1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 Broadcom
4 */
5
6 /**
7 * DOC: VC4 HVS module.
8 *
9 * The Hardware Video Scaler (HVS) is the piece of hardware that does
10 * translation, scaling, colorspace conversion, and compositing of
11 * pixels stored in framebuffers into a FIFO of pixels going out to
12 * the Pixel Valve (CRTC). It operates at the system clock rate (the
13 * system audio clock gate, specifically), which is much higher than
14 * the pixel clock rate.
15 *
16 * There is a single global HVS, with multiple output FIFOs that can
17 * be consumed by the PVs. This file just manages the resources for
18 * the HVS, while the vc4_crtc.c code actually drives HVS setup for
19 * each CRTC.
20 */
21
22 #include <linux/bitfield.h>
23 #include <linux/clk.h>
24 #include <linux/component.h>
25 #include <linux/platform_device.h>
26
27 #include <drm/drm_atomic_helper.h>
28 #include <drm/drm_vblank.h>
29
30 #include "vc4_drv.h"
31 #include "vc4_regs.h"
32
33 static const struct debugfs_reg32 hvs_regs[] = {
34 VC4_REG32(SCALER_DISPCTRL),
35 VC4_REG32(SCALER_DISPSTAT),
36 VC4_REG32(SCALER_DISPID),
37 VC4_REG32(SCALER_DISPECTRL),
38 VC4_REG32(SCALER_DISPPROF),
39 VC4_REG32(SCALER_DISPDITHER),
40 VC4_REG32(SCALER_DISPEOLN),
41 VC4_REG32(SCALER_DISPLIST0),
42 VC4_REG32(SCALER_DISPLIST1),
43 VC4_REG32(SCALER_DISPLIST2),
44 VC4_REG32(SCALER_DISPLSTAT),
45 VC4_REG32(SCALER_DISPLACT0),
46 VC4_REG32(SCALER_DISPLACT1),
47 VC4_REG32(SCALER_DISPLACT2),
48 VC4_REG32(SCALER_DISPCTRL0),
49 VC4_REG32(SCALER_DISPBKGND0),
50 VC4_REG32(SCALER_DISPSTAT0),
51 VC4_REG32(SCALER_DISPBASE0),
52 VC4_REG32(SCALER_DISPCTRL1),
53 VC4_REG32(SCALER_DISPBKGND1),
54 VC4_REG32(SCALER_DISPSTAT1),
55 VC4_REG32(SCALER_DISPBASE1),
56 VC4_REG32(SCALER_DISPCTRL2),
57 VC4_REG32(SCALER_DISPBKGND2),
58 VC4_REG32(SCALER_DISPSTAT2),
59 VC4_REG32(SCALER_DISPBASE2),
60 VC4_REG32(SCALER_DISPALPHA2),
61 VC4_REG32(SCALER_OLEDOFFS),
62 VC4_REG32(SCALER_OLEDCOEF0),
63 VC4_REG32(SCALER_OLEDCOEF1),
64 VC4_REG32(SCALER_OLEDCOEF2),
65 };
66
vc4_hvs_dump_state(struct drm_device * dev)67 void vc4_hvs_dump_state(struct drm_device *dev)
68 {
69 struct vc4_dev *vc4 = to_vc4_dev(dev);
70 struct drm_printer p = drm_info_printer(&vc4->hvs->pdev->dev);
71 int i;
72
73 drm_print_regset32(&p, &vc4->hvs->regset);
74
75 DRM_INFO("HVS ctx:\n");
76 for (i = 0; i < 64; i += 4) {
77 DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
78 i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
79 readl((u32 __iomem *)vc4->hvs->dlist + i + 0),
80 readl((u32 __iomem *)vc4->hvs->dlist + i + 1),
81 readl((u32 __iomem *)vc4->hvs->dlist + i + 2),
82 readl((u32 __iomem *)vc4->hvs->dlist + i + 3));
83 }
84 }
85
vc4_hvs_debugfs_underrun(struct seq_file * m,void * data)86 static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
87 {
88 struct drm_info_node *node = m->private;
89 struct drm_device *dev = node->minor->dev;
90 struct vc4_dev *vc4 = to_vc4_dev(dev);
91 struct drm_printer p = drm_seq_file_printer(m);
92
93 drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
94
95 return 0;
96 }
97
98 /* The filter kernel is composed of dwords each containing 3 9-bit
99 * signed integers packed next to each other.
100 */
101 #define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
102 #define VC4_PPF_FILTER_WORD(c0, c1, c2) \
103 ((((c0) & 0x1ff) << 0) | \
104 (((c1) & 0x1ff) << 9) | \
105 (((c2) & 0x1ff) << 18))
106
107 /* The whole filter kernel is arranged as the coefficients 0-16 going
108 * up, then a pad, then 17-31 going down and reversed within the
109 * dwords. This means that a linear phase kernel (where it's
110 * symmetrical at the boundary between 15 and 16) has the last 5
111 * dwords matching the first 5, but reversed.
112 */
113 #define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8, \
114 c9, c10, c11, c12, c13, c14, c15) \
115 {VC4_PPF_FILTER_WORD(c0, c1, c2), \
116 VC4_PPF_FILTER_WORD(c3, c4, c5), \
117 VC4_PPF_FILTER_WORD(c6, c7, c8), \
118 VC4_PPF_FILTER_WORD(c9, c10, c11), \
119 VC4_PPF_FILTER_WORD(c12, c13, c14), \
120 VC4_PPF_FILTER_WORD(c15, c15, 0)}
121
122 #define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
123 #define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
124
125 /* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
126 * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
127 */
128 static const u32 mitchell_netravali_1_3_1_3_kernel[] =
129 VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
130 50, 82, 119, 155, 187, 213, 227);
131
vc4_hvs_upload_linear_kernel(struct vc4_hvs * hvs,struct drm_mm_node * space,const u32 * kernel)132 static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
133 struct drm_mm_node *space,
134 const u32 *kernel)
135 {
136 int ret, i;
137 u32 __iomem *dst_kernel;
138
139 ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
140 if (ret) {
141 DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
142 ret);
143 return ret;
144 }
145
146 dst_kernel = hvs->dlist + space->start;
147
148 for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
149 if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
150 writel(kernel[i], &dst_kernel[i]);
151 else {
152 writel(kernel[VC4_KERNEL_DWORDS - i - 1],
153 &dst_kernel[i]);
154 }
155 }
156
157 return 0;
158 }
159
vc4_hvs_lut_load(struct drm_crtc * crtc)160 static void vc4_hvs_lut_load(struct drm_crtc *crtc)
161 {
162 struct drm_device *dev = crtc->dev;
163 struct vc4_dev *vc4 = to_vc4_dev(dev);
164 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
165 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
166 u32 i;
167
168 /* The LUT memory is laid out with each HVS channel in order,
169 * each of which takes 256 writes for R, 256 for G, then 256
170 * for B.
171 */
172 HVS_WRITE(SCALER_GAMADDR,
173 SCALER_GAMADDR_AUTOINC |
174 (vc4_state->assigned_channel * 3 * crtc->gamma_size));
175
176 for (i = 0; i < crtc->gamma_size; i++)
177 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
178 for (i = 0; i < crtc->gamma_size; i++)
179 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
180 for (i = 0; i < crtc->gamma_size; i++)
181 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
182 }
183
vc4_hvs_update_gamma_lut(struct drm_crtc * crtc)184 static void vc4_hvs_update_gamma_lut(struct drm_crtc *crtc)
185 {
186 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
187 struct drm_color_lut *lut = crtc->state->gamma_lut->data;
188 u32 length = drm_color_lut_size(crtc->state->gamma_lut);
189 u32 i;
190
191 for (i = 0; i < length; i++) {
192 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
193 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
194 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
195 }
196
197 vc4_hvs_lut_load(crtc);
198 }
199
vc4_hvs_get_fifo_from_output(struct drm_device * dev,unsigned int output)200 int vc4_hvs_get_fifo_from_output(struct drm_device *dev, unsigned int output)
201 {
202 struct vc4_dev *vc4 = to_vc4_dev(dev);
203 u32 reg;
204 int ret;
205
206 if (!vc4->hvs->hvs5)
207 return output;
208
209 switch (output) {
210 case 0:
211 return 0;
212
213 case 1:
214 return 1;
215
216 case 2:
217 reg = HVS_READ(SCALER_DISPECTRL);
218 ret = FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg);
219 if (ret == 0)
220 return 2;
221
222 return 0;
223
224 case 3:
225 reg = HVS_READ(SCALER_DISPCTRL);
226 ret = FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg);
227 if (ret == 3)
228 return -EPIPE;
229
230 return ret;
231
232 case 4:
233 reg = HVS_READ(SCALER_DISPEOLN);
234 ret = FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg);
235 if (ret == 3)
236 return -EPIPE;
237
238 return ret;
239
240 case 5:
241 reg = HVS_READ(SCALER_DISPDITHER);
242 ret = FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg);
243 if (ret == 3)
244 return -EPIPE;
245
246 return ret;
247
248 default:
249 return -EPIPE;
250 }
251 }
252
vc4_hvs_init_channel(struct vc4_dev * vc4,struct drm_crtc * crtc,struct drm_display_mode * mode,bool oneshot)253 static int vc4_hvs_init_channel(struct vc4_dev *vc4, struct drm_crtc *crtc,
254 struct drm_display_mode *mode, bool oneshot)
255 {
256 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
257 unsigned int chan = vc4_crtc_state->assigned_channel;
258 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
259 u32 dispbkgndx;
260 u32 dispctrl;
261
262 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
263 HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
264 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
265
266 /* Turn on the scaler, which will wait for vstart to start
267 * compositing.
268 * When feeding the transposer, we should operate in oneshot
269 * mode.
270 */
271 dispctrl = SCALER_DISPCTRLX_ENABLE;
272
273 if (!vc4->hvs->hvs5)
274 dispctrl |= VC4_SET_FIELD(mode->hdisplay,
275 SCALER_DISPCTRLX_WIDTH) |
276 VC4_SET_FIELD(mode->vdisplay,
277 SCALER_DISPCTRLX_HEIGHT) |
278 (oneshot ? SCALER_DISPCTRLX_ONESHOT : 0);
279 else
280 dispctrl |= VC4_SET_FIELD(mode->hdisplay,
281 SCALER5_DISPCTRLX_WIDTH) |
282 VC4_SET_FIELD(mode->vdisplay,
283 SCALER5_DISPCTRLX_HEIGHT) |
284 (oneshot ? SCALER5_DISPCTRLX_ONESHOT : 0);
285
286 HVS_WRITE(SCALER_DISPCTRLX(chan), dispctrl);
287
288 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan));
289 dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
290 dispbkgndx &= ~SCALER_DISPBKGND_INTERLACE;
291
292 HVS_WRITE(SCALER_DISPBKGNDX(chan), dispbkgndx |
293 SCALER_DISPBKGND_AUTOHS |
294 ((!vc4->hvs->hvs5) ? SCALER_DISPBKGND_GAMMA : 0) |
295 (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
296
297 /* Reload the LUT, since the SRAMs would have been disabled if
298 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
299 */
300 vc4_hvs_lut_load(crtc);
301
302 return 0;
303 }
304
vc4_hvs_stop_channel(struct drm_device * dev,unsigned int chan)305 void vc4_hvs_stop_channel(struct drm_device *dev, unsigned int chan)
306 {
307 struct vc4_dev *vc4 = to_vc4_dev(dev);
308
309 if (HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE)
310 return;
311
312 HVS_WRITE(SCALER_DISPCTRLX(chan),
313 HVS_READ(SCALER_DISPCTRLX(chan)) | SCALER_DISPCTRLX_RESET);
314 HVS_WRITE(SCALER_DISPCTRLX(chan),
315 HVS_READ(SCALER_DISPCTRLX(chan)) & ~SCALER_DISPCTRLX_ENABLE);
316
317 /* Once we leave, the scaler should be disabled and its fifo empty. */
318 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
319
320 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
321 SCALER_DISPSTATX_MODE) !=
322 SCALER_DISPSTATX_MODE_DISABLED);
323
324 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
325 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
326 SCALER_DISPSTATX_EMPTY);
327 }
328
vc4_hvs_atomic_check(struct drm_crtc * crtc,struct drm_crtc_state * state)329 int vc4_hvs_atomic_check(struct drm_crtc *crtc,
330 struct drm_crtc_state *state)
331 {
332 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
333 struct drm_device *dev = crtc->dev;
334 struct vc4_dev *vc4 = to_vc4_dev(dev);
335 struct drm_plane *plane;
336 unsigned long flags;
337 const struct drm_plane_state *plane_state;
338 u32 dlist_count = 0;
339 int ret;
340
341 /* The pixelvalve can only feed one encoder (and encoders are
342 * 1:1 with connectors.)
343 */
344 if (hweight32(state->connector_mask) > 1)
345 return -EINVAL;
346
347 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
348 dlist_count += vc4_plane_dlist_size(plane_state);
349
350 dlist_count++; /* Account for SCALER_CTL0_END. */
351
352 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
353 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
354 dlist_count);
355 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
356 if (ret)
357 return ret;
358
359 return 0;
360 }
361
vc4_hvs_update_dlist(struct drm_crtc * crtc)362 static void vc4_hvs_update_dlist(struct drm_crtc *crtc)
363 {
364 struct drm_device *dev = crtc->dev;
365 struct vc4_dev *vc4 = to_vc4_dev(dev);
366 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
367 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
368
369 if (crtc->state->event) {
370 unsigned long flags;
371
372 crtc->state->event->pipe = drm_crtc_index(crtc);
373
374 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
375
376 spin_lock_irqsave(&dev->event_lock, flags);
377
378 if (!vc4_state->feed_txp || vc4_state->txp_armed) {
379 vc4_crtc->event = crtc->state->event;
380 crtc->state->event = NULL;
381 }
382
383 HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
384 vc4_state->mm.start);
385
386 spin_unlock_irqrestore(&dev->event_lock, flags);
387 } else {
388 HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
389 vc4_state->mm.start);
390 }
391 }
392
vc4_hvs_atomic_enable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)393 void vc4_hvs_atomic_enable(struct drm_crtc *crtc,
394 struct drm_crtc_state *old_state)
395 {
396 struct drm_device *dev = crtc->dev;
397 struct vc4_dev *vc4 = to_vc4_dev(dev);
398 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
399 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
400 bool oneshot = vc4_state->feed_txp;
401
402 vc4_hvs_update_dlist(crtc);
403 vc4_hvs_init_channel(vc4, crtc, mode, oneshot);
404 }
405
vc4_hvs_atomic_disable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)406 void vc4_hvs_atomic_disable(struct drm_crtc *crtc,
407 struct drm_crtc_state *old_state)
408 {
409 struct drm_device *dev = crtc->dev;
410 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(old_state);
411 unsigned int chan = vc4_state->assigned_channel;
412
413 vc4_hvs_stop_channel(dev, chan);
414 }
415
vc4_hvs_atomic_flush(struct drm_crtc * crtc,struct drm_crtc_state * old_state)416 void vc4_hvs_atomic_flush(struct drm_crtc *crtc,
417 struct drm_crtc_state *old_state)
418 {
419 struct drm_device *dev = crtc->dev;
420 struct vc4_dev *vc4 = to_vc4_dev(dev);
421 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
422 struct drm_plane *plane;
423 struct vc4_plane_state *vc4_plane_state;
424 bool debug_dump_regs = false;
425 bool enable_bg_fill = false;
426 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
427 u32 __iomem *dlist_next = dlist_start;
428
429 if (debug_dump_regs) {
430 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
431 vc4_hvs_dump_state(dev);
432 }
433
434 /* Copy all the active planes' dlist contents to the hardware dlist. */
435 drm_atomic_crtc_for_each_plane(plane, crtc) {
436 /* Is this the first active plane? */
437 if (dlist_next == dlist_start) {
438 /* We need to enable background fill when a plane
439 * could be alpha blending from the background, i.e.
440 * where no other plane is underneath. It suffices to
441 * consider the first active plane here since we set
442 * needs_bg_fill such that either the first plane
443 * already needs it or all planes on top blend from
444 * the first or a lower plane.
445 */
446 vc4_plane_state = to_vc4_plane_state(plane->state);
447 enable_bg_fill = vc4_plane_state->needs_bg_fill;
448 }
449
450 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
451 }
452
453 writel(SCALER_CTL0_END, dlist_next);
454 dlist_next++;
455
456 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
457
458 if (enable_bg_fill)
459 /* This sets a black background color fill, as is the case
460 * with other DRM drivers.
461 */
462 HVS_WRITE(SCALER_DISPBKGNDX(vc4_state->assigned_channel),
463 HVS_READ(SCALER_DISPBKGNDX(vc4_state->assigned_channel)) |
464 SCALER_DISPBKGND_FILL);
465
466 /* Only update DISPLIST if the CRTC was already running and is not
467 * being disabled.
468 * vc4_crtc_enable() takes care of updating the dlist just after
469 * re-enabling VBLANK interrupts and before enabling the engine.
470 * If the CRTC is being disabled, there's no point in updating this
471 * information.
472 */
473 if (crtc->state->active && old_state->active)
474 vc4_hvs_update_dlist(crtc);
475
476 if (crtc->state->color_mgmt_changed) {
477 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_state->assigned_channel));
478
479 if (crtc->state->gamma_lut) {
480 vc4_hvs_update_gamma_lut(crtc);
481 dispbkgndx |= SCALER_DISPBKGND_GAMMA;
482 } else {
483 /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
484 * in hardware, which is the same as a linear lut that
485 * DRM expects us to use in absence of a user lut.
486 */
487 dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
488 }
489 HVS_WRITE(SCALER_DISPBKGNDX(vc4_state->assigned_channel), dispbkgndx);
490 }
491
492 if (debug_dump_regs) {
493 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
494 vc4_hvs_dump_state(dev);
495 }
496 }
497
vc4_hvs_mask_underrun(struct drm_device * dev,int channel)498 void vc4_hvs_mask_underrun(struct drm_device *dev, int channel)
499 {
500 struct vc4_dev *vc4 = to_vc4_dev(dev);
501 u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
502
503 dispctrl &= ~SCALER_DISPCTRL_DSPEISLUR(channel);
504
505 HVS_WRITE(SCALER_DISPCTRL, dispctrl);
506 }
507
vc4_hvs_unmask_underrun(struct drm_device * dev,int channel)508 void vc4_hvs_unmask_underrun(struct drm_device *dev, int channel)
509 {
510 struct vc4_dev *vc4 = to_vc4_dev(dev);
511 u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
512
513 dispctrl |= SCALER_DISPCTRL_DSPEISLUR(channel);
514
515 HVS_WRITE(SCALER_DISPSTAT,
516 SCALER_DISPSTAT_EUFLOW(channel));
517 HVS_WRITE(SCALER_DISPCTRL, dispctrl);
518 }
519
vc4_hvs_report_underrun(struct drm_device * dev)520 static void vc4_hvs_report_underrun(struct drm_device *dev)
521 {
522 struct vc4_dev *vc4 = to_vc4_dev(dev);
523
524 atomic_inc(&vc4->underrun);
525 DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
526 }
527
vc4_hvs_irq_handler(int irq,void * data)528 static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
529 {
530 struct drm_device *dev = data;
531 struct vc4_dev *vc4 = to_vc4_dev(dev);
532 irqreturn_t irqret = IRQ_NONE;
533 int channel;
534 u32 control;
535 u32 status;
536
537 status = HVS_READ(SCALER_DISPSTAT);
538 control = HVS_READ(SCALER_DISPCTRL);
539
540 for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
541 /* Interrupt masking is not always honored, so check it here. */
542 if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
543 control & SCALER_DISPCTRL_DSPEISLUR(channel)) {
544 vc4_hvs_mask_underrun(dev, channel);
545 vc4_hvs_report_underrun(dev);
546
547 irqret = IRQ_HANDLED;
548 }
549 }
550
551 /* Clear every per-channel interrupt flag. */
552 HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
553 SCALER_DISPSTAT_IRQMASK(1) |
554 SCALER_DISPSTAT_IRQMASK(2));
555
556 return irqret;
557 }
558
vc4_hvs_bind(struct device * dev,struct device * master,void * data)559 static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
560 {
561 struct platform_device *pdev = to_platform_device(dev);
562 struct drm_device *drm = dev_get_drvdata(master);
563 struct vc4_dev *vc4 = to_vc4_dev(drm);
564 struct vc4_hvs *hvs = NULL;
565 int ret;
566 u32 dispctrl;
567 u32 reg;
568
569 hvs = devm_kzalloc(&pdev->dev, sizeof(*hvs), GFP_KERNEL);
570 if (!hvs)
571 return -ENOMEM;
572
573 hvs->pdev = pdev;
574
575 if (of_device_is_compatible(pdev->dev.of_node, "brcm,bcm2711-hvs"))
576 hvs->hvs5 = true;
577
578 hvs->regs = vc4_ioremap_regs(pdev, 0);
579 if (IS_ERR(hvs->regs))
580 return PTR_ERR(hvs->regs);
581
582 hvs->regset.base = hvs->regs;
583 hvs->regset.regs = hvs_regs;
584 hvs->regset.nregs = ARRAY_SIZE(hvs_regs);
585
586 if (hvs->hvs5) {
587 hvs->core_clk = devm_clk_get(&pdev->dev, NULL);
588 if (IS_ERR(hvs->core_clk)) {
589 dev_err(&pdev->dev, "Couldn't get core clock\n");
590 return PTR_ERR(hvs->core_clk);
591 }
592
593 ret = clk_prepare_enable(hvs->core_clk);
594 if (ret) {
595 dev_err(&pdev->dev, "Couldn't enable the core clock\n");
596 return ret;
597 }
598 }
599
600 if (!hvs->hvs5)
601 hvs->dlist = hvs->regs + SCALER_DLIST_START;
602 else
603 hvs->dlist = hvs->regs + SCALER5_DLIST_START;
604
605 spin_lock_init(&hvs->mm_lock);
606
607 /* Set up the HVS display list memory manager. We never
608 * overwrite the setup from the bootloader (just 128b out of
609 * our 16K), since we don't want to scramble the screen when
610 * transitioning from the firmware's boot setup to runtime.
611 */
612 drm_mm_init(&hvs->dlist_mm,
613 HVS_BOOTLOADER_DLIST_END,
614 (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
615
616 /* Set up the HVS LBM memory manager. We could have some more
617 * complicated data structure that allowed reuse of LBM areas
618 * between planes when they don't overlap on the screen, but
619 * for now we just allocate globally.
620 */
621 if (!hvs->hvs5)
622 /* 48k words of 2x12-bit pixels */
623 drm_mm_init(&hvs->lbm_mm, 0, 48 * 1024);
624 else
625 /* 60k words of 4x12-bit pixels */
626 drm_mm_init(&hvs->lbm_mm, 0, 60 * 1024);
627
628 /* Upload filter kernels. We only have the one for now, so we
629 * keep it around for the lifetime of the driver.
630 */
631 ret = vc4_hvs_upload_linear_kernel(hvs,
632 &hvs->mitchell_netravali_filter,
633 mitchell_netravali_1_3_1_3_kernel);
634 if (ret)
635 return ret;
636
637 vc4->hvs = hvs;
638
639 reg = HVS_READ(SCALER_DISPECTRL);
640 reg &= ~SCALER_DISPECTRL_DSP2_MUX_MASK;
641 HVS_WRITE(SCALER_DISPECTRL,
642 reg | VC4_SET_FIELD(0, SCALER_DISPECTRL_DSP2_MUX));
643
644 reg = HVS_READ(SCALER_DISPCTRL);
645 reg &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
646 HVS_WRITE(SCALER_DISPCTRL,
647 reg | VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX));
648
649 reg = HVS_READ(SCALER_DISPEOLN);
650 reg &= ~SCALER_DISPEOLN_DSP4_MUX_MASK;
651 HVS_WRITE(SCALER_DISPEOLN,
652 reg | VC4_SET_FIELD(3, SCALER_DISPEOLN_DSP4_MUX));
653
654 reg = HVS_READ(SCALER_DISPDITHER);
655 reg &= ~SCALER_DISPDITHER_DSP5_MUX_MASK;
656 HVS_WRITE(SCALER_DISPDITHER,
657 reg | VC4_SET_FIELD(3, SCALER_DISPDITHER_DSP5_MUX));
658
659 dispctrl = HVS_READ(SCALER_DISPCTRL);
660
661 dispctrl |= SCALER_DISPCTRL_ENABLE;
662 dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
663 SCALER_DISPCTRL_DISPEIRQ(1) |
664 SCALER_DISPCTRL_DISPEIRQ(2);
665
666 dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
667 SCALER_DISPCTRL_SLVWREIRQ |
668 SCALER_DISPCTRL_SLVRDEIRQ |
669 SCALER_DISPCTRL_DSPEIEOF(0) |
670 SCALER_DISPCTRL_DSPEIEOF(1) |
671 SCALER_DISPCTRL_DSPEIEOF(2) |
672 SCALER_DISPCTRL_DSPEIEOLN(0) |
673 SCALER_DISPCTRL_DSPEIEOLN(1) |
674 SCALER_DISPCTRL_DSPEIEOLN(2) |
675 SCALER_DISPCTRL_DSPEISLUR(0) |
676 SCALER_DISPCTRL_DSPEISLUR(1) |
677 SCALER_DISPCTRL_DSPEISLUR(2) |
678 SCALER_DISPCTRL_SCLEIRQ);
679
680 /* Set AXI panic mode.
681 * VC4 panics when < 2 lines in FIFO.
682 * VC5 panics when less than 1 line in the FIFO.
683 */
684 dispctrl &= ~(SCALER_DISPCTRL_PANIC0_MASK |
685 SCALER_DISPCTRL_PANIC1_MASK |
686 SCALER_DISPCTRL_PANIC2_MASK);
687 dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC0);
688 dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC1);
689 dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC2);
690
691 HVS_WRITE(SCALER_DISPCTRL, dispctrl);
692
693 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
694 vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
695 if (ret)
696 return ret;
697
698 vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
699 vc4_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun,
700 NULL);
701
702 return 0;
703 }
704
vc4_hvs_unbind(struct device * dev,struct device * master,void * data)705 static void vc4_hvs_unbind(struct device *dev, struct device *master,
706 void *data)
707 {
708 struct drm_device *drm = dev_get_drvdata(master);
709 struct vc4_dev *vc4 = to_vc4_dev(drm);
710 struct vc4_hvs *hvs = vc4->hvs;
711
712 if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter))
713 drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
714
715 drm_mm_takedown(&vc4->hvs->dlist_mm);
716 drm_mm_takedown(&vc4->hvs->lbm_mm);
717
718 clk_disable_unprepare(hvs->core_clk);
719
720 vc4->hvs = NULL;
721 }
722
723 static const struct component_ops vc4_hvs_ops = {
724 .bind = vc4_hvs_bind,
725 .unbind = vc4_hvs_unbind,
726 };
727
vc4_hvs_dev_probe(struct platform_device * pdev)728 static int vc4_hvs_dev_probe(struct platform_device *pdev)
729 {
730 return component_add(&pdev->dev, &vc4_hvs_ops);
731 }
732
vc4_hvs_dev_remove(struct platform_device * pdev)733 static int vc4_hvs_dev_remove(struct platform_device *pdev)
734 {
735 component_del(&pdev->dev, &vc4_hvs_ops);
736 return 0;
737 }
738
739 static const struct of_device_id vc4_hvs_dt_match[] = {
740 { .compatible = "brcm,bcm2711-hvs" },
741 { .compatible = "brcm,bcm2835-hvs" },
742 {}
743 };
744
745 struct platform_driver vc4_hvs_driver = {
746 .probe = vc4_hvs_dev_probe,
747 .remove = vc4_hvs_dev_remove,
748 .driver = {
749 .name = "vc4_hvs",
750 .of_match_table = vc4_hvs_dt_match,
751 },
752 };
753