1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 Broadcom
4 */
5
6 /**
7 * DOC: VC4 CRTC module
8 *
9 * In VC4, the Pixel Valve is what most closely corresponds to the
10 * DRM's concept of a CRTC. The PV generates video timings from the
11 * encoder's clock plus its configuration. It pulls scaled pixels from
12 * the HVS at that timing, and feeds it to the encoder.
13 *
14 * However, the DRM CRTC also collects the configuration of all the
15 * DRM planes attached to it. As a result, the CRTC is also
16 * responsible for writing the display list for the HVS channel that
17 * the CRTC will use.
18 *
19 * The 2835 has 3 different pixel valves. pv0 in the audio power
20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
21 * image domain can feed either HDMI or the SDTV controller. The
22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23 * SDTV, etc.) according to which output type is chosen in the mux.
24 *
25 * For power management, the pixel valve's registers are all clocked
26 * by the AXI clock, while the timings and FIFOs make use of the
27 * output-specific clock. Since the encoders also directly consume
28 * the CPRMAN clocks, and know what timings they need, they are the
29 * ones that set the clock.
30 */
31
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35
36 #include <drm/drm_atomic.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_atomic_uapi.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <drm/drm_print.h>
41 #include <drm/drm_probe_helper.h>
42 #include <drm/drm_vblank.h>
43
44 #include "vc4_drv.h"
45 #include "vc4_regs.h"
46
47 #define HVS_FIFO_LATENCY_PIX 6
48
49 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
50 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
51
52 static const struct debugfs_reg32 crtc_regs[] = {
53 VC4_REG32(PV_CONTROL),
54 VC4_REG32(PV_V_CONTROL),
55 VC4_REG32(PV_VSYNCD_EVEN),
56 VC4_REG32(PV_HORZA),
57 VC4_REG32(PV_HORZB),
58 VC4_REG32(PV_VERTA),
59 VC4_REG32(PV_VERTB),
60 VC4_REG32(PV_VERTA_EVEN),
61 VC4_REG32(PV_VERTB_EVEN),
62 VC4_REG32(PV_INTEN),
63 VC4_REG32(PV_INTSTAT),
64 VC4_REG32(PV_STAT),
65 VC4_REG32(PV_HACT_ACT),
66 };
67
68 static unsigned int
vc4_crtc_get_cob_allocation(struct vc4_dev * vc4,unsigned int channel)69 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
70 {
71 u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
72 /* Top/base are supposed to be 4-pixel aligned, but the
73 * Raspberry Pi firmware fills the low bits (which are
74 * presumably ignored).
75 */
76 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
77 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
78
79 return top - base + 4;
80 }
81
vc4_crtc_get_scanout_position(struct drm_crtc * crtc,bool in_vblank_irq,int * vpos,int * hpos,ktime_t * stime,ktime_t * etime,const struct drm_display_mode * mode)82 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
83 bool in_vblank_irq,
84 int *vpos, int *hpos,
85 ktime_t *stime, ktime_t *etime,
86 const struct drm_display_mode *mode)
87 {
88 struct drm_device *dev = crtc->dev;
89 struct vc4_dev *vc4 = to_vc4_dev(dev);
90 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
91 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
92 unsigned int cob_size;
93 u32 val;
94 int fifo_lines;
95 int vblank_lines;
96 bool ret = false;
97
98 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
99
100 /* Get optional system timestamp before query. */
101 if (stime)
102 *stime = ktime_get();
103
104 /*
105 * Read vertical scanline which is currently composed for our
106 * pixelvalve by the HVS, and also the scaler status.
107 */
108 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
109
110 /* Get optional system timestamp after query. */
111 if (etime)
112 *etime = ktime_get();
113
114 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
115
116 /* Vertical position of hvs composed scanline. */
117 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
118 *hpos = 0;
119
120 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
121 *vpos /= 2;
122
123 /* Use hpos to correct for field offset in interlaced mode. */
124 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
125 *hpos += mode->crtc_htotal / 2;
126 }
127
128 cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
129 /* This is the offset we need for translating hvs -> pv scanout pos. */
130 fifo_lines = cob_size / mode->crtc_hdisplay;
131
132 if (fifo_lines > 0)
133 ret = true;
134
135 /* HVS more than fifo_lines into frame for compositing? */
136 if (*vpos > fifo_lines) {
137 /*
138 * We are in active scanout and can get some meaningful results
139 * from HVS. The actual PV scanout can not trail behind more
140 * than fifo_lines as that is the fifo's capacity. Assume that
141 * in active scanout the HVS and PV work in lockstep wrt. HVS
142 * refilling the fifo and PV consuming from the fifo, ie.
143 * whenever the PV consumes and frees up a scanline in the
144 * fifo, the HVS will immediately refill it, therefore
145 * incrementing vpos. Therefore we choose HVS read position -
146 * fifo size in scanlines as a estimate of the real scanout
147 * position of the PV.
148 */
149 *vpos -= fifo_lines + 1;
150
151 return ret;
152 }
153
154 /*
155 * Less: This happens when we are in vblank and the HVS, after getting
156 * the VSTART restart signal from the PV, just started refilling its
157 * fifo with new lines from the top-most lines of the new framebuffers.
158 * The PV does not scan out in vblank, so does not remove lines from
159 * the fifo, so the fifo will be full quickly and the HVS has to pause.
160 * We can't get meaningful readings wrt. scanline position of the PV
161 * and need to make things up in a approximative but consistent way.
162 */
163 vblank_lines = mode->vtotal - mode->vdisplay;
164
165 if (in_vblank_irq) {
166 /*
167 * Assume the irq handler got called close to first
168 * line of vblank, so PV has about a full vblank
169 * scanlines to go, and as a base timestamp use the
170 * one taken at entry into vblank irq handler, so it
171 * is not affected by random delays due to lock
172 * contention on event_lock or vblank_time lock in
173 * the core.
174 */
175 *vpos = -vblank_lines;
176
177 if (stime)
178 *stime = vc4_crtc->t_vblank;
179 if (etime)
180 *etime = vc4_crtc->t_vblank;
181
182 /*
183 * If the HVS fifo is not yet full then we know for certain
184 * we are at the very beginning of vblank, as the hvs just
185 * started refilling, and the stime and etime timestamps
186 * truly correspond to start of vblank.
187 *
188 * Unfortunately there's no way to report this to upper levels
189 * and make it more useful.
190 */
191 } else {
192 /*
193 * No clue where we are inside vblank. Return a vpos of zero,
194 * which will cause calling code to just return the etime
195 * timestamp uncorrected. At least this is no worse than the
196 * standard fallback.
197 */
198 *vpos = 0;
199 }
200
201 return ret;
202 }
203
vc4_crtc_destroy(struct drm_crtc * crtc)204 void vc4_crtc_destroy(struct drm_crtc *crtc)
205 {
206 drm_crtc_cleanup(crtc);
207 }
208
vc4_get_fifo_full_level(struct vc4_crtc * vc4_crtc,u32 format)209 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
210 {
211 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
212 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
213 struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
214 u32 fifo_len_bytes = pv_data->fifo_depth;
215
216 /*
217 * Pixels are pulled from the HVS if the number of bytes is
218 * lower than the FIFO full level.
219 *
220 * The latency of the pixel fetch mechanism is 6 pixels, so we
221 * need to convert those 6 pixels in bytes, depending on the
222 * format, and then subtract that from the length of the FIFO
223 * to make sure we never end up in a situation where the FIFO
224 * is full.
225 */
226 switch (format) {
227 case PV_CONTROL_FORMAT_DSIV_16:
228 case PV_CONTROL_FORMAT_DSIC_16:
229 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
230 case PV_CONTROL_FORMAT_DSIV_18:
231 return fifo_len_bytes - 14;
232 case PV_CONTROL_FORMAT_24:
233 case PV_CONTROL_FORMAT_DSIV_24:
234 default:
235 /*
236 * For some reason, the pixelvalve4 doesn't work with
237 * the usual formula and will only work with 32.
238 */
239 if (crtc_data->hvs_output == 5)
240 return 32;
241
242 /*
243 * It looks like in some situations, we will overflow
244 * the PixelValve FIFO (with the bit 10 of PV stat being
245 * set) and stall the HVS / PV, eventually resulting in
246 * a page flip timeout.
247 *
248 * Displaying the video overlay during a playback with
249 * Kodi on an RPi3 seems to be a great solution with a
250 * failure rate around 50%.
251 *
252 * Removing 1 from the FIFO full level however
253 * seems to completely remove that issue.
254 */
255 if (!vc4->hvs->hvs5)
256 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
257
258 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
259 }
260 }
261
vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc * vc4_crtc,u32 format)262 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
263 u32 format)
264 {
265 u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
266 u32 ret = 0;
267
268 ret |= VC4_SET_FIELD((level >> 6),
269 PV5_CONTROL_FIFO_LEVEL_HIGH);
270
271 return ret | VC4_SET_FIELD(level & 0x3f,
272 PV_CONTROL_FIFO_LEVEL);
273 }
274
275 /*
276 * Returns the encoder attached to the CRTC.
277 *
278 * VC4 can only scan out to one encoder at a time, while the DRM core
279 * allows drivers to push pixels to more than one encoder from the
280 * same CRTC.
281 */
vc4_get_crtc_encoder(struct drm_crtc * crtc)282 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
283 {
284 struct drm_connector *connector;
285 struct drm_connector_list_iter conn_iter;
286
287 drm_connector_list_iter_begin(crtc->dev, &conn_iter);
288 drm_for_each_connector_iter(connector, &conn_iter) {
289 if (connector->state->crtc == crtc) {
290 drm_connector_list_iter_end(&conn_iter);
291 return connector->encoder;
292 }
293 }
294 drm_connector_list_iter_end(&conn_iter);
295
296 return NULL;
297 }
298
vc4_crtc_pixelvalve_reset(struct drm_crtc * crtc)299 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
300 {
301 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
302
303 /* The PV needs to be disabled before it can be flushed */
304 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
305 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
306 }
307
vc4_crtc_config_pv(struct drm_crtc * crtc)308 static void vc4_crtc_config_pv(struct drm_crtc *crtc)
309 {
310 struct drm_device *dev = crtc->dev;
311 struct vc4_dev *vc4 = to_vc4_dev(dev);
312 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
313 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
314 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
315 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
316 struct drm_crtc_state *state = crtc->state;
317 struct drm_display_mode *mode = &state->adjusted_mode;
318 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
319 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
320 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
321 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
322 bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
323 u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
324 u8 ppc = pv_data->pixels_per_clock;
325 bool debug_dump_regs = false;
326
327 if (debug_dump_regs) {
328 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
329 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
330 drm_crtc_index(crtc));
331 drm_print_regset32(&p, &vc4_crtc->regset);
332 }
333
334 vc4_crtc_pixelvalve_reset(crtc);
335
336 CRTC_WRITE(PV_HORZA,
337 VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
338 PV_HORZA_HBP) |
339 VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
340 PV_HORZA_HSYNC));
341
342 CRTC_WRITE(PV_HORZB,
343 VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
344 PV_HORZB_HFP) |
345 VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
346 PV_HORZB_HACTIVE));
347
348 CRTC_WRITE(PV_VERTA,
349 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end +
350 interlace,
351 PV_VERTA_VBP) |
352 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
353 PV_VERTA_VSYNC));
354 CRTC_WRITE(PV_VERTB,
355 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
356 PV_VERTB_VFP) |
357 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
358
359 if (interlace) {
360 CRTC_WRITE(PV_VERTA_EVEN,
361 VC4_SET_FIELD(mode->crtc_vtotal -
362 mode->crtc_vsync_end,
363 PV_VERTA_VBP) |
364 VC4_SET_FIELD(mode->crtc_vsync_end -
365 mode->crtc_vsync_start,
366 PV_VERTA_VSYNC));
367 CRTC_WRITE(PV_VERTB_EVEN,
368 VC4_SET_FIELD(mode->crtc_vsync_start -
369 mode->crtc_vdisplay,
370 PV_VERTB_VFP) |
371 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
372
373 /* We set up first field even mode for HDMI. VEC's
374 * NTSC mode would want first field odd instead, once
375 * we support it (to do so, set ODD_FIRST and put the
376 * delay in VSYNCD_EVEN instead).
377 */
378 CRTC_WRITE(PV_V_CONTROL,
379 PV_VCONTROL_CONTINUOUS |
380 (is_dsi ? PV_VCONTROL_DSI : 0) |
381 PV_VCONTROL_INTERLACE |
382 VC4_SET_FIELD(mode->htotal * pixel_rep / (2 * ppc),
383 PV_VCONTROL_ODD_DELAY));
384 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
385 } else {
386 CRTC_WRITE(PV_V_CONTROL,
387 PV_VCONTROL_CONTINUOUS |
388 (is_dsi ? PV_VCONTROL_DSI : 0));
389 }
390
391 if (is_dsi)
392 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
393
394 if (vc4->hvs->hvs5)
395 CRTC_WRITE(PV_MUX_CFG,
396 VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
397 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
398
399 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
400 vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
401 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
402 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
403 PV_CONTROL_CLR_AT_START |
404 PV_CONTROL_TRIGGER_UNDERFLOW |
405 PV_CONTROL_WAIT_HSTART |
406 VC4_SET_FIELD(vc4_encoder->clock_select,
407 PV_CONTROL_CLK_SELECT));
408
409 if (debug_dump_regs) {
410 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
411 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
412 drm_crtc_index(crtc));
413 drm_print_regset32(&p, &vc4_crtc->regset);
414 }
415 }
416
require_hvs_enabled(struct drm_device * dev)417 static void require_hvs_enabled(struct drm_device *dev)
418 {
419 struct vc4_dev *vc4 = to_vc4_dev(dev);
420
421 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
422 SCALER_DISPCTRL_ENABLE);
423 }
424
vc4_crtc_disable(struct drm_crtc * crtc,unsigned int channel)425 static int vc4_crtc_disable(struct drm_crtc *crtc, unsigned int channel)
426 {
427 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
428 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
429 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
430 struct drm_device *dev = crtc->dev;
431 int ret;
432
433 CRTC_WRITE(PV_V_CONTROL,
434 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
435 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
436 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
437
438 /*
439 * This delay is needed to avoid to get a pixel stuck in an
440 * unflushable FIFO between the pixelvalve and the HDMI
441 * controllers on the BCM2711.
442 *
443 * Timing is fairly sensitive here, so mdelay is the safest
444 * approach.
445 *
446 * If it was to be reworked, the stuck pixel happens on a
447 * BCM2711 when changing mode with a good probability, so a
448 * script that changes mode on a regular basis should trigger
449 * the bug after less than 10 attempts. It manifests itself with
450 * every pixels being shifted by one to the right, and thus the
451 * last pixel of a line actually being displayed as the first
452 * pixel on the next line.
453 */
454 mdelay(20);
455
456 if (vc4_encoder && vc4_encoder->post_crtc_disable)
457 vc4_encoder->post_crtc_disable(encoder);
458
459 vc4_crtc_pixelvalve_reset(crtc);
460 vc4_hvs_stop_channel(dev, channel);
461
462 if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
463 vc4_encoder->post_crtc_powerdown(encoder);
464
465 return 0;
466 }
467
vc4_crtc_disable_at_boot(struct drm_crtc * crtc)468 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
469 {
470 struct drm_device *drm = crtc->dev;
471 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
472 int channel;
473
474 if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
475 "brcm,bcm2711-pixelvalve2") ||
476 of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
477 "brcm,bcm2711-pixelvalve4")))
478 return 0;
479
480 if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
481 return 0;
482
483 if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
484 return 0;
485
486 channel = vc4_hvs_get_fifo_from_output(drm, vc4_crtc->data->hvs_output);
487 if (channel < 0)
488 return 0;
489
490 return vc4_crtc_disable(crtc, channel);
491 }
492
vc4_crtc_atomic_disable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)493 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
494 struct drm_crtc_state *old_state)
495 {
496 struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
497 struct drm_device *dev = crtc->dev;
498
499 require_hvs_enabled(dev);
500
501 /* Disable vblank irq handling before crtc is disabled. */
502 drm_crtc_vblank_off(crtc);
503
504 vc4_crtc_disable(crtc, old_vc4_state->assigned_channel);
505
506 /*
507 * Make sure we issue a vblank event after disabling the CRTC if
508 * someone was waiting it.
509 */
510 if (crtc->state->event) {
511 unsigned long flags;
512
513 spin_lock_irqsave(&dev->event_lock, flags);
514 drm_crtc_send_vblank_event(crtc, crtc->state->event);
515 crtc->state->event = NULL;
516 spin_unlock_irqrestore(&dev->event_lock, flags);
517 }
518 }
519
vc4_crtc_atomic_enable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)520 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
521 struct drm_crtc_state *old_state)
522 {
523 struct drm_device *dev = crtc->dev;
524 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
525 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
526 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
527
528 require_hvs_enabled(dev);
529
530 /* Enable vblank irq handling before crtc is started otherwise
531 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
532 */
533 drm_crtc_vblank_on(crtc);
534
535 vc4_hvs_atomic_enable(crtc, old_state);
536
537 if (vc4_encoder->pre_crtc_configure)
538 vc4_encoder->pre_crtc_configure(encoder);
539
540 vc4_crtc_config_pv(crtc);
541
542 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
543
544 if (vc4_encoder->pre_crtc_enable)
545 vc4_encoder->pre_crtc_enable(encoder);
546
547 /* When feeding the transposer block the pixelvalve is unneeded and
548 * should not be enabled.
549 */
550 CRTC_WRITE(PV_V_CONTROL,
551 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
552
553 if (vc4_encoder->post_crtc_enable)
554 vc4_encoder->post_crtc_enable(encoder);
555 }
556
vc4_crtc_mode_valid(struct drm_crtc * crtc,const struct drm_display_mode * mode)557 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
558 const struct drm_display_mode *mode)
559 {
560 /* Do not allow doublescan modes from user space */
561 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
562 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
563 crtc->base.id);
564 return MODE_NO_DBLESCAN;
565 }
566
567 return MODE_OK;
568 }
569
vc4_crtc_get_margins(struct drm_crtc_state * state,unsigned int * left,unsigned int * right,unsigned int * top,unsigned int * bottom)570 void vc4_crtc_get_margins(struct drm_crtc_state *state,
571 unsigned int *left, unsigned int *right,
572 unsigned int *top, unsigned int *bottom)
573 {
574 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
575 struct drm_connector_state *conn_state;
576 struct drm_connector *conn;
577 int i;
578
579 *left = vc4_state->margins.left;
580 *right = vc4_state->margins.right;
581 *top = vc4_state->margins.top;
582 *bottom = vc4_state->margins.bottom;
583
584 /* We have to interate over all new connector states because
585 * vc4_crtc_get_margins() might be called before
586 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
587 * might be outdated.
588 */
589 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
590 if (conn_state->crtc != state->crtc)
591 continue;
592
593 *left = conn_state->tv.margins.left;
594 *right = conn_state->tv.margins.right;
595 *top = conn_state->tv.margins.top;
596 *bottom = conn_state->tv.margins.bottom;
597 break;
598 }
599 }
600
vc4_crtc_atomic_check(struct drm_crtc * crtc,struct drm_crtc_state * state)601 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
602 struct drm_crtc_state *state)
603 {
604 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
605 struct drm_connector *conn;
606 struct drm_connector_state *conn_state;
607 int ret, i;
608
609 ret = vc4_hvs_atomic_check(crtc, state);
610 if (ret)
611 return ret;
612
613 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
614 if (conn_state->crtc != crtc)
615 continue;
616
617 vc4_state->margins.left = conn_state->tv.margins.left;
618 vc4_state->margins.right = conn_state->tv.margins.right;
619 vc4_state->margins.top = conn_state->tv.margins.top;
620 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
621 break;
622 }
623
624 return 0;
625 }
626
vc4_enable_vblank(struct drm_crtc * crtc)627 static int vc4_enable_vblank(struct drm_crtc *crtc)
628 {
629 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
630
631 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
632
633 return 0;
634 }
635
vc4_disable_vblank(struct drm_crtc * crtc)636 static void vc4_disable_vblank(struct drm_crtc *crtc)
637 {
638 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
639
640 CRTC_WRITE(PV_INTEN, 0);
641 }
642
vc4_crtc_handle_page_flip(struct vc4_crtc * vc4_crtc)643 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
644 {
645 struct drm_crtc *crtc = &vc4_crtc->base;
646 struct drm_device *dev = crtc->dev;
647 struct vc4_dev *vc4 = to_vc4_dev(dev);
648 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
649 u32 chan = vc4_state->assigned_channel;
650 unsigned long flags;
651
652 spin_lock_irqsave(&dev->event_lock, flags);
653 if (vc4_crtc->event &&
654 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
655 vc4_state->feed_txp)) {
656 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
657 vc4_crtc->event = NULL;
658 drm_crtc_vblank_put(crtc);
659
660 /* Wait for the page flip to unmask the underrun to ensure that
661 * the display list was updated by the hardware. Before that
662 * happens, the HVS will be using the previous display list with
663 * the CRTC and encoder already reconfigured, leading to
664 * underruns. This can be seen when reconfiguring the CRTC.
665 */
666 vc4_hvs_unmask_underrun(dev, chan);
667 }
668 spin_unlock_irqrestore(&dev->event_lock, flags);
669 }
670
vc4_crtc_handle_vblank(struct vc4_crtc * crtc)671 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
672 {
673 crtc->t_vblank = ktime_get();
674 drm_crtc_handle_vblank(&crtc->base);
675 vc4_crtc_handle_page_flip(crtc);
676 }
677
vc4_crtc_irq_handler(int irq,void * data)678 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
679 {
680 struct vc4_crtc *vc4_crtc = data;
681 u32 stat = CRTC_READ(PV_INTSTAT);
682 irqreturn_t ret = IRQ_NONE;
683
684 if (stat & PV_INT_VFP_START) {
685 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
686 vc4_crtc_handle_vblank(vc4_crtc);
687 ret = IRQ_HANDLED;
688 }
689
690 return ret;
691 }
692
693 struct vc4_async_flip_state {
694 struct drm_crtc *crtc;
695 struct drm_framebuffer *fb;
696 struct drm_framebuffer *old_fb;
697 struct drm_pending_vblank_event *event;
698
699 struct vc4_seqno_cb cb;
700 };
701
702 /* Called when the V3D execution for the BO being flipped to is done, so that
703 * we can actually update the plane's address to point to it.
704 */
705 static void
vc4_async_page_flip_complete(struct vc4_seqno_cb * cb)706 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
707 {
708 struct vc4_async_flip_state *flip_state =
709 container_of(cb, struct vc4_async_flip_state, cb);
710 struct drm_crtc *crtc = flip_state->crtc;
711 struct drm_device *dev = crtc->dev;
712 struct vc4_dev *vc4 = to_vc4_dev(dev);
713 struct drm_plane *plane = crtc->primary;
714
715 vc4_plane_async_set_fb(plane, flip_state->fb);
716 if (flip_state->event) {
717 unsigned long flags;
718
719 spin_lock_irqsave(&dev->event_lock, flags);
720 drm_crtc_send_vblank_event(crtc, flip_state->event);
721 spin_unlock_irqrestore(&dev->event_lock, flags);
722 }
723
724 drm_crtc_vblank_put(crtc);
725 drm_framebuffer_put(flip_state->fb);
726
727 /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
728 * when the planes are updated through the async update path.
729 * FIXME: we should move to generic async-page-flip when it's
730 * available, so that we can get rid of this hand-made cleanup_fb()
731 * logic.
732 */
733 if (flip_state->old_fb) {
734 struct drm_gem_cma_object *cma_bo;
735 struct vc4_bo *bo;
736
737 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
738 bo = to_vc4_bo(&cma_bo->base);
739 vc4_bo_dec_usecnt(bo);
740 drm_framebuffer_put(flip_state->old_fb);
741 }
742
743 kfree(flip_state);
744
745 up(&vc4->async_modeset);
746 }
747
748 /* Implements async (non-vblank-synced) page flips.
749 *
750 * The page flip ioctl needs to return immediately, so we grab the
751 * modeset semaphore on the pipe, and queue the address update for
752 * when V3D is done with the BO being flipped to.
753 */
vc4_async_page_flip(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event,uint32_t flags)754 static int vc4_async_page_flip(struct drm_crtc *crtc,
755 struct drm_framebuffer *fb,
756 struct drm_pending_vblank_event *event,
757 uint32_t flags)
758 {
759 struct drm_device *dev = crtc->dev;
760 struct vc4_dev *vc4 = to_vc4_dev(dev);
761 struct drm_plane *plane = crtc->primary;
762 int ret = 0;
763 struct vc4_async_flip_state *flip_state;
764 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
765 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
766
767 /* Increment the BO usecnt here, so that we never end up with an
768 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
769 * plane is later updated through the non-async path.
770 * FIXME: we should move to generic async-page-flip when it's
771 * available, so that we can get rid of this hand-made prepare_fb()
772 * logic.
773 */
774 ret = vc4_bo_inc_usecnt(bo);
775 if (ret)
776 return ret;
777
778 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
779 if (!flip_state) {
780 vc4_bo_dec_usecnt(bo);
781 return -ENOMEM;
782 }
783
784 drm_framebuffer_get(fb);
785 flip_state->fb = fb;
786 flip_state->crtc = crtc;
787 flip_state->event = event;
788
789 /* Make sure all other async modesetes have landed. */
790 ret = down_interruptible(&vc4->async_modeset);
791 if (ret) {
792 drm_framebuffer_put(fb);
793 vc4_bo_dec_usecnt(bo);
794 kfree(flip_state);
795 return ret;
796 }
797
798 /* Save the current FB before it's replaced by the new one in
799 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
800 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
801 * it consistent.
802 * FIXME: we should move to generic async-page-flip when it's
803 * available, so that we can get rid of this hand-made cleanup_fb()
804 * logic.
805 */
806 flip_state->old_fb = plane->state->fb;
807 if (flip_state->old_fb)
808 drm_framebuffer_get(flip_state->old_fb);
809
810 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
811
812 /* Immediately update the plane's legacy fb pointer, so that later
813 * modeset prep sees the state that will be present when the semaphore
814 * is released.
815 */
816 drm_atomic_set_fb_for_plane(plane->state, fb);
817
818 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
819 vc4_async_page_flip_complete);
820
821 /* Driver takes ownership of state on successful async commit. */
822 return 0;
823 }
824
vc4_page_flip(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event,uint32_t flags,struct drm_modeset_acquire_ctx * ctx)825 int vc4_page_flip(struct drm_crtc *crtc,
826 struct drm_framebuffer *fb,
827 struct drm_pending_vblank_event *event,
828 uint32_t flags,
829 struct drm_modeset_acquire_ctx *ctx)
830 {
831 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
832 return vc4_async_page_flip(crtc, fb, event, flags);
833 else
834 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
835 }
836
vc4_crtc_duplicate_state(struct drm_crtc * crtc)837 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
838 {
839 struct vc4_crtc_state *vc4_state, *old_vc4_state;
840
841 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
842 if (!vc4_state)
843 return NULL;
844
845 old_vc4_state = to_vc4_crtc_state(crtc->state);
846 vc4_state->feed_txp = old_vc4_state->feed_txp;
847 vc4_state->margins = old_vc4_state->margins;
848 vc4_state->assigned_channel = old_vc4_state->assigned_channel;
849
850 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
851 return &vc4_state->base;
852 }
853
vc4_crtc_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)854 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
855 struct drm_crtc_state *state)
856 {
857 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
858 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
859
860 if (drm_mm_node_allocated(&vc4_state->mm)) {
861 unsigned long flags;
862
863 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
864 drm_mm_remove_node(&vc4_state->mm);
865 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
866
867 }
868
869 drm_atomic_helper_crtc_destroy_state(crtc, state);
870 }
871
vc4_crtc_reset(struct drm_crtc * crtc)872 void vc4_crtc_reset(struct drm_crtc *crtc)
873 {
874 struct vc4_crtc_state *vc4_crtc_state;
875
876 if (crtc->state)
877 vc4_crtc_destroy_state(crtc, crtc->state);
878
879 vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
880 if (!vc4_crtc_state) {
881 crtc->state = NULL;
882 return;
883 }
884
885 vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
886 __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
887 }
888
889 static const struct drm_crtc_funcs vc4_crtc_funcs = {
890 .set_config = drm_atomic_helper_set_config,
891 .destroy = vc4_crtc_destroy,
892 .page_flip = vc4_page_flip,
893 .set_property = NULL,
894 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
895 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
896 .reset = vc4_crtc_reset,
897 .atomic_duplicate_state = vc4_crtc_duplicate_state,
898 .atomic_destroy_state = vc4_crtc_destroy_state,
899 .gamma_set = drm_atomic_helper_legacy_gamma_set,
900 .enable_vblank = vc4_enable_vblank,
901 .disable_vblank = vc4_disable_vblank,
902 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
903 };
904
905 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
906 .mode_valid = vc4_crtc_mode_valid,
907 .atomic_check = vc4_crtc_atomic_check,
908 .atomic_flush = vc4_hvs_atomic_flush,
909 .atomic_enable = vc4_crtc_atomic_enable,
910 .atomic_disable = vc4_crtc_atomic_disable,
911 .get_scanout_position = vc4_crtc_get_scanout_position,
912 };
913
914 static const struct vc4_pv_data bcm2835_pv0_data = {
915 .base = {
916 .hvs_available_channels = BIT(0),
917 .hvs_output = 0,
918 },
919 .debugfs_name = "crtc0_regs",
920 .fifo_depth = 64,
921 .pixels_per_clock = 1,
922 .encoder_types = {
923 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
924 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
925 },
926 };
927
928 static const struct vc4_pv_data bcm2835_pv1_data = {
929 .base = {
930 .hvs_available_channels = BIT(2),
931 .hvs_output = 2,
932 },
933 .debugfs_name = "crtc1_regs",
934 .fifo_depth = 64,
935 .pixels_per_clock = 1,
936 .encoder_types = {
937 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
938 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
939 },
940 };
941
942 static const struct vc4_pv_data bcm2835_pv2_data = {
943 .base = {
944 .hvs_available_channels = BIT(1),
945 .hvs_output = 1,
946 },
947 .debugfs_name = "crtc2_regs",
948 .fifo_depth = 64,
949 .pixels_per_clock = 1,
950 .encoder_types = {
951 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
952 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
953 },
954 };
955
956 static const struct vc4_pv_data bcm2711_pv0_data = {
957 .base = {
958 .hvs_available_channels = BIT(0),
959 .hvs_output = 0,
960 },
961 .debugfs_name = "crtc0_regs",
962 .fifo_depth = 64,
963 .pixels_per_clock = 1,
964 .encoder_types = {
965 [0] = VC4_ENCODER_TYPE_DSI0,
966 [1] = VC4_ENCODER_TYPE_DPI,
967 },
968 };
969
970 static const struct vc4_pv_data bcm2711_pv1_data = {
971 .base = {
972 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
973 .hvs_output = 3,
974 },
975 .debugfs_name = "crtc1_regs",
976 .fifo_depth = 64,
977 .pixels_per_clock = 1,
978 .encoder_types = {
979 [0] = VC4_ENCODER_TYPE_DSI1,
980 [1] = VC4_ENCODER_TYPE_SMI,
981 },
982 };
983
984 static const struct vc4_pv_data bcm2711_pv2_data = {
985 .base = {
986 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
987 .hvs_output = 4,
988 },
989 .debugfs_name = "crtc2_regs",
990 .fifo_depth = 256,
991 .pixels_per_clock = 2,
992 .encoder_types = {
993 [0] = VC4_ENCODER_TYPE_HDMI0,
994 },
995 };
996
997 static const struct vc4_pv_data bcm2711_pv3_data = {
998 .base = {
999 .hvs_available_channels = BIT(1),
1000 .hvs_output = 1,
1001 },
1002 .debugfs_name = "crtc3_regs",
1003 .fifo_depth = 64,
1004 .pixels_per_clock = 1,
1005 .encoder_types = {
1006 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1007 },
1008 };
1009
1010 static const struct vc4_pv_data bcm2711_pv4_data = {
1011 .base = {
1012 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1013 .hvs_output = 5,
1014 },
1015 .debugfs_name = "crtc4_regs",
1016 .fifo_depth = 64,
1017 .pixels_per_clock = 2,
1018 .encoder_types = {
1019 [0] = VC4_ENCODER_TYPE_HDMI1,
1020 },
1021 };
1022
1023 static const struct of_device_id vc4_crtc_dt_match[] = {
1024 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1025 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1026 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1027 { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1028 { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1029 { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1030 { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1031 { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1032 {}
1033 };
1034
vc4_set_crtc_possible_masks(struct drm_device * drm,struct drm_crtc * crtc)1035 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1036 struct drm_crtc *crtc)
1037 {
1038 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1039 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1040 const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1041 struct drm_encoder *encoder;
1042
1043 drm_for_each_encoder(encoder, drm) {
1044 struct vc4_encoder *vc4_encoder;
1045 int i;
1046
1047 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1048 continue;
1049
1050 vc4_encoder = to_vc4_encoder(encoder);
1051 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1052 if (vc4_encoder->type == encoder_types[i]) {
1053 vc4_encoder->clock_select = i;
1054 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1055 break;
1056 }
1057 }
1058 }
1059 }
1060
vc4_crtc_init(struct drm_device * drm,struct vc4_crtc * vc4_crtc,const struct drm_crtc_funcs * crtc_funcs,const struct drm_crtc_helper_funcs * crtc_helper_funcs)1061 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1062 const struct drm_crtc_funcs *crtc_funcs,
1063 const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1064 {
1065 struct vc4_dev *vc4 = to_vc4_dev(drm);
1066 struct drm_crtc *crtc = &vc4_crtc->base;
1067 struct drm_plane *primary_plane;
1068 unsigned int i;
1069
1070 /* For now, we create just the primary and the legacy cursor
1071 * planes. We should be able to stack more planes on easily,
1072 * but to do that we would need to compute the bandwidth
1073 * requirement of the plane configuration, and reject ones
1074 * that will take too much.
1075 */
1076 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1077 if (IS_ERR(primary_plane)) {
1078 dev_err(drm->dev, "failed to construct primary plane\n");
1079 return PTR_ERR(primary_plane);
1080 }
1081
1082 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1083 crtc_funcs, NULL);
1084 drm_crtc_helper_add(crtc, crtc_helper_funcs);
1085
1086 if (!vc4->hvs->hvs5) {
1087 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1088
1089 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1090
1091 /* We support CTM, but only for one CRTC at a time. It's therefore
1092 * implemented as private driver state in vc4_kms, not here.
1093 */
1094 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1095 }
1096
1097 for (i = 0; i < crtc->gamma_size; i++) {
1098 vc4_crtc->lut_r[i] = i;
1099 vc4_crtc->lut_g[i] = i;
1100 vc4_crtc->lut_b[i] = i;
1101 }
1102
1103 return 0;
1104 }
1105
vc4_crtc_bind(struct device * dev,struct device * master,void * data)1106 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1107 {
1108 struct platform_device *pdev = to_platform_device(dev);
1109 struct drm_device *drm = dev_get_drvdata(master);
1110 const struct vc4_pv_data *pv_data;
1111 struct vc4_crtc *vc4_crtc;
1112 struct drm_crtc *crtc;
1113 struct drm_plane *destroy_plane, *temp;
1114 int ret;
1115
1116 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1117 if (!vc4_crtc)
1118 return -ENOMEM;
1119 crtc = &vc4_crtc->base;
1120
1121 pv_data = of_device_get_match_data(dev);
1122 if (!pv_data)
1123 return -ENODEV;
1124 vc4_crtc->data = &pv_data->base;
1125 vc4_crtc->pdev = pdev;
1126
1127 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1128 if (IS_ERR(vc4_crtc->regs))
1129 return PTR_ERR(vc4_crtc->regs);
1130
1131 vc4_crtc->regset.base = vc4_crtc->regs;
1132 vc4_crtc->regset.regs = crtc_regs;
1133 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1134
1135 ret = vc4_crtc_init(drm, vc4_crtc,
1136 &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1137 if (ret)
1138 return ret;
1139 vc4_set_crtc_possible_masks(drm, crtc);
1140
1141 CRTC_WRITE(PV_INTEN, 0);
1142 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1143 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1144 vc4_crtc_irq_handler,
1145 IRQF_SHARED,
1146 "vc4 crtc", vc4_crtc);
1147 if (ret)
1148 goto err_destroy_planes;
1149
1150 platform_set_drvdata(pdev, vc4_crtc);
1151
1152 vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1153 &vc4_crtc->regset);
1154
1155 return 0;
1156
1157 err_destroy_planes:
1158 list_for_each_entry_safe(destroy_plane, temp,
1159 &drm->mode_config.plane_list, head) {
1160 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1161 destroy_plane->funcs->destroy(destroy_plane);
1162 }
1163
1164 return ret;
1165 }
1166
vc4_crtc_unbind(struct device * dev,struct device * master,void * data)1167 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1168 void *data)
1169 {
1170 struct platform_device *pdev = to_platform_device(dev);
1171 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1172
1173 vc4_crtc_destroy(&vc4_crtc->base);
1174
1175 CRTC_WRITE(PV_INTEN, 0);
1176
1177 platform_set_drvdata(pdev, NULL);
1178 }
1179
1180 static const struct component_ops vc4_crtc_ops = {
1181 .bind = vc4_crtc_bind,
1182 .unbind = vc4_crtc_unbind,
1183 };
1184
vc4_crtc_dev_probe(struct platform_device * pdev)1185 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1186 {
1187 return component_add(&pdev->dev, &vc4_crtc_ops);
1188 }
1189
vc4_crtc_dev_remove(struct platform_device * pdev)1190 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1191 {
1192 component_del(&pdev->dev, &vc4_crtc_ops);
1193 return 0;
1194 }
1195
1196 struct platform_driver vc4_crtc_driver = {
1197 .probe = vc4_crtc_dev_probe,
1198 .remove = vc4_crtc_dev_remove,
1199 .driver = {
1200 .name = "vc4_crtc",
1201 .of_match_table = vc4_crtc_dt_match,
1202 },
1203 };
1204