1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * udc.c - Core UDC Framework
4 *
5 * Copyright (C) 2010 Texas Instruments
6 * Author: Felipe Balbi <balbi@ti.com>
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/device.h>
12 #include <linux/list.h>
13 #include <linux/err.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/workqueue.h>
17
18 #include <linux/usb/ch9.h>
19 #include <linux/usb/gadget.h>
20 #include <linux/usb.h>
21
22 #include "trace.h"
23
24 /**
25 * struct usb_udc - describes one usb device controller
26 * @driver: the gadget driver pointer. For use by the class code
27 * @dev: the child device to the actual controller
28 * @gadget: the gadget. For use by the class code
29 * @list: for use by the udc class driver
30 * @vbus: for udcs who care about vbus status, this value is real vbus status;
31 * for udcs who do not care about vbus status, this value is always true
32 * @started: the UDC's started state. True if the UDC had started.
33 *
34 * This represents the internal data structure which is used by the UDC-class
35 * to hold information about udc driver and gadget together.
36 */
37 struct usb_udc {
38 struct usb_gadget_driver *driver;
39 struct usb_gadget *gadget;
40 struct device dev;
41 struct list_head list;
42 bool vbus;
43 bool started;
44 };
45
46 static struct class *udc_class;
47 static LIST_HEAD(udc_list);
48 static LIST_HEAD(gadget_driver_pending_list);
49 static DEFINE_MUTEX(udc_lock);
50 /**
51 * protects udc->vbus, udc->started, gadget->connect, gadget->deactivate related
52 * functions. usb_gadget_connect_locked, usb_gadget_disconnect_locked,
53 * usb_udc_connect_control_locked, usb_gadget_udc_start_locked, usb_gadget_udc_stop_locked are
54 * called with this lock held.
55 */
56 static DEFINE_MUTEX(connect_lock);
57
58 static int udc_bind_to_driver(struct usb_udc *udc,
59 struct usb_gadget_driver *driver);
60
61 /* ------------------------------------------------------------------------- */
62
63 /**
64 * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
65 * @ep:the endpoint being configured
66 * @maxpacket_limit:value of maximum packet size limit
67 *
68 * This function should be used only in UDC drivers to initialize endpoint
69 * (usually in probe function).
70 */
usb_ep_set_maxpacket_limit(struct usb_ep * ep,unsigned maxpacket_limit)71 void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
72 unsigned maxpacket_limit)
73 {
74 ep->maxpacket_limit = maxpacket_limit;
75 ep->maxpacket = maxpacket_limit;
76
77 trace_usb_ep_set_maxpacket_limit(ep, 0);
78 }
79 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
80
81 /**
82 * usb_ep_enable - configure endpoint, making it usable
83 * @ep:the endpoint being configured. may not be the endpoint named "ep0".
84 * drivers discover endpoints through the ep_list of a usb_gadget.
85 *
86 * When configurations are set, or when interface settings change, the driver
87 * will enable or disable the relevant endpoints. while it is enabled, an
88 * endpoint may be used for i/o until the driver receives a disconnect() from
89 * the host or until the endpoint is disabled.
90 *
91 * the ep0 implementation (which calls this routine) must ensure that the
92 * hardware capabilities of each endpoint match the descriptor provided
93 * for it. for example, an endpoint named "ep2in-bulk" would be usable
94 * for interrupt transfers as well as bulk, but it likely couldn't be used
95 * for iso transfers or for endpoint 14. some endpoints are fully
96 * configurable, with more generic names like "ep-a". (remember that for
97 * USB, "in" means "towards the USB host".)
98 *
99 * This routine may be called in an atomic (interrupt) context.
100 *
101 * returns zero, or a negative error code.
102 */
usb_ep_enable(struct usb_ep * ep)103 int usb_ep_enable(struct usb_ep *ep)
104 {
105 int ret = 0;
106
107 if (ep->enabled)
108 goto out;
109
110 /* UDC drivers can't handle endpoints with maxpacket size 0 */
111 if (usb_endpoint_maxp(ep->desc) == 0) {
112 /*
113 * We should log an error message here, but we can't call
114 * dev_err() because there's no way to find the gadget
115 * given only ep.
116 */
117 ret = -EINVAL;
118 goto out;
119 }
120
121 ret = ep->ops->enable(ep, ep->desc);
122 if (ret)
123 goto out;
124
125 ep->enabled = true;
126
127 out:
128 trace_usb_ep_enable(ep, ret);
129
130 return ret;
131 }
132 EXPORT_SYMBOL_GPL(usb_ep_enable);
133
134 /**
135 * usb_ep_disable - endpoint is no longer usable
136 * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0".
137 *
138 * no other task may be using this endpoint when this is called.
139 * any pending and uncompleted requests will complete with status
140 * indicating disconnect (-ESHUTDOWN) before this call returns.
141 * gadget drivers must call usb_ep_enable() again before queueing
142 * requests to the endpoint.
143 *
144 * This routine may be called in an atomic (interrupt) context.
145 *
146 * returns zero, or a negative error code.
147 */
usb_ep_disable(struct usb_ep * ep)148 int usb_ep_disable(struct usb_ep *ep)
149 {
150 int ret = 0;
151
152 if (!ep->enabled)
153 goto out;
154
155 ret = ep->ops->disable(ep);
156 if (ret)
157 goto out;
158
159 ep->enabled = false;
160
161 out:
162 trace_usb_ep_disable(ep, ret);
163
164 return ret;
165 }
166 EXPORT_SYMBOL_GPL(usb_ep_disable);
167
168 /**
169 * usb_ep_alloc_request - allocate a request object to use with this endpoint
170 * @ep:the endpoint to be used with with the request
171 * @gfp_flags:GFP_* flags to use
172 *
173 * Request objects must be allocated with this call, since they normally
174 * need controller-specific setup and may even need endpoint-specific
175 * resources such as allocation of DMA descriptors.
176 * Requests may be submitted with usb_ep_queue(), and receive a single
177 * completion callback. Free requests with usb_ep_free_request(), when
178 * they are no longer needed.
179 *
180 * Returns the request, or null if one could not be allocated.
181 */
usb_ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)182 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
183 gfp_t gfp_flags)
184 {
185 struct usb_request *req = NULL;
186
187 req = ep->ops->alloc_request(ep, gfp_flags);
188
189 trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
190
191 return req;
192 }
193 EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
194
195 /**
196 * usb_ep_free_request - frees a request object
197 * @ep:the endpoint associated with the request
198 * @req:the request being freed
199 *
200 * Reverses the effect of usb_ep_alloc_request().
201 * Caller guarantees the request is not queued, and that it will
202 * no longer be requeued (or otherwise used).
203 */
usb_ep_free_request(struct usb_ep * ep,struct usb_request * req)204 void usb_ep_free_request(struct usb_ep *ep,
205 struct usb_request *req)
206 {
207 trace_usb_ep_free_request(ep, req, 0);
208 ep->ops->free_request(ep, req);
209 }
210 EXPORT_SYMBOL_GPL(usb_ep_free_request);
211
212 /**
213 * usb_ep_queue - queues (submits) an I/O request to an endpoint.
214 * @ep:the endpoint associated with the request
215 * @req:the request being submitted
216 * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
217 * pre-allocate all necessary memory with the request.
218 *
219 * This tells the device controller to perform the specified request through
220 * that endpoint (reading or writing a buffer). When the request completes,
221 * including being canceled by usb_ep_dequeue(), the request's completion
222 * routine is called to return the request to the driver. Any endpoint
223 * (except control endpoints like ep0) may have more than one transfer
224 * request queued; they complete in FIFO order. Once a gadget driver
225 * submits a request, that request may not be examined or modified until it
226 * is given back to that driver through the completion callback.
227 *
228 * Each request is turned into one or more packets. The controller driver
229 * never merges adjacent requests into the same packet. OUT transfers
230 * will sometimes use data that's already buffered in the hardware.
231 * Drivers can rely on the fact that the first byte of the request's buffer
232 * always corresponds to the first byte of some USB packet, for both
233 * IN and OUT transfers.
234 *
235 * Bulk endpoints can queue any amount of data; the transfer is packetized
236 * automatically. The last packet will be short if the request doesn't fill it
237 * out completely. Zero length packets (ZLPs) should be avoided in portable
238 * protocols since not all usb hardware can successfully handle zero length
239 * packets. (ZLPs may be explicitly written, and may be implicitly written if
240 * the request 'zero' flag is set.) Bulk endpoints may also be used
241 * for interrupt transfers; but the reverse is not true, and some endpoints
242 * won't support every interrupt transfer. (Such as 768 byte packets.)
243 *
244 * Interrupt-only endpoints are less functional than bulk endpoints, for
245 * example by not supporting queueing or not handling buffers that are
246 * larger than the endpoint's maxpacket size. They may also treat data
247 * toggle differently.
248 *
249 * Control endpoints ... after getting a setup() callback, the driver queues
250 * one response (even if it would be zero length). That enables the
251 * status ack, after transferring data as specified in the response. Setup
252 * functions may return negative error codes to generate protocol stalls.
253 * (Note that some USB device controllers disallow protocol stall responses
254 * in some cases.) When control responses are deferred (the response is
255 * written after the setup callback returns), then usb_ep_set_halt() may be
256 * used on ep0 to trigger protocol stalls. Depending on the controller,
257 * it may not be possible to trigger a status-stage protocol stall when the
258 * data stage is over, that is, from within the response's completion
259 * routine.
260 *
261 * For periodic endpoints, like interrupt or isochronous ones, the usb host
262 * arranges to poll once per interval, and the gadget driver usually will
263 * have queued some data to transfer at that time.
264 *
265 * Note that @req's ->complete() callback must never be called from
266 * within usb_ep_queue() as that can create deadlock situations.
267 *
268 * This routine may be called in interrupt context.
269 *
270 * Returns zero, or a negative error code. Endpoints that are not enabled
271 * report errors; errors will also be
272 * reported when the usb peripheral is disconnected.
273 *
274 * If and only if @req is successfully queued (the return value is zero),
275 * @req->complete() will be called exactly once, when the Gadget core and
276 * UDC are finished with the request. When the completion function is called,
277 * control of the request is returned to the device driver which submitted it.
278 * The completion handler may then immediately free or reuse @req.
279 */
usb_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)280 int usb_ep_queue(struct usb_ep *ep,
281 struct usb_request *req, gfp_t gfp_flags)
282 {
283 int ret = 0;
284
285 if (WARN_ON_ONCE(!ep->enabled && ep->address)) {
286 ret = -ESHUTDOWN;
287 goto out;
288 }
289
290 ret = ep->ops->queue(ep, req, gfp_flags);
291
292 out:
293 trace_usb_ep_queue(ep, req, ret);
294
295 return ret;
296 }
297 EXPORT_SYMBOL_GPL(usb_ep_queue);
298
299 /**
300 * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
301 * @ep:the endpoint associated with the request
302 * @req:the request being canceled
303 *
304 * If the request is still active on the endpoint, it is dequeued and
305 * eventually its completion routine is called (with status -ECONNRESET);
306 * else a negative error code is returned. This routine is asynchronous,
307 * that is, it may return before the completion routine runs.
308 *
309 * Note that some hardware can't clear out write fifos (to unlink the request
310 * at the head of the queue) except as part of disconnecting from usb. Such
311 * restrictions prevent drivers from supporting configuration changes,
312 * even to configuration zero (a "chapter 9" requirement).
313 *
314 * This routine may be called in interrupt context.
315 */
usb_ep_dequeue(struct usb_ep * ep,struct usb_request * req)316 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
317 {
318 int ret;
319
320 ret = ep->ops->dequeue(ep, req);
321 trace_usb_ep_dequeue(ep, req, ret);
322
323 return ret;
324 }
325 EXPORT_SYMBOL_GPL(usb_ep_dequeue);
326
327 /**
328 * usb_ep_set_halt - sets the endpoint halt feature.
329 * @ep: the non-isochronous endpoint being stalled
330 *
331 * Use this to stall an endpoint, perhaps as an error report.
332 * Except for control endpoints,
333 * the endpoint stays halted (will not stream any data) until the host
334 * clears this feature; drivers may need to empty the endpoint's request
335 * queue first, to make sure no inappropriate transfers happen.
336 *
337 * Note that while an endpoint CLEAR_FEATURE will be invisible to the
338 * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the
339 * current altsetting, see usb_ep_clear_halt(). When switching altsettings,
340 * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
341 *
342 * This routine may be called in interrupt context.
343 *
344 * Returns zero, or a negative error code. On success, this call sets
345 * underlying hardware state that blocks data transfers.
346 * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
347 * transfer requests are still queued, or if the controller hardware
348 * (usually a FIFO) still holds bytes that the host hasn't collected.
349 */
usb_ep_set_halt(struct usb_ep * ep)350 int usb_ep_set_halt(struct usb_ep *ep)
351 {
352 int ret;
353
354 ret = ep->ops->set_halt(ep, 1);
355 trace_usb_ep_set_halt(ep, ret);
356
357 return ret;
358 }
359 EXPORT_SYMBOL_GPL(usb_ep_set_halt);
360
361 /**
362 * usb_ep_clear_halt - clears endpoint halt, and resets toggle
363 * @ep:the bulk or interrupt endpoint being reset
364 *
365 * Use this when responding to the standard usb "set interface" request,
366 * for endpoints that aren't reconfigured, after clearing any other state
367 * in the endpoint's i/o queue.
368 *
369 * This routine may be called in interrupt context.
370 *
371 * Returns zero, or a negative error code. On success, this call clears
372 * the underlying hardware state reflecting endpoint halt and data toggle.
373 * Note that some hardware can't support this request (like pxa2xx_udc),
374 * and accordingly can't correctly implement interface altsettings.
375 */
usb_ep_clear_halt(struct usb_ep * ep)376 int usb_ep_clear_halt(struct usb_ep *ep)
377 {
378 int ret;
379
380 ret = ep->ops->set_halt(ep, 0);
381 trace_usb_ep_clear_halt(ep, ret);
382
383 return ret;
384 }
385 EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
386
387 /**
388 * usb_ep_set_wedge - sets the halt feature and ignores clear requests
389 * @ep: the endpoint being wedged
390 *
391 * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
392 * requests. If the gadget driver clears the halt status, it will
393 * automatically unwedge the endpoint.
394 *
395 * This routine may be called in interrupt context.
396 *
397 * Returns zero on success, else negative errno.
398 */
usb_ep_set_wedge(struct usb_ep * ep)399 int usb_ep_set_wedge(struct usb_ep *ep)
400 {
401 int ret;
402
403 if (ep->ops->set_wedge)
404 ret = ep->ops->set_wedge(ep);
405 else
406 ret = ep->ops->set_halt(ep, 1);
407
408 trace_usb_ep_set_wedge(ep, ret);
409
410 return ret;
411 }
412 EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
413
414 /**
415 * usb_ep_fifo_status - returns number of bytes in fifo, or error
416 * @ep: the endpoint whose fifo status is being checked.
417 *
418 * FIFO endpoints may have "unclaimed data" in them in certain cases,
419 * such as after aborted transfers. Hosts may not have collected all
420 * the IN data written by the gadget driver (and reported by a request
421 * completion). The gadget driver may not have collected all the data
422 * written OUT to it by the host. Drivers that need precise handling for
423 * fault reporting or recovery may need to use this call.
424 *
425 * This routine may be called in interrupt context.
426 *
427 * This returns the number of such bytes in the fifo, or a negative
428 * errno if the endpoint doesn't use a FIFO or doesn't support such
429 * precise handling.
430 */
usb_ep_fifo_status(struct usb_ep * ep)431 int usb_ep_fifo_status(struct usb_ep *ep)
432 {
433 int ret;
434
435 if (ep->ops->fifo_status)
436 ret = ep->ops->fifo_status(ep);
437 else
438 ret = -EOPNOTSUPP;
439
440 trace_usb_ep_fifo_status(ep, ret);
441
442 return ret;
443 }
444 EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
445
446 /**
447 * usb_ep_fifo_flush - flushes contents of a fifo
448 * @ep: the endpoint whose fifo is being flushed.
449 *
450 * This call may be used to flush the "unclaimed data" that may exist in
451 * an endpoint fifo after abnormal transaction terminations. The call
452 * must never be used except when endpoint is not being used for any
453 * protocol translation.
454 *
455 * This routine may be called in interrupt context.
456 */
usb_ep_fifo_flush(struct usb_ep * ep)457 void usb_ep_fifo_flush(struct usb_ep *ep)
458 {
459 if (ep->ops->fifo_flush)
460 ep->ops->fifo_flush(ep);
461
462 trace_usb_ep_fifo_flush(ep, 0);
463 }
464 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
465
466 /* ------------------------------------------------------------------------- */
467
468 /**
469 * usb_gadget_frame_number - returns the current frame number
470 * @gadget: controller that reports the frame number
471 *
472 * Returns the usb frame number, normally eleven bits from a SOF packet,
473 * or negative errno if this device doesn't support this capability.
474 */
usb_gadget_frame_number(struct usb_gadget * gadget)475 int usb_gadget_frame_number(struct usb_gadget *gadget)
476 {
477 int ret;
478
479 ret = gadget->ops->get_frame(gadget);
480
481 trace_usb_gadget_frame_number(gadget, ret);
482
483 return ret;
484 }
485 EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
486
487 /**
488 * usb_gadget_wakeup - tries to wake up the host connected to this gadget
489 * @gadget: controller used to wake up the host
490 *
491 * Returns zero on success, else negative error code if the hardware
492 * doesn't support such attempts, or its support has not been enabled
493 * by the usb host. Drivers must return device descriptors that report
494 * their ability to support this, or hosts won't enable it.
495 *
496 * This may also try to use SRP to wake the host and start enumeration,
497 * even if OTG isn't otherwise in use. OTG devices may also start
498 * remote wakeup even when hosts don't explicitly enable it.
499 */
usb_gadget_wakeup(struct usb_gadget * gadget)500 int usb_gadget_wakeup(struct usb_gadget *gadget)
501 {
502 int ret = 0;
503
504 if (!gadget->ops->wakeup) {
505 ret = -EOPNOTSUPP;
506 goto out;
507 }
508
509 ret = gadget->ops->wakeup(gadget);
510
511 out:
512 trace_usb_gadget_wakeup(gadget, ret);
513
514 return ret;
515 }
516 EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
517
518 /**
519 * usb_gadget_set_selfpowered - sets the device selfpowered feature.
520 * @gadget:the device being declared as self-powered
521 *
522 * this affects the device status reported by the hardware driver
523 * to reflect that it now has a local power supply.
524 *
525 * returns zero on success, else negative errno.
526 */
usb_gadget_set_selfpowered(struct usb_gadget * gadget)527 int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
528 {
529 int ret = 0;
530
531 if (!gadget->ops->set_selfpowered) {
532 ret = -EOPNOTSUPP;
533 goto out;
534 }
535
536 ret = gadget->ops->set_selfpowered(gadget, 1);
537
538 out:
539 trace_usb_gadget_set_selfpowered(gadget, ret);
540
541 return ret;
542 }
543 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
544
545 /**
546 * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
547 * @gadget:the device being declared as bus-powered
548 *
549 * this affects the device status reported by the hardware driver.
550 * some hardware may not support bus-powered operation, in which
551 * case this feature's value can never change.
552 *
553 * returns zero on success, else negative errno.
554 */
usb_gadget_clear_selfpowered(struct usb_gadget * gadget)555 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
556 {
557 int ret = 0;
558
559 if (!gadget->ops->set_selfpowered) {
560 ret = -EOPNOTSUPP;
561 goto out;
562 }
563
564 ret = gadget->ops->set_selfpowered(gadget, 0);
565
566 out:
567 trace_usb_gadget_clear_selfpowered(gadget, ret);
568
569 return ret;
570 }
571 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
572
573 /**
574 * usb_gadget_vbus_connect - Notify controller that VBUS is powered
575 * @gadget:The device which now has VBUS power.
576 * Context: can sleep
577 *
578 * This call is used by a driver for an external transceiver (or GPIO)
579 * that detects a VBUS power session starting. Common responses include
580 * resuming the controller, activating the D+ (or D-) pullup to let the
581 * host detect that a USB device is attached, and starting to draw power
582 * (8mA or possibly more, especially after SET_CONFIGURATION).
583 *
584 * Returns zero on success, else negative errno.
585 */
usb_gadget_vbus_connect(struct usb_gadget * gadget)586 int usb_gadget_vbus_connect(struct usb_gadget *gadget)
587 {
588 int ret = 0;
589
590 if (!gadget->ops->vbus_session) {
591 ret = -EOPNOTSUPP;
592 goto out;
593 }
594
595 ret = gadget->ops->vbus_session(gadget, 1);
596
597 out:
598 trace_usb_gadget_vbus_connect(gadget, ret);
599
600 return ret;
601 }
602 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
603
604 /**
605 * usb_gadget_vbus_draw - constrain controller's VBUS power usage
606 * @gadget:The device whose VBUS usage is being described
607 * @mA:How much current to draw, in milliAmperes. This should be twice
608 * the value listed in the configuration descriptor bMaxPower field.
609 *
610 * This call is used by gadget drivers during SET_CONFIGURATION calls,
611 * reporting how much power the device may consume. For example, this
612 * could affect how quickly batteries are recharged.
613 *
614 * Returns zero on success, else negative errno.
615 */
usb_gadget_vbus_draw(struct usb_gadget * gadget,unsigned mA)616 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
617 {
618 int ret = 0;
619
620 if (!gadget->ops->vbus_draw) {
621 ret = -EOPNOTSUPP;
622 goto out;
623 }
624
625 ret = gadget->ops->vbus_draw(gadget, mA);
626 if (!ret)
627 gadget->mA = mA;
628
629 out:
630 trace_usb_gadget_vbus_draw(gadget, ret);
631
632 return ret;
633 }
634 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
635
636 /**
637 * usb_gadget_vbus_disconnect - notify controller about VBUS session end
638 * @gadget:the device whose VBUS supply is being described
639 * Context: can sleep
640 *
641 * This call is used by a driver for an external transceiver (or GPIO)
642 * that detects a VBUS power session ending. Common responses include
643 * reversing everything done in usb_gadget_vbus_connect().
644 *
645 * Returns zero on success, else negative errno.
646 */
usb_gadget_vbus_disconnect(struct usb_gadget * gadget)647 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
648 {
649 int ret = 0;
650
651 if (!gadget->ops->vbus_session) {
652 ret = -EOPNOTSUPP;
653 goto out;
654 }
655
656 ret = gadget->ops->vbus_session(gadget, 0);
657
658 out:
659 trace_usb_gadget_vbus_disconnect(gadget, ret);
660
661 return ret;
662 }
663 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
664
665 /* Internal version of usb_gadget_connect needs to be called with connect_lock held. */
usb_gadget_connect_locked(struct usb_gadget * gadget)666 static int usb_gadget_connect_locked(struct usb_gadget *gadget)
667 __must_hold(&connect_lock)
668 {
669 int ret = 0;
670
671 if (!gadget->ops->pullup) {
672 ret = -EOPNOTSUPP;
673 goto out;
674 }
675
676 if (gadget->deactivated || !gadget->udc->started) {
677 /*
678 * If gadget is deactivated we only save new state.
679 * Gadget will be connected automatically after activation.
680 *
681 * udc first needs to be started before gadget can be pulled up.
682 */
683 gadget->connected = true;
684 goto out;
685 }
686
687 ret = gadget->ops->pullup(gadget, 1);
688 if (!ret)
689 gadget->connected = 1;
690
691 out:
692 trace_usb_gadget_connect(gadget, ret);
693
694 return ret;
695 }
696
697 /**
698 * usb_gadget_connect - software-controlled connect to USB host
699 * @gadget:the peripheral being connected
700 *
701 * Enables the D+ (or potentially D-) pullup. The host will start
702 * enumerating this gadget when the pullup is active and a VBUS session
703 * is active (the link is powered).
704 *
705 * Returns zero on success, else negative errno.
706 */
usb_gadget_connect(struct usb_gadget * gadget)707 int usb_gadget_connect(struct usb_gadget *gadget)
708 {
709 int ret;
710
711 mutex_lock(&connect_lock);
712 ret = usb_gadget_connect_locked(gadget);
713 mutex_unlock(&connect_lock);
714
715 return ret;
716 }
717 EXPORT_SYMBOL_GPL(usb_gadget_connect);
718
719 /* Internal version of usb_gadget_disconnect needs to be called with connect_lock held. */
usb_gadget_disconnect_locked(struct usb_gadget * gadget)720 static int usb_gadget_disconnect_locked(struct usb_gadget *gadget)
721 __must_hold(&connect_lock)
722 {
723 int ret = 0;
724
725 if (!gadget->ops->pullup) {
726 ret = -EOPNOTSUPP;
727 goto out;
728 }
729
730 if (!gadget->connected)
731 goto out;
732
733 if (gadget->deactivated || !gadget->udc->started) {
734 /*
735 * If gadget is deactivated we only save new state.
736 * Gadget will stay disconnected after activation.
737 *
738 * udc should have been started before gadget being pulled down.
739 */
740 gadget->connected = false;
741 goto out;
742 }
743
744 ret = gadget->ops->pullup(gadget, 0);
745 if (!ret)
746 gadget->connected = 0;
747
748 if (gadget->udc->driver)
749 gadget->udc->driver->disconnect(gadget);
750
751 out:
752 trace_usb_gadget_disconnect(gadget, ret);
753
754 return ret;
755 }
756
757 /**
758 * usb_gadget_disconnect - software-controlled disconnect from USB host
759 * @gadget:the peripheral being disconnected
760 *
761 * Disables the D+ (or potentially D-) pullup, which the host may see
762 * as a disconnect (when a VBUS session is active). Not all systems
763 * support software pullup controls.
764 *
765 * Following a successful disconnect, invoke the ->disconnect() callback
766 * for the current gadget driver so that UDC drivers don't need to.
767 *
768 * Returns zero on success, else negative errno.
769 */
usb_gadget_disconnect(struct usb_gadget * gadget)770 int usb_gadget_disconnect(struct usb_gadget *gadget)
771 {
772 int ret;
773
774 mutex_lock(&connect_lock);
775 ret = usb_gadget_disconnect_locked(gadget);
776 mutex_unlock(&connect_lock);
777
778 return ret;
779 }
780 EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
781
782 /**
783 * usb_gadget_deactivate - deactivate function which is not ready to work
784 * @gadget: the peripheral being deactivated
785 *
786 * This routine may be used during the gadget driver bind() call to prevent
787 * the peripheral from ever being visible to the USB host, unless later
788 * usb_gadget_activate() is called. For example, user mode components may
789 * need to be activated before the system can talk to hosts.
790 *
791 * This routine may sleep; it must not be called in interrupt context
792 * (such as from within a gadget driver's disconnect() callback).
793 *
794 * Returns zero on success, else negative errno.
795 */
usb_gadget_deactivate(struct usb_gadget * gadget)796 int usb_gadget_deactivate(struct usb_gadget *gadget)
797 {
798 int ret = 0;
799
800 if (gadget->deactivated)
801 goto out;
802
803 mutex_lock(&connect_lock);
804 if (gadget->connected) {
805 ret = usb_gadget_disconnect_locked(gadget);
806 if (ret)
807 goto unlock;
808
809 /*
810 * If gadget was being connected before deactivation, we want
811 * to reconnect it in usb_gadget_activate().
812 */
813 gadget->connected = true;
814 }
815 gadget->deactivated = true;
816
817 unlock:
818 mutex_unlock(&connect_lock);
819 out:
820 trace_usb_gadget_deactivate(gadget, ret);
821
822 return ret;
823 }
824 EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
825
826 /**
827 * usb_gadget_activate - activate function which is not ready to work
828 * @gadget: the peripheral being activated
829 *
830 * This routine activates gadget which was previously deactivated with
831 * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
832 *
833 * This routine may sleep; it must not be called in interrupt context.
834 *
835 * Returns zero on success, else negative errno.
836 */
usb_gadget_activate(struct usb_gadget * gadget)837 int usb_gadget_activate(struct usb_gadget *gadget)
838 {
839 int ret = 0;
840
841 if (!gadget->deactivated)
842 goto out;
843
844 mutex_lock(&connect_lock);
845 gadget->deactivated = false;
846
847 /*
848 * If gadget has been connected before deactivation, or became connected
849 * while it was being deactivated, we call usb_gadget_connect().
850 */
851 if (gadget->connected)
852 ret = usb_gadget_connect_locked(gadget);
853 mutex_unlock(&connect_lock);
854
855 out:
856 trace_usb_gadget_activate(gadget, ret);
857
858 return ret;
859 }
860 EXPORT_SYMBOL_GPL(usb_gadget_activate);
861
862 /* ------------------------------------------------------------------------- */
863
864 #ifdef CONFIG_HAS_DMA
865
usb_gadget_map_request_by_dev(struct device * dev,struct usb_request * req,int is_in)866 int usb_gadget_map_request_by_dev(struct device *dev,
867 struct usb_request *req, int is_in)
868 {
869 if (req->length == 0)
870 return 0;
871
872 if (req->num_sgs) {
873 int mapped;
874
875 mapped = dma_map_sg(dev, req->sg, req->num_sgs,
876 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
877 if (mapped == 0) {
878 dev_err(dev, "failed to map SGs\n");
879 return -EFAULT;
880 }
881
882 req->num_mapped_sgs = mapped;
883 } else {
884 if (is_vmalloc_addr(req->buf)) {
885 dev_err(dev, "buffer is not dma capable\n");
886 return -EFAULT;
887 } else if (object_is_on_stack(req->buf)) {
888 dev_err(dev, "buffer is on stack\n");
889 return -EFAULT;
890 }
891
892 req->dma = dma_map_single(dev, req->buf, req->length,
893 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
894
895 if (dma_mapping_error(dev, req->dma)) {
896 dev_err(dev, "failed to map buffer\n");
897 return -EFAULT;
898 }
899
900 req->dma_mapped = 1;
901 }
902
903 return 0;
904 }
905 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
906
usb_gadget_map_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)907 int usb_gadget_map_request(struct usb_gadget *gadget,
908 struct usb_request *req, int is_in)
909 {
910 return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
911 }
912 EXPORT_SYMBOL_GPL(usb_gadget_map_request);
913
usb_gadget_unmap_request_by_dev(struct device * dev,struct usb_request * req,int is_in)914 void usb_gadget_unmap_request_by_dev(struct device *dev,
915 struct usb_request *req, int is_in)
916 {
917 if (req->length == 0)
918 return;
919
920 if (req->num_mapped_sgs) {
921 dma_unmap_sg(dev, req->sg, req->num_sgs,
922 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
923
924 req->num_mapped_sgs = 0;
925 } else if (req->dma_mapped) {
926 dma_unmap_single(dev, req->dma, req->length,
927 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
928 req->dma_mapped = 0;
929 }
930 }
931 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
932
usb_gadget_unmap_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)933 void usb_gadget_unmap_request(struct usb_gadget *gadget,
934 struct usb_request *req, int is_in)
935 {
936 usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
937 }
938 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
939
940 #endif /* CONFIG_HAS_DMA */
941
942 /* ------------------------------------------------------------------------- */
943
944 /**
945 * usb_gadget_giveback_request - give the request back to the gadget layer
946 * @ep: the endpoint to be used with with the request
947 * @req: the request being given back
948 *
949 * Context: in_interrupt()
950 *
951 * This is called by device controller drivers in order to return the
952 * completed request back to the gadget layer.
953 */
usb_gadget_giveback_request(struct usb_ep * ep,struct usb_request * req)954 void usb_gadget_giveback_request(struct usb_ep *ep,
955 struct usb_request *req)
956 {
957 if (likely(req->status == 0))
958 usb_led_activity(USB_LED_EVENT_GADGET);
959
960 trace_usb_gadget_giveback_request(ep, req, 0);
961
962 req->complete(ep, req);
963 }
964 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
965
966 /* ------------------------------------------------------------------------- */
967
968 /**
969 * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
970 * in second parameter or NULL if searched endpoint not found
971 * @g: controller to check for quirk
972 * @name: name of searched endpoint
973 */
gadget_find_ep_by_name(struct usb_gadget * g,const char * name)974 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
975 {
976 struct usb_ep *ep;
977
978 gadget_for_each_ep(ep, g) {
979 if (!strcmp(ep->name, name))
980 return ep;
981 }
982
983 return NULL;
984 }
985 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
986
987 /* ------------------------------------------------------------------------- */
988
usb_gadget_ep_match_desc(struct usb_gadget * gadget,struct usb_ep * ep,struct usb_endpoint_descriptor * desc,struct usb_ss_ep_comp_descriptor * ep_comp)989 int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
990 struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
991 struct usb_ss_ep_comp_descriptor *ep_comp)
992 {
993 u8 type;
994 u16 max;
995 int num_req_streams = 0;
996
997 /* endpoint already claimed? */
998 if (ep->claimed)
999 return 0;
1000
1001 type = usb_endpoint_type(desc);
1002 max = usb_endpoint_maxp(desc);
1003
1004 if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
1005 return 0;
1006 if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
1007 return 0;
1008
1009 if (max > ep->maxpacket_limit)
1010 return 0;
1011
1012 /* "high bandwidth" works only at high speed */
1013 if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1)
1014 return 0;
1015
1016 switch (type) {
1017 case USB_ENDPOINT_XFER_CONTROL:
1018 /* only support ep0 for portable CONTROL traffic */
1019 return 0;
1020 case USB_ENDPOINT_XFER_ISOC:
1021 if (!ep->caps.type_iso)
1022 return 0;
1023 /* ISO: limit 1023 bytes full speed, 1024 high/super speed */
1024 if (!gadget_is_dualspeed(gadget) && max > 1023)
1025 return 0;
1026 break;
1027 case USB_ENDPOINT_XFER_BULK:
1028 if (!ep->caps.type_bulk)
1029 return 0;
1030 if (ep_comp && gadget_is_superspeed(gadget)) {
1031 /* Get the number of required streams from the
1032 * EP companion descriptor and see if the EP
1033 * matches it
1034 */
1035 num_req_streams = ep_comp->bmAttributes & 0x1f;
1036 if (num_req_streams > ep->max_streams)
1037 return 0;
1038 }
1039 break;
1040 case USB_ENDPOINT_XFER_INT:
1041 /* Bulk endpoints handle interrupt transfers,
1042 * except the toggle-quirky iso-synch kind
1043 */
1044 if (!ep->caps.type_int && !ep->caps.type_bulk)
1045 return 0;
1046 /* INT: limit 64 bytes full speed, 1024 high/super speed */
1047 if (!gadget_is_dualspeed(gadget) && max > 64)
1048 return 0;
1049 break;
1050 }
1051
1052 return 1;
1053 }
1054 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
1055
1056 /**
1057 * usb_gadget_check_config - checks if the UDC can support the binded
1058 * configuration
1059 * @gadget: controller to check the USB configuration
1060 *
1061 * Ensure that a UDC is able to support the requested resources by a
1062 * configuration, and that there are no resource limitations, such as
1063 * internal memory allocated to all requested endpoints.
1064 *
1065 * Returns zero on success, else a negative errno.
1066 */
usb_gadget_check_config(struct usb_gadget * gadget)1067 int usb_gadget_check_config(struct usb_gadget *gadget)
1068 {
1069 if (gadget->ops->check_config)
1070 return gadget->ops->check_config(gadget);
1071 return 0;
1072 }
1073 EXPORT_SYMBOL_GPL(usb_gadget_check_config);
1074
1075 /* ------------------------------------------------------------------------- */
1076
usb_gadget_state_work(struct work_struct * work)1077 static void usb_gadget_state_work(struct work_struct *work)
1078 {
1079 struct usb_gadget *gadget = work_to_gadget(work);
1080 struct usb_udc *udc = gadget->udc;
1081
1082 if (udc)
1083 sysfs_notify(&udc->dev.kobj, NULL, "state");
1084 }
1085
usb_gadget_set_state(struct usb_gadget * gadget,enum usb_device_state state)1086 void usb_gadget_set_state(struct usb_gadget *gadget,
1087 enum usb_device_state state)
1088 {
1089 gadget->state = state;
1090 schedule_work(&gadget->work);
1091 }
1092 EXPORT_SYMBOL_GPL(usb_gadget_set_state);
1093
1094 /* ------------------------------------------------------------------------- */
1095
1096 /* Acquire connect_lock before calling this function. */
usb_udc_connect_control_locked(struct usb_udc * udc)1097 static void usb_udc_connect_control_locked(struct usb_udc *udc) __must_hold(&connect_lock)
1098 {
1099 if (udc->vbus && udc->started)
1100 usb_gadget_connect_locked(udc->gadget);
1101 else
1102 usb_gadget_disconnect_locked(udc->gadget);
1103 }
1104
1105 /**
1106 * usb_udc_vbus_handler - updates the udc core vbus status, and try to
1107 * connect or disconnect gadget
1108 * @gadget: The gadget which vbus change occurs
1109 * @status: The vbus status
1110 *
1111 * The udc driver calls it when it wants to connect or disconnect gadget
1112 * according to vbus status.
1113 */
usb_udc_vbus_handler(struct usb_gadget * gadget,bool status)1114 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
1115 {
1116 struct usb_udc *udc = gadget->udc;
1117
1118 mutex_lock(&connect_lock);
1119 if (udc) {
1120 udc->vbus = status;
1121 usb_udc_connect_control_locked(udc);
1122 }
1123 mutex_unlock(&connect_lock);
1124 }
1125 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
1126
1127 /**
1128 * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1129 * @gadget: The gadget which bus reset occurs
1130 * @driver: The gadget driver we want to notify
1131 *
1132 * If the udc driver has bus reset handler, it needs to call this when the bus
1133 * reset occurs, it notifies the gadget driver that the bus reset occurs as
1134 * well as updates gadget state.
1135 */
usb_gadget_udc_reset(struct usb_gadget * gadget,struct usb_gadget_driver * driver)1136 void usb_gadget_udc_reset(struct usb_gadget *gadget,
1137 struct usb_gadget_driver *driver)
1138 {
1139 driver->reset(gadget);
1140 usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
1141 }
1142 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
1143
1144 /**
1145 * usb_gadget_udc_start_locked - tells usb device controller to start up
1146 * @udc: The UDC to be started
1147 *
1148 * This call is issued by the UDC Class driver when it's about
1149 * to register a gadget driver to the device controller, before
1150 * calling gadget driver's bind() method.
1151 *
1152 * It allows the controller to be powered off until strictly
1153 * necessary to have it powered on.
1154 *
1155 * Returns zero on success, else negative errno.
1156 *
1157 * Caller should acquire connect_lock before invoking this function.
1158 */
usb_gadget_udc_start_locked(struct usb_udc * udc)1159 static inline int usb_gadget_udc_start_locked(struct usb_udc *udc)
1160 __must_hold(&connect_lock)
1161 {
1162 int ret;
1163
1164 if (udc->started) {
1165 dev_err(&udc->dev, "UDC had already started\n");
1166 return -EBUSY;
1167 }
1168
1169 ret = udc->gadget->ops->udc_start(udc->gadget, udc->driver);
1170 if (!ret)
1171 udc->started = true;
1172
1173 return ret;
1174 }
1175
1176 /**
1177 * usb_gadget_udc_stop_locked - tells usb device controller we don't need it anymore
1178 * @udc: The UDC to be stopped
1179 *
1180 * This call is issued by the UDC Class driver after calling
1181 * gadget driver's unbind() method.
1182 *
1183 * The details are implementation specific, but it can go as
1184 * far as powering off UDC completely and disable its data
1185 * line pullups.
1186 *
1187 * Caller should acquire connect lock before invoking this function.
1188 */
usb_gadget_udc_stop_locked(struct usb_udc * udc)1189 static inline void usb_gadget_udc_stop_locked(struct usb_udc *udc)
1190 __must_hold(&connect_lock)
1191 {
1192 if (!udc->started) {
1193 dev_err(&udc->dev, "UDC had already stopped\n");
1194 return;
1195 }
1196
1197 udc->gadget->ops->udc_stop(udc->gadget);
1198 udc->started = false;
1199 }
1200
1201 /**
1202 * usb_gadget_udc_set_speed - tells usb device controller speed supported by
1203 * current driver
1204 * @udc: The device we want to set maximum speed
1205 * @speed: The maximum speed to allowed to run
1206 *
1207 * This call is issued by the UDC Class driver before calling
1208 * usb_gadget_udc_start() in order to make sure that we don't try to
1209 * connect on speeds the gadget driver doesn't support.
1210 */
usb_gadget_udc_set_speed(struct usb_udc * udc,enum usb_device_speed speed)1211 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc,
1212 enum usb_device_speed speed)
1213 {
1214 struct usb_gadget *gadget = udc->gadget;
1215 enum usb_device_speed s;
1216
1217 if (speed == USB_SPEED_UNKNOWN)
1218 s = gadget->max_speed;
1219 else
1220 s = min(speed, gadget->max_speed);
1221
1222 if (s == USB_SPEED_SUPER_PLUS && gadget->ops->udc_set_ssp_rate)
1223 gadget->ops->udc_set_ssp_rate(gadget, gadget->max_ssp_rate);
1224 else if (gadget->ops->udc_set_speed)
1225 gadget->ops->udc_set_speed(gadget, s);
1226 }
1227
1228 /**
1229 * usb_gadget_enable_async_callbacks - tell usb device controller to enable asynchronous callbacks
1230 * @udc: The UDC which should enable async callbacks
1231 *
1232 * This routine is used when binding gadget drivers. It undoes the effect
1233 * of usb_gadget_disable_async_callbacks(); the UDC driver should enable IRQs
1234 * (if necessary) and resume issuing callbacks.
1235 *
1236 * This routine will always be called in process context.
1237 */
usb_gadget_enable_async_callbacks(struct usb_udc * udc)1238 static inline void usb_gadget_enable_async_callbacks(struct usb_udc *udc)
1239 {
1240 struct usb_gadget *gadget = udc->gadget;
1241
1242 if (gadget->ops->udc_async_callbacks)
1243 gadget->ops->udc_async_callbacks(gadget, true);
1244 }
1245
1246 /**
1247 * usb_gadget_disable_async_callbacks - tell usb device controller to disable asynchronous callbacks
1248 * @udc: The UDC which should disable async callbacks
1249 *
1250 * This routine is used when unbinding gadget drivers. It prevents a race:
1251 * The UDC driver doesn't know when the gadget driver's ->unbind callback
1252 * runs, so unless it is told to disable asynchronous callbacks, it might
1253 * issue a callback (such as ->disconnect) after the unbind has completed.
1254 *
1255 * After this function runs, the UDC driver must suppress all ->suspend,
1256 * ->resume, ->disconnect, ->reset, and ->setup callbacks to the gadget driver
1257 * until async callbacks are again enabled. A simple-minded but effective
1258 * way to accomplish this is to tell the UDC hardware not to generate any
1259 * more IRQs.
1260 *
1261 * Request completion callbacks must still be issued. However, it's okay
1262 * to defer them until the request is cancelled, since the pull-up will be
1263 * turned off during the time period when async callbacks are disabled.
1264 *
1265 * This routine will always be called in process context.
1266 */
usb_gadget_disable_async_callbacks(struct usb_udc * udc)1267 static inline void usb_gadget_disable_async_callbacks(struct usb_udc *udc)
1268 {
1269 struct usb_gadget *gadget = udc->gadget;
1270
1271 if (gadget->ops->udc_async_callbacks)
1272 gadget->ops->udc_async_callbacks(gadget, false);
1273 }
1274
1275 /**
1276 * usb_udc_release - release the usb_udc struct
1277 * @dev: the dev member within usb_udc
1278 *
1279 * This is called by driver's core in order to free memory once the last
1280 * reference is released.
1281 */
usb_udc_release(struct device * dev)1282 static void usb_udc_release(struct device *dev)
1283 {
1284 struct usb_udc *udc;
1285
1286 udc = container_of(dev, struct usb_udc, dev);
1287 dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
1288 kfree(udc);
1289 }
1290
1291 static const struct attribute_group *usb_udc_attr_groups[];
1292
usb_udc_nop_release(struct device * dev)1293 static void usb_udc_nop_release(struct device *dev)
1294 {
1295 dev_vdbg(dev, "%s\n", __func__);
1296 }
1297
1298 /* should be called with udc_lock held */
check_pending_gadget_drivers(struct usb_udc * udc)1299 static int check_pending_gadget_drivers(struct usb_udc *udc)
1300 {
1301 struct usb_gadget_driver *driver;
1302 int ret = 0;
1303
1304 list_for_each_entry(driver, &gadget_driver_pending_list, pending)
1305 if (!driver->udc_name || strcmp(driver->udc_name,
1306 dev_name(&udc->dev)) == 0) {
1307 ret = udc_bind_to_driver(udc, driver);
1308 if (ret != -EPROBE_DEFER)
1309 list_del_init(&driver->pending);
1310 break;
1311 }
1312
1313 return ret;
1314 }
1315
1316 /**
1317 * usb_initialize_gadget - initialize a gadget and its embedded struct device
1318 * @parent: the parent device to this udc. Usually the controller driver's
1319 * device.
1320 * @gadget: the gadget to be initialized.
1321 * @release: a gadget release function.
1322 *
1323 * Returns zero on success, negative errno otherwise.
1324 * Calls the gadget release function in the latter case.
1325 */
usb_initialize_gadget(struct device * parent,struct usb_gadget * gadget,void (* release)(struct device * dev))1326 void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget,
1327 void (*release)(struct device *dev))
1328 {
1329 dev_set_name(&gadget->dev, "gadget");
1330 INIT_WORK(&gadget->work, usb_gadget_state_work);
1331 gadget->dev.parent = parent;
1332
1333 if (release)
1334 gadget->dev.release = release;
1335 else
1336 gadget->dev.release = usb_udc_nop_release;
1337
1338 device_initialize(&gadget->dev);
1339 }
1340 EXPORT_SYMBOL_GPL(usb_initialize_gadget);
1341
1342 /**
1343 * usb_add_gadget - adds a new gadget to the udc class driver list
1344 * @gadget: the gadget to be added to the list.
1345 *
1346 * Returns zero on success, negative errno otherwise.
1347 * Does not do a final usb_put_gadget() if an error occurs.
1348 */
usb_add_gadget(struct usb_gadget * gadget)1349 int usb_add_gadget(struct usb_gadget *gadget)
1350 {
1351 struct usb_udc *udc;
1352 int ret = -ENOMEM;
1353
1354 udc = kzalloc(sizeof(*udc), GFP_KERNEL);
1355 if (!udc)
1356 goto error;
1357
1358 device_initialize(&udc->dev);
1359 udc->dev.release = usb_udc_release;
1360 udc->dev.class = udc_class;
1361 udc->dev.groups = usb_udc_attr_groups;
1362 udc->dev.parent = gadget->dev.parent;
1363 ret = dev_set_name(&udc->dev, "%s",
1364 kobject_name(&gadget->dev.parent->kobj));
1365 if (ret)
1366 goto err_put_udc;
1367
1368 ret = device_add(&gadget->dev);
1369 if (ret)
1370 goto err_put_udc;
1371
1372 udc->gadget = gadget;
1373 gadget->udc = udc;
1374
1375 udc->started = false;
1376
1377 mutex_lock(&udc_lock);
1378 list_add_tail(&udc->list, &udc_list);
1379
1380 ret = device_add(&udc->dev);
1381 if (ret)
1382 goto err_unlist_udc;
1383
1384 usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
1385 udc->vbus = true;
1386
1387 /* pick up one of pending gadget drivers */
1388 ret = check_pending_gadget_drivers(udc);
1389 if (ret)
1390 goto err_del_udc;
1391
1392 mutex_unlock(&udc_lock);
1393
1394 return 0;
1395
1396 err_del_udc:
1397 flush_work(&gadget->work);
1398 device_del(&udc->dev);
1399
1400 err_unlist_udc:
1401 list_del(&udc->list);
1402 mutex_unlock(&udc_lock);
1403
1404 device_del(&gadget->dev);
1405
1406 err_put_udc:
1407 put_device(&udc->dev);
1408
1409 error:
1410 return ret;
1411 }
1412 EXPORT_SYMBOL_GPL(usb_add_gadget);
1413
1414 /**
1415 * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1416 * @parent: the parent device to this udc. Usually the controller driver's
1417 * device.
1418 * @gadget: the gadget to be added to the list.
1419 * @release: a gadget release function.
1420 *
1421 * Returns zero on success, negative errno otherwise.
1422 * Calls the gadget release function in the latter case.
1423 */
usb_add_gadget_udc_release(struct device * parent,struct usb_gadget * gadget,void (* release)(struct device * dev))1424 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
1425 void (*release)(struct device *dev))
1426 {
1427 int ret;
1428
1429 usb_initialize_gadget(parent, gadget, release);
1430 ret = usb_add_gadget(gadget);
1431 if (ret)
1432 usb_put_gadget(gadget);
1433 return ret;
1434 }
1435 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
1436
1437 /**
1438 * usb_get_gadget_udc_name - get the name of the first UDC controller
1439 * This functions returns the name of the first UDC controller in the system.
1440 * Please note that this interface is usefull only for legacy drivers which
1441 * assume that there is only one UDC controller in the system and they need to
1442 * get its name before initialization. There is no guarantee that the UDC
1443 * of the returned name will be still available, when gadget driver registers
1444 * itself.
1445 *
1446 * Returns pointer to string with UDC controller name on success, NULL
1447 * otherwise. Caller should kfree() returned string.
1448 */
usb_get_gadget_udc_name(void)1449 char *usb_get_gadget_udc_name(void)
1450 {
1451 struct usb_udc *udc;
1452 char *name = NULL;
1453
1454 /* For now we take the first available UDC */
1455 mutex_lock(&udc_lock);
1456 list_for_each_entry(udc, &udc_list, list) {
1457 if (!udc->driver) {
1458 name = kstrdup(udc->gadget->name, GFP_KERNEL);
1459 break;
1460 }
1461 }
1462 mutex_unlock(&udc_lock);
1463 return name;
1464 }
1465 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
1466
1467 /**
1468 * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1469 * @parent: the parent device to this udc. Usually the controller
1470 * driver's device.
1471 * @gadget: the gadget to be added to the list
1472 *
1473 * Returns zero on success, negative errno otherwise.
1474 */
usb_add_gadget_udc(struct device * parent,struct usb_gadget * gadget)1475 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
1476 {
1477 return usb_add_gadget_udc_release(parent, gadget, NULL);
1478 }
1479 EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
1480
usb_gadget_remove_driver(struct usb_udc * udc)1481 static void usb_gadget_remove_driver(struct usb_udc *udc)
1482 {
1483 dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n",
1484 udc->driver->function);
1485
1486 mutex_lock(&connect_lock);
1487 usb_gadget_disconnect_locked(udc->gadget);
1488 usb_gadget_disable_async_callbacks(udc);
1489 if (udc->gadget->irq)
1490 synchronize_irq(udc->gadget->irq);
1491 mutex_unlock(&connect_lock);
1492
1493 udc->driver->unbind(udc->gadget);
1494
1495 mutex_lock(&connect_lock);
1496 usb_gadget_udc_stop_locked(udc);
1497 mutex_unlock(&connect_lock);
1498
1499 udc->driver = NULL;
1500 udc->gadget->dev.driver = NULL;
1501
1502 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1503 }
1504
1505 /**
1506 * usb_del_gadget - deletes @udc from udc_list
1507 * @gadget: the gadget to be removed.
1508 *
1509 * This will call usb_gadget_unregister_driver() if
1510 * the @udc is still busy.
1511 * It will not do a final usb_put_gadget().
1512 */
usb_del_gadget(struct usb_gadget * gadget)1513 void usb_del_gadget(struct usb_gadget *gadget)
1514 {
1515 struct usb_udc *udc = gadget->udc;
1516
1517 if (!udc)
1518 return;
1519
1520 dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
1521
1522 mutex_lock(&udc_lock);
1523 list_del(&udc->list);
1524
1525 if (udc->driver) {
1526 struct usb_gadget_driver *driver = udc->driver;
1527
1528 usb_gadget_remove_driver(udc);
1529 list_add(&driver->pending, &gadget_driver_pending_list);
1530 }
1531 mutex_unlock(&udc_lock);
1532
1533 kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
1534 flush_work(&gadget->work);
1535 device_unregister(&udc->dev);
1536 device_del(&gadget->dev);
1537 }
1538 EXPORT_SYMBOL_GPL(usb_del_gadget);
1539
1540 /**
1541 * usb_del_gadget_udc - deletes @udc from udc_list
1542 * @gadget: the gadget to be removed.
1543 *
1544 * Calls usb_del_gadget() and does a final usb_put_gadget().
1545 */
usb_del_gadget_udc(struct usb_gadget * gadget)1546 void usb_del_gadget_udc(struct usb_gadget *gadget)
1547 {
1548 usb_del_gadget(gadget);
1549 usb_put_gadget(gadget);
1550 }
1551 EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
1552
1553 /* ------------------------------------------------------------------------- */
1554
udc_bind_to_driver(struct usb_udc * udc,struct usb_gadget_driver * driver)1555 static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver)
1556 {
1557 int ret;
1558
1559 dev_dbg(&udc->dev, "registering UDC driver [%s]\n",
1560 driver->function);
1561
1562 udc->driver = driver;
1563 udc->gadget->dev.driver = &driver->driver;
1564
1565 usb_gadget_udc_set_speed(udc, driver->max_speed);
1566
1567 ret = driver->bind(udc->gadget, driver);
1568 if (ret)
1569 goto err1;
1570 mutex_lock(&connect_lock);
1571 ret = usb_gadget_udc_start_locked(udc);
1572 if (ret) {
1573 mutex_unlock(&connect_lock);
1574 driver->unbind(udc->gadget);
1575 goto err1;
1576 }
1577 usb_gadget_enable_async_callbacks(udc);
1578 usb_udc_connect_control_locked(udc);
1579 mutex_unlock(&connect_lock);
1580
1581 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1582 return 0;
1583 err1:
1584 if (ret != -EISNAM)
1585 dev_err(&udc->dev, "failed to start %s: %d\n",
1586 udc->driver->function, ret);
1587 udc->driver = NULL;
1588 udc->gadget->dev.driver = NULL;
1589 return ret;
1590 }
1591
usb_gadget_probe_driver(struct usb_gadget_driver * driver)1592 int usb_gadget_probe_driver(struct usb_gadget_driver *driver)
1593 {
1594 struct usb_udc *udc = NULL;
1595 int ret = -ENODEV;
1596
1597 if (!driver || !driver->bind || !driver->setup)
1598 return -EINVAL;
1599
1600 mutex_lock(&udc_lock);
1601 if (driver->udc_name) {
1602 list_for_each_entry(udc, &udc_list, list) {
1603 ret = strcmp(driver->udc_name, dev_name(&udc->dev));
1604 if (!ret)
1605 break;
1606 }
1607 if (ret)
1608 ret = -ENODEV;
1609 else if (udc->driver)
1610 ret = -EBUSY;
1611 else
1612 goto found;
1613 } else {
1614 list_for_each_entry(udc, &udc_list, list) {
1615 /* For now we take the first one */
1616 if (!udc->driver)
1617 goto found;
1618 }
1619 }
1620
1621 if (!driver->match_existing_only) {
1622 list_add_tail(&driver->pending, &gadget_driver_pending_list);
1623 pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n",
1624 driver->function);
1625 ret = 0;
1626 }
1627
1628 mutex_unlock(&udc_lock);
1629 if (ret)
1630 pr_warn("udc-core: couldn't find an available UDC or it's busy\n");
1631 return ret;
1632 found:
1633 ret = udc_bind_to_driver(udc, driver);
1634 mutex_unlock(&udc_lock);
1635 return ret;
1636 }
1637 EXPORT_SYMBOL_GPL(usb_gadget_probe_driver);
1638
usb_gadget_unregister_driver(struct usb_gadget_driver * driver)1639 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1640 {
1641 struct usb_udc *udc = NULL;
1642 int ret = -ENODEV;
1643
1644 if (!driver || !driver->unbind)
1645 return -EINVAL;
1646
1647 mutex_lock(&udc_lock);
1648 list_for_each_entry(udc, &udc_list, list) {
1649 if (udc->driver == driver) {
1650 usb_gadget_remove_driver(udc);
1651 usb_gadget_set_state(udc->gadget,
1652 USB_STATE_NOTATTACHED);
1653
1654 /* Maybe there is someone waiting for this UDC? */
1655 check_pending_gadget_drivers(udc);
1656 /*
1657 * For now we ignore bind errors as probably it's
1658 * not a valid reason to fail other's gadget unbind
1659 */
1660 ret = 0;
1661 break;
1662 }
1663 }
1664
1665 if (ret) {
1666 list_del(&driver->pending);
1667 ret = 0;
1668 }
1669 mutex_unlock(&udc_lock);
1670 return ret;
1671 }
1672 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
1673
1674 /* ------------------------------------------------------------------------- */
1675
srp_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t n)1676 static ssize_t srp_store(struct device *dev,
1677 struct device_attribute *attr, const char *buf, size_t n)
1678 {
1679 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1680
1681 if (sysfs_streq(buf, "1"))
1682 usb_gadget_wakeup(udc->gadget);
1683
1684 return n;
1685 }
1686 static DEVICE_ATTR_WO(srp);
1687
soft_connect_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t n)1688 static ssize_t soft_connect_store(struct device *dev,
1689 struct device_attribute *attr, const char *buf, size_t n)
1690 {
1691 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1692 ssize_t ret;
1693
1694 mutex_lock(&udc_lock);
1695 if (!udc->driver) {
1696 dev_err(dev, "soft-connect without a gadget driver\n");
1697 ret = -EOPNOTSUPP;
1698 goto out;
1699 }
1700
1701 if (sysfs_streq(buf, "connect")) {
1702 mutex_lock(&connect_lock);
1703 usb_gadget_udc_start_locked(udc);
1704 usb_gadget_connect_locked(udc->gadget);
1705 mutex_unlock(&connect_lock);
1706 } else if (sysfs_streq(buf, "disconnect")) {
1707 mutex_lock(&connect_lock);
1708 usb_gadget_disconnect_locked(udc->gadget);
1709 usb_gadget_udc_stop_locked(udc);
1710 mutex_unlock(&connect_lock);
1711 } else {
1712 dev_err(dev, "unsupported command '%s'\n", buf);
1713 ret = -EINVAL;
1714 goto out;
1715 }
1716
1717 ret = n;
1718 out:
1719 mutex_unlock(&udc_lock);
1720 return ret;
1721 }
1722 static DEVICE_ATTR_WO(soft_connect);
1723
state_show(struct device * dev,struct device_attribute * attr,char * buf)1724 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
1725 char *buf)
1726 {
1727 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1728 struct usb_gadget *gadget = udc->gadget;
1729
1730 return sprintf(buf, "%s\n", usb_state_string(gadget->state));
1731 }
1732 static DEVICE_ATTR_RO(state);
1733
function_show(struct device * dev,struct device_attribute * attr,char * buf)1734 static ssize_t function_show(struct device *dev, struct device_attribute *attr,
1735 char *buf)
1736 {
1737 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1738 struct usb_gadget_driver *drv = udc->driver;
1739
1740 if (!drv || !drv->function)
1741 return 0;
1742 return scnprintf(buf, PAGE_SIZE, "%s\n", drv->function);
1743 }
1744 static DEVICE_ATTR_RO(function);
1745
1746 #define USB_UDC_SPEED_ATTR(name, param) \
1747 ssize_t name##_show(struct device *dev, \
1748 struct device_attribute *attr, char *buf) \
1749 { \
1750 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \
1751 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1752 usb_speed_string(udc->gadget->param)); \
1753 } \
1754 static DEVICE_ATTR_RO(name)
1755
1756 static USB_UDC_SPEED_ATTR(current_speed, speed);
1757 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
1758
1759 #define USB_UDC_ATTR(name) \
1760 ssize_t name##_show(struct device *dev, \
1761 struct device_attribute *attr, char *buf) \
1762 { \
1763 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \
1764 struct usb_gadget *gadget = udc->gadget; \
1765 \
1766 return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \
1767 } \
1768 static DEVICE_ATTR_RO(name)
1769
1770 static USB_UDC_ATTR(is_otg);
1771 static USB_UDC_ATTR(is_a_peripheral);
1772 static USB_UDC_ATTR(b_hnp_enable);
1773 static USB_UDC_ATTR(a_hnp_support);
1774 static USB_UDC_ATTR(a_alt_hnp_support);
1775 static USB_UDC_ATTR(is_selfpowered);
1776
1777 static struct attribute *usb_udc_attrs[] = {
1778 &dev_attr_srp.attr,
1779 &dev_attr_soft_connect.attr,
1780 &dev_attr_state.attr,
1781 &dev_attr_function.attr,
1782 &dev_attr_current_speed.attr,
1783 &dev_attr_maximum_speed.attr,
1784
1785 &dev_attr_is_otg.attr,
1786 &dev_attr_is_a_peripheral.attr,
1787 &dev_attr_b_hnp_enable.attr,
1788 &dev_attr_a_hnp_support.attr,
1789 &dev_attr_a_alt_hnp_support.attr,
1790 &dev_attr_is_selfpowered.attr,
1791 NULL,
1792 };
1793
1794 static const struct attribute_group usb_udc_attr_group = {
1795 .attrs = usb_udc_attrs,
1796 };
1797
1798 static const struct attribute_group *usb_udc_attr_groups[] = {
1799 &usb_udc_attr_group,
1800 NULL,
1801 };
1802
usb_udc_uevent(struct device * dev,struct kobj_uevent_env * env)1803 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env)
1804 {
1805 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1806 int ret;
1807
1808 ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
1809 if (ret) {
1810 dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
1811 return ret;
1812 }
1813
1814 if (udc->driver) {
1815 ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
1816 udc->driver->function);
1817 if (ret) {
1818 dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
1819 return ret;
1820 }
1821 }
1822
1823 return 0;
1824 }
1825
usb_udc_init(void)1826 static int __init usb_udc_init(void)
1827 {
1828 udc_class = class_create(THIS_MODULE, "udc");
1829 if (IS_ERR(udc_class)) {
1830 pr_err("failed to create udc class --> %ld\n",
1831 PTR_ERR(udc_class));
1832 return PTR_ERR(udc_class);
1833 }
1834
1835 udc_class->dev_uevent = usb_udc_uevent;
1836 return 0;
1837 }
1838 subsys_initcall(usb_udc_init);
1839
usb_udc_exit(void)1840 static void __exit usb_udc_exit(void)
1841 {
1842 class_destroy(udc_class);
1843 }
1844 module_exit(usb_udc_exit);
1845
1846 MODULE_DESCRIPTION("UDC Framework");
1847 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1848 MODULE_LICENSE("GPL v2");
1849