• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <scsi/scsi_driver.h>
20 #include "ufshcd.h"
21 #include "ufs_quirks.h"
22 #include "unipro.h"
23 #include "ufs-sysfs.h"
24 #include "ufs-debugfs.h"
25 #include "ufs-fault-injection.h"
26 #include "ufs_bsg.h"
27 #include "ufshcd-crypto.h"
28 #include "ufshpb.h"
29 #include <asm/unaligned.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/ufs.h>
33 
34 #undef CREATE_TRACE_POINTS
35 #include <trace/hooks/ufshcd.h>
36 
37 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
38 				 UTP_TASK_REQ_COMPL |\
39 				 UFSHCD_ERROR_MASK)
40 /* UIC command timeout, unit: ms */
41 #define UIC_CMD_TIMEOUT	5000
42 
43 /* NOP OUT retries waiting for NOP IN response */
44 #define NOP_OUT_RETRIES    10
45 /* Timeout after 50 msecs if NOP OUT hangs without response */
46 #define NOP_OUT_TIMEOUT    50 /* msecs */
47 
48 /* Query request retries */
49 #define QUERY_REQ_RETRIES 3
50 /* Query request timeout */
51 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
52 
53 /* Task management command timeout */
54 #define TM_CMD_TIMEOUT	100 /* msecs */
55 
56 /* maximum number of retries for a general UIC command  */
57 #define UFS_UIC_COMMAND_RETRIES 3
58 
59 /* maximum number of link-startup retries */
60 #define DME_LINKSTARTUP_RETRIES 3
61 
62 /* Maximum retries for Hibern8 enter */
63 #define UIC_HIBERN8_ENTER_RETRIES 3
64 
65 /* maximum number of reset retries before giving up */
66 #define MAX_HOST_RESET_RETRIES 5
67 
68 /* Maximum number of error handler retries before giving up */
69 #define MAX_ERR_HANDLER_RETRIES 5
70 
71 /* Expose the flag value from utp_upiu_query.value */
72 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
73 
74 /* Interrupt aggregation default timeout, unit: 40us */
75 #define INT_AGGR_DEF_TO	0x02
76 
77 /* default delay of autosuspend: 2000 ms */
78 #define RPM_AUTOSUSPEND_DELAY_MS 2000
79 
80 /* Default delay of RPM device flush delayed work */
81 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
82 
83 /* Default value of wait time before gating device ref clock */
84 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
85 
86 /* Polling time to wait for fDeviceInit */
87 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
88 
89 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
90 	({                                                              \
91 		int _ret;                                               \
92 		if (_on)                                                \
93 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
94 		else                                                    \
95 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
96 		_ret;                                                   \
97 	})
98 
99 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
100 	size_t __len = (len);                                            \
101 	print_hex_dump(KERN_ERR, prefix_str,                             \
102 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
103 		       16, 4, buf, __len, false);                        \
104 } while (0)
105 
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)106 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
107 		     const char *prefix)
108 {
109 	u32 *regs;
110 	size_t pos;
111 
112 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
113 		return -EINVAL;
114 
115 	regs = kzalloc(len, GFP_ATOMIC);
116 	if (!regs)
117 		return -ENOMEM;
118 
119 	for (pos = 0; pos < len; pos += 4) {
120 		if (offset == 0 &&
121 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
122 		    pos <= REG_UIC_ERROR_CODE_DME)
123 			continue;
124 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
125 	}
126 
127 	ufshcd_hex_dump(prefix, regs, len);
128 	kfree(regs);
129 
130 	return 0;
131 }
132 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
133 
134 enum {
135 	UFSHCD_MAX_CHANNEL	= 0,
136 	UFSHCD_MAX_ID		= 1,
137 	UFSHCD_NUM_RESERVED	= 1,
138 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
139 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
140 };
141 
142 static const char *const ufshcd_state_name[] = {
143 	[UFSHCD_STATE_RESET]			= "reset",
144 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
145 	[UFSHCD_STATE_ERROR]			= "error",
146 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
147 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
148 };
149 
150 static bool system_suspending;
151 
152 /* UFSHCD error handling flags */
153 enum {
154 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
155 };
156 
157 /* UFSHCD UIC layer error flags */
158 enum {
159 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
160 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
161 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
162 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
163 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
164 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
165 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
166 };
167 
168 #define ufshcd_set_eh_in_progress(h) \
169 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
170 #define ufshcd_eh_in_progress(h) \
171 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
172 #define ufshcd_clear_eh_in_progress(h) \
173 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
174 
175 struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
176 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
177 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
178 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
179 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
180 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
181 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
182 	/*
183 	 * For DeepSleep, the link is first put in hibern8 and then off.
184 	 * Leaving the link in hibern8 is not supported.
185 	 */
186 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
187 };
188 
189 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)190 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
191 {
192 	return ufs_pm_lvl_states[lvl].dev_state;
193 }
194 
195 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)196 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
197 {
198 	return ufs_pm_lvl_states[lvl].link_state;
199 }
200 
201 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)202 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
203 					enum uic_link_state link_state)
204 {
205 	enum ufs_pm_level lvl;
206 
207 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
208 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
209 			(ufs_pm_lvl_states[lvl].link_state == link_state))
210 			return lvl;
211 	}
212 
213 	/* if no match found, return the level 0 */
214 	return UFS_PM_LVL_0;
215 }
216 
217 static struct ufs_dev_fix ufs_fixups[] = {
218 	/* UFS cards deviations table */
219 	UFS_FIX(UFS_VENDOR_MICRON, UFS_ANY_MODEL,
220 		UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
221 		UFS_DEVICE_QUIRK_SWAP_L2P_ENTRY_FOR_HPB_READ),
222 	UFS_FIX(UFS_VENDOR_SAMSUNG, UFS_ANY_MODEL,
223 		UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
224 		UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
225 		UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS),
226 	UFS_FIX(UFS_VENDOR_SKHYNIX, UFS_ANY_MODEL,
227 		UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME),
228 	UFS_FIX(UFS_VENDOR_SKHYNIX, "hB8aL1" /*H28U62301AMR*/,
229 		UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME),
230 	UFS_FIX(UFS_VENDOR_TOSHIBA, UFS_ANY_MODEL,
231 		UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM),
232 	UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9C8KBADG",
233 		UFS_DEVICE_QUIRK_PA_TACTIVATE),
234 	UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9D8KBADG",
235 		UFS_DEVICE_QUIRK_PA_TACTIVATE),
236 	END_FIX
237 };
238 
239 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
240 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
241 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
242 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
243 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
244 static void ufshcd_hba_exit(struct ufs_hba *hba);
245 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
246 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
247 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
248 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
249 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
250 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
251 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
252 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
253 static irqreturn_t ufshcd_intr(int irq, void *__hba);
254 static int ufshcd_change_power_mode(struct ufs_hba *hba,
255 			     struct ufs_pa_layer_attr *pwr_mode);
256 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
257 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
258 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
259 					 struct ufs_vreg *vreg);
260 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag);
261 static void ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set);
262 static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable);
263 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
264 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
265 
ufshcd_enable_irq(struct ufs_hba * hba)266 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
267 {
268 	if (!hba->is_irq_enabled) {
269 		enable_irq(hba->irq);
270 		hba->is_irq_enabled = true;
271 	}
272 }
273 
ufshcd_disable_irq(struct ufs_hba * hba)274 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
275 {
276 	if (hba->is_irq_enabled) {
277 		disable_irq(hba->irq);
278 		hba->is_irq_enabled = false;
279 	}
280 }
281 
ufshcd_wb_config(struct ufs_hba * hba)282 static inline void ufshcd_wb_config(struct ufs_hba *hba)
283 {
284 	if (!ufshcd_is_wb_allowed(hba))
285 		return;
286 
287 	ufshcd_wb_toggle(hba, true);
288 
289 	ufshcd_wb_toggle_flush_during_h8(hba, true);
290 	if (!(hba->quirks & UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL))
291 		ufshcd_wb_toggle_flush(hba, true);
292 }
293 
ufshcd_scsi_unblock_requests(struct ufs_hba * hba)294 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
295 {
296 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
297 		scsi_unblock_requests(hba->host);
298 }
299 
ufshcd_scsi_block_requests(struct ufs_hba * hba)300 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
301 {
302 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
303 		scsi_block_requests(hba->host);
304 }
305 
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)306 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
307 				      enum ufs_trace_str_t str_t)
308 {
309 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
310 	struct utp_upiu_header *header;
311 
312 	if (!trace_ufshcd_upiu_enabled())
313 		return;
314 
315 	if (str_t == UFS_CMD_SEND)
316 		header = &rq->header;
317 	else
318 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
319 
320 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
321 			  UFS_TSF_CDB);
322 }
323 
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,enum ufs_trace_str_t str_t,struct utp_upiu_req * rq_rsp)324 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
325 					enum ufs_trace_str_t str_t,
326 					struct utp_upiu_req *rq_rsp)
327 {
328 	if (!trace_ufshcd_upiu_enabled())
329 		return;
330 
331 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
332 			  &rq_rsp->qr, UFS_TSF_OSF);
333 }
334 
335 #undef EM
336 #undef EMe
337 #define EM(label, string)  [label] = string,
338 #define EMe(label, string) [label] = string
339 
340 static const char *str_t_to_str[] = {
341 	UFS_CMD_TRACE_STRINGS
342 };
343 
344 #undef EMe
345 #undef EM
346 
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)347 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
348 				     enum ufs_trace_str_t str_t)
349 {
350 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
351 
352 	if (!trace_ufshcd_upiu_enabled())
353 		return;
354 
355 	trace_android_vh_ufs_send_tm_command(hba, tag, str_t_to_str[str_t]);
356 	if (str_t == UFS_TM_SEND)
357 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
358 				  &descp->upiu_req.req_header,
359 				  &descp->upiu_req.input_param1,
360 				  UFS_TSF_TM_INPUT);
361 	else
362 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
363 				  &descp->upiu_rsp.rsp_header,
364 				  &descp->upiu_rsp.output_param1,
365 				  UFS_TSF_TM_OUTPUT);
366 }
367 
ufshcd_add_uic_command_trace(struct ufs_hba * hba,struct uic_command * ucmd,enum ufs_trace_str_t str_t)368 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
369 					 struct uic_command *ucmd,
370 					 enum ufs_trace_str_t str_t)
371 {
372 	u32 cmd;
373 
374 	trace_android_vh_ufs_send_uic_command(hba, ucmd, str_t_to_str[str_t]);
375 
376 	if (!trace_ufshcd_uic_command_enabled())
377 		return;
378 
379 	if (str_t == UFS_CMD_SEND)
380 		cmd = ucmd->command;
381 	else
382 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
383 
384 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
385 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
386 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
387 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
388 }
389 
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)390 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
391 				     enum ufs_trace_str_t str_t)
392 {
393 	u64 lba = 0;
394 	u8 opcode = 0, group_id = 0;
395 	u32 intr, doorbell;
396 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
397 	struct scsi_cmnd *cmd = lrbp->cmd;
398 	struct request *rq = scsi_cmd_to_rq(cmd);
399 	int transfer_len = -1;
400 
401 	if (!cmd)
402 		return;
403 
404 	/* trace UPIU also */
405 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
406 	if (!trace_ufshcd_command_enabled())
407 		return;
408 
409 	opcode = cmd->cmnd[0];
410 
411 	if (opcode == READ_10 || opcode == WRITE_10) {
412 		/*
413 		 * Currently we only fully trace read(10) and write(10) commands
414 		 */
415 		transfer_len =
416 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
417 		lba = scsi_get_lba(cmd);
418 		if (opcode == WRITE_10)
419 			group_id = lrbp->cmd->cmnd[6];
420 	} else if (opcode == UNMAP) {
421 		/*
422 		 * The number of Bytes to be unmapped beginning with the lba.
423 		 */
424 		transfer_len = blk_rq_bytes(rq);
425 		lba = scsi_get_lba(cmd);
426 	}
427 
428 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
429 	doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
430 	trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
431 			doorbell, transfer_len, intr, lba, opcode, group_id);
432 }
433 
ufshcd_print_clk_freqs(struct ufs_hba * hba)434 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
435 {
436 	struct ufs_clk_info *clki;
437 	struct list_head *head = &hba->clk_list_head;
438 
439 	if (list_empty(head))
440 		return;
441 
442 	list_for_each_entry(clki, head, list) {
443 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
444 				clki->max_freq)
445 			dev_err(hba->dev, "clk: %s, rate: %u\n",
446 					clki->name, clki->curr_freq);
447 	}
448 }
449 
ufshcd_print_evt(struct ufs_hba * hba,u32 id,char * err_name)450 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
451 			     char *err_name)
452 {
453 	int i;
454 	bool found = false;
455 	struct ufs_event_hist *e;
456 
457 	if (id >= UFS_EVT_CNT)
458 		return;
459 
460 	e = &hba->ufs_stats.event[id];
461 
462 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
463 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
464 
465 		if (e->tstamp[p] == 0)
466 			continue;
467 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
468 			e->val[p], ktime_to_us(e->tstamp[p]));
469 		found = true;
470 	}
471 
472 	if (!found)
473 		dev_err(hba->dev, "No record of %s\n", err_name);
474 	else
475 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
476 }
477 
ufshcd_print_evt_hist(struct ufs_hba * hba)478 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
479 {
480 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
481 
482 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
483 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
484 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
485 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
486 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
487 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
488 			 "auto_hibern8_err");
489 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
490 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
491 			 "link_startup_fail");
492 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
493 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
494 			 "suspend_fail");
495 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
496 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
497 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
498 
499 	ufshcd_vops_dbg_register_dump(hba);
500 }
501 
502 static
ufshcd_print_trs(struct ufs_hba * hba,unsigned long bitmap,bool pr_prdt)503 void ufshcd_print_trs(struct ufs_hba *hba, unsigned long bitmap, bool pr_prdt)
504 {
505 	struct ufshcd_lrb *lrbp;
506 	int prdt_length;
507 	int tag;
508 
509 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
510 		lrbp = &hba->lrb[tag];
511 
512 		dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
513 				tag, ktime_to_us(lrbp->issue_time_stamp));
514 		dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
515 				tag, ktime_to_us(lrbp->compl_time_stamp));
516 		dev_err(hba->dev,
517 			"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
518 			tag, (u64)lrbp->utrd_dma_addr);
519 
520 		ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
521 				sizeof(struct utp_transfer_req_desc));
522 		dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
523 			(u64)lrbp->ucd_req_dma_addr);
524 		ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
525 				sizeof(struct utp_upiu_req));
526 		dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
527 			(u64)lrbp->ucd_rsp_dma_addr);
528 		ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
529 				sizeof(struct utp_upiu_rsp));
530 
531 		prdt_length = le16_to_cpu(
532 			lrbp->utr_descriptor_ptr->prd_table_length);
533 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
534 			prdt_length /= hba->sg_entry_size;
535 
536 		dev_err(hba->dev,
537 			"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
538 			tag, prdt_length,
539 			(u64)lrbp->ucd_prdt_dma_addr);
540 
541 		if (pr_prdt)
542 			ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
543 				hba->sg_entry_size * prdt_length);
544 	}
545 }
546 
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)547 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
548 {
549 	int tag;
550 
551 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
552 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
553 
554 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
555 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
556 	}
557 }
558 
ufshcd_print_host_state(struct ufs_hba * hba)559 static void ufshcd_print_host_state(struct ufs_hba *hba)
560 {
561 	struct scsi_device *sdev_ufs = hba->sdev_ufs_device;
562 
563 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
564 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
565 		hba->outstanding_reqs, hba->outstanding_tasks);
566 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
567 		hba->saved_err, hba->saved_uic_err);
568 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
569 		hba->curr_dev_pwr_mode, hba->uic_link_state);
570 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
571 		hba->pm_op_in_progress, hba->is_sys_suspended);
572 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
573 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
574 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
575 	dev_err(hba->dev,
576 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
577 		ktime_to_us(hba->ufs_stats.last_hibern8_exit_tstamp),
578 		hba->ufs_stats.hibern8_exit_cnt);
579 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
580 		ktime_to_us(hba->ufs_stats.last_intr_ts),
581 		hba->ufs_stats.last_intr_status);
582 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
583 		hba->eh_flags, hba->req_abort_count);
584 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
585 		hba->ufs_version, hba->capabilities, hba->caps);
586 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
587 		hba->dev_quirks);
588 	if (sdev_ufs)
589 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
590 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
591 
592 	ufshcd_print_clk_freqs(hba);
593 }
594 
595 /**
596  * ufshcd_print_pwr_info - print power params as saved in hba
597  * power info
598  * @hba: per-adapter instance
599  */
ufshcd_print_pwr_info(struct ufs_hba * hba)600 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
601 {
602 	static const char * const names[] = {
603 		"INVALID MODE",
604 		"FAST MODE",
605 		"SLOW_MODE",
606 		"INVALID MODE",
607 		"FASTAUTO_MODE",
608 		"SLOWAUTO_MODE",
609 		"INVALID MODE",
610 	};
611 
612 	/*
613 	 * Using dev_dbg to avoid messages during runtime PM to avoid
614 	 * never-ending cycles of messages written back to storage by user space
615 	 * causing runtime resume, causing more messages and so on.
616 	 */
617 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
618 		 __func__,
619 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
620 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
621 		 names[hba->pwr_info.pwr_rx],
622 		 names[hba->pwr_info.pwr_tx],
623 		 hba->pwr_info.hs_rate);
624 }
625 
ufshcd_device_reset(struct ufs_hba * hba)626 static void ufshcd_device_reset(struct ufs_hba *hba)
627 {
628 	int err;
629 
630 	err = ufshcd_vops_device_reset(hba);
631 
632 	if (!err) {
633 		ufshcd_set_ufs_dev_active(hba);
634 		if (ufshcd_is_wb_allowed(hba)) {
635 			hba->dev_info.wb_enabled = false;
636 			hba->dev_info.wb_buf_flush_enabled = false;
637 		}
638 	}
639 	if (err != -EOPNOTSUPP)
640 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
641 }
642 
ufshcd_delay_us(unsigned long us,unsigned long tolerance)643 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
644 {
645 	if (!us)
646 		return;
647 
648 	if (us < 10)
649 		udelay(us);
650 	else
651 		usleep_range(us, us + tolerance);
652 }
653 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
654 
655 /**
656  * ufshcd_wait_for_register - wait for register value to change
657  * @hba: per-adapter interface
658  * @reg: mmio register offset
659  * @mask: mask to apply to the read register value
660  * @val: value to wait for
661  * @interval_us: polling interval in microseconds
662  * @timeout_ms: timeout in milliseconds
663  *
664  * Return:
665  * -ETIMEDOUT on error, zero on success.
666  */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)667 int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
668 				u32 val, unsigned long interval_us,
669 				unsigned long timeout_ms)
670 {
671 	int err = 0;
672 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
673 
674 	/* ignore bits that we don't intend to wait on */
675 	val = val & mask;
676 
677 	while ((ufshcd_readl(hba, reg) & mask) != val) {
678 		usleep_range(interval_us, interval_us + 50);
679 		if (time_after(jiffies, timeout)) {
680 			if ((ufshcd_readl(hba, reg) & mask) != val)
681 				err = -ETIMEDOUT;
682 			break;
683 		}
684 	}
685 
686 	return err;
687 }
688 
689 /**
690  * ufshcd_get_intr_mask - Get the interrupt bit mask
691  * @hba: Pointer to adapter instance
692  *
693  * Returns interrupt bit mask per version
694  */
ufshcd_get_intr_mask(struct ufs_hba * hba)695 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
696 {
697 	if (hba->ufs_version == ufshci_version(1, 0))
698 		return INTERRUPT_MASK_ALL_VER_10;
699 	if (hba->ufs_version <= ufshci_version(2, 0))
700 		return INTERRUPT_MASK_ALL_VER_11;
701 
702 	return INTERRUPT_MASK_ALL_VER_21;
703 }
704 
705 /**
706  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
707  * @hba: Pointer to adapter instance
708  *
709  * Returns UFSHCI version supported by the controller
710  */
ufshcd_get_ufs_version(struct ufs_hba * hba)711 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
712 {
713 	u32 ufshci_ver;
714 
715 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
716 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
717 	else
718 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
719 
720 	/*
721 	 * UFSHCI v1.x uses a different version scheme, in order
722 	 * to allow the use of comparisons with the ufshci_version
723 	 * function, we convert it to the same scheme as ufs 2.0+.
724 	 */
725 	if (ufshci_ver & 0x00010000)
726 		return ufshci_version(1, ufshci_ver & 0x00000100);
727 
728 	return ufshci_ver;
729 }
730 
731 /**
732  * ufshcd_is_device_present - Check if any device connected to
733  *			      the host controller
734  * @hba: pointer to adapter instance
735  *
736  * Returns true if device present, false if no device detected
737  */
ufshcd_is_device_present(struct ufs_hba * hba)738 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
739 {
740 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) &
741 						DEVICE_PRESENT) ? true : false;
742 }
743 
744 /**
745  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
746  * @lrbp: pointer to local command reference block
747  *
748  * This function is used to get the OCS field from UTRD
749  * Returns the OCS field in the UTRD
750  */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp)751 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp)
752 {
753 	return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS;
754 }
755 
756 /**
757  * ufshcd_utrl_clear() - Clear requests from the controller request list.
758  * @hba: per adapter instance
759  * @mask: mask with one bit set for each request to be cleared
760  */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 mask)761 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
762 {
763 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
764 		mask = ~mask;
765 	/*
766 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
767 	 * Register (UTRLCLR): This field is bit significant. Each bit
768 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
769 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
770 	 * by host software to indicate to the host controller that a transfer
771 	 * request slot is cleared. The host controller
772 	 * shall free up any resources associated to the request slot
773 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
774 	 * host software indicates no change to request slots by setting the
775 	 * associated bits in this field to ‘1’. Bits in this field shall only
776 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
777 	 */
778 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
779 }
780 
781 /**
782  * ufshcd_utmrl_clear - Clear a bit in UTRMLCLR register
783  * @hba: per adapter instance
784  * @pos: position of the bit to be cleared
785  */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)786 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
787 {
788 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
789 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
790 	else
791 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
792 }
793 
794 /**
795  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
796  * @reg: Register value of host controller status
797  *
798  * Returns integer, 0 on Success and positive value if failed
799  */
ufshcd_get_lists_status(u32 reg)800 static inline int ufshcd_get_lists_status(u32 reg)
801 {
802 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
803 }
804 
805 /**
806  * ufshcd_get_uic_cmd_result - Get the UIC command result
807  * @hba: Pointer to adapter instance
808  *
809  * This function gets the result of UIC command completion
810  * Returns 0 on success, non zero value on error
811  */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)812 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
813 {
814 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
815 	       MASK_UIC_COMMAND_RESULT;
816 }
817 
818 /**
819  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
820  * @hba: Pointer to adapter instance
821  *
822  * This function gets UIC command argument3
823  * Returns 0 on success, non zero value on error
824  */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)825 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
826 {
827 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
828 }
829 
830 /**
831  * ufshcd_get_req_rsp - returns the TR response transaction type
832  * @ucd_rsp_ptr: pointer to response UPIU
833  */
834 static inline int
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)835 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
836 {
837 	return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
838 }
839 
840 /**
841  * ufshcd_get_rsp_upiu_result - Get the result from response UPIU
842  * @ucd_rsp_ptr: pointer to response UPIU
843  *
844  * This function gets the response status and scsi_status from response UPIU
845  * Returns the response result code.
846  */
847 static inline int
ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp * ucd_rsp_ptr)848 ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
849 {
850 	return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
851 }
852 
853 /*
854  * ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length
855  *				from response UPIU
856  * @ucd_rsp_ptr: pointer to response UPIU
857  *
858  * Return the data segment length.
859  */
860 static inline unsigned int
ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp * ucd_rsp_ptr)861 ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr)
862 {
863 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
864 		MASK_RSP_UPIU_DATA_SEG_LEN;
865 }
866 
867 /**
868  * ufshcd_is_exception_event - Check if the device raised an exception event
869  * @ucd_rsp_ptr: pointer to response UPIU
870  *
871  * The function checks if the device raised an exception event indicated in
872  * the Device Information field of response UPIU.
873  *
874  * Returns true if exception is raised, false otherwise.
875  */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)876 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
877 {
878 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
879 			MASK_RSP_EXCEPTION_EVENT ? true : false;
880 }
881 
882 /**
883  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
884  * @hba: per adapter instance
885  */
886 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)887 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
888 {
889 	ufshcd_writel(hba, INT_AGGR_ENABLE |
890 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
891 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
892 }
893 
894 /**
895  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
896  * @hba: per adapter instance
897  * @cnt: Interrupt aggregation counter threshold
898  * @tmout: Interrupt aggregation timeout value
899  */
900 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)901 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
902 {
903 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
904 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
905 		      INT_AGGR_TIMEOUT_VAL(tmout),
906 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
907 }
908 
909 /**
910  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
911  * @hba: per adapter instance
912  */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)913 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
914 {
915 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
916 }
917 
918 /**
919  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
920  *			When run-stop registers are set to 1, it indicates the
921  *			host controller that it can process the requests
922  * @hba: per adapter instance
923  */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)924 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
925 {
926 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
927 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
928 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
929 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
930 }
931 
932 /**
933  * ufshcd_hba_start - Start controller initialization sequence
934  * @hba: per adapter instance
935  */
ufshcd_hba_start(struct ufs_hba * hba)936 static inline void ufshcd_hba_start(struct ufs_hba *hba)
937 {
938 	u32 val = CONTROLLER_ENABLE;
939 
940 	if (ufshcd_crypto_enable(hba))
941 		val |= CRYPTO_GENERAL_ENABLE;
942 
943 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
944 }
945 
946 /**
947  * ufshcd_is_hba_active - Get controller state
948  * @hba: per adapter instance
949  *
950  * Returns false if controller is active, true otherwise
951  */
ufshcd_is_hba_active(struct ufs_hba * hba)952 static inline bool ufshcd_is_hba_active(struct ufs_hba *hba)
953 {
954 	return (ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE)
955 		? false : true;
956 }
957 
ufshcd_get_local_unipro_ver(struct ufs_hba * hba)958 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
959 {
960 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
961 	if (hba->ufs_version <= ufshci_version(1, 1))
962 		return UFS_UNIPRO_VER_1_41;
963 	else
964 		return UFS_UNIPRO_VER_1_6;
965 }
966 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
967 
ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba * hba)968 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
969 {
970 	/*
971 	 * If both host and device support UniPro ver1.6 or later, PA layer
972 	 * parameters tuning happens during link startup itself.
973 	 *
974 	 * We can manually tune PA layer parameters if either host or device
975 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
976 	 * logic simple, we will only do manual tuning if local unipro version
977 	 * doesn't support ver1.6 or later.
978 	 */
979 	if (ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6)
980 		return true;
981 	else
982 		return false;
983 }
984 
985 /**
986  * ufshcd_set_clk_freq - set UFS controller clock frequencies
987  * @hba: per adapter instance
988  * @scale_up: If True, set max possible frequency othewise set low frequency
989  *
990  * Returns 0 if successful
991  * Returns < 0 for any other errors
992  */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)993 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
994 {
995 	int ret = 0;
996 	struct ufs_clk_info *clki;
997 	struct list_head *head = &hba->clk_list_head;
998 
999 	if (list_empty(head))
1000 		goto out;
1001 
1002 	list_for_each_entry(clki, head, list) {
1003 		if (!IS_ERR_OR_NULL(clki->clk)) {
1004 			if (scale_up && clki->max_freq) {
1005 				if (clki->curr_freq == clki->max_freq)
1006 					continue;
1007 
1008 				ret = clk_set_rate(clki->clk, clki->max_freq);
1009 				if (ret) {
1010 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1011 						__func__, clki->name,
1012 						clki->max_freq, ret);
1013 					break;
1014 				}
1015 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1016 						"scaled up", clki->name,
1017 						clki->curr_freq,
1018 						clki->max_freq);
1019 
1020 				clki->curr_freq = clki->max_freq;
1021 
1022 			} else if (!scale_up && clki->min_freq) {
1023 				if (clki->curr_freq == clki->min_freq)
1024 					continue;
1025 
1026 				ret = clk_set_rate(clki->clk, clki->min_freq);
1027 				if (ret) {
1028 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1029 						__func__, clki->name,
1030 						clki->min_freq, ret);
1031 					break;
1032 				}
1033 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1034 						"scaled down", clki->name,
1035 						clki->curr_freq,
1036 						clki->min_freq);
1037 				clki->curr_freq = clki->min_freq;
1038 			}
1039 		}
1040 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1041 				clki->name, clk_get_rate(clki->clk));
1042 	}
1043 
1044 out:
1045 	return ret;
1046 }
1047 
1048 /**
1049  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1050  * @hba: per adapter instance
1051  * @scale_up: True if scaling up and false if scaling down
1052  *
1053  * Returns 0 if successful
1054  * Returns < 0 for any other errors
1055  */
ufshcd_scale_clks(struct ufs_hba * hba,bool scale_up)1056 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1057 {
1058 	int ret = 0;
1059 	ktime_t start = ktime_get();
1060 
1061 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1062 	if (ret)
1063 		goto out;
1064 
1065 	ret = ufshcd_set_clk_freq(hba, scale_up);
1066 	if (ret)
1067 		goto out;
1068 
1069 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1070 	if (ret)
1071 		ufshcd_set_clk_freq(hba, !scale_up);
1072 
1073 out:
1074 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1075 			(scale_up ? "up" : "down"),
1076 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1077 	return ret;
1078 }
1079 
1080 /**
1081  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1082  * @hba: per adapter instance
1083  * @scale_up: True if scaling up and false if scaling down
1084  *
1085  * Returns true if scaling is required, false otherwise.
1086  */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,bool scale_up)1087 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1088 					       bool scale_up)
1089 {
1090 	struct ufs_clk_info *clki;
1091 	struct list_head *head = &hba->clk_list_head;
1092 
1093 	if (list_empty(head))
1094 		return false;
1095 
1096 	list_for_each_entry(clki, head, list) {
1097 		if (!IS_ERR_OR_NULL(clki->clk)) {
1098 			if (scale_up && clki->max_freq) {
1099 				if (clki->curr_freq == clki->max_freq)
1100 					continue;
1101 				return true;
1102 			} else if (!scale_up && clki->min_freq) {
1103 				if (clki->curr_freq == clki->min_freq)
1104 					continue;
1105 				return true;
1106 			}
1107 		}
1108 	}
1109 
1110 	return false;
1111 }
1112 
1113 /*
1114  * Determine the number of pending commands by counting the bits in the SCSI
1115  * device budget maps. This approach has been selected because a bit is set in
1116  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1117  * flag. The host_self_blocked flag can be modified by calling
1118  * scsi_block_requests() or scsi_unblock_requests().
1119  */
ufshcd_pending_cmds(struct ufs_hba * hba)1120 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1121 {
1122 	struct scsi_device *sdev;
1123 	u32 pending = 0;
1124 
1125 	lockdep_assert_held(hba->host->host_lock);
1126 	__shost_for_each_device(sdev, hba->host)
1127 		pending += atomic_read(&sdev->device_busy);
1128 
1129 	return pending;
1130 }
1131 
1132 /*
1133  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1134  * has expired.
1135  *
1136  * Return: 0 upon success; -EBUSY upon timeout.
1137  */
ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1138 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1139 					u64 wait_timeout_us)
1140 {
1141 	unsigned long flags;
1142 	int ret = 0;
1143 	u32 tm_doorbell;
1144 	u32 tr_pending;
1145 	bool timeout = false, do_last_check = false;
1146 	ktime_t start;
1147 
1148 	ufshcd_hold(hba, false);
1149 	spin_lock_irqsave(hba->host->host_lock, flags);
1150 	/*
1151 	 * Wait for all the outstanding tasks/transfer requests.
1152 	 * Verify by checking the doorbell registers are clear.
1153 	 */
1154 	start = ktime_get();
1155 	do {
1156 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1157 			ret = -EBUSY;
1158 			goto out;
1159 		}
1160 
1161 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1162 		tr_pending = ufshcd_pending_cmds(hba);
1163 		if (!tm_doorbell && !tr_pending) {
1164 			timeout = false;
1165 			break;
1166 		} else if (do_last_check) {
1167 			break;
1168 		}
1169 
1170 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1171 		io_schedule_timeout(msecs_to_jiffies(20));
1172 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1173 		    wait_timeout_us) {
1174 			timeout = true;
1175 			/*
1176 			 * We might have scheduled out for long time so make
1177 			 * sure to check if doorbells are cleared by this time
1178 			 * or not.
1179 			 */
1180 			do_last_check = true;
1181 		}
1182 		spin_lock_irqsave(hba->host->host_lock, flags);
1183 	} while (tm_doorbell || tr_pending);
1184 
1185 	if (timeout) {
1186 		dev_err(hba->dev,
1187 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1188 			__func__, tm_doorbell, tr_pending);
1189 		ret = -EBUSY;
1190 	}
1191 out:
1192 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1193 	ufshcd_release(hba);
1194 	return ret;
1195 }
1196 
1197 /**
1198  * ufshcd_scale_gear - scale up/down UFS gear
1199  * @hba: per adapter instance
1200  * @scale_up: True for scaling up gear and false for scaling down
1201  *
1202  * Returns 0 for success,
1203  * Returns -EBUSY if scaling can't happen at this time
1204  * Returns non-zero for any other errors
1205  */
ufshcd_scale_gear(struct ufs_hba * hba,bool scale_up)1206 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1207 {
1208 	int ret = 0;
1209 	struct ufs_pa_layer_attr new_pwr_info;
1210 
1211 	if (scale_up) {
1212 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info.info,
1213 		       sizeof(struct ufs_pa_layer_attr));
1214 	} else {
1215 		memcpy(&new_pwr_info, &hba->pwr_info,
1216 		       sizeof(struct ufs_pa_layer_attr));
1217 
1218 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1219 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1220 			/* save the current power mode */
1221 			memcpy(&hba->clk_scaling.saved_pwr_info.info,
1222 				&hba->pwr_info,
1223 				sizeof(struct ufs_pa_layer_attr));
1224 
1225 			/* scale down gear */
1226 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1227 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1228 		}
1229 	}
1230 
1231 	/* check if the power mode needs to be changed or not? */
1232 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1233 	if (ret)
1234 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1235 			__func__, ret,
1236 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1237 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1238 
1239 	return ret;
1240 }
1241 
1242 /*
1243  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1244  * has expired.
1245  *
1246  * Return: 0 upon success; -EBUSY upon timeout.
1247  */
ufshcd_clock_scaling_prepare(struct ufs_hba * hba,u64 timeout_us)1248 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1249 {
1250 	int ret = 0;
1251 	/*
1252 	 * make sure that there are no outstanding requests when
1253 	 * clock scaling is in progress
1254 	 */
1255 	ufshcd_scsi_block_requests(hba);
1256 	down_write(&hba->clk_scaling_lock);
1257 
1258 	if (ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1259 		ret = -EBUSY;
1260 		up_write(&hba->clk_scaling_lock);
1261 		ufshcd_scsi_unblock_requests(hba);
1262 		goto out;
1263 	}
1264 
1265 	/* let's not get into low power until clock scaling is completed */
1266 	ufshcd_hold(hba, false);
1267 
1268 out:
1269 	return ret;
1270 }
1271 
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba,bool writelock)1272 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, bool writelock)
1273 {
1274 	if (writelock)
1275 		up_write(&hba->clk_scaling_lock);
1276 	else
1277 		up_read(&hba->clk_scaling_lock);
1278 	ufshcd_scsi_unblock_requests(hba);
1279 	ufshcd_release(hba);
1280 }
1281 
1282 /**
1283  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1284  * @hba: per adapter instance
1285  * @scale_up: True for scaling up and false for scalin down
1286  *
1287  * Returns 0 for success,
1288  * Returns -EBUSY if scaling can't happen at this time
1289  * Returns non-zero for any other errors
1290  */
ufshcd_devfreq_scale(struct ufs_hba * hba,bool scale_up)1291 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1292 {
1293 	int ret = 0;
1294 	bool is_writelock = true;
1295 
1296 	if (!hba->clk_scaling.is_allowed)
1297 		return -EBUSY;
1298 
1299 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1300 	if (ret)
1301 		return ret;
1302 
1303 	if (!hba->clk_scaling.is_allowed) {
1304 		ret = -EBUSY;
1305 		goto out_unprepare;
1306 	}
1307 
1308 	/* scale down the gear before scaling down clocks */
1309 	if (!scale_up) {
1310 		ret = ufshcd_scale_gear(hba, false);
1311 		if (ret)
1312 			goto out_unprepare;
1313 	}
1314 
1315 	ret = ufshcd_scale_clks(hba, scale_up);
1316 	if (ret) {
1317 		if (!scale_up)
1318 			ufshcd_scale_gear(hba, true);
1319 		goto out_unprepare;
1320 	}
1321 
1322 	/* scale up the gear after scaling up clocks */
1323 	if (scale_up) {
1324 		ret = ufshcd_scale_gear(hba, true);
1325 		if (ret) {
1326 			ufshcd_scale_clks(hba, false);
1327 			goto out_unprepare;
1328 		}
1329 	}
1330 
1331 	/* Enable Write Booster if we have scaled up else disable it */
1332 	downgrade_write(&hba->clk_scaling_lock);
1333 	is_writelock = false;
1334 	ufshcd_wb_toggle(hba, scale_up);
1335 
1336 out_unprepare:
1337 	ufshcd_clock_scaling_unprepare(hba, is_writelock);
1338 	return ret;
1339 }
1340 
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1341 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1342 {
1343 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1344 					   clk_scaling.suspend_work);
1345 	unsigned long irq_flags;
1346 
1347 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1348 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1349 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1350 		return;
1351 	}
1352 	hba->clk_scaling.is_suspended = true;
1353 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1354 
1355 	__ufshcd_suspend_clkscaling(hba);
1356 }
1357 
ufshcd_clk_scaling_resume_work(struct work_struct * work)1358 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1359 {
1360 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1361 					   clk_scaling.resume_work);
1362 	unsigned long irq_flags;
1363 
1364 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1365 	if (!hba->clk_scaling.is_suspended) {
1366 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1367 		return;
1368 	}
1369 	hba->clk_scaling.is_suspended = false;
1370 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1371 
1372 	devfreq_resume_device(hba->devfreq);
1373 }
1374 
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1375 static int ufshcd_devfreq_target(struct device *dev,
1376 				unsigned long *freq, u32 flags)
1377 {
1378 	int ret = 0;
1379 	struct ufs_hba *hba = dev_get_drvdata(dev);
1380 	ktime_t start;
1381 	bool scale_up, sched_clk_scaling_suspend_work = false;
1382 	struct list_head *clk_list = &hba->clk_list_head;
1383 	struct ufs_clk_info *clki;
1384 	unsigned long irq_flags;
1385 	bool force_out = false;
1386 	bool force_scaling = false;
1387 
1388 	if (!ufshcd_is_clkscaling_supported(hba))
1389 		return -EINVAL;
1390 
1391 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1392 	/* Override with the closest supported frequency */
1393 	*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1394 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1395 	if (ufshcd_eh_in_progress(hba)) {
1396 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1397 		return 0;
1398 	}
1399 
1400 	if (!hba->clk_scaling.active_reqs)
1401 		sched_clk_scaling_suspend_work = true;
1402 
1403 	if (list_empty(clk_list)) {
1404 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1405 		goto out;
1406 	}
1407 
1408 	/* Decide based on the rounded-off frequency and update */
1409 	scale_up = (*freq == clki->max_freq) ? true : false;
1410 	if (!scale_up)
1411 		*freq = clki->min_freq;
1412 
1413 	trace_android_vh_ufs_clock_scaling(hba, &force_out, &force_scaling, &scale_up);
1414 
1415 	/* Update the frequency */
1416 	if (force_out || (!force_scaling && !ufshcd_is_devfreq_scaling_required(hba, scale_up))) {
1417 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1418 		ret = 0;
1419 		goto out; /* no state change required */
1420 	}
1421 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1422 
1423 	start = ktime_get();
1424 	ret = ufshcd_devfreq_scale(hba, scale_up);
1425 
1426 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1427 		(scale_up ? "up" : "down"),
1428 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1429 
1430 out:
1431 	if (sched_clk_scaling_suspend_work)
1432 		queue_work(hba->clk_scaling.workq,
1433 			   &hba->clk_scaling.suspend_work);
1434 
1435 	return ret;
1436 }
1437 
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1438 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1439 		struct devfreq_dev_status *stat)
1440 {
1441 	struct ufs_hba *hba = dev_get_drvdata(dev);
1442 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1443 	unsigned long flags;
1444 	struct list_head *clk_list = &hba->clk_list_head;
1445 	struct ufs_clk_info *clki;
1446 	ktime_t curr_t;
1447 
1448 	if (!ufshcd_is_clkscaling_supported(hba))
1449 		return -EINVAL;
1450 
1451 	memset(stat, 0, sizeof(*stat));
1452 
1453 	spin_lock_irqsave(hba->host->host_lock, flags);
1454 	curr_t = ktime_get();
1455 	if (!scaling->window_start_t)
1456 		goto start_window;
1457 
1458 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1459 	/*
1460 	 * If current frequency is 0, then the ondemand governor considers
1461 	 * there's no initial frequency set. And it always requests to set
1462 	 * to max. frequency.
1463 	 */
1464 	stat->current_frequency = clki->curr_freq;
1465 	if (scaling->is_busy_started)
1466 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1467 				scaling->busy_start_t);
1468 
1469 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1470 	stat->busy_time = scaling->tot_busy_t;
1471 start_window:
1472 	scaling->window_start_t = curr_t;
1473 	scaling->tot_busy_t = 0;
1474 
1475 	if (hba->outstanding_reqs) {
1476 		scaling->busy_start_t = curr_t;
1477 		scaling->is_busy_started = true;
1478 	} else {
1479 		scaling->busy_start_t = 0;
1480 		scaling->is_busy_started = false;
1481 	}
1482 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1483 	return 0;
1484 }
1485 
ufshcd_devfreq_init(struct ufs_hba * hba)1486 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1487 {
1488 	struct list_head *clk_list = &hba->clk_list_head;
1489 	struct ufs_clk_info *clki;
1490 	struct devfreq *devfreq;
1491 	int ret;
1492 
1493 	/* Skip devfreq if we don't have any clocks in the list */
1494 	if (list_empty(clk_list))
1495 		return 0;
1496 
1497 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1498 	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1499 	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1500 
1501 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1502 					 &hba->vps->ondemand_data);
1503 	devfreq = devfreq_add_device(hba->dev,
1504 			&hba->vps->devfreq_profile,
1505 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1506 			&hba->vps->ondemand_data);
1507 	if (IS_ERR(devfreq)) {
1508 		ret = PTR_ERR(devfreq);
1509 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1510 
1511 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1512 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1513 		return ret;
1514 	}
1515 
1516 	hba->devfreq = devfreq;
1517 
1518 	return 0;
1519 }
1520 
ufshcd_devfreq_remove(struct ufs_hba * hba)1521 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1522 {
1523 	struct list_head *clk_list = &hba->clk_list_head;
1524 	struct ufs_clk_info *clki;
1525 
1526 	if (!hba->devfreq)
1527 		return;
1528 
1529 	devfreq_remove_device(hba->devfreq);
1530 	hba->devfreq = NULL;
1531 
1532 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1533 	dev_pm_opp_remove(hba->dev, clki->min_freq);
1534 	dev_pm_opp_remove(hba->dev, clki->max_freq);
1535 }
1536 
__ufshcd_suspend_clkscaling(struct ufs_hba * hba)1537 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1538 {
1539 	unsigned long flags;
1540 
1541 	devfreq_suspend_device(hba->devfreq);
1542 	spin_lock_irqsave(hba->host->host_lock, flags);
1543 	hba->clk_scaling.window_start_t = 0;
1544 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1545 }
1546 
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1547 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1548 {
1549 	unsigned long flags;
1550 	bool suspend = false;
1551 
1552 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1553 	cancel_work_sync(&hba->clk_scaling.resume_work);
1554 
1555 	spin_lock_irqsave(hba->host->host_lock, flags);
1556 	if (!hba->clk_scaling.is_suspended) {
1557 		suspend = true;
1558 		hba->clk_scaling.is_suspended = true;
1559 	}
1560 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1561 
1562 	if (suspend)
1563 		__ufshcd_suspend_clkscaling(hba);
1564 }
1565 
ufshcd_resume_clkscaling(struct ufs_hba * hba)1566 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1567 {
1568 	unsigned long flags;
1569 	bool resume = false;
1570 
1571 	spin_lock_irqsave(hba->host->host_lock, flags);
1572 	if (hba->clk_scaling.is_suspended) {
1573 		resume = true;
1574 		hba->clk_scaling.is_suspended = false;
1575 	}
1576 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1577 
1578 	if (resume)
1579 		devfreq_resume_device(hba->devfreq);
1580 }
1581 
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1582 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1583 		struct device_attribute *attr, char *buf)
1584 {
1585 	struct ufs_hba *hba = dev_get_drvdata(dev);
1586 
1587 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1588 }
1589 
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1590 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1591 		struct device_attribute *attr, const char *buf, size_t count)
1592 {
1593 	struct ufs_hba *hba = dev_get_drvdata(dev);
1594 	u32 value;
1595 	int err = 0;
1596 
1597 	if (kstrtou32(buf, 0, &value))
1598 		return -EINVAL;
1599 
1600 	down(&hba->host_sem);
1601 	if (!ufshcd_is_user_access_allowed(hba)) {
1602 		err = -EBUSY;
1603 		goto out;
1604 	}
1605 
1606 	value = !!value;
1607 	if (value == hba->clk_scaling.is_enabled)
1608 		goto out;
1609 
1610 	ufshcd_rpm_get_sync(hba);
1611 	ufshcd_hold(hba, false);
1612 
1613 	hba->clk_scaling.is_enabled = value;
1614 
1615 	if (value) {
1616 		ufshcd_resume_clkscaling(hba);
1617 	} else {
1618 		ufshcd_suspend_clkscaling(hba);
1619 		err = ufshcd_devfreq_scale(hba, true);
1620 		if (err)
1621 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1622 					__func__, err);
1623 	}
1624 
1625 	ufshcd_release(hba);
1626 	ufshcd_rpm_put_sync(hba);
1627 out:
1628 	up(&hba->host_sem);
1629 	return err ? err : count;
1630 }
1631 
ufshcd_init_clk_scaling_sysfs(struct ufs_hba * hba)1632 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1633 {
1634 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1635 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1636 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1637 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1638 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1639 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1640 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1641 }
1642 
ufshcd_remove_clk_scaling_sysfs(struct ufs_hba * hba)1643 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1644 {
1645 	if (hba->clk_scaling.enable_attr.attr.name)
1646 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1647 }
1648 
ufshcd_init_clk_scaling(struct ufs_hba * hba)1649 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1650 {
1651 	char wq_name[sizeof("ufs_clkscaling_00")];
1652 
1653 	if (!ufshcd_is_clkscaling_supported(hba))
1654 		return;
1655 
1656 	if (!hba->clk_scaling.min_gear)
1657 		hba->clk_scaling.min_gear = UFS_HS_G1;
1658 
1659 	INIT_WORK(&hba->clk_scaling.suspend_work,
1660 		  ufshcd_clk_scaling_suspend_work);
1661 	INIT_WORK(&hba->clk_scaling.resume_work,
1662 		  ufshcd_clk_scaling_resume_work);
1663 
1664 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1665 		 hba->host->host_no);
1666 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1667 
1668 	hba->clk_scaling.is_initialized = true;
1669 }
1670 
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1671 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1672 {
1673 	if (!hba->clk_scaling.is_initialized)
1674 		return;
1675 
1676 	ufshcd_remove_clk_scaling_sysfs(hba);
1677 	destroy_workqueue(hba->clk_scaling.workq);
1678 	ufshcd_devfreq_remove(hba);
1679 	hba->clk_scaling.is_initialized = false;
1680 }
1681 
ufshcd_ungate_work(struct work_struct * work)1682 static void ufshcd_ungate_work(struct work_struct *work)
1683 {
1684 	int ret;
1685 	unsigned long flags;
1686 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1687 			clk_gating.ungate_work);
1688 
1689 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1690 
1691 	spin_lock_irqsave(hba->host->host_lock, flags);
1692 	if (hba->clk_gating.state == CLKS_ON) {
1693 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1694 		goto unblock_reqs;
1695 	}
1696 
1697 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1698 	ufshcd_hba_vreg_set_hpm(hba);
1699 	ufshcd_setup_clocks(hba, true);
1700 
1701 	ufshcd_enable_irq(hba);
1702 
1703 	/* Exit from hibern8 */
1704 	if (ufshcd_can_hibern8_during_gating(hba)) {
1705 		/* Prevent gating in this path */
1706 		hba->clk_gating.is_suspended = true;
1707 		if (ufshcd_is_link_hibern8(hba)) {
1708 			ret = ufshcd_uic_hibern8_exit(hba);
1709 			if (ret)
1710 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1711 					__func__, ret);
1712 			else
1713 				ufshcd_set_link_active(hba);
1714 		}
1715 		hba->clk_gating.is_suspended = false;
1716 	}
1717 unblock_reqs:
1718 	ufshcd_scsi_unblock_requests(hba);
1719 }
1720 
1721 /*
1722  * Block processing of new SCSI commands and wait until pending SCSI
1723  * commands and TMFs have finished. ufshcd_exec_dev_cmd() and
1724  * ufshcd_issue_devman_upiu_cmd() are not affected by this function.
1725  *
1726  * Return: 0 upon success; -EBUSY upon timeout.
1727  */
ufshcd_freeze_scsi_devs(struct ufs_hba * hba,u64 timeout_us)1728 int ufshcd_freeze_scsi_devs(struct ufs_hba *hba, u64 timeout_us)
1729 {
1730 	return ufshcd_clock_scaling_prepare(hba, timeout_us);
1731 }
1732 EXPORT_SYMBOL_GPL(ufshcd_freeze_scsi_devs);
1733 
1734 /* Resume processing of SCSI commands. */
ufshcd_unfreeze_scsi_devs(struct ufs_hba * hba)1735 void ufshcd_unfreeze_scsi_devs(struct ufs_hba *hba)
1736 {
1737 	ufshcd_clock_scaling_unprepare(hba, true);
1738 }
1739 EXPORT_SYMBOL_GPL(ufshcd_unfreeze_scsi_devs);
1740 
1741 /**
1742  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1743  * Also, exit from hibern8 mode and set the link as active.
1744  * @hba: per adapter instance
1745  * @async: This indicates whether caller should ungate clocks asynchronously.
1746  */
ufshcd_hold(struct ufs_hba * hba,bool async)1747 int ufshcd_hold(struct ufs_hba *hba, bool async)
1748 {
1749 	int rc = 0;
1750 	bool flush_result;
1751 	unsigned long flags;
1752 
1753 	if (!ufshcd_is_clkgating_allowed(hba) ||
1754 	    !hba->clk_gating.is_initialized)
1755 		goto out;
1756 	spin_lock_irqsave(hba->host->host_lock, flags);
1757 	hba->clk_gating.active_reqs++;
1758 
1759 start:
1760 	switch (hba->clk_gating.state) {
1761 	case CLKS_ON:
1762 		/*
1763 		 * Wait for the ungate work to complete if in progress.
1764 		 * Though the clocks may be in ON state, the link could
1765 		 * still be in hibner8 state if hibern8 is allowed
1766 		 * during clock gating.
1767 		 * Make sure we exit hibern8 state also in addition to
1768 		 * clocks being ON.
1769 		 */
1770 		if (ufshcd_can_hibern8_during_gating(hba) &&
1771 		    ufshcd_is_link_hibern8(hba)) {
1772 			if (async) {
1773 				rc = -EAGAIN;
1774 				hba->clk_gating.active_reqs--;
1775 				break;
1776 			}
1777 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1778 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1779 			if (hba->clk_gating.is_suspended && !flush_result)
1780 				goto out;
1781 			spin_lock_irqsave(hba->host->host_lock, flags);
1782 			goto start;
1783 		}
1784 		break;
1785 	case REQ_CLKS_OFF:
1786 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1787 			hba->clk_gating.state = CLKS_ON;
1788 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1789 						hba->clk_gating.state);
1790 			break;
1791 		}
1792 		/*
1793 		 * If we are here, it means gating work is either done or
1794 		 * currently running. Hence, fall through to cancel gating
1795 		 * work and to enable clocks.
1796 		 */
1797 		fallthrough;
1798 	case CLKS_OFF:
1799 		hba->clk_gating.state = REQ_CLKS_ON;
1800 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1801 					hba->clk_gating.state);
1802 		if (queue_work(hba->clk_gating.clk_gating_workq,
1803 			       &hba->clk_gating.ungate_work))
1804 			ufshcd_scsi_block_requests(hba);
1805 		/*
1806 		 * fall through to check if we should wait for this
1807 		 * work to be done or not.
1808 		 */
1809 		fallthrough;
1810 	case REQ_CLKS_ON:
1811 		if (async) {
1812 			rc = -EAGAIN;
1813 			hba->clk_gating.active_reqs--;
1814 			break;
1815 		}
1816 
1817 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1818 		flush_work(&hba->clk_gating.ungate_work);
1819 		/* Make sure state is CLKS_ON before returning */
1820 		spin_lock_irqsave(hba->host->host_lock, flags);
1821 		goto start;
1822 	default:
1823 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1824 				__func__, hba->clk_gating.state);
1825 		break;
1826 	}
1827 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1828 out:
1829 	return rc;
1830 }
1831 EXPORT_SYMBOL_GPL(ufshcd_hold);
1832 
ufshcd_gate_work(struct work_struct * work)1833 static void ufshcd_gate_work(struct work_struct *work)
1834 {
1835 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1836 			clk_gating.gate_work.work);
1837 	unsigned long flags;
1838 	int ret;
1839 
1840 	spin_lock_irqsave(hba->host->host_lock, flags);
1841 	/*
1842 	 * In case you are here to cancel this work the gating state
1843 	 * would be marked as REQ_CLKS_ON. In this case save time by
1844 	 * skipping the gating work and exit after changing the clock
1845 	 * state to CLKS_ON.
1846 	 */
1847 	if (hba->clk_gating.is_suspended ||
1848 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1849 		hba->clk_gating.state = CLKS_ON;
1850 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1851 					hba->clk_gating.state);
1852 		goto rel_lock;
1853 	}
1854 
1855 	if (hba->clk_gating.active_reqs
1856 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1857 		|| hba->outstanding_reqs || hba->outstanding_tasks
1858 		|| hba->active_uic_cmd || hba->uic_async_done)
1859 		goto rel_lock;
1860 
1861 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1862 
1863 	/* put the link into hibern8 mode before turning off clocks */
1864 	if (ufshcd_can_hibern8_during_gating(hba)) {
1865 		ret = ufshcd_uic_hibern8_enter(hba);
1866 		if (ret) {
1867 			hba->clk_gating.state = CLKS_ON;
1868 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1869 					__func__, ret);
1870 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1871 						hba->clk_gating.state);
1872 			goto out;
1873 		}
1874 		ufshcd_set_link_hibern8(hba);
1875 	}
1876 
1877 	ufshcd_disable_irq(hba);
1878 
1879 	ufshcd_setup_clocks(hba, false);
1880 
1881 	/* Put the host controller in low power mode if possible */
1882 	ufshcd_hba_vreg_set_lpm(hba);
1883 	/*
1884 	 * In case you are here to cancel this work the gating state
1885 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1886 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1887 	 * and a request to turn them on is pending. By doing this way,
1888 	 * we keep the state machine in tact and this would ultimately
1889 	 * prevent from doing cancel work multiple times when there are
1890 	 * new requests arriving before the current cancel work is done.
1891 	 */
1892 	spin_lock_irqsave(hba->host->host_lock, flags);
1893 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1894 		hba->clk_gating.state = CLKS_OFF;
1895 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1896 					hba->clk_gating.state);
1897 	}
1898 rel_lock:
1899 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1900 out:
1901 	return;
1902 }
1903 
1904 /* host lock must be held before calling this variant */
__ufshcd_release(struct ufs_hba * hba)1905 static void __ufshcd_release(struct ufs_hba *hba)
1906 {
1907 	if (!ufshcd_is_clkgating_allowed(hba))
1908 		return;
1909 
1910 	hba->clk_gating.active_reqs--;
1911 
1912 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1913 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1914 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1915 	    hba->active_uic_cmd || hba->uic_async_done ||
1916 	    hba->clk_gating.state == CLKS_OFF)
1917 		return;
1918 
1919 	hba->clk_gating.state = REQ_CLKS_OFF;
1920 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1921 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1922 			   &hba->clk_gating.gate_work,
1923 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1924 }
1925 
ufshcd_release(struct ufs_hba * hba)1926 void ufshcd_release(struct ufs_hba *hba)
1927 {
1928 	unsigned long flags;
1929 
1930 	spin_lock_irqsave(hba->host->host_lock, flags);
1931 	__ufshcd_release(hba);
1932 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1933 }
1934 EXPORT_SYMBOL_GPL(ufshcd_release);
1935 
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)1936 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1937 		struct device_attribute *attr, char *buf)
1938 {
1939 	struct ufs_hba *hba = dev_get_drvdata(dev);
1940 
1941 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1942 }
1943 
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1944 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1945 		struct device_attribute *attr, const char *buf, size_t count)
1946 {
1947 	struct ufs_hba *hba = dev_get_drvdata(dev);
1948 	unsigned long flags, value;
1949 
1950 	if (kstrtoul(buf, 0, &value))
1951 		return -EINVAL;
1952 
1953 	spin_lock_irqsave(hba->host->host_lock, flags);
1954 	hba->clk_gating.delay_ms = value;
1955 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1956 	return count;
1957 }
1958 
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1959 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1960 		struct device_attribute *attr, char *buf)
1961 {
1962 	struct ufs_hba *hba = dev_get_drvdata(dev);
1963 
1964 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1965 }
1966 
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1967 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1968 		struct device_attribute *attr, const char *buf, size_t count)
1969 {
1970 	struct ufs_hba *hba = dev_get_drvdata(dev);
1971 	unsigned long flags;
1972 	u32 value;
1973 
1974 	if (kstrtou32(buf, 0, &value))
1975 		return -EINVAL;
1976 
1977 	value = !!value;
1978 
1979 	spin_lock_irqsave(hba->host->host_lock, flags);
1980 	if (value == hba->clk_gating.is_enabled)
1981 		goto out;
1982 
1983 	if (value)
1984 		__ufshcd_release(hba);
1985 	else
1986 		hba->clk_gating.active_reqs++;
1987 
1988 	hba->clk_gating.is_enabled = value;
1989 out:
1990 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1991 	return count;
1992 }
1993 
ufshcd_init_clk_gating_sysfs(struct ufs_hba * hba)1994 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
1995 {
1996 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1997 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1998 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1999 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2000 	hba->clk_gating.delay_attr.attr.mode = 0644;
2001 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2002 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2003 
2004 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2005 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2006 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2007 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2008 	hba->clk_gating.enable_attr.attr.mode = 0644;
2009 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2010 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2011 }
2012 
ufshcd_remove_clk_gating_sysfs(struct ufs_hba * hba)2013 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2014 {
2015 	if (hba->clk_gating.delay_attr.attr.name)
2016 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2017 	if (hba->clk_gating.enable_attr.attr.name)
2018 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2019 }
2020 
ufshcd_init_clk_gating(struct ufs_hba * hba)2021 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2022 {
2023 	char wq_name[sizeof("ufs_clk_gating_00")];
2024 
2025 	if (!ufshcd_is_clkgating_allowed(hba))
2026 		return;
2027 
2028 	hba->clk_gating.state = CLKS_ON;
2029 
2030 	hba->clk_gating.delay_ms = 150;
2031 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2032 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2033 
2034 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2035 		 hba->host->host_no);
2036 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2037 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2038 
2039 	ufshcd_init_clk_gating_sysfs(hba);
2040 
2041 	hba->clk_gating.is_enabled = true;
2042 	hba->clk_gating.is_initialized = true;
2043 }
2044 
ufshcd_exit_clk_gating(struct ufs_hba * hba)2045 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2046 {
2047 	if (!hba->clk_gating.is_initialized)
2048 		return;
2049 
2050 	ufshcd_remove_clk_gating_sysfs(hba);
2051 
2052 	/* Ungate the clock if necessary. */
2053 	ufshcd_hold(hba, false);
2054 	hba->clk_gating.is_initialized = false;
2055 	ufshcd_release(hba);
2056 
2057 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2058 }
2059 
2060 /* Must be called with host lock acquired */
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)2061 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2062 {
2063 	bool queue_resume_work = false;
2064 	ktime_t curr_t = ktime_get();
2065 	unsigned long flags;
2066 
2067 	if (!ufshcd_is_clkscaling_supported(hba))
2068 		return;
2069 
2070 	spin_lock_irqsave(hba->host->host_lock, flags);
2071 	if (!hba->clk_scaling.active_reqs++)
2072 		queue_resume_work = true;
2073 
2074 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2075 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2076 		return;
2077 	}
2078 
2079 	if (queue_resume_work)
2080 		queue_work(hba->clk_scaling.workq,
2081 			   &hba->clk_scaling.resume_work);
2082 
2083 	if (!hba->clk_scaling.window_start_t) {
2084 		hba->clk_scaling.window_start_t = curr_t;
2085 		hba->clk_scaling.tot_busy_t = 0;
2086 		hba->clk_scaling.is_busy_started = false;
2087 	}
2088 
2089 	if (!hba->clk_scaling.is_busy_started) {
2090 		hba->clk_scaling.busy_start_t = curr_t;
2091 		hba->clk_scaling.is_busy_started = true;
2092 	}
2093 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2094 }
2095 
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)2096 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2097 {
2098 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2099 	unsigned long flags;
2100 
2101 	if (!ufshcd_is_clkscaling_supported(hba))
2102 		return;
2103 
2104 	spin_lock_irqsave(hba->host->host_lock, flags);
2105 	hba->clk_scaling.active_reqs--;
2106 	if (!hba->outstanding_reqs && scaling->is_busy_started) {
2107 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2108 					scaling->busy_start_t));
2109 		scaling->busy_start_t = 0;
2110 		scaling->is_busy_started = false;
2111 	}
2112 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2113 }
2114 
ufshcd_monitor_opcode2dir(u8 opcode)2115 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2116 {
2117 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2118 		return READ;
2119 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2120 		return WRITE;
2121 	else
2122 		return -EINVAL;
2123 }
2124 
ufshcd_should_inform_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2125 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2126 						struct ufshcd_lrb *lrbp)
2127 {
2128 	struct ufs_hba_monitor *m = &hba->monitor;
2129 
2130 	return (m->enabled && lrbp && lrbp->cmd &&
2131 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2132 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2133 }
2134 
ufshcd_start_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2135 static void ufshcd_start_monitor(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2136 {
2137 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2138 	unsigned long flags;
2139 
2140 	spin_lock_irqsave(hba->host->host_lock, flags);
2141 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2142 		hba->monitor.busy_start_ts[dir] = ktime_get();
2143 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2144 }
2145 
ufshcd_update_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2146 static void ufshcd_update_monitor(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2147 {
2148 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2149 	unsigned long flags;
2150 
2151 	spin_lock_irqsave(hba->host->host_lock, flags);
2152 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2153 		struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2154 		struct ufs_hba_monitor *m = &hba->monitor;
2155 		ktime_t now, inc, lat;
2156 
2157 		now = lrbp->compl_time_stamp;
2158 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2159 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2160 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2161 
2162 		/* Update latencies */
2163 		m->nr_req[dir]++;
2164 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2165 		m->lat_sum[dir] += lat;
2166 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2167 			m->lat_max[dir] = lat;
2168 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2169 			m->lat_min[dir] = lat;
2170 
2171 		m->nr_queued[dir]--;
2172 		/* Push forward the busy start of monitor */
2173 		m->busy_start_ts[dir] = now;
2174 	}
2175 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2176 }
2177 
2178 /**
2179  * ufshcd_send_command - Send SCSI or device management commands
2180  * @hba: per adapter instance
2181  * @task_tag: Task tag of the command
2182  */
2183 static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag)2184 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag)
2185 {
2186 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2187 	unsigned long flags;
2188 
2189 	lrbp->issue_time_stamp = ktime_get();
2190 	lrbp->compl_time_stamp = ktime_set(0, 0);
2191 	trace_android_vh_ufs_send_command(hba, lrbp);
2192 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2193 	ufshcd_clk_scaling_start_busy(hba);
2194 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2195 		ufshcd_start_monitor(hba, lrbp);
2196 
2197 	spin_lock_irqsave(&hba->outstanding_lock, flags);
2198 	if (hba->vops && hba->vops->setup_xfer_req)
2199 		hba->vops->setup_xfer_req(hba, task_tag, !!lrbp->cmd);
2200 	__set_bit(task_tag, &hba->outstanding_reqs);
2201 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TRANSFER_REQ_DOOR_BELL);
2202 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2203 
2204 	/* Make sure that doorbell is committed immediately */
2205 	wmb();
2206 }
2207 
2208 /**
2209  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2210  * @lrbp: pointer to local reference block
2211  */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)2212 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2213 {
2214 	int len;
2215 	if (lrbp->sense_buffer &&
2216 	    ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) {
2217 		int len_to_copy;
2218 
2219 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2220 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2221 
2222 		memcpy(lrbp->sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2223 		       len_to_copy);
2224 	}
2225 }
2226 
2227 /**
2228  * ufshcd_copy_query_response() - Copy the Query Response and the data
2229  * descriptor
2230  * @hba: per adapter instance
2231  * @lrbp: pointer to local reference block
2232  */
2233 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2234 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2235 {
2236 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2237 
2238 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2239 
2240 	/* Get the descriptor */
2241 	if (hba->dev_cmd.query.descriptor &&
2242 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2243 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2244 				GENERAL_UPIU_REQUEST_SIZE;
2245 		u16 resp_len;
2246 		u16 buf_len;
2247 
2248 		/* data segment length */
2249 		resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
2250 						MASK_QUERY_DATA_SEG_LEN;
2251 		buf_len = be16_to_cpu(
2252 				hba->dev_cmd.query.request.upiu_req.length);
2253 		if (likely(buf_len >= resp_len)) {
2254 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2255 		} else {
2256 			dev_warn(hba->dev,
2257 				 "%s: rsp size %d is bigger than buffer size %d",
2258 				 __func__, resp_len, buf_len);
2259 			return -EINVAL;
2260 		}
2261 	}
2262 
2263 	return 0;
2264 }
2265 
2266 /**
2267  * ufshcd_hba_capabilities - Read controller capabilities
2268  * @hba: per adapter instance
2269  *
2270  * Return: 0 on success, negative on error.
2271  */
ufshcd_hba_capabilities(struct ufs_hba * hba)2272 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2273 {
2274 	int err;
2275 
2276 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2277 
2278 	/* nutrs and nutmrs are 0 based values */
2279 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2280 	hba->nutmrs =
2281 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2282 	hba->reserved_slot = hba->nutrs - 1;
2283 
2284 	/* Read crypto capabilities */
2285 	err = ufshcd_hba_init_crypto_capabilities(hba);
2286 	if (err)
2287 		dev_err(hba->dev, "crypto setup failed\n");
2288 
2289 	return err;
2290 }
2291 
2292 /**
2293  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2294  *                            to accept UIC commands
2295  * @hba: per adapter instance
2296  * Return true on success, else false
2297  */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2298 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2299 {
2300 	if (ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY)
2301 		return true;
2302 	else
2303 		return false;
2304 }
2305 
2306 /**
2307  * ufshcd_get_upmcrs - Get the power mode change request status
2308  * @hba: Pointer to adapter instance
2309  *
2310  * This function gets the UPMCRS field of HCS register
2311  * Returns value of UPMCRS field
2312  */
ufshcd_get_upmcrs(struct ufs_hba * hba)2313 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2314 {
2315 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2316 }
2317 
2318 /**
2319  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2320  * @hba: per adapter instance
2321  * @uic_cmd: UIC command
2322  */
2323 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2324 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2325 {
2326 	lockdep_assert_held(&hba->uic_cmd_mutex);
2327 
2328 	WARN_ON(hba->active_uic_cmd);
2329 
2330 	hba->active_uic_cmd = uic_cmd;
2331 
2332 	/* Write Args */
2333 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2334 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2335 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2336 
2337 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2338 
2339 	/* Write UIC Cmd */
2340 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2341 		      REG_UIC_COMMAND);
2342 }
2343 
2344 /**
2345  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2346  * @hba: per adapter instance
2347  * @uic_cmd: UIC command
2348  *
2349  * Returns 0 only if success.
2350  */
2351 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2352 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2353 {
2354 	int ret;
2355 	unsigned long flags;
2356 
2357 	lockdep_assert_held(&hba->uic_cmd_mutex);
2358 
2359 	if (wait_for_completion_timeout(&uic_cmd->done,
2360 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2361 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2362 	} else {
2363 		ret = -ETIMEDOUT;
2364 		dev_err(hba->dev,
2365 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2366 			uic_cmd->command, uic_cmd->argument3);
2367 
2368 		if (!uic_cmd->cmd_active) {
2369 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2370 				__func__);
2371 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2372 		}
2373 	}
2374 
2375 	spin_lock_irqsave(hba->host->host_lock, flags);
2376 	hba->active_uic_cmd = NULL;
2377 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2378 
2379 	return ret;
2380 }
2381 
2382 /**
2383  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2384  * @hba: per adapter instance
2385  * @uic_cmd: UIC command
2386  * @completion: initialize the completion only if this is set to true
2387  *
2388  * Returns 0 only if success.
2389  */
2390 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd,bool completion)2391 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2392 		      bool completion)
2393 {
2394 	lockdep_assert_held(&hba->uic_cmd_mutex);
2395 	lockdep_assert_held(hba->host->host_lock);
2396 
2397 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2398 		dev_err(hba->dev,
2399 			"Controller not ready to accept UIC commands\n");
2400 		return -EIO;
2401 	}
2402 
2403 	if (completion)
2404 		init_completion(&uic_cmd->done);
2405 
2406 	uic_cmd->cmd_active = 1;
2407 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2408 
2409 	return 0;
2410 }
2411 
2412 /**
2413  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2414  * @hba: per adapter instance
2415  * @uic_cmd: UIC command
2416  *
2417  * Returns 0 only if success.
2418  */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2419 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2420 {
2421 	int ret;
2422 	unsigned long flags;
2423 
2424 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2425 		return 0;
2426 
2427 	ufshcd_hold(hba, false);
2428 	mutex_lock(&hba->uic_cmd_mutex);
2429 	ufshcd_add_delay_before_dme_cmd(hba);
2430 
2431 	spin_lock_irqsave(hba->host->host_lock, flags);
2432 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2433 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2434 	if (!ret)
2435 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2436 
2437 	mutex_unlock(&hba->uic_cmd_mutex);
2438 
2439 	ufshcd_release(hba);
2440 	return ret;
2441 }
2442 
2443 /**
2444  * ufshcd_map_sg - Map scatter-gather list to prdt
2445  * @hba: per adapter instance
2446  * @lrbp: pointer to local reference block
2447  *
2448  * Returns 0 in case of success, non-zero value in case of failure
2449  */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2450 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2451 {
2452 	struct ufshcd_sg_entry *prd;
2453 	struct scatterlist *sg;
2454 	struct scsi_cmnd *cmd;
2455 	int sg_segments;
2456 	int i;
2457 	int err;
2458 
2459 	cmd = lrbp->cmd;
2460 	sg_segments = scsi_dma_map(cmd);
2461 	if (sg_segments < 0)
2462 		return sg_segments;
2463 
2464 	if (sg_segments) {
2465 
2466 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2467 			lrbp->utr_descriptor_ptr->prd_table_length =
2468 				cpu_to_le16(sg_segments * hba->sg_entry_size);
2469 		else
2470 			lrbp->utr_descriptor_ptr->prd_table_length =
2471 				cpu_to_le16(sg_segments);
2472 
2473 		prd = lrbp->ucd_prdt_ptr;
2474 
2475 		scsi_for_each_sg(cmd, sg, sg_segments, i) {
2476 			const unsigned int len = sg_dma_len(sg);
2477 
2478 			/*
2479 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2480 			 * based value that indicates the length, in bytes, of
2481 			 * the data block. A maximum of length of 256KB may
2482 			 * exist for any entry. Bits 1:0 of this field shall be
2483 			 * 11b to indicate Dword granularity. A value of '3'
2484 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2485 			 */
2486 			WARN_ONCE(len > 256 * 1024, "len = %#x\n", len);
2487 			prd->size = cpu_to_le32(len - 1);
2488 			prd->addr = cpu_to_le64(sg->dma_address);
2489 			prd->reserved = 0;
2490 			prd = (void *)prd + hba->sg_entry_size;
2491 		}
2492 	} else {
2493 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2494 	}
2495 
2496 	err = 0;
2497 	trace_android_vh_ufs_fill_prdt(hba, lrbp, sg_segments, &err);
2498 	return err;
2499 }
2500 
2501 /**
2502  * ufshcd_enable_intr - enable interrupts
2503  * @hba: per adapter instance
2504  * @intrs: interrupt bits
2505  */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2506 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2507 {
2508 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2509 
2510 	if (hba->ufs_version == ufshci_version(1, 0)) {
2511 		u32 rw;
2512 		rw = set & INTERRUPT_MASK_RW_VER_10;
2513 		set = rw | ((set ^ intrs) & intrs);
2514 	} else {
2515 		set |= intrs;
2516 	}
2517 
2518 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2519 }
2520 
2521 /**
2522  * ufshcd_disable_intr - disable interrupts
2523  * @hba: per adapter instance
2524  * @intrs: interrupt bits
2525  */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2526 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2527 {
2528 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2529 
2530 	if (hba->ufs_version == ufshci_version(1, 0)) {
2531 		u32 rw;
2532 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2533 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2534 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2535 
2536 	} else {
2537 		set &= ~intrs;
2538 	}
2539 
2540 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2541 }
2542 
2543 /**
2544  * ufshcd_prepare_req_desc_hdr() - Fills the requests header
2545  * descriptor according to request
2546  * @lrbp: pointer to local reference block
2547  * @upiu_flags: flags required in the header
2548  * @cmd_dir: requests data direction
2549  */
ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir)2550 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp,
2551 			u8 *upiu_flags, enum dma_data_direction cmd_dir)
2552 {
2553 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2554 	u32 data_direction;
2555 	u32 dword_0;
2556 	u32 dword_1 = 0;
2557 	u32 dword_3 = 0;
2558 
2559 	if (cmd_dir == DMA_FROM_DEVICE) {
2560 		data_direction = UTP_DEVICE_TO_HOST;
2561 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2562 	} else if (cmd_dir == DMA_TO_DEVICE) {
2563 		data_direction = UTP_HOST_TO_DEVICE;
2564 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2565 	} else {
2566 		data_direction = UTP_NO_DATA_TRANSFER;
2567 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2568 	}
2569 
2570 	dword_0 = data_direction | (lrbp->command_type
2571 				<< UPIU_COMMAND_TYPE_OFFSET);
2572 	if (lrbp->intr_cmd)
2573 		dword_0 |= UTP_REQ_DESC_INT_CMD;
2574 
2575 	/* Prepare crypto related dwords */
2576 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, &dword_0, &dword_1, &dword_3);
2577 
2578 	/* Transfer request descriptor header fields */
2579 	req_desc->header.dword_0 = cpu_to_le32(dword_0);
2580 	req_desc->header.dword_1 = cpu_to_le32(dword_1);
2581 	/*
2582 	 * assigning invalid value for command status. Controller
2583 	 * updates OCS on command completion, with the command
2584 	 * status
2585 	 */
2586 	req_desc->header.dword_2 =
2587 		cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
2588 	req_desc->header.dword_3 = cpu_to_le32(dword_3);
2589 
2590 	req_desc->prd_table_length = 0;
2591 }
2592 
2593 /**
2594  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2595  * for scsi commands
2596  * @lrbp: local reference block pointer
2597  * @upiu_flags: flags
2598  */
2599 static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u8 upiu_flags)2600 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2601 {
2602 	struct scsi_cmnd *cmd = lrbp->cmd;
2603 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2604 	unsigned short cdb_len;
2605 
2606 	/* command descriptor fields */
2607 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2608 				UPIU_TRANSACTION_COMMAND, upiu_flags,
2609 				lrbp->lun, lrbp->task_tag);
2610 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2611 				UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
2612 
2613 	/* Total EHS length and Data segment length will be zero */
2614 	ucd_req_ptr->header.dword_2 = 0;
2615 
2616 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2617 
2618 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2619 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2620 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2621 
2622 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2623 }
2624 
2625 /**
2626  * ufshcd_prepare_utp_query_req_upiu() - fills the utp_transfer_req_desc,
2627  * for query requsts
2628  * @hba: UFS hba
2629  * @lrbp: local reference block pointer
2630  * @upiu_flags: flags
2631  */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 upiu_flags)2632 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2633 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2634 {
2635 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2636 	struct ufs_query *query = &hba->dev_cmd.query;
2637 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2638 
2639 	/* Query request header */
2640 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2641 			UPIU_TRANSACTION_QUERY_REQ, upiu_flags,
2642 			lrbp->lun, lrbp->task_tag);
2643 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2644 			0, query->request.query_func, 0, 0);
2645 
2646 	/* Data segment length only need for WRITE_DESC */
2647 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2648 		ucd_req_ptr->header.dword_2 =
2649 			UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
2650 	else
2651 		ucd_req_ptr->header.dword_2 = 0;
2652 
2653 	/* Copy the Query Request buffer as is */
2654 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2655 			QUERY_OSF_SIZE);
2656 
2657 	/* Copy the Descriptor */
2658 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2659 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2660 
2661 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2662 }
2663 
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2664 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2665 {
2666 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2667 
2668 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2669 
2670 	/* command descriptor fields */
2671 	ucd_req_ptr->header.dword_0 =
2672 		UPIU_HEADER_DWORD(
2673 			UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag);
2674 	/* clear rest of the fields of basic header */
2675 	ucd_req_ptr->header.dword_1 = 0;
2676 	ucd_req_ptr->header.dword_2 = 0;
2677 
2678 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2679 }
2680 
2681 /**
2682  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2683  *			     for Device Management Purposes
2684  * @hba: per adapter instance
2685  * @lrbp: pointer to local reference block
2686  */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2687 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2688 				      struct ufshcd_lrb *lrbp)
2689 {
2690 	u8 upiu_flags;
2691 	int ret = 0;
2692 
2693 	if (hba->ufs_version <= ufshci_version(1, 1))
2694 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2695 	else
2696 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2697 
2698 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
2699 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2700 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2701 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2702 		ufshcd_prepare_utp_nop_upiu(lrbp);
2703 	else
2704 		ret = -EINVAL;
2705 
2706 	return ret;
2707 }
2708 
2709 /**
2710  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2711  *			   for SCSI Purposes
2712  * @hba: per adapter instance
2713  * @lrbp: pointer to local reference block
2714  */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2715 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2716 {
2717 	u8 upiu_flags;
2718 	int ret = 0;
2719 
2720 	if (hba->ufs_version <= ufshci_version(1, 1))
2721 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2722 	else
2723 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2724 
2725 	if (likely(lrbp->cmd)) {
2726 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags,
2727 						lrbp->cmd->sc_data_direction);
2728 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2729 	} else {
2730 		ret = -EINVAL;
2731 	}
2732 
2733 	return ret;
2734 }
2735 
2736 /**
2737  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2738  * @upiu_wlun_id: UPIU W-LUN id
2739  *
2740  * Returns SCSI W-LUN id
2741  */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2742 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2743 {
2744 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2745 }
2746 
is_device_wlun(struct scsi_device * sdev)2747 static inline bool is_device_wlun(struct scsi_device *sdev)
2748 {
2749 	return sdev->lun ==
2750 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2751 }
2752 
2753 /*
2754  * Associate the UFS controller queue with the default and poll HCTX types.
2755  * Initialize the mq_map[] arrays.
2756  */
ufshcd_map_queues(struct Scsi_Host * shost)2757 static int ufshcd_map_queues(struct Scsi_Host *shost)
2758 {
2759 	int i, ret;
2760 
2761 	for (i = 0; i < shost->nr_maps; i++) {
2762 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2763 
2764 		switch (i) {
2765 		case HCTX_TYPE_DEFAULT:
2766 		case HCTX_TYPE_POLL:
2767 			map->nr_queues = 1;
2768 			break;
2769 		case HCTX_TYPE_READ:
2770 			map->nr_queues = 0;
2771 			break;
2772 		default:
2773 			WARN_ON_ONCE(true);
2774 		}
2775 		map->queue_offset = 0;
2776 		ret = blk_mq_map_queues(map);
2777 		WARN_ON_ONCE(ret);
2778 	}
2779 
2780 	return 0;
2781 }
2782 
ufshcd_init_lrb(struct ufs_hba * hba,struct ufshcd_lrb * lrb,int i)2783 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2784 {
2785 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2786 		i * sizeof_utp_transfer_cmd_desc(hba);
2787 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2788 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2789 		i * sizeof_utp_transfer_cmd_desc(hba);
2790 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2791 				       response_upiu);
2792 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2793 
2794 	lrb->utr_descriptor_ptr = utrdlp + i;
2795 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2796 		i * sizeof(struct utp_transfer_req_desc);
2797 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp;
2798 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2799 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2800 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2801 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2802 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2803 }
2804 
2805 /**
2806  * ufshcd_queuecommand - main entry point for SCSI requests
2807  * @host: SCSI host pointer
2808  * @cmd: command from SCSI Midlayer
2809  *
2810  * Returns 0 for success, non-zero in case of failure
2811  */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2812 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2813 {
2814 	struct ufs_hba *hba = shost_priv(host);
2815 	int tag = scsi_cmd_to_rq(cmd)->tag;
2816 	struct ufshcd_lrb *lrbp;
2817 	int err = 0;
2818 
2819 	WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2820 
2821 	/*
2822 	 * Allows the UFS error handler to wait for prior ufshcd_queuecommand()
2823 	 * calls.
2824 	 */
2825 	rcu_read_lock();
2826 
2827 	switch (hba->ufshcd_state) {
2828 	case UFSHCD_STATE_OPERATIONAL:
2829 		break;
2830 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2831 		/*
2832 		 * SCSI error handler can call ->queuecommand() while UFS error
2833 		 * handler is in progress. Error interrupts could change the
2834 		 * state from UFSHCD_STATE_RESET to
2835 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2836 		 * being issued in that case.
2837 		 */
2838 		if (ufshcd_eh_in_progress(hba)) {
2839 			err = SCSI_MLQUEUE_HOST_BUSY;
2840 			goto out;
2841 		}
2842 		break;
2843 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2844 		/*
2845 		 * pm_runtime_get_sync() is used at error handling preparation
2846 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2847 		 * PM ops, it can never be finished if we let SCSI layer keep
2848 		 * retrying it, which gets err handler stuck forever. Neither
2849 		 * can we let the scsi cmd pass through, because UFS is in bad
2850 		 * state, the scsi cmd may eventually time out, which will get
2851 		 * err handler blocked for too long. So, just fail the scsi cmd
2852 		 * sent from PM ops, err handler can recover PM error anyways.
2853 		 */
2854 		if (hba->pm_op_in_progress) {
2855 			hba->force_reset = true;
2856 			set_host_byte(cmd, DID_BAD_TARGET);
2857 			scsi_done(cmd);
2858 			goto out;
2859 		}
2860 		fallthrough;
2861 	case UFSHCD_STATE_RESET:
2862 		err = SCSI_MLQUEUE_HOST_BUSY;
2863 		goto out;
2864 	case UFSHCD_STATE_ERROR:
2865 		set_host_byte(cmd, DID_ERROR);
2866 		scsi_done(cmd);
2867 		goto out;
2868 	}
2869 
2870 	hba->req_abort_count = 0;
2871 
2872 	err = ufshcd_hold(hba, true);
2873 	if (err) {
2874 		err = SCSI_MLQUEUE_HOST_BUSY;
2875 		goto out;
2876 	}
2877 	WARN_ON(ufshcd_is_clkgating_allowed(hba) &&
2878 		(hba->clk_gating.state != CLKS_ON));
2879 
2880 	lrbp = &hba->lrb[tag];
2881 	WARN_ON(lrbp->cmd);
2882 	lrbp->cmd = cmd;
2883 	lrbp->sense_bufflen = UFS_SENSE_SIZE;
2884 	lrbp->sense_buffer = cmd->sense_buffer;
2885 	lrbp->task_tag = tag;
2886 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2887 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba) ? true : false;
2888 
2889 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2890 
2891 	trace_android_vh_ufs_prepare_command(hba, cmd->request, lrbp, &err);
2892 	if (err) {
2893 		lrbp->cmd = NULL;
2894 		ufshcd_release(hba);
2895 		goto out;
2896 	}
2897 
2898 	lrbp->req_abort_skip = false;
2899 
2900 	ufshpb_prep(hba, lrbp);
2901 
2902 	ufshcd_comp_scsi_upiu(hba, lrbp);
2903 
2904 	err = ufshcd_map_sg(hba, lrbp);
2905 	if (err) {
2906 		lrbp->cmd = NULL;
2907 		ufshcd_release(hba);
2908 		goto out;
2909 	}
2910 
2911 	ufshcd_send_command(hba, tag);
2912 
2913 out:
2914 	rcu_read_unlock();
2915 
2916 	if (ufs_trigger_eh()) {
2917 		unsigned long flags;
2918 
2919 		spin_lock_irqsave(hba->host->host_lock, flags);
2920 		ufshcd_schedule_eh_work(hba);
2921 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2922 	}
2923 
2924 	return err;
2925 }
2926 
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)2927 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2928 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2929 {
2930 	lrbp->cmd = NULL;
2931 	lrbp->sense_bufflen = 0;
2932 	lrbp->sense_buffer = NULL;
2933 	lrbp->task_tag = tag;
2934 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2935 	lrbp->intr_cmd = true; /* No interrupt aggregation */
2936 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2937 	hba->dev_cmd.type = cmd_type;
2938 
2939 	return ufshcd_compose_devman_upiu(hba, lrbp);
2940 }
2941 
2942 /*
2943  * Clear all the requests from the controller for which a bit has been set in
2944  * @mask and wait until the controller confirms that these requests have been
2945  * cleared.
2946  */
ufshcd_clear_cmds(struct ufs_hba * hba,u32 mask)2947 static int ufshcd_clear_cmds(struct ufs_hba *hba, u32 mask)
2948 {
2949 	unsigned long flags;
2950 
2951 	/* clear outstanding transaction before retry */
2952 	spin_lock_irqsave(hba->host->host_lock, flags);
2953 	ufshcd_utrl_clear(hba, mask);
2954 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2955 
2956 	/*
2957 	 * wait for h/w to clear corresponding bit in door-bell.
2958 	 * max. wait is 1 sec.
2959 	 */
2960 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
2961 					mask, ~mask, 1000, 1000);
2962 }
2963 
2964 static int
ufshcd_check_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2965 ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2966 {
2967 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2968 
2969 	/* Get the UPIU response */
2970 	query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >>
2971 				UPIU_RSP_CODE_OFFSET;
2972 	return query_res->response;
2973 }
2974 
2975 /**
2976  * ufshcd_dev_cmd_completion() - handles device management command responses
2977  * @hba: per adapter instance
2978  * @lrbp: pointer to local reference block
2979  */
2980 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2981 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2982 {
2983 	int resp;
2984 	int err = 0;
2985 
2986 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
2987 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
2988 
2989 	switch (resp) {
2990 	case UPIU_TRANSACTION_NOP_IN:
2991 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
2992 			err = -EINVAL;
2993 			dev_err(hba->dev, "%s: unexpected response %x\n",
2994 					__func__, resp);
2995 		}
2996 		break;
2997 	case UPIU_TRANSACTION_QUERY_RSP:
2998 		err = ufshcd_check_query_response(hba, lrbp);
2999 		if (!err)
3000 			err = ufshcd_copy_query_response(hba, lrbp);
3001 		break;
3002 	case UPIU_TRANSACTION_REJECT_UPIU:
3003 		/* TODO: handle Reject UPIU Response */
3004 		err = -EPERM;
3005 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3006 				__func__);
3007 		break;
3008 	default:
3009 		err = -EINVAL;
3010 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3011 				__func__, resp);
3012 		break;
3013 	}
3014 
3015 	return err;
3016 }
3017 
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)3018 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3019 		struct ufshcd_lrb *lrbp, int max_timeout)
3020 {
3021 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3022 	unsigned long flags;
3023 	bool pending;
3024 	int err;
3025 
3026 retry:
3027 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3028 						time_left);
3029 
3030 	if (likely(time_left)) {
3031 		/*
3032 		 * The caller of this function still owns the @lrbp tag so the
3033 		 * code below does not trigger any race conditions.
3034 		 */
3035 		hba->dev_cmd.complete = NULL;
3036 		err = ufshcd_get_tr_ocs(lrbp);
3037 		if (!err)
3038 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3039 	} else {
3040 		err = -ETIMEDOUT;
3041 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3042 			__func__, lrbp->task_tag);
3043 		if (!ufshcd_clear_cmds(hba, 1U << lrbp->task_tag)) {
3044 			/* successfully cleared the command, retry if needed */
3045 			err = -EAGAIN;
3046 			/*
3047 			 * Since clearing the command succeeded we also need to
3048 			 * clear the task tag bit from the outstanding_reqs
3049 			 * variable.
3050 			 */
3051 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3052 			pending = test_bit(lrbp->task_tag,
3053 					   &hba->outstanding_reqs);
3054 			if (pending) {
3055 				hba->dev_cmd.complete = NULL;
3056 				__clear_bit(lrbp->task_tag,
3057 					    &hba->outstanding_reqs);
3058 			}
3059 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3060 
3061 			if (!pending) {
3062 				/*
3063 				 * A race occurred between this function and the
3064 				 * completion handler.
3065 				 */
3066 				time_left = 1;
3067 				goto retry;
3068 			}
3069 		} else {
3070 			dev_err(hba->dev, "%s: failed to clear tag %d\n", __func__,
3071 				lrbp->task_tag);
3072 		}
3073 	}
3074 
3075 	return err;
3076 }
3077 
3078 /**
3079  * ufshcd_exec_dev_cmd - API for sending device management requests
3080  * @hba: UFS hba
3081  * @cmd_type: specifies the type (NOP, Query...)
3082  * @timeout: timeout in milliseconds
3083  *
3084  * NOTE: Since there is only one available tag for device management commands,
3085  * it is expected you hold the hba->dev_cmd.lock mutex.
3086  */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)3087 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3088 		enum dev_cmd_type cmd_type, int timeout)
3089 {
3090 	DECLARE_COMPLETION_ONSTACK(wait);
3091 	const u32 tag = hba->reserved_slot;
3092 	struct ufshcd_lrb *lrbp;
3093 	int err;
3094 
3095 	/* Protects use of hba->reserved_slot. */
3096 	lockdep_assert_held(&hba->dev_cmd.lock);
3097 
3098 	down_read(&hba->clk_scaling_lock);
3099 
3100 	lrbp = &hba->lrb[tag];
3101 	WARN_ON(lrbp->cmd);
3102 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3103 	if (unlikely(err))
3104 		goto out;
3105 
3106 	hba->dev_cmd.complete = &wait;
3107 
3108 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3109 
3110 	ufshcd_send_command(hba, tag);
3111 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3112 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3113 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3114 
3115 out:
3116 	up_read(&hba->clk_scaling_lock);
3117 	return err;
3118 }
3119 
3120 /**
3121  * ufshcd_init_query() - init the query response and request parameters
3122  * @hba: per-adapter instance
3123  * @request: address of the request pointer to be initialized
3124  * @response: address of the response pointer to be initialized
3125  * @opcode: operation to perform
3126  * @idn: flag idn to access
3127  * @index: LU number to access
3128  * @selector: query/flag/descriptor further identification
3129  */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)3130 static inline void ufshcd_init_query(struct ufs_hba *hba,
3131 		struct ufs_query_req **request, struct ufs_query_res **response,
3132 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3133 {
3134 	*request = &hba->dev_cmd.query.request;
3135 	*response = &hba->dev_cmd.query.response;
3136 	memset(*request, 0, sizeof(struct ufs_query_req));
3137 	memset(*response, 0, sizeof(struct ufs_query_res));
3138 	(*request)->upiu_req.opcode = opcode;
3139 	(*request)->upiu_req.idn = idn;
3140 	(*request)->upiu_req.index = index;
3141 	(*request)->upiu_req.selector = selector;
3142 }
3143 
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3144 int ufshcd_query_flag_retry(struct ufs_hba *hba,
3145 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3146 {
3147 	int ret;
3148 	int retries;
3149 
3150 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3151 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3152 		if (ret)
3153 			dev_dbg(hba->dev,
3154 				"%s: failed with error %d, retries %d\n",
3155 				__func__, ret, retries);
3156 		else
3157 			break;
3158 	}
3159 
3160 	if (ret)
3161 		dev_err(hba->dev,
3162 			"%s: query attribute, opcode %d, idn %d, failed with error %d after %d retires\n",
3163 			__func__, opcode, idn, ret, retries);
3164 	return ret;
3165 }
3166 EXPORT_SYMBOL_GPL(ufshcd_query_flag_retry);
3167 
3168 /**
3169  * ufshcd_query_flag() - API function for sending flag query requests
3170  * @hba: per-adapter instance
3171  * @opcode: flag query to perform
3172  * @idn: flag idn to access
3173  * @index: flag index to access
3174  * @flag_res: the flag value after the query request completes
3175  *
3176  * Returns 0 for success, non-zero in case of failure
3177  */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3178 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3179 			enum flag_idn idn, u8 index, bool *flag_res)
3180 {
3181 	struct ufs_query_req *request = NULL;
3182 	struct ufs_query_res *response = NULL;
3183 	int err, selector = 0;
3184 	int timeout = QUERY_REQ_TIMEOUT;
3185 
3186 	BUG_ON(!hba);
3187 
3188 	ufshcd_hold(hba, false);
3189 	mutex_lock(&hba->dev_cmd.lock);
3190 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3191 			selector);
3192 
3193 	switch (opcode) {
3194 	case UPIU_QUERY_OPCODE_SET_FLAG:
3195 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3196 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3197 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3198 		break;
3199 	case UPIU_QUERY_OPCODE_READ_FLAG:
3200 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3201 		if (!flag_res) {
3202 			/* No dummy reads */
3203 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3204 					__func__);
3205 			err = -EINVAL;
3206 			goto out_unlock;
3207 		}
3208 		break;
3209 	default:
3210 		dev_err(hba->dev,
3211 			"%s: Expected query flag opcode but got = %d\n",
3212 			__func__, opcode);
3213 		err = -EINVAL;
3214 		goto out_unlock;
3215 	}
3216 
3217 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3218 
3219 	if (err) {
3220 		dev_err(hba->dev,
3221 			"%s: Sending flag query for idn %d failed, err = %d\n",
3222 			__func__, idn, err);
3223 		goto out_unlock;
3224 	}
3225 
3226 	if (flag_res)
3227 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3228 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3229 
3230 out_unlock:
3231 	mutex_unlock(&hba->dev_cmd.lock);
3232 	ufshcd_release(hba);
3233 	return err;
3234 }
3235 EXPORT_SYMBOL_GPL(ufshcd_query_flag);
3236 
3237 /**
3238  * ufshcd_query_attr - API function for sending attribute requests
3239  * @hba: per-adapter instance
3240  * @opcode: attribute opcode
3241  * @idn: attribute idn to access
3242  * @index: index field
3243  * @selector: selector field
3244  * @attr_val: the attribute value after the query request completes
3245  *
3246  * Returns 0 for success, non-zero in case of failure
3247 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3248 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3249 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3250 {
3251 	struct ufs_query_req *request = NULL;
3252 	struct ufs_query_res *response = NULL;
3253 	int err;
3254 
3255 	BUG_ON(!hba);
3256 
3257 	if (!attr_val) {
3258 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3259 				__func__, opcode);
3260 		return -EINVAL;
3261 	}
3262 
3263 	ufshcd_hold(hba, false);
3264 
3265 	mutex_lock(&hba->dev_cmd.lock);
3266 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3267 			selector);
3268 
3269 	switch (opcode) {
3270 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3271 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3272 		request->upiu_req.value = cpu_to_be32(*attr_val);
3273 		break;
3274 	case UPIU_QUERY_OPCODE_READ_ATTR:
3275 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3276 		break;
3277 	default:
3278 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3279 				__func__, opcode);
3280 		err = -EINVAL;
3281 		goto out_unlock;
3282 	}
3283 
3284 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3285 
3286 	if (err) {
3287 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3288 				__func__, opcode, idn, index, err);
3289 		goto out_unlock;
3290 	}
3291 
3292 	*attr_val = be32_to_cpu(response->upiu_res.value);
3293 
3294 out_unlock:
3295 	mutex_unlock(&hba->dev_cmd.lock);
3296 	ufshcd_release(hba);
3297 	return err;
3298 }
3299 EXPORT_SYMBOL_GPL(ufshcd_query_attr);
3300 
3301 /**
3302  * ufshcd_query_attr_retry() - API function for sending query
3303  * attribute with retries
3304  * @hba: per-adapter instance
3305  * @opcode: attribute opcode
3306  * @idn: attribute idn to access
3307  * @index: index field
3308  * @selector: selector field
3309  * @attr_val: the attribute value after the query request
3310  * completes
3311  *
3312  * Returns 0 for success, non-zero in case of failure
3313 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3314 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3315 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3316 	u32 *attr_val)
3317 {
3318 	int ret = 0;
3319 	u32 retries;
3320 
3321 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3322 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3323 						selector, attr_val);
3324 		if (ret)
3325 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3326 				__func__, ret, retries);
3327 		else
3328 			break;
3329 	}
3330 
3331 	if (ret)
3332 		dev_err(hba->dev,
3333 			"%s: query attribute, idn %d, failed with error %d after %d retires\n",
3334 			__func__, idn, ret, QUERY_REQ_RETRIES);
3335 	return ret;
3336 }
3337 EXPORT_SYMBOL_GPL(ufshcd_query_attr_retry);
3338 
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3339 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3340 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3341 			u8 selector, u8 *desc_buf, int *buf_len)
3342 {
3343 	struct ufs_query_req *request = NULL;
3344 	struct ufs_query_res *response = NULL;
3345 	int err;
3346 
3347 	BUG_ON(!hba);
3348 
3349 	if (!desc_buf) {
3350 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3351 				__func__, opcode);
3352 		return -EINVAL;
3353 	}
3354 
3355 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3356 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3357 				__func__, *buf_len);
3358 		return -EINVAL;
3359 	}
3360 
3361 	ufshcd_hold(hba, false);
3362 
3363 	mutex_lock(&hba->dev_cmd.lock);
3364 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3365 			selector);
3366 	hba->dev_cmd.query.descriptor = desc_buf;
3367 	request->upiu_req.length = cpu_to_be16(*buf_len);
3368 
3369 	switch (opcode) {
3370 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3371 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3372 		break;
3373 	case UPIU_QUERY_OPCODE_READ_DESC:
3374 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3375 		break;
3376 	default:
3377 		dev_err(hba->dev,
3378 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3379 				__func__, opcode);
3380 		err = -EINVAL;
3381 		goto out_unlock;
3382 	}
3383 
3384 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3385 
3386 	if (err) {
3387 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3388 				__func__, opcode, idn, index, err);
3389 		goto out_unlock;
3390 	}
3391 
3392 	*buf_len = be16_to_cpu(response->upiu_res.length);
3393 
3394 out_unlock:
3395 	hba->dev_cmd.query.descriptor = NULL;
3396 	mutex_unlock(&hba->dev_cmd.lock);
3397 	ufshcd_release(hba);
3398 	return err;
3399 }
3400 
3401 /**
3402  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3403  * @hba: per-adapter instance
3404  * @opcode: attribute opcode
3405  * @idn: attribute idn to access
3406  * @index: index field
3407  * @selector: selector field
3408  * @desc_buf: the buffer that contains the descriptor
3409  * @buf_len: length parameter passed to the device
3410  *
3411  * Returns 0 for success, non-zero in case of failure.
3412  * The buf_len parameter will contain, on return, the length parameter
3413  * received on the response.
3414  */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3415 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3416 				  enum query_opcode opcode,
3417 				  enum desc_idn idn, u8 index,
3418 				  u8 selector,
3419 				  u8 *desc_buf, int *buf_len)
3420 {
3421 	int err;
3422 	int retries;
3423 
3424 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3425 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3426 						selector, desc_buf, buf_len);
3427 		if (!err || err == -EINVAL)
3428 			break;
3429 	}
3430 
3431 	return err;
3432 }
3433 EXPORT_SYMBOL_GPL(ufshcd_query_descriptor_retry);
3434 
3435 /**
3436  * ufshcd_map_desc_id_to_length - map descriptor IDN to its length
3437  * @hba: Pointer to adapter instance
3438  * @desc_id: descriptor idn value
3439  * @desc_len: mapped desc length (out)
3440  */
ufshcd_map_desc_id_to_length(struct ufs_hba * hba,enum desc_idn desc_id,int * desc_len)3441 void ufshcd_map_desc_id_to_length(struct ufs_hba *hba, enum desc_idn desc_id,
3442 				  int *desc_len)
3443 {
3444 	if (desc_id >= QUERY_DESC_IDN_MAX || desc_id == QUERY_DESC_IDN_RFU_0 ||
3445 	    desc_id == QUERY_DESC_IDN_RFU_1)
3446 		*desc_len = 0;
3447 	else
3448 		*desc_len = hba->desc_size[desc_id];
3449 }
3450 EXPORT_SYMBOL(ufshcd_map_desc_id_to_length);
3451 
ufshcd_update_desc_length(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,unsigned char desc_len)3452 static void ufshcd_update_desc_length(struct ufs_hba *hba,
3453 				      enum desc_idn desc_id, int desc_index,
3454 				      unsigned char desc_len)
3455 {
3456 	if (hba->desc_size[desc_id] == QUERY_DESC_MAX_SIZE &&
3457 	    desc_id != QUERY_DESC_IDN_STRING && desc_index != UFS_RPMB_UNIT)
3458 		/* For UFS 3.1, the normal unit descriptor is 10 bytes larger
3459 		 * than the RPMB unit, however, both descriptors share the same
3460 		 * desc_idn, to cover both unit descriptors with one length, we
3461 		 * choose the normal unit descriptor length by desc_index.
3462 		 */
3463 		hba->desc_size[desc_id] = desc_len;
3464 }
3465 
3466 /**
3467  * ufshcd_read_desc_param - read the specified descriptor parameter
3468  * @hba: Pointer to adapter instance
3469  * @desc_id: descriptor idn value
3470  * @desc_index: descriptor index
3471  * @param_offset: offset of the parameter to read
3472  * @param_read_buf: pointer to buffer where parameter would be read
3473  * @param_size: sizeof(param_read_buf)
3474  *
3475  * Return 0 in case of success, non-zero otherwise
3476  */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3477 int ufshcd_read_desc_param(struct ufs_hba *hba,
3478 			   enum desc_idn desc_id,
3479 			   int desc_index,
3480 			   u8 param_offset,
3481 			   u8 *param_read_buf,
3482 			   u8 param_size)
3483 {
3484 	int ret;
3485 	u8 *desc_buf;
3486 	int buff_len;
3487 	bool is_kmalloc = true;
3488 
3489 	/* Safety check */
3490 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3491 		return -EINVAL;
3492 
3493 	/* Get the length of descriptor */
3494 	ufshcd_map_desc_id_to_length(hba, desc_id, &buff_len);
3495 	if (!buff_len) {
3496 		dev_err(hba->dev, "%s: Failed to get desc length\n", __func__);
3497 		return -EINVAL;
3498 	}
3499 
3500 	if (param_offset >= buff_len) {
3501 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3502 			__func__, param_offset, desc_id, buff_len);
3503 		return -EINVAL;
3504 	}
3505 
3506 	/* Check whether we need temp memory */
3507 	if (param_offset != 0 || param_size < buff_len) {
3508 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3509 		if (!desc_buf)
3510 			return -ENOMEM;
3511 	} else {
3512 		desc_buf = param_read_buf;
3513 		is_kmalloc = false;
3514 	}
3515 
3516 	/* Request for full descriptor */
3517 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3518 					desc_id, desc_index, 0,
3519 					desc_buf, &buff_len);
3520 
3521 	if (ret) {
3522 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3523 			__func__, desc_id, desc_index, param_offset, ret);
3524 		goto out;
3525 	}
3526 
3527 	/* Sanity check */
3528 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3529 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3530 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3531 		ret = -EINVAL;
3532 		goto out;
3533 	}
3534 
3535 	/* Update descriptor length */
3536 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3537 	ufshcd_update_desc_length(hba, desc_id, desc_index, buff_len);
3538 
3539 	if (is_kmalloc) {
3540 		/* Make sure we don't copy more data than available */
3541 		if (param_offset >= buff_len)
3542 			ret = -EINVAL;
3543 		else
3544 			memcpy(param_read_buf, &desc_buf[param_offset],
3545 			       min_t(u32, param_size, buff_len - param_offset));
3546 	}
3547 out:
3548 	if (is_kmalloc)
3549 		kfree(desc_buf);
3550 	return ret;
3551 }
3552 EXPORT_SYMBOL_GPL(ufshcd_read_desc_param);
3553 
3554 /**
3555  * struct uc_string_id - unicode string
3556  *
3557  * @len: size of this descriptor inclusive
3558  * @type: descriptor type
3559  * @uc: unicode string character
3560  */
3561 struct uc_string_id {
3562 	u8 len;
3563 	u8 type;
3564 	wchar_t uc[];
3565 } __packed;
3566 
3567 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3568 static inline char ufshcd_remove_non_printable(u8 ch)
3569 {
3570 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3571 }
3572 
3573 /**
3574  * ufshcd_read_string_desc - read string descriptor
3575  * @hba: pointer to adapter instance
3576  * @desc_index: descriptor index
3577  * @buf: pointer to buffer where descriptor would be read,
3578  *       the caller should free the memory.
3579  * @ascii: if true convert from unicode to ascii characters
3580  *         null terminated string.
3581  *
3582  * Return:
3583  * *      string size on success.
3584  * *      -ENOMEM: on allocation failure
3585  * *      -EINVAL: on a wrong parameter
3586  */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3587 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3588 			    u8 **buf, bool ascii)
3589 {
3590 	struct uc_string_id *uc_str;
3591 	u8 *str;
3592 	int ret;
3593 
3594 	if (!buf)
3595 		return -EINVAL;
3596 
3597 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3598 	if (!uc_str)
3599 		return -ENOMEM;
3600 
3601 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3602 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3603 	if (ret < 0) {
3604 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3605 			QUERY_REQ_RETRIES, ret);
3606 		str = NULL;
3607 		goto out;
3608 	}
3609 
3610 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3611 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3612 		str = NULL;
3613 		ret = 0;
3614 		goto out;
3615 	}
3616 
3617 	if (ascii) {
3618 		ssize_t ascii_len;
3619 		int i;
3620 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3621 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3622 		str = kzalloc(ascii_len, GFP_KERNEL);
3623 		if (!str) {
3624 			ret = -ENOMEM;
3625 			goto out;
3626 		}
3627 
3628 		/*
3629 		 * the descriptor contains string in UTF16 format
3630 		 * we need to convert to utf-8 so it can be displayed
3631 		 */
3632 		ret = utf16s_to_utf8s(uc_str->uc,
3633 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3634 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3635 
3636 		/* replace non-printable or non-ASCII characters with spaces */
3637 		for (i = 0; i < ret; i++)
3638 			str[i] = ufshcd_remove_non_printable(str[i]);
3639 
3640 		str[ret++] = '\0';
3641 
3642 	} else {
3643 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3644 		if (!str) {
3645 			ret = -ENOMEM;
3646 			goto out;
3647 		}
3648 		ret = uc_str->len;
3649 	}
3650 out:
3651 	*buf = str;
3652 	kfree(uc_str);
3653 	return ret;
3654 }
3655 
3656 /**
3657  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3658  * @hba: Pointer to adapter instance
3659  * @lun: lun id
3660  * @param_offset: offset of the parameter to read
3661  * @param_read_buf: pointer to buffer where parameter would be read
3662  * @param_size: sizeof(param_read_buf)
3663  *
3664  * Return 0 in case of success, non-zero otherwise
3665  */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3666 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3667 					      int lun,
3668 					      enum unit_desc_param param_offset,
3669 					      u8 *param_read_buf,
3670 					      u32 param_size)
3671 {
3672 	/*
3673 	 * Unit descriptors are only available for general purpose LUs (LUN id
3674 	 * from 0 to 7) and RPMB Well known LU.
3675 	 */
3676 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun, param_offset))
3677 		return -EOPNOTSUPP;
3678 
3679 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3680 				      param_offset, param_read_buf, param_size);
3681 }
3682 
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3683 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3684 {
3685 	int err = 0;
3686 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3687 
3688 	if (hba->dev_info.wspecversion >= 0x300) {
3689 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3690 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3691 				&gating_wait);
3692 		if (err)
3693 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3694 					 err, gating_wait);
3695 
3696 		if (gating_wait == 0) {
3697 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3698 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3699 					 gating_wait);
3700 		}
3701 
3702 		hba->dev_info.clk_gating_wait_us = gating_wait;
3703 	}
3704 
3705 	return err;
3706 }
3707 
3708 /**
3709  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3710  * @hba: per adapter instance
3711  *
3712  * 1. Allocate DMA memory for Command Descriptor array
3713  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3714  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3715  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3716  *	(UTMRDL)
3717  * 4. Allocate memory for local reference block(lrb).
3718  *
3719  * Returns 0 for success, non-zero in case of failure
3720  */
ufshcd_memory_alloc(struct ufs_hba * hba)3721 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3722 {
3723 	size_t utmrdl_size, utrdl_size, ucdl_size;
3724 
3725 	/* Allocate memory for UTP command descriptors */
3726 	ucdl_size = (sizeof_utp_transfer_cmd_desc(hba) * hba->nutrs);
3727 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3728 						  ucdl_size,
3729 						  &hba->ucdl_dma_addr,
3730 						  GFP_KERNEL);
3731 
3732 	/*
3733 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3734 	 * make sure hba->ucdl_dma_addr is aligned to PAGE_SIZE
3735 	 * if hba->ucdl_dma_addr is aligned to PAGE_SIZE, then it will
3736 	 * be aligned to 128 bytes as well
3737 	 */
3738 	if (!hba->ucdl_base_addr ||
3739 	    WARN_ON(hba->ucdl_dma_addr & (PAGE_SIZE - 1))) {
3740 		dev_err(hba->dev,
3741 			"Command Descriptor Memory allocation failed\n");
3742 		goto out;
3743 	}
3744 
3745 	/*
3746 	 * Allocate memory for UTP Transfer descriptors
3747 	 * UFSHCI requires 1024 byte alignment of UTRD
3748 	 */
3749 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3750 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3751 						   utrdl_size,
3752 						   &hba->utrdl_dma_addr,
3753 						   GFP_KERNEL);
3754 	if (!hba->utrdl_base_addr ||
3755 	    WARN_ON(hba->utrdl_dma_addr & (PAGE_SIZE - 1))) {
3756 		dev_err(hba->dev,
3757 			"Transfer Descriptor Memory allocation failed\n");
3758 		goto out;
3759 	}
3760 
3761 	/*
3762 	 * Allocate memory for UTP Task Management descriptors
3763 	 * UFSHCI requires 1024 byte alignment of UTMRD
3764 	 */
3765 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3766 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3767 						    utmrdl_size,
3768 						    &hba->utmrdl_dma_addr,
3769 						    GFP_KERNEL);
3770 	if (!hba->utmrdl_base_addr ||
3771 	    WARN_ON(hba->utmrdl_dma_addr & (PAGE_SIZE - 1))) {
3772 		dev_err(hba->dev,
3773 		"Task Management Descriptor Memory allocation failed\n");
3774 		goto out;
3775 	}
3776 
3777 	/* Allocate memory for local reference block */
3778 	hba->lrb = devm_kcalloc(hba->dev,
3779 				hba->nutrs, sizeof(struct ufshcd_lrb),
3780 				GFP_KERNEL);
3781 	if (!hba->lrb) {
3782 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3783 		goto out;
3784 	}
3785 	return 0;
3786 out:
3787 	return -ENOMEM;
3788 }
3789 
3790 /**
3791  * ufshcd_host_memory_configure - configure local reference block with
3792  *				memory offsets
3793  * @hba: per adapter instance
3794  *
3795  * Configure Host memory space
3796  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3797  * address.
3798  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3799  * and PRDT offset.
3800  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3801  * into local reference block.
3802  */
ufshcd_host_memory_configure(struct ufs_hba * hba)3803 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3804 {
3805 	struct utp_transfer_req_desc *utrdlp;
3806 	dma_addr_t cmd_desc_dma_addr;
3807 	dma_addr_t cmd_desc_element_addr;
3808 	u16 response_offset;
3809 	u16 prdt_offset;
3810 	int cmd_desc_size;
3811 	int i;
3812 
3813 	utrdlp = hba->utrdl_base_addr;
3814 
3815 	response_offset =
3816 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3817 	prdt_offset =
3818 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3819 
3820 	cmd_desc_size = sizeof_utp_transfer_cmd_desc(hba);
3821 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3822 
3823 	for (i = 0; i < hba->nutrs; i++) {
3824 		/* Configure UTRD with command descriptor base address */
3825 		cmd_desc_element_addr =
3826 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3827 		utrdlp[i].command_desc_base_addr_lo =
3828 				cpu_to_le32(lower_32_bits(cmd_desc_element_addr));
3829 		utrdlp[i].command_desc_base_addr_hi =
3830 				cpu_to_le32(upper_32_bits(cmd_desc_element_addr));
3831 
3832 		/* Response upiu and prdt offset should be in double words */
3833 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3834 			utrdlp[i].response_upiu_offset =
3835 				cpu_to_le16(response_offset);
3836 			utrdlp[i].prd_table_offset =
3837 				cpu_to_le16(prdt_offset);
3838 			utrdlp[i].response_upiu_length =
3839 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3840 		} else {
3841 			utrdlp[i].response_upiu_offset =
3842 				cpu_to_le16(response_offset >> 2);
3843 			utrdlp[i].prd_table_offset =
3844 				cpu_to_le16(prdt_offset >> 2);
3845 			utrdlp[i].response_upiu_length =
3846 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3847 		}
3848 
3849 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3850 	}
3851 }
3852 
3853 /**
3854  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3855  * @hba: per adapter instance
3856  *
3857  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3858  * in order to initialize the Unipro link startup procedure.
3859  * Once the Unipro links are up, the device connected to the controller
3860  * is detected.
3861  *
3862  * Returns 0 on success, non-zero value on failure
3863  */
ufshcd_dme_link_startup(struct ufs_hba * hba)3864 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3865 {
3866 	struct uic_command uic_cmd = {0};
3867 	int ret;
3868 
3869 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3870 
3871 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3872 	if (ret)
3873 		dev_dbg(hba->dev,
3874 			"dme-link-startup: error code %d\n", ret);
3875 	return ret;
3876 }
3877 /**
3878  * ufshcd_dme_reset - UIC command for DME_RESET
3879  * @hba: per adapter instance
3880  *
3881  * DME_RESET command is issued in order to reset UniPro stack.
3882  * This function now deals with cold reset.
3883  *
3884  * Returns 0 on success, non-zero value on failure
3885  */
ufshcd_dme_reset(struct ufs_hba * hba)3886 static int ufshcd_dme_reset(struct ufs_hba *hba)
3887 {
3888 	struct uic_command uic_cmd = {0};
3889 	int ret;
3890 
3891 	uic_cmd.command = UIC_CMD_DME_RESET;
3892 
3893 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3894 	if (ret)
3895 		dev_err(hba->dev,
3896 			"dme-reset: error code %d\n", ret);
3897 
3898 	return ret;
3899 }
3900 
ufshcd_dme_configure_adapt(struct ufs_hba * hba,int agreed_gear,int adapt_val)3901 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3902 			       int agreed_gear,
3903 			       int adapt_val)
3904 {
3905 	int ret;
3906 
3907 	if (agreed_gear != UFS_HS_G4)
3908 		adapt_val = PA_NO_ADAPT;
3909 
3910 	ret = ufshcd_dme_set(hba,
3911 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3912 			     adapt_val);
3913 	return ret;
3914 }
3915 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3916 
3917 /**
3918  * ufshcd_dme_enable - UIC command for DME_ENABLE
3919  * @hba: per adapter instance
3920  *
3921  * DME_ENABLE command is issued in order to enable UniPro stack.
3922  *
3923  * Returns 0 on success, non-zero value on failure
3924  */
ufshcd_dme_enable(struct ufs_hba * hba)3925 static int ufshcd_dme_enable(struct ufs_hba *hba)
3926 {
3927 	struct uic_command uic_cmd = {0};
3928 	int ret;
3929 
3930 	uic_cmd.command = UIC_CMD_DME_ENABLE;
3931 
3932 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3933 	if (ret)
3934 		dev_err(hba->dev,
3935 			"dme-enable: error code %d\n", ret);
3936 
3937 	return ret;
3938 }
3939 
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)3940 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3941 {
3942 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3943 	unsigned long min_sleep_time_us;
3944 
3945 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3946 		return;
3947 
3948 	/*
3949 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
3950 	 * this function
3951 	 */
3952 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3953 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3954 	} else {
3955 		unsigned long delta =
3956 			(unsigned long) ktime_to_us(
3957 				ktime_sub(ktime_get(),
3958 				hba->last_dme_cmd_tstamp));
3959 
3960 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3961 			min_sleep_time_us =
3962 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3963 		else
3964 			return; /* no more delay required */
3965 	}
3966 
3967 	/* allow sleep for extra 50us if needed */
3968 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3969 }
3970 
3971 /**
3972  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3973  * @hba: per adapter instance
3974  * @attr_sel: uic command argument1
3975  * @attr_set: attribute set type as uic command argument2
3976  * @mib_val: setting value as uic command argument3
3977  * @peer: indicate whether peer or local
3978  *
3979  * Returns 0 on success, non-zero value on failure
3980  */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)3981 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
3982 			u8 attr_set, u32 mib_val, u8 peer)
3983 {
3984 	struct uic_command uic_cmd = {0};
3985 	static const char *const action[] = {
3986 		"dme-set",
3987 		"dme-peer-set"
3988 	};
3989 	const char *set = action[!!peer];
3990 	int ret;
3991 	int retries = UFS_UIC_COMMAND_RETRIES;
3992 
3993 	uic_cmd.command = peer ?
3994 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
3995 	uic_cmd.argument1 = attr_sel;
3996 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
3997 	uic_cmd.argument3 = mib_val;
3998 
3999 	do {
4000 		/* for peer attributes we retry upon failure */
4001 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4002 		if (ret)
4003 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4004 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4005 	} while (ret && peer && --retries);
4006 
4007 	if (ret)
4008 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4009 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4010 			UFS_UIC_COMMAND_RETRIES - retries);
4011 
4012 	return ret;
4013 }
4014 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4015 
4016 /**
4017  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4018  * @hba: per adapter instance
4019  * @attr_sel: uic command argument1
4020  * @mib_val: the value of the attribute as returned by the UIC command
4021  * @peer: indicate whether peer or local
4022  *
4023  * Returns 0 on success, non-zero value on failure
4024  */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)4025 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4026 			u32 *mib_val, u8 peer)
4027 {
4028 	struct uic_command uic_cmd = {0};
4029 	static const char *const action[] = {
4030 		"dme-get",
4031 		"dme-peer-get"
4032 	};
4033 	const char *get = action[!!peer];
4034 	int ret;
4035 	int retries = UFS_UIC_COMMAND_RETRIES;
4036 	struct ufs_pa_layer_attr orig_pwr_info;
4037 	struct ufs_pa_layer_attr temp_pwr_info;
4038 	bool pwr_mode_change = false;
4039 
4040 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4041 		orig_pwr_info = hba->pwr_info;
4042 		temp_pwr_info = orig_pwr_info;
4043 
4044 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4045 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4046 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4047 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4048 			pwr_mode_change = true;
4049 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4050 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4051 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4052 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4053 			pwr_mode_change = true;
4054 		}
4055 		if (pwr_mode_change) {
4056 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4057 			if (ret)
4058 				goto out;
4059 		}
4060 	}
4061 
4062 	uic_cmd.command = peer ?
4063 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4064 	uic_cmd.argument1 = attr_sel;
4065 
4066 	do {
4067 		/* for peer attributes we retry upon failure */
4068 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4069 		if (ret)
4070 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4071 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4072 	} while (ret && peer && --retries);
4073 
4074 	if (ret)
4075 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4076 			get, UIC_GET_ATTR_ID(attr_sel),
4077 			UFS_UIC_COMMAND_RETRIES - retries);
4078 
4079 	if (mib_val && !ret)
4080 		*mib_val = uic_cmd.argument3;
4081 
4082 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4083 	    && pwr_mode_change)
4084 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4085 out:
4086 	return ret;
4087 }
4088 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4089 
4090 /**
4091  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4092  * state) and waits for it to take effect.
4093  *
4094  * @hba: per adapter instance
4095  * @cmd: UIC command to execute
4096  *
4097  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4098  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4099  * and device UniPro link and hence it's final completion would be indicated by
4100  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4101  * addition to normal UIC command completion Status (UCCS). This function only
4102  * returns after the relevant status bits indicate the completion.
4103  *
4104  * Returns 0 on success, non-zero value on failure
4105  */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)4106 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4107 {
4108 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4109 	unsigned long flags;
4110 	u8 status;
4111 	int ret;
4112 	bool reenable_intr = false;
4113 
4114 	mutex_lock(&hba->uic_cmd_mutex);
4115 	ufshcd_add_delay_before_dme_cmd(hba);
4116 
4117 	spin_lock_irqsave(hba->host->host_lock, flags);
4118 	if (ufshcd_is_link_broken(hba)) {
4119 		ret = -ENOLINK;
4120 		goto out_unlock;
4121 	}
4122 	hba->uic_async_done = &uic_async_done;
4123 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4124 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4125 		/*
4126 		 * Make sure UIC command completion interrupt is disabled before
4127 		 * issuing UIC command.
4128 		 */
4129 		wmb();
4130 		reenable_intr = true;
4131 	}
4132 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4133 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4134 	if (ret) {
4135 		dev_err(hba->dev,
4136 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4137 			cmd->command, cmd->argument3, ret);
4138 		goto out;
4139 	}
4140 
4141 	if (!wait_for_completion_timeout(hba->uic_async_done,
4142 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4143 		dev_err(hba->dev,
4144 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4145 			cmd->command, cmd->argument3);
4146 
4147 		if (!cmd->cmd_active) {
4148 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4149 				__func__);
4150 			goto check_upmcrs;
4151 		}
4152 
4153 		ret = -ETIMEDOUT;
4154 		goto out;
4155 	}
4156 
4157 check_upmcrs:
4158 	status = ufshcd_get_upmcrs(hba);
4159 	if (status != PWR_LOCAL) {
4160 		dev_err(hba->dev,
4161 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4162 			cmd->command, status);
4163 		ret = (status != PWR_OK) ? status : -1;
4164 	}
4165 out:
4166 	if (ret) {
4167 		ufshcd_print_host_state(hba);
4168 		ufshcd_print_pwr_info(hba);
4169 		ufshcd_print_evt_hist(hba);
4170 	}
4171 
4172 	spin_lock_irqsave(hba->host->host_lock, flags);
4173 	hba->active_uic_cmd = NULL;
4174 	hba->uic_async_done = NULL;
4175 	if (reenable_intr)
4176 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4177 	if (ret) {
4178 		ufshcd_set_link_broken(hba);
4179 		ufshcd_schedule_eh_work(hba);
4180 	}
4181 out_unlock:
4182 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4183 	mutex_unlock(&hba->uic_cmd_mutex);
4184 
4185 	return ret;
4186 }
4187 
4188 /**
4189  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4190  *				using DME_SET primitives.
4191  * @hba: per adapter instance
4192  * @mode: powr mode value
4193  *
4194  * Returns 0 on success, non-zero value on failure
4195  */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)4196 static int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4197 {
4198 	struct uic_command uic_cmd = {0};
4199 	int ret;
4200 
4201 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4202 		ret = ufshcd_dme_set(hba,
4203 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4204 		if (ret) {
4205 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4206 						__func__, ret);
4207 			goto out;
4208 		}
4209 	}
4210 
4211 	uic_cmd.command = UIC_CMD_DME_SET;
4212 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4213 	uic_cmd.argument3 = mode;
4214 	ufshcd_hold(hba, false);
4215 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4216 	ufshcd_release(hba);
4217 
4218 out:
4219 	return ret;
4220 }
4221 
ufshcd_link_recovery(struct ufs_hba * hba)4222 int ufshcd_link_recovery(struct ufs_hba *hba)
4223 {
4224 	int ret;
4225 	unsigned long flags;
4226 
4227 	spin_lock_irqsave(hba->host->host_lock, flags);
4228 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4229 	ufshcd_set_eh_in_progress(hba);
4230 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4231 
4232 	/* Reset the attached device */
4233 	ufshcd_device_reset(hba);
4234 
4235 	ret = ufshcd_host_reset_and_restore(hba);
4236 
4237 	spin_lock_irqsave(hba->host->host_lock, flags);
4238 	if (ret)
4239 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4240 	ufshcd_clear_eh_in_progress(hba);
4241 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4242 
4243 	if (ret)
4244 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4245 			__func__, ret);
4246 
4247 	return ret;
4248 }
4249 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4250 
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4251 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4252 {
4253 	int ret;
4254 	struct uic_command uic_cmd = {0};
4255 	ktime_t start = ktime_get();
4256 
4257 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4258 
4259 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4260 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4261 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4262 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4263 
4264 	if (ret)
4265 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4266 			__func__, ret);
4267 	else
4268 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4269 								POST_CHANGE);
4270 
4271 	return ret;
4272 }
4273 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4274 
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4275 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4276 {
4277 	struct uic_command uic_cmd = {0};
4278 	int ret;
4279 	ktime_t start = ktime_get();
4280 
4281 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4282 
4283 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4284 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4285 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4286 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4287 
4288 	if (ret) {
4289 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4290 			__func__, ret);
4291 	} else {
4292 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4293 								POST_CHANGE);
4294 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_get();
4295 		hba->ufs_stats.hibern8_exit_cnt++;
4296 	}
4297 
4298 	return ret;
4299 }
4300 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4301 
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)4302 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4303 {
4304 	unsigned long flags;
4305 	bool update = false;
4306 
4307 	if (!ufshcd_is_auto_hibern8_supported(hba))
4308 		return;
4309 
4310 	spin_lock_irqsave(hba->host->host_lock, flags);
4311 	if (hba->ahit != ahit) {
4312 		hba->ahit = ahit;
4313 		update = true;
4314 	}
4315 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4316 
4317 	if (update &&
4318 	    !pm_runtime_suspended(&hba->sdev_ufs_device->sdev_gendev)) {
4319 		ufshcd_rpm_get_sync(hba);
4320 		ufshcd_hold(hba, false);
4321 		ufshcd_auto_hibern8_enable(hba);
4322 		ufshcd_release(hba);
4323 		ufshcd_rpm_put_sync(hba);
4324 	}
4325 }
4326 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4327 
ufshcd_auto_hibern8_enable(struct ufs_hba * hba)4328 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4329 {
4330 	unsigned long flags;
4331 
4332 	if (!ufshcd_is_auto_hibern8_supported(hba))
4333 		return;
4334 
4335 	spin_lock_irqsave(hba->host->host_lock, flags);
4336 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4337 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4338 }
4339 
4340  /**
4341  * ufshcd_init_pwr_info - setting the POR (power on reset)
4342  * values in hba power info
4343  * @hba: per-adapter instance
4344  */
ufshcd_init_pwr_info(struct ufs_hba * hba)4345 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4346 {
4347 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4348 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4349 	hba->pwr_info.lane_rx = 1;
4350 	hba->pwr_info.lane_tx = 1;
4351 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4352 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4353 	hba->pwr_info.hs_rate = 0;
4354 }
4355 
4356 /**
4357  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4358  * @hba: per-adapter instance
4359  */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4360 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4361 {
4362 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4363 
4364 	if (hba->max_pwr_info.is_valid)
4365 		return 0;
4366 
4367 	pwr_info->pwr_tx = FAST_MODE;
4368 	pwr_info->pwr_rx = FAST_MODE;
4369 	pwr_info->hs_rate = PA_HS_MODE_B;
4370 
4371 	/* Get the connected lane count */
4372 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4373 			&pwr_info->lane_rx);
4374 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4375 			&pwr_info->lane_tx);
4376 
4377 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4378 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4379 				__func__,
4380 				pwr_info->lane_rx,
4381 				pwr_info->lane_tx);
4382 		return -EINVAL;
4383 	}
4384 
4385 	/*
4386 	 * First, get the maximum gears of HS speed.
4387 	 * If a zero value, it means there is no HSGEAR capability.
4388 	 * Then, get the maximum gears of PWM speed.
4389 	 */
4390 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4391 	if (!pwr_info->gear_rx) {
4392 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4393 				&pwr_info->gear_rx);
4394 		if (!pwr_info->gear_rx) {
4395 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4396 				__func__, pwr_info->gear_rx);
4397 			return -EINVAL;
4398 		}
4399 		pwr_info->pwr_rx = SLOW_MODE;
4400 	}
4401 
4402 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4403 			&pwr_info->gear_tx);
4404 	if (!pwr_info->gear_tx) {
4405 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4406 				&pwr_info->gear_tx);
4407 		if (!pwr_info->gear_tx) {
4408 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4409 				__func__, pwr_info->gear_tx);
4410 			return -EINVAL;
4411 		}
4412 		pwr_info->pwr_tx = SLOW_MODE;
4413 	}
4414 
4415 	hba->max_pwr_info.is_valid = true;
4416 	return 0;
4417 }
4418 
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4419 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4420 			     struct ufs_pa_layer_attr *pwr_mode)
4421 {
4422 	int ret;
4423 
4424 	/* if already configured to the requested pwr_mode */
4425 	if (!hba->force_pmc &&
4426 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4427 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4428 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4429 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4430 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4431 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4432 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4433 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4434 		return 0;
4435 	}
4436 
4437 	/*
4438 	 * Configure attributes for power mode change with below.
4439 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4440 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4441 	 * - PA_HSSERIES
4442 	 */
4443 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4444 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4445 			pwr_mode->lane_rx);
4446 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4447 			pwr_mode->pwr_rx == FAST_MODE)
4448 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), TRUE);
4449 	else
4450 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), FALSE);
4451 
4452 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4453 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4454 			pwr_mode->lane_tx);
4455 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4456 			pwr_mode->pwr_tx == FAST_MODE)
4457 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), TRUE);
4458 	else
4459 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), FALSE);
4460 
4461 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4462 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4463 	    pwr_mode->pwr_rx == FAST_MODE ||
4464 	    pwr_mode->pwr_tx == FAST_MODE)
4465 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4466 						pwr_mode->hs_rate);
4467 
4468 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4469 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4470 				DL_FC0ProtectionTimeOutVal_Default);
4471 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4472 				DL_TC0ReplayTimeOutVal_Default);
4473 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4474 				DL_AFC0ReqTimeOutVal_Default);
4475 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4476 				DL_FC1ProtectionTimeOutVal_Default);
4477 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4478 				DL_TC1ReplayTimeOutVal_Default);
4479 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4480 				DL_AFC1ReqTimeOutVal_Default);
4481 
4482 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4483 				DL_FC0ProtectionTimeOutVal_Default);
4484 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4485 				DL_TC0ReplayTimeOutVal_Default);
4486 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4487 				DL_AFC0ReqTimeOutVal_Default);
4488 	}
4489 
4490 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4491 			| pwr_mode->pwr_tx);
4492 
4493 	if (ret) {
4494 		dev_err(hba->dev,
4495 			"%s: power mode change failed %d\n", __func__, ret);
4496 	} else {
4497 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4498 								pwr_mode);
4499 
4500 		memcpy(&hba->pwr_info, pwr_mode,
4501 			sizeof(struct ufs_pa_layer_attr));
4502 	}
4503 
4504 	return ret;
4505 }
4506 
4507 /**
4508  * ufshcd_config_pwr_mode - configure a new power mode
4509  * @hba: per-adapter instance
4510  * @desired_pwr_mode: desired power configuration
4511  */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4512 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4513 		struct ufs_pa_layer_attr *desired_pwr_mode)
4514 {
4515 	struct ufs_pa_layer_attr final_params = { 0 };
4516 	int ret;
4517 
4518 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4519 					desired_pwr_mode, &final_params);
4520 
4521 	if (ret)
4522 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4523 
4524 	ret = ufshcd_change_power_mode(hba, &final_params);
4525 
4526 	return ret;
4527 }
4528 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4529 
4530 /**
4531  * ufshcd_complete_dev_init() - checks device readiness
4532  * @hba: per-adapter instance
4533  *
4534  * Set fDeviceInit flag and poll until device toggles it.
4535  */
ufshcd_complete_dev_init(struct ufs_hba * hba)4536 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4537 {
4538 	int err;
4539 	bool flag_res = true;
4540 	ktime_t timeout;
4541 
4542 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4543 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4544 	if (err) {
4545 		dev_err(hba->dev,
4546 			"%s setting fDeviceInit flag failed with error %d\n",
4547 			__func__, err);
4548 		goto out;
4549 	}
4550 
4551 	/* Poll fDeviceInit flag to be cleared */
4552 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4553 	do {
4554 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4555 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4556 		if (!flag_res)
4557 			break;
4558 		usleep_range(500, 1000);
4559 	} while (ktime_before(ktime_get(), timeout));
4560 
4561 	if (err) {
4562 		dev_err(hba->dev,
4563 				"%s reading fDeviceInit flag failed with error %d\n",
4564 				__func__, err);
4565 	} else if (flag_res) {
4566 		dev_err(hba->dev,
4567 				"%s fDeviceInit was not cleared by the device\n",
4568 				__func__);
4569 		err = -EBUSY;
4570 	}
4571 out:
4572 	return err;
4573 }
4574 
4575 /**
4576  * ufshcd_make_hba_operational - Make UFS controller operational
4577  * @hba: per adapter instance
4578  *
4579  * To bring UFS host controller to operational state,
4580  * 1. Enable required interrupts
4581  * 2. Configure interrupt aggregation
4582  * 3. Program UTRL and UTMRL base address
4583  * 4. Configure run-stop-registers
4584  *
4585  * Returns 0 on success, non-zero value on failure
4586  */
ufshcd_make_hba_operational(struct ufs_hba * hba)4587 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4588 {
4589 	int err = 0;
4590 	u32 reg;
4591 
4592 	/* Enable required interrupts */
4593 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4594 
4595 	/* Configure interrupt aggregation */
4596 	if (ufshcd_is_intr_aggr_allowed(hba))
4597 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4598 	else
4599 		ufshcd_disable_intr_aggr(hba);
4600 
4601 	/* Configure UTRL and UTMRL base address registers */
4602 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4603 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4604 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4605 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4606 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4607 			REG_UTP_TASK_REQ_LIST_BASE_L);
4608 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4609 			REG_UTP_TASK_REQ_LIST_BASE_H);
4610 
4611 	/*
4612 	 * Make sure base address and interrupt setup are updated before
4613 	 * enabling the run/stop registers below.
4614 	 */
4615 	wmb();
4616 
4617 	/*
4618 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4619 	 */
4620 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4621 	if (!(ufshcd_get_lists_status(reg))) {
4622 		ufshcd_enable_run_stop_reg(hba);
4623 	} else {
4624 		dev_err(hba->dev,
4625 			"Host controller not ready to process requests");
4626 		err = -EIO;
4627 	}
4628 
4629 	return err;
4630 }
4631 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4632 
4633 /**
4634  * ufshcd_hba_stop - Send controller to reset state
4635  * @hba: per adapter instance
4636  */
ufshcd_hba_stop(struct ufs_hba * hba)4637 void ufshcd_hba_stop(struct ufs_hba *hba)
4638 {
4639 	unsigned long flags;
4640 	int err;
4641 
4642 	/*
4643 	 * Obtain the host lock to prevent that the controller is disabled
4644 	 * while the UFS interrupt handler is active on another CPU.
4645 	 */
4646 	spin_lock_irqsave(hba->host->host_lock, flags);
4647 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4648 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4649 
4650 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4651 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4652 					10, 1);
4653 	if (err)
4654 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4655 }
4656 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4657 
4658 /**
4659  * ufshcd_hba_execute_hce - initialize the controller
4660  * @hba: per adapter instance
4661  *
4662  * The controller resets itself and controller firmware initialization
4663  * sequence kicks off. When controller is ready it will set
4664  * the Host Controller Enable bit to 1.
4665  *
4666  * Returns 0 on success, non-zero value on failure
4667  */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4668 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4669 {
4670 	int retry_outer = 3;
4671 	int retry_inner;
4672 
4673 start:
4674 	if (!ufshcd_is_hba_active(hba))
4675 		/* change controller state to "reset state" */
4676 		ufshcd_hba_stop(hba);
4677 
4678 	/* UniPro link is disabled at this point */
4679 	ufshcd_set_link_off(hba);
4680 
4681 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4682 
4683 	/* start controller initialization sequence */
4684 	ufshcd_hba_start(hba);
4685 
4686 	/*
4687 	 * To initialize a UFS host controller HCE bit must be set to 1.
4688 	 * During initialization the HCE bit value changes from 1->0->1.
4689 	 * When the host controller completes initialization sequence
4690 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4691 	 * to check if the controller has completed initialization sequence.
4692 	 * So without this delay the value HCE = 1, set in the previous
4693 	 * instruction might be read back.
4694 	 * This delay can be changed based on the controller.
4695 	 */
4696 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4697 
4698 	/* wait for the host controller to complete initialization */
4699 	retry_inner = 50;
4700 	while (ufshcd_is_hba_active(hba)) {
4701 		if (retry_inner) {
4702 			retry_inner--;
4703 		} else {
4704 			dev_err(hba->dev,
4705 				"Controller enable failed\n");
4706 			if (retry_outer) {
4707 				retry_outer--;
4708 				goto start;
4709 			}
4710 			return -EIO;
4711 		}
4712 		usleep_range(1000, 1100);
4713 	}
4714 
4715 	/* enable UIC related interrupts */
4716 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4717 
4718 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4719 
4720 	return 0;
4721 }
4722 
ufshcd_hba_enable(struct ufs_hba * hba)4723 int ufshcd_hba_enable(struct ufs_hba *hba)
4724 {
4725 	int ret;
4726 
4727 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4728 		ufshcd_set_link_off(hba);
4729 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4730 
4731 		/* enable UIC related interrupts */
4732 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4733 		ret = ufshcd_dme_reset(hba);
4734 		if (!ret) {
4735 			ret = ufshcd_dme_enable(hba);
4736 			if (!ret)
4737 				ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4738 			if (ret)
4739 				dev_err(hba->dev,
4740 					"Host controller enable failed with non-hce\n");
4741 		}
4742 	} else {
4743 		ret = ufshcd_hba_execute_hce(hba);
4744 	}
4745 
4746 	return ret;
4747 }
4748 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4749 
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4750 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4751 {
4752 	int tx_lanes = 0, i, err = 0;
4753 
4754 	if (!peer)
4755 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4756 			       &tx_lanes);
4757 	else
4758 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4759 				    &tx_lanes);
4760 	for (i = 0; i < tx_lanes; i++) {
4761 		if (!peer)
4762 			err = ufshcd_dme_set(hba,
4763 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4764 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4765 					0);
4766 		else
4767 			err = ufshcd_dme_peer_set(hba,
4768 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4769 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4770 					0);
4771 		if (err) {
4772 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4773 				__func__, peer, i, err);
4774 			break;
4775 		}
4776 	}
4777 
4778 	return err;
4779 }
4780 
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)4781 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4782 {
4783 	return ufshcd_disable_tx_lcc(hba, true);
4784 }
4785 
ufshcd_update_evt_hist(struct ufs_hba * hba,u32 id,u32 val)4786 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4787 {
4788 	struct ufs_event_hist *e;
4789 
4790 	if (id >= UFS_EVT_CNT)
4791 		return;
4792 
4793 	e = &hba->ufs_stats.event[id];
4794 	e->val[e->pos] = val;
4795 	e->tstamp[e->pos] = ktime_get();
4796 	e->cnt += 1;
4797 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4798 
4799 	ufshcd_vops_event_notify(hba, id, &val);
4800 }
4801 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4802 
4803 /**
4804  * ufshcd_link_startup - Initialize unipro link startup
4805  * @hba: per adapter instance
4806  *
4807  * Returns 0 for success, non-zero in case of failure
4808  */
ufshcd_link_startup(struct ufs_hba * hba)4809 static int ufshcd_link_startup(struct ufs_hba *hba)
4810 {
4811 	int ret;
4812 	int retries = DME_LINKSTARTUP_RETRIES;
4813 	bool link_startup_again = false;
4814 
4815 	/*
4816 	 * If UFS device isn't active then we will have to issue link startup
4817 	 * 2 times to make sure the device state move to active.
4818 	 */
4819 	if (!ufshcd_is_ufs_dev_active(hba))
4820 		link_startup_again = true;
4821 
4822 link_startup:
4823 	do {
4824 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4825 
4826 		ret = ufshcd_dme_link_startup(hba);
4827 
4828 		/* check if device is detected by inter-connect layer */
4829 		if (!ret && !ufshcd_is_device_present(hba)) {
4830 			ufshcd_update_evt_hist(hba,
4831 					       UFS_EVT_LINK_STARTUP_FAIL,
4832 					       0);
4833 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4834 			ret = -ENXIO;
4835 			goto out;
4836 		}
4837 
4838 		/*
4839 		 * DME link lost indication is only received when link is up,
4840 		 * but we can't be sure if the link is up until link startup
4841 		 * succeeds. So reset the local Uni-Pro and try again.
4842 		 */
4843 		if (ret && ufshcd_hba_enable(hba)) {
4844 			ufshcd_update_evt_hist(hba,
4845 					       UFS_EVT_LINK_STARTUP_FAIL,
4846 					       (u32)ret);
4847 			goto out;
4848 		}
4849 	} while (ret && retries--);
4850 
4851 	if (ret) {
4852 		/* failed to get the link up... retire */
4853 		ufshcd_update_evt_hist(hba,
4854 				       UFS_EVT_LINK_STARTUP_FAIL,
4855 				       (u32)ret);
4856 		goto out;
4857 	}
4858 
4859 	if (link_startup_again) {
4860 		link_startup_again = false;
4861 		retries = DME_LINKSTARTUP_RETRIES;
4862 		goto link_startup;
4863 	}
4864 
4865 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4866 	ufshcd_init_pwr_info(hba);
4867 	ufshcd_print_pwr_info(hba);
4868 
4869 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4870 		ret = ufshcd_disable_device_tx_lcc(hba);
4871 		if (ret)
4872 			goto out;
4873 	}
4874 
4875 	/* Include any host controller configuration via UIC commands */
4876 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4877 	if (ret)
4878 		goto out;
4879 
4880 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4881 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4882 	ret = ufshcd_make_hba_operational(hba);
4883 out:
4884 	if (ret) {
4885 		dev_err(hba->dev, "link startup failed %d\n", ret);
4886 		ufshcd_print_host_state(hba);
4887 		ufshcd_print_pwr_info(hba);
4888 		ufshcd_print_evt_hist(hba);
4889 	}
4890 	return ret;
4891 }
4892 
4893 /**
4894  * ufshcd_verify_dev_init() - Verify device initialization
4895  * @hba: per-adapter instance
4896  *
4897  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4898  * device Transport Protocol (UTP) layer is ready after a reset.
4899  * If the UTP layer at the device side is not initialized, it may
4900  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4901  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4902  */
ufshcd_verify_dev_init(struct ufs_hba * hba)4903 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4904 {
4905 	int err = 0;
4906 	int retries;
4907 
4908 	ufshcd_hold(hba, false);
4909 	mutex_lock(&hba->dev_cmd.lock);
4910 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4911 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4912 					  hba->nop_out_timeout);
4913 
4914 		if (!err || err == -ETIMEDOUT)
4915 			break;
4916 
4917 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4918 	}
4919 	mutex_unlock(&hba->dev_cmd.lock);
4920 	ufshcd_release(hba);
4921 
4922 	if (err)
4923 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4924 	return err;
4925 }
4926 
4927 /**
4928  * ufshcd_set_queue_depth - set lun queue depth
4929  * @sdev: pointer to SCSI device
4930  *
4931  * Read bLUQueueDepth value and activate scsi tagged command
4932  * queueing. For WLUN, queue depth is set to 1. For best-effort
4933  * cases (bLUQueueDepth = 0) the queue depth is set to a maximum
4934  * value that host can queue.
4935  */
ufshcd_set_queue_depth(struct scsi_device * sdev)4936 static void ufshcd_set_queue_depth(struct scsi_device *sdev)
4937 {
4938 	int ret = 0;
4939 	u8 lun_qdepth;
4940 	struct ufs_hba *hba;
4941 
4942 	hba = shost_priv(sdev->host);
4943 
4944 	lun_qdepth = hba->nutrs;
4945 	ret = ufshcd_read_unit_desc_param(hba,
4946 					  ufshcd_scsi_to_upiu_lun(sdev->lun),
4947 					  UNIT_DESC_PARAM_LU_Q_DEPTH,
4948 					  &lun_qdepth,
4949 					  sizeof(lun_qdepth));
4950 
4951 	/* Some WLUN doesn't support unit descriptor */
4952 	if (ret == -EOPNOTSUPP)
4953 		lun_qdepth = 1;
4954 	else if (!lun_qdepth)
4955 		/* eventually, we can figure out the real queue depth */
4956 		lun_qdepth = hba->nutrs;
4957 	else
4958 		lun_qdepth = min_t(int, lun_qdepth, hba->nutrs);
4959 
4960 	dev_dbg(hba->dev, "%s: activate tcq with queue depth %d\n",
4961 			__func__, lun_qdepth);
4962 	scsi_change_queue_depth(sdev, lun_qdepth);
4963 }
4964 
4965 /*
4966  * ufshcd_get_lu_wp - returns the "b_lu_write_protect" from UNIT DESCRIPTOR
4967  * @hba: per-adapter instance
4968  * @lun: UFS device lun id
4969  * @b_lu_write_protect: pointer to buffer to hold the LU's write protect info
4970  *
4971  * Returns 0 in case of success and b_lu_write_protect status would be returned
4972  * @b_lu_write_protect parameter.
4973  * Returns -ENOTSUPP if reading b_lu_write_protect is not supported.
4974  * Returns -EINVAL in case of invalid parameters passed to this function.
4975  */
ufshcd_get_lu_wp(struct ufs_hba * hba,u8 lun,u8 * b_lu_write_protect)4976 static int ufshcd_get_lu_wp(struct ufs_hba *hba,
4977 			    u8 lun,
4978 			    u8 *b_lu_write_protect)
4979 {
4980 	int ret;
4981 
4982 	if (!b_lu_write_protect)
4983 		ret = -EINVAL;
4984 	/*
4985 	 * According to UFS device spec, RPMB LU can't be write
4986 	 * protected so skip reading bLUWriteProtect parameter for
4987 	 * it. For other W-LUs, UNIT DESCRIPTOR is not available.
4988 	 */
4989 	else if (lun >= hba->dev_info.max_lu_supported)
4990 		ret = -ENOTSUPP;
4991 	else
4992 		ret = ufshcd_read_unit_desc_param(hba,
4993 					  lun,
4994 					  UNIT_DESC_PARAM_LU_WR_PROTECT,
4995 					  b_lu_write_protect,
4996 					  sizeof(*b_lu_write_protect));
4997 	return ret;
4998 }
4999 
5000 /**
5001  * ufshcd_get_lu_power_on_wp_status - get LU's power on write protect
5002  * status
5003  * @hba: per-adapter instance
5004  * @sdev: pointer to SCSI device
5005  *
5006  */
ufshcd_get_lu_power_on_wp_status(struct ufs_hba * hba,struct scsi_device * sdev)5007 static inline void ufshcd_get_lu_power_on_wp_status(struct ufs_hba *hba,
5008 						    struct scsi_device *sdev)
5009 {
5010 	if (hba->dev_info.f_power_on_wp_en &&
5011 	    !hba->dev_info.is_lu_power_on_wp) {
5012 		u8 b_lu_write_protect;
5013 
5014 		if (!ufshcd_get_lu_wp(hba, ufshcd_scsi_to_upiu_lun(sdev->lun),
5015 				      &b_lu_write_protect) &&
5016 		    (b_lu_write_protect == UFS_LU_POWER_ON_WP))
5017 			hba->dev_info.is_lu_power_on_wp = true;
5018 	}
5019 }
5020 
5021 /**
5022  * ufshcd_setup_links - associate link b/w device wlun and other luns
5023  * @sdev: pointer to SCSI device
5024  * @hba: pointer to ufs hba
5025  */
ufshcd_setup_links(struct ufs_hba * hba,struct scsi_device * sdev)5026 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5027 {
5028 	struct device_link *link;
5029 
5030 	/*
5031 	 * Device wlun is the supplier & rest of the luns are consumers.
5032 	 * This ensures that device wlun suspends after all other luns.
5033 	 */
5034 	if (hba->sdev_ufs_device) {
5035 		link = device_link_add(&sdev->sdev_gendev,
5036 				       &hba->sdev_ufs_device->sdev_gendev,
5037 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5038 		if (!link) {
5039 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5040 				dev_name(&hba->sdev_ufs_device->sdev_gendev));
5041 			return;
5042 		}
5043 		hba->luns_avail--;
5044 		/* Ignore REPORT_LUN wlun probing */
5045 		if (hba->luns_avail == 1) {
5046 			ufshcd_rpm_put(hba);
5047 			return;
5048 		}
5049 	} else {
5050 		/*
5051 		 * Device wlun is probed. The assumption is that WLUNs are
5052 		 * scanned before other LUNs.
5053 		 */
5054 		hba->luns_avail--;
5055 	}
5056 }
5057 
5058 /**
5059  * ufshcd_slave_alloc - handle initial SCSI device configurations
5060  * @sdev: pointer to SCSI device
5061  *
5062  * Returns success
5063  */
ufshcd_slave_alloc(struct scsi_device * sdev)5064 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5065 {
5066 	struct ufs_hba *hba;
5067 
5068 	hba = shost_priv(sdev->host);
5069 
5070 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5071 	sdev->use_10_for_ms = 1;
5072 
5073 	/* DBD field should be set to 1 in mode sense(10) */
5074 	sdev->set_dbd_for_ms = 1;
5075 
5076 	/* allow SCSI layer to restart the device in case of errors */
5077 	sdev->allow_restart = 1;
5078 
5079 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5080 	sdev->no_report_opcodes = 1;
5081 
5082 	/* WRITE_SAME command is not supported */
5083 	sdev->no_write_same = 1;
5084 
5085 	ufshcd_set_queue_depth(sdev);
5086 
5087 	ufshcd_get_lu_power_on_wp_status(hba, sdev);
5088 
5089 	ufshcd_setup_links(hba, sdev);
5090 
5091 	return 0;
5092 }
5093 
5094 /**
5095  * ufshcd_change_queue_depth - change queue depth
5096  * @sdev: pointer to SCSI device
5097  * @depth: required depth to set
5098  *
5099  * Change queue depth and make sure the max. limits are not crossed.
5100  */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)5101 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5102 {
5103 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5104 }
5105 
ufshcd_hpb_destroy(struct ufs_hba * hba,struct scsi_device * sdev)5106 static void ufshcd_hpb_destroy(struct ufs_hba *hba, struct scsi_device *sdev)
5107 {
5108 	/* skip well-known LU */
5109 	if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
5110 	    !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
5111 		return;
5112 
5113 	ufshpb_destroy_lu(hba, sdev);
5114 }
5115 
ufshcd_hpb_configure(struct ufs_hba * hba,struct scsi_device * sdev)5116 static void ufshcd_hpb_configure(struct ufs_hba *hba, struct scsi_device *sdev)
5117 {
5118 	/* skip well-known LU */
5119 	if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
5120 	    !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
5121 		return;
5122 
5123 	ufshpb_init_hpb_lu(hba, sdev);
5124 }
5125 
5126 /**
5127  * ufshcd_slave_configure - adjust SCSI device configurations
5128  * @sdev: pointer to SCSI device
5129  */
ufshcd_slave_configure(struct scsi_device * sdev)5130 static int ufshcd_slave_configure(struct scsi_device *sdev)
5131 {
5132 	struct ufs_hba *hba = shost_priv(sdev->host);
5133 	struct request_queue *q = sdev->request_queue;
5134 
5135 	ufshcd_hpb_configure(hba, sdev);
5136 
5137 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5138 	if (hba->quirks & UFSHCD_QUIRK_ALIGN_SG_WITH_PAGE_SIZE)
5139 		blk_queue_update_dma_alignment(q, PAGE_SIZE - 1);
5140 	/*
5141 	 * Block runtime-pm until all consumers are added.
5142 	 * Refer ufshcd_setup_links().
5143 	 */
5144 	if (is_device_wlun(sdev))
5145 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5146 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5147 		sdev->rpm_autosuspend = 1;
5148 	/*
5149 	 * Do not print messages during runtime PM to avoid never-ending cycles
5150 	 * of messages written back to storage by user space causing runtime
5151 	 * resume, causing more messages and so on.
5152 	 */
5153 	sdev->silence_suspend = 1;
5154 
5155 	ufshcd_crypto_setup_rq_keyslot_manager(hba, q);
5156 
5157 	trace_android_vh_ufs_update_sdev(sdev);
5158 
5159 	return 0;
5160 }
5161 
5162 /**
5163  * ufshcd_slave_destroy - remove SCSI device configurations
5164  * @sdev: pointer to SCSI device
5165  */
ufshcd_slave_destroy(struct scsi_device * sdev)5166 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5167 {
5168 	struct ufs_hba *hba;
5169 	unsigned long flags;
5170 
5171 	hba = shost_priv(sdev->host);
5172 
5173 	ufshcd_hpb_destroy(hba, sdev);
5174 
5175 	/* Drop the reference as it won't be needed anymore */
5176 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5177 		spin_lock_irqsave(hba->host->host_lock, flags);
5178 		hba->sdev_ufs_device = NULL;
5179 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5180 	} else if (hba->sdev_ufs_device) {
5181 		struct device *supplier = NULL;
5182 
5183 		/* Ensure UFS Device WLUN exists and does not disappear */
5184 		spin_lock_irqsave(hba->host->host_lock, flags);
5185 		if (hba->sdev_ufs_device) {
5186 			supplier = &hba->sdev_ufs_device->sdev_gendev;
5187 			get_device(supplier);
5188 		}
5189 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5190 
5191 		if (supplier) {
5192 			/*
5193 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5194 			 * device will not have been registered but can still
5195 			 * have a device link holding a reference to the device.
5196 			 */
5197 			device_link_remove(&sdev->sdev_gendev, supplier);
5198 			put_device(supplier);
5199 		}
5200 	}
5201 }
5202 
5203 /**
5204  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5205  * @lrbp: pointer to local reference block of completed command
5206  * @scsi_status: SCSI command status
5207  *
5208  * Returns value base on SCSI command status
5209  */
5210 static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)5211 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5212 {
5213 	int result = 0;
5214 
5215 	switch (scsi_status) {
5216 	case SAM_STAT_CHECK_CONDITION:
5217 		ufshcd_copy_sense_data(lrbp);
5218 		fallthrough;
5219 	case SAM_STAT_GOOD:
5220 		result |= DID_OK << 16 | scsi_status;
5221 		break;
5222 	case SAM_STAT_TASK_SET_FULL:
5223 	case SAM_STAT_BUSY:
5224 	case SAM_STAT_TASK_ABORTED:
5225 		ufshcd_copy_sense_data(lrbp);
5226 		result |= scsi_status;
5227 		break;
5228 	default:
5229 		result |= DID_ERROR << 16;
5230 		break;
5231 	} /* end of switch */
5232 
5233 	return result;
5234 }
5235 
5236 /**
5237  * ufshcd_transfer_rsp_status - Get overall status of the response
5238  * @hba: per adapter instance
5239  * @lrbp: pointer to local reference block of completed command
5240  *
5241  * Returns result of the command to notify SCSI midlayer
5242  */
5243 static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)5244 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
5245 {
5246 	int result = 0;
5247 	int scsi_status;
5248 	enum utp_ocs ocs;
5249 
5250 	/* overall command status of utrd */
5251 	ocs = ufshcd_get_tr_ocs(lrbp);
5252 
5253 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5254 		if (be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_1) &
5255 					MASK_RSP_UPIU_RESULT)
5256 			ocs = OCS_SUCCESS;
5257 	}
5258 
5259 	switch (ocs) {
5260 	case OCS_SUCCESS:
5261 		result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
5262 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5263 		switch (result) {
5264 		case UPIU_TRANSACTION_RESPONSE:
5265 			/*
5266 			 * get the response UPIU result to extract
5267 			 * the SCSI command status
5268 			 */
5269 			result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
5270 
5271 			/*
5272 			 * get the result based on SCSI status response
5273 			 * to notify the SCSI midlayer of the command status
5274 			 */
5275 			scsi_status = result & MASK_SCSI_STATUS;
5276 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5277 
5278 			/*
5279 			 * Currently we are only supporting BKOPs exception
5280 			 * events hence we can ignore BKOPs exception event
5281 			 * during power management callbacks. BKOPs exception
5282 			 * event is not expected to be raised in runtime suspend
5283 			 * callback as it allows the urgent bkops.
5284 			 * During system suspend, we are anyway forcefully
5285 			 * disabling the bkops and if urgent bkops is needed
5286 			 * it will be enabled on system resume. Long term
5287 			 * solution could be to abort the system suspend if
5288 			 * UFS device needs urgent BKOPs.
5289 			 */
5290 			if (!hba->pm_op_in_progress &&
5291 			    !ufshcd_eh_in_progress(hba) &&
5292 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5293 				/* Flushed in suspend */
5294 				schedule_work(&hba->eeh_work);
5295 
5296 			if (scsi_status == SAM_STAT_GOOD)
5297 				ufshpb_rsp_upiu(hba, lrbp);
5298 			break;
5299 		case UPIU_TRANSACTION_REJECT_UPIU:
5300 			/* TODO: handle Reject UPIU Response */
5301 			result = DID_ERROR << 16;
5302 			dev_err(hba->dev,
5303 				"Reject UPIU not fully implemented\n");
5304 			break;
5305 		default:
5306 			dev_err(hba->dev,
5307 				"Unexpected request response code = %x\n",
5308 				result);
5309 			result = DID_ERROR << 16;
5310 			break;
5311 		}
5312 		break;
5313 	case OCS_ABORTED:
5314 		result |= DID_ABORT << 16;
5315 		break;
5316 	case OCS_INVALID_COMMAND_STATUS:
5317 		result |= DID_REQUEUE << 16;
5318 		break;
5319 	case OCS_INVALID_CMD_TABLE_ATTR:
5320 	case OCS_INVALID_PRDT_ATTR:
5321 	case OCS_MISMATCH_DATA_BUF_SIZE:
5322 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5323 	case OCS_PEER_COMM_FAILURE:
5324 	case OCS_FATAL_ERROR:
5325 	case OCS_DEVICE_FATAL_ERROR:
5326 	case OCS_INVALID_CRYPTO_CONFIG:
5327 	case OCS_GENERAL_CRYPTO_ERROR:
5328 	default:
5329 		result |= DID_ERROR << 16;
5330 		dev_err(hba->dev,
5331 				"OCS error from controller = %x for tag %d\n",
5332 				ocs, lrbp->task_tag);
5333 		ufshcd_print_evt_hist(hba);
5334 		ufshcd_print_host_state(hba);
5335 		break;
5336 	} /* end of switch */
5337 
5338 	if ((host_byte(result) != DID_OK) &&
5339 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5340 		ufshcd_print_trs(hba, 1 << lrbp->task_tag, true);
5341 	return result;
5342 }
5343 
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5344 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5345 					 u32 intr_mask)
5346 {
5347 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5348 	    !ufshcd_is_auto_hibern8_enabled(hba))
5349 		return false;
5350 
5351 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5352 		return false;
5353 
5354 	if (hba->active_uic_cmd &&
5355 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5356 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5357 		return false;
5358 
5359 	return true;
5360 }
5361 
5362 /**
5363  * ufshcd_uic_cmd_compl - handle completion of uic command
5364  * @hba: per adapter instance
5365  * @intr_status: interrupt status generated by the controller
5366  *
5367  * Returns
5368  *  IRQ_HANDLED - If interrupt is valid
5369  *  IRQ_NONE    - If invalid interrupt
5370  */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)5371 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5372 {
5373 	irqreturn_t retval = IRQ_NONE;
5374 
5375 	spin_lock(hba->host->host_lock);
5376 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5377 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5378 
5379 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5380 		hba->active_uic_cmd->argument2 |=
5381 			ufshcd_get_uic_cmd_result(hba);
5382 		hba->active_uic_cmd->argument3 =
5383 			ufshcd_get_dme_attr_val(hba);
5384 		if (!hba->uic_async_done)
5385 			hba->active_uic_cmd->cmd_active = 0;
5386 		complete(&hba->active_uic_cmd->done);
5387 		retval = IRQ_HANDLED;
5388 	}
5389 
5390 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5391 		hba->active_uic_cmd->cmd_active = 0;
5392 		complete(hba->uic_async_done);
5393 		retval = IRQ_HANDLED;
5394 	}
5395 
5396 	if (retval == IRQ_HANDLED)
5397 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5398 					     UFS_CMD_COMP);
5399 	spin_unlock(hba->host->host_lock);
5400 	return retval;
5401 }
5402 
5403 /* Release the resources allocated for processing a SCSI command. */
ufshcd_release_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)5404 static void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5405 				    struct ufshcd_lrb *lrbp)
5406 {
5407 	struct scsi_cmnd *cmd = lrbp->cmd;
5408 
5409 	scsi_dma_unmap(cmd);
5410 	ufshcd_crypto_clear_prdt(hba, lrbp);
5411 	lrbp->cmd = NULL;	/* Mark the command as completed. */
5412 	ufshcd_release(hba);
5413 	ufshcd_clk_scaling_update_busy(hba);
5414 }
5415 
5416 /**
5417  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5418  * @hba: per adapter instance
5419  * @completed_reqs: bitmask that indicates which requests to complete
5420  */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)5421 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5422 					unsigned long completed_reqs)
5423 {
5424 	struct ufshcd_lrb *lrbp;
5425 	struct scsi_cmnd *cmd;
5426 	int index;
5427 
5428 	for_each_set_bit(index, &completed_reqs, hba->nutrs) {
5429 		lrbp = &hba->lrb[index];
5430 		lrbp->compl_time_stamp = ktime_get();
5431 		cmd = lrbp->cmd;
5432 		if (cmd) {
5433 			if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5434 				ufshcd_update_monitor(hba, lrbp);
5435 			trace_android_vh_ufs_compl_command(hba, lrbp);
5436 			ufshcd_add_command_trace(hba, index, UFS_CMD_COMP);
5437 			cmd->result = ufshcd_transfer_rsp_status(hba, lrbp);
5438 			ufshcd_release_scsi_cmd(hba, lrbp);
5439 			/* Do not touch lrbp after scsi done */
5440 			scsi_done(cmd);
5441 		} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5442 			lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5443 			if (hba->dev_cmd.complete) {
5444 				trace_android_vh_ufs_compl_command(hba, lrbp);
5445 				ufshcd_add_command_trace(hba, index,
5446 							 UFS_DEV_COMP);
5447 				complete(hba->dev_cmd.complete);
5448 				ufshcd_clk_scaling_update_busy(hba);
5449 			}
5450 		}
5451 	}
5452 }
5453 
5454 /* Any value that is not an existing queue number is fine for this constant. */
5455 enum {
5456 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5457 };
5458 
ufshcd_clear_polled(struct ufs_hba * hba,unsigned long * completed_reqs)5459 static void ufshcd_clear_polled(struct ufs_hba *hba,
5460 				unsigned long *completed_reqs)
5461 {
5462 	int tag;
5463 
5464 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5465 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5466 
5467 		if (!cmd)
5468 			continue;
5469 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_HIPRI)
5470 			__clear_bit(tag, completed_reqs);
5471 	}
5472 }
5473 
5474 /*
5475  * Returns > 0 if one or more commands have been completed or 0 if no
5476  * requests have been completed.
5477  */
ufshcd_poll(struct Scsi_Host * shost,unsigned int queue_num)5478 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5479 {
5480 	struct ufs_hba *hba = shost_priv(shost);
5481 	unsigned long completed_reqs, flags;
5482 	u32 tr_doorbell;
5483 
5484 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5485 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5486 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5487 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5488 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5489 		  hba->outstanding_reqs);
5490 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5491 		/* Do not complete polled requests from interrupt context. */
5492 		ufshcd_clear_polled(hba, &completed_reqs);
5493 	}
5494 	hba->outstanding_reqs &= ~completed_reqs;
5495 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5496 
5497 	if (completed_reqs)
5498 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5499 
5500 	return completed_reqs != 0;
5501 }
5502 
5503 /**
5504  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5505  * @hba: per adapter instance
5506  *
5507  * Returns
5508  *  IRQ_HANDLED - If interrupt is valid
5509  *  IRQ_NONE    - If invalid interrupt
5510  */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5511 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5512 {
5513 	/* Resetting interrupt aggregation counters first and reading the
5514 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5515 	 * In order to prevent other interrupts starvation the DB is read once
5516 	 * after reset. The down side of this solution is the possibility of
5517 	 * false interrupt if device completes another request after resetting
5518 	 * aggregation and before reading the DB.
5519 	 */
5520 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5521 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5522 		ufshcd_reset_intr_aggr(hba);
5523 
5524 	if (ufs_fail_completion())
5525 		return IRQ_HANDLED;
5526 
5527 	/*
5528 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5529 	 * do not want polling to trigger spurious interrupt complaints.
5530 	 */
5531 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5532 
5533 	return IRQ_HANDLED;
5534 }
5535 
__ufshcd_write_ee_control(struct ufs_hba * hba,u32 ee_ctrl_mask)5536 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5537 {
5538 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5539 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5540 				       &ee_ctrl_mask);
5541 }
5542 
ufshcd_write_ee_control(struct ufs_hba * hba)5543 int ufshcd_write_ee_control(struct ufs_hba *hba)
5544 {
5545 	int err;
5546 
5547 	mutex_lock(&hba->ee_ctrl_mutex);
5548 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5549 	mutex_unlock(&hba->ee_ctrl_mutex);
5550 	if (err)
5551 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5552 			__func__, err);
5553 	return err;
5554 }
5555 
ufshcd_update_ee_control(struct ufs_hba * hba,u16 * mask,u16 * other_mask,u16 set,u16 clr)5556 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask, u16 *other_mask,
5557 			     u16 set, u16 clr)
5558 {
5559 	u16 new_mask, ee_ctrl_mask;
5560 	int err = 0;
5561 
5562 	mutex_lock(&hba->ee_ctrl_mutex);
5563 	new_mask = (*mask & ~clr) | set;
5564 	ee_ctrl_mask = new_mask | *other_mask;
5565 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5566 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5567 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5568 	if (!err) {
5569 		hba->ee_ctrl_mask = ee_ctrl_mask;
5570 		*mask = new_mask;
5571 	}
5572 	mutex_unlock(&hba->ee_ctrl_mutex);
5573 	return err;
5574 }
5575 
5576 /**
5577  * ufshcd_disable_ee - disable exception event
5578  * @hba: per-adapter instance
5579  * @mask: exception event to disable
5580  *
5581  * Disables exception event in the device so that the EVENT_ALERT
5582  * bit is not set.
5583  *
5584  * Returns zero on success, non-zero error value on failure.
5585  */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5586 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5587 {
5588 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5589 }
5590 
5591 /**
5592  * ufshcd_enable_ee - enable exception event
5593  * @hba: per-adapter instance
5594  * @mask: exception event to enable
5595  *
5596  * Enable corresponding exception event in the device to allow
5597  * device to alert host in critical scenarios.
5598  *
5599  * Returns zero on success, non-zero error value on failure.
5600  */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5601 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5602 {
5603 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5604 }
5605 
5606 /**
5607  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5608  * @hba: per-adapter instance
5609  *
5610  * Allow device to manage background operations on its own. Enabling
5611  * this might lead to inconsistent latencies during normal data transfers
5612  * as the device is allowed to manage its own way of handling background
5613  * operations.
5614  *
5615  * Returns zero on success, non-zero on failure.
5616  */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5617 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5618 {
5619 	int err = 0;
5620 
5621 	if (hba->auto_bkops_enabled)
5622 		goto out;
5623 
5624 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5625 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5626 	if (err) {
5627 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5628 				__func__, err);
5629 		goto out;
5630 	}
5631 
5632 	hba->auto_bkops_enabled = true;
5633 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5634 
5635 	/* No need of URGENT_BKOPS exception from the device */
5636 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5637 	if (err)
5638 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5639 				__func__, err);
5640 out:
5641 	return err;
5642 }
5643 
5644 /**
5645  * ufshcd_disable_auto_bkops - block device in doing background operations
5646  * @hba: per-adapter instance
5647  *
5648  * Disabling background operations improves command response latency but
5649  * has drawback of device moving into critical state where the device is
5650  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5651  * host is idle so that BKOPS are managed effectively without any negative
5652  * impacts.
5653  *
5654  * Returns zero on success, non-zero on failure.
5655  */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5656 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5657 {
5658 	int err = 0;
5659 
5660 	if (!hba->auto_bkops_enabled)
5661 		goto out;
5662 
5663 	/*
5664 	 * If host assisted BKOPs is to be enabled, make sure
5665 	 * urgent bkops exception is allowed.
5666 	 */
5667 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5668 	if (err) {
5669 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5670 				__func__, err);
5671 		goto out;
5672 	}
5673 
5674 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5675 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5676 	if (err) {
5677 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5678 				__func__, err);
5679 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5680 		goto out;
5681 	}
5682 
5683 	hba->auto_bkops_enabled = false;
5684 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5685 	hba->is_urgent_bkops_lvl_checked = false;
5686 out:
5687 	return err;
5688 }
5689 
5690 /**
5691  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5692  * @hba: per adapter instance
5693  *
5694  * After a device reset the device may toggle the BKOPS_EN flag
5695  * to default value. The s/w tracking variables should be updated
5696  * as well. This function would change the auto-bkops state based on
5697  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5698  */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5699 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5700 {
5701 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5702 		hba->auto_bkops_enabled = false;
5703 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5704 		ufshcd_enable_auto_bkops(hba);
5705 	} else {
5706 		hba->auto_bkops_enabled = true;
5707 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5708 		ufshcd_disable_auto_bkops(hba);
5709 	}
5710 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5711 	hba->is_urgent_bkops_lvl_checked = false;
5712 }
5713 
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5714 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5715 {
5716 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5717 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5718 }
5719 
5720 /**
5721  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5722  * @hba: per-adapter instance
5723  * @status: bkops_status value
5724  *
5725  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5726  * flag in the device to permit background operations if the device
5727  * bkops_status is greater than or equal to "status" argument passed to
5728  * this function, disable otherwise.
5729  *
5730  * Returns 0 for success, non-zero in case of failure.
5731  *
5732  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5733  * to know whether auto bkops is enabled or disabled after this function
5734  * returns control to it.
5735  */
ufshcd_bkops_ctrl(struct ufs_hba * hba,enum bkops_status status)5736 int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5737 			     enum bkops_status status)
5738 {
5739 	int err;
5740 	u32 curr_status = 0;
5741 
5742 	err = ufshcd_get_bkops_status(hba, &curr_status);
5743 	if (err) {
5744 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5745 				__func__, err);
5746 		goto out;
5747 	} else if (curr_status > BKOPS_STATUS_MAX) {
5748 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5749 				__func__, curr_status);
5750 		err = -EINVAL;
5751 		goto out;
5752 	}
5753 
5754 	if (curr_status >= status)
5755 		err = ufshcd_enable_auto_bkops(hba);
5756 	else
5757 		err = ufshcd_disable_auto_bkops(hba);
5758 out:
5759 	return err;
5760 }
5761 EXPORT_SYMBOL_GPL(ufshcd_bkops_ctrl);
5762 
5763 /**
5764  * ufshcd_urgent_bkops - handle urgent bkops exception event
5765  * @hba: per-adapter instance
5766  *
5767  * Enable fBackgroundOpsEn flag in the device to permit background
5768  * operations.
5769  *
5770  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5771  * and negative error value for any other failure.
5772  */
ufshcd_urgent_bkops(struct ufs_hba * hba)5773 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5774 {
5775 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5776 }
5777 
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)5778 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5779 {
5780 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5781 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5782 }
5783 
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)5784 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5785 {
5786 	int err;
5787 	u32 curr_status = 0;
5788 
5789 	if (hba->is_urgent_bkops_lvl_checked)
5790 		goto enable_auto_bkops;
5791 
5792 	err = ufshcd_get_bkops_status(hba, &curr_status);
5793 	if (err) {
5794 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5795 				__func__, err);
5796 		goto out;
5797 	}
5798 
5799 	/*
5800 	 * We are seeing that some devices are raising the urgent bkops
5801 	 * exception events even when BKOPS status doesn't indicate performace
5802 	 * impacted or critical. Handle these device by determining their urgent
5803 	 * bkops status at runtime.
5804 	 */
5805 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5806 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5807 				__func__, curr_status);
5808 		/* update the current status as the urgent bkops level */
5809 		hba->urgent_bkops_lvl = curr_status;
5810 		hba->is_urgent_bkops_lvl_checked = true;
5811 	}
5812 
5813 enable_auto_bkops:
5814 	err = ufshcd_enable_auto_bkops(hba);
5815 out:
5816 	if (err < 0)
5817 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5818 				__func__, err);
5819 }
5820 
ufshcd_temp_exception_event_handler(struct ufs_hba * hba,u16 status)5821 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5822 {
5823 	u32 value;
5824 
5825 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5826 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5827 		return;
5828 
5829 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5830 
5831 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5832 
5833 	/*
5834 	 * A placeholder for the platform vendors to add whatever additional
5835 	 * steps required
5836 	 */
5837 }
5838 
__ufshcd_wb_toggle(struct ufs_hba * hba,bool set,enum flag_idn idn)5839 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5840 {
5841 	u8 index;
5842 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5843 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5844 
5845 	index = ufshcd_wb_get_query_index(hba);
5846 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5847 }
5848 
ufshcd_wb_toggle(struct ufs_hba * hba,bool enable)5849 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5850 {
5851 	int ret;
5852 
5853 	if (!ufshcd_is_wb_allowed(hba))
5854 		return 0;
5855 
5856 	if (!(enable ^ hba->dev_info.wb_enabled))
5857 		return 0;
5858 
5859 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5860 	if (ret) {
5861 		dev_err(hba->dev, "%s Write Booster %s failed %d\n",
5862 			__func__, enable ? "enable" : "disable", ret);
5863 		return ret;
5864 	}
5865 
5866 	hba->dev_info.wb_enabled = enable;
5867 	dev_dbg(hba->dev, "%s Write Booster %s\n",
5868 			__func__, enable ? "enabled" : "disabled");
5869 
5870 	return ret;
5871 }
5872 
ufshcd_wb_toggle_flush_during_h8(struct ufs_hba * hba,bool set)5873 static void ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set)
5874 {
5875 	int ret;
5876 
5877 	ret = __ufshcd_wb_toggle(hba, set,
5878 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5879 	if (ret) {
5880 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed: %d\n",
5881 			__func__, set ? "enable" : "disable", ret);
5882 		return;
5883 	}
5884 	dev_dbg(hba->dev, "%s WB-Buf Flush during H8 %s\n",
5885 			__func__, set ? "enabled" : "disabled");
5886 }
5887 
ufshcd_wb_toggle_flush(struct ufs_hba * hba,bool enable)5888 static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable)
5889 {
5890 	int ret;
5891 
5892 	if (!ufshcd_is_wb_allowed(hba) ||
5893 	    hba->dev_info.wb_buf_flush_enabled == enable)
5894 		return;
5895 
5896 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5897 	if (ret) {
5898 		dev_err(hba->dev, "%s WB-Buf Flush %s failed %d\n", __func__,
5899 			enable ? "enable" : "disable", ret);
5900 		return;
5901 	}
5902 
5903 	hba->dev_info.wb_buf_flush_enabled = enable;
5904 
5905 	dev_dbg(hba->dev, "%s WB-Buf Flush %s\n",
5906 			__func__, enable ? "enabled" : "disabled");
5907 }
5908 
ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba * hba,u32 avail_buf)5909 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5910 						u32 avail_buf)
5911 {
5912 	u32 cur_buf;
5913 	int ret;
5914 	u8 index;
5915 
5916 	index = ufshcd_wb_get_query_index(hba);
5917 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5918 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5919 					      index, 0, &cur_buf);
5920 	if (ret) {
5921 		dev_err(hba->dev, "%s dCurWriteBoosterBufferSize read failed %d\n",
5922 			__func__, ret);
5923 		return false;
5924 	}
5925 
5926 	if (!cur_buf) {
5927 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5928 			 cur_buf);
5929 		return false;
5930 	}
5931 	/* Let it continue to flush when available buffer exceeds threshold */
5932 	if (avail_buf < hba->vps->wb_flush_threshold)
5933 		return true;
5934 
5935 	return false;
5936 }
5937 
ufshcd_wb_force_disable(struct ufs_hba * hba)5938 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
5939 {
5940 	if (!(hba->quirks & UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL))
5941 		ufshcd_wb_toggle_flush(hba, false);
5942 
5943 	ufshcd_wb_toggle_flush_during_h8(hba, false);
5944 	ufshcd_wb_toggle(hba, false);
5945 	hba->caps &= ~UFSHCD_CAP_WB_EN;
5946 
5947 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
5948 }
5949 
ufshcd_is_wb_buf_lifetime_available(struct ufs_hba * hba)5950 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
5951 {
5952 	u32 lifetime;
5953 	int ret;
5954 	u8 index;
5955 
5956 	index = ufshcd_wb_get_query_index(hba);
5957 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5958 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
5959 				      index, 0, &lifetime);
5960 	if (ret) {
5961 		dev_err(hba->dev,
5962 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
5963 			__func__, ret);
5964 		return false;
5965 	}
5966 
5967 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
5968 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
5969 			__func__, lifetime);
5970 		return false;
5971 	}
5972 
5973 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
5974 		__func__, lifetime);
5975 
5976 	return true;
5977 }
5978 
ufshcd_wb_need_flush(struct ufs_hba * hba)5979 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
5980 {
5981 	int ret;
5982 	u32 avail_buf;
5983 	u8 index;
5984 
5985 	if (!ufshcd_is_wb_allowed(hba))
5986 		return false;
5987 
5988 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
5989 		ufshcd_wb_force_disable(hba);
5990 		return false;
5991 	}
5992 
5993 	/*
5994 	 * The ufs device needs the vcc to be ON to flush.
5995 	 * With user-space reduction enabled, it's enough to enable flush
5996 	 * by checking only the available buffer. The threshold
5997 	 * defined here is > 90% full.
5998 	 * With user-space preserved enabled, the current-buffer
5999 	 * should be checked too because the wb buffer size can reduce
6000 	 * when disk tends to be full. This info is provided by current
6001 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6002 	 * keeping vcc on when current buffer is empty.
6003 	 */
6004 	index = ufshcd_wb_get_query_index(hba);
6005 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6006 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6007 				      index, 0, &avail_buf);
6008 	if (ret) {
6009 		dev_warn(hba->dev, "%s dAvailableWriteBoosterBufferSize read failed %d\n",
6010 			 __func__, ret);
6011 		return false;
6012 	}
6013 
6014 	if (!hba->dev_info.b_presrv_uspc_en) {
6015 		if (avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10))
6016 			return true;
6017 		return false;
6018 	}
6019 
6020 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6021 }
6022 
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)6023 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6024 {
6025 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6026 					   struct ufs_hba,
6027 					   rpm_dev_flush_recheck_work);
6028 	/*
6029 	 * To prevent unnecessary VCC power drain after device finishes
6030 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6031 	 * after a certain delay to recheck the threshold by next runtime
6032 	 * suspend.
6033 	 */
6034 	ufshcd_rpm_get_sync(hba);
6035 	ufshcd_rpm_put_sync(hba);
6036 }
6037 
6038 /**
6039  * ufshcd_exception_event_handler - handle exceptions raised by device
6040  * @work: pointer to work data
6041  *
6042  * Read bExceptionEventStatus attribute from the device and handle the
6043  * exception event accordingly.
6044  */
ufshcd_exception_event_handler(struct work_struct * work)6045 static void ufshcd_exception_event_handler(struct work_struct *work)
6046 {
6047 	struct ufs_hba *hba;
6048 	int err;
6049 	u32 status = 0;
6050 	hba = container_of(work, struct ufs_hba, eeh_work);
6051 
6052 	ufshcd_scsi_block_requests(hba);
6053 	err = ufshcd_get_ee_status(hba, &status);
6054 	if (err) {
6055 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6056 				__func__, err);
6057 		goto out;
6058 	}
6059 
6060 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6061 
6062 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6063 		ufshcd_bkops_exception_event_handler(hba);
6064 
6065 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6066 		ufshcd_temp_exception_event_handler(hba, status);
6067 
6068 	ufs_debugfs_exception_event(hba, status);
6069 out:
6070 	ufshcd_scsi_unblock_requests(hba);
6071 }
6072 
6073 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba)6074 static void ufshcd_complete_requests(struct ufs_hba *hba)
6075 {
6076 	ufshcd_transfer_req_compl(hba);
6077 	ufshcd_tmc_handler(hba);
6078 }
6079 
6080 /**
6081  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6082  *				to recover from the DL NAC errors or not.
6083  * @hba: per-adapter instance
6084  *
6085  * Returns true if error handling is required, false otherwise
6086  */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)6087 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6088 {
6089 	unsigned long flags;
6090 	bool err_handling = true;
6091 
6092 	spin_lock_irqsave(hba->host->host_lock, flags);
6093 	/*
6094 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6095 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6096 	 */
6097 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6098 		goto out;
6099 
6100 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6101 	    ((hba->saved_err & UIC_ERROR) &&
6102 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6103 		goto out;
6104 
6105 	if ((hba->saved_err & UIC_ERROR) &&
6106 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6107 		int err;
6108 		/*
6109 		 * wait for 50ms to see if we can get any other errors or not.
6110 		 */
6111 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6112 		msleep(50);
6113 		spin_lock_irqsave(hba->host->host_lock, flags);
6114 
6115 		/*
6116 		 * now check if we have got any other severe errors other than
6117 		 * DL NAC error?
6118 		 */
6119 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6120 		    ((hba->saved_err & UIC_ERROR) &&
6121 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6122 			goto out;
6123 
6124 		/*
6125 		 * As DL NAC is the only error received so far, send out NOP
6126 		 * command to confirm if link is still active or not.
6127 		 *   - If we don't get any response then do error recovery.
6128 		 *   - If we get response then clear the DL NAC error bit.
6129 		 */
6130 
6131 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6132 		err = ufshcd_verify_dev_init(hba);
6133 		spin_lock_irqsave(hba->host->host_lock, flags);
6134 
6135 		if (err)
6136 			goto out;
6137 
6138 		/* Link seems to be alive hence ignore the DL NAC errors */
6139 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6140 			hba->saved_err &= ~UIC_ERROR;
6141 		/* clear NAC error */
6142 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6143 		if (!hba->saved_uic_err)
6144 			err_handling = false;
6145 	}
6146 out:
6147 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6148 	return err_handling;
6149 }
6150 
6151 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)6152 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6153 {
6154 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6155 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6156 }
6157 
ufshcd_schedule_eh_work(struct ufs_hba * hba)6158 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6159 {
6160 	lockdep_assert_held(hba->host->host_lock);
6161 
6162 	/* handle fatal errors only when link is not in error state */
6163 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6164 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6165 		    ufshcd_is_saved_err_fatal(hba))
6166 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6167 		else
6168 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6169 		queue_work(hba->eh_wq, &hba->eh_work);
6170 	}
6171 }
6172 
ufshcd_force_error_recovery(struct ufs_hba * hba)6173 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6174 {
6175 	spin_lock_irq(hba->host->host_lock);
6176 	hba->force_reset = true;
6177 	ufshcd_schedule_eh_work(hba);
6178 	spin_unlock_irq(hba->host->host_lock);
6179 }
6180 
ufshcd_clk_scaling_allow(struct ufs_hba * hba,bool allow)6181 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6182 {
6183 	down_write(&hba->clk_scaling_lock);
6184 	hba->clk_scaling.is_allowed = allow;
6185 	up_write(&hba->clk_scaling_lock);
6186 }
6187 
ufshcd_clk_scaling_suspend(struct ufs_hba * hba,bool suspend)6188 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6189 {
6190 	if (suspend) {
6191 		if (hba->clk_scaling.is_enabled)
6192 			ufshcd_suspend_clkscaling(hba);
6193 		ufshcd_clk_scaling_allow(hba, false);
6194 	} else {
6195 		ufshcd_clk_scaling_allow(hba, true);
6196 		if (hba->clk_scaling.is_enabled)
6197 			ufshcd_resume_clkscaling(hba);
6198 	}
6199 }
6200 
ufshcd_err_handling_prepare(struct ufs_hba * hba)6201 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6202 {
6203 	ufshcd_rpm_get_sync(hba);
6204 	if (pm_runtime_status_suspended(&hba->sdev_ufs_device->sdev_gendev) ||
6205 	    hba->is_sys_suspended) {
6206 		enum ufs_pm_op pm_op;
6207 
6208 		/*
6209 		 * Don't assume anything of resume, if
6210 		 * resume fails, irq and clocks can be OFF, and powers
6211 		 * can be OFF or in LPM.
6212 		 */
6213 		ufshcd_setup_hba_vreg(hba, true);
6214 		ufshcd_enable_irq(hba);
6215 		ufshcd_setup_vreg(hba, true);
6216 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6217 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6218 		ufshcd_hold(hba, false);
6219 		if (!ufshcd_is_clkgating_allowed(hba))
6220 			ufshcd_setup_clocks(hba, true);
6221 		ufshcd_release(hba);
6222 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6223 		ufshcd_vops_resume(hba, pm_op);
6224 	} else {
6225 		ufshcd_hold(hba, false);
6226 		if (ufshcd_is_clkscaling_supported(hba) &&
6227 		    hba->clk_scaling.is_enabled)
6228 			ufshcd_suspend_clkscaling(hba);
6229 		ufshcd_clk_scaling_allow(hba, false);
6230 	}
6231 	ufshcd_scsi_block_requests(hba);
6232 	/* Drain ufshcd_queuecommand() */
6233 	synchronize_rcu();
6234 	cancel_work_sync(&hba->eeh_work);
6235 }
6236 
ufshcd_err_handling_unprepare(struct ufs_hba * hba)6237 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6238 {
6239 	ufshcd_scsi_unblock_requests(hba);
6240 	ufshcd_release(hba);
6241 	if (ufshcd_is_clkscaling_supported(hba))
6242 		ufshcd_clk_scaling_suspend(hba, false);
6243 	ufshcd_rpm_put(hba);
6244 }
6245 
ufshcd_err_handling_should_stop(struct ufs_hba * hba)6246 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6247 {
6248 	return (!hba->is_powered || hba->shutting_down ||
6249 		!hba->sdev_ufs_device ||
6250 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6251 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6252 		   ufshcd_is_link_broken(hba))));
6253 }
6254 
6255 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)6256 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6257 {
6258 	struct Scsi_Host *shost = hba->host;
6259 	struct scsi_device *sdev;
6260 	struct request_queue *q;
6261 	int ret;
6262 
6263 	hba->is_sys_suspended = false;
6264 	/*
6265 	 * Set RPM status of wlun device to RPM_ACTIVE,
6266 	 * this also clears its runtime error.
6267 	 */
6268 	ret = pm_runtime_set_active(&hba->sdev_ufs_device->sdev_gendev);
6269 
6270 	/* hba device might have a runtime error otherwise */
6271 	if (ret)
6272 		ret = pm_runtime_set_active(hba->dev);
6273 	/*
6274 	 * If wlun device had runtime error, we also need to resume those
6275 	 * consumer scsi devices in case any of them has failed to be
6276 	 * resumed due to supplier runtime resume failure. This is to unblock
6277 	 * blk_queue_enter in case there are bios waiting inside it.
6278 	 */
6279 	if (!ret) {
6280 		shost_for_each_device(sdev, shost) {
6281 			q = sdev->request_queue;
6282 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6283 				       q->rpm_status == RPM_SUSPENDING))
6284 				pm_request_resume(q->dev);
6285 		}
6286 	}
6287 }
6288 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)6289 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6290 {
6291 }
6292 #endif
6293 
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)6294 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6295 {
6296 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6297 	u32 mode;
6298 
6299 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6300 
6301 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6302 		return true;
6303 
6304 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6305 		return true;
6306 
6307 	return false;
6308 }
6309 
6310 /**
6311  * ufshcd_err_handler - handle UFS errors that require s/w attention
6312  * @work: pointer to work structure
6313  */
ufshcd_err_handler(struct work_struct * work)6314 static void ufshcd_err_handler(struct work_struct *work)
6315 {
6316 	int retries = MAX_ERR_HANDLER_RETRIES;
6317 	struct ufs_hba *hba;
6318 	unsigned long flags;
6319 	bool needs_restore;
6320 	bool needs_reset;
6321 	bool err_xfer;
6322 	bool err_tm;
6323 	int pmc_err;
6324 	int tag;
6325 
6326 	hba = container_of(work, struct ufs_hba, eh_work);
6327 
6328 	dev_info(hba->dev,
6329 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6330 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6331 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6332 		 hba->saved_uic_err, hba->force_reset,
6333 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6334 
6335 	down(&hba->host_sem);
6336 	spin_lock_irqsave(hba->host->host_lock, flags);
6337 	if (ufshcd_err_handling_should_stop(hba)) {
6338 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6339 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6340 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6341 		up(&hba->host_sem);
6342 		return;
6343 	}
6344 	ufshcd_set_eh_in_progress(hba);
6345 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6346 	ufshcd_err_handling_prepare(hba);
6347 	/* Complete requests that have door-bell cleared by h/w */
6348 	ufshcd_complete_requests(hba);
6349 	spin_lock_irqsave(hba->host->host_lock, flags);
6350 again:
6351 	needs_restore = false;
6352 	needs_reset = false;
6353 	err_xfer = false;
6354 	err_tm = false;
6355 
6356 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6357 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6358 	/*
6359 	 * A full reset and restore might have happened after preparation
6360 	 * is finished, double check whether we should stop.
6361 	 */
6362 	if (ufshcd_err_handling_should_stop(hba))
6363 		goto skip_err_handling;
6364 
6365 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6366 		bool ret;
6367 
6368 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6369 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6370 		ret = ufshcd_quirk_dl_nac_errors(hba);
6371 		spin_lock_irqsave(hba->host->host_lock, flags);
6372 		if (!ret && ufshcd_err_handling_should_stop(hba))
6373 			goto skip_err_handling;
6374 	}
6375 
6376 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6377 	    (hba->saved_uic_err &&
6378 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6379 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6380 
6381 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6382 		ufshcd_print_host_state(hba);
6383 		ufshcd_print_pwr_info(hba);
6384 		ufshcd_print_evt_hist(hba);
6385 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6386 		ufshcd_print_trs(hba, hba->outstanding_reqs, pr_prdt);
6387 		spin_lock_irqsave(hba->host->host_lock, flags);
6388 	}
6389 
6390 	/*
6391 	 * if host reset is required then skip clearing the pending
6392 	 * transfers forcefully because they will get cleared during
6393 	 * host reset and restore
6394 	 */
6395 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6396 	    ufshcd_is_saved_err_fatal(hba) ||
6397 	    ((hba->saved_err & UIC_ERROR) &&
6398 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6399 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6400 		needs_reset = true;
6401 		goto do_reset;
6402 	}
6403 
6404 	/*
6405 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6406 	 * check if power mode restore is needed.
6407 	 */
6408 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6409 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6410 		if (!hba->saved_uic_err)
6411 			hba->saved_err &= ~UIC_ERROR;
6412 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6413 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6414 			needs_restore = true;
6415 		spin_lock_irqsave(hba->host->host_lock, flags);
6416 		if (!hba->saved_err && !needs_restore)
6417 			goto skip_err_handling;
6418 	}
6419 
6420 	hba->silence_err_logs = true;
6421 	/* release lock as clear command might sleep */
6422 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6423 	/* Clear pending transfer requests */
6424 	for_each_set_bit(tag, &hba->outstanding_reqs, hba->nutrs) {
6425 		if (ufshcd_try_to_abort_task(hba, tag)) {
6426 			err_xfer = true;
6427 			goto lock_skip_pending_xfer_clear;
6428 		}
6429 		dev_err(hba->dev, "Aborted tag %d / CDB %#02x\n", tag,
6430 			hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1);
6431 	}
6432 
6433 	/* Clear pending task management requests */
6434 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6435 		if (ufshcd_clear_tm_cmd(hba, tag)) {
6436 			err_tm = true;
6437 			goto lock_skip_pending_xfer_clear;
6438 		}
6439 	}
6440 
6441 lock_skip_pending_xfer_clear:
6442 	/* Complete the requests that are cleared by s/w */
6443 	ufshcd_complete_requests(hba);
6444 
6445 	spin_lock_irqsave(hba->host->host_lock, flags);
6446 	hba->silence_err_logs = false;
6447 	if (err_xfer || err_tm) {
6448 		needs_reset = true;
6449 		goto do_reset;
6450 	}
6451 
6452 	/*
6453 	 * After all reqs and tasks are cleared from doorbell,
6454 	 * now it is safe to retore power mode.
6455 	 */
6456 	if (needs_restore) {
6457 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6458 		/*
6459 		 * Hold the scaling lock just in case dev cmds
6460 		 * are sent via bsg and/or sysfs.
6461 		 */
6462 		down_write(&hba->clk_scaling_lock);
6463 		hba->force_pmc = true;
6464 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6465 		if (pmc_err) {
6466 			needs_reset = true;
6467 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6468 					__func__, pmc_err);
6469 		}
6470 		hba->force_pmc = false;
6471 		ufshcd_print_pwr_info(hba);
6472 		up_write(&hba->clk_scaling_lock);
6473 		spin_lock_irqsave(hba->host->host_lock, flags);
6474 	}
6475 
6476 do_reset:
6477 	/* Fatal errors need reset */
6478 	if (needs_reset) {
6479 		int err;
6480 
6481 		hba->force_reset = false;
6482 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6483 		err = ufshcd_reset_and_restore(hba);
6484 		if (err)
6485 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6486 					__func__, err);
6487 		else
6488 			ufshcd_recover_pm_error(hba);
6489 		spin_lock_irqsave(hba->host->host_lock, flags);
6490 	}
6491 
6492 skip_err_handling:
6493 	if (!needs_reset) {
6494 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6495 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6496 		if (hba->saved_err || hba->saved_uic_err)
6497 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6498 			    __func__, hba->saved_err, hba->saved_uic_err);
6499 	}
6500 	/* Exit in an operational state or dead */
6501 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6502 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6503 		if (--retries)
6504 			goto again;
6505 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6506 	}
6507 	ufshcd_clear_eh_in_progress(hba);
6508 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6509 	ufshcd_err_handling_unprepare(hba);
6510 	up(&hba->host_sem);
6511 
6512 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6513 		 ufshcd_state_name[hba->ufshcd_state]);
6514 }
6515 
6516 /**
6517  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6518  * @hba: per-adapter instance
6519  *
6520  * Returns
6521  *  IRQ_HANDLED - If interrupt is valid
6522  *  IRQ_NONE    - If invalid interrupt
6523  */
ufshcd_update_uic_error(struct ufs_hba * hba)6524 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6525 {
6526 	u32 reg;
6527 	irqreturn_t retval = IRQ_NONE;
6528 
6529 	/* PHY layer error */
6530 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6531 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6532 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6533 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6534 		/*
6535 		 * To know whether this error is fatal or not, DB timeout
6536 		 * must be checked but this error is handled separately.
6537 		 */
6538 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6539 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6540 					__func__);
6541 
6542 		/* Got a LINERESET indication. */
6543 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6544 			struct uic_command *cmd = NULL;
6545 
6546 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6547 			if (hba->uic_async_done && hba->active_uic_cmd)
6548 				cmd = hba->active_uic_cmd;
6549 			/*
6550 			 * Ignore the LINERESET during power mode change
6551 			 * operation via DME_SET command.
6552 			 */
6553 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6554 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6555 		}
6556 		retval |= IRQ_HANDLED;
6557 	}
6558 
6559 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6560 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6561 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6562 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6563 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6564 
6565 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6566 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6567 		else if (hba->dev_quirks &
6568 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6569 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6570 				hba->uic_error |=
6571 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6572 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6573 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6574 		}
6575 		retval |= IRQ_HANDLED;
6576 	}
6577 
6578 	/* UIC NL/TL/DME errors needs software retry */
6579 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6580 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6581 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6582 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6583 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6584 		retval |= IRQ_HANDLED;
6585 	}
6586 
6587 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6588 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6589 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6590 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6591 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6592 		retval |= IRQ_HANDLED;
6593 	}
6594 
6595 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6596 	if ((reg & UIC_DME_ERROR) &&
6597 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6598 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6599 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6600 		retval |= IRQ_HANDLED;
6601 	}
6602 
6603 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6604 			__func__, hba->uic_error);
6605 	return retval;
6606 }
6607 
6608 /**
6609  * ufshcd_check_errors - Check for errors that need s/w attention
6610  * @hba: per-adapter instance
6611  * @intr_status: interrupt status generated by the controller
6612  *
6613  * Returns
6614  *  IRQ_HANDLED - If interrupt is valid
6615  *  IRQ_NONE    - If invalid interrupt
6616  */
ufshcd_check_errors(struct ufs_hba * hba,u32 intr_status)6617 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6618 {
6619 	bool queue_eh_work = false;
6620 	irqreturn_t retval = IRQ_NONE;
6621 
6622 	spin_lock(hba->host->host_lock);
6623 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6624 
6625 	if (hba->errors & INT_FATAL_ERRORS) {
6626 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6627 				       hba->errors);
6628 		queue_eh_work = true;
6629 	}
6630 
6631 	if (hba->errors & UIC_ERROR) {
6632 		hba->uic_error = 0;
6633 		retval = ufshcd_update_uic_error(hba);
6634 		if (hba->uic_error)
6635 			queue_eh_work = true;
6636 	}
6637 
6638 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6639 		dev_err(hba->dev,
6640 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6641 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6642 			"Enter" : "Exit",
6643 			hba->errors, ufshcd_get_upmcrs(hba));
6644 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6645 				       hba->errors);
6646 		ufshcd_set_link_broken(hba);
6647 		queue_eh_work = true;
6648 	}
6649 
6650 	trace_android_vh_ufs_check_int_errors(hba, queue_eh_work);
6651 
6652 	if (queue_eh_work) {
6653 		/*
6654 		 * update the transfer error masks to sticky bits, let's do this
6655 		 * irrespective of current ufshcd_state.
6656 		 */
6657 		hba->saved_err |= hba->errors;
6658 		hba->saved_uic_err |= hba->uic_error;
6659 
6660 		/* dump controller state before resetting */
6661 		if ((hba->saved_err &
6662 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6663 		    (hba->saved_uic_err &&
6664 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6665 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6666 					__func__, hba->saved_err,
6667 					hba->saved_uic_err);
6668 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6669 					 "host_regs: ");
6670 			ufshcd_print_pwr_info(hba);
6671 		}
6672 		ufshcd_schedule_eh_work(hba);
6673 		retval |= IRQ_HANDLED;
6674 	}
6675 	/*
6676 	 * if (!queue_eh_work) -
6677 	 * Other errors are either non-fatal where host recovers
6678 	 * itself without s/w intervention or errors that will be
6679 	 * handled by the SCSI core layer.
6680 	 */
6681 	hba->errors = 0;
6682 	hba->uic_error = 0;
6683 	spin_unlock(hba->host->host_lock);
6684 	return retval;
6685 }
6686 
6687 /**
6688  * ufshcd_tmc_handler - handle task management function completion
6689  * @hba: per adapter instance
6690  *
6691  * Returns
6692  *  IRQ_HANDLED - If interrupt is valid
6693  *  IRQ_NONE    - If invalid interrupt
6694  */
ufshcd_tmc_handler(struct ufs_hba * hba)6695 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6696 {
6697 	unsigned long flags, pending, issued;
6698 	irqreturn_t ret = IRQ_NONE;
6699 	int tag;
6700 
6701 	spin_lock_irqsave(hba->host->host_lock, flags);
6702 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6703 	issued = hba->outstanding_tasks & ~pending;
6704 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6705 		struct request *req = hba->tmf_rqs[tag];
6706 		struct completion *c = req->end_io_data;
6707 
6708 		complete(c);
6709 		ret = IRQ_HANDLED;
6710 	}
6711 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6712 
6713 	return ret;
6714 }
6715 
6716 /**
6717  * ufshcd_sl_intr - Interrupt service routine
6718  * @hba: per adapter instance
6719  * @intr_status: contains interrupts generated by the controller
6720  *
6721  * Returns
6722  *  IRQ_HANDLED - If interrupt is valid
6723  *  IRQ_NONE    - If invalid interrupt
6724  */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)6725 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6726 {
6727 	irqreturn_t retval = IRQ_NONE;
6728 
6729 	if (intr_status & UFSHCD_UIC_MASK)
6730 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6731 
6732 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6733 		retval |= ufshcd_check_errors(hba, intr_status);
6734 
6735 	if (intr_status & UTP_TASK_REQ_COMPL)
6736 		retval |= ufshcd_tmc_handler(hba);
6737 
6738 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6739 		retval |= ufshcd_transfer_req_compl(hba);
6740 
6741 	return retval;
6742 }
6743 
6744 /**
6745  * ufshcd_intr - Main interrupt service routine
6746  * @irq: irq number
6747  * @__hba: pointer to adapter instance
6748  *
6749  * Returns
6750  *  IRQ_HANDLED - If interrupt is valid
6751  *  IRQ_NONE    - If invalid interrupt
6752  */
ufshcd_intr(int irq,void * __hba)6753 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6754 {
6755 	u32 intr_status, enabled_intr_status = 0;
6756 	irqreturn_t retval = IRQ_NONE;
6757 	struct ufs_hba *hba = __hba;
6758 	int retries = hba->nutrs;
6759 
6760 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6761 	hba->ufs_stats.last_intr_status = intr_status;
6762 	hba->ufs_stats.last_intr_ts = ktime_get();
6763 
6764 	/*
6765 	 * There could be max of hba->nutrs reqs in flight and in worst case
6766 	 * if the reqs get finished 1 by 1 after the interrupt status is
6767 	 * read, make sure we handle them by checking the interrupt status
6768 	 * again in a loop until we process all of the reqs before returning.
6769 	 */
6770 	while (intr_status && retries--) {
6771 		enabled_intr_status =
6772 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6773 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6774 		if (enabled_intr_status)
6775 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6776 
6777 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6778 	}
6779 
6780 	if (enabled_intr_status && retval == IRQ_NONE &&
6781 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6782 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6783 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6784 					__func__,
6785 					intr_status,
6786 					hba->ufs_stats.last_intr_status,
6787 					enabled_intr_status);
6788 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6789 	}
6790 
6791 	return retval;
6792 }
6793 
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)6794 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6795 {
6796 	int err = 0;
6797 	u32 mask = 1 << tag;
6798 	unsigned long flags;
6799 
6800 	if (!test_bit(tag, &hba->outstanding_tasks))
6801 		goto out;
6802 
6803 	spin_lock_irqsave(hba->host->host_lock, flags);
6804 	ufshcd_utmrl_clear(hba, tag);
6805 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6806 
6807 	/* poll for max. 1 sec to clear door bell register by h/w */
6808 	err = ufshcd_wait_for_register(hba,
6809 			REG_UTP_TASK_REQ_DOOR_BELL,
6810 			mask, 0, 1000, 1000);
6811 
6812 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6813 		tag, err ? "succeeded" : "failed");
6814 
6815 out:
6816 	return err;
6817 }
6818 
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)6819 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6820 		struct utp_task_req_desc *treq, u8 tm_function)
6821 {
6822 	struct request_queue *q = hba->tmf_queue;
6823 	struct Scsi_Host *host = hba->host;
6824 	DECLARE_COMPLETION_ONSTACK(wait);
6825 	struct request *req;
6826 	unsigned long flags;
6827 	int task_tag, err;
6828 
6829 	/*
6830 	 * blk_get_request() is used here only to get a free tag.
6831 	 */
6832 	req = blk_get_request(q, REQ_OP_DRV_OUT, 0);
6833 	if (IS_ERR(req))
6834 		return PTR_ERR(req);
6835 
6836 	req->end_io_data = &wait;
6837 	ufshcd_hold(hba, false);
6838 
6839 	spin_lock_irqsave(host->host_lock, flags);
6840 
6841 	task_tag = req->tag;
6842 	WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
6843 		  task_tag);
6844 	hba->tmf_rqs[req->tag] = req;
6845 	treq->upiu_req.req_header.dword_0 |= cpu_to_be32(task_tag);
6846 
6847 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6848 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6849 
6850 	/* send command to the controller */
6851 	__set_bit(task_tag, &hba->outstanding_tasks);
6852 
6853 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6854 	/* Make sure that doorbell is committed immediately */
6855 	wmb();
6856 
6857 	spin_unlock_irqrestore(host->host_lock, flags);
6858 
6859 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
6860 
6861 	/* wait until the task management command is completed */
6862 	err = wait_for_completion_io_timeout(&wait,
6863 			msecs_to_jiffies(TM_CMD_TIMEOUT));
6864 	if (!err) {
6865 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
6866 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6867 				__func__, tm_function);
6868 		if (ufshcd_clear_tm_cmd(hba, task_tag))
6869 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6870 					__func__, task_tag);
6871 		err = -ETIMEDOUT;
6872 	} else {
6873 		err = 0;
6874 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6875 
6876 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
6877 	}
6878 
6879 	spin_lock_irqsave(hba->host->host_lock, flags);
6880 	hba->tmf_rqs[req->tag] = NULL;
6881 	__clear_bit(task_tag, &hba->outstanding_tasks);
6882 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6883 
6884 	ufshcd_release(hba);
6885 	blk_put_request(req);
6886 
6887 	return err;
6888 }
6889 
6890 /**
6891  * ufshcd_issue_tm_cmd - issues task management commands to controller
6892  * @hba: per adapter instance
6893  * @lun_id: LUN ID to which TM command is sent
6894  * @task_id: task ID to which the TM command is applicable
6895  * @tm_function: task management function opcode
6896  * @tm_response: task management service response return value
6897  *
6898  * Returns non-zero value on error, zero on success.
6899  */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)6900 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
6901 		u8 tm_function, u8 *tm_response)
6902 {
6903 	struct utp_task_req_desc treq = { { 0 }, };
6904 	enum utp_ocs ocs_value;
6905 	int err;
6906 
6907 	/* Configure task request descriptor */
6908 	treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6909 	treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6910 
6911 	/* Configure task request UPIU */
6912 	treq.upiu_req.req_header.dword_0 = cpu_to_be32(lun_id << 8) |
6913 				  cpu_to_be32(UPIU_TRANSACTION_TASK_REQ << 24);
6914 	treq.upiu_req.req_header.dword_1 = cpu_to_be32(tm_function << 16);
6915 
6916 	/*
6917 	 * The host shall provide the same value for LUN field in the basic
6918 	 * header and for Input Parameter.
6919 	 */
6920 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
6921 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
6922 
6923 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
6924 	if (err == -ETIMEDOUT)
6925 		return err;
6926 
6927 	ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6928 	if (ocs_value != OCS_SUCCESS)
6929 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
6930 				__func__, ocs_value);
6931 	else if (tm_response)
6932 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
6933 				MASK_TM_SERVICE_RESP;
6934 	return err;
6935 }
6936 
6937 /**
6938  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
6939  * @hba:	per-adapter instance
6940  * @req_upiu:	upiu request
6941  * @rsp_upiu:	upiu reply
6942  * @desc_buff:	pointer to descriptor buffer, NULL if NA
6943  * @buff_len:	descriptor size, 0 if NA
6944  * @cmd_type:	specifies the type (NOP, Query...)
6945  * @desc_op:	descriptor operation
6946  *
6947  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
6948  * Therefore, it "rides" the device management infrastructure: uses its tag and
6949  * tasks work queues.
6950  *
6951  * Since there is only one available tag for device management commands,
6952  * the caller is expected to hold the hba->dev_cmd.lock mutex.
6953  */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)6954 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
6955 					struct utp_upiu_req *req_upiu,
6956 					struct utp_upiu_req *rsp_upiu,
6957 					u8 *desc_buff, int *buff_len,
6958 					enum dev_cmd_type cmd_type,
6959 					enum query_opcode desc_op)
6960 {
6961 	DECLARE_COMPLETION_ONSTACK(wait);
6962 	const u32 tag = hba->reserved_slot;
6963 	struct ufshcd_lrb *lrbp;
6964 	int err = 0;
6965 	u8 upiu_flags;
6966 
6967 	/* Protects use of hba->reserved_slot. */
6968 	lockdep_assert_held(&hba->dev_cmd.lock);
6969 
6970 	down_read(&hba->clk_scaling_lock);
6971 
6972 	lrbp = &hba->lrb[tag];
6973 	WARN_ON(lrbp->cmd);
6974 	lrbp->cmd = NULL;
6975 	lrbp->sense_bufflen = 0;
6976 	lrbp->sense_buffer = NULL;
6977 	lrbp->task_tag = tag;
6978 	lrbp->lun = 0;
6979 	lrbp->intr_cmd = true;
6980 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
6981 	hba->dev_cmd.type = cmd_type;
6982 
6983 	if (hba->ufs_version <= ufshci_version(1, 1))
6984 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
6985 	else
6986 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
6987 
6988 	/* update the task tag in the request upiu */
6989 	req_upiu->header.dword_0 |= cpu_to_be32(tag);
6990 
6991 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
6992 
6993 	/* just copy the upiu request as it is */
6994 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
6995 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
6996 		/* The Data Segment Area is optional depending upon the query
6997 		 * function value. for WRITE DESCRIPTOR, the data segment
6998 		 * follows right after the tsf.
6999 		 */
7000 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7001 		*buff_len = 0;
7002 	}
7003 
7004 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7005 
7006 	hba->dev_cmd.complete = &wait;
7007 
7008 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7009 
7010 	ufshcd_send_command(hba, tag);
7011 	/*
7012 	 * ignore the returning value here - ufshcd_check_query_response is
7013 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7014 	 * read the response directly ignoring all errors.
7015 	 */
7016 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7017 
7018 	/* just copy the upiu response as it is */
7019 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7020 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7021 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7022 		u16 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
7023 			       MASK_QUERY_DATA_SEG_LEN;
7024 
7025 		if (*buff_len >= resp_len) {
7026 			memcpy(desc_buff, descp, resp_len);
7027 			*buff_len = resp_len;
7028 		} else {
7029 			dev_warn(hba->dev,
7030 				 "%s: rsp size %d is bigger than buffer size %d",
7031 				 __func__, resp_len, *buff_len);
7032 			*buff_len = 0;
7033 			err = -EINVAL;
7034 		}
7035 	}
7036 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7037 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7038 
7039 	up_read(&hba->clk_scaling_lock);
7040 	return err;
7041 }
7042 
7043 /**
7044  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7045  * @hba:	per-adapter instance
7046  * @req_upiu:	upiu request
7047  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7048  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7049  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7050  * @buff_len:	descriptor size, 0 if NA
7051  * @desc_op:	descriptor operation
7052  *
7053  * Supports UTP Transfer requests (nop and query), and UTP Task
7054  * Management requests.
7055  * It is up to the caller to fill the upiu conent properly, as it will
7056  * be copied without any further input validations.
7057  */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,int msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)7058 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7059 			     struct utp_upiu_req *req_upiu,
7060 			     struct utp_upiu_req *rsp_upiu,
7061 			     int msgcode,
7062 			     u8 *desc_buff, int *buff_len,
7063 			     enum query_opcode desc_op)
7064 {
7065 	int err;
7066 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7067 	struct utp_task_req_desc treq = { { 0 }, };
7068 	enum utp_ocs ocs_value;
7069 	u8 tm_f = be32_to_cpu(req_upiu->header.dword_1) >> 16 & MASK_TM_FUNC;
7070 
7071 	switch (msgcode) {
7072 	case UPIU_TRANSACTION_NOP_OUT:
7073 		cmd_type = DEV_CMD_TYPE_NOP;
7074 		fallthrough;
7075 	case UPIU_TRANSACTION_QUERY_REQ:
7076 		ufshcd_hold(hba, false);
7077 		mutex_lock(&hba->dev_cmd.lock);
7078 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7079 						   desc_buff, buff_len,
7080 						   cmd_type, desc_op);
7081 		mutex_unlock(&hba->dev_cmd.lock);
7082 		ufshcd_release(hba);
7083 
7084 		break;
7085 	case UPIU_TRANSACTION_TASK_REQ:
7086 		treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
7087 		treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
7088 
7089 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7090 
7091 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7092 		if (err == -ETIMEDOUT)
7093 			break;
7094 
7095 		ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
7096 		if (ocs_value != OCS_SUCCESS) {
7097 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7098 				ocs_value);
7099 			break;
7100 		}
7101 
7102 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7103 
7104 		break;
7105 	default:
7106 		err = -EINVAL;
7107 
7108 		break;
7109 	}
7110 
7111 	return err;
7112 }
7113 
7114 /**
7115  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7116  * @cmd: SCSI command pointer
7117  *
7118  * Returns SUCCESS/FAILED
7119  */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)7120 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7121 {
7122 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7123 	struct Scsi_Host *host;
7124 	struct ufs_hba *hba;
7125 	u32 pos;
7126 	int err;
7127 	u8 resp = 0xF, lun;
7128 
7129 	host = cmd->device->host;
7130 	hba = shost_priv(host);
7131 
7132 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7133 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7134 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7135 		if (!err)
7136 			err = resp;
7137 		goto out;
7138 	}
7139 
7140 	/* clear the commands that were pending for corresponding LUN */
7141 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7142 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7143 		if (hba->lrb[pos].lun == lun)
7144 			__set_bit(pos, &pending_reqs);
7145 	hba->outstanding_reqs &= ~pending_reqs;
7146 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7147 
7148 	if (ufshcd_clear_cmds(hba, pending_reqs) < 0) {
7149 		spin_lock_irqsave(&hba->outstanding_lock, flags);
7150 		not_cleared = pending_reqs &
7151 			ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7152 		hba->outstanding_reqs |= not_cleared;
7153 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7154 
7155 		dev_err(hba->dev, "%s: failed to clear requests %#lx\n",
7156 			__func__, not_cleared);
7157 	}
7158 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared);
7159 
7160 out:
7161 	hba->req_abort_count = 0;
7162 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7163 	if (!err) {
7164 		err = SUCCESS;
7165 	} else {
7166 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7167 		err = FAILED;
7168 	}
7169 	return err;
7170 }
7171 
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)7172 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7173 {
7174 	struct ufshcd_lrb *lrbp;
7175 	int tag;
7176 
7177 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7178 		lrbp = &hba->lrb[tag];
7179 		lrbp->req_abort_skip = true;
7180 	}
7181 }
7182 
7183 /**
7184  * ufshcd_try_to_abort_task - abort a specific task
7185  * @hba: Pointer to adapter instance
7186  * @tag: Task tag/index to be aborted
7187  *
7188  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7189  * command, and in host controller by clearing the door-bell register. There can
7190  * be race between controller sending the command to the device while abort is
7191  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7192  * really issued and then try to abort it.
7193  *
7194  * Returns zero on success, non-zero on failure
7195  */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)7196 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7197 {
7198 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7199 	int err = 0;
7200 	int poll_cnt;
7201 	u8 resp = 0xF;
7202 	u32 reg;
7203 
7204 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7205 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7206 				UFS_QUERY_TASK, &resp);
7207 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7208 			/* cmd pending in the device */
7209 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7210 				__func__, tag);
7211 			break;
7212 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7213 			/*
7214 			 * cmd not pending in the device, check if it is
7215 			 * in transition.
7216 			 */
7217 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7218 				__func__, tag);
7219 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7220 			if (reg & (1 << tag)) {
7221 				/* sleep for max. 200us to stabilize */
7222 				usleep_range(100, 200);
7223 				continue;
7224 			}
7225 			/* command completed already */
7226 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7227 				__func__, tag);
7228 			goto out;
7229 		} else {
7230 			dev_err(hba->dev,
7231 				"%s: no response from device. tag = %d, err %d\n",
7232 				__func__, tag, err);
7233 			if (!err)
7234 				err = resp; /* service response error */
7235 			goto out;
7236 		}
7237 	}
7238 
7239 	if (!poll_cnt) {
7240 		err = -EBUSY;
7241 		goto out;
7242 	}
7243 
7244 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7245 			UFS_ABORT_TASK, &resp);
7246 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7247 		if (!err) {
7248 			err = resp; /* service response error */
7249 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7250 				__func__, tag, err);
7251 		}
7252 		goto out;
7253 	}
7254 
7255 	err = ufshcd_clear_cmds(hba, 1U << tag);
7256 	if (err)
7257 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7258 			__func__, tag, err);
7259 
7260 out:
7261 	return err;
7262 }
7263 
7264 /**
7265  * ufshcd_abort - scsi host template eh_abort_handler callback
7266  * @cmd: SCSI command pointer
7267  *
7268  * Returns SUCCESS/FAILED
7269  */
ufshcd_abort(struct scsi_cmnd * cmd)7270 static int ufshcd_abort(struct scsi_cmnd *cmd)
7271 {
7272 	struct Scsi_Host *host = cmd->device->host;
7273 	struct ufs_hba *hba = shost_priv(host);
7274 	int tag = scsi_cmd_to_rq(cmd)->tag;
7275 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7276 	unsigned long flags;
7277 	int err = FAILED;
7278 	bool outstanding;
7279 	u32 reg;
7280 
7281 	WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7282 
7283 	ufshcd_hold(hba, false);
7284 	reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7285 	/* If command is already aborted/completed, return FAILED. */
7286 	if (!(test_bit(tag, &hba->outstanding_reqs))) {
7287 		dev_err(hba->dev,
7288 			"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7289 			__func__, tag, hba->outstanding_reqs, reg);
7290 		goto release;
7291 	}
7292 
7293 	/* Print Transfer Request of aborted task */
7294 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7295 
7296 	/*
7297 	 * Print detailed info about aborted request.
7298 	 * As more than one request might get aborted at the same time,
7299 	 * print full information only for the first aborted request in order
7300 	 * to reduce repeated printouts. For other aborted requests only print
7301 	 * basic details.
7302 	 */
7303 	scsi_print_command(cmd);
7304 	if (!hba->req_abort_count) {
7305 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7306 		ufshcd_print_evt_hist(hba);
7307 		ufshcd_print_host_state(hba);
7308 		ufshcd_print_pwr_info(hba);
7309 		ufshcd_print_trs(hba, 1 << tag, true);
7310 	} else {
7311 		ufshcd_print_trs(hba, 1 << tag, false);
7312 	}
7313 	hba->req_abort_count++;
7314 
7315 	if (!(reg & (1 << tag))) {
7316 		dev_err(hba->dev,
7317 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7318 		__func__, tag);
7319 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7320 		goto release;
7321 	}
7322 
7323 	/*
7324 	 * Task abort to the device W-LUN is illegal. When this command
7325 	 * will fail, due to spec violation, scsi err handling next step
7326 	 * will be to send LU reset which, again, is a spec violation.
7327 	 * To avoid these unnecessary/illegal steps, first we clean up
7328 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7329 	 * then queue the eh_work and bail.
7330 	 */
7331 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7332 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7333 
7334 		spin_lock_irqsave(host->host_lock, flags);
7335 		hba->force_reset = true;
7336 		ufshcd_schedule_eh_work(hba);
7337 		spin_unlock_irqrestore(host->host_lock, flags);
7338 		goto release;
7339 	}
7340 
7341 	/* Skip task abort in case previous aborts failed and report failure */
7342 	if (lrbp->req_abort_skip) {
7343 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7344 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7345 		goto release;
7346 	}
7347 
7348 	err = ufshcd_try_to_abort_task(hba, tag);
7349 	if (err) {
7350 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7351 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7352 		err = FAILED;
7353 		goto release;
7354 	}
7355 
7356 	/*
7357 	 * Clear the corresponding bit from outstanding_reqs since the command
7358 	 * has been aborted successfully.
7359 	 */
7360 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7361 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7362 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7363 
7364 	if (outstanding)
7365 		ufshcd_release_scsi_cmd(hba, lrbp);
7366 
7367 	err = SUCCESS;
7368 
7369 release:
7370 	/* Matches the ufshcd_hold() call at the start of this function. */
7371 	ufshcd_release(hba);
7372 	return err;
7373 }
7374 
7375 /**
7376  * ufshcd_host_reset_and_restore - reset and restore host controller
7377  * @hba: per-adapter instance
7378  *
7379  * Note that host controller reset may issue DME_RESET to
7380  * local and remote (device) Uni-Pro stack and the attributes
7381  * are reset to default state.
7382  *
7383  * Returns zero on success, non-zero on failure
7384  */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)7385 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7386 {
7387 	int err;
7388 
7389 	/*
7390 	 * Stop the host controller and complete the requests
7391 	 * cleared by h/w
7392 	 */
7393 	ufshpb_reset_host(hba);
7394 	ufshcd_hba_stop(hba);
7395 	hba->silence_err_logs = true;
7396 	ufshcd_complete_requests(hba);
7397 	hba->silence_err_logs = false;
7398 
7399 	/* scale up clocks to max frequency before full reinitialization */
7400 	ufshcd_set_clk_freq(hba, true);
7401 
7402 	err = ufshcd_hba_enable(hba);
7403 
7404 	/* Establish the link again and restore the device */
7405 	if (!err)
7406 		err = ufshcd_probe_hba(hba, false);
7407 
7408 	if (err)
7409 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7410 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7411 	return err;
7412 }
7413 
7414 /**
7415  * ufshcd_reset_and_restore - reset and re-initialize host/device
7416  * @hba: per-adapter instance
7417  *
7418  * Reset and recover device, host and re-establish link. This
7419  * is helpful to recover the communication in fatal error conditions.
7420  *
7421  * Returns zero on success, non-zero on failure
7422  */
ufshcd_reset_and_restore(struct ufs_hba * hba)7423 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7424 {
7425 	u32 saved_err = 0;
7426 	u32 saved_uic_err = 0;
7427 	int err = 0;
7428 	unsigned long flags;
7429 	int retries = MAX_HOST_RESET_RETRIES;
7430 
7431 	spin_lock_irqsave(hba->host->host_lock, flags);
7432 	do {
7433 		/*
7434 		 * This is a fresh start, cache and clear saved error first,
7435 		 * in case new error generated during reset and restore.
7436 		 */
7437 		saved_err |= hba->saved_err;
7438 		saved_uic_err |= hba->saved_uic_err;
7439 		hba->saved_err = 0;
7440 		hba->saved_uic_err = 0;
7441 		hba->force_reset = false;
7442 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7443 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7444 
7445 		/* Reset the attached device */
7446 		ufshcd_device_reset(hba);
7447 
7448 		err = ufshcd_host_reset_and_restore(hba);
7449 
7450 		spin_lock_irqsave(hba->host->host_lock, flags);
7451 		if (err)
7452 			continue;
7453 		/* Do not exit unless operational or dead */
7454 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7455 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7456 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7457 			err = -EAGAIN;
7458 	} while (err && --retries);
7459 
7460 	/*
7461 	 * Inform scsi mid-layer that we did reset and allow to handle
7462 	 * Unit Attention properly.
7463 	 */
7464 	scsi_report_bus_reset(hba->host, 0);
7465 	if (err) {
7466 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7467 		hba->saved_err |= saved_err;
7468 		hba->saved_uic_err |= saved_uic_err;
7469 	}
7470 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7471 
7472 	return err;
7473 }
7474 
7475 /**
7476  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7477  * @cmd: SCSI command pointer
7478  *
7479  * Returns SUCCESS/FAILED
7480  */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)7481 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7482 {
7483 	int err = SUCCESS;
7484 	unsigned long flags;
7485 	struct ufs_hba *hba;
7486 
7487 	hba = shost_priv(cmd->device->host);
7488 
7489 	spin_lock_irqsave(hba->host->host_lock, flags);
7490 	hba->force_reset = true;
7491 	ufshcd_schedule_eh_work(hba);
7492 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7493 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7494 
7495 	flush_work(&hba->eh_work);
7496 
7497 	spin_lock_irqsave(hba->host->host_lock, flags);
7498 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7499 		err = FAILED;
7500 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7501 
7502 	return err;
7503 }
7504 
7505 /**
7506  * ufshcd_get_max_icc_level - calculate the ICC level
7507  * @sup_curr_uA: max. current supported by the regulator
7508  * @start_scan: row at the desc table to start scan from
7509  * @buff: power descriptor buffer
7510  *
7511  * Returns calculated max ICC level for specific regulator
7512  */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,char * buff)7513 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, char *buff)
7514 {
7515 	int i;
7516 	int curr_uA;
7517 	u16 data;
7518 	u16 unit;
7519 
7520 	for (i = start_scan; i >= 0; i--) {
7521 		data = be16_to_cpup((__be16 *)&buff[2 * i]);
7522 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7523 						ATTR_ICC_LVL_UNIT_OFFSET;
7524 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7525 		switch (unit) {
7526 		case UFSHCD_NANO_AMP:
7527 			curr_uA = curr_uA / 1000;
7528 			break;
7529 		case UFSHCD_MILI_AMP:
7530 			curr_uA = curr_uA * 1000;
7531 			break;
7532 		case UFSHCD_AMP:
7533 			curr_uA = curr_uA * 1000 * 1000;
7534 			break;
7535 		case UFSHCD_MICRO_AMP:
7536 		default:
7537 			break;
7538 		}
7539 		if (sup_curr_uA >= curr_uA)
7540 			break;
7541 	}
7542 	if (i < 0) {
7543 		i = 0;
7544 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7545 	}
7546 
7547 	return (u32)i;
7548 }
7549 
7550 /**
7551  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7552  * In case regulators are not initialized we'll return 0
7553  * @hba: per-adapter instance
7554  * @desc_buf: power descriptor buffer to extract ICC levels from.
7555  * @len: length of desc_buff
7556  *
7557  * Returns calculated ICC level
7558  */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,u8 * desc_buf,int len)7559 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7560 							u8 *desc_buf, int len)
7561 {
7562 	u32 icc_level = 0;
7563 
7564 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7565 						!hba->vreg_info.vccq2) {
7566 		/*
7567 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7568 		 * never-ending cycles of messages written back to storage by
7569 		 * user space causing runtime resume, causing more messages and
7570 		 * so on.
7571 		 */
7572 		dev_dbg(hba->dev,
7573 			"%s: Regulator capability was not set, actvIccLevel=%d",
7574 							__func__, icc_level);
7575 		goto out;
7576 	}
7577 
7578 	if (hba->vreg_info.vcc->max_uA)
7579 		icc_level = ufshcd_get_max_icc_level(
7580 				hba->vreg_info.vcc->max_uA,
7581 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7582 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7583 
7584 	if (hba->vreg_info.vccq->max_uA)
7585 		icc_level = ufshcd_get_max_icc_level(
7586 				hba->vreg_info.vccq->max_uA,
7587 				icc_level,
7588 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7589 
7590 	if (hba->vreg_info.vccq2->max_uA)
7591 		icc_level = ufshcd_get_max_icc_level(
7592 				hba->vreg_info.vccq2->max_uA,
7593 				icc_level,
7594 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7595 out:
7596 	return icc_level;
7597 }
7598 
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)7599 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7600 {
7601 	int ret;
7602 	int buff_len = hba->desc_size[QUERY_DESC_IDN_POWER];
7603 	u8 *desc_buf;
7604 	u32 icc_level;
7605 
7606 	desc_buf = kmalloc(buff_len, GFP_KERNEL);
7607 	if (!desc_buf)
7608 		return;
7609 
7610 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7611 				     desc_buf, buff_len);
7612 	if (ret) {
7613 		dev_err(hba->dev,
7614 			"%s: Failed reading power descriptor.len = %d ret = %d",
7615 			__func__, buff_len, ret);
7616 		goto out;
7617 	}
7618 
7619 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf,
7620 							 buff_len);
7621 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7622 
7623 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7624 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7625 
7626 	if (ret)
7627 		dev_err(hba->dev,
7628 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7629 			__func__, icc_level, ret);
7630 
7631 out:
7632 	kfree(desc_buf);
7633 }
7634 
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)7635 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7636 {
7637 	scsi_autopm_get_device(sdev);
7638 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7639 	if (sdev->rpm_autosuspend)
7640 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7641 						 RPM_AUTOSUSPEND_DELAY_MS);
7642 	scsi_autopm_put_device(sdev);
7643 }
7644 
7645 /**
7646  * ufshcd_scsi_add_wlus - Adds required W-LUs
7647  * @hba: per-adapter instance
7648  *
7649  * UFS device specification requires the UFS devices to support 4 well known
7650  * logical units:
7651  *	"REPORT_LUNS" (address: 01h)
7652  *	"UFS Device" (address: 50h)
7653  *	"RPMB" (address: 44h)
7654  *	"BOOT" (address: 30h)
7655  * UFS device's power management needs to be controlled by "POWER CONDITION"
7656  * field of SSU (START STOP UNIT) command. But this "power condition" field
7657  * will take effect only when its sent to "UFS device" well known logical unit
7658  * hence we require the scsi_device instance to represent this logical unit in
7659  * order for the UFS host driver to send the SSU command for power management.
7660  *
7661  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7662  * Block) LU so user space process can control this LU. User space may also
7663  * want to have access to BOOT LU.
7664  *
7665  * This function adds scsi device instances for each of all well known LUs
7666  * (except "REPORT LUNS" LU).
7667  *
7668  * Returns zero on success (all required W-LUs are added successfully),
7669  * non-zero error value on failure (if failed to add any of the required W-LU).
7670  */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)7671 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7672 {
7673 	int ret = 0;
7674 	struct scsi_device *sdev_boot, *sdev_rpmb;
7675 
7676 	hba->sdev_ufs_device = __scsi_add_device(hba->host, 0, 0,
7677 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7678 	if (IS_ERR(hba->sdev_ufs_device)) {
7679 		ret = PTR_ERR(hba->sdev_ufs_device);
7680 		hba->sdev_ufs_device = NULL;
7681 		goto out;
7682 	}
7683 	scsi_device_put(hba->sdev_ufs_device);
7684 
7685 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7686 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7687 	if (IS_ERR(sdev_rpmb)) {
7688 		ret = PTR_ERR(sdev_rpmb);
7689 		goto remove_sdev_ufs_device;
7690 	}
7691 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
7692 	scsi_device_put(sdev_rpmb);
7693 
7694 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7695 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7696 	if (IS_ERR(sdev_boot)) {
7697 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7698 	} else {
7699 		ufshcd_blk_pm_runtime_init(sdev_boot);
7700 		scsi_device_put(sdev_boot);
7701 	}
7702 	goto out;
7703 
7704 remove_sdev_ufs_device:
7705 	scsi_remove_device(hba->sdev_ufs_device);
7706 out:
7707 	return ret;
7708 }
7709 
ufshcd_wb_probe(struct ufs_hba * hba,u8 * desc_buf)7710 static void ufshcd_wb_probe(struct ufs_hba *hba, u8 *desc_buf)
7711 {
7712 	struct ufs_dev_info *dev_info = &hba->dev_info;
7713 	u8 lun;
7714 	u32 d_lu_wb_buf_alloc;
7715 	u32 ext_ufs_feature;
7716 
7717 	if (!ufshcd_is_wb_allowed(hba))
7718 		return;
7719 
7720 	/*
7721 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7722 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7723 	 * enabled
7724 	 */
7725 	if (!(dev_info->wspecversion >= 0x310 ||
7726 	      dev_info->wspecversion == 0x220 ||
7727 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7728 		goto wb_disabled;
7729 
7730 	if (hba->desc_size[QUERY_DESC_IDN_DEVICE] <
7731 	    DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP + 4)
7732 		goto wb_disabled;
7733 
7734 	ext_ufs_feature = get_unaligned_be32(desc_buf +
7735 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7736 
7737 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
7738 		goto wb_disabled;
7739 
7740 	/*
7741 	 * WB may be supported but not configured while provisioning. The spec
7742 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
7743 	 * buffer configured.
7744 	 */
7745 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7746 
7747 	dev_info->b_presrv_uspc_en =
7748 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7749 
7750 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
7751 		if (!get_unaligned_be32(desc_buf +
7752 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
7753 			goto wb_disabled;
7754 	} else {
7755 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
7756 			d_lu_wb_buf_alloc = 0;
7757 			ufshcd_read_unit_desc_param(hba,
7758 					lun,
7759 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
7760 					(u8 *)&d_lu_wb_buf_alloc,
7761 					sizeof(d_lu_wb_buf_alloc));
7762 			if (d_lu_wb_buf_alloc) {
7763 				dev_info->wb_dedicated_lu = lun;
7764 				break;
7765 			}
7766 		}
7767 
7768 		if (!d_lu_wb_buf_alloc)
7769 			goto wb_disabled;
7770 	}
7771 
7772 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
7773 		goto wb_disabled;
7774 
7775 	return;
7776 
7777 wb_disabled:
7778 	hba->caps &= ~UFSHCD_CAP_WB_EN;
7779 }
7780 
ufshcd_temp_notif_probe(struct ufs_hba * hba,u8 * desc_buf)7781 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, u8 *desc_buf)
7782 {
7783 	struct ufs_dev_info *dev_info = &hba->dev_info;
7784 	u32 ext_ufs_feature;
7785 	u8 mask = 0;
7786 
7787 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
7788 		return;
7789 
7790 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7791 
7792 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
7793 		mask |= MASK_EE_TOO_LOW_TEMP;
7794 
7795 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
7796 		mask |= MASK_EE_TOO_HIGH_TEMP;
7797 
7798 	if (mask) {
7799 		ufshcd_enable_ee(hba, mask);
7800 		ufs_hwmon_probe(hba, mask);
7801 	}
7802 }
7803 
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,struct ufs_dev_fix * fixups)7804 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba, struct ufs_dev_fix *fixups)
7805 {
7806 	struct ufs_dev_fix *f;
7807 	struct ufs_dev_info *dev_info = &hba->dev_info;
7808 
7809 	if (!fixups)
7810 		return;
7811 
7812 	for (f = fixups; f->quirk; f++) {
7813 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
7814 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
7815 		     ((dev_info->model &&
7816 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
7817 		      !strcmp(f->model, UFS_ANY_MODEL)))
7818 			hba->dev_quirks |= f->quirk;
7819 	}
7820 }
7821 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
7822 
ufs_fixup_device_setup(struct ufs_hba * hba)7823 static void ufs_fixup_device_setup(struct ufs_hba *hba)
7824 {
7825 	/* fix by general quirk table */
7826 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
7827 
7828 	/* allow vendors to fix quirks */
7829 	ufshcd_vops_fixup_dev_quirks(hba);
7830 }
7831 
ufs_get_device_desc(struct ufs_hba * hba)7832 static int ufs_get_device_desc(struct ufs_hba *hba)
7833 {
7834 	int err;
7835 	u8 model_index;
7836 	u8 b_ufs_feature_sup;
7837 	u8 *desc_buf;
7838 	struct ufs_dev_info *dev_info = &hba->dev_info;
7839 
7840 	desc_buf = kmalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7841 	if (!desc_buf) {
7842 		err = -ENOMEM;
7843 		goto out;
7844 	}
7845 
7846 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
7847 				     hba->desc_size[QUERY_DESC_IDN_DEVICE]);
7848 	if (err) {
7849 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
7850 			__func__, err);
7851 		goto out;
7852 	}
7853 
7854 	/*
7855 	 * getting vendor (manufacturerID) and Bank Index in big endian
7856 	 * format
7857 	 */
7858 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
7859 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
7860 
7861 	/* getting Specification Version in big endian format */
7862 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
7863 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
7864 	b_ufs_feature_sup = desc_buf[DEVICE_DESC_PARAM_UFS_FEAT];
7865 
7866 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
7867 
7868 	if (dev_info->wspecversion >= UFS_DEV_HPB_SUPPORT_VERSION &&
7869 	    (b_ufs_feature_sup & UFS_DEV_HPB_SUPPORT)) {
7870 		bool hpb_en = false;
7871 
7872 		ufshpb_get_dev_info(hba, desc_buf);
7873 
7874 		if (!ufshpb_is_legacy(hba))
7875 			err = ufshcd_query_flag_retry(hba,
7876 						      UPIU_QUERY_OPCODE_READ_FLAG,
7877 						      QUERY_FLAG_IDN_HPB_EN, 0,
7878 						      &hpb_en);
7879 
7880 		if (ufshpb_is_legacy(hba) || (!err && hpb_en))
7881 			dev_info->hpb_enabled = true;
7882 	}
7883 
7884 	err = ufshcd_read_string_desc(hba, model_index,
7885 				      &dev_info->model, SD_ASCII_STD);
7886 	if (err < 0) {
7887 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
7888 			__func__, err);
7889 		goto out;
7890 	}
7891 
7892 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
7893 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
7894 
7895 	ufs_fixup_device_setup(hba);
7896 
7897 	ufshcd_wb_probe(hba, desc_buf);
7898 
7899 	ufshcd_temp_notif_probe(hba, desc_buf);
7900 
7901 	/*
7902 	 * ufshcd_read_string_desc returns size of the string
7903 	 * reset the error value
7904 	 */
7905 	err = 0;
7906 
7907 out:
7908 	kfree(desc_buf);
7909 	return err;
7910 }
7911 
ufs_put_device_desc(struct ufs_hba * hba)7912 static void ufs_put_device_desc(struct ufs_hba *hba)
7913 {
7914 	struct ufs_dev_info *dev_info = &hba->dev_info;
7915 
7916 	kfree(dev_info->model);
7917 	dev_info->model = NULL;
7918 }
7919 
7920 /**
7921  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
7922  * @hba: per-adapter instance
7923  *
7924  * PA_TActivate parameter can be tuned manually if UniPro version is less than
7925  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
7926  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
7927  * the hibern8 exit latency.
7928  *
7929  * Returns zero on success, non-zero error value on failure.
7930  */
ufshcd_tune_pa_tactivate(struct ufs_hba * hba)7931 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
7932 {
7933 	int ret = 0;
7934 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
7935 
7936 	ret = ufshcd_dme_peer_get(hba,
7937 				  UIC_ARG_MIB_SEL(
7938 					RX_MIN_ACTIVATETIME_CAPABILITY,
7939 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
7940 				  &peer_rx_min_activatetime);
7941 	if (ret)
7942 		goto out;
7943 
7944 	/* make sure proper unit conversion is applied */
7945 	tuned_pa_tactivate =
7946 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
7947 		 / PA_TACTIVATE_TIME_UNIT_US);
7948 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
7949 			     tuned_pa_tactivate);
7950 
7951 out:
7952 	return ret;
7953 }
7954 
7955 /**
7956  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
7957  * @hba: per-adapter instance
7958  *
7959  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
7960  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
7961  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
7962  * This optimal value can help reduce the hibern8 exit latency.
7963  *
7964  * Returns zero on success, non-zero error value on failure.
7965  */
ufshcd_tune_pa_hibern8time(struct ufs_hba * hba)7966 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
7967 {
7968 	int ret = 0;
7969 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
7970 	u32 max_hibern8_time, tuned_pa_hibern8time;
7971 
7972 	ret = ufshcd_dme_get(hba,
7973 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
7974 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
7975 				  &local_tx_hibern8_time_cap);
7976 	if (ret)
7977 		goto out;
7978 
7979 	ret = ufshcd_dme_peer_get(hba,
7980 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
7981 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
7982 				  &peer_rx_hibern8_time_cap);
7983 	if (ret)
7984 		goto out;
7985 
7986 	max_hibern8_time = max(local_tx_hibern8_time_cap,
7987 			       peer_rx_hibern8_time_cap);
7988 	/* make sure proper unit conversion is applied */
7989 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
7990 				/ PA_HIBERN8_TIME_UNIT_US);
7991 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
7992 			     tuned_pa_hibern8time);
7993 out:
7994 	return ret;
7995 }
7996 
7997 /**
7998  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
7999  * less than device PA_TACTIVATE time.
8000  * @hba: per-adapter instance
8001  *
8002  * Some UFS devices require host PA_TACTIVATE to be lower than device
8003  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8004  * for such devices.
8005  *
8006  * Returns zero on success, non-zero error value on failure.
8007  */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)8008 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8009 {
8010 	int ret = 0;
8011 	u32 granularity, peer_granularity;
8012 	u32 pa_tactivate, peer_pa_tactivate;
8013 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8014 	u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8015 
8016 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8017 				  &granularity);
8018 	if (ret)
8019 		goto out;
8020 
8021 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8022 				  &peer_granularity);
8023 	if (ret)
8024 		goto out;
8025 
8026 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8027 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8028 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8029 			__func__, granularity);
8030 		return -EINVAL;
8031 	}
8032 
8033 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8034 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8035 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8036 			__func__, peer_granularity);
8037 		return -EINVAL;
8038 	}
8039 
8040 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8041 	if (ret)
8042 		goto out;
8043 
8044 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8045 				  &peer_pa_tactivate);
8046 	if (ret)
8047 		goto out;
8048 
8049 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8050 	peer_pa_tactivate_us = peer_pa_tactivate *
8051 			     gran_to_us_table[peer_granularity - 1];
8052 
8053 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8054 		u32 new_peer_pa_tactivate;
8055 
8056 		new_peer_pa_tactivate = pa_tactivate_us /
8057 				      gran_to_us_table[peer_granularity - 1];
8058 		new_peer_pa_tactivate++;
8059 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8060 					  new_peer_pa_tactivate);
8061 	}
8062 
8063 out:
8064 	return ret;
8065 }
8066 
ufshcd_tune_unipro_params(struct ufs_hba * hba)8067 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8068 {
8069 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8070 		ufshcd_tune_pa_tactivate(hba);
8071 		ufshcd_tune_pa_hibern8time(hba);
8072 	}
8073 
8074 	ufshcd_vops_apply_dev_quirks(hba);
8075 
8076 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8077 		/* set 1ms timeout for PA_TACTIVATE */
8078 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8079 
8080 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8081 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8082 }
8083 
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)8084 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8085 {
8086 	hba->ufs_stats.hibern8_exit_cnt = 0;
8087 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8088 	hba->req_abort_count = 0;
8089 }
8090 
ufshcd_device_geo_params_init(struct ufs_hba * hba)8091 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8092 {
8093 	int err;
8094 	size_t buff_len;
8095 	u8 *desc_buf;
8096 
8097 	buff_len = hba->desc_size[QUERY_DESC_IDN_GEOMETRY];
8098 	desc_buf = kmalloc(buff_len, GFP_KERNEL);
8099 	if (!desc_buf) {
8100 		err = -ENOMEM;
8101 		goto out;
8102 	}
8103 
8104 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8105 				     desc_buf, buff_len);
8106 	if (err) {
8107 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8108 				__func__, err);
8109 		goto out;
8110 	}
8111 
8112 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8113 		hba->dev_info.max_lu_supported = 32;
8114 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8115 		hba->dev_info.max_lu_supported = 8;
8116 
8117 	if (hba->desc_size[QUERY_DESC_IDN_GEOMETRY] >=
8118 		GEOMETRY_DESC_PARAM_HPB_MAX_ACTIVE_REGS)
8119 		ufshpb_get_geo_info(hba, desc_buf);
8120 
8121 out:
8122 	kfree(desc_buf);
8123 	return err;
8124 }
8125 
8126 static struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8127 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8128 	{26000000, REF_CLK_FREQ_26_MHZ},
8129 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8130 	{52000000, REF_CLK_FREQ_52_MHZ},
8131 	{0, REF_CLK_FREQ_INVAL},
8132 };
8133 
8134 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)8135 ufs_get_bref_clk_from_hz(unsigned long freq)
8136 {
8137 	int i;
8138 
8139 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8140 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8141 			return ufs_ref_clk_freqs[i].val;
8142 
8143 	return REF_CLK_FREQ_INVAL;
8144 }
8145 
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)8146 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8147 {
8148 	unsigned long freq;
8149 
8150 	freq = clk_get_rate(refclk);
8151 
8152 	hba->dev_ref_clk_freq =
8153 		ufs_get_bref_clk_from_hz(freq);
8154 
8155 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8156 		dev_err(hba->dev,
8157 		"invalid ref_clk setting = %ld\n", freq);
8158 }
8159 
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)8160 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8161 {
8162 	int err;
8163 	u32 ref_clk;
8164 	u32 freq = hba->dev_ref_clk_freq;
8165 
8166 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8167 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8168 
8169 	if (err) {
8170 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8171 			err);
8172 		goto out;
8173 	}
8174 
8175 	if (ref_clk == freq)
8176 		goto out; /* nothing to update */
8177 
8178 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8179 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8180 
8181 	if (err) {
8182 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8183 			ufs_ref_clk_freqs[freq].freq_hz);
8184 		goto out;
8185 	}
8186 
8187 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8188 			ufs_ref_clk_freqs[freq].freq_hz);
8189 
8190 out:
8191 	return err;
8192 }
8193 
ufshcd_device_params_init(struct ufs_hba * hba)8194 static int ufshcd_device_params_init(struct ufs_hba *hba)
8195 {
8196 	bool flag;
8197 	int ret, i;
8198 
8199 	 /* Init device descriptor sizes */
8200 	for (i = 0; i < QUERY_DESC_IDN_MAX; i++)
8201 		hba->desc_size[i] = QUERY_DESC_MAX_SIZE;
8202 
8203 	/* Init UFS geometry descriptor related parameters */
8204 	ret = ufshcd_device_geo_params_init(hba);
8205 	if (ret)
8206 		goto out;
8207 
8208 	/* Check and apply UFS device quirks */
8209 	ret = ufs_get_device_desc(hba);
8210 	if (ret) {
8211 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8212 			__func__, ret);
8213 		goto out;
8214 	}
8215 
8216 	ufshcd_get_ref_clk_gating_wait(hba);
8217 
8218 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8219 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8220 		hba->dev_info.f_power_on_wp_en = flag;
8221 
8222 	/* Probe maximum power mode co-supported by both UFS host and device */
8223 	if (ufshcd_get_max_pwr_mode(hba))
8224 		dev_err(hba->dev,
8225 			"%s: Failed getting max supported power mode\n",
8226 			__func__);
8227 out:
8228 	return ret;
8229 }
8230 
8231 /**
8232  * ufshcd_add_lus - probe and add UFS logical units
8233  * @hba: per-adapter instance
8234  */
ufshcd_add_lus(struct ufs_hba * hba)8235 static int ufshcd_add_lus(struct ufs_hba *hba)
8236 {
8237 	int ret;
8238 
8239 	/* Add required well known logical units to scsi mid layer */
8240 	ret = ufshcd_scsi_add_wlus(hba);
8241 	if (ret)
8242 		goto out;
8243 
8244 	/* Initialize devfreq after UFS device is detected */
8245 	if (ufshcd_is_clkscaling_supported(hba)) {
8246 		memcpy(&hba->clk_scaling.saved_pwr_info.info,
8247 			&hba->pwr_info,
8248 			sizeof(struct ufs_pa_layer_attr));
8249 		hba->clk_scaling.saved_pwr_info.is_valid = true;
8250 		hba->clk_scaling.is_allowed = true;
8251 
8252 		ret = ufshcd_devfreq_init(hba);
8253 		if (ret)
8254 			goto out;
8255 
8256 		hba->clk_scaling.is_enabled = true;
8257 		ufshcd_init_clk_scaling_sysfs(hba);
8258 	}
8259 
8260 	ufs_bsg_probe(hba);
8261 	ufshpb_init(hba);
8262 	scsi_scan_host(hba->host);
8263 	pm_runtime_put_sync(hba->dev);
8264 
8265 out:
8266 	return ret;
8267 }
8268 
8269 /**
8270  * ufshcd_probe_hba - probe hba to detect device and initialize it
8271  * @hba: per-adapter instance
8272  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8273  *
8274  * Execute link-startup and verify device initialization
8275  */
ufshcd_probe_hba(struct ufs_hba * hba,bool init_dev_params)8276 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8277 {
8278 	int ret;
8279 	unsigned long flags;
8280 	ktime_t start = ktime_get();
8281 
8282 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8283 
8284 	ret = ufshcd_link_startup(hba);
8285 	if (ret)
8286 		goto out;
8287 
8288 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8289 		goto out;
8290 
8291 	/* Debug counters initialization */
8292 	ufshcd_clear_dbg_ufs_stats(hba);
8293 
8294 	/* UniPro link is active now */
8295 	ufshcd_set_link_active(hba);
8296 
8297 	/* Verify device initialization by sending NOP OUT UPIU */
8298 	ret = ufshcd_verify_dev_init(hba);
8299 	if (ret)
8300 		goto out;
8301 
8302 	/* Initiate UFS initialization, and waiting until completion */
8303 	ret = ufshcd_complete_dev_init(hba);
8304 	if (ret)
8305 		goto out;
8306 
8307 	/*
8308 	 * Initialize UFS device parameters used by driver, these
8309 	 * parameters are associated with UFS descriptors.
8310 	 */
8311 	if (init_dev_params) {
8312 		ret = ufshcd_device_params_init(hba);
8313 		if (ret)
8314 			goto out;
8315 	}
8316 
8317 	ufshcd_tune_unipro_params(hba);
8318 
8319 	/* UFS device is also active now */
8320 	ufshcd_set_ufs_dev_active(hba);
8321 	ufshcd_force_reset_auto_bkops(hba);
8322 
8323 	/* Gear up to HS gear if supported */
8324 	if (hba->max_pwr_info.is_valid) {
8325 		/*
8326 		 * Set the right value to bRefClkFreq before attempting to
8327 		 * switch to HS gears.
8328 		 */
8329 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8330 			ufshcd_set_dev_ref_clk(hba);
8331 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8332 		if (ret) {
8333 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8334 					__func__, ret);
8335 			goto out;
8336 		}
8337 		ufshcd_print_pwr_info(hba);
8338 	}
8339 
8340 	/*
8341 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8342 	 * and for removable UFS card as well, hence always set the parameter.
8343 	 * Note: Error handler may issue the device reset hence resetting
8344 	 * bActiveICCLevel as well so it is always safe to set this here.
8345 	 */
8346 	ufshcd_set_active_icc_lvl(hba);
8347 
8348 	ufshcd_wb_config(hba);
8349 	if (hba->ee_usr_mask)
8350 		ufshcd_write_ee_control(hba);
8351 	/* Enable Auto-Hibernate if configured */
8352 	ufshcd_auto_hibern8_enable(hba);
8353 
8354 	ufshpb_reset(hba);
8355 
8356 	trace_android_rvh_ufs_complete_init(hba);
8357 out:
8358 	spin_lock_irqsave(hba->host->host_lock, flags);
8359 	if (ret)
8360 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8361 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8362 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8363 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8364 
8365 	trace_ufshcd_init(dev_name(hba->dev), ret,
8366 		ktime_to_us(ktime_sub(ktime_get(), start)),
8367 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8368 	return ret;
8369 }
8370 
8371 /**
8372  * ufshcd_async_scan - asynchronous execution for probing hba
8373  * @data: data pointer to pass to this function
8374  * @cookie: cookie data
8375  */
ufshcd_async_scan(void * data,async_cookie_t cookie)8376 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8377 {
8378 	struct ufs_hba *hba = (struct ufs_hba *)data;
8379 	int ret;
8380 
8381 	down(&hba->host_sem);
8382 	/* Initialize hba, detect and initialize UFS device */
8383 	ret = ufshcd_probe_hba(hba, true);
8384 	up(&hba->host_sem);
8385 	if (ret)
8386 		goto out;
8387 
8388 	/* Probe and add UFS logical units  */
8389 	ret = ufshcd_add_lus(hba);
8390 out:
8391 	/*
8392 	 * If we failed to initialize the device or the device is not
8393 	 * present, turn off the power/clocks etc.
8394 	 */
8395 	if (ret) {
8396 		pm_runtime_put_sync(hba->dev);
8397 		ufshcd_hba_exit(hba);
8398 	}
8399 }
8400 
ufshcd_eh_timed_out(struct scsi_cmnd * scmd)8401 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8402 {
8403 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8404 
8405 	if (!system_suspending) {
8406 		/* Activate the error handler in the SCSI core. */
8407 		return SCSI_EH_NOT_HANDLED;
8408 	}
8409 
8410 	/*
8411 	 * If we get here we know that no TMFs are outstanding and also that
8412 	 * the only pending command is a START STOP UNIT command. Handle the
8413 	 * timeout of that command directly to prevent a deadlock between
8414 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8415 	 */
8416 	ufshcd_link_recovery(hba);
8417 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8418 		 __func__, hba->outstanding_tasks);
8419 
8420 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8421 }
8422 
8423 static const struct attribute_group *ufshcd_driver_groups[] = {
8424 	&ufs_sysfs_unit_descriptor_group,
8425 	&ufs_sysfs_lun_attributes_group,
8426 #ifdef CONFIG_SCSI_UFS_HPB
8427 	&ufs_sysfs_hpb_stat_group,
8428 	&ufs_sysfs_hpb_param_group,
8429 #endif
8430 	NULL,
8431 };
8432 
8433 static struct ufs_hba_variant_params ufs_hba_vps = {
8434 	.hba_enable_delay_us		= 1000,
8435 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8436 	.devfreq_profile.polling_ms	= 100,
8437 	.devfreq_profile.target		= ufshcd_devfreq_target,
8438 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8439 	.ondemand_data.upthreshold	= 70,
8440 	.ondemand_data.downdifferential	= 5,
8441 };
8442 
8443 static struct scsi_host_template ufshcd_driver_template = {
8444 	.module			= THIS_MODULE,
8445 	.name			= UFSHCD,
8446 	.proc_name		= UFSHCD,
8447 	.map_queues		= ufshcd_map_queues,
8448 	.queuecommand		= ufshcd_queuecommand,
8449 	.mq_poll		= ufshcd_poll,
8450 	.slave_alloc		= ufshcd_slave_alloc,
8451 	.slave_configure	= ufshcd_slave_configure,
8452 	.slave_destroy		= ufshcd_slave_destroy,
8453 	.change_queue_depth	= ufshcd_change_queue_depth,
8454 	.eh_abort_handler	= ufshcd_abort,
8455 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8456 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8457 	.eh_timed_out2		= ufshcd_eh_timed_out,
8458 	.this_id		= -1,
8459 	.sg_tablesize		= SG_ALL,
8460 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8461 	.can_queue		= UFSHCD_CAN_QUEUE,
8462 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8463 	.max_host_blocked	= 1,
8464 	.track_queue_depth	= 1,
8465 	.sdev_groups		= ufshcd_driver_groups,
8466 	.dma_boundary		= PAGE_SIZE - 1,
8467 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
8468 };
8469 
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)8470 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8471 				   int ua)
8472 {
8473 	int ret;
8474 
8475 	if (!vreg)
8476 		return 0;
8477 
8478 	/*
8479 	 * "set_load" operation shall be required on those regulators
8480 	 * which specifically configured current limitation. Otherwise
8481 	 * zero max_uA may cause unexpected behavior when regulator is
8482 	 * enabled or set as high power mode.
8483 	 */
8484 	if (!vreg->max_uA)
8485 		return 0;
8486 
8487 	ret = regulator_set_load(vreg->reg, ua);
8488 	if (ret < 0) {
8489 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8490 				__func__, vreg->name, ua, ret);
8491 	}
8492 
8493 	return ret;
8494 }
8495 
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)8496 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8497 					 struct ufs_vreg *vreg)
8498 {
8499 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8500 }
8501 
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)8502 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8503 					 struct ufs_vreg *vreg)
8504 {
8505 	if (!vreg)
8506 		return 0;
8507 
8508 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8509 }
8510 
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)8511 static int ufshcd_config_vreg(struct device *dev,
8512 		struct ufs_vreg *vreg, bool on)
8513 {
8514 	int ret = 0;
8515 	struct regulator *reg;
8516 	const char *name;
8517 	int min_uV, uA_load;
8518 
8519 	BUG_ON(!vreg);
8520 
8521 	reg = vreg->reg;
8522 	name = vreg->name;
8523 
8524 	if (regulator_count_voltages(reg) > 0) {
8525 		uA_load = on ? vreg->max_uA : 0;
8526 		ret = ufshcd_config_vreg_load(dev, vreg, uA_load);
8527 		if (ret)
8528 			goto out;
8529 
8530 		if (vreg->min_uV && vreg->max_uV) {
8531 			min_uV = on ? vreg->min_uV : 0;
8532 			ret = regulator_set_voltage(reg, min_uV, vreg->max_uV);
8533 			if (ret)
8534 				dev_err(dev,
8535 					"%s: %s set voltage failed, err=%d\n",
8536 					__func__, name, ret);
8537 		}
8538 	}
8539 out:
8540 	return ret;
8541 }
8542 
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)8543 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8544 {
8545 	int ret = 0;
8546 
8547 	if (!vreg || vreg->enabled)
8548 		goto out;
8549 
8550 	ret = ufshcd_config_vreg(dev, vreg, true);
8551 	if (!ret)
8552 		ret = regulator_enable(vreg->reg);
8553 
8554 	if (!ret)
8555 		vreg->enabled = true;
8556 	else
8557 		dev_err(dev, "%s: %s enable failed, err=%d\n",
8558 				__func__, vreg->name, ret);
8559 out:
8560 	return ret;
8561 }
8562 
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)8563 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8564 {
8565 	int ret = 0;
8566 
8567 	if (!vreg || !vreg->enabled || vreg->always_on)
8568 		goto out;
8569 
8570 	ret = regulator_disable(vreg->reg);
8571 
8572 	if (!ret) {
8573 		/* ignore errors on applying disable config */
8574 		ufshcd_config_vreg(dev, vreg, false);
8575 		vreg->enabled = false;
8576 	} else {
8577 		dev_err(dev, "%s: %s disable failed, err=%d\n",
8578 				__func__, vreg->name, ret);
8579 	}
8580 out:
8581 	return ret;
8582 }
8583 
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)8584 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
8585 {
8586 	int ret = 0;
8587 	struct device *dev = hba->dev;
8588 	struct ufs_vreg_info *info = &hba->vreg_info;
8589 
8590 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
8591 	if (ret)
8592 		goto out;
8593 
8594 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
8595 	if (ret)
8596 		goto out;
8597 
8598 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
8599 
8600 out:
8601 	if (ret) {
8602 		ufshcd_toggle_vreg(dev, info->vccq2, false);
8603 		ufshcd_toggle_vreg(dev, info->vccq, false);
8604 		ufshcd_toggle_vreg(dev, info->vcc, false);
8605 	}
8606 	return ret;
8607 }
8608 
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)8609 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
8610 {
8611 	struct ufs_vreg_info *info = &hba->vreg_info;
8612 
8613 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
8614 }
8615 
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)8616 static int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
8617 {
8618 	int ret = 0;
8619 
8620 	if (!vreg)
8621 		goto out;
8622 
8623 	vreg->reg = devm_regulator_get(dev, vreg->name);
8624 	if (IS_ERR(vreg->reg)) {
8625 		ret = PTR_ERR(vreg->reg);
8626 		dev_err(dev, "%s: %s get failed, err=%d\n",
8627 				__func__, vreg->name, ret);
8628 	}
8629 out:
8630 	return ret;
8631 }
8632 
ufshcd_init_vreg(struct ufs_hba * hba)8633 static int ufshcd_init_vreg(struct ufs_hba *hba)
8634 {
8635 	int ret = 0;
8636 	struct device *dev = hba->dev;
8637 	struct ufs_vreg_info *info = &hba->vreg_info;
8638 
8639 	ret = ufshcd_get_vreg(dev, info->vcc);
8640 	if (ret)
8641 		goto out;
8642 
8643 	ret = ufshcd_get_vreg(dev, info->vccq);
8644 	if (!ret)
8645 		ret = ufshcd_get_vreg(dev, info->vccq2);
8646 out:
8647 	return ret;
8648 }
8649 
ufshcd_init_hba_vreg(struct ufs_hba * hba)8650 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
8651 {
8652 	struct ufs_vreg_info *info = &hba->vreg_info;
8653 
8654 	if (info)
8655 		return ufshcd_get_vreg(hba->dev, info->vdd_hba);
8656 
8657 	return 0;
8658 }
8659 
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)8660 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
8661 {
8662 	int ret = 0;
8663 	struct ufs_clk_info *clki;
8664 	struct list_head *head = &hba->clk_list_head;
8665 	unsigned long flags;
8666 	ktime_t start = ktime_get();
8667 	bool clk_state_changed = false;
8668 
8669 	if (list_empty(head))
8670 		goto out;
8671 
8672 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
8673 	if (ret)
8674 		return ret;
8675 
8676 	list_for_each_entry(clki, head, list) {
8677 		if (!IS_ERR_OR_NULL(clki->clk)) {
8678 			/*
8679 			 * Don't disable clocks which are needed
8680 			 * to keep the link active.
8681 			 */
8682 			if (ufshcd_is_link_active(hba) &&
8683 			    clki->keep_link_active)
8684 				continue;
8685 
8686 			clk_state_changed = on ^ clki->enabled;
8687 			if (on && !clki->enabled) {
8688 				ret = clk_prepare_enable(clki->clk);
8689 				if (ret) {
8690 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
8691 						__func__, clki->name, ret);
8692 					goto out;
8693 				}
8694 			} else if (!on && clki->enabled) {
8695 				clk_disable_unprepare(clki->clk);
8696 			}
8697 			clki->enabled = on;
8698 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
8699 					clki->name, on ? "en" : "dis");
8700 		}
8701 	}
8702 
8703 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
8704 	if (ret)
8705 		return ret;
8706 
8707 out:
8708 	if (ret) {
8709 		list_for_each_entry(clki, head, list) {
8710 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
8711 				clk_disable_unprepare(clki->clk);
8712 		}
8713 	} else if (!ret && on) {
8714 		spin_lock_irqsave(hba->host->host_lock, flags);
8715 		hba->clk_gating.state = CLKS_ON;
8716 		trace_ufshcd_clk_gating(dev_name(hba->dev),
8717 					hba->clk_gating.state);
8718 		spin_unlock_irqrestore(hba->host->host_lock, flags);
8719 	}
8720 
8721 	if (clk_state_changed)
8722 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
8723 			(on ? "on" : "off"),
8724 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
8725 	return ret;
8726 }
8727 
ufshcd_init_clocks(struct ufs_hba * hba)8728 static int ufshcd_init_clocks(struct ufs_hba *hba)
8729 {
8730 	int ret = 0;
8731 	struct ufs_clk_info *clki;
8732 	struct device *dev = hba->dev;
8733 	struct list_head *head = &hba->clk_list_head;
8734 
8735 	if (list_empty(head))
8736 		goto out;
8737 
8738 	list_for_each_entry(clki, head, list) {
8739 		if (!clki->name)
8740 			continue;
8741 
8742 		clki->clk = devm_clk_get(dev, clki->name);
8743 		if (IS_ERR(clki->clk)) {
8744 			ret = PTR_ERR(clki->clk);
8745 			dev_err(dev, "%s: %s clk get failed, %d\n",
8746 					__func__, clki->name, ret);
8747 			goto out;
8748 		}
8749 
8750 		/*
8751 		 * Parse device ref clk freq as per device tree "ref_clk".
8752 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
8753 		 * in ufshcd_alloc_host().
8754 		 */
8755 		if (!strcmp(clki->name, "ref_clk"))
8756 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
8757 
8758 		if (clki->max_freq) {
8759 			ret = clk_set_rate(clki->clk, clki->max_freq);
8760 			if (ret) {
8761 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
8762 					__func__, clki->name,
8763 					clki->max_freq, ret);
8764 				goto out;
8765 			}
8766 			clki->curr_freq = clki->max_freq;
8767 		}
8768 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
8769 				clki->name, clk_get_rate(clki->clk));
8770 	}
8771 out:
8772 	return ret;
8773 }
8774 
ufshcd_variant_hba_init(struct ufs_hba * hba)8775 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
8776 {
8777 	int err = 0;
8778 
8779 	if (!hba->vops)
8780 		goto out;
8781 
8782 	err = ufshcd_vops_init(hba);
8783 	if (err)
8784 		dev_err(hba->dev, "%s: variant %s init failed err %d\n",
8785 			__func__, ufshcd_get_var_name(hba), err);
8786 out:
8787 	return err;
8788 }
8789 
ufshcd_variant_hba_exit(struct ufs_hba * hba)8790 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
8791 {
8792 	if (!hba->vops)
8793 		return;
8794 
8795 	ufshcd_vops_exit(hba);
8796 }
8797 
ufshcd_hba_init(struct ufs_hba * hba)8798 static int ufshcd_hba_init(struct ufs_hba *hba)
8799 {
8800 	int err;
8801 
8802 	/*
8803 	 * Handle host controller power separately from the UFS device power
8804 	 * rails as it will help controlling the UFS host controller power
8805 	 * collapse easily which is different than UFS device power collapse.
8806 	 * Also, enable the host controller power before we go ahead with rest
8807 	 * of the initialization here.
8808 	 */
8809 	err = ufshcd_init_hba_vreg(hba);
8810 	if (err)
8811 		goto out;
8812 
8813 	err = ufshcd_setup_hba_vreg(hba, true);
8814 	if (err)
8815 		goto out;
8816 
8817 	err = ufshcd_init_clocks(hba);
8818 	if (err)
8819 		goto out_disable_hba_vreg;
8820 
8821 	err = ufshcd_setup_clocks(hba, true);
8822 	if (err)
8823 		goto out_disable_hba_vreg;
8824 
8825 	err = ufshcd_init_vreg(hba);
8826 	if (err)
8827 		goto out_disable_clks;
8828 
8829 	err = ufshcd_setup_vreg(hba, true);
8830 	if (err)
8831 		goto out_disable_clks;
8832 
8833 	err = ufshcd_variant_hba_init(hba);
8834 	if (err)
8835 		goto out_disable_vreg;
8836 
8837 	ufs_debugfs_hba_init(hba);
8838 
8839 	hba->is_powered = true;
8840 	goto out;
8841 
8842 out_disable_vreg:
8843 	ufshcd_setup_vreg(hba, false);
8844 out_disable_clks:
8845 	ufshcd_setup_clocks(hba, false);
8846 out_disable_hba_vreg:
8847 	ufshcd_setup_hba_vreg(hba, false);
8848 out:
8849 	return err;
8850 }
8851 
ufshcd_hba_exit(struct ufs_hba * hba)8852 static void ufshcd_hba_exit(struct ufs_hba *hba)
8853 {
8854 	if (hba->is_powered) {
8855 		ufshcd_exit_clk_scaling(hba);
8856 		ufshcd_exit_clk_gating(hba);
8857 		if (hba->eh_wq)
8858 			destroy_workqueue(hba->eh_wq);
8859 		ufs_debugfs_hba_exit(hba);
8860 		ufshcd_variant_hba_exit(hba);
8861 		ufshcd_setup_vreg(hba, false);
8862 		ufshcd_setup_clocks(hba, false);
8863 		ufshcd_setup_hba_vreg(hba, false);
8864 		hba->is_powered = false;
8865 		ufs_put_device_desc(hba);
8866 	}
8867 }
8868 
ufshcd_execute_start_stop(struct scsi_device * sdev,enum ufs_dev_pwr_mode pwr_mode,struct scsi_sense_hdr * sshdr)8869 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
8870 				     enum ufs_dev_pwr_mode pwr_mode,
8871 				     struct scsi_sense_hdr *sshdr)
8872 {
8873 	unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
8874 	struct request *req;
8875 	struct scsi_request *rq;
8876 	struct scsi_cmnd *scmd;
8877 	int ret;
8878 
8879 	req = blk_get_request(sdev->request_queue, REQ_OP_SCSI_IN,
8880 			      BLK_MQ_REQ_PM);
8881 	if (IS_ERR(req))
8882 		return PTR_ERR(req);
8883 	rq = scsi_req(req);
8884 
8885 	scmd = blk_mq_rq_to_pdu(req);
8886 	rq->cmd_len = COMMAND_SIZE(cdb[0]);
8887 	memcpy(rq->cmd, cdb, rq->cmd_len);
8888 	rq->retries = 0;
8889 	scmd->flags |= SCMD_FAIL_IF_RECOVERING;
8890 	req->timeout = 1 * HZ;
8891 	req->rq_flags |= RQF_PM | RQF_QUIET;
8892 
8893 	blk_execute_rq(req->q, NULL, req, /*at_head=*/true);
8894 
8895 	if (sshdr)
8896 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
8897 	ret = rq->result;
8898 
8899 	blk_put_request(req);
8900 
8901 	return ret;
8902 }
8903 
8904 /**
8905  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
8906  *			     power mode
8907  * @hba: per adapter instance
8908  * @pwr_mode: device power mode to set
8909  *
8910  * Returns 0 if requested power mode is set successfully
8911  * Returns < 0 if failed to set the requested power mode
8912  */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)8913 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
8914 				     enum ufs_dev_pwr_mode pwr_mode)
8915 {
8916 	struct scsi_sense_hdr sshdr;
8917 	struct scsi_device *sdp;
8918 	unsigned long flags;
8919 	int ret, retries;
8920 
8921 	spin_lock_irqsave(hba->host->host_lock, flags);
8922 	sdp = hba->sdev_ufs_device;
8923 	if (sdp) {
8924 		ret = scsi_device_get(sdp);
8925 		if (!ret && !scsi_device_online(sdp)) {
8926 			ret = -ENODEV;
8927 			scsi_device_put(sdp);
8928 		}
8929 	} else {
8930 		ret = -ENODEV;
8931 	}
8932 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8933 
8934 	if (ret)
8935 		return ret;
8936 
8937 	/*
8938 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
8939 	 * handling, which would wait for host to be resumed. Since we know
8940 	 * we are functional while we are here, skip host resume in error
8941 	 * handling context.
8942 	 */
8943 	hba->host->eh_noresume = 1;
8944 
8945 	/*
8946 	 * Current function would be generally called from the power management
8947 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
8948 	 * already suspended childs.
8949 	 */
8950 	for (retries = 3; retries > 0; --retries) {
8951 		ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
8952 		/*
8953 		 * scsi_execute() only returns a negative value if the request
8954 		 * queue is dying.
8955 		 */
8956 		if (ret <= 0)
8957 			break;
8958 	}
8959 	if (ret) {
8960 		sdev_printk(KERN_WARNING, sdp,
8961 			    "START_STOP failed for power mode: %d, result %x\n",
8962 			    pwr_mode, ret);
8963 		if (ret > 0) {
8964 			if (scsi_sense_valid(&sshdr))
8965 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
8966 			ret = -EIO;
8967 		}
8968 	} else {
8969 		hba->curr_dev_pwr_mode = pwr_mode;
8970 	}
8971 
8972 	scsi_device_put(sdp);
8973 	hba->host->eh_noresume = 0;
8974 	return ret;
8975 }
8976 
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,int check_for_bkops)8977 static int ufshcd_link_state_transition(struct ufs_hba *hba,
8978 					enum uic_link_state req_link_state,
8979 					int check_for_bkops)
8980 {
8981 	int ret = 0;
8982 
8983 	if (req_link_state == hba->uic_link_state)
8984 		return 0;
8985 
8986 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
8987 		ret = ufshcd_uic_hibern8_enter(hba);
8988 		if (!ret) {
8989 			ufshcd_set_link_hibern8(hba);
8990 		} else {
8991 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
8992 					__func__, ret);
8993 			goto out;
8994 		}
8995 	}
8996 	/*
8997 	 * If autobkops is enabled, link can't be turned off because
8998 	 * turning off the link would also turn off the device, except in the
8999 	 * case of DeepSleep where the device is expected to remain powered.
9000 	 */
9001 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9002 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9003 		/*
9004 		 * Let's make sure that link is in low power mode, we are doing
9005 		 * this currently by putting the link in Hibern8. Otherway to
9006 		 * put the link in low power mode is to send the DME end point
9007 		 * to device and then send the DME reset command to local
9008 		 * unipro. But putting the link in hibern8 is much faster.
9009 		 *
9010 		 * Note also that putting the link in Hibern8 is a requirement
9011 		 * for entering DeepSleep.
9012 		 */
9013 		ret = ufshcd_uic_hibern8_enter(hba);
9014 		if (ret) {
9015 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9016 					__func__, ret);
9017 			goto out;
9018 		}
9019 		/*
9020 		 * Change controller state to "reset state" which
9021 		 * should also put the link in off/reset state
9022 		 */
9023 		ufshcd_hba_stop(hba);
9024 		/*
9025 		 * TODO: Check if we need any delay to make sure that
9026 		 * controller is reset
9027 		 */
9028 		ufshcd_set_link_off(hba);
9029 	}
9030 
9031 out:
9032 	return ret;
9033 }
9034 
ufshcd_vreg_set_lpm(struct ufs_hba * hba)9035 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9036 {
9037 	bool vcc_off = false;
9038 
9039 	/*
9040 	 * It seems some UFS devices may keep drawing more than sleep current
9041 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9042 	 * To avoid this situation, add 2ms delay before putting these UFS
9043 	 * rails in LPM mode.
9044 	 */
9045 	if (!ufshcd_is_link_active(hba) &&
9046 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9047 		usleep_range(2000, 2100);
9048 
9049 	/*
9050 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9051 	 * power.
9052 	 *
9053 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9054 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9055 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9056 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9057 	 *
9058 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9059 	 * in low power state which would save some power.
9060 	 *
9061 	 * If Write Booster is enabled and the device needs to flush the WB
9062 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9063 	 */
9064 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9065 	    !hba->dev_info.is_lu_power_on_wp) {
9066 		ufshcd_setup_vreg(hba, false);
9067 		vcc_off = true;
9068 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9069 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9070 		vcc_off = true;
9071 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9072 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9073 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9074 		}
9075 	}
9076 
9077 	/*
9078 	 * Some UFS devices require delay after VCC power rail is turned-off.
9079 	 */
9080 	if (vcc_off && hba->vreg_info.vcc &&
9081 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9082 		usleep_range(5000, 5100);
9083 }
9084 
9085 #ifdef CONFIG_PM
ufshcd_vreg_set_hpm(struct ufs_hba * hba)9086 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9087 {
9088 	int ret = 0;
9089 
9090 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9091 	    !hba->dev_info.is_lu_power_on_wp) {
9092 		ret = ufshcd_setup_vreg(hba, true);
9093 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9094 		if (!ufshcd_is_link_active(hba)) {
9095 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9096 			if (ret)
9097 				goto vcc_disable;
9098 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9099 			if (ret)
9100 				goto vccq_lpm;
9101 		}
9102 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9103 	}
9104 	goto out;
9105 
9106 vccq_lpm:
9107 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9108 vcc_disable:
9109 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9110 out:
9111 	return ret;
9112 }
9113 #endif /* CONFIG_PM */
9114 
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)9115 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9116 {
9117 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9118 		ufshcd_setup_hba_vreg(hba, false);
9119 }
9120 
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)9121 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9122 {
9123 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9124 		ufshcd_setup_hba_vreg(hba, true);
9125 }
9126 
__ufshcd_wl_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)9127 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9128 {
9129 	int ret = 0;
9130 	int check_for_bkops;
9131 	enum ufs_pm_level pm_lvl;
9132 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9133 	enum uic_link_state req_link_state;
9134 
9135 	hba->pm_op_in_progress = true;
9136 	if (pm_op != UFS_SHUTDOWN_PM) {
9137 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9138 			 hba->rpm_lvl : hba->spm_lvl;
9139 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9140 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9141 	} else {
9142 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9143 		req_link_state = UIC_LINK_OFF_STATE;
9144 	}
9145 
9146 	ufshpb_suspend(hba);
9147 
9148 	/*
9149 	 * If we can't transition into any of the low power modes
9150 	 * just gate the clocks.
9151 	 */
9152 	ufshcd_hold(hba, false);
9153 	hba->clk_gating.is_suspended = true;
9154 
9155 	if (ufshcd_is_clkscaling_supported(hba))
9156 		ufshcd_clk_scaling_suspend(hba, true);
9157 
9158 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9159 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9160 		goto vops_suspend;
9161 	}
9162 
9163 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9164 	    (req_link_state == hba->uic_link_state))
9165 		goto enable_scaling;
9166 
9167 	/* UFS device & link must be active before we enter in this function */
9168 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9169 		ret = -EINVAL;
9170 		goto enable_scaling;
9171 	}
9172 
9173 	if (pm_op == UFS_RUNTIME_PM) {
9174 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9175 			/*
9176 			 * The device is idle with no requests in the queue,
9177 			 * allow background operations if bkops status shows
9178 			 * that performance might be impacted.
9179 			 */
9180 			ret = ufshcd_urgent_bkops(hba);
9181 			if (ret) {
9182 				/*
9183 				 * If return err in suspend flow, IO will hang.
9184 				 * Trigger error handler and break suspend for
9185 				 * error recovery.
9186 				 */
9187 				ufshcd_force_error_recovery(hba);
9188 				ret = -EBUSY;
9189 				goto enable_scaling;
9190 			}
9191 		} else {
9192 			/* make sure that auto bkops is disabled */
9193 			ufshcd_disable_auto_bkops(hba);
9194 		}
9195 		/*
9196 		 * If device needs to do BKOP or WB buffer flush during
9197 		 * Hibern8, keep device power mode as "active power mode"
9198 		 * and VCC supply.
9199 		 */
9200 		hba->dev_info.b_rpm_dev_flush_capable =
9201 			hba->auto_bkops_enabled ||
9202 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9203 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9204 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9205 			ufshcd_wb_need_flush(hba));
9206 	}
9207 
9208 	flush_work(&hba->eeh_work);
9209 
9210 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9211 	if (ret)
9212 		goto enable_scaling;
9213 
9214 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9215 		if (pm_op != UFS_RUNTIME_PM)
9216 			/* ensure that bkops is disabled */
9217 			ufshcd_disable_auto_bkops(hba);
9218 
9219 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9220 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9221 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9222 				/*
9223 				 * If return err in suspend flow, IO will hang.
9224 				 * Trigger error handler and break suspend for
9225 				 * error recovery.
9226 				 */
9227 				ufshcd_force_error_recovery(hba);
9228 				ret = -EBUSY;
9229 			}
9230 			if (ret)
9231 				goto enable_scaling;
9232 		}
9233 	}
9234 
9235 	/*
9236 	 * In the case of DeepSleep, the device is expected to remain powered
9237 	 * with the link off, so do not check for bkops.
9238 	 */
9239 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9240 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9241 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9242 		/*
9243 		 * If return err in suspend flow, IO will hang.
9244 		 * Trigger error handler and break suspend for
9245 		 * error recovery.
9246 		 */
9247 		ufshcd_force_error_recovery(hba);
9248 		ret = -EBUSY;
9249 	}
9250 	if (ret)
9251 		goto set_dev_active;
9252 
9253 vops_suspend:
9254 	/*
9255 	 * Call vendor specific suspend callback. As these callbacks may access
9256 	 * vendor specific host controller register space call them before the
9257 	 * host clocks are ON.
9258 	 */
9259 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9260 	if (ret)
9261 		goto set_link_active;
9262 	goto out;
9263 
9264 set_link_active:
9265 	/*
9266 	 * Device hardware reset is required to exit DeepSleep. Also, for
9267 	 * DeepSleep, the link is off so host reset and restore will be done
9268 	 * further below.
9269 	 */
9270 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9271 		ufshcd_device_reset(hba);
9272 		WARN_ON(!ufshcd_is_link_off(hba));
9273 	}
9274 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9275 		ufshcd_set_link_active(hba);
9276 	else if (ufshcd_is_link_off(hba))
9277 		ufshcd_host_reset_and_restore(hba);
9278 set_dev_active:
9279 	/* Can also get here needing to exit DeepSleep */
9280 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9281 		ufshcd_device_reset(hba);
9282 		ufshcd_host_reset_and_restore(hba);
9283 	}
9284 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9285 		ufshcd_disable_auto_bkops(hba);
9286 enable_scaling:
9287 	if (ufshcd_is_clkscaling_supported(hba))
9288 		ufshcd_clk_scaling_suspend(hba, false);
9289 
9290 	hba->dev_info.b_rpm_dev_flush_capable = false;
9291 out:
9292 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9293 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9294 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9295 	}
9296 
9297 	if (ret) {
9298 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9299 		hba->clk_gating.is_suspended = false;
9300 		ufshcd_release(hba);
9301 		ufshpb_resume(hba);
9302 	}
9303 	hba->pm_op_in_progress = false;
9304 	return ret;
9305 }
9306 
9307 #ifdef CONFIG_PM
__ufshcd_wl_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)9308 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9309 {
9310 	int ret;
9311 	enum uic_link_state old_link_state = hba->uic_link_state;
9312 
9313 	hba->pm_op_in_progress = true;
9314 
9315 	/*
9316 	 * Call vendor specific resume callback. As these callbacks may access
9317 	 * vendor specific host controller register space call them when the
9318 	 * host clocks are ON.
9319 	 */
9320 	ret = ufshcd_vops_resume(hba, pm_op);
9321 	if (ret)
9322 		goto out;
9323 
9324 	/* For DeepSleep, the only supported option is to have the link off */
9325 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9326 
9327 	if (ufshcd_is_link_hibern8(hba)) {
9328 		ret = ufshcd_uic_hibern8_exit(hba);
9329 		if (!ret) {
9330 			ufshcd_set_link_active(hba);
9331 		} else {
9332 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9333 					__func__, ret);
9334 			goto vendor_suspend;
9335 		}
9336 	} else if (ufshcd_is_link_off(hba)) {
9337 		/*
9338 		 * A full initialization of the host and the device is
9339 		 * required since the link was put to off during suspend.
9340 		 * Note, in the case of DeepSleep, the device will exit
9341 		 * DeepSleep due to device reset.
9342 		 */
9343 		ret = ufshcd_reset_and_restore(hba);
9344 		/*
9345 		 * ufshcd_reset_and_restore() should have already
9346 		 * set the link state as active
9347 		 */
9348 		if (ret || !ufshcd_is_link_active(hba))
9349 			goto vendor_suspend;
9350 	}
9351 
9352 	if (!ufshcd_is_ufs_dev_active(hba)) {
9353 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9354 		if (ret)
9355 			goto set_old_link_state;
9356 	}
9357 
9358 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9359 		ufshcd_enable_auto_bkops(hba);
9360 	else
9361 		/*
9362 		 * If BKOPs operations are urgently needed at this moment then
9363 		 * keep auto-bkops enabled or else disable it.
9364 		 */
9365 		ufshcd_urgent_bkops(hba);
9366 
9367 	if (hba->ee_usr_mask)
9368 		ufshcd_write_ee_control(hba);
9369 
9370 	if (ufshcd_is_clkscaling_supported(hba))
9371 		ufshcd_clk_scaling_suspend(hba, false);
9372 
9373 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9374 		hba->dev_info.b_rpm_dev_flush_capable = false;
9375 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9376 	}
9377 
9378 	/* Enable Auto-Hibernate if configured */
9379 	ufshcd_auto_hibern8_enable(hba);
9380 
9381 	ufshpb_resume(hba);
9382 	goto out;
9383 
9384 set_old_link_state:
9385 	ufshcd_link_state_transition(hba, old_link_state, 0);
9386 vendor_suspend:
9387 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9388 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9389 out:
9390 	if (ret)
9391 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9392 	hba->clk_gating.is_suspended = false;
9393 	ufshcd_release(hba);
9394 	hba->pm_op_in_progress = false;
9395 	return ret;
9396 }
9397 
ufshcd_wl_runtime_suspend(struct device * dev)9398 static int ufshcd_wl_runtime_suspend(struct device *dev)
9399 {
9400 	struct scsi_device *sdev = to_scsi_device(dev);
9401 	struct ufs_hba *hba;
9402 	int ret;
9403 	ktime_t start = ktime_get();
9404 
9405 	hba = shost_priv(sdev->host);
9406 
9407 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9408 	if (ret)
9409 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9410 
9411 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9412 		ktime_to_us(ktime_sub(ktime_get(), start)),
9413 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9414 
9415 	return ret;
9416 }
9417 
ufshcd_wl_runtime_resume(struct device * dev)9418 static int ufshcd_wl_runtime_resume(struct device *dev)
9419 {
9420 	struct scsi_device *sdev = to_scsi_device(dev);
9421 	struct ufs_hba *hba;
9422 	int ret = 0;
9423 	ktime_t start = ktime_get();
9424 
9425 	hba = shost_priv(sdev->host);
9426 
9427 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9428 	if (ret)
9429 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9430 
9431 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9432 		ktime_to_us(ktime_sub(ktime_get(), start)),
9433 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9434 
9435 	return ret;
9436 }
9437 #endif
9438 
9439 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_suspend(struct device * dev)9440 static int ufshcd_wl_suspend(struct device *dev)
9441 {
9442 	struct scsi_device *sdev = to_scsi_device(dev);
9443 	struct ufs_hba *hba;
9444 	int ret = 0;
9445 	ktime_t start = ktime_get();
9446 
9447 	hba = shost_priv(sdev->host);
9448 	down(&hba->host_sem);
9449 	system_suspending = true;
9450 
9451 	if (pm_runtime_suspended(dev))
9452 		goto out;
9453 
9454 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9455 	if (ret) {
9456 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9457 		up(&hba->host_sem);
9458 	}
9459 
9460 out:
9461 	if (!ret)
9462 		hba->is_sys_suspended = true;
9463 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9464 		ktime_to_us(ktime_sub(ktime_get(), start)),
9465 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9466 
9467 	return ret;
9468 }
9469 
ufshcd_wl_resume(struct device * dev)9470 static int ufshcd_wl_resume(struct device *dev)
9471 {
9472 	struct scsi_device *sdev = to_scsi_device(dev);
9473 	struct ufs_hba *hba;
9474 	int ret = 0;
9475 	ktime_t start = ktime_get();
9476 
9477 	hba = shost_priv(sdev->host);
9478 
9479 	if (pm_runtime_suspended(dev))
9480 		goto out;
9481 
9482 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9483 	if (ret)
9484 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9485 out:
9486 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9487 		ktime_to_us(ktime_sub(ktime_get(), start)),
9488 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9489 	if (!ret)
9490 		hba->is_sys_suspended = false;
9491 	system_suspending = false;
9492 	up(&hba->host_sem);
9493 	return ret;
9494 }
9495 #endif
9496 
ufshcd_wl_shutdown(struct device * dev)9497 static void ufshcd_wl_shutdown(struct device *dev)
9498 {
9499 	struct scsi_device *sdev = to_scsi_device(dev);
9500 	struct ufs_hba *hba;
9501 
9502 	hba = shost_priv(sdev->host);
9503 
9504 	down(&hba->host_sem);
9505 	hba->shutting_down = true;
9506 	up(&hba->host_sem);
9507 
9508 	/* Turn on everything while shutting down */
9509 	ufshcd_rpm_get_sync(hba);
9510 	scsi_device_quiesce(sdev);
9511 	shost_for_each_device(sdev, hba->host) {
9512 		if (sdev == hba->sdev_ufs_device)
9513 			continue;
9514 		scsi_device_quiesce(sdev);
9515 	}
9516 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
9517 }
9518 
9519 /**
9520  * ufshcd_suspend - helper function for suspend operations
9521  * @hba: per adapter instance
9522  *
9523  * This function will put disable irqs, turn off clocks
9524  * and set vreg and hba-vreg in lpm mode.
9525  */
ufshcd_suspend(struct ufs_hba * hba)9526 static int ufshcd_suspend(struct ufs_hba *hba)
9527 {
9528 	int ret;
9529 
9530 	if (!hba->is_powered)
9531 		return 0;
9532 	/*
9533 	 * Disable the host irq as host controller as there won't be any
9534 	 * host controller transaction expected till resume.
9535 	 */
9536 	ufshcd_disable_irq(hba);
9537 	ret = ufshcd_setup_clocks(hba, false);
9538 	if (ret) {
9539 		ufshcd_enable_irq(hba);
9540 		return ret;
9541 	}
9542 	if (ufshcd_is_clkgating_allowed(hba)) {
9543 		hba->clk_gating.state = CLKS_OFF;
9544 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9545 					hba->clk_gating.state);
9546 	}
9547 
9548 	ufshcd_vreg_set_lpm(hba);
9549 	/* Put the host controller in low power mode if possible */
9550 	ufshcd_hba_vreg_set_lpm(hba);
9551 	return ret;
9552 }
9553 
9554 #ifdef CONFIG_PM
9555 /**
9556  * ufshcd_resume - helper function for resume operations
9557  * @hba: per adapter instance
9558  *
9559  * This function basically turns on the regulators, clocks and
9560  * irqs of the hba.
9561  *
9562  * Returns 0 for success and non-zero for failure
9563  */
ufshcd_resume(struct ufs_hba * hba)9564 static int ufshcd_resume(struct ufs_hba *hba)
9565 {
9566 	int ret;
9567 
9568 	if (!hba->is_powered)
9569 		return 0;
9570 
9571 	ufshcd_hba_vreg_set_hpm(hba);
9572 	ret = ufshcd_vreg_set_hpm(hba);
9573 	if (ret)
9574 		goto out;
9575 
9576 	/* Make sure clocks are enabled before accessing controller */
9577 	ret = ufshcd_setup_clocks(hba, true);
9578 	if (ret)
9579 		goto disable_vreg;
9580 
9581 	/* enable the host irq as host controller would be active soon */
9582 	ufshcd_enable_irq(hba);
9583 	goto out;
9584 
9585 disable_vreg:
9586 	ufshcd_vreg_set_lpm(hba);
9587 out:
9588 	if (ret)
9589 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
9590 	return ret;
9591 }
9592 #endif /* CONFIG_PM */
9593 
9594 #ifdef CONFIG_PM_SLEEP
9595 /**
9596  * ufshcd_system_suspend - system suspend callback
9597  * @dev: Device associated with the UFS controller.
9598  *
9599  * Executed before putting the system into a sleep state in which the contents
9600  * of main memory are preserved.
9601  *
9602  * Returns 0 for success and non-zero for failure
9603  */
ufshcd_system_suspend(struct device * dev)9604 int ufshcd_system_suspend(struct device *dev)
9605 {
9606 	struct ufs_hba *hba = dev_get_drvdata(dev);
9607 	int ret = 0;
9608 	ktime_t start = ktime_get();
9609 
9610 	if (pm_runtime_suspended(hba->dev))
9611 		goto out;
9612 
9613 	ret = ufshcd_suspend(hba);
9614 out:
9615 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
9616 		ktime_to_us(ktime_sub(ktime_get(), start)),
9617 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9618 	return ret;
9619 }
9620 EXPORT_SYMBOL(ufshcd_system_suspend);
9621 
9622 /**
9623  * ufshcd_system_resume - system resume callback
9624  * @dev: Device associated with the UFS controller.
9625  *
9626  * Executed after waking the system up from a sleep state in which the contents
9627  * of main memory were preserved.
9628  *
9629  * Returns 0 for success and non-zero for failure
9630  */
ufshcd_system_resume(struct device * dev)9631 int ufshcd_system_resume(struct device *dev)
9632 {
9633 	struct ufs_hba *hba = dev_get_drvdata(dev);
9634 	ktime_t start = ktime_get();
9635 	int ret = 0;
9636 
9637 	if (pm_runtime_suspended(hba->dev))
9638 		goto out;
9639 
9640 	ret = ufshcd_resume(hba);
9641 
9642 out:
9643 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
9644 		ktime_to_us(ktime_sub(ktime_get(), start)),
9645 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9646 
9647 	return ret;
9648 }
9649 EXPORT_SYMBOL(ufshcd_system_resume);
9650 #endif /* CONFIG_PM_SLEEP */
9651 
9652 #ifdef CONFIG_PM
9653 /**
9654  * ufshcd_runtime_suspend - runtime suspend callback
9655  * @dev: Device associated with the UFS controller.
9656  *
9657  * Check the description of ufshcd_suspend() function for more details.
9658  *
9659  * Returns 0 for success and non-zero for failure
9660  */
ufshcd_runtime_suspend(struct device * dev)9661 int ufshcd_runtime_suspend(struct device *dev)
9662 {
9663 	struct ufs_hba *hba = dev_get_drvdata(dev);
9664 	int ret;
9665 	ktime_t start = ktime_get();
9666 
9667 	ret = ufshcd_suspend(hba);
9668 
9669 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
9670 		ktime_to_us(ktime_sub(ktime_get(), start)),
9671 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9672 	return ret;
9673 }
9674 EXPORT_SYMBOL(ufshcd_runtime_suspend);
9675 
9676 /**
9677  * ufshcd_runtime_resume - runtime resume routine
9678  * @dev: Device associated with the UFS controller.
9679  *
9680  * This function basically brings controller
9681  * to active state. Following operations are done in this function:
9682  *
9683  * 1. Turn on all the controller related clocks
9684  * 2. Turn ON VCC rail
9685  */
ufshcd_runtime_resume(struct device * dev)9686 int ufshcd_runtime_resume(struct device *dev)
9687 {
9688 	struct ufs_hba *hba = dev_get_drvdata(dev);
9689 	int ret;
9690 	ktime_t start = ktime_get();
9691 
9692 	ret = ufshcd_resume(hba);
9693 
9694 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
9695 		ktime_to_us(ktime_sub(ktime_get(), start)),
9696 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9697 	return ret;
9698 }
9699 EXPORT_SYMBOL(ufshcd_runtime_resume);
9700 #endif /* CONFIG_PM */
9701 
9702 /**
9703  * ufshcd_shutdown - shutdown routine
9704  * @hba: per adapter instance
9705  *
9706  * This function would turn off both UFS device and UFS hba
9707  * regulators. It would also disable clocks.
9708  *
9709  * Returns 0 always to allow force shutdown even in case of errors.
9710  */
ufshcd_shutdown(struct ufs_hba * hba)9711 int ufshcd_shutdown(struct ufs_hba *hba)
9712 {
9713 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
9714 		ufshcd_suspend(hba);
9715 
9716 	hba->is_powered = false;
9717 	/* allow force shutdown even in case of errors */
9718 	return 0;
9719 }
9720 EXPORT_SYMBOL(ufshcd_shutdown);
9721 
9722 /**
9723  * ufshcd_remove - de-allocate SCSI host and host memory space
9724  *		data structure memory
9725  * @hba: per adapter instance
9726  */
ufshcd_remove(struct ufs_hba * hba)9727 void ufshcd_remove(struct ufs_hba *hba)
9728 {
9729 	if (hba->sdev_ufs_device)
9730 		ufshcd_rpm_get_sync(hba);
9731 	ufs_hwmon_remove(hba);
9732 	ufs_bsg_remove(hba);
9733 	ufshpb_remove(hba);
9734 	ufs_sysfs_remove_nodes(hba->dev);
9735 	blk_cleanup_queue(hba->tmf_queue);
9736 	blk_mq_free_tag_set(&hba->tmf_tag_set);
9737 	scsi_remove_host(hba->host);
9738 	/* disable interrupts */
9739 	ufshcd_disable_intr(hba, hba->intr_mask);
9740 	ufshcd_hba_stop(hba);
9741 	ufshcd_hba_exit(hba);
9742 }
9743 EXPORT_SYMBOL_GPL(ufshcd_remove);
9744 
9745 /**
9746  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
9747  * @hba: pointer to Host Bus Adapter (HBA)
9748  */
ufshcd_dealloc_host(struct ufs_hba * hba)9749 void ufshcd_dealloc_host(struct ufs_hba *hba)
9750 {
9751 	scsi_host_put(hba->host);
9752 }
9753 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
9754 
9755 /**
9756  * ufshcd_set_dma_mask - Set dma mask based on the controller
9757  *			 addressing capability
9758  * @hba: per adapter instance
9759  *
9760  * Returns 0 for success, non-zero for failure
9761  */
ufshcd_set_dma_mask(struct ufs_hba * hba)9762 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
9763 {
9764 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
9765 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
9766 			return 0;
9767 	}
9768 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
9769 }
9770 
9771 /**
9772  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
9773  * @dev: pointer to device handle
9774  * @hba_handle: driver private handle
9775  * Returns 0 on success, non-zero value on failure
9776  */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)9777 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
9778 {
9779 	struct Scsi_Host *host;
9780 	struct ufs_hba *hba;
9781 	int err = 0;
9782 
9783 	if (!dev) {
9784 		dev_err(dev,
9785 		"Invalid memory reference for dev is NULL\n");
9786 		err = -ENODEV;
9787 		goto out_error;
9788 	}
9789 
9790 	host = scsi_host_alloc(&ufshcd_driver_template,
9791 				sizeof(struct ufs_hba));
9792 	if (!host) {
9793 		dev_err(dev, "scsi_host_alloc failed\n");
9794 		err = -ENOMEM;
9795 		goto out_error;
9796 	}
9797 	host->nr_maps = HCTX_TYPE_POLL + 1;
9798 	hba = shost_priv(host);
9799 	hba->host = host;
9800 	hba->dev = dev;
9801 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
9802 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
9803 	hba->sg_entry_size = sizeof(struct ufshcd_sg_entry);
9804 	INIT_LIST_HEAD(&hba->clk_list_head);
9805 	spin_lock_init(&hba->outstanding_lock);
9806 
9807 	*hba_handle = hba;
9808 
9809 out_error:
9810 	return err;
9811 }
9812 EXPORT_SYMBOL(ufshcd_alloc_host);
9813 
9814 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)9815 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
9816 				     const struct blk_mq_queue_data *qd)
9817 {
9818 	WARN_ON_ONCE(true);
9819 	return BLK_STS_NOTSUPP;
9820 }
9821 
9822 static const struct blk_mq_ops ufshcd_tmf_ops = {
9823 	.queue_rq = ufshcd_queue_tmf,
9824 };
9825 
9826 /**
9827  * ufshcd_init - Driver initialization routine
9828  * @hba: per-adapter instance
9829  * @mmio_base: base register address
9830  * @irq: Interrupt line of device
9831  * Returns 0 on success, non-zero value on failure
9832  */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)9833 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
9834 {
9835 	int err;
9836 	struct Scsi_Host *host = hba->host;
9837 	struct device *dev = hba->dev;
9838 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
9839 
9840 	/*
9841 	 * dev_set_drvdata() must be called before any callbacks are registered
9842 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
9843 	 * sysfs).
9844 	 */
9845 	dev_set_drvdata(dev, hba);
9846 
9847 	if (!mmio_base) {
9848 		dev_err(hba->dev,
9849 		"Invalid memory reference for mmio_base is NULL\n");
9850 		err = -ENODEV;
9851 		goto out_error;
9852 	}
9853 
9854 	hba->mmio_base = mmio_base;
9855 	hba->irq = irq;
9856 	hba->vps = &ufs_hba_vps;
9857 
9858 	err = ufshcd_hba_init(hba);
9859 	if (err)
9860 		goto out_error;
9861 
9862 	/* Read capabilities registers */
9863 	err = ufshcd_hba_capabilities(hba);
9864 	if (err)
9865 		goto out_disable;
9866 
9867 	/* Get UFS version supported by the controller */
9868 	hba->ufs_version = ufshcd_get_ufs_version(hba);
9869 
9870 	/* Get Interrupt bit mask per version */
9871 	hba->intr_mask = ufshcd_get_intr_mask(hba);
9872 
9873 	err = ufshcd_set_dma_mask(hba);
9874 	if (err) {
9875 		dev_err(hba->dev, "set dma mask failed\n");
9876 		goto out_disable;
9877 	}
9878 
9879 	/* Allocate memory for host memory space */
9880 	err = ufshcd_memory_alloc(hba);
9881 	if (err) {
9882 		dev_err(hba->dev, "Memory allocation failed\n");
9883 		goto out_disable;
9884 	}
9885 
9886 	/* Configure LRB */
9887 	ufshcd_host_memory_configure(hba);
9888 
9889 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
9890 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
9891 	host->max_id = UFSHCD_MAX_ID;
9892 	host->max_lun = UFS_MAX_LUNS;
9893 	host->max_channel = UFSHCD_MAX_CHANNEL;
9894 	host->unique_id = host->host_no;
9895 	host->max_cmd_len = UFS_CDB_SIZE;
9896 
9897 	hba->max_pwr_info.is_valid = false;
9898 
9899 	/* Initialize work queues */
9900 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
9901 		 hba->host->host_no);
9902 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
9903 	if (!hba->eh_wq) {
9904 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
9905 			__func__);
9906 		err = -ENOMEM;
9907 		goto out_disable;
9908 	}
9909 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
9910 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
9911 
9912 	sema_init(&hba->host_sem, 1);
9913 
9914 	/* Initialize UIC command mutex */
9915 	mutex_init(&hba->uic_cmd_mutex);
9916 
9917 	/* Initialize mutex for device management commands */
9918 	mutex_init(&hba->dev_cmd.lock);
9919 
9920 	/* Initialize mutex for exception event control */
9921 	mutex_init(&hba->ee_ctrl_mutex);
9922 
9923 	init_rwsem(&hba->clk_scaling_lock);
9924 
9925 	ufshcd_init_clk_gating(hba);
9926 
9927 	ufshcd_init_clk_scaling(hba);
9928 
9929 	/*
9930 	 * In order to avoid any spurious interrupt immediately after
9931 	 * registering UFS controller interrupt handler, clear any pending UFS
9932 	 * interrupt status and disable all the UFS interrupts.
9933 	 */
9934 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
9935 		      REG_INTERRUPT_STATUS);
9936 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
9937 	/*
9938 	 * Make sure that UFS interrupts are disabled and any pending interrupt
9939 	 * status is cleared before registering UFS interrupt handler.
9940 	 */
9941 	mb();
9942 
9943 	/* IRQ registration */
9944 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
9945 	if (err) {
9946 		dev_err(hba->dev, "request irq failed\n");
9947 		goto out_disable;
9948 	} else {
9949 		hba->is_irq_enabled = true;
9950 	}
9951 
9952 	err = scsi_add_host(host, hba->dev);
9953 	if (err) {
9954 		dev_err(hba->dev, "scsi_add_host failed\n");
9955 		goto out_disable;
9956 	}
9957 
9958 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
9959 		.nr_hw_queues	= 1,
9960 		.queue_depth	= hba->nutmrs,
9961 		.ops		= &ufshcd_tmf_ops,
9962 		.flags		= BLK_MQ_F_NO_SCHED,
9963 	};
9964 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
9965 	if (err < 0)
9966 		goto out_remove_scsi_host;
9967 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
9968 	if (IS_ERR(hba->tmf_queue)) {
9969 		err = PTR_ERR(hba->tmf_queue);
9970 		goto free_tmf_tag_set;
9971 	}
9972 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
9973 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
9974 	if (!hba->tmf_rqs) {
9975 		err = -ENOMEM;
9976 		goto free_tmf_queue;
9977 	}
9978 
9979 	/* Reset the attached device */
9980 	ufshcd_device_reset(hba);
9981 
9982 	ufshcd_init_crypto(hba);
9983 
9984 	/* Host controller enable */
9985 	err = ufshcd_hba_enable(hba);
9986 	if (err) {
9987 		dev_err(hba->dev, "Host controller enable failed\n");
9988 		ufshcd_print_evt_hist(hba);
9989 		ufshcd_print_host_state(hba);
9990 		goto free_tmf_queue;
9991 	}
9992 
9993 	/*
9994 	 * Set the default power management level for runtime and system PM.
9995 	 * Default power saving mode is to keep UFS link in Hibern8 state
9996 	 * and UFS device in sleep state.
9997 	 */
9998 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
9999 						UFS_SLEEP_PWR_MODE,
10000 						UIC_LINK_HIBERN8_STATE);
10001 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10002 						UFS_SLEEP_PWR_MODE,
10003 						UIC_LINK_HIBERN8_STATE);
10004 
10005 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
10006 			  ufshcd_rpm_dev_flush_recheck_work);
10007 
10008 	/* Set the default auto-hiberate idle timer value to 150 ms */
10009 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10010 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10011 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10012 	}
10013 
10014 	/* Hold auto suspend until async scan completes */
10015 	pm_runtime_get_sync(dev);
10016 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10017 	/*
10018 	 * We are assuming that device wasn't put in sleep/power-down
10019 	 * state exclusively during the boot stage before kernel.
10020 	 * This assumption helps avoid doing link startup twice during
10021 	 * ufshcd_probe_hba().
10022 	 */
10023 	ufshcd_set_ufs_dev_active(hba);
10024 
10025 	async_schedule(ufshcd_async_scan, hba);
10026 	ufs_sysfs_add_nodes(hba);
10027 
10028 	device_enable_async_suspend(dev);
10029 	return 0;
10030 
10031 free_tmf_queue:
10032 	blk_cleanup_queue(hba->tmf_queue);
10033 free_tmf_tag_set:
10034 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10035 out_remove_scsi_host:
10036 	scsi_remove_host(hba->host);
10037 out_disable:
10038 	hba->is_irq_enabled = false;
10039 	ufshcd_hba_exit(hba);
10040 out_error:
10041 	return err;
10042 }
10043 EXPORT_SYMBOL_GPL(ufshcd_init);
10044 
ufshcd_resume_complete(struct device * dev)10045 void ufshcd_resume_complete(struct device *dev)
10046 {
10047 	struct ufs_hba *hba = dev_get_drvdata(dev);
10048 
10049 	if (hba->complete_put) {
10050 		ufshcd_rpm_put(hba);
10051 		hba->complete_put = false;
10052 	}
10053 }
10054 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10055 
ufshcd_rpm_ok_for_spm(struct ufs_hba * hba)10056 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10057 {
10058 	struct device *dev = &hba->sdev_ufs_device->sdev_gendev;
10059 	enum ufs_dev_pwr_mode dev_pwr_mode;
10060 	enum uic_link_state link_state;
10061 	unsigned long flags;
10062 	bool res;
10063 
10064 	spin_lock_irqsave(&dev->power.lock, flags);
10065 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10066 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10067 	res = pm_runtime_suspended(dev) &&
10068 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10069 	      hba->uic_link_state == link_state &&
10070 	      !hba->dev_info.b_rpm_dev_flush_capable;
10071 	spin_unlock_irqrestore(&dev->power.lock, flags);
10072 
10073 	return res;
10074 }
10075 
__ufshcd_suspend_prepare(struct device * dev,bool rpm_ok_for_spm)10076 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10077 {
10078 	struct ufs_hba *hba = dev_get_drvdata(dev);
10079 	int ret;
10080 
10081 	/*
10082 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10083 	 * are same. And it doesn't wake up the device for system-suspend
10084 	 * if it's runtime suspended. But ufs doesn't follow that.
10085 	 * Refer ufshcd_resume_complete()
10086 	 */
10087 	if (hba->sdev_ufs_device) {
10088 		/* Prevent runtime suspend */
10089 		ufshcd_rpm_get_noresume(hba);
10090 		/*
10091 		 * Check if already runtime suspended in same state as system
10092 		 * suspend would be.
10093 		 */
10094 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10095 			/* RPM state is not ok for SPM, so runtime resume */
10096 			ret = ufshcd_rpm_resume(hba);
10097 			if (ret < 0 && ret != -EACCES) {
10098 				ufshcd_rpm_put(hba);
10099 				return ret;
10100 			}
10101 		}
10102 		hba->complete_put = true;
10103 	}
10104 	return 0;
10105 }
10106 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10107 
ufshcd_suspend_prepare(struct device * dev)10108 int ufshcd_suspend_prepare(struct device *dev)
10109 {
10110 	return __ufshcd_suspend_prepare(dev, true);
10111 }
10112 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10113 
10114 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_poweroff(struct device * dev)10115 static int ufshcd_wl_poweroff(struct device *dev)
10116 {
10117 	struct scsi_device *sdev = to_scsi_device(dev);
10118 	struct ufs_hba *hba = shost_priv(sdev->host);
10119 
10120 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10121 	return 0;
10122 }
10123 #endif
10124 
ufshcd_wl_probe(struct device * dev)10125 static int ufshcd_wl_probe(struct device *dev)
10126 {
10127 	struct scsi_device *sdev = to_scsi_device(dev);
10128 
10129 	if (!is_device_wlun(sdev))
10130 		return -ENODEV;
10131 
10132 	blk_pm_runtime_init(sdev->request_queue, dev);
10133 	pm_runtime_set_autosuspend_delay(dev, 0);
10134 	pm_runtime_allow(dev);
10135 
10136 	return  0;
10137 }
10138 
ufshcd_wl_remove(struct device * dev)10139 static int ufshcd_wl_remove(struct device *dev)
10140 {
10141 	pm_runtime_forbid(dev);
10142 	return 0;
10143 }
10144 
10145 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10146 #ifdef CONFIG_PM_SLEEP
10147 	.suspend = ufshcd_wl_suspend,
10148 	.resume = ufshcd_wl_resume,
10149 	.freeze = ufshcd_wl_suspend,
10150 	.thaw = ufshcd_wl_resume,
10151 	.poweroff = ufshcd_wl_poweroff,
10152 	.restore = ufshcd_wl_resume,
10153 #endif
10154 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10155 };
10156 
10157 /*
10158  * ufs_dev_wlun_template - describes ufs device wlun
10159  * ufs-device wlun - used to send pm commands
10160  * All luns are consumers of ufs-device wlun.
10161  *
10162  * Currently, no sd driver is present for wluns.
10163  * Hence the no specific pm operations are performed.
10164  * With ufs design, SSU should be sent to ufs-device wlun.
10165  * Hence register a scsi driver for ufs wluns only.
10166  */
10167 static struct scsi_driver ufs_dev_wlun_template = {
10168 	.gendrv = {
10169 		.name = "ufs_device_wlun",
10170 		.owner = THIS_MODULE,
10171 		.probe = ufshcd_wl_probe,
10172 		.remove = ufshcd_wl_remove,
10173 		.pm = &ufshcd_wl_pm_ops,
10174 		.shutdown = ufshcd_wl_shutdown,
10175 	},
10176 };
10177 
ufshcd_core_init(void)10178 static int __init ufshcd_core_init(void)
10179 {
10180 	int ret;
10181 
10182 	ufs_debugfs_init();
10183 
10184 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10185 	if (ret)
10186 		ufs_debugfs_exit();
10187 	return ret;
10188 }
10189 
ufshcd_core_exit(void)10190 static void __exit ufshcd_core_exit(void)
10191 {
10192 	ufs_debugfs_exit();
10193 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10194 }
10195 
10196 module_init(ufshcd_core_init);
10197 module_exit(ufshcd_core_exit);
10198 
10199 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10200 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10201 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10202 MODULE_SOFTDEP("pre: governor_simpleondemand");
10203 MODULE_LICENSE("GPL");
10204 MODULE_VERSION(UFSHCD_DRIVER_VERSION);
10205