1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
4 *
5 * Copyright (C) 2005-2007 AMD (https://www.amd.com)
6 * Author: Thomas Dahlmann
7 */
8
9 /*
10 * This file does the core driver implementation for the UDC that is based
11 * on Synopsys device controller IP (different than HS OTG IP) that is either
12 * connected through PCI bus or integrated to SoC platforms.
13 */
14
15 /* Driver strings */
16 #define UDC_MOD_DESCRIPTION "Synopsys USB Device Controller"
17 #define UDC_DRIVER_VERSION_STRING "01.00.0206"
18
19 #include <linux/module.h>
20 #include <linux/pci.h>
21 #include <linux/kernel.h>
22 #include <linux/delay.h>
23 #include <linux/ioport.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/errno.h>
27 #include <linux/timer.h>
28 #include <linux/list.h>
29 #include <linux/interrupt.h>
30 #include <linux/ioctl.h>
31 #include <linux/fs.h>
32 #include <linux/dmapool.h>
33 #include <linux/prefetch.h>
34 #include <linux/moduleparam.h>
35 #include <asm/byteorder.h>
36 #include <asm/unaligned.h>
37 #include "amd5536udc.h"
38
39 static void udc_setup_endpoints(struct udc *dev);
40 static void udc_soft_reset(struct udc *dev);
41 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
42 static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
43
44 /* description */
45 static const char mod_desc[] = UDC_MOD_DESCRIPTION;
46 static const char name[] = "udc";
47
48 /* structure to hold endpoint function pointers */
49 static const struct usb_ep_ops udc_ep_ops;
50
51 /* received setup data */
52 static union udc_setup_data setup_data;
53
54 /* pointer to device object */
55 static struct udc *udc;
56
57 /* irq spin lock for soft reset */
58 static DEFINE_SPINLOCK(udc_irq_spinlock);
59 /* stall spin lock */
60 static DEFINE_SPINLOCK(udc_stall_spinlock);
61
62 /*
63 * slave mode: pending bytes in rx fifo after nyet,
64 * used if EPIN irq came but no req was available
65 */
66 static unsigned int udc_rxfifo_pending;
67
68 /* count soft resets after suspend to avoid loop */
69 static int soft_reset_occured;
70 static int soft_reset_after_usbreset_occured;
71
72 /* timer */
73 static struct timer_list udc_timer;
74 static int stop_timer;
75
76 /* set_rde -- Is used to control enabling of RX DMA. Problem is
77 * that UDC has only one bit (RDE) to enable/disable RX DMA for
78 * all OUT endpoints. So we have to handle race conditions like
79 * when OUT data reaches the fifo but no request was queued yet.
80 * This cannot be solved by letting the RX DMA disabled until a
81 * request gets queued because there may be other OUT packets
82 * in the FIFO (important for not blocking control traffic).
83 * The value of set_rde controls the correspondig timer.
84 *
85 * set_rde -1 == not used, means it is alloed to be set to 0 or 1
86 * set_rde 0 == do not touch RDE, do no start the RDE timer
87 * set_rde 1 == timer function will look whether FIFO has data
88 * set_rde 2 == set by timer function to enable RX DMA on next call
89 */
90 static int set_rde = -1;
91
92 static DECLARE_COMPLETION(on_exit);
93 static struct timer_list udc_pollstall_timer;
94 static int stop_pollstall_timer;
95 static DECLARE_COMPLETION(on_pollstall_exit);
96
97 /* endpoint names used for print */
98 static const char ep0_string[] = "ep0in";
99 static const struct {
100 const char *name;
101 const struct usb_ep_caps caps;
102 } ep_info[] = {
103 #define EP_INFO(_name, _caps) \
104 { \
105 .name = _name, \
106 .caps = _caps, \
107 }
108
109 EP_INFO(ep0_string,
110 USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL, USB_EP_CAPS_DIR_IN)),
111 EP_INFO("ep1in-int",
112 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
113 EP_INFO("ep2in-bulk",
114 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
115 EP_INFO("ep3in-bulk",
116 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
117 EP_INFO("ep4in-bulk",
118 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
119 EP_INFO("ep5in-bulk",
120 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
121 EP_INFO("ep6in-bulk",
122 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
123 EP_INFO("ep7in-bulk",
124 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
125 EP_INFO("ep8in-bulk",
126 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
127 EP_INFO("ep9in-bulk",
128 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
129 EP_INFO("ep10in-bulk",
130 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
131 EP_INFO("ep11in-bulk",
132 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
133 EP_INFO("ep12in-bulk",
134 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
135 EP_INFO("ep13in-bulk",
136 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
137 EP_INFO("ep14in-bulk",
138 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
139 EP_INFO("ep15in-bulk",
140 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
141 EP_INFO("ep0out",
142 USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL, USB_EP_CAPS_DIR_OUT)),
143 EP_INFO("ep1out-bulk",
144 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
145 EP_INFO("ep2out-bulk",
146 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
147 EP_INFO("ep3out-bulk",
148 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
149 EP_INFO("ep4out-bulk",
150 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
151 EP_INFO("ep5out-bulk",
152 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
153 EP_INFO("ep6out-bulk",
154 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
155 EP_INFO("ep7out-bulk",
156 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
157 EP_INFO("ep8out-bulk",
158 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
159 EP_INFO("ep9out-bulk",
160 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
161 EP_INFO("ep10out-bulk",
162 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
163 EP_INFO("ep11out-bulk",
164 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
165 EP_INFO("ep12out-bulk",
166 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
167 EP_INFO("ep13out-bulk",
168 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
169 EP_INFO("ep14out-bulk",
170 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
171 EP_INFO("ep15out-bulk",
172 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
173
174 #undef EP_INFO
175 };
176
177 /* buffer fill mode */
178 static int use_dma_bufferfill_mode;
179 /* tx buffer size for high speed */
180 static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
181
182 /*---------------------------------------------------------------------------*/
183 /* Prints UDC device registers and endpoint irq registers */
print_regs(struct udc * dev)184 static void print_regs(struct udc *dev)
185 {
186 DBG(dev, "------- Device registers -------\n");
187 DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
188 DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
189 DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
190 DBG(dev, "\n");
191 DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
192 DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
193 DBG(dev, "\n");
194 DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
195 DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
196 DBG(dev, "\n");
197 DBG(dev, "USE DMA = %d\n", use_dma);
198 if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
199 DBG(dev, "DMA mode = PPBNDU (packet per buffer "
200 "WITHOUT desc. update)\n");
201 dev_info(dev->dev, "DMA mode (%s)\n", "PPBNDU");
202 } else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
203 DBG(dev, "DMA mode = PPBDU (packet per buffer "
204 "WITH desc. update)\n");
205 dev_info(dev->dev, "DMA mode (%s)\n", "PPBDU");
206 }
207 if (use_dma && use_dma_bufferfill_mode) {
208 DBG(dev, "DMA mode = BF (buffer fill mode)\n");
209 dev_info(dev->dev, "DMA mode (%s)\n", "BF");
210 }
211 if (!use_dma)
212 dev_info(dev->dev, "FIFO mode\n");
213 DBG(dev, "-------------------------------------------------------\n");
214 }
215
216 /* Masks unused interrupts */
udc_mask_unused_interrupts(struct udc * dev)217 int udc_mask_unused_interrupts(struct udc *dev)
218 {
219 u32 tmp;
220
221 /* mask all dev interrupts */
222 tmp = AMD_BIT(UDC_DEVINT_SVC) |
223 AMD_BIT(UDC_DEVINT_ENUM) |
224 AMD_BIT(UDC_DEVINT_US) |
225 AMD_BIT(UDC_DEVINT_UR) |
226 AMD_BIT(UDC_DEVINT_ES) |
227 AMD_BIT(UDC_DEVINT_SI) |
228 AMD_BIT(UDC_DEVINT_SOF)|
229 AMD_BIT(UDC_DEVINT_SC);
230 writel(tmp, &dev->regs->irqmsk);
231
232 /* mask all ep interrupts */
233 writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
234
235 return 0;
236 }
237 EXPORT_SYMBOL_GPL(udc_mask_unused_interrupts);
238
239 /* Enables endpoint 0 interrupts */
udc_enable_ep0_interrupts(struct udc * dev)240 static int udc_enable_ep0_interrupts(struct udc *dev)
241 {
242 u32 tmp;
243
244 DBG(dev, "udc_enable_ep0_interrupts()\n");
245
246 /* read irq mask */
247 tmp = readl(&dev->regs->ep_irqmsk);
248 /* enable ep0 irq's */
249 tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
250 & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
251 writel(tmp, &dev->regs->ep_irqmsk);
252
253 return 0;
254 }
255
256 /* Enables device interrupts for SET_INTF and SET_CONFIG */
udc_enable_dev_setup_interrupts(struct udc * dev)257 int udc_enable_dev_setup_interrupts(struct udc *dev)
258 {
259 u32 tmp;
260
261 DBG(dev, "enable device interrupts for setup data\n");
262
263 /* read irq mask */
264 tmp = readl(&dev->regs->irqmsk);
265
266 /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
267 tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
268 & AMD_UNMASK_BIT(UDC_DEVINT_SC)
269 & AMD_UNMASK_BIT(UDC_DEVINT_UR)
270 & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
271 & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
272 writel(tmp, &dev->regs->irqmsk);
273
274 return 0;
275 }
276 EXPORT_SYMBOL_GPL(udc_enable_dev_setup_interrupts);
277
278 /* Calculates fifo start of endpoint based on preceding endpoints */
udc_set_txfifo_addr(struct udc_ep * ep)279 static int udc_set_txfifo_addr(struct udc_ep *ep)
280 {
281 struct udc *dev;
282 u32 tmp;
283 int i;
284
285 if (!ep || !(ep->in))
286 return -EINVAL;
287
288 dev = ep->dev;
289 ep->txfifo = dev->txfifo;
290
291 /* traverse ep's */
292 for (i = 0; i < ep->num; i++) {
293 if (dev->ep[i].regs) {
294 /* read fifo size */
295 tmp = readl(&dev->ep[i].regs->bufin_framenum);
296 tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
297 ep->txfifo += tmp;
298 }
299 }
300 return 0;
301 }
302
303 /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
304 static u32 cnak_pending;
305
UDC_QUEUE_CNAK(struct udc_ep * ep,unsigned num)306 static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
307 {
308 if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
309 DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
310 cnak_pending |= 1 << (num);
311 ep->naking = 1;
312 } else
313 cnak_pending = cnak_pending & (~(1 << (num)));
314 }
315
316
317 /* Enables endpoint, is called by gadget driver */
318 static int
udc_ep_enable(struct usb_ep * usbep,const struct usb_endpoint_descriptor * desc)319 udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
320 {
321 struct udc_ep *ep;
322 struct udc *dev;
323 u32 tmp;
324 unsigned long iflags;
325 u8 udc_csr_epix;
326 unsigned maxpacket;
327
328 if (!usbep
329 || usbep->name == ep0_string
330 || !desc
331 || desc->bDescriptorType != USB_DT_ENDPOINT)
332 return -EINVAL;
333
334 ep = container_of(usbep, struct udc_ep, ep);
335 dev = ep->dev;
336
337 DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
338
339 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
340 return -ESHUTDOWN;
341
342 spin_lock_irqsave(&dev->lock, iflags);
343 ep->ep.desc = desc;
344
345 ep->halted = 0;
346
347 /* set traffic type */
348 tmp = readl(&dev->ep[ep->num].regs->ctl);
349 tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
350 writel(tmp, &dev->ep[ep->num].regs->ctl);
351
352 /* set max packet size */
353 maxpacket = usb_endpoint_maxp(desc);
354 tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
355 tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
356 ep->ep.maxpacket = maxpacket;
357 writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
358
359 /* IN ep */
360 if (ep->in) {
361
362 /* ep ix in UDC CSR register space */
363 udc_csr_epix = ep->num;
364
365 /* set buffer size (tx fifo entries) */
366 tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
367 /* double buffering: fifo size = 2 x max packet size */
368 tmp = AMD_ADDBITS(
369 tmp,
370 maxpacket * UDC_EPIN_BUFF_SIZE_MULT
371 / UDC_DWORD_BYTES,
372 UDC_EPIN_BUFF_SIZE);
373 writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
374
375 /* calc. tx fifo base addr */
376 udc_set_txfifo_addr(ep);
377
378 /* flush fifo */
379 tmp = readl(&ep->regs->ctl);
380 tmp |= AMD_BIT(UDC_EPCTL_F);
381 writel(tmp, &ep->regs->ctl);
382
383 /* OUT ep */
384 } else {
385 /* ep ix in UDC CSR register space */
386 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
387
388 /* set max packet size UDC CSR */
389 tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
390 tmp = AMD_ADDBITS(tmp, maxpacket,
391 UDC_CSR_NE_MAX_PKT);
392 writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
393
394 if (use_dma && !ep->in) {
395 /* alloc and init BNA dummy request */
396 ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
397 ep->bna_occurred = 0;
398 }
399
400 if (ep->num != UDC_EP0OUT_IX)
401 dev->data_ep_enabled = 1;
402 }
403
404 /* set ep values */
405 tmp = readl(&dev->csr->ne[udc_csr_epix]);
406 /* max packet */
407 tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
408 /* ep number */
409 tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
410 /* ep direction */
411 tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
412 /* ep type */
413 tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
414 /* ep config */
415 tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
416 /* ep interface */
417 tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
418 /* ep alt */
419 tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
420 /* write reg */
421 writel(tmp, &dev->csr->ne[udc_csr_epix]);
422
423 /* enable ep irq */
424 tmp = readl(&dev->regs->ep_irqmsk);
425 tmp &= AMD_UNMASK_BIT(ep->num);
426 writel(tmp, &dev->regs->ep_irqmsk);
427
428 /*
429 * clear NAK by writing CNAK
430 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
431 */
432 if (!use_dma || ep->in) {
433 tmp = readl(&ep->regs->ctl);
434 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
435 writel(tmp, &ep->regs->ctl);
436 ep->naking = 0;
437 UDC_QUEUE_CNAK(ep, ep->num);
438 }
439 tmp = desc->bEndpointAddress;
440 DBG(dev, "%s enabled\n", usbep->name);
441
442 spin_unlock_irqrestore(&dev->lock, iflags);
443 return 0;
444 }
445
446 /* Resets endpoint */
ep_init(struct udc_regs __iomem * regs,struct udc_ep * ep)447 static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
448 {
449 u32 tmp;
450
451 VDBG(ep->dev, "ep-%d reset\n", ep->num);
452 ep->ep.desc = NULL;
453 ep->ep.ops = &udc_ep_ops;
454 INIT_LIST_HEAD(&ep->queue);
455
456 usb_ep_set_maxpacket_limit(&ep->ep,(u16) ~0);
457 /* set NAK */
458 tmp = readl(&ep->regs->ctl);
459 tmp |= AMD_BIT(UDC_EPCTL_SNAK);
460 writel(tmp, &ep->regs->ctl);
461 ep->naking = 1;
462
463 /* disable interrupt */
464 tmp = readl(®s->ep_irqmsk);
465 tmp |= AMD_BIT(ep->num);
466 writel(tmp, ®s->ep_irqmsk);
467
468 if (ep->in) {
469 /* unset P and IN bit of potential former DMA */
470 tmp = readl(&ep->regs->ctl);
471 tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
472 writel(tmp, &ep->regs->ctl);
473
474 tmp = readl(&ep->regs->sts);
475 tmp |= AMD_BIT(UDC_EPSTS_IN);
476 writel(tmp, &ep->regs->sts);
477
478 /* flush the fifo */
479 tmp = readl(&ep->regs->ctl);
480 tmp |= AMD_BIT(UDC_EPCTL_F);
481 writel(tmp, &ep->regs->ctl);
482
483 }
484 /* reset desc pointer */
485 writel(0, &ep->regs->desptr);
486 }
487
488 /* Disables endpoint, is called by gadget driver */
udc_ep_disable(struct usb_ep * usbep)489 static int udc_ep_disable(struct usb_ep *usbep)
490 {
491 struct udc_ep *ep = NULL;
492 unsigned long iflags;
493
494 if (!usbep)
495 return -EINVAL;
496
497 ep = container_of(usbep, struct udc_ep, ep);
498 if (usbep->name == ep0_string || !ep->ep.desc)
499 return -EINVAL;
500
501 DBG(ep->dev, "Disable ep-%d\n", ep->num);
502
503 spin_lock_irqsave(&ep->dev->lock, iflags);
504 udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
505 empty_req_queue(ep);
506 ep_init(ep->dev->regs, ep);
507 spin_unlock_irqrestore(&ep->dev->lock, iflags);
508
509 return 0;
510 }
511
512 /* Allocates request packet, called by gadget driver */
513 static struct usb_request *
udc_alloc_request(struct usb_ep * usbep,gfp_t gfp)514 udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
515 {
516 struct udc_request *req;
517 struct udc_data_dma *dma_desc;
518 struct udc_ep *ep;
519
520 if (!usbep)
521 return NULL;
522
523 ep = container_of(usbep, struct udc_ep, ep);
524
525 VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
526 req = kzalloc(sizeof(struct udc_request), gfp);
527 if (!req)
528 return NULL;
529
530 req->req.dma = DMA_DONT_USE;
531 INIT_LIST_HEAD(&req->queue);
532
533 if (ep->dma) {
534 /* ep0 in requests are allocated from data pool here */
535 dma_desc = dma_pool_alloc(ep->dev->data_requests, gfp,
536 &req->td_phys);
537 if (!dma_desc) {
538 kfree(req);
539 return NULL;
540 }
541
542 VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
543 "td_phys = %lx\n",
544 req, dma_desc,
545 (unsigned long)req->td_phys);
546 /* prevent from using desc. - set HOST BUSY */
547 dma_desc->status = AMD_ADDBITS(dma_desc->status,
548 UDC_DMA_STP_STS_BS_HOST_BUSY,
549 UDC_DMA_STP_STS_BS);
550 dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
551 req->td_data = dma_desc;
552 req->td_data_last = NULL;
553 req->chain_len = 1;
554 }
555
556 return &req->req;
557 }
558
559 /* frees pci pool descriptors of a DMA chain */
udc_free_dma_chain(struct udc * dev,struct udc_request * req)560 static void udc_free_dma_chain(struct udc *dev, struct udc_request *req)
561 {
562 struct udc_data_dma *td = req->td_data;
563 unsigned int i;
564
565 dma_addr_t addr_next = 0x00;
566 dma_addr_t addr = (dma_addr_t)td->next;
567
568 DBG(dev, "free chain req = %p\n", req);
569
570 /* do not free first desc., will be done by free for request */
571 for (i = 1; i < req->chain_len; i++) {
572 td = phys_to_virt(addr);
573 addr_next = (dma_addr_t)td->next;
574 dma_pool_free(dev->data_requests, td, addr);
575 addr = addr_next;
576 }
577 }
578
579 /* Frees request packet, called by gadget driver */
580 static void
udc_free_request(struct usb_ep * usbep,struct usb_request * usbreq)581 udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
582 {
583 struct udc_ep *ep;
584 struct udc_request *req;
585
586 if (!usbep || !usbreq)
587 return;
588
589 ep = container_of(usbep, struct udc_ep, ep);
590 req = container_of(usbreq, struct udc_request, req);
591 VDBG(ep->dev, "free_req req=%p\n", req);
592 BUG_ON(!list_empty(&req->queue));
593 if (req->td_data) {
594 VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
595
596 /* free dma chain if created */
597 if (req->chain_len > 1)
598 udc_free_dma_chain(ep->dev, req);
599
600 dma_pool_free(ep->dev->data_requests, req->td_data,
601 req->td_phys);
602 }
603 kfree(req);
604 }
605
606 /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
udc_init_bna_dummy(struct udc_request * req)607 static void udc_init_bna_dummy(struct udc_request *req)
608 {
609 if (req) {
610 /* set last bit */
611 req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
612 /* set next pointer to itself */
613 req->td_data->next = req->td_phys;
614 /* set HOST BUSY */
615 req->td_data->status
616 = AMD_ADDBITS(req->td_data->status,
617 UDC_DMA_STP_STS_BS_DMA_DONE,
618 UDC_DMA_STP_STS_BS);
619 #ifdef UDC_VERBOSE
620 pr_debug("bna desc = %p, sts = %08x\n",
621 req->td_data, req->td_data->status);
622 #endif
623 }
624 }
625
626 /* Allocate BNA dummy descriptor */
udc_alloc_bna_dummy(struct udc_ep * ep)627 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
628 {
629 struct udc_request *req = NULL;
630 struct usb_request *_req = NULL;
631
632 /* alloc the dummy request */
633 _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
634 if (_req) {
635 req = container_of(_req, struct udc_request, req);
636 ep->bna_dummy_req = req;
637 udc_init_bna_dummy(req);
638 }
639 return req;
640 }
641
642 /* Write data to TX fifo for IN packets */
643 static void
udc_txfifo_write(struct udc_ep * ep,struct usb_request * req)644 udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
645 {
646 u8 *req_buf;
647 u32 *buf;
648 int i, j;
649 unsigned bytes = 0;
650 unsigned remaining = 0;
651
652 if (!req || !ep)
653 return;
654
655 req_buf = req->buf + req->actual;
656 prefetch(req_buf);
657 remaining = req->length - req->actual;
658
659 buf = (u32 *) req_buf;
660
661 bytes = ep->ep.maxpacket;
662 if (bytes > remaining)
663 bytes = remaining;
664
665 /* dwords first */
666 for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
667 writel(*(buf + i), ep->txfifo);
668
669 /* remaining bytes must be written by byte access */
670 for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
671 writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
672 ep->txfifo);
673 }
674
675 /* dummy write confirm */
676 writel(0, &ep->regs->confirm);
677 }
678
679 /* Read dwords from RX fifo for OUT transfers */
udc_rxfifo_read_dwords(struct udc * dev,u32 * buf,int dwords)680 static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
681 {
682 int i;
683
684 VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
685
686 for (i = 0; i < dwords; i++)
687 *(buf + i) = readl(dev->rxfifo);
688 return 0;
689 }
690
691 /* Read bytes from RX fifo for OUT transfers */
udc_rxfifo_read_bytes(struct udc * dev,u8 * buf,int bytes)692 static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
693 {
694 int i, j;
695 u32 tmp;
696
697 VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
698
699 /* dwords first */
700 for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
701 *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
702
703 /* remaining bytes must be read by byte access */
704 if (bytes % UDC_DWORD_BYTES) {
705 tmp = readl(dev->rxfifo);
706 for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
707 *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
708 tmp = tmp >> UDC_BITS_PER_BYTE;
709 }
710 }
711
712 return 0;
713 }
714
715 /* Read data from RX fifo for OUT transfers */
716 static int
udc_rxfifo_read(struct udc_ep * ep,struct udc_request * req)717 udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
718 {
719 u8 *buf;
720 unsigned buf_space;
721 unsigned bytes = 0;
722 unsigned finished = 0;
723
724 /* received number bytes */
725 bytes = readl(&ep->regs->sts);
726 bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
727
728 buf_space = req->req.length - req->req.actual;
729 buf = req->req.buf + req->req.actual;
730 if (bytes > buf_space) {
731 if ((buf_space % ep->ep.maxpacket) != 0) {
732 DBG(ep->dev,
733 "%s: rx %d bytes, rx-buf space = %d bytesn\n",
734 ep->ep.name, bytes, buf_space);
735 req->req.status = -EOVERFLOW;
736 }
737 bytes = buf_space;
738 }
739 req->req.actual += bytes;
740
741 /* last packet ? */
742 if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
743 || ((req->req.actual == req->req.length) && !req->req.zero))
744 finished = 1;
745
746 /* read rx fifo bytes */
747 VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
748 udc_rxfifo_read_bytes(ep->dev, buf, bytes);
749
750 return finished;
751 }
752
753 /* Creates or re-inits a DMA chain */
udc_create_dma_chain(struct udc_ep * ep,struct udc_request * req,unsigned long buf_len,gfp_t gfp_flags)754 static int udc_create_dma_chain(
755 struct udc_ep *ep,
756 struct udc_request *req,
757 unsigned long buf_len, gfp_t gfp_flags
758 )
759 {
760 unsigned long bytes = req->req.length;
761 unsigned int i;
762 dma_addr_t dma_addr;
763 struct udc_data_dma *td = NULL;
764 struct udc_data_dma *last = NULL;
765 unsigned long txbytes;
766 unsigned create_new_chain = 0;
767 unsigned len;
768
769 VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
770 bytes, buf_len);
771 dma_addr = DMA_DONT_USE;
772
773 /* unset L bit in first desc for OUT */
774 if (!ep->in)
775 req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
776
777 /* alloc only new desc's if not already available */
778 len = req->req.length / ep->ep.maxpacket;
779 if (req->req.length % ep->ep.maxpacket)
780 len++;
781
782 if (len > req->chain_len) {
783 /* shorter chain already allocated before */
784 if (req->chain_len > 1)
785 udc_free_dma_chain(ep->dev, req);
786 req->chain_len = len;
787 create_new_chain = 1;
788 }
789
790 td = req->td_data;
791 /* gen. required number of descriptors and buffers */
792 for (i = buf_len; i < bytes; i += buf_len) {
793 /* create or determine next desc. */
794 if (create_new_chain) {
795 td = dma_pool_alloc(ep->dev->data_requests,
796 gfp_flags, &dma_addr);
797 if (!td)
798 return -ENOMEM;
799
800 td->status = 0;
801 } else if (i == buf_len) {
802 /* first td */
803 td = (struct udc_data_dma *)phys_to_virt(
804 req->td_data->next);
805 td->status = 0;
806 } else {
807 td = (struct udc_data_dma *)phys_to_virt(last->next);
808 td->status = 0;
809 }
810
811 if (td)
812 td->bufptr = req->req.dma + i; /* assign buffer */
813 else
814 break;
815
816 /* short packet ? */
817 if ((bytes - i) >= buf_len) {
818 txbytes = buf_len;
819 } else {
820 /* short packet */
821 txbytes = bytes - i;
822 }
823
824 /* link td and assign tx bytes */
825 if (i == buf_len) {
826 if (create_new_chain)
827 req->td_data->next = dma_addr;
828 /*
829 * else
830 * req->td_data->next = virt_to_phys(td);
831 */
832 /* write tx bytes */
833 if (ep->in) {
834 /* first desc */
835 req->td_data->status =
836 AMD_ADDBITS(req->td_data->status,
837 ep->ep.maxpacket,
838 UDC_DMA_IN_STS_TXBYTES);
839 /* second desc */
840 td->status = AMD_ADDBITS(td->status,
841 txbytes,
842 UDC_DMA_IN_STS_TXBYTES);
843 }
844 } else {
845 if (create_new_chain)
846 last->next = dma_addr;
847 /*
848 * else
849 * last->next = virt_to_phys(td);
850 */
851 if (ep->in) {
852 /* write tx bytes */
853 td->status = AMD_ADDBITS(td->status,
854 txbytes,
855 UDC_DMA_IN_STS_TXBYTES);
856 }
857 }
858 last = td;
859 }
860 /* set last bit */
861 if (td) {
862 td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
863 /* last desc. points to itself */
864 req->td_data_last = td;
865 }
866
867 return 0;
868 }
869
870 /* create/re-init a DMA descriptor or a DMA descriptor chain */
prep_dma(struct udc_ep * ep,struct udc_request * req,gfp_t gfp)871 static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
872 {
873 int retval = 0;
874 u32 tmp;
875
876 VDBG(ep->dev, "prep_dma\n");
877 VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
878 ep->num, req->td_data);
879
880 /* set buffer pointer */
881 req->td_data->bufptr = req->req.dma;
882
883 /* set last bit */
884 req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
885
886 /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
887 if (use_dma_ppb) {
888
889 retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
890 if (retval != 0) {
891 if (retval == -ENOMEM)
892 DBG(ep->dev, "Out of DMA memory\n");
893 return retval;
894 }
895 if (ep->in) {
896 if (req->req.length == ep->ep.maxpacket) {
897 /* write tx bytes */
898 req->td_data->status =
899 AMD_ADDBITS(req->td_data->status,
900 ep->ep.maxpacket,
901 UDC_DMA_IN_STS_TXBYTES);
902
903 }
904 }
905
906 }
907
908 if (ep->in) {
909 VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
910 "maxpacket=%d ep%d\n",
911 use_dma_ppb, req->req.length,
912 ep->ep.maxpacket, ep->num);
913 /*
914 * if bytes < max packet then tx bytes must
915 * be written in packet per buffer mode
916 */
917 if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
918 || ep->num == UDC_EP0OUT_IX
919 || ep->num == UDC_EP0IN_IX) {
920 /* write tx bytes */
921 req->td_data->status =
922 AMD_ADDBITS(req->td_data->status,
923 req->req.length,
924 UDC_DMA_IN_STS_TXBYTES);
925 /* reset frame num */
926 req->td_data->status =
927 AMD_ADDBITS(req->td_data->status,
928 0,
929 UDC_DMA_IN_STS_FRAMENUM);
930 }
931 /* set HOST BUSY */
932 req->td_data->status =
933 AMD_ADDBITS(req->td_data->status,
934 UDC_DMA_STP_STS_BS_HOST_BUSY,
935 UDC_DMA_STP_STS_BS);
936 } else {
937 VDBG(ep->dev, "OUT set host ready\n");
938 /* set HOST READY */
939 req->td_data->status =
940 AMD_ADDBITS(req->td_data->status,
941 UDC_DMA_STP_STS_BS_HOST_READY,
942 UDC_DMA_STP_STS_BS);
943
944 /* clear NAK by writing CNAK */
945 if (ep->naking) {
946 tmp = readl(&ep->regs->ctl);
947 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
948 writel(tmp, &ep->regs->ctl);
949 ep->naking = 0;
950 UDC_QUEUE_CNAK(ep, ep->num);
951 }
952
953 }
954
955 return retval;
956 }
957
958 /* Completes request packet ... caller MUST hold lock */
959 static void
complete_req(struct udc_ep * ep,struct udc_request * req,int sts)960 complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
961 __releases(ep->dev->lock)
962 __acquires(ep->dev->lock)
963 {
964 struct udc *dev;
965 unsigned halted;
966
967 VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
968
969 dev = ep->dev;
970 /* unmap DMA */
971 if (ep->dma)
972 usb_gadget_unmap_request(&dev->gadget, &req->req, ep->in);
973
974 halted = ep->halted;
975 ep->halted = 1;
976
977 /* set new status if pending */
978 if (req->req.status == -EINPROGRESS)
979 req->req.status = sts;
980
981 /* remove from ep queue */
982 list_del_init(&req->queue);
983
984 VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
985 &req->req, req->req.length, ep->ep.name, sts);
986
987 spin_unlock(&dev->lock);
988 usb_gadget_giveback_request(&ep->ep, &req->req);
989 spin_lock(&dev->lock);
990 ep->halted = halted;
991 }
992
993 /* Iterates to the end of a DMA chain and returns last descriptor */
udc_get_last_dma_desc(struct udc_request * req)994 static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
995 {
996 struct udc_data_dma *td;
997
998 td = req->td_data;
999 while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L)))
1000 td = phys_to_virt(td->next);
1001
1002 return td;
1003
1004 }
1005
1006 /* Iterates to the end of a DMA chain and counts bytes received */
udc_get_ppbdu_rxbytes(struct udc_request * req)1007 static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
1008 {
1009 struct udc_data_dma *td;
1010 u32 count;
1011
1012 td = req->td_data;
1013 /* received number bytes */
1014 count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
1015
1016 while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
1017 td = phys_to_virt(td->next);
1018 /* received number bytes */
1019 if (td) {
1020 count += AMD_GETBITS(td->status,
1021 UDC_DMA_OUT_STS_RXBYTES);
1022 }
1023 }
1024
1025 return count;
1026
1027 }
1028
1029 /* Enabling RX DMA */
udc_set_rde(struct udc * dev)1030 static void udc_set_rde(struct udc *dev)
1031 {
1032 u32 tmp;
1033
1034 VDBG(dev, "udc_set_rde()\n");
1035 /* stop RDE timer */
1036 if (timer_pending(&udc_timer)) {
1037 set_rde = 0;
1038 mod_timer(&udc_timer, jiffies - 1);
1039 }
1040 /* set RDE */
1041 tmp = readl(&dev->regs->ctl);
1042 tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1043 writel(tmp, &dev->regs->ctl);
1044 }
1045
1046 /* Queues a request packet, called by gadget driver */
1047 static int
udc_queue(struct usb_ep * usbep,struct usb_request * usbreq,gfp_t gfp)1048 udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
1049 {
1050 int retval = 0;
1051 u8 open_rxfifo = 0;
1052 unsigned long iflags;
1053 struct udc_ep *ep;
1054 struct udc_request *req;
1055 struct udc *dev;
1056 u32 tmp;
1057
1058 /* check the inputs */
1059 req = container_of(usbreq, struct udc_request, req);
1060
1061 if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
1062 || !list_empty(&req->queue))
1063 return -EINVAL;
1064
1065 ep = container_of(usbep, struct udc_ep, ep);
1066 if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1067 return -EINVAL;
1068
1069 VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
1070 dev = ep->dev;
1071
1072 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
1073 return -ESHUTDOWN;
1074
1075 /* map dma (usually done before) */
1076 if (ep->dma) {
1077 VDBG(dev, "DMA map req %p\n", req);
1078 retval = usb_gadget_map_request(&udc->gadget, usbreq, ep->in);
1079 if (retval)
1080 return retval;
1081 }
1082
1083 VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1084 usbep->name, usbreq, usbreq->length,
1085 req->td_data, usbreq->buf);
1086
1087 spin_lock_irqsave(&dev->lock, iflags);
1088 usbreq->actual = 0;
1089 usbreq->status = -EINPROGRESS;
1090 req->dma_done = 0;
1091
1092 /* on empty queue just do first transfer */
1093 if (list_empty(&ep->queue)) {
1094 /* zlp */
1095 if (usbreq->length == 0) {
1096 /* IN zlp's are handled by hardware */
1097 complete_req(ep, req, 0);
1098 VDBG(dev, "%s: zlp\n", ep->ep.name);
1099 /*
1100 * if set_config or set_intf is waiting for ack by zlp
1101 * then set CSR_DONE
1102 */
1103 if (dev->set_cfg_not_acked) {
1104 tmp = readl(&dev->regs->ctl);
1105 tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
1106 writel(tmp, &dev->regs->ctl);
1107 dev->set_cfg_not_acked = 0;
1108 }
1109 /* setup command is ACK'ed now by zlp */
1110 if (dev->waiting_zlp_ack_ep0in) {
1111 /* clear NAK by writing CNAK in EP0_IN */
1112 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1113 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1114 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1115 dev->ep[UDC_EP0IN_IX].naking = 0;
1116 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
1117 UDC_EP0IN_IX);
1118 dev->waiting_zlp_ack_ep0in = 0;
1119 }
1120 goto finished;
1121 }
1122 if (ep->dma) {
1123 retval = prep_dma(ep, req, GFP_ATOMIC);
1124 if (retval != 0)
1125 goto finished;
1126 /* write desc pointer to enable DMA */
1127 if (ep->in) {
1128 /* set HOST READY */
1129 req->td_data->status =
1130 AMD_ADDBITS(req->td_data->status,
1131 UDC_DMA_IN_STS_BS_HOST_READY,
1132 UDC_DMA_IN_STS_BS);
1133 }
1134
1135 /* disabled rx dma while descriptor update */
1136 if (!ep->in) {
1137 /* stop RDE timer */
1138 if (timer_pending(&udc_timer)) {
1139 set_rde = 0;
1140 mod_timer(&udc_timer, jiffies - 1);
1141 }
1142 /* clear RDE */
1143 tmp = readl(&dev->regs->ctl);
1144 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1145 writel(tmp, &dev->regs->ctl);
1146 open_rxfifo = 1;
1147
1148 /*
1149 * if BNA occurred then let BNA dummy desc.
1150 * point to current desc.
1151 */
1152 if (ep->bna_occurred) {
1153 VDBG(dev, "copy to BNA dummy desc.\n");
1154 memcpy(ep->bna_dummy_req->td_data,
1155 req->td_data,
1156 sizeof(struct udc_data_dma));
1157 }
1158 }
1159 /* write desc pointer */
1160 writel(req->td_phys, &ep->regs->desptr);
1161
1162 /* clear NAK by writing CNAK */
1163 if (ep->naking) {
1164 tmp = readl(&ep->regs->ctl);
1165 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1166 writel(tmp, &ep->regs->ctl);
1167 ep->naking = 0;
1168 UDC_QUEUE_CNAK(ep, ep->num);
1169 }
1170
1171 if (ep->in) {
1172 /* enable ep irq */
1173 tmp = readl(&dev->regs->ep_irqmsk);
1174 tmp &= AMD_UNMASK_BIT(ep->num);
1175 writel(tmp, &dev->regs->ep_irqmsk);
1176 }
1177 } else if (ep->in) {
1178 /* enable ep irq */
1179 tmp = readl(&dev->regs->ep_irqmsk);
1180 tmp &= AMD_UNMASK_BIT(ep->num);
1181 writel(tmp, &dev->regs->ep_irqmsk);
1182 }
1183
1184 } else if (ep->dma) {
1185
1186 /*
1187 * prep_dma not used for OUT ep's, this is not possible
1188 * for PPB modes, because of chain creation reasons
1189 */
1190 if (ep->in) {
1191 retval = prep_dma(ep, req, GFP_ATOMIC);
1192 if (retval != 0)
1193 goto finished;
1194 }
1195 }
1196 VDBG(dev, "list_add\n");
1197 /* add request to ep queue */
1198 if (req) {
1199
1200 list_add_tail(&req->queue, &ep->queue);
1201
1202 /* open rxfifo if out data queued */
1203 if (open_rxfifo) {
1204 /* enable DMA */
1205 req->dma_going = 1;
1206 udc_set_rde(dev);
1207 if (ep->num != UDC_EP0OUT_IX)
1208 dev->data_ep_queued = 1;
1209 }
1210 /* stop OUT naking */
1211 if (!ep->in) {
1212 if (!use_dma && udc_rxfifo_pending) {
1213 DBG(dev, "udc_queue(): pending bytes in "
1214 "rxfifo after nyet\n");
1215 /*
1216 * read pending bytes afer nyet:
1217 * referring to isr
1218 */
1219 if (udc_rxfifo_read(ep, req)) {
1220 /* finish */
1221 complete_req(ep, req, 0);
1222 }
1223 udc_rxfifo_pending = 0;
1224
1225 }
1226 }
1227 }
1228
1229 finished:
1230 spin_unlock_irqrestore(&dev->lock, iflags);
1231 return retval;
1232 }
1233
1234 /* Empty request queue of an endpoint; caller holds spinlock */
empty_req_queue(struct udc_ep * ep)1235 void empty_req_queue(struct udc_ep *ep)
1236 {
1237 struct udc_request *req;
1238
1239 ep->halted = 1;
1240 while (!list_empty(&ep->queue)) {
1241 req = list_entry(ep->queue.next,
1242 struct udc_request,
1243 queue);
1244 complete_req(ep, req, -ESHUTDOWN);
1245 }
1246 }
1247 EXPORT_SYMBOL_GPL(empty_req_queue);
1248
1249 /* Dequeues a request packet, called by gadget driver */
udc_dequeue(struct usb_ep * usbep,struct usb_request * usbreq)1250 static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
1251 {
1252 struct udc_ep *ep;
1253 struct udc_request *req;
1254 unsigned halted;
1255 unsigned long iflags;
1256
1257 ep = container_of(usbep, struct udc_ep, ep);
1258 if (!usbep || !usbreq || (!ep->ep.desc && (ep->num != 0
1259 && ep->num != UDC_EP0OUT_IX)))
1260 return -EINVAL;
1261
1262 req = container_of(usbreq, struct udc_request, req);
1263
1264 spin_lock_irqsave(&ep->dev->lock, iflags);
1265 halted = ep->halted;
1266 ep->halted = 1;
1267 /* request in processing or next one */
1268 if (ep->queue.next == &req->queue) {
1269 if (ep->dma && req->dma_going) {
1270 if (ep->in)
1271 ep->cancel_transfer = 1;
1272 else {
1273 u32 tmp;
1274 u32 dma_sts;
1275 /* stop potential receive DMA */
1276 tmp = readl(&udc->regs->ctl);
1277 writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
1278 &udc->regs->ctl);
1279 /*
1280 * Cancel transfer later in ISR
1281 * if descriptor was touched.
1282 */
1283 dma_sts = AMD_GETBITS(req->td_data->status,
1284 UDC_DMA_OUT_STS_BS);
1285 if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
1286 ep->cancel_transfer = 1;
1287 else {
1288 udc_init_bna_dummy(ep->req);
1289 writel(ep->bna_dummy_req->td_phys,
1290 &ep->regs->desptr);
1291 }
1292 writel(tmp, &udc->regs->ctl);
1293 }
1294 }
1295 }
1296 complete_req(ep, req, -ECONNRESET);
1297 ep->halted = halted;
1298
1299 spin_unlock_irqrestore(&ep->dev->lock, iflags);
1300 return 0;
1301 }
1302
1303 /* Halt or clear halt of endpoint */
1304 static int
udc_set_halt(struct usb_ep * usbep,int halt)1305 udc_set_halt(struct usb_ep *usbep, int halt)
1306 {
1307 struct udc_ep *ep;
1308 u32 tmp;
1309 unsigned long iflags;
1310 int retval = 0;
1311
1312 if (!usbep)
1313 return -EINVAL;
1314
1315 pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
1316
1317 ep = container_of(usbep, struct udc_ep, ep);
1318 if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1319 return -EINVAL;
1320 if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
1321 return -ESHUTDOWN;
1322
1323 spin_lock_irqsave(&udc_stall_spinlock, iflags);
1324 /* halt or clear halt */
1325 if (halt) {
1326 if (ep->num == 0)
1327 ep->dev->stall_ep0in = 1;
1328 else {
1329 /*
1330 * set STALL
1331 * rxfifo empty not taken into acount
1332 */
1333 tmp = readl(&ep->regs->ctl);
1334 tmp |= AMD_BIT(UDC_EPCTL_S);
1335 writel(tmp, &ep->regs->ctl);
1336 ep->halted = 1;
1337
1338 /* setup poll timer */
1339 if (!timer_pending(&udc_pollstall_timer)) {
1340 udc_pollstall_timer.expires = jiffies +
1341 HZ * UDC_POLLSTALL_TIMER_USECONDS
1342 / (1000 * 1000);
1343 if (!stop_pollstall_timer) {
1344 DBG(ep->dev, "start polltimer\n");
1345 add_timer(&udc_pollstall_timer);
1346 }
1347 }
1348 }
1349 } else {
1350 /* ep is halted by set_halt() before */
1351 if (ep->halted) {
1352 tmp = readl(&ep->regs->ctl);
1353 /* clear stall bit */
1354 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
1355 /* clear NAK by writing CNAK */
1356 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1357 writel(tmp, &ep->regs->ctl);
1358 ep->halted = 0;
1359 UDC_QUEUE_CNAK(ep, ep->num);
1360 }
1361 }
1362 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1363 return retval;
1364 }
1365
1366 /* gadget interface */
1367 static const struct usb_ep_ops udc_ep_ops = {
1368 .enable = udc_ep_enable,
1369 .disable = udc_ep_disable,
1370
1371 .alloc_request = udc_alloc_request,
1372 .free_request = udc_free_request,
1373
1374 .queue = udc_queue,
1375 .dequeue = udc_dequeue,
1376
1377 .set_halt = udc_set_halt,
1378 /* fifo ops not implemented */
1379 };
1380
1381 /*-------------------------------------------------------------------------*/
1382
1383 /* Get frame counter (not implemented) */
udc_get_frame(struct usb_gadget * gadget)1384 static int udc_get_frame(struct usb_gadget *gadget)
1385 {
1386 return -EOPNOTSUPP;
1387 }
1388
1389 /* Initiates a remote wakeup */
udc_remote_wakeup(struct udc * dev)1390 static int udc_remote_wakeup(struct udc *dev)
1391 {
1392 unsigned long flags;
1393 u32 tmp;
1394
1395 DBG(dev, "UDC initiates remote wakeup\n");
1396
1397 spin_lock_irqsave(&dev->lock, flags);
1398
1399 tmp = readl(&dev->regs->ctl);
1400 tmp |= AMD_BIT(UDC_DEVCTL_RES);
1401 writel(tmp, &dev->regs->ctl);
1402 tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
1403 writel(tmp, &dev->regs->ctl);
1404
1405 spin_unlock_irqrestore(&dev->lock, flags);
1406 return 0;
1407 }
1408
1409 /* Remote wakeup gadget interface */
udc_wakeup(struct usb_gadget * gadget)1410 static int udc_wakeup(struct usb_gadget *gadget)
1411 {
1412 struct udc *dev;
1413
1414 if (!gadget)
1415 return -EINVAL;
1416 dev = container_of(gadget, struct udc, gadget);
1417 udc_remote_wakeup(dev);
1418
1419 return 0;
1420 }
1421
1422 static int amd5536_udc_start(struct usb_gadget *g,
1423 struct usb_gadget_driver *driver);
1424 static int amd5536_udc_stop(struct usb_gadget *g);
1425
1426 static const struct usb_gadget_ops udc_ops = {
1427 .wakeup = udc_wakeup,
1428 .get_frame = udc_get_frame,
1429 .udc_start = amd5536_udc_start,
1430 .udc_stop = amd5536_udc_stop,
1431 };
1432
1433 /* Setups endpoint parameters, adds endpoints to linked list */
make_ep_lists(struct udc * dev)1434 static void make_ep_lists(struct udc *dev)
1435 {
1436 /* make gadget ep lists */
1437 INIT_LIST_HEAD(&dev->gadget.ep_list);
1438 list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
1439 &dev->gadget.ep_list);
1440 list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
1441 &dev->gadget.ep_list);
1442 list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
1443 &dev->gadget.ep_list);
1444
1445 /* fifo config */
1446 dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
1447 if (dev->gadget.speed == USB_SPEED_FULL)
1448 dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
1449 else if (dev->gadget.speed == USB_SPEED_HIGH)
1450 dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
1451 dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
1452 }
1453
1454 /* Inits UDC context */
udc_basic_init(struct udc * dev)1455 void udc_basic_init(struct udc *dev)
1456 {
1457 u32 tmp;
1458
1459 DBG(dev, "udc_basic_init()\n");
1460
1461 dev->gadget.speed = USB_SPEED_UNKNOWN;
1462
1463 /* stop RDE timer */
1464 if (timer_pending(&udc_timer)) {
1465 set_rde = 0;
1466 mod_timer(&udc_timer, jiffies - 1);
1467 }
1468 /* stop poll stall timer */
1469 if (timer_pending(&udc_pollstall_timer))
1470 mod_timer(&udc_pollstall_timer, jiffies - 1);
1471 /* disable DMA */
1472 tmp = readl(&dev->regs->ctl);
1473 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1474 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
1475 writel(tmp, &dev->regs->ctl);
1476
1477 /* enable dynamic CSR programming */
1478 tmp = readl(&dev->regs->cfg);
1479 tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
1480 /* set self powered */
1481 tmp |= AMD_BIT(UDC_DEVCFG_SP);
1482 /* set remote wakeupable */
1483 tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
1484 writel(tmp, &dev->regs->cfg);
1485
1486 make_ep_lists(dev);
1487
1488 dev->data_ep_enabled = 0;
1489 dev->data_ep_queued = 0;
1490 }
1491 EXPORT_SYMBOL_GPL(udc_basic_init);
1492
1493 /* init registers at driver load time */
startup_registers(struct udc * dev)1494 static int startup_registers(struct udc *dev)
1495 {
1496 u32 tmp;
1497
1498 /* init controller by soft reset */
1499 udc_soft_reset(dev);
1500
1501 /* mask not needed interrupts */
1502 udc_mask_unused_interrupts(dev);
1503
1504 /* put into initial config */
1505 udc_basic_init(dev);
1506 /* link up all endpoints */
1507 udc_setup_endpoints(dev);
1508
1509 /* program speed */
1510 tmp = readl(&dev->regs->cfg);
1511 if (use_fullspeed)
1512 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1513 else
1514 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
1515 writel(tmp, &dev->regs->cfg);
1516
1517 return 0;
1518 }
1519
1520 /* Sets initial endpoint parameters */
udc_setup_endpoints(struct udc * dev)1521 static void udc_setup_endpoints(struct udc *dev)
1522 {
1523 struct udc_ep *ep;
1524 u32 tmp;
1525 u32 reg;
1526
1527 DBG(dev, "udc_setup_endpoints()\n");
1528
1529 /* read enum speed */
1530 tmp = readl(&dev->regs->sts);
1531 tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
1532 if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH)
1533 dev->gadget.speed = USB_SPEED_HIGH;
1534 else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL)
1535 dev->gadget.speed = USB_SPEED_FULL;
1536
1537 /* set basic ep parameters */
1538 for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
1539 ep = &dev->ep[tmp];
1540 ep->dev = dev;
1541 ep->ep.name = ep_info[tmp].name;
1542 ep->ep.caps = ep_info[tmp].caps;
1543 ep->num = tmp;
1544 /* txfifo size is calculated at enable time */
1545 ep->txfifo = dev->txfifo;
1546
1547 /* fifo size */
1548 if (tmp < UDC_EPIN_NUM) {
1549 ep->fifo_depth = UDC_TXFIFO_SIZE;
1550 ep->in = 1;
1551 } else {
1552 ep->fifo_depth = UDC_RXFIFO_SIZE;
1553 ep->in = 0;
1554
1555 }
1556 ep->regs = &dev->ep_regs[tmp];
1557 /*
1558 * ep will be reset only if ep was not enabled before to avoid
1559 * disabling ep interrupts when ENUM interrupt occurs but ep is
1560 * not enabled by gadget driver
1561 */
1562 if (!ep->ep.desc)
1563 ep_init(dev->regs, ep);
1564
1565 if (use_dma) {
1566 /*
1567 * ep->dma is not really used, just to indicate that
1568 * DMA is active: remove this
1569 * dma regs = dev control regs
1570 */
1571 ep->dma = &dev->regs->ctl;
1572
1573 /* nak OUT endpoints until enable - not for ep0 */
1574 if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
1575 && tmp > UDC_EPIN_NUM) {
1576 /* set NAK */
1577 reg = readl(&dev->ep[tmp].regs->ctl);
1578 reg |= AMD_BIT(UDC_EPCTL_SNAK);
1579 writel(reg, &dev->ep[tmp].regs->ctl);
1580 dev->ep[tmp].naking = 1;
1581
1582 }
1583 }
1584 }
1585 /* EP0 max packet */
1586 if (dev->gadget.speed == USB_SPEED_FULL) {
1587 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
1588 UDC_FS_EP0IN_MAX_PKT_SIZE);
1589 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
1590 UDC_FS_EP0OUT_MAX_PKT_SIZE);
1591 } else if (dev->gadget.speed == USB_SPEED_HIGH) {
1592 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
1593 UDC_EP0IN_MAX_PKT_SIZE);
1594 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
1595 UDC_EP0OUT_MAX_PKT_SIZE);
1596 }
1597
1598 /*
1599 * with suspend bug workaround, ep0 params for gadget driver
1600 * are set at gadget driver bind() call
1601 */
1602 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
1603 dev->ep[UDC_EP0IN_IX].halted = 0;
1604 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1605
1606 /* init cfg/alt/int */
1607 dev->cur_config = 0;
1608 dev->cur_intf = 0;
1609 dev->cur_alt = 0;
1610 }
1611
1612 /* Bringup after Connect event, initial bringup to be ready for ep0 events */
usb_connect(struct udc * dev)1613 static void usb_connect(struct udc *dev)
1614 {
1615 /* Return if already connected */
1616 if (dev->connected)
1617 return;
1618
1619 dev_info(dev->dev, "USB Connect\n");
1620
1621 dev->connected = 1;
1622
1623 /* put into initial config */
1624 udc_basic_init(dev);
1625
1626 /* enable device setup interrupts */
1627 udc_enable_dev_setup_interrupts(dev);
1628 }
1629
1630 /*
1631 * Calls gadget with disconnect event and resets the UDC and makes
1632 * initial bringup to be ready for ep0 events
1633 */
usb_disconnect(struct udc * dev)1634 static void usb_disconnect(struct udc *dev)
1635 {
1636 u32 tmp;
1637
1638 /* Return if already disconnected */
1639 if (!dev->connected)
1640 return;
1641
1642 dev_info(dev->dev, "USB Disconnect\n");
1643
1644 dev->connected = 0;
1645
1646 /* mask interrupts */
1647 udc_mask_unused_interrupts(dev);
1648
1649 if (dev->driver) {
1650 spin_unlock(&dev->lock);
1651 dev->driver->disconnect(&dev->gadget);
1652 spin_lock(&dev->lock);
1653
1654 /* empty queues */
1655 for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
1656 empty_req_queue(&dev->ep[tmp]);
1657 }
1658
1659 /* disable ep0 */
1660 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
1661
1662 if (!soft_reset_occured) {
1663 /* init controller by soft reset */
1664 udc_soft_reset(dev);
1665 soft_reset_occured++;
1666 }
1667
1668 /* re-enable dev interrupts */
1669 udc_enable_dev_setup_interrupts(dev);
1670 /* back to full speed ? */
1671 if (use_fullspeed) {
1672 tmp = readl(&dev->regs->cfg);
1673 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1674 writel(tmp, &dev->regs->cfg);
1675 }
1676 }
1677
1678 /* Reset the UDC core */
udc_soft_reset(struct udc * dev)1679 static void udc_soft_reset(struct udc *dev)
1680 {
1681 unsigned long flags;
1682
1683 DBG(dev, "Soft reset\n");
1684 /*
1685 * reset possible waiting interrupts, because int.
1686 * status is lost after soft reset,
1687 * ep int. status reset
1688 */
1689 writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
1690 /* device int. status reset */
1691 writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
1692
1693 /* Don't do this for Broadcom UDC since this is a reserved
1694 * bit.
1695 */
1696 if (dev->chiprev != UDC_BCM_REV) {
1697 spin_lock_irqsave(&udc_irq_spinlock, flags);
1698 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
1699 readl(&dev->regs->cfg);
1700 spin_unlock_irqrestore(&udc_irq_spinlock, flags);
1701 }
1702 }
1703
1704 /* RDE timer callback to set RDE bit */
udc_timer_function(struct timer_list * unused)1705 static void udc_timer_function(struct timer_list *unused)
1706 {
1707 u32 tmp;
1708
1709 spin_lock_irq(&udc_irq_spinlock);
1710
1711 if (set_rde > 0) {
1712 /*
1713 * open the fifo if fifo was filled on last timer call
1714 * conditionally
1715 */
1716 if (set_rde > 1) {
1717 /* set RDE to receive setup data */
1718 tmp = readl(&udc->regs->ctl);
1719 tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1720 writel(tmp, &udc->regs->ctl);
1721 set_rde = -1;
1722 } else if (readl(&udc->regs->sts)
1723 & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
1724 /*
1725 * if fifo empty setup polling, do not just
1726 * open the fifo
1727 */
1728 udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
1729 if (!stop_timer)
1730 add_timer(&udc_timer);
1731 } else {
1732 /*
1733 * fifo contains data now, setup timer for opening
1734 * the fifo when timer expires to be able to receive
1735 * setup packets, when data packets gets queued by
1736 * gadget layer then timer will forced to expire with
1737 * set_rde=0 (RDE is set in udc_queue())
1738 */
1739 set_rde++;
1740 /* debug: lhadmot_timer_start = 221070 */
1741 udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
1742 if (!stop_timer)
1743 add_timer(&udc_timer);
1744 }
1745
1746 } else
1747 set_rde = -1; /* RDE was set by udc_queue() */
1748 spin_unlock_irq(&udc_irq_spinlock);
1749 if (stop_timer)
1750 complete(&on_exit);
1751
1752 }
1753
1754 /* Handle halt state, used in stall poll timer */
udc_handle_halt_state(struct udc_ep * ep)1755 static void udc_handle_halt_state(struct udc_ep *ep)
1756 {
1757 u32 tmp;
1758 /* set stall as long not halted */
1759 if (ep->halted == 1) {
1760 tmp = readl(&ep->regs->ctl);
1761 /* STALL cleared ? */
1762 if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
1763 /*
1764 * FIXME: MSC spec requires that stall remains
1765 * even on receivng of CLEAR_FEATURE HALT. So
1766 * we would set STALL again here to be compliant.
1767 * But with current mass storage drivers this does
1768 * not work (would produce endless host retries).
1769 * So we clear halt on CLEAR_FEATURE.
1770 *
1771 DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1772 tmp |= AMD_BIT(UDC_EPCTL_S);
1773 writel(tmp, &ep->regs->ctl);*/
1774
1775 /* clear NAK by writing CNAK */
1776 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1777 writel(tmp, &ep->regs->ctl);
1778 ep->halted = 0;
1779 UDC_QUEUE_CNAK(ep, ep->num);
1780 }
1781 }
1782 }
1783
1784 /* Stall timer callback to poll S bit and set it again after */
udc_pollstall_timer_function(struct timer_list * unused)1785 static void udc_pollstall_timer_function(struct timer_list *unused)
1786 {
1787 struct udc_ep *ep;
1788 int halted = 0;
1789
1790 spin_lock_irq(&udc_stall_spinlock);
1791 /*
1792 * only one IN and OUT endpoints are handled
1793 * IN poll stall
1794 */
1795 ep = &udc->ep[UDC_EPIN_IX];
1796 udc_handle_halt_state(ep);
1797 if (ep->halted)
1798 halted = 1;
1799 /* OUT poll stall */
1800 ep = &udc->ep[UDC_EPOUT_IX];
1801 udc_handle_halt_state(ep);
1802 if (ep->halted)
1803 halted = 1;
1804
1805 /* setup timer again when still halted */
1806 if (!stop_pollstall_timer && halted) {
1807 udc_pollstall_timer.expires = jiffies +
1808 HZ * UDC_POLLSTALL_TIMER_USECONDS
1809 / (1000 * 1000);
1810 add_timer(&udc_pollstall_timer);
1811 }
1812 spin_unlock_irq(&udc_stall_spinlock);
1813
1814 if (stop_pollstall_timer)
1815 complete(&on_pollstall_exit);
1816 }
1817
1818 /* Inits endpoint 0 so that SETUP packets are processed */
activate_control_endpoints(struct udc * dev)1819 static void activate_control_endpoints(struct udc *dev)
1820 {
1821 u32 tmp;
1822
1823 DBG(dev, "activate_control_endpoints\n");
1824
1825 /* flush fifo */
1826 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1827 tmp |= AMD_BIT(UDC_EPCTL_F);
1828 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1829
1830 /* set ep0 directions */
1831 dev->ep[UDC_EP0IN_IX].in = 1;
1832 dev->ep[UDC_EP0OUT_IX].in = 0;
1833
1834 /* set buffer size (tx fifo entries) of EP0_IN */
1835 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1836 if (dev->gadget.speed == USB_SPEED_FULL)
1837 tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
1838 UDC_EPIN_BUFF_SIZE);
1839 else if (dev->gadget.speed == USB_SPEED_HIGH)
1840 tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
1841 UDC_EPIN_BUFF_SIZE);
1842 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1843
1844 /* set max packet size of EP0_IN */
1845 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1846 if (dev->gadget.speed == USB_SPEED_FULL)
1847 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
1848 UDC_EP_MAX_PKT_SIZE);
1849 else if (dev->gadget.speed == USB_SPEED_HIGH)
1850 tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
1851 UDC_EP_MAX_PKT_SIZE);
1852 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1853
1854 /* set max packet size of EP0_OUT */
1855 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1856 if (dev->gadget.speed == USB_SPEED_FULL)
1857 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1858 UDC_EP_MAX_PKT_SIZE);
1859 else if (dev->gadget.speed == USB_SPEED_HIGH)
1860 tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1861 UDC_EP_MAX_PKT_SIZE);
1862 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1863
1864 /* set max packet size of EP0 in UDC CSR */
1865 tmp = readl(&dev->csr->ne[0]);
1866 if (dev->gadget.speed == USB_SPEED_FULL)
1867 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1868 UDC_CSR_NE_MAX_PKT);
1869 else if (dev->gadget.speed == USB_SPEED_HIGH)
1870 tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1871 UDC_CSR_NE_MAX_PKT);
1872 writel(tmp, &dev->csr->ne[0]);
1873
1874 if (use_dma) {
1875 dev->ep[UDC_EP0OUT_IX].td->status |=
1876 AMD_BIT(UDC_DMA_OUT_STS_L);
1877 /* write dma desc address */
1878 writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
1879 &dev->ep[UDC_EP0OUT_IX].regs->subptr);
1880 writel(dev->ep[UDC_EP0OUT_IX].td_phys,
1881 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
1882 /* stop RDE timer */
1883 if (timer_pending(&udc_timer)) {
1884 set_rde = 0;
1885 mod_timer(&udc_timer, jiffies - 1);
1886 }
1887 /* stop pollstall timer */
1888 if (timer_pending(&udc_pollstall_timer))
1889 mod_timer(&udc_pollstall_timer, jiffies - 1);
1890 /* enable DMA */
1891 tmp = readl(&dev->regs->ctl);
1892 tmp |= AMD_BIT(UDC_DEVCTL_MODE)
1893 | AMD_BIT(UDC_DEVCTL_RDE)
1894 | AMD_BIT(UDC_DEVCTL_TDE);
1895 if (use_dma_bufferfill_mode)
1896 tmp |= AMD_BIT(UDC_DEVCTL_BF);
1897 else if (use_dma_ppb_du)
1898 tmp |= AMD_BIT(UDC_DEVCTL_DU);
1899 writel(tmp, &dev->regs->ctl);
1900 }
1901
1902 /* clear NAK by writing CNAK for EP0IN */
1903 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1904 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1905 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1906 dev->ep[UDC_EP0IN_IX].naking = 0;
1907 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
1908
1909 /* clear NAK by writing CNAK for EP0OUT */
1910 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
1911 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1912 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
1913 dev->ep[UDC_EP0OUT_IX].naking = 0;
1914 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
1915 }
1916
1917 /* Make endpoint 0 ready for control traffic */
setup_ep0(struct udc * dev)1918 static int setup_ep0(struct udc *dev)
1919 {
1920 activate_control_endpoints(dev);
1921 /* enable ep0 interrupts */
1922 udc_enable_ep0_interrupts(dev);
1923 /* enable device setup interrupts */
1924 udc_enable_dev_setup_interrupts(dev);
1925
1926 return 0;
1927 }
1928
1929 /* Called by gadget driver to register itself */
amd5536_udc_start(struct usb_gadget * g,struct usb_gadget_driver * driver)1930 static int amd5536_udc_start(struct usb_gadget *g,
1931 struct usb_gadget_driver *driver)
1932 {
1933 struct udc *dev = to_amd5536_udc(g);
1934 u32 tmp;
1935
1936 driver->driver.bus = NULL;
1937 dev->driver = driver;
1938
1939 /* Some gadget drivers use both ep0 directions.
1940 * NOTE: to gadget driver, ep0 is just one endpoint...
1941 */
1942 dev->ep[UDC_EP0OUT_IX].ep.driver_data =
1943 dev->ep[UDC_EP0IN_IX].ep.driver_data;
1944
1945 /* get ready for ep0 traffic */
1946 setup_ep0(dev);
1947
1948 /* clear SD */
1949 tmp = readl(&dev->regs->ctl);
1950 tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
1951 writel(tmp, &dev->regs->ctl);
1952
1953 usb_connect(dev);
1954
1955 return 0;
1956 }
1957
1958 /* shutdown requests and disconnect from gadget */
1959 static void
shutdown(struct udc * dev,struct usb_gadget_driver * driver)1960 shutdown(struct udc *dev, struct usb_gadget_driver *driver)
1961 __releases(dev->lock)
1962 __acquires(dev->lock)
1963 {
1964 int tmp;
1965
1966 /* empty queues and init hardware */
1967 udc_basic_init(dev);
1968
1969 for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
1970 empty_req_queue(&dev->ep[tmp]);
1971
1972 udc_setup_endpoints(dev);
1973 }
1974
1975 /* Called by gadget driver to unregister itself */
amd5536_udc_stop(struct usb_gadget * g)1976 static int amd5536_udc_stop(struct usb_gadget *g)
1977 {
1978 struct udc *dev = to_amd5536_udc(g);
1979 unsigned long flags;
1980 u32 tmp;
1981
1982 spin_lock_irqsave(&dev->lock, flags);
1983 udc_mask_unused_interrupts(dev);
1984 shutdown(dev, NULL);
1985 spin_unlock_irqrestore(&dev->lock, flags);
1986
1987 dev->driver = NULL;
1988
1989 /* set SD */
1990 tmp = readl(&dev->regs->ctl);
1991 tmp |= AMD_BIT(UDC_DEVCTL_SD);
1992 writel(tmp, &dev->regs->ctl);
1993
1994 return 0;
1995 }
1996
1997 /* Clear pending NAK bits */
udc_process_cnak_queue(struct udc * dev)1998 static void udc_process_cnak_queue(struct udc *dev)
1999 {
2000 u32 tmp;
2001 u32 reg;
2002
2003 /* check epin's */
2004 DBG(dev, "CNAK pending queue processing\n");
2005 for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
2006 if (cnak_pending & (1 << tmp)) {
2007 DBG(dev, "CNAK pending for ep%d\n", tmp);
2008 /* clear NAK by writing CNAK */
2009 reg = readl(&dev->ep[tmp].regs->ctl);
2010 reg |= AMD_BIT(UDC_EPCTL_CNAK);
2011 writel(reg, &dev->ep[tmp].regs->ctl);
2012 dev->ep[tmp].naking = 0;
2013 UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
2014 }
2015 }
2016 /* ... and ep0out */
2017 if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
2018 DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
2019 /* clear NAK by writing CNAK */
2020 reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2021 reg |= AMD_BIT(UDC_EPCTL_CNAK);
2022 writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2023 dev->ep[UDC_EP0OUT_IX].naking = 0;
2024 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
2025 dev->ep[UDC_EP0OUT_IX].num);
2026 }
2027 }
2028
2029 /* Enabling RX DMA after setup packet */
udc_ep0_set_rde(struct udc * dev)2030 static void udc_ep0_set_rde(struct udc *dev)
2031 {
2032 if (use_dma) {
2033 /*
2034 * only enable RXDMA when no data endpoint enabled
2035 * or data is queued
2036 */
2037 if (!dev->data_ep_enabled || dev->data_ep_queued) {
2038 udc_set_rde(dev);
2039 } else {
2040 /*
2041 * setup timer for enabling RDE (to not enable
2042 * RXFIFO DMA for data endpoints to early)
2043 */
2044 if (set_rde != 0 && !timer_pending(&udc_timer)) {
2045 udc_timer.expires =
2046 jiffies + HZ/UDC_RDE_TIMER_DIV;
2047 set_rde = 1;
2048 if (!stop_timer)
2049 add_timer(&udc_timer);
2050 }
2051 }
2052 }
2053 }
2054
2055
2056 /* Interrupt handler for data OUT traffic */
udc_data_out_isr(struct udc * dev,int ep_ix)2057 static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
2058 {
2059 irqreturn_t ret_val = IRQ_NONE;
2060 u32 tmp;
2061 struct udc_ep *ep;
2062 struct udc_request *req;
2063 unsigned int count;
2064 struct udc_data_dma *td = NULL;
2065 unsigned dma_done;
2066
2067 VDBG(dev, "ep%d irq\n", ep_ix);
2068 ep = &dev->ep[ep_ix];
2069
2070 tmp = readl(&ep->regs->sts);
2071 if (use_dma) {
2072 /* BNA event ? */
2073 if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2074 DBG(dev, "BNA ep%dout occurred - DESPTR = %x\n",
2075 ep->num, readl(&ep->regs->desptr));
2076 /* clear BNA */
2077 writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
2078 if (!ep->cancel_transfer)
2079 ep->bna_occurred = 1;
2080 else
2081 ep->cancel_transfer = 0;
2082 ret_val = IRQ_HANDLED;
2083 goto finished;
2084 }
2085 }
2086 /* HE event ? */
2087 if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
2088 dev_err(dev->dev, "HE ep%dout occurred\n", ep->num);
2089
2090 /* clear HE */
2091 writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2092 ret_val = IRQ_HANDLED;
2093 goto finished;
2094 }
2095
2096 if (!list_empty(&ep->queue)) {
2097
2098 /* next request */
2099 req = list_entry(ep->queue.next,
2100 struct udc_request, queue);
2101 } else {
2102 req = NULL;
2103 udc_rxfifo_pending = 1;
2104 }
2105 VDBG(dev, "req = %p\n", req);
2106 /* fifo mode */
2107 if (!use_dma) {
2108
2109 /* read fifo */
2110 if (req && udc_rxfifo_read(ep, req)) {
2111 ret_val = IRQ_HANDLED;
2112
2113 /* finish */
2114 complete_req(ep, req, 0);
2115 /* next request */
2116 if (!list_empty(&ep->queue) && !ep->halted) {
2117 req = list_entry(ep->queue.next,
2118 struct udc_request, queue);
2119 } else
2120 req = NULL;
2121 }
2122
2123 /* DMA */
2124 } else if (!ep->cancel_transfer && req) {
2125 ret_val = IRQ_HANDLED;
2126
2127 /* check for DMA done */
2128 if (!use_dma_ppb) {
2129 dma_done = AMD_GETBITS(req->td_data->status,
2130 UDC_DMA_OUT_STS_BS);
2131 /* packet per buffer mode - rx bytes */
2132 } else {
2133 /*
2134 * if BNA occurred then recover desc. from
2135 * BNA dummy desc.
2136 */
2137 if (ep->bna_occurred) {
2138 VDBG(dev, "Recover desc. from BNA dummy\n");
2139 memcpy(req->td_data, ep->bna_dummy_req->td_data,
2140 sizeof(struct udc_data_dma));
2141 ep->bna_occurred = 0;
2142 udc_init_bna_dummy(ep->req);
2143 }
2144 td = udc_get_last_dma_desc(req);
2145 dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
2146 }
2147 if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
2148 /* buffer fill mode - rx bytes */
2149 if (!use_dma_ppb) {
2150 /* received number bytes */
2151 count = AMD_GETBITS(req->td_data->status,
2152 UDC_DMA_OUT_STS_RXBYTES);
2153 VDBG(dev, "rx bytes=%u\n", count);
2154 /* packet per buffer mode - rx bytes */
2155 } else {
2156 VDBG(dev, "req->td_data=%p\n", req->td_data);
2157 VDBG(dev, "last desc = %p\n", td);
2158 /* received number bytes */
2159 if (use_dma_ppb_du) {
2160 /* every desc. counts bytes */
2161 count = udc_get_ppbdu_rxbytes(req);
2162 } else {
2163 /* last desc. counts bytes */
2164 count = AMD_GETBITS(td->status,
2165 UDC_DMA_OUT_STS_RXBYTES);
2166 if (!count && req->req.length
2167 == UDC_DMA_MAXPACKET) {
2168 /*
2169 * on 64k packets the RXBYTES
2170 * field is zero
2171 */
2172 count = UDC_DMA_MAXPACKET;
2173 }
2174 }
2175 VDBG(dev, "last desc rx bytes=%u\n", count);
2176 }
2177
2178 tmp = req->req.length - req->req.actual;
2179 if (count > tmp) {
2180 if ((tmp % ep->ep.maxpacket) != 0) {
2181 DBG(dev, "%s: rx %db, space=%db\n",
2182 ep->ep.name, count, tmp);
2183 req->req.status = -EOVERFLOW;
2184 }
2185 count = tmp;
2186 }
2187 req->req.actual += count;
2188 req->dma_going = 0;
2189 /* complete request */
2190 complete_req(ep, req, 0);
2191
2192 /* next request */
2193 if (!list_empty(&ep->queue) && !ep->halted) {
2194 req = list_entry(ep->queue.next,
2195 struct udc_request,
2196 queue);
2197 /*
2198 * DMA may be already started by udc_queue()
2199 * called by gadget drivers completion
2200 * routine. This happens when queue
2201 * holds one request only.
2202 */
2203 if (req->dma_going == 0) {
2204 /* next dma */
2205 if (prep_dma(ep, req, GFP_ATOMIC) != 0)
2206 goto finished;
2207 /* write desc pointer */
2208 writel(req->td_phys,
2209 &ep->regs->desptr);
2210 req->dma_going = 1;
2211 /* enable DMA */
2212 udc_set_rde(dev);
2213 }
2214 } else {
2215 /*
2216 * implant BNA dummy descriptor to allow
2217 * RXFIFO opening by RDE
2218 */
2219 if (ep->bna_dummy_req) {
2220 /* write desc pointer */
2221 writel(ep->bna_dummy_req->td_phys,
2222 &ep->regs->desptr);
2223 ep->bna_occurred = 0;
2224 }
2225
2226 /*
2227 * schedule timer for setting RDE if queue
2228 * remains empty to allow ep0 packets pass
2229 * through
2230 */
2231 if (set_rde != 0
2232 && !timer_pending(&udc_timer)) {
2233 udc_timer.expires =
2234 jiffies
2235 + HZ*UDC_RDE_TIMER_SECONDS;
2236 set_rde = 1;
2237 if (!stop_timer)
2238 add_timer(&udc_timer);
2239 }
2240 if (ep->num != UDC_EP0OUT_IX)
2241 dev->data_ep_queued = 0;
2242 }
2243
2244 } else {
2245 /*
2246 * RX DMA must be reenabled for each desc in PPBDU mode
2247 * and must be enabled for PPBNDU mode in case of BNA
2248 */
2249 udc_set_rde(dev);
2250 }
2251
2252 } else if (ep->cancel_transfer) {
2253 ret_val = IRQ_HANDLED;
2254 ep->cancel_transfer = 0;
2255 }
2256
2257 /* check pending CNAKS */
2258 if (cnak_pending) {
2259 /* CNAk processing when rxfifo empty only */
2260 if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2261 udc_process_cnak_queue(dev);
2262 }
2263
2264 /* clear OUT bits in ep status */
2265 writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
2266 finished:
2267 return ret_val;
2268 }
2269
2270 /* Interrupt handler for data IN traffic */
udc_data_in_isr(struct udc * dev,int ep_ix)2271 static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
2272 {
2273 irqreturn_t ret_val = IRQ_NONE;
2274 u32 tmp;
2275 u32 epsts;
2276 struct udc_ep *ep;
2277 struct udc_request *req;
2278 struct udc_data_dma *td;
2279 unsigned len;
2280
2281 ep = &dev->ep[ep_ix];
2282
2283 epsts = readl(&ep->regs->sts);
2284 if (use_dma) {
2285 /* BNA ? */
2286 if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
2287 dev_err(dev->dev,
2288 "BNA ep%din occurred - DESPTR = %08lx\n",
2289 ep->num,
2290 (unsigned long) readl(&ep->regs->desptr));
2291
2292 /* clear BNA */
2293 writel(epsts, &ep->regs->sts);
2294 ret_val = IRQ_HANDLED;
2295 goto finished;
2296 }
2297 }
2298 /* HE event ? */
2299 if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
2300 dev_err(dev->dev,
2301 "HE ep%dn occurred - DESPTR = %08lx\n",
2302 ep->num, (unsigned long) readl(&ep->regs->desptr));
2303
2304 /* clear HE */
2305 writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2306 ret_val = IRQ_HANDLED;
2307 goto finished;
2308 }
2309
2310 /* DMA completion */
2311 if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
2312 VDBG(dev, "TDC set- completion\n");
2313 ret_val = IRQ_HANDLED;
2314 if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
2315 req = list_entry(ep->queue.next,
2316 struct udc_request, queue);
2317 /*
2318 * length bytes transferred
2319 * check dma done of last desc. in PPBDU mode
2320 */
2321 if (use_dma_ppb_du) {
2322 td = udc_get_last_dma_desc(req);
2323 if (td)
2324 req->req.actual = req->req.length;
2325 } else {
2326 /* assume all bytes transferred */
2327 req->req.actual = req->req.length;
2328 }
2329
2330 if (req->req.actual == req->req.length) {
2331 /* complete req */
2332 complete_req(ep, req, 0);
2333 req->dma_going = 0;
2334 /* further request available ? */
2335 if (list_empty(&ep->queue)) {
2336 /* disable interrupt */
2337 tmp = readl(&dev->regs->ep_irqmsk);
2338 tmp |= AMD_BIT(ep->num);
2339 writel(tmp, &dev->regs->ep_irqmsk);
2340 }
2341 }
2342 }
2343 ep->cancel_transfer = 0;
2344
2345 }
2346 /*
2347 * status reg has IN bit set and TDC not set (if TDC was handled,
2348 * IN must not be handled (UDC defect) ?
2349 */
2350 if ((epsts & AMD_BIT(UDC_EPSTS_IN))
2351 && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
2352 ret_val = IRQ_HANDLED;
2353 if (!list_empty(&ep->queue)) {
2354 /* next request */
2355 req = list_entry(ep->queue.next,
2356 struct udc_request, queue);
2357 /* FIFO mode */
2358 if (!use_dma) {
2359 /* write fifo */
2360 udc_txfifo_write(ep, &req->req);
2361 len = req->req.length - req->req.actual;
2362 if (len > ep->ep.maxpacket)
2363 len = ep->ep.maxpacket;
2364 req->req.actual += len;
2365 if (req->req.actual == req->req.length
2366 || (len != ep->ep.maxpacket)) {
2367 /* complete req */
2368 complete_req(ep, req, 0);
2369 }
2370 /* DMA */
2371 } else if (req && !req->dma_going) {
2372 VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
2373 req, req->td_data);
2374 if (req->td_data) {
2375
2376 req->dma_going = 1;
2377
2378 /*
2379 * unset L bit of first desc.
2380 * for chain
2381 */
2382 if (use_dma_ppb && req->req.length >
2383 ep->ep.maxpacket) {
2384 req->td_data->status &=
2385 AMD_CLEAR_BIT(
2386 UDC_DMA_IN_STS_L);
2387 }
2388
2389 /* write desc pointer */
2390 writel(req->td_phys, &ep->regs->desptr);
2391
2392 /* set HOST READY */
2393 req->td_data->status =
2394 AMD_ADDBITS(
2395 req->td_data->status,
2396 UDC_DMA_IN_STS_BS_HOST_READY,
2397 UDC_DMA_IN_STS_BS);
2398
2399 /* set poll demand bit */
2400 tmp = readl(&ep->regs->ctl);
2401 tmp |= AMD_BIT(UDC_EPCTL_P);
2402 writel(tmp, &ep->regs->ctl);
2403 }
2404 }
2405
2406 } else if (!use_dma && ep->in) {
2407 /* disable interrupt */
2408 tmp = readl(
2409 &dev->regs->ep_irqmsk);
2410 tmp |= AMD_BIT(ep->num);
2411 writel(tmp,
2412 &dev->regs->ep_irqmsk);
2413 }
2414 }
2415 /* clear status bits */
2416 writel(epsts, &ep->regs->sts);
2417
2418 finished:
2419 return ret_val;
2420
2421 }
2422
2423 /* Interrupt handler for Control OUT traffic */
udc_control_out_isr(struct udc * dev)2424 static irqreturn_t udc_control_out_isr(struct udc *dev)
2425 __releases(dev->lock)
2426 __acquires(dev->lock)
2427 {
2428 irqreturn_t ret_val = IRQ_NONE;
2429 u32 tmp;
2430 int setup_supported;
2431 u32 count;
2432 int set = 0;
2433 struct udc_ep *ep;
2434 struct udc_ep *ep_tmp;
2435
2436 ep = &dev->ep[UDC_EP0OUT_IX];
2437
2438 /* clear irq */
2439 writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
2440
2441 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2442 /* check BNA and clear if set */
2443 if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2444 VDBG(dev, "ep0: BNA set\n");
2445 writel(AMD_BIT(UDC_EPSTS_BNA),
2446 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2447 ep->bna_occurred = 1;
2448 ret_val = IRQ_HANDLED;
2449 goto finished;
2450 }
2451
2452 /* type of data: SETUP or DATA 0 bytes */
2453 tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
2454 VDBG(dev, "data_typ = %x\n", tmp);
2455
2456 /* setup data */
2457 if (tmp == UDC_EPSTS_OUT_SETUP) {
2458 ret_val = IRQ_HANDLED;
2459
2460 ep->dev->stall_ep0in = 0;
2461 dev->waiting_zlp_ack_ep0in = 0;
2462
2463 /* set NAK for EP0_IN */
2464 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2465 tmp |= AMD_BIT(UDC_EPCTL_SNAK);
2466 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2467 dev->ep[UDC_EP0IN_IX].naking = 1;
2468 /* get setup data */
2469 if (use_dma) {
2470
2471 /* clear OUT bits in ep status */
2472 writel(UDC_EPSTS_OUT_CLEAR,
2473 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2474
2475 setup_data.data[0] =
2476 dev->ep[UDC_EP0OUT_IX].td_stp->data12;
2477 setup_data.data[1] =
2478 dev->ep[UDC_EP0OUT_IX].td_stp->data34;
2479 /* set HOST READY */
2480 dev->ep[UDC_EP0OUT_IX].td_stp->status =
2481 UDC_DMA_STP_STS_BS_HOST_READY;
2482 } else {
2483 /* read fifo */
2484 udc_rxfifo_read_dwords(dev, setup_data.data, 2);
2485 }
2486
2487 /* determine direction of control data */
2488 if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
2489 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
2490 /* enable RDE */
2491 udc_ep0_set_rde(dev);
2492 set = 0;
2493 } else {
2494 dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
2495 /*
2496 * implant BNA dummy descriptor to allow RXFIFO opening
2497 * by RDE
2498 */
2499 if (ep->bna_dummy_req) {
2500 /* write desc pointer */
2501 writel(ep->bna_dummy_req->td_phys,
2502 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
2503 ep->bna_occurred = 0;
2504 }
2505
2506 set = 1;
2507 dev->ep[UDC_EP0OUT_IX].naking = 1;
2508 /*
2509 * setup timer for enabling RDE (to not enable
2510 * RXFIFO DMA for data to early)
2511 */
2512 set_rde = 1;
2513 if (!timer_pending(&udc_timer)) {
2514 udc_timer.expires = jiffies +
2515 HZ/UDC_RDE_TIMER_DIV;
2516 if (!stop_timer)
2517 add_timer(&udc_timer);
2518 }
2519 }
2520
2521 /*
2522 * mass storage reset must be processed here because
2523 * next packet may be a CLEAR_FEATURE HALT which would not
2524 * clear the stall bit when no STALL handshake was received
2525 * before (autostall can cause this)
2526 */
2527 if (setup_data.data[0] == UDC_MSCRES_DWORD0
2528 && setup_data.data[1] == UDC_MSCRES_DWORD1) {
2529 DBG(dev, "MSC Reset\n");
2530 /*
2531 * clear stall bits
2532 * only one IN and OUT endpoints are handled
2533 */
2534 ep_tmp = &udc->ep[UDC_EPIN_IX];
2535 udc_set_halt(&ep_tmp->ep, 0);
2536 ep_tmp = &udc->ep[UDC_EPOUT_IX];
2537 udc_set_halt(&ep_tmp->ep, 0);
2538 }
2539
2540 /* call gadget with setup data received */
2541 spin_unlock(&dev->lock);
2542 setup_supported = dev->driver->setup(&dev->gadget,
2543 &setup_data.request);
2544 spin_lock(&dev->lock);
2545
2546 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2547 /* ep0 in returns data (not zlp) on IN phase */
2548 if (setup_supported >= 0 && setup_supported <
2549 UDC_EP0IN_MAXPACKET) {
2550 /* clear NAK by writing CNAK in EP0_IN */
2551 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2552 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2553 dev->ep[UDC_EP0IN_IX].naking = 0;
2554 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
2555
2556 /* if unsupported request then stall */
2557 } else if (setup_supported < 0) {
2558 tmp |= AMD_BIT(UDC_EPCTL_S);
2559 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2560 } else
2561 dev->waiting_zlp_ack_ep0in = 1;
2562
2563
2564 /* clear NAK by writing CNAK in EP0_OUT */
2565 if (!set) {
2566 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2567 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2568 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2569 dev->ep[UDC_EP0OUT_IX].naking = 0;
2570 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
2571 }
2572
2573 if (!use_dma) {
2574 /* clear OUT bits in ep status */
2575 writel(UDC_EPSTS_OUT_CLEAR,
2576 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2577 }
2578
2579 /* data packet 0 bytes */
2580 } else if (tmp == UDC_EPSTS_OUT_DATA) {
2581 /* clear OUT bits in ep status */
2582 writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
2583
2584 /* get setup data: only 0 packet */
2585 if (use_dma) {
2586 /* no req if 0 packet, just reactivate */
2587 if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
2588 VDBG(dev, "ZLP\n");
2589
2590 /* set HOST READY */
2591 dev->ep[UDC_EP0OUT_IX].td->status =
2592 AMD_ADDBITS(
2593 dev->ep[UDC_EP0OUT_IX].td->status,
2594 UDC_DMA_OUT_STS_BS_HOST_READY,
2595 UDC_DMA_OUT_STS_BS);
2596 /* enable RDE */
2597 udc_ep0_set_rde(dev);
2598 ret_val = IRQ_HANDLED;
2599
2600 } else {
2601 /* control write */
2602 ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2603 /* re-program desc. pointer for possible ZLPs */
2604 writel(dev->ep[UDC_EP0OUT_IX].td_phys,
2605 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
2606 /* enable RDE */
2607 udc_ep0_set_rde(dev);
2608 }
2609 } else {
2610
2611 /* received number bytes */
2612 count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2613 count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
2614 /* out data for fifo mode not working */
2615 count = 0;
2616
2617 /* 0 packet or real data ? */
2618 if (count != 0) {
2619 ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2620 } else {
2621 /* dummy read confirm */
2622 readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
2623 ret_val = IRQ_HANDLED;
2624 }
2625 }
2626 }
2627
2628 /* check pending CNAKS */
2629 if (cnak_pending) {
2630 /* CNAk processing when rxfifo empty only */
2631 if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2632 udc_process_cnak_queue(dev);
2633 }
2634
2635 finished:
2636 return ret_val;
2637 }
2638
2639 /* Interrupt handler for Control IN traffic */
udc_control_in_isr(struct udc * dev)2640 static irqreturn_t udc_control_in_isr(struct udc *dev)
2641 {
2642 irqreturn_t ret_val = IRQ_NONE;
2643 u32 tmp;
2644 struct udc_ep *ep;
2645 struct udc_request *req;
2646 unsigned len;
2647
2648 ep = &dev->ep[UDC_EP0IN_IX];
2649
2650 /* clear irq */
2651 writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
2652
2653 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
2654 /* DMA completion */
2655 if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
2656 VDBG(dev, "isr: TDC clear\n");
2657 ret_val = IRQ_HANDLED;
2658
2659 /* clear TDC bit */
2660 writel(AMD_BIT(UDC_EPSTS_TDC),
2661 &dev->ep[UDC_EP0IN_IX].regs->sts);
2662
2663 /* status reg has IN bit set ? */
2664 } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
2665 ret_val = IRQ_HANDLED;
2666
2667 if (ep->dma) {
2668 /* clear IN bit */
2669 writel(AMD_BIT(UDC_EPSTS_IN),
2670 &dev->ep[UDC_EP0IN_IX].regs->sts);
2671 }
2672 if (dev->stall_ep0in) {
2673 DBG(dev, "stall ep0in\n");
2674 /* halt ep0in */
2675 tmp = readl(&ep->regs->ctl);
2676 tmp |= AMD_BIT(UDC_EPCTL_S);
2677 writel(tmp, &ep->regs->ctl);
2678 } else {
2679 if (!list_empty(&ep->queue)) {
2680 /* next request */
2681 req = list_entry(ep->queue.next,
2682 struct udc_request, queue);
2683
2684 if (ep->dma) {
2685 /* write desc pointer */
2686 writel(req->td_phys, &ep->regs->desptr);
2687 /* set HOST READY */
2688 req->td_data->status =
2689 AMD_ADDBITS(
2690 req->td_data->status,
2691 UDC_DMA_STP_STS_BS_HOST_READY,
2692 UDC_DMA_STP_STS_BS);
2693
2694 /* set poll demand bit */
2695 tmp =
2696 readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2697 tmp |= AMD_BIT(UDC_EPCTL_P);
2698 writel(tmp,
2699 &dev->ep[UDC_EP0IN_IX].regs->ctl);
2700
2701 /* all bytes will be transferred */
2702 req->req.actual = req->req.length;
2703
2704 /* complete req */
2705 complete_req(ep, req, 0);
2706
2707 } else {
2708 /* write fifo */
2709 udc_txfifo_write(ep, &req->req);
2710
2711 /* lengh bytes transferred */
2712 len = req->req.length - req->req.actual;
2713 if (len > ep->ep.maxpacket)
2714 len = ep->ep.maxpacket;
2715
2716 req->req.actual += len;
2717 if (req->req.actual == req->req.length
2718 || (len != ep->ep.maxpacket)) {
2719 /* complete req */
2720 complete_req(ep, req, 0);
2721 }
2722 }
2723
2724 }
2725 }
2726 ep->halted = 0;
2727 dev->stall_ep0in = 0;
2728 if (!ep->dma) {
2729 /* clear IN bit */
2730 writel(AMD_BIT(UDC_EPSTS_IN),
2731 &dev->ep[UDC_EP0IN_IX].regs->sts);
2732 }
2733 }
2734
2735 return ret_val;
2736 }
2737
2738
2739 /* Interrupt handler for global device events */
udc_dev_isr(struct udc * dev,u32 dev_irq)2740 static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
2741 __releases(dev->lock)
2742 __acquires(dev->lock)
2743 {
2744 irqreturn_t ret_val = IRQ_NONE;
2745 u32 tmp;
2746 u32 cfg;
2747 struct udc_ep *ep;
2748 u16 i;
2749 u8 udc_csr_epix;
2750
2751 /* SET_CONFIG irq ? */
2752 if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
2753 ret_val = IRQ_HANDLED;
2754
2755 /* read config value */
2756 tmp = readl(&dev->regs->sts);
2757 cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
2758 DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
2759 dev->cur_config = cfg;
2760 dev->set_cfg_not_acked = 1;
2761
2762 /* make usb request for gadget driver */
2763 memset(&setup_data, 0 , sizeof(union udc_setup_data));
2764 setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
2765 setup_data.request.wValue = cpu_to_le16(dev->cur_config);
2766
2767 /* programm the NE registers */
2768 for (i = 0; i < UDC_EP_NUM; i++) {
2769 ep = &dev->ep[i];
2770 if (ep->in) {
2771
2772 /* ep ix in UDC CSR register space */
2773 udc_csr_epix = ep->num;
2774
2775
2776 /* OUT ep */
2777 } else {
2778 /* ep ix in UDC CSR register space */
2779 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2780 }
2781
2782 tmp = readl(&dev->csr->ne[udc_csr_epix]);
2783 /* ep cfg */
2784 tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
2785 UDC_CSR_NE_CFG);
2786 /* write reg */
2787 writel(tmp, &dev->csr->ne[udc_csr_epix]);
2788
2789 /* clear stall bits */
2790 ep->halted = 0;
2791 tmp = readl(&ep->regs->ctl);
2792 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2793 writel(tmp, &ep->regs->ctl);
2794 }
2795 /* call gadget zero with setup data received */
2796 spin_unlock(&dev->lock);
2797 tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2798 spin_lock(&dev->lock);
2799
2800 } /* SET_INTERFACE ? */
2801 if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
2802 ret_val = IRQ_HANDLED;
2803
2804 dev->set_cfg_not_acked = 1;
2805 /* read interface and alt setting values */
2806 tmp = readl(&dev->regs->sts);
2807 dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
2808 dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
2809
2810 /* make usb request for gadget driver */
2811 memset(&setup_data, 0 , sizeof(union udc_setup_data));
2812 setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
2813 setup_data.request.bRequestType = USB_RECIP_INTERFACE;
2814 setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
2815 setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
2816
2817 DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2818 dev->cur_alt, dev->cur_intf);
2819
2820 /* programm the NE registers */
2821 for (i = 0; i < UDC_EP_NUM; i++) {
2822 ep = &dev->ep[i];
2823 if (ep->in) {
2824
2825 /* ep ix in UDC CSR register space */
2826 udc_csr_epix = ep->num;
2827
2828
2829 /* OUT ep */
2830 } else {
2831 /* ep ix in UDC CSR register space */
2832 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2833 }
2834
2835 /* UDC CSR reg */
2836 /* set ep values */
2837 tmp = readl(&dev->csr->ne[udc_csr_epix]);
2838 /* ep interface */
2839 tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
2840 UDC_CSR_NE_INTF);
2841 /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2842 /* ep alt */
2843 tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
2844 UDC_CSR_NE_ALT);
2845 /* write reg */
2846 writel(tmp, &dev->csr->ne[udc_csr_epix]);
2847
2848 /* clear stall bits */
2849 ep->halted = 0;
2850 tmp = readl(&ep->regs->ctl);
2851 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2852 writel(tmp, &ep->regs->ctl);
2853 }
2854
2855 /* call gadget zero with setup data received */
2856 spin_unlock(&dev->lock);
2857 tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2858 spin_lock(&dev->lock);
2859
2860 } /* USB reset */
2861 if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
2862 DBG(dev, "USB Reset interrupt\n");
2863 ret_val = IRQ_HANDLED;
2864
2865 /* allow soft reset when suspend occurs */
2866 soft_reset_occured = 0;
2867
2868 dev->waiting_zlp_ack_ep0in = 0;
2869 dev->set_cfg_not_acked = 0;
2870
2871 /* mask not needed interrupts */
2872 udc_mask_unused_interrupts(dev);
2873
2874 /* call gadget to resume and reset configs etc. */
2875 spin_unlock(&dev->lock);
2876 if (dev->sys_suspended && dev->driver->resume) {
2877 dev->driver->resume(&dev->gadget);
2878 dev->sys_suspended = 0;
2879 }
2880 usb_gadget_udc_reset(&dev->gadget, dev->driver);
2881 spin_lock(&dev->lock);
2882
2883 /* disable ep0 to empty req queue */
2884 empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2885 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2886
2887 /* soft reset when rxfifo not empty */
2888 tmp = readl(&dev->regs->sts);
2889 if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2890 && !soft_reset_after_usbreset_occured) {
2891 udc_soft_reset(dev);
2892 soft_reset_after_usbreset_occured++;
2893 }
2894
2895 /*
2896 * DMA reset to kill potential old DMA hw hang,
2897 * POLL bit is already reset by ep_init() through
2898 * disconnect()
2899 */
2900 DBG(dev, "DMA machine reset\n");
2901 tmp = readl(&dev->regs->cfg);
2902 writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
2903 writel(tmp, &dev->regs->cfg);
2904
2905 /* put into initial config */
2906 udc_basic_init(dev);
2907
2908 /* enable device setup interrupts */
2909 udc_enable_dev_setup_interrupts(dev);
2910
2911 /* enable suspend interrupt */
2912 tmp = readl(&dev->regs->irqmsk);
2913 tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
2914 writel(tmp, &dev->regs->irqmsk);
2915
2916 } /* USB suspend */
2917 if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
2918 DBG(dev, "USB Suspend interrupt\n");
2919 ret_val = IRQ_HANDLED;
2920 if (dev->driver->suspend) {
2921 spin_unlock(&dev->lock);
2922 dev->sys_suspended = 1;
2923 dev->driver->suspend(&dev->gadget);
2924 spin_lock(&dev->lock);
2925 }
2926 } /* new speed ? */
2927 if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
2928 DBG(dev, "ENUM interrupt\n");
2929 ret_val = IRQ_HANDLED;
2930 soft_reset_after_usbreset_occured = 0;
2931
2932 /* disable ep0 to empty req queue */
2933 empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2934 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2935
2936 /* link up all endpoints */
2937 udc_setup_endpoints(dev);
2938 dev_info(dev->dev, "Connect: %s\n",
2939 usb_speed_string(dev->gadget.speed));
2940
2941 /* init ep 0 */
2942 activate_control_endpoints(dev);
2943
2944 /* enable ep0 interrupts */
2945 udc_enable_ep0_interrupts(dev);
2946 }
2947 /* session valid change interrupt */
2948 if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
2949 DBG(dev, "USB SVC interrupt\n");
2950 ret_val = IRQ_HANDLED;
2951
2952 /* check that session is not valid to detect disconnect */
2953 tmp = readl(&dev->regs->sts);
2954 if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
2955 /* disable suspend interrupt */
2956 tmp = readl(&dev->regs->irqmsk);
2957 tmp |= AMD_BIT(UDC_DEVINT_US);
2958 writel(tmp, &dev->regs->irqmsk);
2959 DBG(dev, "USB Disconnect (session valid low)\n");
2960 /* cleanup on disconnect */
2961 usb_disconnect(udc);
2962 }
2963
2964 }
2965
2966 return ret_val;
2967 }
2968
2969 /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
udc_irq(int irq,void * pdev)2970 irqreturn_t udc_irq(int irq, void *pdev)
2971 {
2972 struct udc *dev = pdev;
2973 u32 reg;
2974 u16 i;
2975 u32 ep_irq;
2976 irqreturn_t ret_val = IRQ_NONE;
2977
2978 spin_lock(&dev->lock);
2979
2980 /* check for ep irq */
2981 reg = readl(&dev->regs->ep_irqsts);
2982 if (reg) {
2983 if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
2984 ret_val |= udc_control_out_isr(dev);
2985 if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
2986 ret_val |= udc_control_in_isr(dev);
2987
2988 /*
2989 * data endpoint
2990 * iterate ep's
2991 */
2992 for (i = 1; i < UDC_EP_NUM; i++) {
2993 ep_irq = 1 << i;
2994 if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
2995 continue;
2996
2997 /* clear irq status */
2998 writel(ep_irq, &dev->regs->ep_irqsts);
2999
3000 /* irq for out ep ? */
3001 if (i > UDC_EPIN_NUM)
3002 ret_val |= udc_data_out_isr(dev, i);
3003 else
3004 ret_val |= udc_data_in_isr(dev, i);
3005 }
3006
3007 }
3008
3009
3010 /* check for dev irq */
3011 reg = readl(&dev->regs->irqsts);
3012 if (reg) {
3013 /* clear irq */
3014 writel(reg, &dev->regs->irqsts);
3015 ret_val |= udc_dev_isr(dev, reg);
3016 }
3017
3018
3019 spin_unlock(&dev->lock);
3020 return ret_val;
3021 }
3022 EXPORT_SYMBOL_GPL(udc_irq);
3023
3024 /* Tears down device */
gadget_release(struct device * pdev)3025 void gadget_release(struct device *pdev)
3026 {
3027 struct amd5536udc *dev = dev_get_drvdata(pdev);
3028 kfree(dev);
3029 }
3030 EXPORT_SYMBOL_GPL(gadget_release);
3031
3032 /* Cleanup on device remove */
udc_remove(struct udc * dev)3033 void udc_remove(struct udc *dev)
3034 {
3035 /* remove timer */
3036 stop_timer++;
3037 if (timer_pending(&udc_timer))
3038 wait_for_completion(&on_exit);
3039 del_timer_sync(&udc_timer);
3040 /* remove pollstall timer */
3041 stop_pollstall_timer++;
3042 if (timer_pending(&udc_pollstall_timer))
3043 wait_for_completion(&on_pollstall_exit);
3044 del_timer_sync(&udc_pollstall_timer);
3045 udc = NULL;
3046 }
3047 EXPORT_SYMBOL_GPL(udc_remove);
3048
3049 /* free all the dma pools */
free_dma_pools(struct udc * dev)3050 void free_dma_pools(struct udc *dev)
3051 {
3052 dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td,
3053 dev->ep[UDC_EP0OUT_IX].td_phys);
3054 dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td_stp,
3055 dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3056 dma_pool_destroy(dev->stp_requests);
3057 dma_pool_destroy(dev->data_requests);
3058 }
3059 EXPORT_SYMBOL_GPL(free_dma_pools);
3060
3061 /* create dma pools on init */
init_dma_pools(struct udc * dev)3062 int init_dma_pools(struct udc *dev)
3063 {
3064 struct udc_stp_dma *td_stp;
3065 struct udc_data_dma *td_data;
3066 int retval;
3067
3068 /* consistent DMA mode setting ? */
3069 if (use_dma_ppb) {
3070 use_dma_bufferfill_mode = 0;
3071 } else {
3072 use_dma_ppb_du = 0;
3073 use_dma_bufferfill_mode = 1;
3074 }
3075
3076 /* DMA setup */
3077 dev->data_requests = dma_pool_create("data_requests", dev->dev,
3078 sizeof(struct udc_data_dma), 0, 0);
3079 if (!dev->data_requests) {
3080 DBG(dev, "can't get request data pool\n");
3081 return -ENOMEM;
3082 }
3083
3084 /* EP0 in dma regs = dev control regs */
3085 dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
3086
3087 /* dma desc for setup data */
3088 dev->stp_requests = dma_pool_create("setup requests", dev->dev,
3089 sizeof(struct udc_stp_dma), 0, 0);
3090 if (!dev->stp_requests) {
3091 DBG(dev, "can't get stp request pool\n");
3092 retval = -ENOMEM;
3093 goto err_create_dma_pool;
3094 }
3095 /* setup */
3096 td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3097 &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3098 if (!td_stp) {
3099 retval = -ENOMEM;
3100 goto err_alloc_dma;
3101 }
3102 dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
3103
3104 /* data: 0 packets !? */
3105 td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3106 &dev->ep[UDC_EP0OUT_IX].td_phys);
3107 if (!td_data) {
3108 retval = -ENOMEM;
3109 goto err_alloc_phys;
3110 }
3111 dev->ep[UDC_EP0OUT_IX].td = td_data;
3112 return 0;
3113
3114 err_alloc_phys:
3115 dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td_stp,
3116 dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3117 err_alloc_dma:
3118 dma_pool_destroy(dev->stp_requests);
3119 dev->stp_requests = NULL;
3120 err_create_dma_pool:
3121 dma_pool_destroy(dev->data_requests);
3122 dev->data_requests = NULL;
3123 return retval;
3124 }
3125 EXPORT_SYMBOL_GPL(init_dma_pools);
3126
3127 /* general probe */
udc_probe(struct udc * dev)3128 int udc_probe(struct udc *dev)
3129 {
3130 char tmp[128];
3131 u32 reg;
3132 int retval;
3133
3134 /* device struct setup */
3135 dev->gadget.ops = &udc_ops;
3136
3137 dev_set_name(&dev->gadget.dev, "gadget");
3138 dev->gadget.name = name;
3139 dev->gadget.max_speed = USB_SPEED_HIGH;
3140
3141 /* init registers, interrupts, ... */
3142 startup_registers(dev);
3143
3144 dev_info(dev->dev, "%s\n", mod_desc);
3145
3146 snprintf(tmp, sizeof(tmp), "%d", dev->irq);
3147
3148 /* Print this device info for AMD chips only*/
3149 if (dev->chiprev == UDC_HSA0_REV ||
3150 dev->chiprev == UDC_HSB1_REV) {
3151 dev_info(dev->dev, "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3152 tmp, dev->phys_addr, dev->chiprev,
3153 (dev->chiprev == UDC_HSA0_REV) ?
3154 "A0" : "B1");
3155 strcpy(tmp, UDC_DRIVER_VERSION_STRING);
3156 if (dev->chiprev == UDC_HSA0_REV) {
3157 dev_err(dev->dev, "chip revision is A0; too old\n");
3158 retval = -ENODEV;
3159 goto finished;
3160 }
3161 dev_info(dev->dev,
3162 "driver version: %s(for Geode5536 B1)\n", tmp);
3163 }
3164
3165 udc = dev;
3166
3167 retval = usb_add_gadget_udc_release(udc->dev, &dev->gadget,
3168 gadget_release);
3169 if (retval)
3170 goto finished;
3171
3172 /* timer init */
3173 timer_setup(&udc_timer, udc_timer_function, 0);
3174 timer_setup(&udc_pollstall_timer, udc_pollstall_timer_function, 0);
3175
3176 /* set SD */
3177 reg = readl(&dev->regs->ctl);
3178 reg |= AMD_BIT(UDC_DEVCTL_SD);
3179 writel(reg, &dev->regs->ctl);
3180
3181 /* print dev register info */
3182 print_regs(dev);
3183
3184 return 0;
3185
3186 finished:
3187 return retval;
3188 }
3189 EXPORT_SYMBOL_GPL(udc_probe);
3190
3191 MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
3192 MODULE_AUTHOR("Thomas Dahlmann");
3193 MODULE_LICENSE("GPL");
3194