondutor, Inc. All rights reserved.
4 *
5 * Author: Shlomi Gridish <gridish@freescale.com>
6 * Li Yang <leoli@freescale.com>
7 *
8 * Description:
9 * QE UCC Gigabit Ethernet Driver
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/slab.h>
18 #include <linux/stddef.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/spinlock.h>
25 #include <linux/mm.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/mii.h>
28 #include <linux/phy.h>
29 #include <linux/phy_fixed.h>
30 #include <linux/workqueue.h>
31 #include <linux/of_address.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_mdio.h>
34 #include <linux/of_net.h>
35 #include <linux/of_platform.h>
36
37 #include <linux/uaccess.h>
38 #include <asm/irq.h>
39 #include <asm/io.h>
40 #include <soc/fsl/qe/immap_qe.h>
41 #include <soc/fsl/qe/qe.h>
42 #include <soc/fsl/qe/ucc.h>
43 #include <soc/fsl/qe/ucc_fast.h>
44 #include <asm/machdep.h>
45
46 #include "ucc_geth.h"
47
48 #undef DEBUG
49
50 #define ugeth_printk(level, format, arg...) \
51 printk(level format "\n", ## arg)
52
53 #define ugeth_dbg(format, arg...) \
54 ugeth_printk(KERN_DEBUG , format , ## arg)
55
56 #ifdef UGETH_VERBOSE_DEBUG
57 #define ugeth_vdbg ugeth_dbg
58 #else
59 #define ugeth_vdbg(fmt, args...) do { } while (0)
60 #endif /* UGETH_VERBOSE_DEBUG */
61 #define UGETH_MSG_DEFAULT (NETIF_MSG_IFUP << 1 ) - 1
62
63
64 static DEFINE_SPINLOCK(ugeth_lock);
65
66 static struct {
67 u32 msg_enable;
68 } debug = { -1 };
69
70 module_param_named(debug, debug.msg_enable, int, 0);
71 MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 0xffff=all)");
72
73 static struct ucc_geth_info ugeth_primary_info = {
74 .uf_info = {
75 .bd_mem_part = MEM_PART_SYSTEM,
76 .rtsm = UCC_FAST_SEND_IDLES_BETWEEN_FRAMES,
77 .max_rx_buf_length = 1536,
78 /* adjusted at startup if max-speed 1000 */
79 .urfs = UCC_GETH_URFS_INIT,
80 .urfet = UCC_GETH_URFET_INIT,
81 .urfset = UCC_GETH_URFSET_INIT,
82 .utfs = UCC_GETH_UTFS_INIT,
83 .utfet = UCC_GETH_UTFET_INIT,
84 .utftt = UCC_GETH_UTFTT_INIT,
85 .ufpt = 256,
86 .mode = UCC_FAST_PROTOCOL_MODE_ETHERNET,
87 .ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
88 .tenc = UCC_FAST_TX_ENCODING_NRZ,
89 .renc = UCC_FAST_RX_ENCODING_NRZ,
90 .tcrc = UCC_FAST_16_BIT_CRC,
91 .synl = UCC_FAST_SYNC_LEN_NOT_USED,
92 },
93 .numQueuesTx = 1,
94 .numQueuesRx = 1,
95 .extendedFilteringChainPointer = ((uint32_t) NULL),
96 .typeorlen = 3072 /*1536 */ ,
97 .nonBackToBackIfgPart1 = 0x40,
98 .nonBackToBackIfgPart2 = 0x60,
99 .miminumInterFrameGapEnforcement = 0x50,
100 .backToBackInterFrameGap = 0x60,
101 .mblinterval = 128,
102 .nortsrbytetime = 5,
103 .fracsiz = 1,
104 .strictpriorityq = 0xff,
105 .altBebTruncation = 0xa,
106 .excessDefer = 1,
107 .maxRetransmission = 0xf,
108 .collisionWindow = 0x37,
109 .receiveFlowControl = 1,
110 .transmitFlowControl = 1,
111 .maxGroupAddrInHash = 4,
112 .maxIndAddrInHash = 4,
113 .prel = 7,
114 .maxFrameLength = 1518+16, /* Add extra bytes for VLANs etc. */
115 .minFrameLength = 64,
116 .maxD1Length = 1520+16, /* Add extra bytes for VLANs etc. */
117 .maxD2Length = 1520+16, /* Add extra bytes for VLANs etc. */
118 .vlantype = 0x8100,
119 .ecamptr = ((uint32_t) NULL),
120 .eventRegMask = UCCE_OTHER,
121 .pausePeriod = 0xf000,
122 .interruptcoalescingmaxvalue = {1, 1, 1, 1, 1, 1, 1, 1},
123 .bdRingLenTx = {
124 TX_BD_RING_LEN,
125 TX_BD_RING_LEN,
126 TX_BD_RING_LEN,
127 TX_BD_RING_LEN,
128 TX_BD_RING_LEN,
129 TX_BD_RING_LEN,
130 TX_BD_RING_LEN,
131 TX_BD_RING_LEN},
132
133 .bdRingLenRx = {
134 RX_BD_RING_LEN,
135 RX_BD_RING_LEN,
136 RX_BD_RING_LEN,
137 RX_BD_RING_LEN,
138 RX_BD_RING_LEN,
139 RX_BD_RING_LEN,
140 RX_BD_RING_LEN,
141 RX_BD_RING_LEN},
142
143 .numStationAddresses = UCC_GETH_NUM_OF_STATION_ADDRESSES_1,
144 .largestexternallookupkeysize =
145 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_NONE,
146 .statisticsMode = UCC_GETH_STATISTICS_GATHERING_MODE_HARDWARE |
147 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX |
148 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX,
149 .vlanOperationTagged = UCC_GETH_VLAN_OPERATION_TAGGED_NOP,
150 .vlanOperationNonTagged = UCC_GETH_VLAN_OPERATION_NON_TAGGED_NOP,
151 .rxQoSMode = UCC_GETH_QOS_MODE_DEFAULT,
152 .aufc = UPSMR_AUTOMATIC_FLOW_CONTROL_MODE_NONE,
153 .padAndCrc = MACCFG2_PAD_AND_CRC_MODE_PAD_AND_CRC,
154 .numThreadsTx = UCC_GETH_NUM_OF_THREADS_1,
155 .numThreadsRx = UCC_GETH_NUM_OF_THREADS_1,
156 .riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
157 .riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
158 };
159
160 static struct ucc_geth_info ugeth_info[8];
161
162 #ifdef DEBUG
mem_disp(u8 * addr,int size)163 static void mem_disp(u8 *addr, int size)
164 {
165 u8 *i;
166 int size16Aling = (size >> 4) << 4;
167 int size4Aling = (size >> 2) << 2;
168 int notAlign = 0;
169 if (size % 16)
170 notAlign = 1;
171
172 for (i = addr; (u32) i < (u32) addr + size16Aling; i += 16)
173 printk("0x%08x: %08x %08x %08x %08x\r\n",
174 (u32) i,
175 *((u32 *) (i)),
176 *((u32 *) (i + 4)),
177 *((u32 *) (i + 8)), *((u32 *) (i + 12)));
178 if (notAlign == 1)
179 printk("0x%08x: ", (u32) i);
180 for (; (u32) i < (u32) addr + size4Aling; i += 4)
181 printk("%08x ", *((u32 *) (i)));
182 for (; (u32) i < (u32) addr + size; i++)
183 printk("%02x", *((i)));
184 if (notAlign == 1)
185 printk("\r\n");
186 }
187 #endif /* DEBUG */
188
dequeue(struct list_head * lh)189 static struct list_head *dequeue(struct list_head *lh)
190 {
191 unsigned long flags;
192
193 spin_lock_irqsave(&ugeth_lock, flags);
194 if (!list_empty(lh)) {
195 struct list_head *node = lh->next;
196 list_del(node);
197 spin_unlock_irqrestore(&ugeth_lock, flags);
198 return node;
199 } else {
200 spin_unlock_irqrestore(&ugeth_lock, flags);
201 return NULL;
202 }
203 }
204
get_new_skb(struct ucc_geth_private * ugeth,u8 __iomem * bd)205 static struct sk_buff *get_new_skb(struct ucc_geth_private *ugeth,
206 u8 __iomem *bd)
207 {
208 struct sk_buff *skb;
209
210 skb = netdev_alloc_skb(ugeth->ndev,
211 ugeth->ug_info->uf_info.max_rx_buf_length +
212 UCC_GETH_RX_DATA_BUF_ALIGNMENT);
213 if (!skb)
214 return NULL;
215
216 /* We need the data buffer to be aligned properly. We will reserve
217 * as many bytes as needed to align the data properly
218 */
219 skb_reserve(skb,
220 UCC_GETH_RX_DATA_BUF_ALIGNMENT -
221 (((unsigned)skb->data) & (UCC_GETH_RX_DATA_BUF_ALIGNMENT -
222 1)));
223
224 out_be32(&((struct qe_bd __iomem *)bd)->buf,
225 dma_map_single(ugeth->dev,
226 skb->data,
227 ugeth->ug_info->uf_info.max_rx_buf_length +
228 UCC_GETH_RX_DATA_BUF_ALIGNMENT,
229 DMA_FROM_DEVICE));
230
231 out_be32((u32 __iomem *)bd,
232 (R_E | R_I | (in_be32((u32 __iomem*)bd) & R_W)));
233
234 return skb;
235 }
236
rx_bd_buffer_set(struct ucc_geth_private * ugeth,u8 rxQ)237 static int rx_bd_buffer_set(struct ucc_geth_private *ugeth, u8 rxQ)
238 {
239 u8 __iomem *bd;
240 u32 bd_status;
241 struct sk_buff *skb;
242 int i;
243
244 bd = ugeth->p_rx_bd_ring[rxQ];
245 i = 0;
246
247 do {
248 bd_status = in_be32((u32 __iomem *)bd);
249 skb = get_new_skb(ugeth, bd);
250
251 if (!skb) /* If can not allocate data buffer,
252 abort. Cleanup will be elsewhere */
253 return -ENOMEM;
254
255 ugeth->rx_skbuff[rxQ][i] = skb;
256
257 /* advance the BD pointer */
258 bd += sizeof(struct qe_bd);
259 i++;
260 } while (!(bd_status & R_W));
261
262 return 0;
263 }
264
fill_init_enet_entries(struct ucc_geth_private * ugeth,u32 * p_start,u8 num_entries,u32 thread_size,u32 thread_alignment,unsigned int risc,int skip_page_for_first_entry)265 static int fill_init_enet_entries(struct ucc_geth_private *ugeth,
266 u32 *p_start,
267 u8 num_entries,
268 u32 thread_size,
269 u32 thread_alignment,
270 unsigned int risc,
271 int skip_page_for_first_entry)
272 {
273 u32 init_enet_offset;
274 u8 i;
275 int snum;
276
277 for (i = 0; i < num_entries; i++) {
278 if ((snum = qe_get_snum()) < 0) {
279 if (netif_msg_ifup(ugeth))
280 pr_err("Can not get SNUM\n");
281 return snum;
282 }
283 if ((i == 0) && skip_page_for_first_entry)
284 /* First entry of Rx does not have page */
285 init_enet_offset = 0;
286 else {
287 init_enet_offset =
288 qe_muram_alloc(thread_size, thread_alignment);
289 if (IS_ERR_VALUE(init_enet_offset)) {
290 if (netif_msg_ifup(ugeth))
291 pr_err("Can not allocate DPRAM memory\n");
292 qe_put_snum((u8) snum);
293 return -ENOMEM;
294 }
295 }
296 *(p_start++) =
297 ((u8) snum << ENET_INIT_PARAM_SNUM_SHIFT) | init_enet_offset
298 | risc;
299 }
300
301 return 0;
302 }
303
return_init_enet_entries(struct ucc_geth_private * ugeth,u32 * p_start,u8 num_entries,unsigned int risc,int skip_page_for_first_entry)304 static int return_init_enet_entries(struct ucc_geth_private *ugeth,
305 u32 *p_start,
306 u8 num_entries,
307 unsigned int risc,
308 int skip_page_for_first_entry)
309 {
310 u32 init_enet_offset;
311 u8 i;
312 int snum;
313
314 for (i = 0; i < num_entries; i++) {
315 u32 val = *p_start;
316
317 /* Check that this entry was actually valid --
318 needed in case failed in allocations */
319 if ((val & ENET_INIT_PARAM_RISC_MASK) == risc) {
320 snum =
321 (u32) (val & ENET_INIT_PARAM_SNUM_MASK) >>
322 ENET_INIT_PARAM_SNUM_SHIFT;
323 qe_put_snum((u8) snum);
324 if (!((i == 0) && skip_page_for_first_entry)) {
325 /* First entry of Rx does not have page */
326 init_enet_offset =
327 (val & ENET_INIT_PARAM_PTR_MASK);
328 qe_muram_free(init_enet_offset);
329 }
330 *p_start++ = 0;
331 }
332 }
333
334 return 0;
335 }
336
337 #ifdef DEBUG
dump_init_enet_entries(struct ucc_geth_private * ugeth,u32 __iomem * p_start,u8 num_entries,u32 thread_size,unsigned int risc,int skip_page_for_first_entry)338 static int dump_init_enet_entries(struct ucc_geth_private *ugeth,
339 u32 __iomem *p_start,
340 u8 num_entries,
341 u32 thread_size,
342 unsigned int risc,
343 int skip_page_for_first_entry)
344 {
345 u32 init_enet_offset;
346 u8 i;
347 int snum;
348
349 for (i = 0; i < num_entries; i++) {
350 u32 val = in_be32(p_start);
351
352 /* Check that this entry was actually valid --
353 needed in case failed in allocations */
354 if ((val & ENET_INIT_PARAM_RISC_MASK) == risc) {
355 snum =
356 (u32) (val & ENET_INIT_PARAM_SNUM_MASK) >>
357 ENET_INIT_PARAM_SNUM_SHIFT;
358 qe_put_snum((u8) snum);
359 if (!((i == 0) && skip_page_for_first_entry)) {
360 /* First entry of Rx does not have page */
361 init_enet_offset =
362 (in_be32(p_start) &
363 ENET_INIT_PARAM_PTR_MASK);
364 pr_info("Init enet entry %d:\n", i);
365 pr_info("Base address: 0x%08x\n",
366 (u32)qe_muram_addr(init_enet_offset));
367 mem_disp(qe_muram_addr(init_enet_offset),
368 thread_size);
369 }
370 p_start++;
371 }
372 }
373
374 return 0;
375 }
376 #endif
377
put_enet_addr_container(struct enet_addr_container * enet_addr_cont)378 static void put_enet_addr_container(struct enet_addr_container *enet_addr_cont)
379 {
380 kfree(enet_addr_cont);
381 }
382
set_mac_addr(__be16 __iomem * reg,u8 * mac)383 static void set_mac_addr(__be16 __iomem *reg, u8 *mac)
384 {
385 out_be16(®[0], ((u16)mac[5] << 8) | mac[4]);
386 out_be16(®[1], ((u16)mac[3] << 8) | mac[2]);
387 out_be16(®[2], ((u16)mac[1] << 8) | mac[0]);
388 }
389
hw_clear_addr_in_paddr(struct ucc_geth_private * ugeth,u8 paddr_num)390 static int hw_clear_addr_in_paddr(struct ucc_geth_private *ugeth, u8 paddr_num)
391 {
392 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
393
394 if (paddr_num >= NUM_OF_PADDRS) {
395 pr_warn("%s: Invalid paddr_num: %u\n", __func__, paddr_num);
396 return -EINVAL;
397 }
398
399 p_82xx_addr_filt =
400 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->p_rx_glbl_pram->
401 addressfiltering;
402
403 /* Writing address ff.ff.ff.ff.ff.ff disables address
404 recognition for this register */
405 out_be16(&p_82xx_addr_filt->paddr[paddr_num].h, 0xffff);
406 out_be16(&p_82xx_addr_filt->paddr[paddr_num].m, 0xffff);
407 out_be16(&p_82xx_addr_filt->paddr[paddr_num].l, 0xffff);
408
409 return 0;
410 }
411
hw_add_addr_in_hash(struct ucc_geth_private * ugeth,u8 * p_enet_addr)412 static void hw_add_addr_in_hash(struct ucc_geth_private *ugeth,
413 u8 *p_enet_addr)
414 {
415 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
416 u32 cecr_subblock;
417
418 p_82xx_addr_filt =
419 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->p_rx_glbl_pram->
420 addressfiltering;
421
422 cecr_subblock =
423 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
424
425 /* Ethernet frames are defined in Little Endian mode,
426 therefore to insert */
427 /* the address to the hash (Big Endian mode), we reverse the bytes.*/
428
429 set_mac_addr(&p_82xx_addr_filt->taddr.h, p_enet_addr);
430
431 qe_issue_cmd(QE_SET_GROUP_ADDRESS, cecr_subblock,
432 QE_CR_PROTOCOL_ETHERNET, 0);
433 }
434
435 #ifdef DEBUG
get_statistics(struct ucc_geth_private * ugeth,struct ucc_geth_tx_firmware_statistics * tx_firmware_statistics,struct ucc_geth_rx_firmware_statistics * rx_firmware_statistics,struct ucc_geth_hardware_statistics * hardware_statistics)436 static void get_statistics(struct ucc_geth_private *ugeth,
437 struct ucc_geth_tx_firmware_statistics *
438 tx_firmware_statistics,
439 struct ucc_geth_rx_firmware_statistics *
440 rx_firmware_statistics,
441 struct ucc_geth_hardware_statistics *hardware_statistics)
442 {
443 struct ucc_fast __iomem *uf_regs;
444 struct ucc_geth __iomem *ug_regs;
445 struct ucc_geth_tx_firmware_statistics_pram *p_tx_fw_statistics_pram;
446 struct ucc_geth_rx_firmware_statistics_pram *p_rx_fw_statistics_pram;
447
448 ug_regs = ugeth->ug_regs;
449 uf_regs = (struct ucc_fast __iomem *) ug_regs;
450 p_tx_fw_statistics_pram = ugeth->p_tx_fw_statistics_pram;
451 p_rx_fw_statistics_pram = ugeth->p_rx_fw_statistics_pram;
452
453 /* Tx firmware only if user handed pointer and driver actually
454 gathers Tx firmware statistics */
455 if (tx_firmware_statistics && p_tx_fw_statistics_pram) {
456 tx_firmware_statistics->sicoltx =
457 in_be32(&p_tx_fw_statistics_pram->sicoltx);
458 tx_firmware_statistics->mulcoltx =
459 in_be32(&p_tx_fw_statistics_pram->mulcoltx);
460 tx_firmware_statistics->latecoltxfr =
461 in_be32(&p_tx_fw_statistics_pram->latecoltxfr);
462 tx_firmware_statistics->frabortduecol =
463 in_be32(&p_tx_fw_statistics_pram->frabortduecol);
464 tx_firmware_statistics->frlostinmactxer =
465 in_be32(&p_tx_fw_statistics_pram->frlostinmactxer);
466 tx_firmware_statistics->carriersenseertx =
467 in_be32(&p_tx_fw_statistics_pram->carriersenseertx);
468 tx_firmware_statistics->frtxok =
469 in_be32(&p_tx_fw_statistics_pram->frtxok);
470 tx_firmware_statistics->txfrexcessivedefer =
471 in_be32(&p_tx_fw_statistics_pram->txfrexcessivedefer);
472 tx_firmware_statistics->txpkts256 =
473 in_be32(&p_tx_fw_statistics_pram->txpkts256);
474 tx_firmware_statistics->txpkts512 =
475 in_be32(&p_tx_fw_statistics_pram->txpkts512);
476 tx_firmware_statistics->txpkts1024 =
477 in_be32(&p_tx_fw_statistics_pram->txpkts1024);
478 tx_firmware_statistics->txpktsjumbo =
479 in_be32(&p_tx_fw_statistics_pram->txpktsjumbo);
480 }
481
482 /* Rx firmware only if user handed pointer and driver actually
483 * gathers Rx firmware statistics */
484 if (rx_firmware_statistics && p_rx_fw_statistics_pram) {
485 int i;
486 rx_firmware_statistics->frrxfcser =
487 in_be32(&p_rx_fw_statistics_pram->frrxfcser);
488 rx_firmware_statistics->fraligner =
489 in_be32(&p_rx_fw_statistics_pram->fraligner);
490 rx_firmware_statistics->inrangelenrxer =
491 in_be32(&p_rx_fw_statistics_pram->inrangelenrxer);
492 rx_firmware_statistics->outrangelenrxer =
493 in_be32(&p_rx_fw_statistics_pram->outrangelenrxer);
494 rx_firmware_statistics->frtoolong =
495 in_be32(&p_rx_fw_statistics_pram->frtoolong);
496 rx_firmware_statistics->runt =
497 in_be32(&p_rx_fw_statistics_pram->runt);
498 rx_firmware_statistics->verylongevent =
499 in_be32(&p_rx_fw_statistics_pram->verylongevent);
500 rx_firmware_statistics->symbolerror =
501 in_be32(&p_rx_fw_statistics_pram->symbolerror);
502 rx_firmware_statistics->dropbsy =
503 in_be32(&p_rx_fw_statistics_pram->dropbsy);
504 for (i = 0; i < 0x8; i++)
505 rx_firmware_statistics->res0[i] =
506 p_rx_fw_statistics_pram->res0[i];
507 rx_firmware_statistics->mismatchdrop =
508 in_be32(&p_rx_fw_statistics_pram->mismatchdrop);
509 rx_firmware_statistics->underpkts =
510 in_be32(&p_rx_fw_statistics_pram->underpkts);
511 rx_firmware_statistics->pkts256 =
512 in_be32(&p_rx_fw_statistics_pram->pkts256);
513 rx_firmware_statistics->pkts512 =
514 in_be32(&p_rx_fw_statistics_pram->pkts512);
515 rx_firmware_statistics->pkts1024 =
516 in_be32(&p_rx_fw_statistics_pram->pkts1024);
517 rx_firmware_statistics->pktsjumbo =
518 in_be32(&p_rx_fw_statistics_pram->pktsjumbo);
519 rx_firmware_statistics->frlossinmacer =
520 in_be32(&p_rx_fw_statistics_pram->frlossinmacer);
521 rx_firmware_statistics->pausefr =
522 in_be32(&p_rx_fw_statistics_pram->pausefr);
523 for (i = 0; i < 0x4; i++)
524 rx_firmware_statistics->res1[i] =
525 p_rx_fw_statistics_pram->res1[i];
526 rx_firmware_statistics->removevlan =
527 in_be32(&p_rx_fw_statistics_pram->removevlan);
528 rx_firmware_statistics->replacevlan =
529 in_be32(&p_rx_fw_statistics_pram->replacevlan);
530 rx_firmware_statistics->insertvlan =
531 in_be32(&p_rx_fw_statistics_pram->insertvlan);
532 }
533
534 /* Hardware only if user handed pointer and driver actually
535 gathers hardware statistics */
536 if (hardware_statistics &&
537 (in_be32(&uf_regs->upsmr) & UCC_GETH_UPSMR_HSE)) {
538 hardware_statistics->tx64 = in_be32(&ug_regs->tx64);
539 hardware_statistics->tx127 = in_be32(&ug_regs->tx127);
540 hardware_statistics->tx255 = in_be32(&ug_regs->tx255);
541 hardware_statistics->rx64 = in_be32(&ug_regs->rx64);
542 hardware_statistics->rx127 = in_be32(&ug_regs->rx127);
543 hardware_statistics->rx255 = in_be32(&ug_regs->rx255);
544 hardware_statistics->txok = in_be32(&ug_regs->txok);
545 hardware_statistics->txcf = in_be16(&ug_regs->txcf);
546 hardware_statistics->tmca = in_be32(&ug_regs->tmca);
547 hardware_statistics->tbca = in_be32(&ug_regs->tbca);
548 hardware_statistics->rxfok = in_be32(&ug_regs->rxfok);
549 hardware_statistics->rxbok = in_be32(&ug_regs->rxbok);
550 hardware_statistics->rbyt = in_be32(&ug_regs->rbyt);
551 hardware_statistics->rmca = in_be32(&ug_regs->rmca);
552 hardware_statistics->rbca = in_be32(&ug_regs->rbca);
553 }
554 }
555
dump_bds(struct ucc_geth_private * ugeth)556 static void dump_bds(struct ucc_geth_private *ugeth)
557 {
558 int i;
559 int length;
560
561 for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
562 if (ugeth->p_tx_bd_ring[i]) {
563 length =
564 (ugeth->ug_info->bdRingLenTx[i] *
565 sizeof(struct qe_bd));
566 pr_info("TX BDs[%d]\n", i);
567 mem_disp(ugeth->p_tx_bd_ring[i], length);
568 }
569 }
570 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
571 if (ugeth->p_rx_bd_ring[i]) {
572 length =
573 (ugeth->ug_info->bdRingLenRx[i] *
574 sizeof(struct qe_bd));
575 pr_info("RX BDs[%d]\n", i);
576 mem_disp(ugeth->p_rx_bd_ring[i], length);
577 }
578 }
579 }
580
dump_regs(struct ucc_geth_private * ugeth)581 static void dump_regs(struct ucc_geth_private *ugeth)
582 {
583 int i;
584
585 pr_info("UCC%d Geth registers:\n", ugeth->ug_info->uf_info.ucc_num + 1);
586 pr_info("Base address: 0x%08x\n", (u32)ugeth->ug_regs);
587
588 pr_info("maccfg1 : addr - 0x%08x, val - 0x%08x\n",
589 (u32)&ugeth->ug_regs->maccfg1,
590 in_be32(&ugeth->ug_regs->maccfg1));
591 pr_info("maccfg2 : addr - 0x%08x, val - 0x%08x\n",
592 (u32)&ugeth->ug_regs->maccfg2,
593 in_be32(&ugeth->ug_regs->maccfg2));
594 pr_info("ipgifg : addr - 0x%08x, val - 0x%08x\n",
595 (u32)&ugeth->ug_regs->ipgifg,
596 in_be32(&ugeth->ug_regs->ipgifg));
597 pr_info("hafdup : addr - 0x%08x, val - 0x%08x\n",
598 (u32)&ugeth->ug_regs->hafdup,
599 in_be32(&ugeth->ug_regs->hafdup));
600 pr_info("ifctl : addr - 0x%08x, val - 0x%08x\n",
601 (u32)&ugeth->ug_regs->ifctl,
602 in_be32(&ugeth->ug_regs->ifctl));
603 pr_info("ifstat : addr - 0x%08x, val - 0x%08x\n",
604 (u32)&ugeth->ug_regs->ifstat,
605 in_be32(&ugeth->ug_regs->ifstat));
606 pr_info("macstnaddr1: addr - 0x%08x, val - 0x%08x\n",
607 (u32)&ugeth->ug_regs->macstnaddr1,
608 in_be32(&ugeth->ug_regs->macstnaddr1));
609 pr_info("macstnaddr2: addr - 0x%08x, val - 0x%08x\n",
610 (u32)&ugeth->ug_regs->macstnaddr2,
611 in_be32(&ugeth->ug_regs->macstnaddr2));
612 pr_info("uempr : addr - 0x%08x, val - 0x%08x\n",
613 (u32)&ugeth->ug_regs->uempr,
614 in_be32(&ugeth->ug_regs->uempr));
615 pr_info("utbipar : addr - 0x%08x, val - 0x%08x\n",
616 (u32)&ugeth->ug_regs->utbipar,
617 in_be32(&ugeth->ug_regs->utbipar));
618 pr_info("uescr : addr - 0x%08x, val - 0x%04x\n",
619 (u32)&ugeth->ug_regs->uescr,
620 in_be16(&ugeth->ug_regs->uescr));
621 pr_info("tx64 : addr - 0x%08x, val - 0x%08x\n",
622 (u32)&ugeth->ug_regs->tx64,
623 in_be32(&ugeth->ug_regs->tx64));
624 pr_info("tx127 : addr - 0x%08x, val - 0x%08x\n",
625 (u32)&ugeth->ug_regs->tx127,
626 in_be32(&ugeth->ug_regs->tx127));
627 pr_info("tx255 : addr - 0x%08x, val - 0x%08x\n",
628 (u32)&ugeth->ug_regs->tx255,
629 in_be32(&ugeth->ug_regs->tx255));
630 pr_info("rx64 : addr - 0x%08x, val - 0x%08x\n",
631 (u32)&ugeth->ug_regs->rx64,
632 in_be32(&ugeth->ug_regs->rx64));
633 pr_info("rx127 : addr - 0x%08x, val - 0x%08x\n",
634 (u32)&ugeth->ug_regs->rx127,
635 in_be32(&ugeth->ug_regs->rx127));
636 pr_info("rx255 : addr - 0x%08x, val - 0x%08x\n",
637 (u32)&ugeth->ug_regs->rx255,
638 in_be32(&ugeth->ug_regs->rx255));
639 pr_info("txok : addr - 0x%08x, val - 0x%08x\n",
640 (u32)&ugeth->ug_regs->txok,
641 in_be32(&ugeth->ug_regs->txok));
642 pr_info("txcf : addr - 0x%08x, val - 0x%04x\n",
643 (u32)&ugeth->ug_regs->txcf,
644 in_be16(&ugeth->ug_regs->txcf));
645 pr_info("tmca : addr - 0x%08x, val - 0x%08x\n",
646 (u32)&ugeth->ug_regs->tmca,
647 in_be32(&ugeth->ug_regs->tmca));
648 pr_info("tbca : addr - 0x%08x, val - 0x%08x\n",
649 (u32)&ugeth->ug_regs->tbca,
650 in_be32(&ugeth->ug_regs->tbca));
651 pr_info("rxfok : addr - 0x%08x, val - 0x%08x\n",
652 (u32)&ugeth->ug_regs->rxfok,
653 in_be32(&ugeth->ug_regs->rxfok));
654 pr_info("rxbok : addr - 0x%08x, val - 0x%08x\n",
655 (u32)&ugeth->ug_regs->rxbok,
656 in_be32(&ugeth->ug_regs->rxbok));
657 pr_info("rbyt : addr - 0x%08x, val - 0x%08x\n",
658 (u32)&ugeth->ug_regs->rbyt,
659 in_be32(&ugeth->ug_regs->rbyt));
660 pr_info("rmca : addr - 0x%08x, val - 0x%08x\n",
661 (u32)&ugeth->ug_regs->rmca,
662 in_be32(&ugeth->ug_regs->rmca));
663 pr_info("rbca : addr - 0x%08x, val - 0x%08x\n",
664 (u32)&ugeth->ug_regs->rbca,
665 in_be32(&ugeth->ug_regs->rbca));
666 pr_info("scar : addr - 0x%08x, val - 0x%08x\n",
667 (u32)&ugeth->ug_regs->scar,
668 in_be32(&ugeth->ug_regs->scar));
669 pr_info("scam : addr - 0x%08x, val - 0x%08x\n",
670 (u32)&ugeth->ug_regs->scam,
671 in_be32(&ugeth->ug_regs->scam));
672
673 if (ugeth->p_thread_data_tx) {
674 int numThreadsTxNumerical;
675 switch (ugeth->ug_info->numThreadsTx) {
676 case UCC_GETH_NUM_OF_THREADS_1:
677 numThreadsTxNumerical = 1;
678 break;
679 case UCC_GETH_NUM_OF_THREADS_2:
680 numThreadsTxNumerical = 2;
681 break;
682 case UCC_GETH_NUM_OF_THREADS_4:
683 numThreadsTxNumerical = 4;
684 break;
685 case UCC_GETH_NUM_OF_THREADS_6:
686 numThreadsTxNumerical = 6;
687 break;
688 case UCC_GETH_NUM_OF_THREADS_8:
689 numThreadsTxNumerical = 8;
690 break;
691 default:
692 numThreadsTxNumerical = 0;
693 break;
694 }
695
696 pr_info("Thread data TXs:\n");
697 pr_info("Base address: 0x%08x\n",
698 (u32)ugeth->p_thread_data_tx);
699 for (i = 0; i < numThreadsTxNumerical; i++) {
700 pr_info("Thread data TX[%d]:\n", i);
701 pr_info("Base address: 0x%08x\n",
702 (u32)&ugeth->p_thread_data_tx[i]);
703 mem_disp((u8 *) & ugeth->p_thread_data_tx[i],
704 sizeof(struct ucc_geth_thread_data_tx));
705 }
706 }
707 if (ugeth->p_thread_data_rx) {
708 int numThreadsRxNumerical;
709 switch (ugeth->ug_info->numThreadsRx) {
710 case UCC_GETH_NUM_OF_THREADS_1:
711 numThreadsRxNumerical = 1;
712 break;
713 case UCC_GETH_NUM_OF_THREADS_2:
714 numThreadsRxNumerical = 2;
715 break;
716 case UCC_GETH_NUM_OF_THREADS_4:
717 numThreadsRxNumerical = 4;
718 break;
719 case UCC_GETH_NUM_OF_THREADS_6:
720 numThreadsRxNumerical = 6;
721 break;
722 case UCC_GETH_NUM_OF_THREADS_8:
723 numThreadsRxNumerical = 8;
724 break;
725 default:
726 numThreadsRxNumerical = 0;
727 break;
728 }
729
730 pr_info("Thread data RX:\n");
731 pr_info("Base address: 0x%08x\n",
732 (u32)ugeth->p_thread_data_rx);
733 for (i = 0; i < numThreadsRxNumerical; i++) {
734 pr_info("Thread data RX[%d]:\n", i);
735 pr_info("Base address: 0x%08x\n",
736 (u32)&ugeth->p_thread_data_rx[i]);
737 mem_disp((u8 *) & ugeth->p_thread_data_rx[i],
738 sizeof(struct ucc_geth_thread_data_rx));
739 }
740 }
741 if (ugeth->p_exf_glbl_param) {
742 pr_info("EXF global param:\n");
743 pr_info("Base address: 0x%08x\n",
744 (u32)ugeth->p_exf_glbl_param);
745 mem_disp((u8 *) ugeth->p_exf_glbl_param,
746 sizeof(*ugeth->p_exf_glbl_param));
747 }
748 if (ugeth->p_tx_glbl_pram) {
749 pr_info("TX global param:\n");
750 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_tx_glbl_pram);
751 pr_info("temoder : addr - 0x%08x, val - 0x%04x\n",
752 (u32)&ugeth->p_tx_glbl_pram->temoder,
753 in_be16(&ugeth->p_tx_glbl_pram->temoder));
754 pr_info("sqptr : addr - 0x%08x, val - 0x%08x\n",
755 (u32)&ugeth->p_tx_glbl_pram->sqptr,
756 in_be32(&ugeth->p_tx_glbl_pram->sqptr));
757 pr_info("schedulerbasepointer: addr - 0x%08x, val - 0x%08x\n",
758 (u32)&ugeth->p_tx_glbl_pram->schedulerbasepointer,
759 in_be32(&ugeth->p_tx_glbl_pram->schedulerbasepointer));
760 pr_info("txrmonbaseptr: addr - 0x%08x, val - 0x%08x\n",
761 (u32)&ugeth->p_tx_glbl_pram->txrmonbaseptr,
762 in_be32(&ugeth->p_tx_glbl_pram->txrmonbaseptr));
763 pr_info("tstate : addr - 0x%08x, val - 0x%08x\n",
764 (u32)&ugeth->p_tx_glbl_pram->tstate,
765 in_be32(&ugeth->p_tx_glbl_pram->tstate));
766 pr_info("iphoffset[0] : addr - 0x%08x, val - 0x%02x\n",
767 (u32)&ugeth->p_tx_glbl_pram->iphoffset[0],
768 ugeth->p_tx_glbl_pram->iphoffset[0]);
769 pr_info("iphoffset[1] : addr - 0x%08x, val - 0x%02x\n",
770 (u32)&ugeth->p_tx_glbl_pram->iphoffset[1],
771 ugeth->p_tx_glbl_pram->iphoffset[1]);
772 pr_info("iphoffset[2] : addr - 0x%08x, val - 0x%02x\n",
773 (u32)&ugeth->p_tx_glbl_pram->iphoffset[2],
774 ugeth->p_tx_glbl_pram->iphoffset[2]);
775 pr_info("iphoffset[3] : addr - 0x%08x, val - 0x%02x\n",
776 (u32)&ugeth->p_tx_glbl_pram->iphoffset[3],
777 ugeth->p_tx_glbl_pram->iphoffset[3]);
778 pr_info("iphoffset[4] : addr - 0x%08x, val - 0x%02x\n",
779 (u32)&ugeth->p_tx_glbl_pram->iphoffset[4],
780 ugeth->p_tx_glbl_pram->iphoffset[4]);
781 pr_info("iphoffset[5] : addr - 0x%08x, val - 0x%02x\n",
782 (u32)&ugeth->p_tx_glbl_pram->iphoffset[5],
783 ugeth->p_tx_glbl_pram->iphoffset[5]);
784 pr_info("iphoffset[6] : addr - 0x%08x, val - 0x%02x\n",
785 (u32)&ugeth->p_tx_glbl_pram->iphoffset[6],
786 ugeth->p_tx_glbl_pram->iphoffset[6]);
787 pr_info("iphoffset[7] : addr - 0x%08x, val - 0x%02x\n",
788 (u32)&ugeth->p_tx_glbl_pram->iphoffset[7],
789 ugeth->p_tx_glbl_pram->iphoffset[7]);
790 pr_info("vtagtable[0] : addr - 0x%08x, val - 0x%08x\n",
791 (u32)&ugeth->p_tx_glbl_pram->vtagtable[0],
792 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[0]));
793 pr_info("vtagtable[1] : addr - 0x%08x, val - 0x%08x\n",
794 (u32)&ugeth->p_tx_glbl_pram->vtagtable[1],
795 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[1]));
796 pr_info("vtagtable[2] : addr - 0x%08x, val - 0x%08x\n",
797 (u32)&ugeth->p_tx_glbl_pram->vtagtable[2],
798 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[2]));
799 pr_info("vtagtable[3] : addr - 0x%08x, val - 0x%08x\n",
800 (u32)&ugeth->p_tx_glbl_pram->vtagtable[3],
801 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[3]));
802 pr_info("vtagtable[4] : addr - 0x%08x, val - 0x%08x\n",
803 (u32)&ugeth->p_tx_glbl_pram->vtagtable[4],
804 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[4]));
805 pr_info("vtagtable[5] : addr - 0x%08x, val - 0x%08x\n",
806 (u32)&ugeth->p_tx_glbl_pram->vtagtable[5],
807 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[5]));
808 pr_info("vtagtable[6] : addr - 0x%08x, val - 0x%08x\n",
809 (u32)&ugeth->p_tx_glbl_pram->vtagtable[6],
810 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[6]));
811 pr_info("vtagtable[7] : addr - 0x%08x, val - 0x%08x\n",
812 (u32)&ugeth->p_tx_glbl_pram->vtagtable[7],
813 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[7]));
814 pr_info("tqptr : addr - 0x%08x, val - 0x%08x\n",
815 (u32)&ugeth->p_tx_glbl_pram->tqptr,
816 in_be32(&ugeth->p_tx_glbl_pram->tqptr));
817 }
818 if (ugeth->p_rx_glbl_pram) {
819 pr_info("RX global param:\n");
820 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_rx_glbl_pram);
821 pr_info("remoder : addr - 0x%08x, val - 0x%08x\n",
822 (u32)&ugeth->p_rx_glbl_pram->remoder,
823 in_be32(&ugeth->p_rx_glbl_pram->remoder));
824 pr_info("rqptr : addr - 0x%08x, val - 0x%08x\n",
825 (u32)&ugeth->p_rx_glbl_pram->rqptr,
826 in_be32(&ugeth->p_rx_glbl_pram->rqptr));
827 pr_info("typeorlen : addr - 0x%08x, val - 0x%04x\n",
828 (u32)&ugeth->p_rx_glbl_pram->typeorlen,
829 in_be16(&ugeth->p_rx_glbl_pram->typeorlen));
830 pr_info("rxgstpack : addr - 0x%08x, val - 0x%02x\n",
831 (u32)&ugeth->p_rx_glbl_pram->rxgstpack,
832 ugeth->p_rx_glbl_pram->rxgstpack);
833 pr_info("rxrmonbaseptr : addr - 0x%08x, val - 0x%08x\n",
834 (u32)&ugeth->p_rx_glbl_pram->rxrmonbaseptr,
835 in_be32(&ugeth->p_rx_glbl_pram->rxrmonbaseptr));
836 pr_info("intcoalescingptr: addr - 0x%08x, val - 0x%08x\n",
837 (u32)&ugeth->p_rx_glbl_pram->intcoalescingptr,
838 in_be32(&ugeth->p_rx_glbl_pram->intcoalescingptr));
839 pr_info("rstate : addr - 0x%08x, val - 0x%02x\n",
840 (u32)&ugeth->p_rx_glbl_pram->rstate,
841 ugeth->p_rx_glbl_pram->rstate);
842 pr_info("mrblr : addr - 0x%08x, val - 0x%04x\n",
843 (u32)&ugeth->p_rx_glbl_pram->mrblr,
844 in_be16(&ugeth->p_rx_glbl_pram->mrblr));
845 pr_info("rbdqptr : addr - 0x%08x, val - 0x%08x\n",
846 (u32)&ugeth->p_rx_glbl_pram->rbdqptr,
847 in_be32(&ugeth->p_rx_glbl_pram->rbdqptr));
848 pr_info("mflr : addr - 0x%08x, val - 0x%04x\n",
849 (u32)&ugeth->p_rx_glbl_pram->mflr,
850 in_be16(&ugeth->p_rx_glbl_pram->mflr));
851 pr_info("minflr : addr - 0x%08x, val - 0x%04x\n",
852 (u32)&ugeth->p_rx_glbl_pram->minflr,
853 in_be16(&ugeth->p_rx_glbl_pram->minflr));
854 pr_info("maxd1 : addr - 0x%08x, val - 0x%04x\n",
855 (u32)&ugeth->p_rx_glbl_pram->maxd1,
856 in_be16(&ugeth->p_rx_glbl_pram->maxd1));
857 pr_info("maxd2 : addr - 0x%08x, val - 0x%04x\n",
858 (u32)&ugeth->p_rx_glbl_pram->maxd2,
859 in_be16(&ugeth->p_rx_glbl_pram->maxd2));
860 pr_info("ecamptr : addr - 0x%08x, val - 0x%08x\n",
861 (u32)&ugeth->p_rx_glbl_pram->ecamptr,
862 in_be32(&ugeth->p_rx_glbl_pram->ecamptr));
863 pr_info("l2qt : addr - 0x%08x, val - 0x%08x\n",
864 (u32)&ugeth->p_rx_glbl_pram->l2qt,
865 in_be32(&ugeth->p_rx_glbl_pram->l2qt));
866 pr_info("l3qt[0] : addr - 0x%08x, val - 0x%08x\n",
867 (u32)&ugeth->p_rx_glbl_pram->l3qt[0],
868 in_be32(&ugeth->p_rx_glbl_pram->l3qt[0]));
869 pr_info("l3qt[1] : addr - 0x%08x, val - 0x%08x\n",
870 (u32)&ugeth->p_rx_glbl_pram->l3qt[1],
871 in_be32(&ugeth->p_rx_glbl_pram->l3qt[1]));
872 pr_info("l3qt[2] : addr - 0x%08x, val - 0x%08x\n",
873 (u32)&ugeth->p_rx_glbl_pram->l3qt[2],
874 in_be32(&ugeth->p_rx_glbl_pram->l3qt[2]));
875 pr_info("l3qt[3] : addr - 0x%08x, val - 0x%08x\n",
876 (u32)&ugeth->p_rx_glbl_pram->l3qt[3],
877 in_be32(&ugeth->p_rx_glbl_pram->l3qt[3]));
878 pr_info("l3qt[4] : addr - 0x%08x, val - 0x%08x\n",
879 (u32)&ugeth->p_rx_glbl_pram->l3qt[4],
880 in_be32(&ugeth->p_rx_glbl_pram->l3qt[4]));
881 pr_info("l3qt[5] : addr - 0x%08x, val - 0x%08x\n",
882 (u32)&ugeth->p_rx_glbl_pram->l3qt[5],
883 in_be32(&ugeth->p_rx_glbl_pram->l3qt[5]));
884 pr_info("l3qt[6] : addr - 0x%08x, val - 0x%08x\n",
885 (u32)&ugeth->p_rx_glbl_pram->l3qt[6],
886 in_be32(&ugeth->p_rx_glbl_pram->l3qt[6]));
887 pr_info("l3qt[7] : addr - 0x%08x, val - 0x%08x\n",
888 (u32)&ugeth->p_rx_glbl_pram->l3qt[7],
889 in_be32(&ugeth->p_rx_glbl_pram->l3qt[7]));
890 pr_info("vlantype : addr - 0x%08x, val - 0x%04x\n",
891 (u32)&ugeth->p_rx_glbl_pram->vlantype,
892 in_be16(&ugeth->p_rx_glbl_pram->vlantype));
893 pr_info("vlantci : addr - 0x%08x, val - 0x%04x\n",
894 (u32)&ugeth->p_rx_glbl_pram->vlantci,
895 in_be16(&ugeth->p_rx_glbl_pram->vlantci));
896 for (i = 0; i < 64; i++)
897 pr_info("addressfiltering[%d]: addr - 0x%08x, val - 0x%02x\n",
898 i,
899 (u32)&ugeth->p_rx_glbl_pram->addressfiltering[i],
900 ugeth->p_rx_glbl_pram->addressfiltering[i]);
901 pr_info("exfGlobalParam : addr - 0x%08x, val - 0x%08x\n",
902 (u32)&ugeth->p_rx_glbl_pram->exfGlobalParam,
903 in_be32(&ugeth->p_rx_glbl_pram->exfGlobalParam));
904 }
905 if (ugeth->p_send_q_mem_reg) {
906 pr_info("Send Q memory registers:\n");
907 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_send_q_mem_reg);
908 for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
909 pr_info("SQQD[%d]:\n", i);
910 pr_info("Base address: 0x%08x\n",
911 (u32)&ugeth->p_send_q_mem_reg->sqqd[i]);
912 mem_disp((u8 *) & ugeth->p_send_q_mem_reg->sqqd[i],
913 sizeof(struct ucc_geth_send_queue_qd));
914 }
915 }
916 if (ugeth->p_scheduler) {
917 pr_info("Scheduler:\n");
918 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_scheduler);
919 mem_disp((u8 *) ugeth->p_scheduler,
920 sizeof(*ugeth->p_scheduler));
921 }
922 if (ugeth->p_tx_fw_statistics_pram) {
923 pr_info("TX FW statistics pram:\n");
924 pr_info("Base address: 0x%08x\n",
925 (u32)ugeth->p_tx_fw_statistics_pram);
926 mem_disp((u8 *) ugeth->p_tx_fw_statistics_pram,
927 sizeof(*ugeth->p_tx_fw_statistics_pram));
928 }
929 if (ugeth->p_rx_fw_statistics_pram) {
930 pr_info("RX FW statistics pram:\n");
931 pr_info("Base address: 0x%08x\n",
932 (u32)ugeth->p_rx_fw_statistics_pram);
933 mem_disp((u8 *) ugeth->p_rx_fw_statistics_pram,
934 sizeof(*ugeth->p_rx_fw_statistics_pram));
935 }
936 if (ugeth->p_rx_irq_coalescing_tbl) {
937 pr_info("RX IRQ coalescing tables:\n");
938 pr_info("Base address: 0x%08x\n",
939 (u32)ugeth->p_rx_irq_coalescing_tbl);
940 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
941 pr_info("RX IRQ coalescing table entry[%d]:\n", i);
942 pr_info("Base address: 0x%08x\n",
943 (u32)&ugeth->p_rx_irq_coalescing_tbl->
944 coalescingentry[i]);
945 pr_info("interruptcoalescingmaxvalue: addr - 0x%08x, val - 0x%08x\n",
946 (u32)&ugeth->p_rx_irq_coalescing_tbl->
947 coalescingentry[i].interruptcoalescingmaxvalue,
948 in_be32(&ugeth->p_rx_irq_coalescing_tbl->
949 coalescingentry[i].
950 interruptcoalescingmaxvalue));
951 pr_info("interruptcoalescingcounter : addr - 0x%08x, val - 0x%08x\n",
952 (u32)&ugeth->p_rx_irq_coalescing_tbl->
953 coalescingentry[i].interruptcoalescingcounter,
954 in_be32(&ugeth->p_rx_irq_coalescing_tbl->
955 coalescingentry[i].
956 interruptcoalescingcounter));
957 }
958 }
959 if (ugeth->p_rx_bd_qs_tbl) {
960 pr_info("RX BD QS tables:\n");
961 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_rx_bd_qs_tbl);
962 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
963 pr_info("RX BD QS table[%d]:\n", i);
964 pr_info("Base address: 0x%08x\n",
965 (u32)&ugeth->p_rx_bd_qs_tbl[i]);
966 pr_info("bdbaseptr : addr - 0x%08x, val - 0x%08x\n",
967 (u32)&ugeth->p_rx_bd_qs_tbl[i].bdbaseptr,
968 in_be32(&ugeth->p_rx_bd_qs_tbl[i].bdbaseptr));
969 pr_info("bdptr : addr - 0x%08x, val - 0x%08x\n",
970 (u32)&ugeth->p_rx_bd_qs_tbl[i].bdptr,
971 in_be32(&ugeth->p_rx_bd_qs_tbl[i].bdptr));
972 pr_info("externalbdbaseptr: addr - 0x%08x, val - 0x%08x\n",
973 (u32)&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
974 in_be32(&ugeth->p_rx_bd_qs_tbl[i].
975 externalbdbaseptr));
976 pr_info("externalbdptr : addr - 0x%08x, val - 0x%08x\n",
977 (u32)&ugeth->p_rx_bd_qs_tbl[i].externalbdptr,
978 in_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdptr));
979 pr_info("ucode RX Prefetched BDs:\n");
980 pr_info("Base address: 0x%08x\n",
981 (u32)qe_muram_addr(in_be32
982 (&ugeth->p_rx_bd_qs_tbl[i].
983 bdbaseptr)));
984 mem_disp((u8 *)
985 qe_muram_addr(in_be32
986 (&ugeth->p_rx_bd_qs_tbl[i].
987 bdbaseptr)),
988 sizeof(struct ucc_geth_rx_prefetched_bds));
989 }
990 }
991 if (ugeth->p_init_enet_param_shadow) {
992 int size;
993 pr_info("Init enet param shadow:\n");
994 pr_info("Base address: 0x%08x\n",
995 (u32) ugeth->p_init_enet_param_shadow);
996 mem_disp((u8 *) ugeth->p_init_enet_param_shadow,
997 sizeof(*ugeth->p_init_enet_param_shadow));
998
999 size = sizeof(struct ucc_geth_thread_rx_pram);
1000 if (ugeth->ug_info->rxExtendedFiltering) {
1001 size +=
1002 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING;
1003 if (ugeth->ug_info->largestexternallookupkeysize ==
1004 QE_FLTR_TABLE_LOOKUP_KEY_SIZE_8_BYTES)
1005 size +=
1006 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_8;
1007 if (ugeth->ug_info->largestexternallookupkeysize ==
1008 QE_FLTR_TABLE_LOOKUP_KEY_SIZE_16_BYTES)
1009 size +=
1010 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_16;
1011 }
1012
1013 dump_init_enet_entries(ugeth,
1014 &(ugeth->p_init_enet_param_shadow->
1015 txthread[0]),
1016 ENET_INIT_PARAM_MAX_ENTRIES_TX,
1017 sizeof(struct ucc_geth_thread_tx_pram),
1018 ugeth->ug_info->riscTx, 0);
1019 dump_init_enet_entries(ugeth,
1020 &(ugeth->p_init_enet_param_shadow->
1021 rxthread[0]),
1022 ENET_INIT_PARAM_MAX_ENTRIES_RX, size,
1023 ugeth->ug_info->riscRx, 1);
1024 }
1025 }
1026 #endif /* DEBUG */
1027
init_default_reg_vals(u32 __iomem * upsmr_register,u32 __iomem * maccfg1_register,u32 __iomem * maccfg2_register)1028 static void init_default_reg_vals(u32 __iomem *upsmr_register,
1029 u32 __iomem *maccfg1_register,
1030 u32 __iomem *maccfg2_register)
1031 {
1032 out_be32(upsmr_register, UCC_GETH_UPSMR_INIT);
1033 out_be32(maccfg1_register, UCC_GETH_MACCFG1_INIT);
1034 out_be32(maccfg2_register, UCC_GETH_MACCFG2_INIT);
1035 }
1036
init_half_duplex_params(int alt_beb,int back_pressure_no_backoff,int no_backoff,int excess_defer,u8 alt_beb_truncation,u8 max_retransmissions,u8 collision_window,u32 __iomem * hafdup_register)1037 static int init_half_duplex_params(int alt_beb,
1038 int back_pressure_no_backoff,
1039 int no_backoff,
1040 int excess_defer,
1041 u8 alt_beb_truncation,
1042 u8 max_retransmissions,
1043 u8 collision_window,
1044 u32 __iomem *hafdup_register)
1045 {
1046 u32 value = 0;
1047
1048 if ((alt_beb_truncation > HALFDUP_ALT_BEB_TRUNCATION_MAX) ||
1049 (max_retransmissions > HALFDUP_MAX_RETRANSMISSION_MAX) ||
1050 (collision_window > HALFDUP_COLLISION_WINDOW_MAX))
1051 return -EINVAL;
1052
1053 value = (u32) (alt_beb_truncation << HALFDUP_ALT_BEB_TRUNCATION_SHIFT);
1054
1055 if (alt_beb)
1056 value |= HALFDUP_ALT_BEB;
1057 if (back_pressure_no_backoff)
1058 value |= HALFDUP_BACK_PRESSURE_NO_BACKOFF;
1059 if (no_backoff)
1060 value |= HALFDUP_NO_BACKOFF;
1061 if (excess_defer)
1062 value |= HALFDUP_EXCESSIVE_DEFER;
1063
1064 value |= (max_retransmissions << HALFDUP_MAX_RETRANSMISSION_SHIFT);
1065
1066 value |= collision_window;
1067
1068 out_be32(hafdup_register, value);
1069 return 0;
1070 }
1071
init_inter_frame_gap_params(u8 non_btb_cs_ipg,u8 non_btb_ipg,u8 min_ifg,u8 btb_ipg,u32 __iomem * ipgifg_register)1072 static int init_inter_frame_gap_params(u8 non_btb_cs_ipg,
1073 u8 non_btb_ipg,
1074 u8 min_ifg,
1075 u8 btb_ipg,
1076 u32 __iomem *ipgifg_register)
1077 {
1078 u32 value = 0;
1079
1080 /* Non-Back-to-back IPG part 1 should be <= Non-Back-to-back
1081 IPG part 2 */
1082 if (non_btb_cs_ipg > non_btb_ipg)
1083 return -EINVAL;
1084
1085 if ((non_btb_cs_ipg > IPGIFG_NON_BACK_TO_BACK_IFG_PART1_MAX) ||
1086 (non_btb_ipg > IPGIFG_NON_BACK_TO_BACK_IFG_PART2_MAX) ||
1087 /*(min_ifg > IPGIFG_MINIMUM_IFG_ENFORCEMENT_MAX) || */
1088 (btb_ipg > IPGIFG_BACK_TO_BACK_IFG_MAX))
1089 return -EINVAL;
1090
1091 value |=
1092 ((non_btb_cs_ipg << IPGIFG_NON_BACK_TO_BACK_IFG_PART1_SHIFT) &
1093 IPGIFG_NBTB_CS_IPG_MASK);
1094 value |=
1095 ((non_btb_ipg << IPGIFG_NON_BACK_TO_BACK_IFG_PART2_SHIFT) &
1096 IPGIFG_NBTB_IPG_MASK);
1097 value |=
1098 ((min_ifg << IPGIFG_MINIMUM_IFG_ENFORCEMENT_SHIFT) &
1099 IPGIFG_MIN_IFG_MASK);
1100 value |= (btb_ipg & IPGIFG_BTB_IPG_MASK);
1101
1102 out_be32(ipgifg_register, value);
1103 return 0;
1104 }
1105
init_flow_control_params(u32 automatic_flow_control_mode,int rx_flow_control_enable,int tx_flow_control_enable,u16 pause_period,u16 extension_field,u32 __iomem * upsmr_register,u32 __iomem * uempr_register,u32 __iomem * maccfg1_register)1106 int init_flow_control_params(u32 automatic_flow_control_mode,
1107 int rx_flow_control_enable,
1108 int tx_flow_control_enable,
1109 u16 pause_period,
1110 u16 extension_field,
1111 u32 __iomem *upsmr_register,
1112 u32 __iomem *uempr_register,
1113 u32 __iomem *maccfg1_register)
1114 {
1115 u32 value = 0;
1116
1117 /* Set UEMPR register */
1118 value = (u32) pause_period << UEMPR_PAUSE_TIME_VALUE_SHIFT;
1119 value |= (u32) extension_field << UEMPR_EXTENDED_PAUSE_TIME_VALUE_SHIFT;
1120 out_be32(uempr_register, value);
1121
1122 /* Set UPSMR register */
1123 setbits32(upsmr_register, automatic_flow_control_mode);
1124
1125 value = in_be32(maccfg1_register);
1126 if (rx_flow_control_enable)
1127 value |= MACCFG1_FLOW_RX;
1128 if (tx_flow_control_enable)
1129 value |= MACCFG1_FLOW_TX;
1130 out_be32(maccfg1_register, value);
1131
1132 return 0;
1133 }
1134
init_hw_statistics_gathering_mode(int enable_hardware_statistics,int auto_zero_hardware_statistics,u32 __iomem * upsmr_register,u16 __iomem * uescr_register)1135 static int init_hw_statistics_gathering_mode(int enable_hardware_statistics,
1136 int auto_zero_hardware_statistics,
1137 u32 __iomem *upsmr_register,
1138 u16 __iomem *uescr_register)
1139 {
1140 u16 uescr_value = 0;
1141
1142 /* Enable hardware statistics gathering if requested */
1143 if (enable_hardware_statistics)
1144 setbits32(upsmr_register, UCC_GETH_UPSMR_HSE);
1145
1146 /* Clear hardware statistics counters */
1147 uescr_value = in_be16(uescr_register);
1148 uescr_value |= UESCR_CLRCNT;
1149 /* Automatically zero hardware statistics counters on read,
1150 if requested */
1151 if (auto_zero_hardware_statistics)
1152 uescr_value |= UESCR_AUTOZ;
1153 out_be16(uescr_register, uescr_value);
1154
1155 return 0;
1156 }
1157
init_firmware_statistics_gathering_mode(int enable_tx_firmware_statistics,int enable_rx_firmware_statistics,u32 __iomem * tx_rmon_base_ptr,u32 tx_firmware_statistics_structure_address,u32 __iomem * rx_rmon_base_ptr,u32 rx_firmware_statistics_structure_address,u16 __iomem * temoder_register,u32 __iomem * remoder_register)1158 static int init_firmware_statistics_gathering_mode(int
1159 enable_tx_firmware_statistics,
1160 int enable_rx_firmware_statistics,
1161 u32 __iomem *tx_rmon_base_ptr,
1162 u32 tx_firmware_statistics_structure_address,
1163 u32 __iomem *rx_rmon_base_ptr,
1164 u32 rx_firmware_statistics_structure_address,
1165 u16 __iomem *temoder_register,
1166 u32 __iomem *remoder_register)
1167 {
1168 /* Note: this function does not check if */
1169 /* the parameters it receives are NULL */
1170
1171 if (enable_tx_firmware_statistics) {
1172 out_be32(tx_rmon_base_ptr,
1173 tx_firmware_statistics_structure_address);
1174 setbits16(temoder_register, TEMODER_TX_RMON_STATISTICS_ENABLE);
1175 }
1176
1177 if (enable_rx_firmware_statistics) {
1178 out_be32(rx_rmon_base_ptr,
1179 rx_firmware_statistics_structure_address);
1180 setbits32(remoder_register, REMODER_RX_RMON_STATISTICS_ENABLE);
1181 }
1182
1183 return 0;
1184 }
1185
init_mac_station_addr_regs(u8 address_byte_0,u8 address_byte_1,u8 address_byte_2,u8 address_byte_3,u8 address_byte_4,u8 address_byte_5,u32 __iomem * macstnaddr1_register,u32 __iomem * macstnaddr2_register)1186 static int init_mac_station_addr_regs(u8 address_byte_0,
1187 u8 address_byte_1,
1188 u8 address_byte_2,
1189 u8 address_byte_3,
1190 u8 address_byte_4,
1191 u8 address_byte_5,
1192 u32 __iomem *macstnaddr1_register,
1193 u32 __iomem *macstnaddr2_register)
1194 {
1195 u32 value = 0;
1196
1197 /* Example: for a station address of 0x12345678ABCD, */
1198 /* 0x12 is byte 0, 0x34 is byte 1 and so on and 0xCD is byte 5 */
1199
1200 /* MACSTNADDR1 Register: */
1201
1202 /* 0 7 8 15 */
1203 /* station address byte 5 station address byte 4 */
1204 /* 16 23 24 31 */
1205 /* station address byte 3 station address byte 2 */
1206 value |= (u32) ((address_byte_2 << 0) & 0x000000FF);
1207 value |= (u32) ((address_byte_3 << 8) & 0x0000FF00);
1208 value |= (u32) ((address_byte_4 << 16) & 0x00FF0000);
1209 value |= (u32) ((address_byte_5 << 24) & 0xFF000000);
1210
1211 out_be32(macstnaddr1_register, value);
1212
1213 /* MACSTNADDR2 Register: */
1214
1215 /* 0 7 8 15 */
1216 /* station address byte 1 station address byte 0 */
1217 /* 16 23 24 31 */
1218 /* reserved reserved */
1219 value = 0;
1220 value |= (u32) ((address_byte_0 << 16) & 0x00FF0000);
1221 value |= (u32) ((address_byte_1 << 24) & 0xFF000000);
1222
1223 out_be32(macstnaddr2_register, value);
1224
1225 return 0;
1226 }
1227
init_check_frame_length_mode(int length_check,u32 __iomem * maccfg2_register)1228 static int init_check_frame_length_mode(int length_check,
1229 u32 __iomem *maccfg2_register)
1230 {
1231 u32 value = 0;
1232
1233 value = in_be32(maccfg2_register);
1234
1235 if (length_check)
1236 value |= MACCFG2_LC;
1237 else
1238 value &= ~MACCFG2_LC;
1239
1240 out_be32(maccfg2_register, value);
1241 return 0;
1242 }
1243
init_preamble_length(u8 preamble_length,u32 __iomem * maccfg2_register)1244 static int init_preamble_length(u8 preamble_length,
1245 u32 __iomem *maccfg2_register)
1246 {
1247 if ((preamble_length < 3) || (preamble_length > 7))
1248 return -EINVAL;
1249
1250 clrsetbits_be32(maccfg2_register, MACCFG2_PREL_MASK,
1251 preamble_length << MACCFG2_PREL_SHIFT);
1252
1253 return 0;
1254 }
1255
init_rx_parameters(int reject_broadcast,int receive_short_frames,int promiscuous,u32 __iomem * upsmr_register)1256 static int init_rx_parameters(int reject_broadcast,
1257 int receive_short_frames,
1258 int promiscuous, u32 __iomem *upsmr_register)
1259 {
1260 u32 value = 0;
1261
1262 value = in_be32(upsmr_register);
1263
1264 if (reject_broadcast)
1265 value |= UCC_GETH_UPSMR_BRO;
1266 else
1267 value &= ~UCC_GETH_UPSMR_BRO;
1268
1269 if (receive_short_frames)
1270 value |= UCC_GETH_UPSMR_RSH;
1271 else
1272 value &= ~UCC_GETH_UPSMR_RSH;
1273
1274 if (promiscuous)
1275 value |= UCC_GETH_UPSMR_PRO;
1276 else
1277 value &= ~UCC_GETH_UPSMR_PRO;
1278
1279 out_be32(upsmr_register, value);
1280
1281 return 0;
1282 }
1283
init_max_rx_buff_len(u16 max_rx_buf_len,u16 __iomem * mrblr_register)1284 static int init_max_rx_buff_len(u16 max_rx_buf_len,
1285 u16 __iomem *mrblr_register)
1286 {
1287 /* max_rx_buf_len value must be a multiple of 128 */
1288 if ((max_rx_buf_len == 0) ||
1289 (max_rx_buf_len % UCC_GETH_MRBLR_ALIGNMENT))
1290 return -EINVAL;
1291
1292 out_be16(mrblr_register, max_rx_buf_len);
1293 return 0;
1294 }
1295
init_min_frame_len(u16 min_frame_length,u16 __iomem * minflr_register,u16 __iomem * mrblr_register)1296 static int init_min_frame_len(u16 min_frame_length,
1297 u16 __iomem *minflr_register,
1298 u16 __iomem *mrblr_register)
1299 {
1300 u16 mrblr_value = 0;
1301
1302 mrblr_value = in_be16(mrblr_register);
1303 if (min_frame_length >= (mrblr_value - 4))
1304 return -EINVAL;
1305
1306 out_be16(minflr_register, min_frame_length);
1307 return 0;
1308 }
1309
adjust_enet_interface(struct ucc_geth_private * ugeth)1310 static int adjust_enet_interface(struct ucc_geth_private *ugeth)
1311 {
1312 struct ucc_geth_info *ug_info;
1313 struct ucc_geth __iomem *ug_regs;
1314 struct ucc_fast __iomem *uf_regs;
1315 int ret_val;
1316 u32 upsmr, maccfg2;
1317 u16 value;
1318
1319 ugeth_vdbg("%s: IN", __func__);
1320
1321 ug_info = ugeth->ug_info;
1322 ug_regs = ugeth->ug_regs;
1323 uf_regs = ugeth->uccf->uf_regs;
1324
1325 /* Set MACCFG2 */
1326 maccfg2 = in_be32(&ug_regs->maccfg2);
1327 maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK;
1328 if ((ugeth->max_speed == SPEED_10) ||
1329 (ugeth->max_speed == SPEED_100))
1330 maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
1331 else if (ugeth->max_speed == SPEED_1000)
1332 maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
1333 maccfg2 |= ug_info->padAndCrc;
1334 out_be32(&ug_regs->maccfg2, maccfg2);
1335
1336 /* Set UPSMR */
1337 upsmr = in_be32(&uf_regs->upsmr);
1338 upsmr &= ~(UCC_GETH_UPSMR_RPM | UCC_GETH_UPSMR_R10M |
1339 UCC_GETH_UPSMR_TBIM | UCC_GETH_UPSMR_RMM);
1340 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_RMII) ||
1341 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII) ||
1342 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1343 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1344 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) ||
1345 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1346 if (ugeth->phy_interface != PHY_INTERFACE_MODE_RMII)
1347 upsmr |= UCC_GETH_UPSMR_RPM;
1348 switch (ugeth->max_speed) {
1349 case SPEED_10:
1350 upsmr |= UCC_GETH_UPSMR_R10M;
1351 fallthrough;
1352 case SPEED_100:
1353 if (ugeth->phy_interface != PHY_INTERFACE_MODE_RTBI)
1354 upsmr |= UCC_GETH_UPSMR_RMM;
1355 }
1356 }
1357 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_TBI) ||
1358 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1359 upsmr |= UCC_GETH_UPSMR_TBIM;
1360 }
1361 if (ugeth->phy_interface == PHY_INTERFACE_MODE_SGMII)
1362 upsmr |= UCC_GETH_UPSMR_SGMM;
1363
1364 out_be32(&uf_regs->upsmr, upsmr);
1365
1366 /* Disable autonegotiation in tbi mode, because by default it
1367 comes up in autonegotiation mode. */
1368 /* Note that this depends on proper setting in utbipar register. */
1369 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_TBI) ||
1370 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1371 struct ucc_geth_info *ug_info = ugeth->ug_info;
1372 struct phy_device *tbiphy;
1373
1374 if (!ug_info->tbi_node)
1375 pr_warn("TBI mode requires that the device tree specify a tbi-handle\n");
1376
1377 tbiphy = of_phy_find_device(ug_info->tbi_node);
1378 if (!tbiphy)
1379 pr_warn("Could not get TBI device\n");
1380
1381 value = phy_read(tbiphy, ENET_TBI_MII_CR);
1382 value &= ~0x1000; /* Turn off autonegotiation */
1383 phy_write(tbiphy, ENET_TBI_MII_CR, value);
1384
1385 put_device(&tbiphy->mdio.dev);
1386 }
1387
1388 init_check_frame_length_mode(ug_info->lengthCheckRx, &ug_regs->maccfg2);
1389
1390 ret_val = init_preamble_length(ug_info->prel, &ug_regs->maccfg2);
1391 if (ret_val != 0) {
1392 if (netif_msg_probe(ugeth))
1393 pr_err("Preamble length must be between 3 and 7 inclusive\n");
1394 return ret_val;
1395 }
1396
1397 return 0;
1398 }
1399
ugeth_graceful_stop_tx(struct ucc_geth_private * ugeth)1400 static int ugeth_graceful_stop_tx(struct ucc_geth_private *ugeth)
1401 {
1402 struct ucc_fast_private *uccf;
1403 u32 cecr_subblock;
1404 u32 temp;
1405 int i = 10;
1406
1407 uccf = ugeth->uccf;
1408
1409 /* Mask GRACEFUL STOP TX interrupt bit and clear it */
1410 clrbits32(uccf->p_uccm, UCC_GETH_UCCE_GRA);
1411 out_be32(uccf->p_ucce, UCC_GETH_UCCE_GRA); /* clear by writing 1 */
1412
1413 /* Issue host command */
1414 cecr_subblock =
1415 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1416 qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
1417 QE_CR_PROTOCOL_ETHERNET, 0);
1418
1419 /* Wait for command to complete */
1420 do {
1421 msleep(10);
1422 temp = in_be32(uccf->p_ucce);
1423 } while (!(temp & UCC_GETH_UCCE_GRA) && --i);
1424
1425 uccf->stopped_tx = 1;
1426
1427 return 0;
1428 }
1429
ugeth_graceful_stop_rx(struct ucc_geth_private * ugeth)1430 static int ugeth_graceful_stop_rx(struct ucc_geth_private *ugeth)
1431 {
1432 struct ucc_fast_private *uccf;
1433 u32 cecr_subblock;
1434 u8 temp;
1435 int i = 10;
1436
1437 uccf = ugeth->uccf;
1438
1439 /* Clear acknowledge bit */
1440 temp = in_8(&ugeth->p_rx_glbl_pram->rxgstpack);
1441 temp &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX;
1442 out_8(&ugeth->p_rx_glbl_pram->rxgstpack, temp);
1443
1444 /* Keep issuing command and checking acknowledge bit until
1445 it is asserted, according to spec */
1446 do {
1447 /* Issue host command */
1448 cecr_subblock =
1449 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.
1450 ucc_num);
1451 qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock,
1452 QE_CR_PROTOCOL_ETHERNET, 0);
1453 msleep(10);
1454 temp = in_8(&ugeth->p_rx_glbl_pram->rxgstpack);
1455 } while (!(temp & GRACEFUL_STOP_ACKNOWLEDGE_RX) && --i);
1456
1457 uccf->stopped_rx = 1;
1458
1459 return 0;
1460 }
1461
ugeth_restart_tx(struct ucc_geth_private * ugeth)1462 static int ugeth_restart_tx(struct ucc_geth_private *ugeth)
1463 {
1464 struct ucc_fast_private *uccf;
1465 u32 cecr_subblock;
1466
1467 uccf = ugeth->uccf;
1468
1469 cecr_subblock =
1470 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1471 qe_issue_cmd(QE_RESTART_TX, cecr_subblock, QE_CR_PROTOCOL_ETHERNET, 0);
1472 uccf->stopped_tx = 0;
1473
1474 return 0;
1475 }
1476
ugeth_restart_rx(struct ucc_geth_private * ugeth)1477 static int ugeth_restart_rx(struct ucc_geth_private *ugeth)
1478 {
1479 struct ucc_fast_private *uccf;
1480 u32 cecr_subblock;
1481
1482 uccf = ugeth->uccf;
1483
1484 cecr_subblock =
1485 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1486 qe_issue_cmd(QE_RESTART_RX, cecr_subblock, QE_CR_PROTOCOL_ETHERNET,
1487 0);
1488 uccf->stopped_rx = 0;
1489
1490 return 0;
1491 }
1492
ugeth_enable(struct ucc_geth_private * ugeth,enum comm_dir mode)1493 static int ugeth_enable(struct ucc_geth_private *ugeth, enum comm_dir mode)
1494 {
1495 struct ucc_fast_private *uccf;
1496 int enabled_tx, enabled_rx;
1497
1498 uccf = ugeth->uccf;
1499
1500 /* check if the UCC number is in range. */
1501 if (ugeth->ug_info->uf_info.ucc_num >= UCC_MAX_NUM) {
1502 if (netif_msg_probe(ugeth))
1503 pr_err("ucc_num out of range\n");
1504 return -EINVAL;
1505 }
1506
1507 enabled_tx = uccf->enabled_tx;
1508 enabled_rx = uccf->enabled_rx;
1509
1510 /* Get Tx and Rx going again, in case this channel was actively
1511 disabled. */
1512 if ((mode & COMM_DIR_TX) && (!enabled_tx) && uccf->stopped_tx)
1513 ugeth_restart_tx(ugeth);
1514 if ((mode & COMM_DIR_RX) && (!enabled_rx) && uccf->stopped_rx)
1515 ugeth_restart_rx(ugeth);
1516
1517 ucc_fast_enable(uccf, mode); /* OK to do even if not disabled */
1518
1519 return 0;
1520
1521 }
1522
ugeth_disable(struct ucc_geth_private * ugeth,enum comm_dir mode)1523 static int ugeth_disable(struct ucc_geth_private *ugeth, enum comm_dir mode)
1524 {
1525 struct ucc_fast_private *uccf;
1526
1527 uccf = ugeth->uccf;
1528
1529 /* check if the UCC number is in range. */
1530 if (ugeth->ug_info->uf_info.ucc_num >= UCC_MAX_NUM) {
1531 if (netif_msg_probe(ugeth))
1532 pr_err("ucc_num out of range\n");
1533 return -EINVAL;
1534 }
1535
1536 /* Stop any transmissions */
1537 if ((mode & COMM_DIR_TX) && uccf->enabled_tx && !uccf->stopped_tx)
1538 ugeth_graceful_stop_tx(ugeth);
1539
1540 /* Stop any receptions */
1541 if ((mode & COMM_DIR_RX) && uccf->enabled_rx && !uccf->stopped_rx)
1542 ugeth_graceful_stop_rx(ugeth);
1543
1544 ucc_fast_disable(ugeth->uccf, mode); /* OK to do even if not enabled */
1545
1546 return 0;
1547 }
1548
ugeth_quiesce(struct ucc_geth_private * ugeth)1549 static void ugeth_quiesce(struct ucc_geth_private *ugeth)
1550 {
1551 /* Prevent any further xmits */
1552 netif_tx_stop_all_queues(ugeth->ndev);
1553
1554 /* Disable the interrupt to avoid NAPI rescheduling. */
1555 disable_irq(ugeth->ug_info->uf_info.irq);
1556
1557 /* Stop NAPI, and possibly wait for its completion. */
1558 napi_disable(&ugeth->napi);
1559 }
1560
ugeth_activate(struct ucc_geth_private * ugeth)1561 static void ugeth_activate(struct ucc_geth_private *ugeth)
1562 {
1563 napi_enable(&ugeth->napi);
1564 enable_irq(ugeth->ug_info->uf_info.irq);
1565
1566 /* allow to xmit again */
1567 netif_tx_wake_all_queues(ugeth->ndev);
1568 __netdev_watchdog_up(ugeth->ndev);
1569 }
1570
1571 /* Called every time the controller might need to be made
1572 * aware of new link state. The PHY code conveys this
1573 * information through variables in the ugeth structure, and this
1574 * function converts those variables into the appropriate
1575 * register values, and can bring down the device if needed.
1576 */
1577
adjust_link(struct net_device * dev)1578 static void adjust_link(struct net_device *dev)
1579 {
1580 struct ucc_geth_private *ugeth = netdev_priv(dev);
1581 struct ucc_geth __iomem *ug_regs;
1582 struct ucc_fast __iomem *uf_regs;
1583 struct phy_device *phydev = ugeth->phydev;
1584 int new_state = 0;
1585
1586 ug_regs = ugeth->ug_regs;
1587 uf_regs = ugeth->uccf->uf_regs;
1588
1589 if (phydev->link) {
1590 u32 tempval = in_be32(&ug_regs->maccfg2);
1591 u32 upsmr = in_be32(&uf_regs->upsmr);
1592 /* Now we make sure that we can be in full duplex mode.
1593 * If not, we operate in half-duplex mode. */
1594 if (phydev->duplex != ugeth->oldduplex) {
1595 new_state = 1;
1596 if (!(phydev->duplex))
1597 tempval &= ~(MACCFG2_FDX);
1598 else
1599 tempval |= MACCFG2_FDX;
1600 ugeth->oldduplex = phydev->duplex;
1601 }
1602
1603 if (phydev->speed != ugeth->oldspeed) {
1604 new_state = 1;
1605 switch (phydev->speed) {
1606 case SPEED_1000:
1607 tempval = ((tempval &
1608 ~(MACCFG2_INTERFACE_MODE_MASK)) |
1609 MACCFG2_INTERFACE_MODE_BYTE);
1610 break;
1611 case SPEED_100:
1612 case SPEED_10:
1613 tempval = ((tempval &
1614 ~(MACCFG2_INTERFACE_MODE_MASK)) |
1615 MACCFG2_INTERFACE_MODE_NIBBLE);
1616 /* if reduced mode, re-set UPSMR.R10M */
1617 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_RMII) ||
1618 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII) ||
1619 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1620 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1621 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) ||
1622 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1623 if (phydev->speed == SPEED_10)
1624 upsmr |= UCC_GETH_UPSMR_R10M;
1625 else
1626 upsmr &= ~UCC_GETH_UPSMR_R10M;
1627 }
1628 break;
1629 default:
1630 if (netif_msg_link(ugeth))
1631 pr_warn(
1632 "%s: Ack! Speed (%d) is not 10/100/1000!",
1633 dev->name, phydev->speed);
1634 break;
1635 }
1636 ugeth->oldspeed = phydev->speed;
1637 }
1638
1639 if (!ugeth->oldlink) {
1640 new_state = 1;
1641 ugeth->oldlink = 1;
1642 }
1643
1644 if (new_state) {
1645 /*
1646 * To change the MAC configuration we need to disable
1647 * the controller. To do so, we have to either grab
1648 * ugeth->lock, which is a bad idea since 'graceful
1649 * stop' commands might take quite a while, or we can
1650 * quiesce driver's activity.
1651 */
1652 ugeth_quiesce(ugeth);
1653 ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
1654
1655 out_be32(&ug_regs->maccfg2, tempval);
1656 out_be32(&uf_regs->upsmr, upsmr);
1657
1658 ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
1659 ugeth_activate(ugeth);
1660 }
1661 } else if (ugeth->oldlink) {
1662 new_state = 1;
1663 ugeth->oldlink = 0;
1664 ugeth->oldspeed = 0;
1665 ugeth->oldduplex = -1;
1666 }
1667
1668 if (new_state && netif_msg_link(ugeth))
1669 phy_print_status(phydev);
1670 }
1671
1672 /* Initialize TBI PHY interface for communicating with the
1673 * SERDES lynx PHY on the chip. We communicate with this PHY
1674 * through the MDIO bus on each controller, treating it as a
1675 * "normal" PHY at the address found in the UTBIPA register. We assume
1676 * that the UTBIPA register is valid. Either the MDIO bus code will set
1677 * it to a value that doesn't conflict with other PHYs on the bus, or the
1678 * value doesn't matter, as there are no other PHYs on the bus.
1679 */
uec_configure_serdes(struct net_device * dev)1680 static void uec_configure_serdes(struct net_device *dev)
1681 {
1682 struct ucc_geth_private *ugeth = netdev_priv(dev);
1683 struct ucc_geth_info *ug_info = ugeth->ug_info;
1684 struct phy_device *tbiphy;
1685
1686 if (!ug_info->tbi_node) {
1687 dev_warn(&dev->dev, "SGMII mode requires that the device "
1688 "tree specify a tbi-handle\n");
1689 return;
1690 }
1691
1692 tbiphy = of_phy_find_device(ug_info->tbi_node);
1693 if (!tbiphy) {
1694 dev_err(&dev->dev, "error: Could not get TBI device\n");
1695 return;
1696 }
1697
1698 /*
1699 * If the link is already up, we must already be ok, and don't need to
1700 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1701 * everything for us? Resetting it takes the link down and requires
1702 * several seconds for it to come back.
1703 */
1704 if (phy_read(tbiphy, ENET_TBI_MII_SR) & TBISR_LSTATUS) {
1705 put_device(&tbiphy->mdio.dev);
1706 return;
1707 }
1708
1709 /* Single clk mode, mii mode off(for serdes communication) */
1710 phy_write(tbiphy, ENET_TBI_MII_ANA, TBIANA_SETTINGS);
1711
1712 phy_write(tbiphy, ENET_TBI_MII_TBICON, TBICON_CLK_SELECT);
1713
1714 phy_write(tbiphy, ENET_TBI_MII_CR, TBICR_SETTINGS);
1715
1716 put_device(&tbiphy->mdio.dev);
1717 }
1718
1719 /* Configure the PHY for dev.
1720 * returns 0 if success. -1 if failure
1721 */
init_phy(struct net_device * dev)1722 static int init_phy(struct net_device *dev)
1723 {
1724 struct ucc_geth_private *priv = netdev_priv(dev);
1725 struct ucc_geth_info *ug_info = priv->ug_info;
1726 struct phy_device *phydev;
1727
1728 priv->oldlink = 0;
1729 priv->oldspeed = 0;
1730 priv->oldduplex = -1;
1731
1732 phydev = of_phy_connect(dev, ug_info->phy_node, &adjust_link, 0,
1733 priv->phy_interface);
1734 if (!phydev) {
1735 dev_err(&dev->dev, "Could not attach to PHY\n");
1736 return -ENODEV;
1737 }
1738
1739 if (priv->phy_interface == PHY_INTERFACE_MODE_SGMII)
1740 uec_configure_serdes(dev);
1741
1742 phy_set_max_speed(phydev, priv->max_speed);
1743
1744 priv->phydev = phydev;
1745
1746 return 0;
1747 }
1748
ugeth_dump_regs(struct ucc_geth_private * ugeth)1749 static void ugeth_dump_regs(struct ucc_geth_private *ugeth)
1750 {
1751 #ifdef DEBUG
1752 ucc_fast_dump_regs(ugeth->uccf);
1753 dump_regs(ugeth);
1754 dump_bds(ugeth);
1755 #endif
1756 }
1757
ugeth_82xx_filtering_clear_all_addr_in_hash(struct ucc_geth_private * ugeth,enum enet_addr_type enet_addr_type)1758 static int ugeth_82xx_filtering_clear_all_addr_in_hash(struct ucc_geth_private *
1759 ugeth,
1760 enum enet_addr_type
1761 enet_addr_type)
1762 {
1763 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
1764 struct ucc_fast_private *uccf;
1765 enum comm_dir comm_dir;
1766 struct list_head *p_lh;
1767 u16 i, num;
1768 u32 __iomem *addr_h;
1769 u32 __iomem *addr_l;
1770 u8 *p_counter;
1771
1772 uccf = ugeth->uccf;
1773
1774 p_82xx_addr_filt =
1775 (struct ucc_geth_82xx_address_filtering_pram __iomem *)
1776 ugeth->p_rx_glbl_pram->addressfiltering;
1777
1778 if (enet_addr_type == ENET_ADDR_TYPE_GROUP) {
1779 addr_h = &(p_82xx_addr_filt->gaddr_h);
1780 addr_l = &(p_82xx_addr_filt->gaddr_l);
1781 p_lh = &ugeth->group_hash_q;
1782 p_counter = &(ugeth->numGroupAddrInHash);
1783 } else if (enet_addr_type == ENET_ADDR_TYPE_INDIVIDUAL) {
1784 addr_h = &(p_82xx_addr_filt->iaddr_h);
1785 addr_l = &(p_82xx_addr_filt->iaddr_l);
1786 p_lh = &ugeth->ind_hash_q;
1787 p_counter = &(ugeth->numIndAddrInHash);
1788 } else
1789 return -EINVAL;
1790
1791 comm_dir = 0;
1792 if (uccf->enabled_tx)
1793 comm_dir |= COMM_DIR_TX;
1794 if (uccf->enabled_rx)
1795 comm_dir |= COMM_DIR_RX;
1796 if (comm_dir)
1797 ugeth_disable(ugeth, comm_dir);
1798
1799 /* Clear the hash table. */
1800 out_be32(addr_h, 0x00000000);
1801 out_be32(addr_l, 0x00000000);
1802
1803 if (!p_lh)
1804 return 0;
1805
1806 num = *p_counter;
1807
1808 /* Delete all remaining CQ elements */
1809 for (i = 0; i < num; i++)
1810 put_enet_addr_container(ENET_ADDR_CONT_ENTRY(dequeue(p_lh)));
1811
1812 *p_counter = 0;
1813
1814 if (comm_dir)
1815 ugeth_enable(ugeth, comm_dir);
1816
1817 return 0;
1818 }
1819
ugeth_82xx_filtering_clear_addr_in_paddr(struct ucc_geth_private * ugeth,u8 paddr_num)1820 static int ugeth_82xx_filtering_clear_addr_in_paddr(struct ucc_geth_private *ugeth,
1821 u8 paddr_num)
1822 {
1823 ugeth->indAddrRegUsed[paddr_num] = 0; /* mark this paddr as not used */
1824 return hw_clear_addr_in_paddr(ugeth, paddr_num);/* clear in hardware */
1825 }
1826
ucc_geth_free_rx(struct ucc_geth_private * ugeth)1827 static void ucc_geth_free_rx(struct ucc_geth_private *ugeth)
1828 {
1829 struct ucc_geth_info *ug_info;
1830 struct ucc_fast_info *uf_info;
1831 u16 i, j;
1832 u8 __iomem *bd;
1833
1834
1835 ug_info = ugeth->ug_info;
1836 uf_info = &ug_info->uf_info;
1837
1838 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
1839 if (ugeth->p_rx_bd_ring[i]) {
1840 /* Return existing data buffers in ring */
1841 bd = ugeth->p_rx_bd_ring[i];
1842 for (j = 0; j < ugeth->ug_info->bdRingLenRx[i]; j++) {
1843 if (ugeth->rx_skbuff[i][j]) {
1844 dma_unmap_single(ugeth->dev,
1845 in_be32(&((struct qe_bd __iomem *)bd)->buf),
1846 ugeth->ug_info->
1847 uf_info.max_rx_buf_length +
1848 UCC_GETH_RX_DATA_BUF_ALIGNMENT,
1849 DMA_FROM_DEVICE);
1850 dev_kfree_skb_any(
1851 ugeth->rx_skbuff[i][j]);
1852 ugeth->rx_skbuff[i][j] = NULL;
1853 }
1854 bd += sizeof(struct qe_bd);
1855 }
1856
1857 kfree(ugeth->rx_skbuff[i]);
1858
1859 if (ugeth->ug_info->uf_info.bd_mem_part ==
1860 MEM_PART_SYSTEM)
1861 kfree((void *)ugeth->rx_bd_ring_offset[i]);
1862 else if (ugeth->ug_info->uf_info.bd_mem_part ==
1863 MEM_PART_MURAM)
1864 qe_muram_free(ugeth->rx_bd_ring_offset[i]);
1865 ugeth->p_rx_bd_ring[i] = NULL;
1866 }
1867 }
1868
1869 }
1870
ucc_geth_free_tx(struct ucc_geth_private * ugeth)1871 static void ucc_geth_free_tx(struct ucc_geth_private *ugeth)
1872 {
1873 struct ucc_geth_info *ug_info;
1874 struct ucc_fast_info *uf_info;
1875 u16 i, j;
1876 u8 __iomem *bd;
1877
1878 netdev_reset_queue(ugeth->ndev);
1879
1880 ug_info = ugeth->ug_info;
1881 uf_info = &ug_info->uf_info;
1882
1883 for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
1884 bd = ugeth->p_tx_bd_ring[i];
1885 if (!bd)
1886 continue;
1887 for (j = 0; j < ugeth->ug_info->bdRingLenTx[i]; j++) {
1888 if (ugeth->tx_skbuff[i][j]) {
1889 dma_unmap_single(ugeth->dev,
1890 in_be32(&((struct qe_bd __iomem *)bd)->buf),
1891 (in_be32((u32 __iomem *)bd) &
1892 BD_LENGTH_MASK),
1893 DMA_TO_DEVICE);
1894 dev_kfree_skb_any(ugeth->tx_skbuff[i][j]);
1895 ugeth->tx_skbuff[i][j] = NULL;
1896 }
1897 }
1898
1899 kfree(ugeth->tx_skbuff[i]);
1900
1901 if (ugeth->p_tx_bd_ring[i]) {
1902 if (ugeth->ug_info->uf_info.bd_mem_part ==
1903 MEM_PART_SYSTEM)
1904 kfree((void *)ugeth->tx_bd_ring_offset[i]);
1905 else if (ugeth->ug_info->uf_info.bd_mem_part ==
1906 MEM_PART_MURAM)
1907 qe_muram_free(ugeth->tx_bd_ring_offset[i]);
1908 ugeth->p_tx_bd_ring[i] = NULL;
1909 }
1910 }
1911
1912 }
1913
ucc_geth_memclean(struct ucc_geth_private * ugeth)1914 static void ucc_geth_memclean(struct ucc_geth_private *ugeth)
1915 {
1916 if (!ugeth)
1917 return;
1918
1919 if (ugeth->uccf) {
1920 ucc_fast_free(ugeth->uccf);
1921 ugeth->uccf = NULL;
1922 }
1923
1924 if (ugeth->p_thread_data_tx) {
1925 qe_muram_free(ugeth->thread_dat_tx_offset);
1926 ugeth->p_thread_data_tx = NULL;
1927 }
1928 if (ugeth->p_thread_data_rx) {
1929 qe_muram_free(ugeth->thread_dat_rx_offset);
1930 ugeth->p_thread_data_rx = NULL;
1931 }
1932 if (ugeth->p_exf_glbl_param) {
1933 qe_muram_free(ugeth->exf_glbl_param_offset);
1934 ugeth->p_exf_glbl_param = NULL;
1935 }
1936 if (ugeth->p_rx_glbl_pram) {
1937 qe_muram_free(ugeth->rx_glbl_pram_offset);
1938 ugeth->p_rx_glbl_pram = NULL;
1939 }
1940 if (ugeth->p_tx_glbl_pram) {
1941 qe_muram_free(ugeth->tx_glbl_pram_offset);
1942 ugeth->p_tx_glbl_pram = NULL;
1943 }
1944 if (ugeth->p_send_q_mem_reg) {
1945 qe_muram_free(ugeth->send_q_mem_reg_offset);
1946 ugeth->p_send_q_mem_reg = NULL;
1947 }
1948 if (ugeth->p_scheduler) {
1949 qe_muram_free(ugeth->scheduler_offset);
1950 ugeth->p_scheduler = NULL;
1951 }
1952 if (ugeth->p_tx_fw_statistics_pram) {
1953 qe_muram_free(ugeth->tx_fw_statistics_pram_offset);
1954 ugeth->p_tx_fw_statistics_pram = NULL;
1955 }
1956 if (ugeth->p_rx_fw_statistics_pram) {
1957 qe_muram_free(ugeth->rx_fw_statistics_pram_offset);
1958 ugeth->p_rx_fw_statistics_pram = NULL;
1959 }
1960 if (ugeth->p_rx_irq_coalescing_tbl) {
1961 qe_muram_free(ugeth->rx_irq_coalescing_tbl_offset);
1962 ugeth->p_rx_irq_coalescing_tbl = NULL;
1963 }
1964 if (ugeth->p_rx_bd_qs_tbl) {
1965 qe_muram_free(ugeth->rx_bd_qs_tbl_offset);
1966 ugeth->p_rx_bd_qs_tbl = NULL;
1967 }
1968 if (ugeth->p_init_enet_param_shadow) {
1969 return_init_enet_entries(ugeth,
1970 &(ugeth->p_init_enet_param_shadow->
1971 rxthread[0]),
1972 ENET_INIT_PARAM_MAX_ENTRIES_RX,
1973 ugeth->ug_info->riscRx, 1);
1974 return_init_enet_entries(ugeth,
1975 &(ugeth->p_init_enet_param_shadow->
1976 txthread[0]),
1977 ENET_INIT_PARAM_MAX_ENTRIES_TX,
1978 ugeth->ug_info->riscTx, 0);
1979 kfree(ugeth->p_init_enet_param_shadow);
1980 ugeth->p_init_enet_param_shadow = NULL;
1981 }
1982 ucc_geth_free_tx(ugeth);
1983 ucc_geth_free_rx(ugeth);
1984 while (!list_empty(&ugeth->group_hash_q))
1985 put_enet_addr_container(ENET_ADDR_CONT_ENTRY
1986 (dequeue(&ugeth->group_hash_q)));
1987 while (!list_empty(&ugeth->ind_hash_q))
1988 put_enet_addr_container(ENET_ADDR_CONT_ENTRY
1989 (dequeue(&ugeth->ind_hash_q)));
1990 if (ugeth->ug_regs) {
1991 iounmap(ugeth->ug_regs);
1992 ugeth->ug_regs = NULL;
1993 }
1994 }
1995
ucc_geth_set_multi(struct net_device * dev)1996 static void ucc_geth_set_multi(struct net_device *dev)
1997 {
1998 struct ucc_geth_private *ugeth;
1999 struct netdev_hw_addr *ha;
2000 struct ucc_fast __iomem *uf_regs;
2001 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
2002
2003 ugeth = netdev_priv(dev);
2004
2005 uf_regs = ugeth->uccf->uf_regs;
2006
2007 if (dev->flags & IFF_PROMISC) {
2008 setbits32(&uf_regs->upsmr, UCC_GETH_UPSMR_PRO);
2009 } else {
2010 clrbits32(&uf_regs->upsmr, UCC_GETH_UPSMR_PRO);
2011
2012 p_82xx_addr_filt =
2013 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->
2014 p_rx_glbl_pram->addressfiltering;
2015
2016 if (dev->flags & IFF_ALLMULTI) {
2017 /* Catch all multicast addresses, so set the
2018 * filter to all 1's.
2019 */
2020 out_be32(&p_82xx_addr_filt->gaddr_h, 0xffffffff);
2021 out_be32(&p_82xx_addr_filt->gaddr_l, 0xffffffff);
2022 } else {
2023 /* Clear filter and add the addresses in the list.
2024 */
2025 out_be32(&p_82xx_addr_filt->gaddr_h, 0x0);
2026 out_be32(&p_82xx_addr_filt->gaddr_l, 0x0);
2027
2028 netdev_for_each_mc_addr(ha, dev) {
2029 /* Ask CPM to run CRC and set bit in
2030 * filter mask.
2031 */
2032 hw_add_addr_in_hash(ugeth, ha->addr);
2033 }
2034 }
2035 }
2036 }
2037
ucc_geth_stop(struct ucc_geth_private * ugeth)2038 static void ucc_geth_stop(struct ucc_geth_private *ugeth)
2039 {
2040 struct ucc_geth __iomem *ug_regs = ugeth->ug_regs;
2041 struct phy_device *phydev = ugeth->phydev;
2042
2043 ugeth_vdbg("%s: IN", __func__);
2044
2045 /*
2046 * Tell the kernel the link is down.
2047 * Must be done before disabling the controller
2048 * or deadlock may happen.
2049 */
2050 phy_stop(phydev);
2051
2052 /* Disable the controller */
2053 ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
2054
2055 /* Mask all interrupts */
2056 out_be32(ugeth->uccf->p_uccm, 0x00000000);
2057
2058 /* Clear all interrupts */
2059 out_be32(ugeth->uccf->p_ucce, 0xffffffff);
2060
2061 /* Disable Rx and Tx */
2062 clrbits32(&ug_regs->maccfg1, MACCFG1_ENABLE_RX | MACCFG1_ENABLE_TX);
2063
2064 ucc_geth_memclean(ugeth);
2065 }
2066
ucc_struct_init(struct ucc_geth_private * ugeth)2067 static int ucc_struct_init(struct ucc_geth_private *ugeth)
2068 {
2069 struct ucc_geth_info *ug_info;
2070 struct ucc_fast_info *uf_info;
2071 int i;
2072
2073 ug_info = ugeth->ug_info;
2074 uf_info = &ug_info->uf_info;
2075
2076 if (!((uf_info->bd_mem_part == MEM_PART_SYSTEM) ||
2077 (uf_info->bd_mem_part == MEM_PART_MURAM))) {
2078 if (netif_msg_probe(ugeth))
2079 pr_err("Bad memory partition value\n");
2080 return -EINVAL;
2081 }
2082
2083 /* Rx BD lengths */
2084 for (i = 0; i < ug_info->numQueuesRx; i++) {
2085 if ((ug_info->bdRingLenRx[i] < UCC_GETH_RX_BD_RING_SIZE_MIN) ||
2086 (ug_info->bdRingLenRx[i] %
2087 UCC_GETH_RX_BD_RING_SIZE_ALIGNMENT)) {
2088 if (netif_msg_probe(ugeth))
2089 pr_err("Rx BD ring length must be multiple of 4, no smaller than 8\n");
2090 return -EINVAL;
2091 }
2092 }
2093
2094 /* Tx BD lengths */
2095 for (i = 0; i < ug_info->numQueuesTx; i++) {
2096 if (ug_info->bdRingLenTx[i] < UCC_GETH_TX_BD_RING_SIZE_MIN) {
2097 if (netif_msg_probe(ugeth))
2098 pr_err("Tx BD ring length must be no smaller than 2\n");
2099 return -EINVAL;
2100 }
2101 }
2102
2103 /* mrblr */
2104 if ((uf_info->max_rx_buf_length == 0) ||
2105 (uf_info->max_rx_buf_length % UCC_GETH_MRBLR_ALIGNMENT)) {
2106 if (netif_msg_probe(ugeth))
2107 pr_err("max_rx_buf_length must be non-zero multiple of 128\n");
2108 return -EINVAL;
2109 }
2110
2111 /* num Tx queues */
2112 if (ug_info->numQueuesTx > NUM_TX_QUEUES) {
2113 if (netif_msg_probe(ugeth))
2114 pr_err("number of tx queues too large\n");
2115 return -EINVAL;
2116 }
2117
2118 /* num Rx queues */
2119 if (ug_info->numQueuesRx > NUM_RX_QUEUES) {
2120 if (netif_msg_probe(ugeth))
2121 pr_err("number of rx queues too large\n");
2122 return -EINVAL;
2123 }
2124
2125 /* l2qt */
2126 for (i = 0; i < UCC_GETH_VLAN_PRIORITY_MAX; i++) {
2127 if (ug_info->l2qt[i] >= ug_info->numQueuesRx) {
2128 if (netif_msg_probe(ugeth))
2129 pr_err("VLAN priority table entry must not be larger than number of Rx queues\n");
2130 return -EINVAL;
2131 }
2132 }
2133
2134 /* l3qt */
2135 for (i = 0; i < UCC_GETH_IP_PRIORITY_MAX; i++) {
2136 if (ug_info->l3qt[i] >= ug_info->numQueuesRx) {
2137 if (netif_msg_probe(ugeth))
2138 pr_err("IP priority table entry must not be larger than number of Rx queues\n");
2139 return -EINVAL;
2140 }
2141 }
2142
2143 if (ug_info->cam && !ug_info->ecamptr) {
2144 if (netif_msg_probe(ugeth))
2145 pr_err("If cam mode is chosen, must supply cam ptr\n");
2146 return -EINVAL;
2147 }
2148
2149 if ((ug_info->numStationAddresses !=
2150 UCC_GETH_NUM_OF_STATION_ADDRESSES_1) &&
2151 ug_info->rxExtendedFiltering) {
2152 if (netif_msg_probe(ugeth))
2153 pr_err("Number of station addresses greater than 1 not allowed in extended parsing mode\n");
2154 return -EINVAL;
2155 }
2156
2157 /* Generate uccm_mask for receive */
2158 uf_info->uccm_mask = ug_info->eventRegMask & UCCE_OTHER;/* Errors */
2159 for (i = 0; i < ug_info->numQueuesRx; i++)
2160 uf_info->uccm_mask |= (UCC_GETH_UCCE_RXF0 << i);
2161
2162 for (i = 0; i < ug_info->numQueuesTx; i++)
2163 uf_info->uccm_mask |= (UCC_GETH_UCCE_TXB0 << i);
2164 /* Initialize the general fast UCC block. */
2165 if (ucc_fast_init(uf_info, &ugeth->uccf)) {
2166 if (netif_msg_probe(ugeth))
2167 pr_err("Failed to init uccf\n");
2168 return -ENOMEM;
2169 }
2170
2171 /* read the number of risc engines, update the riscTx and riscRx
2172 * if there are 4 riscs in QE
2173 */
2174 if (qe_get_num_of_risc() == 4) {
2175 ug_info->riscTx = QE_RISC_ALLOCATION_FOUR_RISCS;
2176 ug_info->riscRx = QE_RISC_ALLOCATION_FOUR_RISCS;
2177 }
2178
2179 ugeth->ug_regs = ioremap(uf_info->regs, sizeof(*ugeth->ug_regs));
2180 if (!ugeth->ug_regs) {
2181 if (netif_msg_probe(ugeth))
2182 pr_err("Failed to ioremap regs\n");
2183 return -ENOMEM;
2184 }
2185
2186 return 0;
2187 }
2188
ucc_geth_alloc_tx(struct ucc_geth_private * ugeth)2189 static int ucc_geth_alloc_tx(struct ucc_geth_private *ugeth)
2190 {
2191 struct ucc_geth_info *ug_info;
2192 struct ucc_fast_info *uf_info;
2193 int length;
2194 u16 i, j;
2195 u8 __iomem *bd;
2196
2197 ug_info = ugeth->ug_info;
2198 uf_info = &ug_info->uf_info;
2199
2200 /* Allocate Tx bds */
2201 for (j = 0; j < ug_info->numQueuesTx; j++) {
2202 /* Allocate in multiple of
2203 UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT,
2204 according to spec */
2205 length = ((ug_info->bdRingLenTx[j] * sizeof(struct qe_bd))
2206 / UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT)
2207 * UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
2208 if ((ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)) %
2209 UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT)
2210 length += UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
2211 if (uf_info->bd_mem_part == MEM_PART_SYSTEM) {
2212 u32 align = 4;
2213 if (UCC_GETH_TX_BD_RING_ALIGNMENT > 4)
2214 align = UCC_GETH_TX_BD_RING_ALIGNMENT;
2215 ugeth->tx_bd_ring_offset[j] =
2216 (u32) kmalloc((u32) (length + align), GFP_KERNEL);
2217
2218 if (ugeth->tx_bd_ring_offset[j] != 0)
2219 ugeth->p_tx_bd_ring[j] =
2220 (u8 __iomem *)((ugeth->tx_bd_ring_offset[j] +
2221 align) & ~(align - 1));
2222 } else if (uf_info->bd_mem_part == MEM_PART_MURAM) {
2223 ugeth->tx_bd_ring_offset[j] =
2224 qe_muram_alloc(length,
2225 UCC_GETH_TX_BD_RING_ALIGNMENT);
2226 if (!IS_ERR_VALUE(ugeth->tx_bd_ring_offset[j]))
2227 ugeth->p_tx_bd_ring[j] =
2228 (u8 __iomem *) qe_muram_addr(ugeth->
2229 tx_bd_ring_offset[j]);
2230 }
2231 if (!ugeth->p_tx_bd_ring[j]) {
2232 if (netif_msg_ifup(ugeth))
2233 pr_err("Can not allocate memory for Tx bd rings\n");
2234 return -ENOMEM;
2235 }
2236 /* Zero unused end of bd ring, according to spec */
2237 memset_io((void __iomem *)(ugeth->p_tx_bd_ring[j] +
2238 ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)), 0,
2239 length - ug_info->bdRingLenTx[j] * sizeof(struct qe_bd));
2240 }
2241
2242 /* Init Tx bds */
2243 for (j = 0; j < ug_info->numQueuesTx; j++) {
2244 /* Setup the skbuff rings */
2245 ugeth->tx_skbuff[j] =
2246 kmalloc_array(ugeth->ug_info->bdRingLenTx[j],
2247 sizeof(struct sk_buff *), GFP_KERNEL);
2248
2249 if (ugeth->tx_skbuff[j] == NULL) {
2250 if (netif_msg_ifup(ugeth))
2251 pr_err("Could not allocate tx_skbuff\n");
2252 return -ENOMEM;
2253 }
2254
2255 for (i = 0; i < ugeth->ug_info->bdRingLenTx[j]; i++)
2256 ugeth->tx_skbuff[j][i] = NULL;
2257
2258 ugeth->skb_curtx[j] = ugeth->skb_dirtytx[j] = 0;
2259 bd = ugeth->confBd[j] = ugeth->txBd[j] = ugeth->p_tx_bd_ring[j];
2260 for (i = 0; i < ug_info->bdRingLenTx[j]; i++) {
2261 /* clear bd buffer */
2262 out_be32(&((struct qe_bd __iomem *)bd)->buf, 0);
2263 /* set bd status and length */
2264 out_be32((u32 __iomem *)bd, 0);
2265 bd += sizeof(struct qe_bd);
2266 }
2267 bd -= sizeof(struct qe_bd);
2268 /* set bd status and length */
2269 out_be32((u32 __iomem *)bd, T_W); /* for last BD set Wrap bit */
2270 }
2271
2272 return 0;
2273 }
2274
ucc_geth_alloc_rx(struct ucc_geth_private * ugeth)2275 static int ucc_geth_alloc_rx(struct ucc_geth_private *ugeth)
2276 {
2277 struct ucc_geth_info *ug_info;
2278 struct ucc_fast_info *uf_info;
2279 int length;
2280 u16 i, j;
2281 u8 __iomem *bd;
2282
2283 ug_info = ugeth->ug_info;
2284 uf_info = &ug_info->uf_info;
2285
2286 /* Allocate Rx bds */
2287 for (j = 0; j < ug_info->numQueuesRx; j++) {
2288 length = ug_info->bdRingLenRx[j] * sizeof(struct qe_bd);
2289 if (uf_info->bd_mem_part == MEM_PART_SYSTEM) {
2290 u32 align = 4;
2291 if (UCC_GETH_RX_BD_RING_ALIGNMENT > 4)
2292 align = UCC_GETH_RX_BD_RING_ALIGNMENT;
2293 ugeth->rx_bd_ring_offset[j] =
2294 (u32) kmalloc((u32) (length + align), GFP_KERNEL);
2295 if (ugeth->rx_bd_ring_offset[j] != 0)
2296 ugeth->p_rx_bd_ring[j] =
2297 (u8 __iomem *)((ugeth->rx_bd_ring_offset[j] +
2298 align) & ~(align - 1));
2299 } else if (uf_info->bd_mem_part == MEM_PART_MURAM) {
2300 ugeth->rx_bd_ring_offset[j] =
2301 qe_muram_alloc(length,
2302 UCC_GETH_RX_BD_RING_ALIGNMENT);
2303 if (!IS_ERR_VALUE(ugeth->rx_bd_ring_offset[j]))
2304 ugeth->p_rx_bd_ring[j] =
2305 (u8 __iomem *) qe_muram_addr(ugeth->
2306 rx_bd_ring_offset[j]);
2307 }
2308 if (!ugeth->p_rx_bd_ring[j]) {
2309 if (netif_msg_ifup(ugeth))
2310 pr_err("Can not allocate memory for Rx bd rings\n");
2311 return -ENOMEM;
2312 }
2313 }
2314
2315 /* Init Rx bds */
2316 for (j = 0; j < ug_info->numQueuesRx; j++) {
2317 /* Setup the skbuff rings */
2318 ugeth->rx_skbuff[j] =
2319 kmalloc_array(ugeth->ug_info->bdRingLenRx[j],
2320 sizeof(struct sk_buff *), GFP_KERNEL);
2321
2322 if (ugeth->rx_skbuff[j] == NULL) {
2323 if (netif_msg_ifup(ugeth))
2324 pr_err("Could not allocate rx_skbuff\n");
2325 return -ENOMEM;
2326 }
2327
2328 for (i = 0; i < ugeth->ug_info->bdRingLenRx[j]; i++)
2329 ugeth->rx_skbuff[j][i] = NULL;
2330
2331 ugeth->skb_currx[j] = 0;
2332 bd = ugeth->rxBd[j] = ugeth->p_rx_bd_ring[j];
2333 for (i = 0; i < ug_info->bdRingLenRx[j]; i++) {
2334 /* set bd status and length */
2335 out_be32((u32 __iomem *)bd, R_I);
2336 /* clear bd buffer */
2337 out_be32(&((struct qe_bd __iomem *)bd)->buf, 0);
2338 bd += sizeof(struct qe_bd);
2339 }
2340 bd -= sizeof(struct qe_bd);
2341 /* set bd status and length */
2342 out_be32((u32 __iomem *)bd, R_W); /* for last BD set Wrap bit */
2343 }
2344
2345 return 0;
2346 }
2347
ucc_geth_startup(struct ucc_geth_private * ugeth)2348 static int ucc_geth_startup(struct ucc_geth_private *ugeth)
2349 {
2350 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
2351 struct ucc_geth_init_pram __iomem *p_init_enet_pram;
2352 struct ucc_fast_private *uccf;
2353 struct ucc_geth_info *ug_info;
2354 struct ucc_fast_info *uf_info;
2355 struct ucc_fast __iomem *uf_regs;
2356 struct ucc_geth __iomem *ug_regs;
2357 int ret_val = -EINVAL;
2358 u32 remoder = UCC_GETH_REMODER_INIT;
2359 u32 init_enet_pram_offset, cecr_subblock, command;
2360 u32 ifstat, i, j, size, l2qt, l3qt;
2361 u16 temoder = UCC_GETH_TEMODER_INIT;
2362 u16 test;
2363 u8 function_code = 0;
2364 u8 __iomem *endOfRing;
2365 u8 numThreadsRxNumerical, numThreadsTxNumerical;
2366
2367 ugeth_vdbg("%s: IN", __func__);
2368 uccf = ugeth->uccf;
2369 ug_info = ugeth->ug_info;
2370 uf_info = &ug_info->uf_info;
2371 uf_regs = uccf->uf_regs;
2372 ug_regs = ugeth->ug_regs;
2373
2374 switch (ug_info->numThreadsRx) {
2375 case UCC_GETH_NUM_OF_THREADS_1:
2376 numThreadsRxNumerical = 1;
2377 break;
2378 case UCC_GETH_NUM_OF_THREADS_2:
2379 numThreadsRxNumerical = 2;
2380 break;
2381 case UCC_GETH_NUM_OF_THREADS_4:
2382 numThreadsRxNumerical = 4;
2383 break;
2384 case UCC_GETH_NUM_OF_THREADS_6:
2385 numThreadsRxNumerical = 6;
2386 break;
2387 case UCC_GETH_NUM_OF_THREADS_8:
2388 numThreadsRxNumerical = 8;
2389 break;
2390 default:
2391 if (netif_msg_ifup(ugeth))
2392 pr_err("Bad number of Rx threads value\n");
2393 return -EINVAL;
2394 }
2395
2396 switch (ug_info->numThreadsTx) {
2397 case UCC_GETH_NUM_OF_THREADS_1:
2398 numThreadsTxNumerical = 1;
2399 break;
2400 case UCC_GETH_NUM_OF_THREADS_2:
2401 numThreadsTxNumerical = 2;
2402 break;
2403 case UCC_GETH_NUM_OF_THREADS_4:
2404 numThreadsTxNumerical = 4;
2405 break;
2406 case UCC_GETH_NUM_OF_THREADS_6:
2407 numThreadsTxNumerical = 6;
2408 break;
2409 case UCC_GETH_NUM_OF_THREADS_8:
2410 numThreadsTxNumerical = 8;
2411 break;
2412 default:
2413 if (netif_msg_ifup(ugeth))
2414 pr_err("Bad number of Tx threads value\n");
2415 return -EINVAL;
2416 }
2417
2418 /* Calculate rx_extended_features */
2419 ugeth->rx_non_dynamic_extended_features = ug_info->ipCheckSumCheck ||
2420 ug_info->ipAddressAlignment ||
2421 (ug_info->numStationAddresses !=
2422 UCC_GETH_NUM_OF_STATION_ADDRESSES_1);
2423
2424 ugeth->rx_extended_features = ugeth->rx_non_dynamic_extended_features ||
2425 (ug_info->vlanOperationTagged != UCC_GETH_VLAN_OPERATION_TAGGED_NOP) ||
2426 (ug_info->vlanOperationNonTagged !=
2427 UCC_GETH_VLAN_OPERATION_NON_TAGGED_NOP);
2428
2429 init_default_reg_vals(&uf_regs->upsmr,
2430 &ug_regs->maccfg1, &ug_regs->maccfg2);
2431
2432 /* Set UPSMR */
2433 /* For more details see the hardware spec. */
2434 init_rx_parameters(ug_info->bro,
2435 ug_info->rsh, ug_info->pro, &uf_regs->upsmr);
2436
2437 /* We're going to ignore other registers for now, */
2438 /* except as needed to get up and running */
2439
2440 /* Set MACCFG1 */
2441 /* For more details see the hardware spec. */
2442 init_flow_control_params(ug_info->aufc,
2443 ug_info->receiveFlowControl,
2444 ug_info->transmitFlowControl,
2445 ug_info->pausePeriod,
2446 ug_info->extensionField,
2447 &uf_regs->upsmr,
2448 &ug_regs->uempr, &ug_regs->maccfg1);
2449
2450 setbits32(&ug_regs->maccfg1, MACCFG1_ENABLE_RX | MACCFG1_ENABLE_TX);
2451
2452 /* Set IPGIFG */
2453 /* For more details see the hardware spec. */
2454 ret_val = init_inter_frame_gap_params(ug_info->nonBackToBackIfgPart1,
2455 ug_info->nonBackToBackIfgPart2,
2456 ug_info->
2457 miminumInterFrameGapEnforcement,
2458 ug_info->backToBackInterFrameGap,
2459 &ug_regs->ipgifg);
2460 if (ret_val != 0) {
2461 if (netif_msg_ifup(ugeth))
2462 pr_err("IPGIFG initialization parameter too large\n");
2463 return ret_val;
2464 }
2465
2466 /* Set HAFDUP */
2467 /* For more details see the hardware spec. */
2468 ret_val = init_half_duplex_params(ug_info->altBeb,
2469 ug_info->backPressureNoBackoff,
2470 ug_info->noBackoff,
2471 ug_info->excessDefer,
2472 ug_info->altBebTruncation,
2473 ug_info->maxRetransmission,
2474 ug_info->collisionWindow,
2475 &ug_regs->hafdup);
2476 if (ret_val != 0) {
2477 if (netif_msg_ifup(ugeth))
2478 pr_err("Half Duplex initialization parameter too large\n");
2479 return ret_val;
2480 }
2481
2482 /* Set IFSTAT */
2483 /* For more details see the hardware spec. */
2484 /* Read only - resets upon read */
2485 ifstat = in_be32(&ug_regs->ifstat);
2486
2487 /* Clear UEMPR */
2488 /* For more details see the hardware spec. */
2489 out_be32(&ug_regs->uempr, 0);
2490
2491 /* Set UESCR */
2492 /* For more details see the hardware spec. */
2493 init_hw_statistics_gathering_mode((ug_info->statisticsMode &
2494 UCC_GETH_STATISTICS_GATHERING_MODE_HARDWARE),
2495 0, &uf_regs->upsmr, &ug_regs->uescr);
2496
2497 ret_val = ucc_geth_alloc_tx(ugeth);
2498 if (ret_val != 0)
2499 return ret_val;
2500
2501 ret_val = ucc_geth_alloc_rx(ugeth);
2502 if (ret_val != 0)
2503 return ret_val;
2504
2505 /*
2506 * Global PRAM
2507 */
2508 /* Tx global PRAM */
2509 /* Allocate global tx parameter RAM page */
2510 ugeth->tx_glbl_pram_offset =
2511 qe_muram_alloc(sizeof(struct ucc_geth_tx_global_pram),
2512 UCC_GETH_TX_GLOBAL_PRAM_ALIGNMENT);
2513 if (IS_ERR_VALUE(ugeth->tx_glbl_pram_offset)) {
2514 if (netif_msg_ifup(ugeth))
2515 pr_err("Can not allocate DPRAM memory for p_tx_glbl_pram\n");
2516 return -ENOMEM;
2517 }
2518 ugeth->p_tx_glbl_pram =
2519 (struct ucc_geth_tx_global_pram __iomem *) qe_muram_addr(ugeth->
2520 tx_glbl_pram_offset);
2521 /* Zero out p_tx_glbl_pram */
2522 memset_io((void __iomem *)ugeth->p_tx_glbl_pram, 0, sizeof(struct ucc_geth_tx_global_pram));
2523
2524 /* Fill global PRAM */
2525
2526 /* TQPTR */
2527 /* Size varies with number of Tx threads */
2528 ugeth->thread_dat_tx_offset =
2529 qe_muram_alloc(numThreadsTxNumerical *
2530 sizeof(struct ucc_geth_thread_data_tx) +
2531 32 * (numThreadsTxNumerical == 1),
2532 UCC_GETH_THREAD_DATA_ALIGNMENT);
2533 if (IS_ERR_VALUE(ugeth->thread_dat_tx_offset)) {
2534 if (netif_msg_ifup(ugeth))
2535 pr_err("Can not allocate DPRAM memory for p_thread_data_tx\n");
2536 return -ENOMEM;
2537 }
2538
2539 ugeth->p_thread_data_tx =
2540 (struct ucc_geth_thread_data_tx __iomem *) qe_muram_addr(ugeth->
2541 thread_dat_tx_offset);
2542 out_be32(&ugeth->p_tx_glbl_pram->tqptr, ugeth->thread_dat_tx_offset);
2543
2544 /* vtagtable */
2545 for (i = 0; i < UCC_GETH_TX_VTAG_TABLE_ENTRY_MAX; i++)
2546 out_be32(&ugeth->p_tx_glbl_pram->vtagtable[i],
2547 ug_info->vtagtable[i]);
2548
2549 /* iphoffset */
2550 for (i = 0; i < TX_IP_OFFSET_ENTRY_MAX; i++)
2551 out_8(&ugeth->p_tx_glbl_pram->iphoffset[i],
2552 ug_info->iphoffset[i]);
2553
2554 /* SQPTR */
2555 /* Size varies with number of Tx queues */
2556 ugeth->send_q_mem_reg_offset =
2557 qe_muram_alloc(ug_info->numQueuesTx *
2558 sizeof(struct ucc_geth_send_queue_qd),
2559 UCC_GETH_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT);
2560 if (IS_ERR_VALUE(ugeth->send_q_mem_reg_offset)) {
2561 if (netif_msg_ifup(ugeth))
2562 pr_err("Can not allocate DPRAM memory for p_send_q_mem_reg\n");
2563 return -ENOMEM;
2564 }
2565
2566 ugeth->p_send_q_mem_reg =
2567 (struct ucc_geth_send_queue_mem_region __iomem *) qe_muram_addr(ugeth->
2568 send_q_mem_reg_offset);
2569 out_be32(&ugeth->p_tx_glbl_pram->sqptr, ugeth->send_q_mem_reg_offset);
2570
2571 /* Setup the table */
2572 /* Assume BD rings are already established */
2573 for (i = 0; i < ug_info->numQueuesTx; i++) {
2574 endOfRing =
2575 ugeth->p_tx_bd_ring[i] + (ug_info->bdRingLenTx[i] -
2576 1) * sizeof(struct qe_bd);
2577 if (ugeth->ug_info->uf_info.bd_mem_part == MEM_PART_SYSTEM) {
2578 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].bd_ring_base,
2579 (u32) virt_to_phys(ugeth->p_tx_bd_ring[i]));
2580 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].
2581 last_bd_completed_address,
2582 (u32) virt_to_phys(endOfRing));
2583 } else if (ugeth->ug_info->uf_info.bd_mem_part ==
2584 MEM_PART_MURAM) {
2585 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].bd_ring_base,
2586 (u32)qe_muram_dma(ugeth->p_tx_bd_ring[i]));
2587 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].
2588 last_bd_completed_address,
2589 (u32)qe_muram_dma(endOfRing));
2590 }
2591 }
2592
2593 /* schedulerbasepointer */
2594
2595 if (ug_info->numQueuesTx > 1) {
2596 /* scheduler exists only if more than 1 tx queue */
2597 ugeth->scheduler_offset =
2598 qe_muram_alloc(sizeof(struct ucc_geth_scheduler),
2599 UCC_GETH_SCHEDULER_ALIGNMENT);
2600 if (IS_ERR_VALUE(ugeth->scheduler_offset)) {
2601 if (netif_msg_ifup(ugeth))
2602 pr_err("Can not allocate DPRAM memory for p_scheduler\n");
2603 return -ENOMEM;
2604 }
2605
2606 ugeth->p_scheduler =
2607 (struct ucc_geth_scheduler __iomem *) qe_muram_addr(ugeth->
2608 scheduler_offset);
2609 out_be32(&ugeth->p_tx_glbl_pram->schedulerbasepointer,
2610 ugeth->scheduler_offset);
2611 /* Zero out p_scheduler */
2612 memset_io((void __iomem *)ugeth->p_scheduler, 0, sizeof(struct ucc_geth_scheduler));
2613
2614 /* Set values in scheduler */
2615 out_be32(&ugeth->p_scheduler->mblinterval,
2616 ug_info->mblinterval);
2617 out_be16(&ugeth->p_scheduler->nortsrbytetime,
2618 ug_info->nortsrbytetime);
2619 out_8(&ugeth->p_scheduler->fracsiz, ug_info->fracsiz);
2620 out_8(&ugeth->p_scheduler->strictpriorityq,
2621 ug_info->strictpriorityq);
2622 out_8(&ugeth->p_scheduler->txasap, ug_info->txasap);
2623 out_8(&ugeth->p_scheduler->extrabw, ug_info->extrabw);
2624 for (i = 0; i < NUM_TX_QUEUES; i++)
2625 out_8(&ugeth->p_scheduler->weightfactor[i],
2626 ug_info->weightfactor[i]);
2627
2628 /* Set pointers to cpucount registers in scheduler */
2629 ugeth->p_cpucount[0] = &(ugeth->p_scheduler->cpucount0);
2630 ugeth->p_cpucount[1] = &(ugeth->p_scheduler->cpucount1);
2631 ugeth->p_cpucount[2] = &(ugeth->p_scheduler->cpucount2);
2632 ugeth->p_cpucount[3] = &(ugeth->p_scheduler->cpucount3);
2633 ugeth->p_cpucount[4] = &(ugeth->p_scheduler->cpucount4);
2634 ugeth->p_cpucount[5] = &(ugeth->p_scheduler->cpucount5);
2635 ugeth->p_cpucount[6] = &(ugeth->p_scheduler->cpucount6);
2636 ugeth->p_cpucount[7] = &(ugeth->p_scheduler->cpucount7);
2637 }
2638
2639 /* schedulerbasepointer */
2640 /* TxRMON_PTR (statistics) */
2641 if (ug_info->
2642 statisticsMode & UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX) {
2643 ugeth->tx_fw_statistics_pram_offset =
2644 qe_muram_alloc(sizeof
2645 (struct ucc_geth_tx_firmware_statistics_pram),
2646 UCC_GETH_TX_STATISTICS_ALIGNMENT);
2647 if (IS_ERR_VALUE(ugeth->tx_fw_statistics_pram_offset)) {
2648 if (netif_msg_ifup(ugeth))
2649 pr_err("Can not allocate DPRAM memory for p_tx_fw_statistics_pram\n");
2650 return -ENOMEM;
2651 }
2652 ugeth->p_tx_fw_statistics_pram =
2653 (struct ucc_geth_tx_firmware_statistics_pram __iomem *)
2654 qe_muram_addr(ugeth->tx_fw_statistics_pram_offset);
2655 /* Zero out p_tx_fw_statistics_pram */
2656 memset_io((void __iomem *)ugeth->p_tx_fw_statistics_pram,
2657 0, sizeof(struct ucc_geth_tx_firmware_statistics_pram));
2658 }
2659
2660 /* temoder */
2661 /* Already has speed set */
2662
2663 if (ug_info->numQueuesTx > 1)
2664 temoder |= TEMODER_SCHEDULER_ENABLE;
2665 if (ug_info->ipCheckSumGenerate)
2666 temoder |= TEMODER_IP_CHECKSUM_GENERATE;
2667 temoder |= ((ug_info->numQueuesTx - 1) << TEMODER_NUM_OF_QUEUES_SHIFT);
2668 out_be16(&ugeth->p_tx_glbl_pram->temoder, temoder);
2669
2670 test = in_be16(&ugeth->p_tx_glbl_pram->temoder);
2671
2672 /* Function code register value to be used later */
2673 function_code = UCC_BMR_BO_BE | UCC_BMR_GBL;
2674 /* Required for QE */
2675
2676 /* function code register */
2677 out_be32(&ugeth->p_tx_glbl_pram->tstate, ((u32) function_code) << 24);
2678
2679 /* Rx global PRAM */
2680 /* Allocate global rx parameter RAM page */
2681 ugeth->rx_glbl_pram_offset =
2682 qe_muram_alloc(sizeof(struct ucc_geth_rx_global_pram),
2683 UCC_GETH_RX_GLOBAL_PRAM_ALIGNMENT);
2684 if (IS_ERR_VALUE(ugeth->rx_glbl_pram_offset)) {
2685 if (netif_msg_ifup(ugeth))
2686 pr_err("Can not allocate DPRAM memory for p_rx_glbl_pram\n");
2687 return -ENOMEM;
2688 }
2689 ugeth->p_rx_glbl_pram =
2690 (struct ucc_geth_rx_global_pram __iomem *) qe_muram_addr(ugeth->
2691 rx_glbl_pram_offset);
2692 /* Zero out p_rx_glbl_pram */
2693 memset_io((void __iomem *)ugeth->p_rx_glbl_pram, 0, sizeof(struct ucc_geth_rx_global_pram));
2694
2695 /* Fill global PRAM */
2696
2697 /* RQPTR */
2698 /* Size varies with number of Rx threads */
2699 ugeth->thread_dat_rx_offset =
2700 qe_muram_alloc(numThreadsRxNumerical *
2701 sizeof(struct ucc_geth_thread_data_rx),
2702 UCC_GETH_THREAD_DATA_ALIGNMENT);
2703 if (IS_ERR_VALUE(ugeth->thread_dat_rx_offset)) {
2704 if (netif_msg_ifup(ugeth))
2705 pr_err("Can not allocate DPRAM memory for p_thread_data_rx\n");
2706 return -ENOMEM;
2707 }
2708
2709 ugeth->p_thread_data_rx =
2710 (struct ucc_geth_thread_data_rx __iomem *) qe_muram_addr(ugeth->
2711 thread_dat_rx_offset);
2712 out_be32(&ugeth->p_rx_glbl_pram->rqptr, ugeth->thread_dat_rx_offset);
2713
2714 /* typeorlen */
2715 out_be16(&ugeth->p_rx_glbl_pram->typeorlen, ug_info->typeorlen);
2716
2717 /* rxrmonbaseptr (statistics) */
2718 if (ug_info->
2719 statisticsMode & UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX) {
2720 ugeth->rx_fw_statistics_pram_offset =
2721 qe_muram_alloc(sizeof
2722 (struct ucc_geth_rx_firmware_statistics_pram),
2723 UCC_GETH_RX_STATISTICS_ALIGNMENT);
2724 if (IS_ERR_VALUE(ugeth->rx_fw_statistics_pram_offset)) {
2725 if (netif_msg_ifup(ugeth))
2726 pr_err("Can not allocate DPRAM memory for p_rx_fw_statistics_pram\n");
2727 return -ENOMEM;
2728 }
2729 ugeth->p_rx_fw_statistics_pram =
2730 (struct ucc_geth_rx_firmware_statistics_pram __iomem *)
2731 qe_muram_addr(ugeth->rx_fw_statistics_pram_offset);
2732 /* Zero out p_rx_fw_statistics_pram */
2733 memset_io((void __iomem *)ugeth->p_rx_fw_statistics_pram, 0,
2734 sizeof(struct ucc_geth_rx_firmware_statistics_pram));
2735 }
2736
2737 /* intCoalescingPtr */
2738
2739 /* Size varies with number of Rx queues */
2740 ugeth->rx_irq_coalescing_tbl_offset =
2741 qe_muram_alloc(ug_info->numQueuesRx *
2742 sizeof(struct ucc_geth_rx_interrupt_coalescing_entry)
2743 + 4, UCC_GETH_RX_INTERRUPT_COALESCING_ALIGNMENT);
2744 if (IS_ERR_VALUE(ugeth->rx_irq_coalescing_tbl_offset)) {
2745 if (netif_msg_ifup(ugeth))
2746 pr_err("Can not allocate DPRAM memory for p_rx_irq_coalescing_tbl\n");
2747 return -ENOMEM;
2748 }
2749
2750 ugeth->p_rx_irq_coalescing_tbl =
2751 (struct ucc_geth_rx_interrupt_coalescing_table __iomem *)
2752 qe_muram_addr(ugeth->rx_irq_coalescing_tbl_offset);
2753 out_be32(&ugeth->p_rx_glbl_pram->intcoalescingptr,
2754 ugeth->rx_irq_coalescing_tbl_offset);
2755
2756 /* Fill interrupt coalescing table */
2757 for (i = 0; i < ug_info->numQueuesRx; i++) {
2758 out_be32(&ugeth->p_rx_irq_coalescing_tbl->coalescingentry[i].
2759 interruptcoalescingmaxvalue,
2760 ug_info->interruptcoalescingmaxvalue[i]);
2761 out_be32(&ugeth->p_rx_irq_coalescing_tbl->coalescingentry[i].
2762 interruptcoalescingcounter,
2763 ug_info->interruptcoalescingmaxvalue[i]);
2764 }
2765
2766 /* MRBLR */
2767 init_max_rx_buff_len(uf_info->max_rx_buf_length,
2768 &ugeth->p_rx_glbl_pram->mrblr);
2769 /* MFLR */
2770 out_be16(&ugeth->p_rx_glbl_pram->mflr, ug_info->maxFrameLength);
2771 /* MINFLR */
2772 init_min_frame_len(ug_info->minFrameLength,
2773 &ugeth->p_rx_glbl_pram->minflr,
2774 &ugeth->p_rx_glbl_pram->mrblr);
2775 /* MAXD1 */
2776 out_be16(&ugeth->p_rx_glbl_pram->maxd1, ug_info->maxD1Length);
2777 /* MAXD2 */
2778 out_be16(&ugeth->p_rx_glbl_pram->maxd2, ug_info->maxD2Length);
2779
2780 /* l2qt */
2781 l2qt = 0;
2782 for (i = 0; i < UCC_GETH_VLAN_PRIORITY_MAX; i++)
2783 l2qt |= (ug_info->l2qt[i] << (28 - 4 * i));
2784 out_be32(&ugeth->p_rx_glbl_pram->l2qt, l2qt);
2785
2786 /* l3qt */
2787 for (j = 0; j < UCC_GETH_IP_PRIORITY_MAX; j += 8) {
2788 l3qt = 0;
2789 for (i = 0; i < 8; i++)
2790 l3qt |= (ug_info->l3qt[j + i] << (28 - 4 * i));
2791 out_be32(&ugeth->p_rx_glbl_pram->l3qt[j/8], l3qt);
2792 }
2793
2794 /* vlantype */
2795 out_be16(&ugeth->p_rx_glbl_pram->vlantype, ug_info->vlantype);
2796
2797 /* vlantci */
2798 out_be16(&ugeth->p_rx_glbl_pram->vlantci, ug_info->vlantci);
2799
2800 /* ecamptr */
2801 out_be32(&ugeth->p_rx_glbl_pram->ecamptr, ug_info->ecamptr);
2802
2803 /* RBDQPTR */
2804 /* Size varies with number of Rx queues */
2805 ugeth->rx_bd_qs_tbl_offset =
2806 qe_muram_alloc(ug_info->numQueuesRx *
2807 (sizeof(struct ucc_geth_rx_bd_queues_entry) +
2808 sizeof(struct ucc_geth_rx_prefetched_bds)),
2809 UCC_GETH_RX_BD_QUEUES_ALIGNMENT);
2810 if (IS_ERR_VALUE(ugeth->rx_bd_qs_tbl_offset)) {
2811 if (netif_msg_ifup(ugeth))
2812 pr_err("Can not allocate DPRAM memory for p_rx_bd_qs_tbl\n");
2813 return -ENOMEM;
2814 }
2815
2816 ugeth->p_rx_bd_qs_tbl =
2817 (struct ucc_geth_rx_bd_queues_entry __iomem *) qe_muram_addr(ugeth->
2818 rx_bd_qs_tbl_offset);
2819 out_be32(&ugeth->p_rx_glbl_pram->rbdqptr, ugeth->rx_bd_qs_tbl_offset);
2820 /* Zero out p_rx_bd_qs_tbl */
2821 memset_io((void __iomem *)ugeth->p_rx_bd_qs_tbl,
2822 0,
2823 ug_info->numQueuesRx * (sizeof(struct ucc_geth_rx_bd_queues_entry) +
2824 sizeof(struct ucc_geth_rx_prefetched_bds)));
2825
2826 /* Setup the table */
2827 /* Assume BD rings are already established */
2828 for (i = 0; i < ug_info->numQueuesRx; i++) {
2829 if (ugeth->ug_info->uf_info.bd_mem_part == MEM_PART_SYSTEM) {
2830 out_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
2831 (u32) virt_to_phys(ugeth->p_rx_bd_ring[i]));
2832 } else if (ugeth->ug_info->uf_info.bd_mem_part ==
2833 MEM_PART_MURAM) {
2834 out_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
2835 (u32)qe_muram_dma(ugeth->p_rx_bd_ring[i]));
2836 }
2837 /* rest of fields handled by QE */
2838 }
2839
2840 /* remoder */
2841 /* Already has speed set */
2842
2843 if (ugeth->rx_extended_features)
2844 remoder |= REMODER_RX_EXTENDED_FEATURES;
2845 if (ug_info->rxExtendedFiltering)
2846 remoder |= REMODER_RX_EXTENDED_FILTERING;
2847 if (ug_info->dynamicMaxFrameLength)
2848 remoder |= REMODER_DYNAMIC_MAX_FRAME_LENGTH;
2849 if (ug_info->dynamicMinFrameLength)
2850 remoder |= REMODER_DYNAMIC_MIN_FRAME_LENGTH;
2851 remoder |=
2852 ug_info->vlanOperationTagged << REMODER_VLAN_OPERATION_TAGGED_SHIFT;
2853 remoder |=
2854 ug_info->
2855 vlanOperationNonTagged << REMODER_VLAN_OPERATION_NON_TAGGED_SHIFT;
2856 remoder |= ug_info->rxQoSMode << REMODER_RX_QOS_MODE_SHIFT;
2857 remoder |= ((ug_info->numQueuesRx - 1) << REMODER_NUM_OF_QUEUES_SHIFT);
2858 if (ug_info->ipCheckSumCheck)
2859 remoder |= REMODER_IP_CHECKSUM_CHECK;
2860 if (ug_info->ipAddressAlignment)
2861 remoder |= REMODER_IP_ADDRESS_ALIGNMENT;
2862 out_be32(&ugeth->p_rx_glbl_pram->remoder, remoder);
2863
2864 /* Note that this function must be called */
2865 /* ONLY AFTER p_tx_fw_statistics_pram */
2866 /* andp_UccGethRxFirmwareStatisticsPram are allocated ! */
2867 init_firmware_statistics_gathering_mode((ug_info->
2868 statisticsMode &
2869 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX),
2870 (ug_info->statisticsMode &
2871 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX),
2872 &ugeth->p_tx_glbl_pram->txrmonbaseptr,
2873 ugeth->tx_fw_statistics_pram_offset,
2874 &ugeth->p_rx_glbl_pram->rxrmonbaseptr,
2875 ugeth->rx_fw_statistics_pram_offset,
2876 &ugeth->p_tx_glbl_pram->temoder,
2877 &ugeth->p_rx_glbl_pram->remoder);
2878
2879 /* function code register */
2880 out_8(&ugeth->p_rx_glbl_pram->rstate, function_code);
2881
2882 /* initialize extended filtering */
2883 if (ug_info->rxExtendedFiltering) {
2884 if (!ug_info->extendedFilteringChainPointer) {
2885 if (netif_msg_ifup(ugeth))
2886 pr_err("Null Extended Filtering Chain Pointer\n");
2887 return -EINVAL;
2888 }
2889
2890 /* Allocate memory for extended filtering Mode Global
2891 Parameters */
2892 ugeth->exf_glbl_param_offset =
2893 qe_muram_alloc(sizeof(struct ucc_geth_exf_global_pram),
2894 UCC_GETH_RX_EXTENDED_FILTERING_GLOBAL_PARAMETERS_ALIGNMENT);
2895 if (IS_ERR_VALUE(ugeth->exf_glbl_param_offset)) {
2896 if (netif_msg_ifup(ugeth))
2897 pr_err("Can not allocate DPRAM memory for p_exf_glbl_param\n");
2898 return -ENOMEM;
2899 }
2900
2901 ugeth->p_exf_glbl_param =
2902 (struct ucc_geth_exf_global_pram __iomem *) qe_muram_addr(ugeth->
2903 exf_glbl_param_offset);
2904 out_be32(&ugeth->p_rx_glbl_pram->exfGlobalParam,
2905 ugeth->exf_glbl_param_offset);
2906 out_be32(&ugeth->p_exf_glbl_param->l2pcdptr,
2907 (u32) ug_info->extendedFilteringChainPointer);
2908
2909 } else { /* initialize 82xx style address filtering */
2910
2911 /* Init individual address recognition registers to disabled */
2912
2913 for (j = 0; j < NUM_OF_PADDRS; j++)
2914 ugeth_82xx_filtering_clear_addr_in_paddr(ugeth, (u8) j);
2915
2916 p_82xx_addr_filt =
2917 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->
2918 p_rx_glbl_pram->addressfiltering;
2919
2920 ugeth_82xx_filtering_clear_all_addr_in_hash(ugeth,
2921 ENET_ADDR_TYPE_GROUP);
2922 ugeth_82xx_filtering_clear_all_addr_in_hash(ugeth,
2923 ENET_ADDR_TYPE_INDIVIDUAL);
2924 }
2925
2926 /*
2927 * Initialize UCC at QE level
2928 */
2929
2930 command = QE_INIT_TX_RX;
2931
2932 /* Allocate shadow InitEnet command parameter structure.
2933 * This is needed because after the InitEnet command is executed,
2934 * the structure in DPRAM is released, because DPRAM is a premium
2935 * resource.
2936 * This shadow structure keeps a copy of what was done so that the
2937 * allocated resources can be released when the channel is freed.
2938 */
2939 if (!(ugeth->p_init_enet_param_shadow =
2940 kmalloc(sizeof(struct ucc_geth_init_pram), GFP_KERNEL))) {
2941 if (netif_msg_ifup(ugeth))
2942 pr_err("Can not allocate memory for p_UccInitEnetParamShadows\n");
2943 return -ENOMEM;
2944 }
2945 /* Zero out *p_init_enet_param_shadow */
2946 memset((char *)ugeth->p_init_enet_param_shadow,
2947 0, sizeof(struct ucc_geth_init_pram));
2948
2949 /* Fill shadow InitEnet command parameter structure */
2950
2951 ugeth->p_init_enet_param_shadow->resinit1 =
2952 ENET_INIT_PARAM_MAGIC_RES_INIT1;
2953 ugeth->p_init_enet_param_shadow->resinit2 =
2954 ENET_INIT_PARAM_MAGIC_RES_INIT2;
2955 ugeth->p_init_enet_param_shadow->resinit3 =
2956 ENET_INIT_PARAM_MAGIC_RES_INIT3;
2957 ugeth->p_init_enet_param_shadow->resinit4 =
2958 ENET_INIT_PARAM_MAGIC_RES_INIT4;
2959 ugeth->p_init_enet_param_shadow->resinit5 =
2960 ENET_INIT_PARAM_MAGIC_RES_INIT5;
2961 ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
2962 ((u32) ug_info->numThreadsRx) << ENET_INIT_PARAM_RGF_SHIFT;
2963 ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
2964 ((u32) ug_info->numThreadsTx) << ENET_INIT_PARAM_TGF_SHIFT;
2965
2966 ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
2967 ugeth->rx_glbl_pram_offset | ug_info->riscRx;
2968 if ((ug_info->largestexternallookupkeysize !=
2969 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_NONE) &&
2970 (ug_info->largestexternallookupkeysize !=
2971 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_8_BYTES) &&
2972 (ug_info->largestexternallookupkeysize !=
2973 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_16_BYTES)) {
2974 if (netif_msg_ifup(ugeth))
2975 pr_err("Invalid largest External Lookup Key Size\n");
2976 return -EINVAL;
2977 }
2978 ugeth->p_init_enet_param_shadow->largestexternallookupkeysize =
2979 ug_info->largestexternallookupkeysize;
2980 size = sizeof(struct ucc_geth_thread_rx_pram);
2981 if (ug_info->rxExtendedFiltering) {
2982 size += THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING;
2983 if (ug_info->largestexternallookupkeysize ==
2984 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_8_BYTES)
2985 size +=
2986 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_8;
2987 if (ug_info->largestexternallookupkeysize ==
2988 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_16_BYTES)
2989 size +=
2990 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_16;
2991 }
2992
2993 if ((ret_val = fill_init_enet_entries(ugeth, &(ugeth->
2994 p_init_enet_param_shadow->rxthread[0]),
2995 (u8) (numThreadsRxNumerical + 1)
2996 /* Rx needs one extra for terminator */
2997 , size, UCC_GETH_THREAD_RX_PRAM_ALIGNMENT,
2998 ug_info->riscRx, 1)) != 0) {
2999 if (netif_msg_ifup(ugeth))
3000 pr_err("Can not fill p_init_enet_param_shadow\n");
3001 return ret_val;
3002 }
3003
3004 ugeth->p_init_enet_param_shadow->txglobal =
3005 ugeth->tx_glbl_pram_offset | ug_info->riscTx;
3006 if ((ret_val =
3007 fill_init_enet_entries(ugeth,
3008 &(ugeth->p_init_enet_param_shadow->
3009 txthread[0]), numThreadsTxNumerical,
3010 sizeof(struct ucc_geth_thread_tx_pram),
3011 UCC_GETH_THREAD_TX_PRAM_ALIGNMENT,
3012 ug_info->riscTx, 0)) != 0) {
3013 if (netif_msg_ifup(ugeth))
3014 pr_err("Can not fill p_init_enet_param_shadow\n");
3015 return ret_val;
3016 }
3017
3018 /* Load Rx bds with buffers */
3019 for (i = 0; i < ug_info->numQueuesRx; i++) {
3020 if ((ret_val = rx_bd_buffer_set(ugeth, (u8) i)) != 0) {
3021 if (netif_msg_ifup(ugeth))
3022 pr_err("Can not fill Rx bds with buffers\n");
3023 return ret_val;
3024 }
3025 }
3026
3027 /* Allocate InitEnet command parameter structure */
3028 init_enet_pram_offset = qe_muram_alloc(sizeof(struct ucc_geth_init_pram), 4);
3029 if (IS_ERR_VALUE(init_enet_pram_offset)) {
3030 if (netif_msg_ifup(ugeth))
3031 pr_err("Can not allocate DPRAM memory for p_init_enet_pram\n");
3032 return -ENOMEM;
3033 }
3034 p_init_enet_pram =
3035 (struct ucc_geth_init_pram __iomem *) qe_muram_addr(init_enet_pram_offset);
3036
3037 /* Copy shadow InitEnet command parameter structure into PRAM */
3038 out_8(&p_init_enet_pram->resinit1,
3039 ugeth->p_init_enet_param_shadow->resinit1);
3040 out_8(&p_init_enet_pram->resinit2,
3041 ugeth->p_init_enet_param_shadow->resinit2);
3042 out_8(&p_init_enet_pram->resinit3,
3043 ugeth->p_init_enet_param_shadow->resinit3);
3044 out_8(&p_init_enet_pram->resinit4,
3045 ugeth->p_init_enet_param_shadow->resinit4);
3046 out_be16(&p_init_enet_pram->resinit5,
3047 ugeth->p_init_enet_param_shadow->resinit5);
3048 out_8(&p_init_enet_pram->largestexternallookupkeysize,
3049 ugeth->p_init_enet_param_shadow->largestexternallookupkeysize);
3050 out_be32(&p_init_enet_pram->rgftgfrxglobal,
3051 ugeth->p_init_enet_param_shadow->rgftgfrxglobal);
3052 for (i = 0; i < ENET_INIT_PARAM_MAX_ENTRIES_RX; i++)
3053 out_be32(&p_init_enet_pram->rxthread[i],
3054 ugeth->p_init_enet_param_shadow->rxthread[i]);
3055 out_be32(&p_init_enet_pram->txglobal,
3056 ugeth->p_init_enet_param_shadow->txglobal);
3057 for (i = 0; i < ENET_INIT_PARAM_MAX_ENTRIES_TX; i++)
3058 out_be32(&p_init_enet_pram->txthread[i],
3059 ugeth->p_init_enet_param_shadow->txthread[i]);
3060
3061 /* Issue QE command */
3062 cecr_subblock =
3063 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
3064 qe_issue_cmd(command, cecr_subblock, QE_CR_PROTOCOL_ETHERNET,
3065 init_enet_pram_offset);
3066
3067 /* Free InitEnet command parameter */
3068 qe_muram_free(init_enet_pram_offset);
3069
3070 return 0;
3071 }
3072
3073 /* This is called by the kernel when a frame is ready for transmission. */
3074 /* It is pointed to by the dev->hard_start_xmit function pointer */
3075 static netdev_tx_t
ucc_geth_start_xmit(struct sk_buff * skb,struct net_device * dev)3076 ucc_geth_start_xmit(struct sk_buff *skb, struct net_device *dev)
3077 {
3078 struct ucc_geth_private *ugeth = netdev_priv(dev);
3079 #ifdef CONFIG_UGETH_TX_ON_DEMAND
3080 struct ucc_fast_private *uccf;
3081 #endif
3082 u8 __iomem *bd; /* BD pointer */
3083 u32 bd_status;
3084 u8 txQ = 0;
3085 unsigned long flags;
3086
3087 ugeth_vdbg("%s: IN", __func__);
3088
3089 netdev_sent_queue(dev, skb->len);
3090 spin_lock_irqsave(&ugeth->lock, flags);
3091
3092 dev->stats.tx_bytes += skb->len;
3093
3094 /* Start from the next BD that should be filled */
3095 bd = ugeth->txBd[txQ];
3096 bd_status = in_be32((u32 __iomem *)bd);
3097 /* Save the skb pointer so we can free it later */
3098 ugeth->tx_skbuff[txQ][ugeth->skb_curtx[txQ]] = skb;
3099
3100 /* Update the current skb pointer (wrapping if this was the last) */
3101 ugeth->skb_curtx[txQ] =
3102 (ugeth->skb_curtx[txQ] +
3103 1) & TX_RING_MOD_MASK(ugeth->ug_info->bdRingLenTx[txQ]);
3104
3105 /* set up the buffer descriptor */
3106 out_be32(&((struct qe_bd __iomem *)bd)->buf,
3107 dma_map_single(ugeth->dev, skb->data,
3108 skb->len, DMA_TO_DEVICE));
3109
3110 /* printk(KERN_DEBUG"skb->data is 0x%x\n",skb->data); */
3111
3112 bd_status = (bd_status & T_W) | T_R | T_I | T_L | skb->len;
3113
3114 /* set bd status and length */
3115 out_be32((u32 __iomem *)bd, bd_status);
3116
3117 /* Move to next BD in the ring */
3118 if (!(bd_status & T_W))
3119 bd += sizeof(struct qe_bd);
3120 else
3121 bd = ugeth->p_tx_bd_ring[txQ];
3122
3123 /* If the next BD still needs to be cleaned up, then the bds
3124 are full. We need to tell the kernel to stop sending us stuff. */
3125 if (bd == ugeth->confBd[txQ]) {
3126 if (!netif_queue_stopped(dev))
3127 netif_stop_queue(dev);
3128 }
3129
3130 ugeth->txBd[txQ] = bd;
3131
3132 skb_tx_timestamp(skb);
3133
3134 if (ugeth->p_scheduler) {
3135 ugeth->cpucount[txQ]++;
3136 /* Indicate to QE that there are more Tx bds ready for
3137 transmission */
3138 /* This is done by writing a running counter of the bd
3139 count to the scheduler PRAM. */
3140 out_be16(ugeth->p_cpucount[txQ], ugeth->cpucount[txQ]);
3141 }
3142
3143 #ifdef CONFIG_UGETH_TX_ON_DEMAND
3144 uccf = ugeth->uccf;
3145 out_be16(uccf->p_utodr, UCC_FAST_TOD);
3146 #endif
3147 spin_unlock_irqrestore(&ugeth->lock, flags);
3148
3149 return NETDEV_TX_OK;
3150 }
3151
ucc_geth_rx(struct ucc_geth_private * ugeth,u8 rxQ,int rx_work_limit)3152 static int ucc_geth_rx(struct ucc_geth_private *ugeth, u8 rxQ, int rx_work_limit)
3153 {
3154 struct sk_buff *skb;
3155 u8 __iomem *bd;
3156 u16 length, howmany = 0;
3157 u32 bd_status;
3158 u8 *bdBuffer;
3159 struct net_device *dev;
3160
3161 ugeth_vdbg("%s: IN", __func__);
3162
3163 dev = ugeth->ndev;
3164
3165 /* collect received buffers */
3166 bd = ugeth->rxBd[rxQ];
3167
3168 bd_status = in_be32((u32 __iomem *)bd);
3169
3170 /* while there are received buffers and BD is full (~R_E) */
3171 while (!((bd_status & (R_E)) || (--rx_work_limit < 0))) {
3172 bdBuffer = (u8 *) in_be32(&((struct qe_bd __iomem *)bd)->buf);
3173 length = (u16) ((bd_status & BD_LENGTH_MASK) - 4);
3174 skb = ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]];
3175
3176 /* determine whether buffer is first, last, first and last
3177 (single buffer frame) or middle (not first and not last) */
3178 if (!skb ||
3179 (!(bd_status & (R_F | R_L))) ||
3180 (bd_status & R_ERRORS_FATAL)) {
3181 if (netif_msg_rx_err(ugeth))
3182 pr_err("%d: ERROR!!! skb - 0x%08x\n",
3183 __LINE__, (u32)skb);
3184 dev_kfree_skb(skb);
3185
3186 ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]] = NULL;
3187 dev->stats.rx_dropped++;
3188 } else {
3189 dev->stats.rx_packets++;
3190 howmany++;
3191
3192 /* Prep the skb for the packet */
3193 skb_put(skb, length);
3194
3195 /* Tell the skb what kind of packet this is */
3196 skb->protocol = eth_type_trans(skb, ugeth->ndev);
3197
3198 dev->stats.rx_bytes += length;
3199 /* Send the packet up the stack */
3200 netif_receive_skb(skb);
3201 }
3202
3203 skb = get_new_skb(ugeth, bd);
3204 if (!skb) {
3205 if (netif_msg_rx_err(ugeth))
3206 pr_warn("No Rx Data Buffer\n");
3207 dev->stats.rx_dropped++;
3208 break;
3209 }
3210
3211 ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]] = skb;
3212
3213 /* update to point at the next skb */
3214 ugeth->skb_currx[rxQ] =
3215 (ugeth->skb_currx[rxQ] +
3216 1) & RX_RING_MOD_MASK(ugeth->ug_info->bdRingLenRx[rxQ]);
3217
3218 if (bd_status & R_W)
3219 bd = ugeth->p_rx_bd_ring[rxQ];
3220 else
3221 bd += sizeof(struct qe_bd);
3222
3223 bd_status = in_be32((u32 __iomem *)bd);
3224 }
3225
3226 ugeth->rxBd[rxQ] = bd;
3227 return howmany;
3228 }
3229
ucc_geth_tx(struct net_device * dev,u8 txQ)3230 static int ucc_geth_tx(struct net_device *dev, u8 txQ)
3231 {
3232 /* Start from the next BD that should be filled */
3233 struct ucc_geth_private *ugeth = netdev_priv(dev);
3234 unsigned int bytes_sent = 0;
3235 int howmany = 0;
3236 u8 __iomem *bd; /* BD pointer */
3237 u32 bd_status;
3238
3239 bd = ugeth->confBd[txQ];
3240 bd_status = in_be32((u32 __iomem *)bd);
3241
3242 /* Normal processing. */
3243 while ((bd_status & T_R) == 0) {
3244 struct sk_buff *skb;
3245
3246 /* BD contains already transmitted buffer. */
3247 /* Handle the transmitted buffer and release */
3248 /* the BD to be used with the current frame */
3249
3250 skb = ugeth->tx_skbuff[txQ][ugeth->skb_dirtytx[txQ]];
3251 if (!skb)
3252 break;
3253 howmany++;
3254 bytes_sent += skb->len;
3255 dev->stats.tx_packets++;
3256
3257 dev_consume_skb_any(skb);
3258
3259 ugeth->tx_skbuff[txQ][ugeth->skb_dirtytx[txQ]] = NULL;
3260 ugeth->skb_dirtytx[txQ] =
3261 (ugeth->skb_dirtytx[txQ] +
3262 1) & TX_RING_MOD_MASK(ugeth->ug_info->bdRingLenTx[txQ]);
3263
3264 /* We freed a buffer, so now we can restart transmission */
3265 if (netif_queue_stopped(dev))
3266 netif_wake_queue(dev);
3267
3268 /* Advance the confirmation BD pointer */
3269 if (!(bd_status & T_W))
3270 bd += sizeof(struct qe_bd);
3271 else
3272 bd = ugeth->p_tx_bd_ring[txQ];
3273 bd_status = in_be32((u32 __iomem *)bd);
3274 }
3275 ugeth->confBd[txQ] = bd;
3276 netdev_completed_queue(dev, howmany, bytes_sent);
3277 return 0;
3278 }
3279
ucc_geth_poll(struct napi_struct * napi,int budget)3280 static int ucc_geth_poll(struct napi_struct *napi, int budget)
3281 {
3282 struct ucc_geth_private *ugeth = container_of(napi, struct ucc_geth_private, napi);
3283 struct ucc_geth_info *ug_info;
3284 int howmany, i;
3285
3286 ug_info = ugeth->ug_info;
3287
3288 /* Tx event processing */
3289 spin_lock(&ugeth->lock);
3290 for (i = 0; i < ug_info->numQueuesTx; i++)
3291 ucc_geth_tx(ugeth->ndev, i);
3292 spin_unlock(&ugeth->lock);
3293
3294 howmany = 0;
3295 for (i = 0; i < ug_info->numQueuesRx; i++)
3296 howmany += ucc_geth_rx(ugeth, i, budget - howmany);
3297
3298 if (howmany < budget) {
3299 napi_complete_done(napi, howmany);
3300 setbits32(ugeth->uccf->p_uccm, UCCE_RX_EVENTS | UCCE_TX_EVENTS);
3301 }
3302
3303 return howmany;
3304 }
3305
ucc_geth_irq_handler(int irq,void * info)3306 static irqreturn_t ucc_geth_irq_handler(int irq, void *info)
3307 {
3308 struct net_device *dev = info;
3309 struct ucc_geth_private *ugeth = netdev_priv(dev);
3310 struct ucc_fast_private *uccf;
3311 struct ucc_geth_info *ug_info;
3312 register u32 ucce;
3313 register u32 uccm;
3314
3315 ugeth_vdbg("%s: IN", __func__);
3316
3317 uccf = ugeth->uccf;
3318 ug_info = ugeth->ug_info;
3319
3320 /* read and clear events */
3321 ucce = (u32) in_be32(uccf->p_ucce);
3322 uccm = (u32) in_be32(uccf->p_uccm);
3323 ucce &= uccm;
3324 out_be32(uccf->p_ucce, ucce);
3325
3326 /* check for receive events that require processing */
3327 if (ucce & (UCCE_RX_EVENTS | UCCE_TX_EVENTS)) {
3328 if (napi_schedule_prep(&ugeth->napi)) {
3329 uccm &= ~(UCCE_RX_EVENTS | UCCE_TX_EVENTS);
3330 out_be32(uccf->p_uccm, uccm);
3331 __napi_schedule(&ugeth->napi);
3332 }
3333 }
3334
3335 /* Errors and other events */
3336 if (ucce & UCCE_OTHER) {
3337 if (ucce & UCC_GETH_UCCE_BSY)
3338 dev->stats.rx_errors++;
3339 if (ucce & UCC_GETH_UCCE_TXE)
3340 dev->stats.tx_errors++;
3341 }
3342
3343 return IRQ_HANDLED;
3344 }
3345
3346 #ifdef CONFIG_NET_POLL_CONTROLLER
3347 /*
3348 * Polling 'interrupt' - used by things like netconsole to send skbs
3349 * without having to re-enable interrupts. It's not called while
3350 * the interrupt routine is executing.
3351 */
ucc_netpoll(struct net_device * dev)3352 static void ucc_netpoll(struct net_device *dev)
3353 {
3354 struct ucc_geth_private *ugeth = netdev_priv(dev);
3355 int irq = ugeth->ug_info->uf_info.irq;
3356
3357 disable_irq(irq);
3358 ucc_geth_irq_handler(irq, dev);
3359 enable_irq(irq);
3360 }
3361 #endif /* CONFIG_NET_POLL_CONTROLLER */
3362
ucc_geth_set_mac_addr(struct net_device * dev,void * p)3363 static int ucc_geth_set_mac_addr(struct net_device *dev, void *p)
3364 {
3365 struct ucc_geth_private *ugeth = netdev_priv(dev);
3366 struct sockaddr *addr = p;
3367
3368 if (!is_valid_ether_addr(addr->sa_data))
3369 return -EADDRNOTAVAIL;
3370
3371 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3372
3373 /*
3374 * If device is not running, we will set mac addr register
3375 * when opening the device.
3376 */
3377 if (!netif_running(dev))
3378 return 0;
3379
3380 spin_lock_irq(&ugeth->lock);
3381 init_mac_station_addr_regs(dev->dev_addr[0],
3382 dev->dev_addr[1],
3383 dev->dev_addr[2],
3384 dev->dev_addr[3],
3385 dev->dev_addr[4],
3386 dev->dev_addr[5],
3387 &ugeth->ug_regs->macstnaddr1,
3388 &ugeth->ug_regs->macstnaddr2);
3389 spin_unlock_irq(&ugeth->lock);
3390
3391 return 0;
3392 }
3393
ucc_geth_init_mac(struct ucc_geth_private * ugeth)3394 static int ucc_geth_init_mac(struct ucc_geth_private *ugeth)
3395 {
3396 struct net_device *dev = ugeth->ndev;
3397 int err;
3398
3399 err = ucc_struct_init(ugeth);
3400 if (err) {
3401 netif_err(ugeth, ifup, dev, "Cannot configure internal struct, aborting\n");
3402 goto err;
3403 }
3404
3405 err = ucc_geth_startup(ugeth);
3406 if (err) {
3407 netif_err(ugeth, ifup, dev, "Cannot configure net device, aborting\n");
3408 goto err;
3409 }
3410
3411 err = adjust_enet_interface(ugeth);
3412 if (err) {
3413 netif_err(ugeth, ifup, dev, "Cannot configure net device, aborting\n");
3414 goto err;
3415 }
3416
3417 /* Set MACSTNADDR1, MACSTNADDR2 */
3418 /* For more details see the hardware spec. */
3419 init_mac_station_addr_regs(dev->dev_addr[0],
3420 dev->dev_addr[1],
3421 dev->dev_addr[2],
3422 dev->dev_addr[3],
3423 dev->dev_addr[4],
3424 dev->dev_addr[5],
3425 &ugeth->ug_regs->macstnaddr1,
3426 &ugeth->ug_regs->macstnaddr2);
3427
3428 err = ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
3429 if (err) {
3430 netif_err(ugeth, ifup, dev, "Cannot enable net device, aborting\n");
3431 goto err;
3432 }
3433
3434 return 0;
3435 err:
3436 ucc_geth_stop(ugeth);
3437 return err;
3438 }
3439
3440 /* Called when something needs to use the ethernet device */
3441 /* Returns 0 for success. */
ucc_geth_open(struct net_device * dev)3442 static int ucc_geth_open(struct net_device *dev)
3443 {
3444 struct ucc_geth_private *ugeth = netdev_priv(dev);
3445 int err;
3446
3447 ugeth_vdbg("%s: IN", __func__);
3448
3449 /* Test station address */
3450 if (dev->dev_addr[0] & ENET_GROUP_ADDR) {
3451 netif_err(ugeth, ifup, dev,
3452 "Multicast address used for station address - is this what you wanted?\n");
3453 return -EINVAL;
3454 }
3455
3456 err = init_phy(dev);
3457 if (err) {
3458 netif_err(ugeth, ifup, dev, "Cannot initialize PHY, aborting\n");
3459 return err;
3460 }
3461
3462 err = ucc_geth_init_mac(ugeth);
3463 if (err) {
3464 netif_err(ugeth, ifup, dev, "Cannot initialize MAC, aborting\n");
3465 goto err;
3466 }
3467
3468 err = request_irq(ugeth->ug_info->uf_info.irq, ucc_geth_irq_handler,
3469 0, "UCC Geth", dev);
3470 if (err) {
3471 netif_err(ugeth, ifup, dev, "Cannot get IRQ for net device, aborting\n");
3472 goto err;
3473 }
3474
3475 phy_start(ugeth->phydev);
3476 napi_enable(&ugeth->napi);
3477 netdev_reset_queue(dev);
3478 netif_start_queue(dev);
3479
3480 device_set_wakeup_capable(&dev->dev,
3481 qe_alive_during_sleep() || ugeth->phydev->irq);
3482 device_set_wakeup_enable(&dev->dev, ugeth->wol_en);
3483
3484 return err;
3485
3486 err:
3487 ucc_geth_stop(ugeth);
3488 return err;
3489 }
3490
3491 /* Stops the kernel queue, and halts the controller */
ucc_geth_close(struct net_device * dev)3492 static int ucc_geth_close(struct net_device *dev)
3493 {
3494 struct ucc_geth_private *ugeth = netdev_priv(dev);
3495
3496 ugeth_vdbg("%s: IN", __func__);
3497
3498 napi_disable(&ugeth->napi);
3499
3500 cancel_work_sync(&ugeth->timeout_work);
3501 ucc_geth_stop(ugeth);
3502 phy_disconnect(ugeth->phydev);
3503 ugeth->phydev = NULL;
3504
3505 free_irq(ugeth->ug_info->uf_info.irq, ugeth->ndev);
3506
3507 netif_stop_queue(dev);
3508 netdev_reset_queue(dev);
3509
3510 return 0;
3511 }
3512
3513 /* Reopen device. This will reset the MAC and PHY. */
ucc_geth_timeout_work(struct work_struct * work)3514 static void ucc_geth_timeout_work(struct work_struct *work)
3515 {
3516 struct ucc_geth_private *ugeth;
3517 struct net_device *dev;
3518
3519 ugeth = container_of(work, struct ucc_geth_private, timeout_work);
3520 dev = ugeth->ndev;
3521
3522 ugeth_vdbg("%s: IN", __func__);
3523
3524 dev->stats.tx_errors++;
3525
3526 ugeth_dump_regs(ugeth);
3527
3528 if (dev->flags & IFF_UP) {
3529 /*
3530 * Must reset MAC *and* PHY. This is done by reopening
3531 * the device.
3532 */
3533 netif_tx_stop_all_queues(dev);
3534 ucc_geth_stop(ugeth);
3535 ucc_geth_init_mac(ugeth);
3536 /* Must start PHY here */
3537 phy_start(ugeth->phydev);
3538 netif_tx_start_all_queues(dev);
3539 }
3540
3541 netif_tx_schedule_all(dev);
3542 }
3543
3544 /*
3545 * ucc_geth_timeout gets called when a packet has not been
3546 * transmitted after a set amount of time.
3547 */
ucc_geth_timeout(struct net_device * dev,unsigned int txqueue)3548 static void ucc_geth_timeout(struct net_device *dev, unsigned int txqueue)
3549 {
3550 struct ucc_geth_private *ugeth = netdev_priv(dev);
3551
3552 schedule_work(&ugeth->timeout_work);
3553 }
3554
3555
3556 #ifdef CONFIG_PM
3557
ucc_geth_suspend(struct platform_device * ofdev,pm_message_t state)3558 static int ucc_geth_suspend(struct platform_device *ofdev, pm_message_t state)
3559 {
3560 struct net_device *ndev = platform_get_drvdata(ofdev);
3561 struct ucc_geth_private *ugeth = netdev_priv(ndev);
3562
3563 if (!netif_running(ndev))
3564 return 0;
3565
3566 netif_device_detach(ndev);
3567 napi_disable(&ugeth->napi);
3568
3569 /*
3570 * Disable the controller, otherwise we'll wakeup on any network
3571 * activity.
3572 */
3573 ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
3574
3575 if (ugeth->wol_en & WAKE_MAGIC) {
3576 setbits32(ugeth->uccf->p_uccm, UCC_GETH_UCCE_MPD);
3577 setbits32(&ugeth->ug_regs->maccfg2, MACCFG2_MPE);
3578 ucc_fast_enable(ugeth->uccf, COMM_DIR_RX_AND_TX);
3579 } else if (!(ugeth->wol_en & WAKE_PHY)) {
3580 phy_stop(ugeth->phydev);
3581 }
3582
3583 return 0;
3584 }
3585
ucc_geth_resume(struct platform_device * ofdev)3586 static int ucc_geth_resume(struct platform_device *ofdev)
3587 {
3588 struct net_device *ndev = platform_get_drvdata(ofdev);
3589 struct ucc_geth_private *ugeth = netdev_priv(ndev);
3590 int err;
3591
3592 if (!netif_running(ndev))
3593 return 0;
3594
3595 if (qe_alive_during_sleep()) {
3596 if (ugeth->wol_en & WAKE_MAGIC) {
3597 ucc_fast_disable(ugeth->uccf, COMM_DIR_RX_AND_TX);
3598 clrbits32(&ugeth->ug_regs->maccfg2, MACCFG2_MPE);
3599 clrbits32(ugeth->uccf->p_uccm, UCC_GETH_UCCE_MPD);
3600 }
3601 ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
3602 } else {
3603 /*
3604 * Full reinitialization is required if QE shuts down
3605 * during sleep.
3606 */
3607 ucc_geth_memclean(ugeth);
3608
3609 err = ucc_geth_init_mac(ugeth);
3610 if (err) {
3611 netdev_err(ndev, "Cannot initialize MAC, aborting\n");
3612 return err;
3613 }
3614 }
3615
3616 ugeth->oldlink = 0;
3617 ugeth->oldspeed = 0;
3618 ugeth->oldduplex = -1;
3619
3620 phy_stop(ugeth->phydev);
3621 phy_start(ugeth->phydev);
3622
3623 napi_enable(&ugeth->napi);
3624 netif_device_attach(ndev);
3625
3626 return 0;
3627 }
3628
3629 #else
3630 #define ucc_geth_suspend NULL
3631 #define ucc_geth_resume NULL
3632 #endif
3633
to_phy_interface(const char * phy_connection_type)3634 static phy_interface_t to_phy_interface(const char *phy_connection_type)
3635 {
3636 if (strcasecmp(phy_connection_type, "mii") == 0)
3637 return PHY_INTERFACE_MODE_MII;
3638 if (strcasecmp(phy_connection_type, "gmii") == 0)
3639 return PHY_INTERFACE_MODE_GMII;
3640 if (strcasecmp(phy_connection_type, "tbi") == 0)
3641 return PHY_INTERFACE_MODE_TBI;
3642 if (strcasecmp(phy_connection_type, "rmii") == 0)
3643 return PHY_INTERFACE_MODE_RMII;
3644 if (strcasecmp(phy_connection_type, "rgmii") == 0)
3645 return PHY_INTERFACE_MODE_RGMII;
3646 if (strcasecmp(phy_connection_type, "rgmii-id") == 0)
3647 return PHY_INTERFACE_MODE_RGMII_ID;
3648 if (strcasecmp(phy_connection_type, "rgmii-txid") == 0)
3649 return PHY_INTERFACE_MODE_RGMII_TXID;
3650 if (strcasecmp(phy_connection_type, "rgmii-rxid") == 0)
3651 return PHY_INTERFACE_MODE_RGMII_RXID;
3652 if (strcasecmp(phy_connection_type, "rtbi") == 0)
3653 return PHY_INTERFACE_MODE_RTBI;
3654 if (strcasecmp(phy_connection_type, "sgmii") == 0)
3655 return PHY_INTERFACE_MODE_SGMII;
3656
3657 return PHY_INTERFACE_MODE_MII;
3658 }
3659
ucc_geth_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)3660 static int ucc_geth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3661 {
3662 struct ucc_geth_private *ugeth = netdev_priv(dev);
3663
3664 if (!netif_running(dev))
3665 return -EINVAL;
3666
3667 if (!ugeth->phydev)
3668 return -ENODEV;
3669
3670 return phy_mii_ioctl(ugeth->phydev, rq, cmd);
3671 }
3672
3673 static const struct net_device_ops ucc_geth_netdev_ops = {
3674 .ndo_open = ucc_geth_open,
3675 .ndo_stop = ucc_geth_close,
3676 .ndo_start_xmit = ucc_geth_start_xmit,
3677 .ndo_validate_addr = eth_validate_addr,
3678 .ndo_change_carrier = fixed_phy_change_carrier,
3679 .ndo_set_mac_address = ucc_geth_set_mac_addr,
3680 .ndo_set_rx_mode = ucc_geth_set_multi,
3681 .ndo_tx_timeout = ucc_geth_timeout,
3682 .ndo_do_ioctl = ucc_geth_ioctl,
3683 #ifdef CONFIG_NET_POLL_CONTROLLER
3684 .ndo_poll_controller = ucc_netpoll,
3685 #endif
3686 };
3687
ucc_geth_probe(struct platform_device * ofdev)3688 static int ucc_geth_probe(struct platform_device* ofdev)
3689 {
3690 struct device *device = &ofdev->dev;
3691 struct device_node *np = ofdev->dev.of_node;
3692 struct net_device *dev = NULL;
3693 struct ucc_geth_private *ugeth = NULL;
3694 struct ucc_geth_info *ug_info;
3695 struct resource res;
3696 int err, ucc_num, max_speed = 0;
3697 const unsigned int *prop;
3698 const char *sprop;
3699 const void *mac_addr;
3700 phy_interface_t phy_interface;
3701 static const int enet_to_speed[] = {
3702 SPEED_10, SPEED_10, SPEED_10,
3703 SPEED_100, SPEED_100, SPEED_100,
3704 SPEED_1000, SPEED_1000, SPEED_1000, SPEED_1000,
3705 };
3706 static const phy_interface_t enet_to_phy_interface[] = {
3707 PHY_INTERFACE_MODE_MII, PHY_INTERFACE_MODE_RMII,
3708 PHY_INTERFACE_MODE_RGMII, PHY_INTERFACE_MODE_MII,
3709 PHY_INTERFACE_MODE_RMII, PHY_INTERFACE_MODE_RGMII,
3710 PHY_INTERFACE_MODE_GMII, PHY_INTERFACE_MODE_RGMII,
3711 PHY_INTERFACE_MODE_TBI, PHY_INTERFACE_MODE_RTBI,
3712 PHY_INTERFACE_MODE_SGMII,
3713 };
3714
3715 ugeth_vdbg("%s: IN", __func__);
3716
3717 prop = of_get_property(np, "cell-index", NULL);
3718 if (!prop) {
3719 prop = of_get_property(np, "device-id", NULL);
3720 if (!prop)
3721 return -ENODEV;
3722 }
3723
3724 ucc_num = *prop - 1;
3725 if ((ucc_num < 0) || (ucc_num > 7))
3726 return -ENODEV;
3727
3728 ug_info = &ugeth_info[ucc_num];
3729 if (ug_info == NULL) {
3730 if (netif_msg_probe(&debug))
3731 pr_err("[%d] Missing additional data!\n", ucc_num);
3732 return -ENODEV;
3733 }
3734
3735 ug_info->uf_info.ucc_num = ucc_num;
3736
3737 sprop = of_get_property(np, "rx-clock-name", NULL);
3738 if (sprop) {
3739 ug_info->uf_info.rx_clock = qe_clock_source(sprop);
3740 if ((ug_info->uf_info.rx_clock < QE_CLK_NONE) ||
3741 (ug_info->uf_info.rx_clock > QE_CLK24)) {
3742 pr_err("invalid rx-clock-name property\n");
3743 return -EINVAL;
3744 }
3745 } else {
3746 prop = of_get_property(np, "rx-clock", NULL);
3747 if (!prop) {
3748 /* If both rx-clock-name and rx-clock are missing,
3749 we want to tell people to use rx-clock-name. */
3750 pr_err("missing rx-clock-name property\n");
3751 return -EINVAL;
3752 }
3753 if ((*prop < QE_CLK_NONE) || (*prop > QE_CLK24)) {
3754 pr_err("invalid rx-clock property\n");
3755 return -EINVAL;
3756 }
3757 ug_info->uf_info.rx_clock = *prop;
3758 }
3759
3760 sprop = of_get_property(np, "tx-clock-name", NULL);
3761 if (sprop) {
3762 ug_info->uf_info.tx_clock = qe_clock_source(sprop);
3763 if ((ug_info->uf_info.tx_clock < QE_CLK_NONE) ||
3764 (ug_info->uf_info.tx_clock > QE_CLK24)) {
3765 pr_err("invalid tx-clock-name property\n");
3766 return -EINVAL;
3767 }
3768 } else {
3769 prop = of_get_property(np, "tx-clock", NULL);
3770 if (!prop) {
3771 pr_err("missing tx-clock-name property\n");
3772 return -EINVAL;
3773 }
3774 if ((*prop < QE_CLK_NONE) || (*prop > QE_CLK24)) {
3775 pr_err("invalid tx-clock property\n");
3776 return -EINVAL;
3777 }
3778 ug_info->uf_info.tx_clock = *prop;
3779 }
3780
3781 err = of_address_to_resource(np, 0, &res);
3782 if (err)
3783 return -EINVAL;
3784
3785 ug_info->uf_info.regs = res.start;
3786 ug_info->uf_info.irq = irq_of_parse_and_map(np, 0);
3787
3788 ug_info->phy_node = of_parse_phandle(np, "phy-handle", 0);
3789 if (!ug_info->phy_node && of_phy_is_fixed_link(np)) {
3790 /*
3791 * In the case of a fixed PHY, the DT node associated
3792 * to the PHY is the Ethernet MAC DT node.
3793 */
3794 err = of_phy_register_fixed_link(np);
3795 if (err)
3796 return err;
3797 ug_info->phy_node = of_node_get(np);
3798 }
3799
3800 /* Find the TBI PHY node. If it's not there, we don't support SGMII */
3801 ug_info->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
3802
3803 /* get the phy interface type, or default to MII */
3804 prop = of_get_property(np, "phy-connection-type", NULL);
3805 if (!prop) {
3806 /* handle interface property present in old trees */
3807 prop = of_get_property(ug_info->phy_node, "interface", NULL);
3808 if (prop != NULL) {
3809 phy_interface = enet_to_phy_interface[*prop];
3810 max_speed = enet_to_speed[*prop];
3811 } else
3812 phy_interface = PHY_INTERFACE_MODE_MII;
3813 } else {
3814 phy_interface = to_phy_interface((const char *)prop);
3815 }
3816
3817 /* get speed, or derive from PHY interface */
3818 if (max_speed == 0)
3819 switch (phy_interface) {
3820 case PHY_INTERFACE_MODE_GMII:
3821 case PHY_INTERFACE_MODE_RGMII:
3822 case PHY_INTERFACE_MODE_RGMII_ID:
3823 case PHY_INTERFACE_MODE_RGMII_RXID:
3824 case PHY_INTERFACE_MODE_RGMII_TXID:
3825 case PHY_INTERFACE_MODE_TBI:
3826 case PHY_INTERFACE_MODE_RTBI:
3827 case PHY_INTERFACE_MODE_SGMII:
3828 max_speed = SPEED_1000;
3829 break;
3830 default:
3831 max_speed = SPEED_100;
3832 break;
3833 }
3834
3835 if (max_speed == SPEED_1000) {
3836 unsigned int snums = qe_get_num_of_snums();
3837
3838 /* configure muram FIFOs for gigabit operation */
3839 ug_info->uf_info.urfs = UCC_GETH_URFS_GIGA_INIT;
3840 ug_info->uf_info.urfet = UCC_GETH_URFET_GIGA_INIT;
3841 ug_info->uf_info.urfset = UCC_GETH_URFSET_GIGA_INIT;
3842 ug_info->uf_info.utfs = UCC_GETH_UTFS_GIGA_INIT;
3843 ug_info->uf_info.utfet = UCC_GETH_UTFET_GIGA_INIT;
3844 ug_info->uf_info.utftt = UCC_GETH_UTFTT_GIGA_INIT;
3845 ug_info->numThreadsTx = UCC_GETH_NUM_OF_THREADS_4;
3846
3847 /* If QE's snum number is 46/76 which means we need to support
3848 * 4 UECs at 1000Base-T simultaneously, we need to allocate
3849 * more Threads to Rx.
3850 */
3851 if ((snums == 76) || (snums == 46))
3852 ug_info->numThreadsRx = UCC_GETH_NUM_OF_THREADS_6;
3853 else
3854 ug_info->numThreadsRx = UCC_GETH_NUM_OF_THREADS_4;
3855 }
3856
3857 if (netif_msg_probe(&debug))
3858 pr_info("UCC%1d at 0x%8llx (irq = %d)\n",
3859 ug_info->uf_info.ucc_num + 1,
3860 (u64)ug_info->uf_info.regs,
3861 ug_info->uf_info.irq);
3862
3863 /* Create an ethernet device instance */
3864 dev = alloc_etherdev(sizeof(*ugeth));
3865
3866 if (dev == NULL) {
3867 err = -ENOMEM;
3868 goto err_deregister_fixed_link;
3869 }
3870
3871 ugeth = netdev_priv(dev);
3872 spin_lock_init(&ugeth->lock);
3873
3874 /* Create CQs for hash tables */
3875 INIT_LIST_HEAD(&ugeth->group_hash_q);
3876 INIT_LIST_HEAD(&ugeth->ind_hash_q);
3877
3878 dev_set_drvdata(device, dev);
3879
3880 /* Set the dev->base_addr to the gfar reg region */
3881 dev->base_addr = (unsigned long)(ug_info->uf_info.regs);
3882
3883 SET_NETDEV_DEV(dev, device);
3884
3885 /* Fill in the dev structure */
3886 uec_set_ethtool_ops(dev);
3887 dev->netdev_ops = &ucc_geth_netdev_ops;
3888 dev->watchdog_timeo = TX_TIMEOUT;
3889 INIT_WORK(&ugeth->timeout_work, ucc_geth_timeout_work);
3890 netif_napi_add(dev, &ugeth->napi, ucc_geth_poll, 64);
3891 dev->mtu = 1500;
3892 dev->max_mtu = 1518;
3893
3894 ugeth->msg_enable = netif_msg_init(debug.msg_enable, UGETH_MSG_DEFAULT);
3895 ugeth->phy_interface = phy_interface;
3896 ugeth->max_speed = max_speed;
3897
3898 /* Carrier starts down, phylib will bring it up */
3899 netif_carrier_off(dev);
3900
3901 err = register_netdev(dev);
3902 if (err) {
3903 if (netif_msg_probe(ugeth))
3904 pr_err("%s: Cannot register net device, aborting\n",
3905 dev->name);
3906 goto err_free_netdev;
3907 }
3908
3909 mac_addr = of_get_mac_address(np);
3910 if (!IS_ERR(mac_addr))
3911 ether_addr_copy(dev->dev_addr, mac_addr);
3912
3913 ugeth->ug_info = ug_info;
3914 ugeth->dev = device;
3915 ugeth->ndev = dev;
3916 ugeth->node = np;
3917
3918 return 0;
3919
3920 err_free_netdev:
3921 free_netdev(dev);
3922 err_deregister_fixed_link:
3923 if (of_phy_is_fixed_link(np))
3924 of_phy_deregister_fixed_link(np);
3925 of_node_put(ug_info->tbi_node);
3926 of_node_put(ug_info->phy_node);
3927
3928 return err;
3929 }
3930
ucc_geth_remove(struct platform_device * ofdev)3931 static int ucc_geth_remove(struct platform_device* ofdev)
3932 {
3933 struct net_device *dev = platform_get_drvdata(ofdev);
3934 struct ucc_geth_private *ugeth = netdev_priv(dev);
3935 struct device_node *np = ofdev->dev.of_node;
3936
3937 unregister_netdev(dev);
3938 ucc_geth_memclean(ugeth);
3939 if (of_phy_is_fixed_link(np))
3940 of_phy_deregister_fixed_link(np);
3941 of_node_put(ugeth->ug_info->tbi_node);
3942 of_node_put(ugeth->ug_info->phy_node);
3943 free_netdev(dev);
3944
3945 return 0;
3946 }
3947
3948 static const struct of_device_id ucc_geth_match[] = {
3949 {
3950 .type = "network",
3951 .compatible = "ucc_geth",
3952 },
3953 {},
3954 };
3955
3956 MODULE_DEVICE_TABLE(of, ucc_geth_match);
3957
3958 static struct platform_driver ucc_geth_driver = {
3959 .driver = {
3960 .name = DRV_NAME,
3961 .of_match_table = ucc_geth_match,
3962 },
3963 .probe = ucc_geth_probe,
3964 .remove = ucc_geth_remove,
3965 .suspend = ucc_geth_suspend,
3966 .resume = ucc_geth_resume,
3967 };
3968
ucc_geth_init(void)3969 static int __init ucc_geth_init(void)
3970 {
3971 int i, ret;
3972
3973 if (netif_msg_drv(&debug))
3974 pr_info(DRV_DESC "\n");
3975 for (i = 0; i < 8; i++)
3976 memcpy(&(ugeth_info[i]), &ugeth_primary_info,
3977 sizeof(ugeth_primary_info));
3978
3979 ret = platform_driver_register(&ucc_geth_driver);
3980
3981 return ret;
3982 }
3983
ucc_geth_exit(void)3984 static void __exit ucc_geth_exit(void)
3985 {
3986 platform_driver_unregister(&ucc_geth_driver);
3987 }
3988
3989 module_init(ucc_geth_init);
3990 module_exit(ucc_geth_exit);
3991
3992 MODULE_AUTHOR("Freescale Semiconductor, Inc");
3993 MODULE_DESCRIPTION(DRV_DESC);
3994 MODULE_LICENSE("GPL");
3995