• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31 
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35 
36 #include <drm/drm_atomic.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_atomic_uapi.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <drm/drm_print.h>
41 #include <drm/drm_probe_helper.h>
42 #include <drm/drm_vblank.h>
43 
44 #include "vc4_drv.h"
45 #include "vc4_regs.h"
46 
47 #define HVS_FIFO_LATENCY_PIX	6
48 
49 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
50 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
51 
52 static const struct debugfs_reg32 crtc_regs[] = {
53 	VC4_REG32(PV_CONTROL),
54 	VC4_REG32(PV_V_CONTROL),
55 	VC4_REG32(PV_VSYNCD_EVEN),
56 	VC4_REG32(PV_HORZA),
57 	VC4_REG32(PV_HORZB),
58 	VC4_REG32(PV_VERTA),
59 	VC4_REG32(PV_VERTB),
60 	VC4_REG32(PV_VERTA_EVEN),
61 	VC4_REG32(PV_VERTB_EVEN),
62 	VC4_REG32(PV_INTEN),
63 	VC4_REG32(PV_INTSTAT),
64 	VC4_REG32(PV_STAT),
65 	VC4_REG32(PV_HACT_ACT),
66 };
67 
68 static unsigned int
vc4_crtc_get_cob_allocation(struct vc4_dev * vc4,unsigned int channel)69 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
70 {
71 	u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
72 	/* Top/base are supposed to be 4-pixel aligned, but the
73 	 * Raspberry Pi firmware fills the low bits (which are
74 	 * presumably ignored).
75 	 */
76 	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
77 	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
78 
79 	return top - base + 4;
80 }
81 
vc4_crtc_get_scanout_position(struct drm_crtc * crtc,bool in_vblank_irq,int * vpos,int * hpos,ktime_t * stime,ktime_t * etime,const struct drm_display_mode * mode)82 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
83 					  bool in_vblank_irq,
84 					  int *vpos, int *hpos,
85 					  ktime_t *stime, ktime_t *etime,
86 					  const struct drm_display_mode *mode)
87 {
88 	struct drm_device *dev = crtc->dev;
89 	struct vc4_dev *vc4 = to_vc4_dev(dev);
90 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
91 	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
92 	unsigned int cob_size;
93 	u32 val;
94 	int fifo_lines;
95 	int vblank_lines;
96 	bool ret = false;
97 
98 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
99 
100 	/* Get optional system timestamp before query. */
101 	if (stime)
102 		*stime = ktime_get();
103 
104 	/*
105 	 * Read vertical scanline which is currently composed for our
106 	 * pixelvalve by the HVS, and also the scaler status.
107 	 */
108 	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
109 
110 	/* Get optional system timestamp after query. */
111 	if (etime)
112 		*etime = ktime_get();
113 
114 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
115 
116 	/* Vertical position of hvs composed scanline. */
117 	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
118 	*hpos = 0;
119 
120 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
121 		*vpos /= 2;
122 
123 		/* Use hpos to correct for field offset in interlaced mode. */
124 		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
125 			*hpos += mode->crtc_htotal / 2;
126 	}
127 
128 	cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
129 	/* This is the offset we need for translating hvs -> pv scanout pos. */
130 	fifo_lines = cob_size / mode->crtc_hdisplay;
131 
132 	if (fifo_lines > 0)
133 		ret = true;
134 
135 	/* HVS more than fifo_lines into frame for compositing? */
136 	if (*vpos > fifo_lines) {
137 		/*
138 		 * We are in active scanout and can get some meaningful results
139 		 * from HVS. The actual PV scanout can not trail behind more
140 		 * than fifo_lines as that is the fifo's capacity. Assume that
141 		 * in active scanout the HVS and PV work in lockstep wrt. HVS
142 		 * refilling the fifo and PV consuming from the fifo, ie.
143 		 * whenever the PV consumes and frees up a scanline in the
144 		 * fifo, the HVS will immediately refill it, therefore
145 		 * incrementing vpos. Therefore we choose HVS read position -
146 		 * fifo size in scanlines as a estimate of the real scanout
147 		 * position of the PV.
148 		 */
149 		*vpos -= fifo_lines + 1;
150 
151 		return ret;
152 	}
153 
154 	/*
155 	 * Less: This happens when we are in vblank and the HVS, after getting
156 	 * the VSTART restart signal from the PV, just started refilling its
157 	 * fifo with new lines from the top-most lines of the new framebuffers.
158 	 * The PV does not scan out in vblank, so does not remove lines from
159 	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
160 	 * We can't get meaningful readings wrt. scanline position of the PV
161 	 * and need to make things up in a approximative but consistent way.
162 	 */
163 	vblank_lines = mode->vtotal - mode->vdisplay;
164 
165 	if (in_vblank_irq) {
166 		/*
167 		 * Assume the irq handler got called close to first
168 		 * line of vblank, so PV has about a full vblank
169 		 * scanlines to go, and as a base timestamp use the
170 		 * one taken at entry into vblank irq handler, so it
171 		 * is not affected by random delays due to lock
172 		 * contention on event_lock or vblank_time lock in
173 		 * the core.
174 		 */
175 		*vpos = -vblank_lines;
176 
177 		if (stime)
178 			*stime = vc4_crtc->t_vblank;
179 		if (etime)
180 			*etime = vc4_crtc->t_vblank;
181 
182 		/*
183 		 * If the HVS fifo is not yet full then we know for certain
184 		 * we are at the very beginning of vblank, as the hvs just
185 		 * started refilling, and the stime and etime timestamps
186 		 * truly correspond to start of vblank.
187 		 *
188 		 * Unfortunately there's no way to report this to upper levels
189 		 * and make it more useful.
190 		 */
191 	} else {
192 		/*
193 		 * No clue where we are inside vblank. Return a vpos of zero,
194 		 * which will cause calling code to just return the etime
195 		 * timestamp uncorrected. At least this is no worse than the
196 		 * standard fallback.
197 		 */
198 		*vpos = 0;
199 	}
200 
201 	return ret;
202 }
203 
vc4_crtc_destroy(struct drm_crtc * crtc)204 void vc4_crtc_destroy(struct drm_crtc *crtc)
205 {
206 	drm_crtc_cleanup(crtc);
207 }
208 
vc4_get_fifo_full_level(struct vc4_crtc * vc4_crtc,u32 format)209 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
210 {
211 	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
212 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
213 	struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
214 	u32 fifo_len_bytes = pv_data->fifo_depth;
215 
216 	/*
217 	 * Pixels are pulled from the HVS if the number of bytes is
218 	 * lower than the FIFO full level.
219 	 *
220 	 * The latency of the pixel fetch mechanism is 6 pixels, so we
221 	 * need to convert those 6 pixels in bytes, depending on the
222 	 * format, and then subtract that from the length of the FIFO
223 	 * to make sure we never end up in a situation where the FIFO
224 	 * is full.
225 	 */
226 	switch (format) {
227 	case PV_CONTROL_FORMAT_DSIV_16:
228 	case PV_CONTROL_FORMAT_DSIC_16:
229 		return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
230 	case PV_CONTROL_FORMAT_DSIV_18:
231 		return fifo_len_bytes - 14;
232 	case PV_CONTROL_FORMAT_24:
233 	case PV_CONTROL_FORMAT_DSIV_24:
234 	default:
235 		/*
236 		 * For some reason, the pixelvalve4 doesn't work with
237 		 * the usual formula and will only work with 32.
238 		 */
239 		if (crtc_data->hvs_output == 5)
240 			return 32;
241 
242 		/*
243 		 * It looks like in some situations, we will overflow
244 		 * the PixelValve FIFO (with the bit 10 of PV stat being
245 		 * set) and stall the HVS / PV, eventually resulting in
246 		 * a page flip timeout.
247 		 *
248 		 * Displaying the video overlay during a playback with
249 		 * Kodi on an RPi3 seems to be a great solution with a
250 		 * failure rate around 50%.
251 		 *
252 		 * Removing 1 from the FIFO full level however
253 		 * seems to completely remove that issue.
254 		 */
255 		if (!vc4->hvs->hvs5)
256 			return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
257 
258 		return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
259 	}
260 }
261 
vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc * vc4_crtc,u32 format)262 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
263 					     u32 format)
264 {
265 	u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
266 	u32 ret = 0;
267 
268 	ret |= VC4_SET_FIELD((level >> 6),
269 			     PV5_CONTROL_FIFO_LEVEL_HIGH);
270 
271 	return ret | VC4_SET_FIELD(level & 0x3f,
272 				   PV_CONTROL_FIFO_LEVEL);
273 }
274 
275 /*
276  * Returns the encoder attached to the CRTC.
277  *
278  * VC4 can only scan out to one encoder at a time, while the DRM core
279  * allows drivers to push pixels to more than one encoder from the
280  * same CRTC.
281  */
vc4_get_crtc_encoder(struct drm_crtc * crtc)282 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
283 {
284 	struct drm_connector *connector;
285 	struct drm_connector_list_iter conn_iter;
286 
287 	drm_connector_list_iter_begin(crtc->dev, &conn_iter);
288 	drm_for_each_connector_iter(connector, &conn_iter) {
289 		if (connector->state->crtc == crtc) {
290 			drm_connector_list_iter_end(&conn_iter);
291 			return connector->encoder;
292 		}
293 	}
294 	drm_connector_list_iter_end(&conn_iter);
295 
296 	return NULL;
297 }
298 
vc4_crtc_pixelvalve_reset(struct drm_crtc * crtc)299 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
300 {
301 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
302 
303 	/* The PV needs to be disabled before it can be flushed */
304 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
305 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
306 }
307 
vc4_crtc_config_pv(struct drm_crtc * crtc)308 static void vc4_crtc_config_pv(struct drm_crtc *crtc)
309 {
310 	struct drm_device *dev = crtc->dev;
311 	struct vc4_dev *vc4 = to_vc4_dev(dev);
312 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
313 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
314 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
315 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
316 	struct drm_crtc_state *state = crtc->state;
317 	struct drm_display_mode *mode = &state->adjusted_mode;
318 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
319 	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
320 	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
321 		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
322 	bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
323 	u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
324 	u8 ppc = pv_data->pixels_per_clock;
325 	bool debug_dump_regs = false;
326 
327 	if (debug_dump_regs) {
328 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
329 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
330 			 drm_crtc_index(crtc));
331 		drm_print_regset32(&p, &vc4_crtc->regset);
332 	}
333 
334 	vc4_crtc_pixelvalve_reset(crtc);
335 
336 	CRTC_WRITE(PV_HORZA,
337 		   VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
338 				 PV_HORZA_HBP) |
339 		   VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
340 				 PV_HORZA_HSYNC));
341 
342 	CRTC_WRITE(PV_HORZB,
343 		   VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
344 				 PV_HORZB_HFP) |
345 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
346 				 PV_HORZB_HACTIVE));
347 
348 	CRTC_WRITE(PV_VERTA,
349 		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end +
350 				 interlace,
351 				 PV_VERTA_VBP) |
352 		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
353 				 PV_VERTA_VSYNC));
354 	CRTC_WRITE(PV_VERTB,
355 		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
356 				 PV_VERTB_VFP) |
357 		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
358 
359 	if (interlace) {
360 		CRTC_WRITE(PV_VERTA_EVEN,
361 			   VC4_SET_FIELD(mode->crtc_vtotal -
362 					 mode->crtc_vsync_end,
363 					 PV_VERTA_VBP) |
364 			   VC4_SET_FIELD(mode->crtc_vsync_end -
365 					 mode->crtc_vsync_start,
366 					 PV_VERTA_VSYNC));
367 		CRTC_WRITE(PV_VERTB_EVEN,
368 			   VC4_SET_FIELD(mode->crtc_vsync_start -
369 					 mode->crtc_vdisplay,
370 					 PV_VERTB_VFP) |
371 			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
372 
373 		/* We set up first field even mode for HDMI.  VEC's
374 		 * NTSC mode would want first field odd instead, once
375 		 * we support it (to do so, set ODD_FIRST and put the
376 		 * delay in VSYNCD_EVEN instead).
377 		 */
378 		CRTC_WRITE(PV_V_CONTROL,
379 			   PV_VCONTROL_CONTINUOUS |
380 			   (is_dsi ? PV_VCONTROL_DSI : 0) |
381 			   PV_VCONTROL_INTERLACE |
382 			   VC4_SET_FIELD(mode->htotal * pixel_rep / (2 * ppc),
383 					 PV_VCONTROL_ODD_DELAY));
384 		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
385 	} else {
386 		CRTC_WRITE(PV_V_CONTROL,
387 			   PV_VCONTROL_CONTINUOUS |
388 			   (is_dsi ? PV_VCONTROL_DSI : 0));
389 	}
390 
391 	if (is_dsi)
392 		CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
393 
394 	if (vc4->hvs->hvs5)
395 		CRTC_WRITE(PV_MUX_CFG,
396 			   VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
397 					 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
398 
399 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
400 		   vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
401 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
402 		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
403 		   PV_CONTROL_CLR_AT_START |
404 		   PV_CONTROL_TRIGGER_UNDERFLOW |
405 		   PV_CONTROL_WAIT_HSTART |
406 		   VC4_SET_FIELD(vc4_encoder->clock_select,
407 				 PV_CONTROL_CLK_SELECT));
408 
409 	if (debug_dump_regs) {
410 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
411 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
412 			 drm_crtc_index(crtc));
413 		drm_print_regset32(&p, &vc4_crtc->regset);
414 	}
415 }
416 
require_hvs_enabled(struct drm_device * dev)417 static void require_hvs_enabled(struct drm_device *dev)
418 {
419 	struct vc4_dev *vc4 = to_vc4_dev(dev);
420 
421 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
422 		     SCALER_DISPCTRL_ENABLE);
423 }
424 
vc4_crtc_disable(struct drm_crtc * crtc,unsigned int channel)425 static int vc4_crtc_disable(struct drm_crtc *crtc, unsigned int channel)
426 {
427 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
428 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
429 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
430 	struct drm_device *dev = crtc->dev;
431 	int ret;
432 
433 	CRTC_WRITE(PV_V_CONTROL,
434 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
435 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
436 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
437 
438 	/*
439 	 * This delay is needed to avoid to get a pixel stuck in an
440 	 * unflushable FIFO between the pixelvalve and the HDMI
441 	 * controllers on the BCM2711.
442 	 *
443 	 * Timing is fairly sensitive here, so mdelay is the safest
444 	 * approach.
445 	 *
446 	 * If it was to be reworked, the stuck pixel happens on a
447 	 * BCM2711 when changing mode with a good probability, so a
448 	 * script that changes mode on a regular basis should trigger
449 	 * the bug after less than 10 attempts. It manifests itself with
450 	 * every pixels being shifted by one to the right, and thus the
451 	 * last pixel of a line actually being displayed as the first
452 	 * pixel on the next line.
453 	 */
454 	mdelay(20);
455 
456 	if (vc4_encoder && vc4_encoder->post_crtc_disable)
457 		vc4_encoder->post_crtc_disable(encoder);
458 
459 	vc4_crtc_pixelvalve_reset(crtc);
460 	vc4_hvs_stop_channel(dev, channel);
461 
462 	if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
463 		vc4_encoder->post_crtc_powerdown(encoder);
464 
465 	return 0;
466 }
467 
vc4_crtc_disable_at_boot(struct drm_crtc * crtc)468 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
469 {
470 	struct drm_device *drm = crtc->dev;
471 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
472 	int channel;
473 
474 	if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
475 				      "brcm,bcm2711-pixelvalve2") ||
476 	      of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
477 				      "brcm,bcm2711-pixelvalve4")))
478 		return 0;
479 
480 	if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
481 		return 0;
482 
483 	if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
484 		return 0;
485 
486 	channel = vc4_hvs_get_fifo_from_output(drm, vc4_crtc->data->hvs_output);
487 	if (channel < 0)
488 		return 0;
489 
490 	return vc4_crtc_disable(crtc, channel);
491 }
492 
vc4_crtc_atomic_disable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)493 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
494 				    struct drm_crtc_state *old_state)
495 {
496 	struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
497 	struct drm_device *dev = crtc->dev;
498 
499 	require_hvs_enabled(dev);
500 
501 	/* Disable vblank irq handling before crtc is disabled. */
502 	drm_crtc_vblank_off(crtc);
503 
504 	vc4_crtc_disable(crtc, old_vc4_state->assigned_channel);
505 
506 	/*
507 	 * Make sure we issue a vblank event after disabling the CRTC if
508 	 * someone was waiting it.
509 	 */
510 	if (crtc->state->event) {
511 		unsigned long flags;
512 
513 		spin_lock_irqsave(&dev->event_lock, flags);
514 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
515 		crtc->state->event = NULL;
516 		spin_unlock_irqrestore(&dev->event_lock, flags);
517 	}
518 }
519 
vc4_crtc_atomic_enable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)520 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
521 				   struct drm_crtc_state *old_state)
522 {
523 	struct drm_device *dev = crtc->dev;
524 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
525 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
526 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
527 
528 	require_hvs_enabled(dev);
529 
530 	/* Enable vblank irq handling before crtc is started otherwise
531 	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
532 	 */
533 	drm_crtc_vblank_on(crtc);
534 
535 	vc4_hvs_atomic_enable(crtc, old_state);
536 
537 	if (vc4_encoder->pre_crtc_configure)
538 		vc4_encoder->pre_crtc_configure(encoder);
539 
540 	vc4_crtc_config_pv(crtc);
541 
542 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
543 
544 	if (vc4_encoder->pre_crtc_enable)
545 		vc4_encoder->pre_crtc_enable(encoder);
546 
547 	/* When feeding the transposer block the pixelvalve is unneeded and
548 	 * should not be enabled.
549 	 */
550 	CRTC_WRITE(PV_V_CONTROL,
551 		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
552 
553 	if (vc4_encoder->post_crtc_enable)
554 		vc4_encoder->post_crtc_enable(encoder);
555 }
556 
vc4_crtc_mode_valid(struct drm_crtc * crtc,const struct drm_display_mode * mode)557 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
558 						const struct drm_display_mode *mode)
559 {
560 	/* Do not allow doublescan modes from user space */
561 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
562 		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
563 			      crtc->base.id);
564 		return MODE_NO_DBLESCAN;
565 	}
566 
567 	return MODE_OK;
568 }
569 
vc4_crtc_get_margins(struct drm_crtc_state * state,unsigned int * left,unsigned int * right,unsigned int * top,unsigned int * bottom)570 void vc4_crtc_get_margins(struct drm_crtc_state *state,
571 			  unsigned int *left, unsigned int *right,
572 			  unsigned int *top, unsigned int *bottom)
573 {
574 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
575 	struct drm_connector_state *conn_state;
576 	struct drm_connector *conn;
577 	int i;
578 
579 	*left = vc4_state->margins.left;
580 	*right = vc4_state->margins.right;
581 	*top = vc4_state->margins.top;
582 	*bottom = vc4_state->margins.bottom;
583 
584 	/* We have to interate over all new connector states because
585 	 * vc4_crtc_get_margins() might be called before
586 	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
587 	 * might be outdated.
588 	 */
589 	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
590 		if (conn_state->crtc != state->crtc)
591 			continue;
592 
593 		*left = conn_state->tv.margins.left;
594 		*right = conn_state->tv.margins.right;
595 		*top = conn_state->tv.margins.top;
596 		*bottom = conn_state->tv.margins.bottom;
597 		break;
598 	}
599 }
600 
vc4_crtc_atomic_check(struct drm_crtc * crtc,struct drm_crtc_state * state)601 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
602 				 struct drm_crtc_state *state)
603 {
604 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
605 	struct drm_connector *conn;
606 	struct drm_connector_state *conn_state;
607 	int ret, i;
608 
609 	ret = vc4_hvs_atomic_check(crtc, state);
610 	if (ret)
611 		return ret;
612 
613 	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
614 		if (conn_state->crtc != crtc)
615 			continue;
616 
617 		vc4_state->margins.left = conn_state->tv.margins.left;
618 		vc4_state->margins.right = conn_state->tv.margins.right;
619 		vc4_state->margins.top = conn_state->tv.margins.top;
620 		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
621 		break;
622 	}
623 
624 	return 0;
625 }
626 
vc4_enable_vblank(struct drm_crtc * crtc)627 static int vc4_enable_vblank(struct drm_crtc *crtc)
628 {
629 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
630 
631 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
632 
633 	return 0;
634 }
635 
vc4_disable_vblank(struct drm_crtc * crtc)636 static void vc4_disable_vblank(struct drm_crtc *crtc)
637 {
638 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
639 
640 	CRTC_WRITE(PV_INTEN, 0);
641 }
642 
vc4_crtc_handle_page_flip(struct vc4_crtc * vc4_crtc)643 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
644 {
645 	struct drm_crtc *crtc = &vc4_crtc->base;
646 	struct drm_device *dev = crtc->dev;
647 	struct vc4_dev *vc4 = to_vc4_dev(dev);
648 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
649 	u32 chan = vc4_state->assigned_channel;
650 	unsigned long flags;
651 
652 	spin_lock_irqsave(&dev->event_lock, flags);
653 	if (vc4_crtc->event &&
654 	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
655 	     vc4_state->feed_txp)) {
656 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
657 		vc4_crtc->event = NULL;
658 		drm_crtc_vblank_put(crtc);
659 
660 		/* Wait for the page flip to unmask the underrun to ensure that
661 		 * the display list was updated by the hardware. Before that
662 		 * happens, the HVS will be using the previous display list with
663 		 * the CRTC and encoder already reconfigured, leading to
664 		 * underruns. This can be seen when reconfiguring the CRTC.
665 		 */
666 		vc4_hvs_unmask_underrun(dev, chan);
667 	}
668 	spin_unlock_irqrestore(&dev->event_lock, flags);
669 }
670 
vc4_crtc_handle_vblank(struct vc4_crtc * crtc)671 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
672 {
673 	crtc->t_vblank = ktime_get();
674 	drm_crtc_handle_vblank(&crtc->base);
675 	vc4_crtc_handle_page_flip(crtc);
676 }
677 
vc4_crtc_irq_handler(int irq,void * data)678 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
679 {
680 	struct vc4_crtc *vc4_crtc = data;
681 	u32 stat = CRTC_READ(PV_INTSTAT);
682 	irqreturn_t ret = IRQ_NONE;
683 
684 	if (stat & PV_INT_VFP_START) {
685 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
686 		vc4_crtc_handle_vblank(vc4_crtc);
687 		ret = IRQ_HANDLED;
688 	}
689 
690 	return ret;
691 }
692 
693 struct vc4_async_flip_state {
694 	struct drm_crtc *crtc;
695 	struct drm_framebuffer *fb;
696 	struct drm_framebuffer *old_fb;
697 	struct drm_pending_vblank_event *event;
698 
699 	struct vc4_seqno_cb cb;
700 };
701 
702 /* Called when the V3D execution for the BO being flipped to is done, so that
703  * we can actually update the plane's address to point to it.
704  */
705 static void
vc4_async_page_flip_complete(struct vc4_seqno_cb * cb)706 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
707 {
708 	struct vc4_async_flip_state *flip_state =
709 		container_of(cb, struct vc4_async_flip_state, cb);
710 	struct drm_crtc *crtc = flip_state->crtc;
711 	struct drm_device *dev = crtc->dev;
712 	struct vc4_dev *vc4 = to_vc4_dev(dev);
713 	struct drm_plane *plane = crtc->primary;
714 
715 	vc4_plane_async_set_fb(plane, flip_state->fb);
716 	if (flip_state->event) {
717 		unsigned long flags;
718 
719 		spin_lock_irqsave(&dev->event_lock, flags);
720 		drm_crtc_send_vblank_event(crtc, flip_state->event);
721 		spin_unlock_irqrestore(&dev->event_lock, flags);
722 	}
723 
724 	drm_crtc_vblank_put(crtc);
725 	drm_framebuffer_put(flip_state->fb);
726 
727 	/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
728 	 * when the planes are updated through the async update path.
729 	 * FIXME: we should move to generic async-page-flip when it's
730 	 * available, so that we can get rid of this hand-made cleanup_fb()
731 	 * logic.
732 	 */
733 	if (flip_state->old_fb) {
734 		struct drm_gem_cma_object *cma_bo;
735 		struct vc4_bo *bo;
736 
737 		cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
738 		bo = to_vc4_bo(&cma_bo->base);
739 		vc4_bo_dec_usecnt(bo);
740 		drm_framebuffer_put(flip_state->old_fb);
741 	}
742 
743 	kfree(flip_state);
744 
745 	up(&vc4->async_modeset);
746 }
747 
748 /* Implements async (non-vblank-synced) page flips.
749  *
750  * The page flip ioctl needs to return immediately, so we grab the
751  * modeset semaphore on the pipe, and queue the address update for
752  * when V3D is done with the BO being flipped to.
753  */
vc4_async_page_flip(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event,uint32_t flags)754 static int vc4_async_page_flip(struct drm_crtc *crtc,
755 			       struct drm_framebuffer *fb,
756 			       struct drm_pending_vblank_event *event,
757 			       uint32_t flags)
758 {
759 	struct drm_device *dev = crtc->dev;
760 	struct vc4_dev *vc4 = to_vc4_dev(dev);
761 	struct drm_plane *plane = crtc->primary;
762 	int ret = 0;
763 	struct vc4_async_flip_state *flip_state;
764 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
765 	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
766 
767 	/* Increment the BO usecnt here, so that we never end up with an
768 	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
769 	 * plane is later updated through the non-async path.
770 	 * FIXME: we should move to generic async-page-flip when it's
771 	 * available, so that we can get rid of this hand-made prepare_fb()
772 	 * logic.
773 	 */
774 	ret = vc4_bo_inc_usecnt(bo);
775 	if (ret)
776 		return ret;
777 
778 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
779 	if (!flip_state) {
780 		vc4_bo_dec_usecnt(bo);
781 		return -ENOMEM;
782 	}
783 
784 	drm_framebuffer_get(fb);
785 	flip_state->fb = fb;
786 	flip_state->crtc = crtc;
787 	flip_state->event = event;
788 
789 	/* Make sure all other async modesetes have landed. */
790 	ret = down_interruptible(&vc4->async_modeset);
791 	if (ret) {
792 		drm_framebuffer_put(fb);
793 		vc4_bo_dec_usecnt(bo);
794 		kfree(flip_state);
795 		return ret;
796 	}
797 
798 	/* Save the current FB before it's replaced by the new one in
799 	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
800 	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
801 	 * it consistent.
802 	 * FIXME: we should move to generic async-page-flip when it's
803 	 * available, so that we can get rid of this hand-made cleanup_fb()
804 	 * logic.
805 	 */
806 	flip_state->old_fb = plane->state->fb;
807 	if (flip_state->old_fb)
808 		drm_framebuffer_get(flip_state->old_fb);
809 
810 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
811 
812 	/* Immediately update the plane's legacy fb pointer, so that later
813 	 * modeset prep sees the state that will be present when the semaphore
814 	 * is released.
815 	 */
816 	drm_atomic_set_fb_for_plane(plane->state, fb);
817 
818 	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
819 			   vc4_async_page_flip_complete);
820 
821 	/* Driver takes ownership of state on successful async commit. */
822 	return 0;
823 }
824 
vc4_page_flip(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event,uint32_t flags,struct drm_modeset_acquire_ctx * ctx)825 int vc4_page_flip(struct drm_crtc *crtc,
826 		  struct drm_framebuffer *fb,
827 		  struct drm_pending_vblank_event *event,
828 		  uint32_t flags,
829 		  struct drm_modeset_acquire_ctx *ctx)
830 {
831 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
832 		return vc4_async_page_flip(crtc, fb, event, flags);
833 	else
834 		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
835 }
836 
vc4_crtc_duplicate_state(struct drm_crtc * crtc)837 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
838 {
839 	struct vc4_crtc_state *vc4_state, *old_vc4_state;
840 
841 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
842 	if (!vc4_state)
843 		return NULL;
844 
845 	old_vc4_state = to_vc4_crtc_state(crtc->state);
846 	vc4_state->feed_txp = old_vc4_state->feed_txp;
847 	vc4_state->margins = old_vc4_state->margins;
848 	vc4_state->assigned_channel = old_vc4_state->assigned_channel;
849 
850 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
851 	return &vc4_state->base;
852 }
853 
vc4_crtc_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)854 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
855 			    struct drm_crtc_state *state)
856 {
857 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
858 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
859 
860 	if (drm_mm_node_allocated(&vc4_state->mm)) {
861 		unsigned long flags;
862 
863 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
864 		drm_mm_remove_node(&vc4_state->mm);
865 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
866 
867 	}
868 
869 	drm_atomic_helper_crtc_destroy_state(crtc, state);
870 }
871 
vc4_crtc_reset(struct drm_crtc * crtc)872 void vc4_crtc_reset(struct drm_crtc *crtc)
873 {
874 	struct vc4_crtc_state *vc4_crtc_state;
875 
876 	if (crtc->state)
877 		vc4_crtc_destroy_state(crtc, crtc->state);
878 
879 	vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
880 	if (!vc4_crtc_state) {
881 		crtc->state = NULL;
882 		return;
883 	}
884 
885 	vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
886 	__drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
887 }
888 
889 static const struct drm_crtc_funcs vc4_crtc_funcs = {
890 	.set_config = drm_atomic_helper_set_config,
891 	.destroy = vc4_crtc_destroy,
892 	.page_flip = vc4_page_flip,
893 	.set_property = NULL,
894 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
895 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
896 	.reset = vc4_crtc_reset,
897 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
898 	.atomic_destroy_state = vc4_crtc_destroy_state,
899 	.gamma_set = drm_atomic_helper_legacy_gamma_set,
900 	.enable_vblank = vc4_enable_vblank,
901 	.disable_vblank = vc4_disable_vblank,
902 	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
903 };
904 
905 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
906 	.mode_valid = vc4_crtc_mode_valid,
907 	.atomic_check = vc4_crtc_atomic_check,
908 	.atomic_flush = vc4_hvs_atomic_flush,
909 	.atomic_enable = vc4_crtc_atomic_enable,
910 	.atomic_disable = vc4_crtc_atomic_disable,
911 	.get_scanout_position = vc4_crtc_get_scanout_position,
912 };
913 
914 static const struct vc4_pv_data bcm2835_pv0_data = {
915 	.base = {
916 		.hvs_available_channels = BIT(0),
917 		.hvs_output = 0,
918 	},
919 	.debugfs_name = "crtc0_regs",
920 	.fifo_depth = 64,
921 	.pixels_per_clock = 1,
922 	.encoder_types = {
923 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
924 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
925 	},
926 };
927 
928 static const struct vc4_pv_data bcm2835_pv1_data = {
929 	.base = {
930 		.hvs_available_channels = BIT(2),
931 		.hvs_output = 2,
932 	},
933 	.debugfs_name = "crtc1_regs",
934 	.fifo_depth = 64,
935 	.pixels_per_clock = 1,
936 	.encoder_types = {
937 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
938 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
939 	},
940 };
941 
942 static const struct vc4_pv_data bcm2835_pv2_data = {
943 	.base = {
944 		.hvs_available_channels = BIT(1),
945 		.hvs_output = 1,
946 	},
947 	.debugfs_name = "crtc2_regs",
948 	.fifo_depth = 64,
949 	.pixels_per_clock = 1,
950 	.encoder_types = {
951 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
952 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
953 	},
954 };
955 
956 static const struct vc4_pv_data bcm2711_pv0_data = {
957 	.base = {
958 		.hvs_available_channels = BIT(0),
959 		.hvs_output = 0,
960 	},
961 	.debugfs_name = "crtc0_regs",
962 	.fifo_depth = 64,
963 	.pixels_per_clock = 1,
964 	.encoder_types = {
965 		[0] = VC4_ENCODER_TYPE_DSI0,
966 		[1] = VC4_ENCODER_TYPE_DPI,
967 	},
968 };
969 
970 static const struct vc4_pv_data bcm2711_pv1_data = {
971 	.base = {
972 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
973 		.hvs_output = 3,
974 	},
975 	.debugfs_name = "crtc1_regs",
976 	.fifo_depth = 64,
977 	.pixels_per_clock = 1,
978 	.encoder_types = {
979 		[0] = VC4_ENCODER_TYPE_DSI1,
980 		[1] = VC4_ENCODER_TYPE_SMI,
981 	},
982 };
983 
984 static const struct vc4_pv_data bcm2711_pv2_data = {
985 	.base = {
986 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
987 		.hvs_output = 4,
988 	},
989 	.debugfs_name = "crtc2_regs",
990 	.fifo_depth = 256,
991 	.pixels_per_clock = 2,
992 	.encoder_types = {
993 		[0] = VC4_ENCODER_TYPE_HDMI0,
994 	},
995 };
996 
997 static const struct vc4_pv_data bcm2711_pv3_data = {
998 	.base = {
999 		.hvs_available_channels = BIT(1),
1000 		.hvs_output = 1,
1001 	},
1002 	.debugfs_name = "crtc3_regs",
1003 	.fifo_depth = 64,
1004 	.pixels_per_clock = 1,
1005 	.encoder_types = {
1006 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1007 	},
1008 };
1009 
1010 static const struct vc4_pv_data bcm2711_pv4_data = {
1011 	.base = {
1012 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1013 		.hvs_output = 5,
1014 	},
1015 	.debugfs_name = "crtc4_regs",
1016 	.fifo_depth = 64,
1017 	.pixels_per_clock = 2,
1018 	.encoder_types = {
1019 		[0] = VC4_ENCODER_TYPE_HDMI1,
1020 	},
1021 };
1022 
1023 static const struct of_device_id vc4_crtc_dt_match[] = {
1024 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1025 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1026 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1027 	{ .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1028 	{ .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1029 	{ .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1030 	{ .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1031 	{ .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1032 	{}
1033 };
1034 
vc4_set_crtc_possible_masks(struct drm_device * drm,struct drm_crtc * crtc)1035 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1036 					struct drm_crtc *crtc)
1037 {
1038 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1039 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1040 	const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1041 	struct drm_encoder *encoder;
1042 
1043 	drm_for_each_encoder(encoder, drm) {
1044 		struct vc4_encoder *vc4_encoder;
1045 		int i;
1046 
1047 		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1048 			continue;
1049 
1050 		vc4_encoder = to_vc4_encoder(encoder);
1051 		for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1052 			if (vc4_encoder->type == encoder_types[i]) {
1053 				vc4_encoder->clock_select = i;
1054 				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1055 				break;
1056 			}
1057 		}
1058 	}
1059 }
1060 
vc4_crtc_init(struct drm_device * drm,struct vc4_crtc * vc4_crtc,const struct drm_crtc_funcs * crtc_funcs,const struct drm_crtc_helper_funcs * crtc_helper_funcs)1061 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1062 		  const struct drm_crtc_funcs *crtc_funcs,
1063 		  const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1064 {
1065 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1066 	struct drm_crtc *crtc = &vc4_crtc->base;
1067 	struct drm_plane *primary_plane;
1068 	unsigned int i;
1069 
1070 	/* For now, we create just the primary and the legacy cursor
1071 	 * planes.  We should be able to stack more planes on easily,
1072 	 * but to do that we would need to compute the bandwidth
1073 	 * requirement of the plane configuration, and reject ones
1074 	 * that will take too much.
1075 	 */
1076 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1077 	if (IS_ERR(primary_plane)) {
1078 		dev_err(drm->dev, "failed to construct primary plane\n");
1079 		return PTR_ERR(primary_plane);
1080 	}
1081 
1082 	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1083 				  crtc_funcs, NULL);
1084 	drm_crtc_helper_add(crtc, crtc_helper_funcs);
1085 
1086 	if (!vc4->hvs->hvs5) {
1087 		drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1088 
1089 		drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1090 
1091 		/* We support CTM, but only for one CRTC at a time. It's therefore
1092 		 * implemented as private driver state in vc4_kms, not here.
1093 		 */
1094 		drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1095 	}
1096 
1097 	for (i = 0; i < crtc->gamma_size; i++) {
1098 		vc4_crtc->lut_r[i] = i;
1099 		vc4_crtc->lut_g[i] = i;
1100 		vc4_crtc->lut_b[i] = i;
1101 	}
1102 
1103 	return 0;
1104 }
1105 
vc4_crtc_bind(struct device * dev,struct device * master,void * data)1106 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1107 {
1108 	struct platform_device *pdev = to_platform_device(dev);
1109 	struct drm_device *drm = dev_get_drvdata(master);
1110 	const struct vc4_pv_data *pv_data;
1111 	struct vc4_crtc *vc4_crtc;
1112 	struct drm_crtc *crtc;
1113 	struct drm_plane *destroy_plane, *temp;
1114 	int ret;
1115 
1116 	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1117 	if (!vc4_crtc)
1118 		return -ENOMEM;
1119 	crtc = &vc4_crtc->base;
1120 
1121 	pv_data = of_device_get_match_data(dev);
1122 	if (!pv_data)
1123 		return -ENODEV;
1124 	vc4_crtc->data = &pv_data->base;
1125 	vc4_crtc->pdev = pdev;
1126 
1127 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1128 	if (IS_ERR(vc4_crtc->regs))
1129 		return PTR_ERR(vc4_crtc->regs);
1130 
1131 	vc4_crtc->regset.base = vc4_crtc->regs;
1132 	vc4_crtc->regset.regs = crtc_regs;
1133 	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1134 
1135 	ret = vc4_crtc_init(drm, vc4_crtc,
1136 			    &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1137 	if (ret)
1138 		return ret;
1139 	vc4_set_crtc_possible_masks(drm, crtc);
1140 
1141 	CRTC_WRITE(PV_INTEN, 0);
1142 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1143 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1144 			       vc4_crtc_irq_handler,
1145 			       IRQF_SHARED,
1146 			       "vc4 crtc", vc4_crtc);
1147 	if (ret)
1148 		goto err_destroy_planes;
1149 
1150 	platform_set_drvdata(pdev, vc4_crtc);
1151 
1152 	vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1153 				 &vc4_crtc->regset);
1154 
1155 	return 0;
1156 
1157 err_destroy_planes:
1158 	list_for_each_entry_safe(destroy_plane, temp,
1159 				 &drm->mode_config.plane_list, head) {
1160 		if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1161 		    destroy_plane->funcs->destroy(destroy_plane);
1162 	}
1163 
1164 	return ret;
1165 }
1166 
vc4_crtc_unbind(struct device * dev,struct device * master,void * data)1167 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1168 			    void *data)
1169 {
1170 	struct platform_device *pdev = to_platform_device(dev);
1171 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1172 
1173 	vc4_crtc_destroy(&vc4_crtc->base);
1174 
1175 	CRTC_WRITE(PV_INTEN, 0);
1176 
1177 	platform_set_drvdata(pdev, NULL);
1178 }
1179 
1180 static const struct component_ops vc4_crtc_ops = {
1181 	.bind   = vc4_crtc_bind,
1182 	.unbind = vc4_crtc_unbind,
1183 };
1184 
vc4_crtc_dev_probe(struct platform_device * pdev)1185 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1186 {
1187 	return component_add(&pdev->dev, &vc4_crtc_ops);
1188 }
1189 
vc4_crtc_dev_remove(struct platform_device * pdev)1190 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1191 {
1192 	component_del(&pdev->dev, &vc4_crtc_ops);
1193 	return 0;
1194 }
1195 
1196 struct platform_driver vc4_crtc_driver = {
1197 	.probe = vc4_crtc_dev_probe,
1198 	.remove = vc4_crtc_dev_remove,
1199 	.driver = {
1200 		.name = "vc4_crtc",
1201 		.of_match_table = vc4_crtc_dt_match,
1202 	},
1203 };
1204