1 /*
2 * Copyright © 2014 Broadcom
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/device.h>
28 #include <linux/io.h>
29 #include <linux/sched/signal.h>
30 #include <linux/dma-fence-array.h>
31
32 #include <drm/drm_syncobj.h>
33
34 #include "uapi/drm/vc4_drm.h"
35 #include "vc4_drv.h"
36 #include "vc4_regs.h"
37 #include "vc4_trace.h"
38
39 static void
vc4_queue_hangcheck(struct drm_device * dev)40 vc4_queue_hangcheck(struct drm_device *dev)
41 {
42 struct vc4_dev *vc4 = to_vc4_dev(dev);
43
44 mod_timer(&vc4->hangcheck.timer,
45 round_jiffies_up(jiffies + msecs_to_jiffies(100)));
46 }
47
48 struct vc4_hang_state {
49 struct drm_vc4_get_hang_state user_state;
50
51 u32 bo_count;
52 struct drm_gem_object **bo;
53 };
54
55 static void
vc4_free_hang_state(struct drm_device * dev,struct vc4_hang_state * state)56 vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state)
57 {
58 unsigned int i;
59
60 for (i = 0; i < state->user_state.bo_count; i++)
61 drm_gem_object_put(state->bo[i]);
62
63 kfree(state);
64 }
65
66 int
vc4_get_hang_state_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)67 vc4_get_hang_state_ioctl(struct drm_device *dev, void *data,
68 struct drm_file *file_priv)
69 {
70 struct drm_vc4_get_hang_state *get_state = data;
71 struct drm_vc4_get_hang_state_bo *bo_state;
72 struct vc4_hang_state *kernel_state;
73 struct drm_vc4_get_hang_state *state;
74 struct vc4_dev *vc4 = to_vc4_dev(dev);
75 unsigned long irqflags;
76 u32 i;
77 int ret = 0;
78
79 if (!vc4->v3d) {
80 DRM_DEBUG("VC4_GET_HANG_STATE with no VC4 V3D probed\n");
81 return -ENODEV;
82 }
83
84 spin_lock_irqsave(&vc4->job_lock, irqflags);
85 kernel_state = vc4->hang_state;
86 if (!kernel_state) {
87 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
88 return -ENOENT;
89 }
90 state = &kernel_state->user_state;
91
92 /* If the user's array isn't big enough, just return the
93 * required array size.
94 */
95 if (get_state->bo_count < state->bo_count) {
96 get_state->bo_count = state->bo_count;
97 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
98 return 0;
99 }
100
101 vc4->hang_state = NULL;
102 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
103
104 /* Save the user's BO pointer, so we don't stomp it with the memcpy. */
105 state->bo = get_state->bo;
106 memcpy(get_state, state, sizeof(*state));
107
108 bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL);
109 if (!bo_state) {
110 ret = -ENOMEM;
111 goto err_free;
112 }
113
114 for (i = 0; i < state->bo_count; i++) {
115 struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]);
116 u32 handle;
117
118 ret = drm_gem_handle_create(file_priv, kernel_state->bo[i],
119 &handle);
120
121 if (ret) {
122 state->bo_count = i;
123 goto err_delete_handle;
124 }
125 bo_state[i].handle = handle;
126 bo_state[i].paddr = vc4_bo->base.paddr;
127 bo_state[i].size = vc4_bo->base.base.size;
128 }
129
130 if (copy_to_user(u64_to_user_ptr(get_state->bo),
131 bo_state,
132 state->bo_count * sizeof(*bo_state)))
133 ret = -EFAULT;
134
135 err_delete_handle:
136 if (ret) {
137 for (i = 0; i < state->bo_count; i++)
138 drm_gem_handle_delete(file_priv, bo_state[i].handle);
139 }
140
141 err_free:
142 vc4_free_hang_state(dev, kernel_state);
143 kfree(bo_state);
144
145 return ret;
146 }
147
148 static void
vc4_save_hang_state(struct drm_device * dev)149 vc4_save_hang_state(struct drm_device *dev)
150 {
151 struct vc4_dev *vc4 = to_vc4_dev(dev);
152 struct drm_vc4_get_hang_state *state;
153 struct vc4_hang_state *kernel_state;
154 struct vc4_exec_info *exec[2];
155 struct vc4_bo *bo;
156 unsigned long irqflags;
157 unsigned int i, j, k, unref_list_count;
158
159 kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL);
160 if (!kernel_state)
161 return;
162
163 state = &kernel_state->user_state;
164
165 spin_lock_irqsave(&vc4->job_lock, irqflags);
166 exec[0] = vc4_first_bin_job(vc4);
167 exec[1] = vc4_first_render_job(vc4);
168 if (!exec[0] && !exec[1]) {
169 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
170 return;
171 }
172
173 /* Get the bos from both binner and renderer into hang state. */
174 state->bo_count = 0;
175 for (i = 0; i < 2; i++) {
176 if (!exec[i])
177 continue;
178
179 unref_list_count = 0;
180 list_for_each_entry(bo, &exec[i]->unref_list, unref_head)
181 unref_list_count++;
182 state->bo_count += exec[i]->bo_count + unref_list_count;
183 }
184
185 kernel_state->bo = kcalloc(state->bo_count,
186 sizeof(*kernel_state->bo), GFP_ATOMIC);
187
188 if (!kernel_state->bo) {
189 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
190 return;
191 }
192
193 k = 0;
194 for (i = 0; i < 2; i++) {
195 if (!exec[i])
196 continue;
197
198 for (j = 0; j < exec[i]->bo_count; j++) {
199 bo = to_vc4_bo(&exec[i]->bo[j]->base);
200
201 /* Retain BOs just in case they were marked purgeable.
202 * This prevents the BO from being purged before
203 * someone had a chance to dump the hang state.
204 */
205 WARN_ON(!refcount_read(&bo->usecnt));
206 refcount_inc(&bo->usecnt);
207 drm_gem_object_get(&exec[i]->bo[j]->base);
208 kernel_state->bo[k++] = &exec[i]->bo[j]->base;
209 }
210
211 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) {
212 /* No need to retain BOs coming from the ->unref_list
213 * because they are naturally unpurgeable.
214 */
215 drm_gem_object_get(&bo->base.base);
216 kernel_state->bo[k++] = &bo->base.base;
217 }
218 }
219
220 WARN_ON_ONCE(k != state->bo_count);
221
222 if (exec[0])
223 state->start_bin = exec[0]->ct0ca;
224 if (exec[1])
225 state->start_render = exec[1]->ct1ca;
226
227 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
228
229 state->ct0ca = V3D_READ(V3D_CTNCA(0));
230 state->ct0ea = V3D_READ(V3D_CTNEA(0));
231
232 state->ct1ca = V3D_READ(V3D_CTNCA(1));
233 state->ct1ea = V3D_READ(V3D_CTNEA(1));
234
235 state->ct0cs = V3D_READ(V3D_CTNCS(0));
236 state->ct1cs = V3D_READ(V3D_CTNCS(1));
237
238 state->ct0ra0 = V3D_READ(V3D_CT00RA0);
239 state->ct1ra0 = V3D_READ(V3D_CT01RA0);
240
241 state->bpca = V3D_READ(V3D_BPCA);
242 state->bpcs = V3D_READ(V3D_BPCS);
243 state->bpoa = V3D_READ(V3D_BPOA);
244 state->bpos = V3D_READ(V3D_BPOS);
245
246 state->vpmbase = V3D_READ(V3D_VPMBASE);
247
248 state->dbge = V3D_READ(V3D_DBGE);
249 state->fdbgo = V3D_READ(V3D_FDBGO);
250 state->fdbgb = V3D_READ(V3D_FDBGB);
251 state->fdbgr = V3D_READ(V3D_FDBGR);
252 state->fdbgs = V3D_READ(V3D_FDBGS);
253 state->errstat = V3D_READ(V3D_ERRSTAT);
254
255 /* We need to turn purgeable BOs into unpurgeable ones so that
256 * userspace has a chance to dump the hang state before the kernel
257 * decides to purge those BOs.
258 * Note that BO consistency at dump time cannot be guaranteed. For
259 * example, if the owner of these BOs decides to re-use them or mark
260 * them purgeable again there's nothing we can do to prevent it.
261 */
262 for (i = 0; i < kernel_state->user_state.bo_count; i++) {
263 struct vc4_bo *bo = to_vc4_bo(kernel_state->bo[i]);
264
265 if (bo->madv == __VC4_MADV_NOTSUPP)
266 continue;
267
268 mutex_lock(&bo->madv_lock);
269 if (!WARN_ON(bo->madv == __VC4_MADV_PURGED))
270 bo->madv = VC4_MADV_WILLNEED;
271 refcount_dec(&bo->usecnt);
272 mutex_unlock(&bo->madv_lock);
273 }
274
275 spin_lock_irqsave(&vc4->job_lock, irqflags);
276 if (vc4->hang_state) {
277 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
278 vc4_free_hang_state(dev, kernel_state);
279 } else {
280 vc4->hang_state = kernel_state;
281 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
282 }
283 }
284
285 static void
vc4_reset(struct drm_device * dev)286 vc4_reset(struct drm_device *dev)
287 {
288 struct vc4_dev *vc4 = to_vc4_dev(dev);
289
290 DRM_INFO("Resetting GPU.\n");
291
292 mutex_lock(&vc4->power_lock);
293 if (vc4->power_refcount) {
294 /* Power the device off and back on the by dropping the
295 * reference on runtime PM.
296 */
297 pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev);
298 pm_runtime_get_sync(&vc4->v3d->pdev->dev);
299 }
300 mutex_unlock(&vc4->power_lock);
301
302 vc4_irq_reset(dev);
303
304 /* Rearm the hangcheck -- another job might have been waiting
305 * for our hung one to get kicked off, and vc4_irq_reset()
306 * would have started it.
307 */
308 vc4_queue_hangcheck(dev);
309 }
310
311 static void
vc4_reset_work(struct work_struct * work)312 vc4_reset_work(struct work_struct *work)
313 {
314 struct vc4_dev *vc4 =
315 container_of(work, struct vc4_dev, hangcheck.reset_work);
316
317 vc4_save_hang_state(&vc4->base);
318
319 vc4_reset(&vc4->base);
320 }
321
322 static void
vc4_hangcheck_elapsed(struct timer_list * t)323 vc4_hangcheck_elapsed(struct timer_list *t)
324 {
325 struct vc4_dev *vc4 = from_timer(vc4, t, hangcheck.timer);
326 struct drm_device *dev = &vc4->base;
327 uint32_t ct0ca, ct1ca;
328 unsigned long irqflags;
329 struct vc4_exec_info *bin_exec, *render_exec;
330
331 spin_lock_irqsave(&vc4->job_lock, irqflags);
332
333 bin_exec = vc4_first_bin_job(vc4);
334 render_exec = vc4_first_render_job(vc4);
335
336 /* If idle, we can stop watching for hangs. */
337 if (!bin_exec && !render_exec) {
338 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
339 return;
340 }
341
342 ct0ca = V3D_READ(V3D_CTNCA(0));
343 ct1ca = V3D_READ(V3D_CTNCA(1));
344
345 /* If we've made any progress in execution, rearm the timer
346 * and wait.
347 */
348 if ((bin_exec && ct0ca != bin_exec->last_ct0ca) ||
349 (render_exec && ct1ca != render_exec->last_ct1ca)) {
350 if (bin_exec)
351 bin_exec->last_ct0ca = ct0ca;
352 if (render_exec)
353 render_exec->last_ct1ca = ct1ca;
354 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
355 vc4_queue_hangcheck(dev);
356 return;
357 }
358
359 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
360
361 /* We've gone too long with no progress, reset. This has to
362 * be done from a work struct, since resetting can sleep and
363 * this timer hook isn't allowed to.
364 */
365 schedule_work(&vc4->hangcheck.reset_work);
366 }
367
368 static void
submit_cl(struct drm_device * dev,uint32_t thread,uint32_t start,uint32_t end)369 submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end)
370 {
371 struct vc4_dev *vc4 = to_vc4_dev(dev);
372
373 /* Set the current and end address of the control list.
374 * Writing the end register is what starts the job.
375 */
376 V3D_WRITE(V3D_CTNCA(thread), start);
377 V3D_WRITE(V3D_CTNEA(thread), end);
378 }
379
380 int
vc4_wait_for_seqno(struct drm_device * dev,uint64_t seqno,uint64_t timeout_ns,bool interruptible)381 vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns,
382 bool interruptible)
383 {
384 struct vc4_dev *vc4 = to_vc4_dev(dev);
385 int ret = 0;
386 unsigned long timeout_expire;
387 DEFINE_WAIT(wait);
388
389 if (vc4->finished_seqno >= seqno)
390 return 0;
391
392 if (timeout_ns == 0)
393 return -ETIME;
394
395 timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns);
396
397 trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns);
398 for (;;) {
399 prepare_to_wait(&vc4->job_wait_queue, &wait,
400 interruptible ? TASK_INTERRUPTIBLE :
401 TASK_UNINTERRUPTIBLE);
402
403 if (interruptible && signal_pending(current)) {
404 ret = -ERESTARTSYS;
405 break;
406 }
407
408 if (vc4->finished_seqno >= seqno)
409 break;
410
411 if (timeout_ns != ~0ull) {
412 if (time_after_eq(jiffies, timeout_expire)) {
413 ret = -ETIME;
414 break;
415 }
416 schedule_timeout(timeout_expire - jiffies);
417 } else {
418 schedule();
419 }
420 }
421
422 finish_wait(&vc4->job_wait_queue, &wait);
423 trace_vc4_wait_for_seqno_end(dev, seqno);
424
425 return ret;
426 }
427
428 static void
vc4_flush_caches(struct drm_device * dev)429 vc4_flush_caches(struct drm_device *dev)
430 {
431 struct vc4_dev *vc4 = to_vc4_dev(dev);
432
433 /* Flush the GPU L2 caches. These caches sit on top of system
434 * L3 (the 128kb or so shared with the CPU), and are
435 * non-allocating in the L3.
436 */
437 V3D_WRITE(V3D_L2CACTL,
438 V3D_L2CACTL_L2CCLR);
439
440 V3D_WRITE(V3D_SLCACTL,
441 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
442 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) |
443 VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) |
444 VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC));
445 }
446
447 static void
vc4_flush_texture_caches(struct drm_device * dev)448 vc4_flush_texture_caches(struct drm_device *dev)
449 {
450 struct vc4_dev *vc4 = to_vc4_dev(dev);
451
452 V3D_WRITE(V3D_L2CACTL,
453 V3D_L2CACTL_L2CCLR);
454
455 V3D_WRITE(V3D_SLCACTL,
456 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
457 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC));
458 }
459
460 /* Sets the registers for the next job to be actually be executed in
461 * the hardware.
462 *
463 * The job_lock should be held during this.
464 */
465 void
vc4_submit_next_bin_job(struct drm_device * dev)466 vc4_submit_next_bin_job(struct drm_device *dev)
467 {
468 struct vc4_dev *vc4 = to_vc4_dev(dev);
469 struct vc4_exec_info *exec;
470
471 again:
472 exec = vc4_first_bin_job(vc4);
473 if (!exec)
474 return;
475
476 vc4_flush_caches(dev);
477
478 /* Only start the perfmon if it was not already started by a previous
479 * job.
480 */
481 if (exec->perfmon && vc4->active_perfmon != exec->perfmon)
482 vc4_perfmon_start(vc4, exec->perfmon);
483
484 /* Either put the job in the binner if it uses the binner, or
485 * immediately move it to the to-be-rendered queue.
486 */
487 if (exec->ct0ca != exec->ct0ea) {
488 submit_cl(dev, 0, exec->ct0ca, exec->ct0ea);
489 } else {
490 struct vc4_exec_info *next;
491
492 vc4_move_job_to_render(dev, exec);
493 next = vc4_first_bin_job(vc4);
494
495 /* We can't start the next bin job if the previous job had a
496 * different perfmon instance attached to it. The same goes
497 * if one of them had a perfmon attached to it and the other
498 * one doesn't.
499 */
500 if (next && next->perfmon == exec->perfmon)
501 goto again;
502 }
503 }
504
505 void
vc4_submit_next_render_job(struct drm_device * dev)506 vc4_submit_next_render_job(struct drm_device *dev)
507 {
508 struct vc4_dev *vc4 = to_vc4_dev(dev);
509 struct vc4_exec_info *exec = vc4_first_render_job(vc4);
510
511 if (!exec)
512 return;
513
514 /* A previous RCL may have written to one of our textures, and
515 * our full cache flush at bin time may have occurred before
516 * that RCL completed. Flush the texture cache now, but not
517 * the instructions or uniforms (since we don't write those
518 * from an RCL).
519 */
520 vc4_flush_texture_caches(dev);
521
522 submit_cl(dev, 1, exec->ct1ca, exec->ct1ea);
523 }
524
525 void
vc4_move_job_to_render(struct drm_device * dev,struct vc4_exec_info * exec)526 vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec)
527 {
528 struct vc4_dev *vc4 = to_vc4_dev(dev);
529 bool was_empty = list_empty(&vc4->render_job_list);
530
531 list_move_tail(&exec->head, &vc4->render_job_list);
532 if (was_empty)
533 vc4_submit_next_render_job(dev);
534 }
535
536 static void
vc4_update_bo_seqnos(struct vc4_exec_info * exec,uint64_t seqno)537 vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno)
538 {
539 struct vc4_bo *bo;
540 unsigned i;
541
542 for (i = 0; i < exec->bo_count; i++) {
543 bo = to_vc4_bo(&exec->bo[i]->base);
544 bo->seqno = seqno;
545
546 dma_resv_add_shared_fence(bo->base.base.resv, exec->fence);
547 }
548
549 list_for_each_entry(bo, &exec->unref_list, unref_head) {
550 bo->seqno = seqno;
551 }
552
553 for (i = 0; i < exec->rcl_write_bo_count; i++) {
554 bo = to_vc4_bo(&exec->rcl_write_bo[i]->base);
555 bo->write_seqno = seqno;
556
557 dma_resv_add_excl_fence(bo->base.base.resv, exec->fence);
558 }
559 }
560
561 static void
vc4_unlock_bo_reservations(struct drm_device * dev,struct vc4_exec_info * exec,struct ww_acquire_ctx * acquire_ctx)562 vc4_unlock_bo_reservations(struct drm_device *dev,
563 struct vc4_exec_info *exec,
564 struct ww_acquire_ctx *acquire_ctx)
565 {
566 int i;
567
568 for (i = 0; i < exec->bo_count; i++) {
569 struct drm_gem_object *bo = &exec->bo[i]->base;
570
571 dma_resv_unlock(bo->resv);
572 }
573
574 ww_acquire_fini(acquire_ctx);
575 }
576
577 /* Takes the reservation lock on all the BOs being referenced, so that
578 * at queue submit time we can update the reservations.
579 *
580 * We don't lock the RCL the tile alloc/state BOs, or overflow memory
581 * (all of which are on exec->unref_list). They're entirely private
582 * to vc4, so we don't attach dma-buf fences to them.
583 */
584 static int
vc4_lock_bo_reservations(struct drm_device * dev,struct vc4_exec_info * exec,struct ww_acquire_ctx * acquire_ctx)585 vc4_lock_bo_reservations(struct drm_device *dev,
586 struct vc4_exec_info *exec,
587 struct ww_acquire_ctx *acquire_ctx)
588 {
589 int contended_lock = -1;
590 int i, ret;
591 struct drm_gem_object *bo;
592
593 ww_acquire_init(acquire_ctx, &reservation_ww_class);
594
595 retry:
596 if (contended_lock != -1) {
597 bo = &exec->bo[contended_lock]->base;
598 ret = dma_resv_lock_slow_interruptible(bo->resv, acquire_ctx);
599 if (ret) {
600 ww_acquire_done(acquire_ctx);
601 return ret;
602 }
603 }
604
605 for (i = 0; i < exec->bo_count; i++) {
606 if (i == contended_lock)
607 continue;
608
609 bo = &exec->bo[i]->base;
610
611 ret = dma_resv_lock_interruptible(bo->resv, acquire_ctx);
612 if (ret) {
613 int j;
614
615 for (j = 0; j < i; j++) {
616 bo = &exec->bo[j]->base;
617 dma_resv_unlock(bo->resv);
618 }
619
620 if (contended_lock != -1 && contended_lock >= i) {
621 bo = &exec->bo[contended_lock]->base;
622
623 dma_resv_unlock(bo->resv);
624 }
625
626 if (ret == -EDEADLK) {
627 contended_lock = i;
628 goto retry;
629 }
630
631 ww_acquire_done(acquire_ctx);
632 return ret;
633 }
634 }
635
636 ww_acquire_done(acquire_ctx);
637
638 /* Reserve space for our shared (read-only) fence references,
639 * before we commit the CL to the hardware.
640 */
641 for (i = 0; i < exec->bo_count; i++) {
642 bo = &exec->bo[i]->base;
643
644 ret = dma_resv_reserve_shared(bo->resv, 1);
645 if (ret) {
646 vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
647 return ret;
648 }
649 }
650
651 return 0;
652 }
653
654 /* Queues a struct vc4_exec_info for execution. If no job is
655 * currently executing, then submits it.
656 *
657 * Unlike most GPUs, our hardware only handles one command list at a
658 * time. To queue multiple jobs at once, we'd need to edit the
659 * previous command list to have a jump to the new one at the end, and
660 * then bump the end address. That's a change for a later date,
661 * though.
662 */
663 static int
vc4_queue_submit(struct drm_device * dev,struct vc4_exec_info * exec,struct ww_acquire_ctx * acquire_ctx,struct drm_syncobj * out_sync)664 vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec,
665 struct ww_acquire_ctx *acquire_ctx,
666 struct drm_syncobj *out_sync)
667 {
668 struct vc4_dev *vc4 = to_vc4_dev(dev);
669 struct vc4_exec_info *renderjob;
670 uint64_t seqno;
671 unsigned long irqflags;
672 struct vc4_fence *fence;
673
674 fence = kzalloc(sizeof(*fence), GFP_KERNEL);
675 if (!fence)
676 return -ENOMEM;
677 fence->dev = dev;
678
679 spin_lock_irqsave(&vc4->job_lock, irqflags);
680
681 seqno = ++vc4->emit_seqno;
682 exec->seqno = seqno;
683
684 dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock,
685 vc4->dma_fence_context, exec->seqno);
686 fence->seqno = exec->seqno;
687 exec->fence = &fence->base;
688
689 if (out_sync)
690 drm_syncobj_replace_fence(out_sync, exec->fence);
691
692 vc4_update_bo_seqnos(exec, seqno);
693
694 vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
695
696 list_add_tail(&exec->head, &vc4->bin_job_list);
697
698 /* If no bin job was executing and if the render job (if any) has the
699 * same perfmon as our job attached to it (or if both jobs don't have
700 * perfmon activated), then kick ours off. Otherwise, it'll get
701 * started when the previous job's flush/render done interrupt occurs.
702 */
703 renderjob = vc4_first_render_job(vc4);
704 if (vc4_first_bin_job(vc4) == exec &&
705 (!renderjob || renderjob->perfmon == exec->perfmon)) {
706 vc4_submit_next_bin_job(dev);
707 vc4_queue_hangcheck(dev);
708 }
709
710 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
711
712 return 0;
713 }
714
715 /**
716 * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects
717 * referenced by the job.
718 * @dev: DRM device
719 * @file_priv: DRM file for this fd
720 * @exec: V3D job being set up
721 *
722 * The command validator needs to reference BOs by their index within
723 * the submitted job's BO list. This does the validation of the job's
724 * BO list and reference counting for the lifetime of the job.
725 */
726 static int
vc4_cl_lookup_bos(struct drm_device * dev,struct drm_file * file_priv,struct vc4_exec_info * exec)727 vc4_cl_lookup_bos(struct drm_device *dev,
728 struct drm_file *file_priv,
729 struct vc4_exec_info *exec)
730 {
731 struct drm_vc4_submit_cl *args = exec->args;
732 uint32_t *handles;
733 int ret = 0;
734 int i;
735
736 exec->bo_count = args->bo_handle_count;
737
738 if (!exec->bo_count) {
739 /* See comment on bo_index for why we have to check
740 * this.
741 */
742 DRM_DEBUG("Rendering requires BOs to validate\n");
743 return -EINVAL;
744 }
745
746 exec->bo = kvmalloc_array(exec->bo_count,
747 sizeof(struct drm_gem_cma_object *),
748 GFP_KERNEL | __GFP_ZERO);
749 if (!exec->bo) {
750 DRM_ERROR("Failed to allocate validated BO pointers\n");
751 return -ENOMEM;
752 }
753
754 handles = kvmalloc_array(exec->bo_count, sizeof(uint32_t), GFP_KERNEL);
755 if (!handles) {
756 ret = -ENOMEM;
757 DRM_ERROR("Failed to allocate incoming GEM handles\n");
758 goto fail;
759 }
760
761 if (copy_from_user(handles, u64_to_user_ptr(args->bo_handles),
762 exec->bo_count * sizeof(uint32_t))) {
763 ret = -EFAULT;
764 DRM_ERROR("Failed to copy in GEM handles\n");
765 goto fail;
766 }
767
768 spin_lock(&file_priv->table_lock);
769 for (i = 0; i < exec->bo_count; i++) {
770 struct drm_gem_object *bo = idr_find(&file_priv->object_idr,
771 handles[i]);
772 if (!bo) {
773 DRM_DEBUG("Failed to look up GEM BO %d: %d\n",
774 i, handles[i]);
775 ret = -EINVAL;
776 break;
777 }
778
779 drm_gem_object_get(bo);
780 exec->bo[i] = (struct drm_gem_cma_object *)bo;
781 }
782 spin_unlock(&file_priv->table_lock);
783
784 if (ret)
785 goto fail_put_bo;
786
787 for (i = 0; i < exec->bo_count; i++) {
788 ret = vc4_bo_inc_usecnt(to_vc4_bo(&exec->bo[i]->base));
789 if (ret)
790 goto fail_dec_usecnt;
791 }
792
793 kvfree(handles);
794 return 0;
795
796 fail_dec_usecnt:
797 /* Decrease usecnt on acquired objects.
798 * We cannot rely on vc4_complete_exec() to release resources here,
799 * because vc4_complete_exec() has no information about which BO has
800 * had its ->usecnt incremented.
801 * To make things easier we just free everything explicitly and set
802 * exec->bo to NULL so that vc4_complete_exec() skips the 'BO release'
803 * step.
804 */
805 for (i-- ; i >= 0; i--)
806 vc4_bo_dec_usecnt(to_vc4_bo(&exec->bo[i]->base));
807
808 fail_put_bo:
809 /* Release any reference to acquired objects. */
810 for (i = 0; i < exec->bo_count && exec->bo[i]; i++)
811 drm_gem_object_put(&exec->bo[i]->base);
812
813 fail:
814 kvfree(handles);
815 kvfree(exec->bo);
816 exec->bo = NULL;
817 return ret;
818 }
819
820 static int
vc4_get_bcl(struct drm_device * dev,struct vc4_exec_info * exec)821 vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec)
822 {
823 struct drm_vc4_submit_cl *args = exec->args;
824 struct vc4_dev *vc4 = to_vc4_dev(dev);
825 void *temp = NULL;
826 void *bin;
827 int ret = 0;
828 uint32_t bin_offset = 0;
829 uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size,
830 16);
831 uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size;
832 uint32_t exec_size = uniforms_offset + args->uniforms_size;
833 uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) *
834 args->shader_rec_count);
835 struct vc4_bo *bo;
836
837 if (shader_rec_offset < args->bin_cl_size ||
838 uniforms_offset < shader_rec_offset ||
839 exec_size < uniforms_offset ||
840 args->shader_rec_count >= (UINT_MAX /
841 sizeof(struct vc4_shader_state)) ||
842 temp_size < exec_size) {
843 DRM_DEBUG("overflow in exec arguments\n");
844 ret = -EINVAL;
845 goto fail;
846 }
847
848 /* Allocate space where we'll store the copied in user command lists
849 * and shader records.
850 *
851 * We don't just copy directly into the BOs because we need to
852 * read the contents back for validation, and I think the
853 * bo->vaddr is uncached access.
854 */
855 temp = kvmalloc_array(temp_size, 1, GFP_KERNEL);
856 if (!temp) {
857 DRM_ERROR("Failed to allocate storage for copying "
858 "in bin/render CLs.\n");
859 ret = -ENOMEM;
860 goto fail;
861 }
862 bin = temp + bin_offset;
863 exec->shader_rec_u = temp + shader_rec_offset;
864 exec->uniforms_u = temp + uniforms_offset;
865 exec->shader_state = temp + exec_size;
866 exec->shader_state_size = args->shader_rec_count;
867
868 if (copy_from_user(bin,
869 u64_to_user_ptr(args->bin_cl),
870 args->bin_cl_size)) {
871 ret = -EFAULT;
872 goto fail;
873 }
874
875 if (copy_from_user(exec->shader_rec_u,
876 u64_to_user_ptr(args->shader_rec),
877 args->shader_rec_size)) {
878 ret = -EFAULT;
879 goto fail;
880 }
881
882 if (copy_from_user(exec->uniforms_u,
883 u64_to_user_ptr(args->uniforms),
884 args->uniforms_size)) {
885 ret = -EFAULT;
886 goto fail;
887 }
888
889 bo = vc4_bo_create(dev, exec_size, true, VC4_BO_TYPE_BCL);
890 if (IS_ERR(bo)) {
891 DRM_ERROR("Couldn't allocate BO for binning\n");
892 ret = PTR_ERR(bo);
893 goto fail;
894 }
895 exec->exec_bo = &bo->base;
896
897 list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head,
898 &exec->unref_list);
899
900 exec->ct0ca = exec->exec_bo->paddr + bin_offset;
901
902 exec->bin_u = bin;
903
904 exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset;
905 exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset;
906 exec->shader_rec_size = args->shader_rec_size;
907
908 exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset;
909 exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset;
910 exec->uniforms_size = args->uniforms_size;
911
912 ret = vc4_validate_bin_cl(dev,
913 exec->exec_bo->vaddr + bin_offset,
914 bin,
915 exec);
916 if (ret)
917 goto fail;
918
919 ret = vc4_validate_shader_recs(dev, exec);
920 if (ret)
921 goto fail;
922
923 if (exec->found_tile_binning_mode_config_packet) {
924 ret = vc4_v3d_bin_bo_get(vc4, &exec->bin_bo_used);
925 if (ret)
926 goto fail;
927 }
928
929 /* Block waiting on any previous rendering into the CS's VBO,
930 * IB, or textures, so that pixels are actually written by the
931 * time we try to read them.
932 */
933 ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true);
934
935 fail:
936 kvfree(temp);
937 return ret;
938 }
939
940 static void
vc4_complete_exec(struct drm_device * dev,struct vc4_exec_info * exec)941 vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec)
942 {
943 struct vc4_dev *vc4 = to_vc4_dev(dev);
944 unsigned long irqflags;
945 unsigned i;
946
947 /* If we got force-completed because of GPU reset rather than
948 * through our IRQ handler, signal the fence now.
949 */
950 if (exec->fence) {
951 dma_fence_signal(exec->fence);
952 dma_fence_put(exec->fence);
953 }
954
955 if (exec->bo) {
956 for (i = 0; i < exec->bo_count; i++) {
957 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base);
958
959 vc4_bo_dec_usecnt(bo);
960 drm_gem_object_put(&exec->bo[i]->base);
961 }
962 kvfree(exec->bo);
963 }
964
965 while (!list_empty(&exec->unref_list)) {
966 struct vc4_bo *bo = list_first_entry(&exec->unref_list,
967 struct vc4_bo, unref_head);
968 list_del(&bo->unref_head);
969 drm_gem_object_put(&bo->base.base);
970 }
971
972 /* Free up the allocation of any bin slots we used. */
973 spin_lock_irqsave(&vc4->job_lock, irqflags);
974 vc4->bin_alloc_used &= ~exec->bin_slots;
975 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
976
977 /* Release the reference on the binner BO if needed. */
978 if (exec->bin_bo_used)
979 vc4_v3d_bin_bo_put(vc4);
980
981 /* Release the reference we had on the perf monitor. */
982 vc4_perfmon_put(exec->perfmon);
983
984 vc4_v3d_pm_put(vc4);
985
986 kfree(exec);
987 }
988
989 void
vc4_job_handle_completed(struct vc4_dev * vc4)990 vc4_job_handle_completed(struct vc4_dev *vc4)
991 {
992 unsigned long irqflags;
993 struct vc4_seqno_cb *cb, *cb_temp;
994
995 spin_lock_irqsave(&vc4->job_lock, irqflags);
996 while (!list_empty(&vc4->job_done_list)) {
997 struct vc4_exec_info *exec =
998 list_first_entry(&vc4->job_done_list,
999 struct vc4_exec_info, head);
1000 list_del(&exec->head);
1001
1002 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1003 vc4_complete_exec(&vc4->base, exec);
1004 spin_lock_irqsave(&vc4->job_lock, irqflags);
1005 }
1006
1007 list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) {
1008 if (cb->seqno <= vc4->finished_seqno) {
1009 list_del_init(&cb->work.entry);
1010 schedule_work(&cb->work);
1011 }
1012 }
1013
1014 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1015 }
1016
vc4_seqno_cb_work(struct work_struct * work)1017 static void vc4_seqno_cb_work(struct work_struct *work)
1018 {
1019 struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work);
1020
1021 cb->func(cb);
1022 }
1023
vc4_queue_seqno_cb(struct drm_device * dev,struct vc4_seqno_cb * cb,uint64_t seqno,void (* func)(struct vc4_seqno_cb * cb))1024 int vc4_queue_seqno_cb(struct drm_device *dev,
1025 struct vc4_seqno_cb *cb, uint64_t seqno,
1026 void (*func)(struct vc4_seqno_cb *cb))
1027 {
1028 struct vc4_dev *vc4 = to_vc4_dev(dev);
1029 int ret = 0;
1030 unsigned long irqflags;
1031
1032 cb->func = func;
1033 INIT_WORK(&cb->work, vc4_seqno_cb_work);
1034
1035 spin_lock_irqsave(&vc4->job_lock, irqflags);
1036 if (seqno > vc4->finished_seqno) {
1037 cb->seqno = seqno;
1038 list_add_tail(&cb->work.entry, &vc4->seqno_cb_list);
1039 } else {
1040 schedule_work(&cb->work);
1041 }
1042 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1043
1044 return ret;
1045 }
1046
1047 /* Scheduled when any job has been completed, this walks the list of
1048 * jobs that had completed and unrefs their BOs and frees their exec
1049 * structs.
1050 */
1051 static void
vc4_job_done_work(struct work_struct * work)1052 vc4_job_done_work(struct work_struct *work)
1053 {
1054 struct vc4_dev *vc4 =
1055 container_of(work, struct vc4_dev, job_done_work);
1056
1057 vc4_job_handle_completed(vc4);
1058 }
1059
1060 static int
vc4_wait_for_seqno_ioctl_helper(struct drm_device * dev,uint64_t seqno,uint64_t * timeout_ns)1061 vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev,
1062 uint64_t seqno,
1063 uint64_t *timeout_ns)
1064 {
1065 unsigned long start = jiffies;
1066 int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true);
1067
1068 if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) {
1069 uint64_t delta = jiffies_to_nsecs(jiffies - start);
1070
1071 if (*timeout_ns >= delta)
1072 *timeout_ns -= delta;
1073 }
1074
1075 return ret;
1076 }
1077
1078 int
vc4_wait_seqno_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1079 vc4_wait_seqno_ioctl(struct drm_device *dev, void *data,
1080 struct drm_file *file_priv)
1081 {
1082 struct drm_vc4_wait_seqno *args = data;
1083
1084 return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno,
1085 &args->timeout_ns);
1086 }
1087
1088 int
vc4_wait_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1089 vc4_wait_bo_ioctl(struct drm_device *dev, void *data,
1090 struct drm_file *file_priv)
1091 {
1092 int ret;
1093 struct drm_vc4_wait_bo *args = data;
1094 struct drm_gem_object *gem_obj;
1095 struct vc4_bo *bo;
1096
1097 if (args->pad != 0)
1098 return -EINVAL;
1099
1100 gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1101 if (!gem_obj) {
1102 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1103 return -EINVAL;
1104 }
1105 bo = to_vc4_bo(gem_obj);
1106
1107 ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno,
1108 &args->timeout_ns);
1109
1110 drm_gem_object_put(gem_obj);
1111 return ret;
1112 }
1113
1114 /**
1115 * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4.
1116 * @dev: DRM device
1117 * @data: ioctl argument
1118 * @file_priv: DRM file for this fd
1119 *
1120 * This is the main entrypoint for userspace to submit a 3D frame to
1121 * the GPU. Userspace provides the binner command list (if
1122 * applicable), and the kernel sets up the render command list to draw
1123 * to the framebuffer described in the ioctl, using the command lists
1124 * that the 3D engine's binner will produce.
1125 */
1126 int
vc4_submit_cl_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1127 vc4_submit_cl_ioctl(struct drm_device *dev, void *data,
1128 struct drm_file *file_priv)
1129 {
1130 struct vc4_dev *vc4 = to_vc4_dev(dev);
1131 struct vc4_file *vc4file = file_priv->driver_priv;
1132 struct drm_vc4_submit_cl *args = data;
1133 struct drm_syncobj *out_sync = NULL;
1134 struct vc4_exec_info *exec;
1135 struct ww_acquire_ctx acquire_ctx;
1136 struct dma_fence *in_fence;
1137 int ret = 0;
1138
1139 if (!vc4->v3d) {
1140 DRM_DEBUG("VC4_SUBMIT_CL with no VC4 V3D probed\n");
1141 return -ENODEV;
1142 }
1143
1144 if ((args->flags & ~(VC4_SUBMIT_CL_USE_CLEAR_COLOR |
1145 VC4_SUBMIT_CL_FIXED_RCL_ORDER |
1146 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_X |
1147 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_Y)) != 0) {
1148 DRM_DEBUG("Unknown flags: 0x%02x\n", args->flags);
1149 return -EINVAL;
1150 }
1151
1152 if (args->pad2 != 0) {
1153 DRM_DEBUG("Invalid pad: 0x%08x\n", args->pad2);
1154 return -EINVAL;
1155 }
1156
1157 exec = kcalloc(1, sizeof(*exec), GFP_KERNEL);
1158 if (!exec) {
1159 DRM_ERROR("malloc failure on exec struct\n");
1160 return -ENOMEM;
1161 }
1162
1163 ret = vc4_v3d_pm_get(vc4);
1164 if (ret) {
1165 kfree(exec);
1166 return ret;
1167 }
1168
1169 exec->args = args;
1170 INIT_LIST_HEAD(&exec->unref_list);
1171
1172 ret = vc4_cl_lookup_bos(dev, file_priv, exec);
1173 if (ret)
1174 goto fail;
1175
1176 if (args->perfmonid) {
1177 exec->perfmon = vc4_perfmon_find(vc4file,
1178 args->perfmonid);
1179 if (!exec->perfmon) {
1180 ret = -ENOENT;
1181 goto fail;
1182 }
1183 }
1184
1185 if (args->in_sync) {
1186 ret = drm_syncobj_find_fence(file_priv, args->in_sync,
1187 0, 0, &in_fence);
1188 if (ret)
1189 goto fail;
1190
1191 /* When the fence (or fence array) is exclusively from our
1192 * context we can skip the wait since jobs are executed in
1193 * order of their submission through this ioctl and this can
1194 * only have fences from a prior job.
1195 */
1196 if (!dma_fence_match_context(in_fence,
1197 vc4->dma_fence_context)) {
1198 ret = dma_fence_wait(in_fence, true);
1199 if (ret) {
1200 dma_fence_put(in_fence);
1201 goto fail;
1202 }
1203 }
1204
1205 dma_fence_put(in_fence);
1206 }
1207
1208 if (exec->args->bin_cl_size != 0) {
1209 ret = vc4_get_bcl(dev, exec);
1210 if (ret)
1211 goto fail;
1212 } else {
1213 exec->ct0ca = 0;
1214 exec->ct0ea = 0;
1215 }
1216
1217 ret = vc4_get_rcl(dev, exec);
1218 if (ret)
1219 goto fail;
1220
1221 ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx);
1222 if (ret)
1223 goto fail;
1224
1225 if (args->out_sync) {
1226 out_sync = drm_syncobj_find(file_priv, args->out_sync);
1227 if (!out_sync) {
1228 ret = -EINVAL;
1229 goto fail;
1230 }
1231
1232 /* We replace the fence in out_sync in vc4_queue_submit since
1233 * the render job could execute immediately after that call.
1234 * If it finishes before our ioctl processing resumes the
1235 * render job fence could already have been freed.
1236 */
1237 }
1238
1239 /* Clear this out of the struct we'll be putting in the queue,
1240 * since it's part of our stack.
1241 */
1242 exec->args = NULL;
1243
1244 ret = vc4_queue_submit(dev, exec, &acquire_ctx, out_sync);
1245
1246 /* The syncobj isn't part of the exec data and we need to free our
1247 * reference even if job submission failed.
1248 */
1249 if (out_sync)
1250 drm_syncobj_put(out_sync);
1251
1252 if (ret)
1253 goto fail;
1254
1255 /* Return the seqno for our job. */
1256 args->seqno = vc4->emit_seqno;
1257
1258 return 0;
1259
1260 fail:
1261 vc4_complete_exec(&vc4->base, exec);
1262
1263 return ret;
1264 }
1265
1266 static void vc4_gem_destroy(struct drm_device *dev, void *unused);
vc4_gem_init(struct drm_device * dev)1267 int vc4_gem_init(struct drm_device *dev)
1268 {
1269 struct vc4_dev *vc4 = to_vc4_dev(dev);
1270
1271 vc4->dma_fence_context = dma_fence_context_alloc(1);
1272
1273 INIT_LIST_HEAD(&vc4->bin_job_list);
1274 INIT_LIST_HEAD(&vc4->render_job_list);
1275 INIT_LIST_HEAD(&vc4->job_done_list);
1276 INIT_LIST_HEAD(&vc4->seqno_cb_list);
1277 spin_lock_init(&vc4->job_lock);
1278
1279 INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work);
1280 timer_setup(&vc4->hangcheck.timer, vc4_hangcheck_elapsed, 0);
1281
1282 INIT_WORK(&vc4->job_done_work, vc4_job_done_work);
1283
1284 mutex_init(&vc4->power_lock);
1285
1286 INIT_LIST_HEAD(&vc4->purgeable.list);
1287 mutex_init(&vc4->purgeable.lock);
1288
1289 return drmm_add_action_or_reset(dev, vc4_gem_destroy, NULL);
1290 }
1291
vc4_gem_destroy(struct drm_device * dev,void * unused)1292 static void vc4_gem_destroy(struct drm_device *dev, void *unused)
1293 {
1294 struct vc4_dev *vc4 = to_vc4_dev(dev);
1295
1296 /* Waiting for exec to finish would need to be done before
1297 * unregistering V3D.
1298 */
1299 WARN_ON(vc4->emit_seqno != vc4->finished_seqno);
1300
1301 /* V3D should already have disabled its interrupt and cleared
1302 * the overflow allocation registers. Now free the object.
1303 */
1304 if (vc4->bin_bo) {
1305 drm_gem_object_put(&vc4->bin_bo->base.base);
1306 vc4->bin_bo = NULL;
1307 }
1308
1309 if (vc4->hang_state)
1310 vc4_free_hang_state(dev, vc4->hang_state);
1311 }
1312
vc4_gem_madvise_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1313 int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data,
1314 struct drm_file *file_priv)
1315 {
1316 struct drm_vc4_gem_madvise *args = data;
1317 struct drm_gem_object *gem_obj;
1318 struct vc4_bo *bo;
1319 int ret;
1320
1321 switch (args->madv) {
1322 case VC4_MADV_DONTNEED:
1323 case VC4_MADV_WILLNEED:
1324 break;
1325 default:
1326 return -EINVAL;
1327 }
1328
1329 if (args->pad != 0)
1330 return -EINVAL;
1331
1332 gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1333 if (!gem_obj) {
1334 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1335 return -ENOENT;
1336 }
1337
1338 bo = to_vc4_bo(gem_obj);
1339
1340 /* Only BOs exposed to userspace can be purged. */
1341 if (bo->madv == __VC4_MADV_NOTSUPP) {
1342 DRM_DEBUG("madvise not supported on this BO\n");
1343 ret = -EINVAL;
1344 goto out_put_gem;
1345 }
1346
1347 /* Not sure it's safe to purge imported BOs. Let's just assume it's
1348 * not until proven otherwise.
1349 */
1350 if (gem_obj->import_attach) {
1351 DRM_DEBUG("madvise not supported on imported BOs\n");
1352 ret = -EINVAL;
1353 goto out_put_gem;
1354 }
1355
1356 mutex_lock(&bo->madv_lock);
1357
1358 if (args->madv == VC4_MADV_DONTNEED && bo->madv == VC4_MADV_WILLNEED &&
1359 !refcount_read(&bo->usecnt)) {
1360 /* If the BO is about to be marked as purgeable, is not used
1361 * and is not already purgeable or purged, add it to the
1362 * purgeable list.
1363 */
1364 vc4_bo_add_to_purgeable_pool(bo);
1365 } else if (args->madv == VC4_MADV_WILLNEED &&
1366 bo->madv == VC4_MADV_DONTNEED &&
1367 !refcount_read(&bo->usecnt)) {
1368 /* The BO has not been purged yet, just remove it from
1369 * the purgeable list.
1370 */
1371 vc4_bo_remove_from_purgeable_pool(bo);
1372 }
1373
1374 /* Save the purged state. */
1375 args->retained = bo->madv != __VC4_MADV_PURGED;
1376
1377 /* Update internal madv state only if the bo was not purged. */
1378 if (bo->madv != __VC4_MADV_PURGED)
1379 bo->madv = args->madv;
1380
1381 mutex_unlock(&bo->madv_lock);
1382
1383 ret = 0;
1384
1385 out_put_gem:
1386 drm_gem_object_put(gem_obj);
1387
1388 return ret;
1389 }
1390