• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 
52 #include "internal.h"
53 
54 #include <trace/hooks/buffer.h>
55 
56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
57 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
58 			 enum rw_hint hint, struct writeback_control *wbc);
59 
60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
61 
touch_buffer(struct buffer_head * bh)62 inline void touch_buffer(struct buffer_head *bh)
63 {
64 	trace_block_touch_buffer(bh);
65 	mark_page_accessed(bh->b_page);
66 }
67 EXPORT_SYMBOL(touch_buffer);
68 
__lock_buffer(struct buffer_head * bh)69 void __lock_buffer(struct buffer_head *bh)
70 {
71 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72 }
73 EXPORT_SYMBOL(__lock_buffer);
74 
unlock_buffer(struct buffer_head * bh)75 void unlock_buffer(struct buffer_head *bh)
76 {
77 	clear_bit_unlock(BH_Lock, &bh->b_state);
78 	smp_mb__after_atomic();
79 	wake_up_bit(&bh->b_state, BH_Lock);
80 }
81 EXPORT_SYMBOL(unlock_buffer);
82 
83 /*
84  * Returns if the page has dirty or writeback buffers. If all the buffers
85  * are unlocked and clean then the PageDirty information is stale. If
86  * any of the pages are locked, it is assumed they are locked for IO.
87  */
buffer_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)88 void buffer_check_dirty_writeback(struct page *page,
89 				     bool *dirty, bool *writeback)
90 {
91 	struct buffer_head *head, *bh;
92 	*dirty = false;
93 	*writeback = false;
94 
95 	BUG_ON(!PageLocked(page));
96 
97 	if (!page_has_buffers(page))
98 		return;
99 
100 	if (PageWriteback(page))
101 		*writeback = true;
102 
103 	head = page_buffers(page);
104 	bh = head;
105 	do {
106 		if (buffer_locked(bh))
107 			*writeback = true;
108 
109 		if (buffer_dirty(bh))
110 			*dirty = true;
111 
112 		bh = bh->b_this_page;
113 	} while (bh != head);
114 }
115 EXPORT_SYMBOL(buffer_check_dirty_writeback);
116 
117 /*
118  * Block until a buffer comes unlocked.  This doesn't stop it
119  * from becoming locked again - you have to lock it yourself
120  * if you want to preserve its state.
121  */
__wait_on_buffer(struct buffer_head * bh)122 void __wait_on_buffer(struct buffer_head * bh)
123 {
124 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
125 }
126 EXPORT_SYMBOL(__wait_on_buffer);
127 
buffer_io_error(struct buffer_head * bh,char * msg)128 static void buffer_io_error(struct buffer_head *bh, char *msg)
129 {
130 	if (!test_bit(BH_Quiet, &bh->b_state))
131 		printk_ratelimited(KERN_ERR
132 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
133 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
134 }
135 
136 /*
137  * End-of-IO handler helper function which does not touch the bh after
138  * unlocking it.
139  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
140  * a race there is benign: unlock_buffer() only use the bh's address for
141  * hashing after unlocking the buffer, so it doesn't actually touch the bh
142  * itself.
143  */
__end_buffer_read_notouch(struct buffer_head * bh,int uptodate)144 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
145 {
146 	if (uptodate) {
147 		set_buffer_uptodate(bh);
148 	} else {
149 		/* This happens, due to failed read-ahead attempts. */
150 		clear_buffer_uptodate(bh);
151 	}
152 	unlock_buffer(bh);
153 }
154 
155 /*
156  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
157  * unlock the buffer. This is what ll_rw_block uses too.
158  */
end_buffer_read_sync(struct buffer_head * bh,int uptodate)159 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
160 {
161 	__end_buffer_read_notouch(bh, uptodate);
162 	put_bh(bh);
163 }
164 EXPORT_SYMBOL(end_buffer_read_sync);
165 
end_buffer_write_sync(struct buffer_head * bh,int uptodate)166 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
167 {
168 	if (uptodate) {
169 		set_buffer_uptodate(bh);
170 	} else {
171 		buffer_io_error(bh, ", lost sync page write");
172 		mark_buffer_write_io_error(bh);
173 		clear_buffer_uptodate(bh);
174 	}
175 	unlock_buffer(bh);
176 	put_bh(bh);
177 }
178 EXPORT_SYMBOL_NS(end_buffer_write_sync, ANDROID_GKI_VFS_EXPORT_ONLY);
179 
180 /*
181  * Various filesystems appear to want __find_get_block to be non-blocking.
182  * But it's the page lock which protects the buffers.  To get around this,
183  * we get exclusion from try_to_free_buffers with the blockdev mapping's
184  * private_lock.
185  *
186  * Hack idea: for the blockdev mapping, private_lock contention
187  * may be quite high.  This code could TryLock the page, and if that
188  * succeeds, there is no need to take private_lock.
189  */
190 static struct buffer_head *
__find_get_block_slow(struct block_device * bdev,sector_t block)191 __find_get_block_slow(struct block_device *bdev, sector_t block)
192 {
193 	struct inode *bd_inode = bdev->bd_inode;
194 	struct address_space *bd_mapping = bd_inode->i_mapping;
195 	struct buffer_head *ret = NULL;
196 	pgoff_t index;
197 	struct buffer_head *bh;
198 	struct buffer_head *head;
199 	struct page *page;
200 	int all_mapped = 1;
201 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
202 
203 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
204 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
205 	if (!page)
206 		goto out;
207 
208 	spin_lock(&bd_mapping->private_lock);
209 	if (!page_has_buffers(page))
210 		goto out_unlock;
211 	head = page_buffers(page);
212 	bh = head;
213 	do {
214 		if (!buffer_mapped(bh))
215 			all_mapped = 0;
216 		else if (bh->b_blocknr == block) {
217 			ret = bh;
218 			get_bh(bh);
219 			goto out_unlock;
220 		}
221 		bh = bh->b_this_page;
222 	} while (bh != head);
223 
224 	/* we might be here because some of the buffers on this page are
225 	 * not mapped.  This is due to various races between
226 	 * file io on the block device and getblk.  It gets dealt with
227 	 * elsewhere, don't buffer_error if we had some unmapped buffers
228 	 */
229 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
230 	if (all_mapped && __ratelimit(&last_warned)) {
231 		printk("__find_get_block_slow() failed. block=%llu, "
232 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
233 		       "device %pg blocksize: %d\n",
234 		       (unsigned long long)block,
235 		       (unsigned long long)bh->b_blocknr,
236 		       bh->b_state, bh->b_size, bdev,
237 		       1 << bd_inode->i_blkbits);
238 	}
239 out_unlock:
240 	spin_unlock(&bd_mapping->private_lock);
241 	put_page(page);
242 out:
243 	return ret;
244 }
245 
end_buffer_async_read(struct buffer_head * bh,int uptodate)246 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
247 {
248 	unsigned long flags;
249 	struct buffer_head *first;
250 	struct buffer_head *tmp;
251 	struct page *page;
252 	int page_uptodate = 1;
253 
254 	BUG_ON(!buffer_async_read(bh));
255 
256 	page = bh->b_page;
257 	if (uptodate) {
258 		set_buffer_uptodate(bh);
259 	} else {
260 		clear_buffer_uptodate(bh);
261 		buffer_io_error(bh, ", async page read");
262 		SetPageError(page);
263 	}
264 
265 	/*
266 	 * Be _very_ careful from here on. Bad things can happen if
267 	 * two buffer heads end IO at almost the same time and both
268 	 * decide that the page is now completely done.
269 	 */
270 	first = page_buffers(page);
271 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
272 	clear_buffer_async_read(bh);
273 	unlock_buffer(bh);
274 	tmp = bh;
275 	do {
276 		if (!buffer_uptodate(tmp))
277 			page_uptodate = 0;
278 		if (buffer_async_read(tmp)) {
279 			BUG_ON(!buffer_locked(tmp));
280 			goto still_busy;
281 		}
282 		tmp = tmp->b_this_page;
283 	} while (tmp != bh);
284 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
285 
286 	/*
287 	 * If none of the buffers had errors and they are all
288 	 * uptodate then we can set the page uptodate.
289 	 */
290 	if (page_uptodate && !PageError(page))
291 		SetPageUptodate(page);
292 	unlock_page(page);
293 	return;
294 
295 still_busy:
296 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
297 	return;
298 }
299 
300 struct decrypt_bh_ctx {
301 	struct work_struct work;
302 	struct buffer_head *bh;
303 };
304 
decrypt_bh(struct work_struct * work)305 static void decrypt_bh(struct work_struct *work)
306 {
307 	struct decrypt_bh_ctx *ctx =
308 		container_of(work, struct decrypt_bh_ctx, work);
309 	struct buffer_head *bh = ctx->bh;
310 	int err;
311 
312 	err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
313 					       bh_offset(bh));
314 	end_buffer_async_read(bh, err == 0);
315 	kfree(ctx);
316 }
317 
318 /*
319  * I/O completion handler for block_read_full_page() - pages
320  * which come unlocked at the end of I/O.
321  */
end_buffer_async_read_io(struct buffer_head * bh,int uptodate)322 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
323 {
324 	/* Decrypt if needed */
325 	if (uptodate &&
326 	    fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
327 		struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
328 
329 		if (ctx) {
330 			INIT_WORK(&ctx->work, decrypt_bh);
331 			ctx->bh = bh;
332 			fscrypt_enqueue_decrypt_work(&ctx->work);
333 			return;
334 		}
335 		uptodate = 0;
336 	}
337 	end_buffer_async_read(bh, uptodate);
338 }
339 
340 /*
341  * Completion handler for block_write_full_page() - pages which are unlocked
342  * during I/O, and which have PageWriteback cleared upon I/O completion.
343  */
end_buffer_async_write(struct buffer_head * bh,int uptodate)344 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
345 {
346 	unsigned long flags;
347 	struct buffer_head *first;
348 	struct buffer_head *tmp;
349 	struct page *page;
350 
351 	BUG_ON(!buffer_async_write(bh));
352 
353 	page = bh->b_page;
354 	if (uptodate) {
355 		set_buffer_uptodate(bh);
356 	} else {
357 		buffer_io_error(bh, ", lost async page write");
358 		mark_buffer_write_io_error(bh);
359 		clear_buffer_uptodate(bh);
360 		SetPageError(page);
361 	}
362 
363 	first = page_buffers(page);
364 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
365 
366 	clear_buffer_async_write(bh);
367 	unlock_buffer(bh);
368 	tmp = bh->b_this_page;
369 	while (tmp != bh) {
370 		if (buffer_async_write(tmp)) {
371 			BUG_ON(!buffer_locked(tmp));
372 			goto still_busy;
373 		}
374 		tmp = tmp->b_this_page;
375 	}
376 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
377 	end_page_writeback(page);
378 	return;
379 
380 still_busy:
381 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
382 	return;
383 }
384 EXPORT_SYMBOL(end_buffer_async_write);
385 
386 /*
387  * If a page's buffers are under async readin (end_buffer_async_read
388  * completion) then there is a possibility that another thread of
389  * control could lock one of the buffers after it has completed
390  * but while some of the other buffers have not completed.  This
391  * locked buffer would confuse end_buffer_async_read() into not unlocking
392  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
393  * that this buffer is not under async I/O.
394  *
395  * The page comes unlocked when it has no locked buffer_async buffers
396  * left.
397  *
398  * PageLocked prevents anyone starting new async I/O reads any of
399  * the buffers.
400  *
401  * PageWriteback is used to prevent simultaneous writeout of the same
402  * page.
403  *
404  * PageLocked prevents anyone from starting writeback of a page which is
405  * under read I/O (PageWriteback is only ever set against a locked page).
406  */
mark_buffer_async_read(struct buffer_head * bh)407 static void mark_buffer_async_read(struct buffer_head *bh)
408 {
409 	bh->b_end_io = end_buffer_async_read_io;
410 	set_buffer_async_read(bh);
411 }
412 
mark_buffer_async_write_endio(struct buffer_head * bh,bh_end_io_t * handler)413 static void mark_buffer_async_write_endio(struct buffer_head *bh,
414 					  bh_end_io_t *handler)
415 {
416 	bh->b_end_io = handler;
417 	set_buffer_async_write(bh);
418 }
419 
mark_buffer_async_write(struct buffer_head * bh)420 void mark_buffer_async_write(struct buffer_head *bh)
421 {
422 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
423 }
424 EXPORT_SYMBOL_NS(mark_buffer_async_write, ANDROID_GKI_VFS_EXPORT_ONLY);
425 
426 
427 /*
428  * fs/buffer.c contains helper functions for buffer-backed address space's
429  * fsync functions.  A common requirement for buffer-based filesystems is
430  * that certain data from the backing blockdev needs to be written out for
431  * a successful fsync().  For example, ext2 indirect blocks need to be
432  * written back and waited upon before fsync() returns.
433  *
434  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
435  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
436  * management of a list of dependent buffers at ->i_mapping->private_list.
437  *
438  * Locking is a little subtle: try_to_free_buffers() will remove buffers
439  * from their controlling inode's queue when they are being freed.  But
440  * try_to_free_buffers() will be operating against the *blockdev* mapping
441  * at the time, not against the S_ISREG file which depends on those buffers.
442  * So the locking for private_list is via the private_lock in the address_space
443  * which backs the buffers.  Which is different from the address_space
444  * against which the buffers are listed.  So for a particular address_space,
445  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
446  * mapping->private_list will always be protected by the backing blockdev's
447  * ->private_lock.
448  *
449  * Which introduces a requirement: all buffers on an address_space's
450  * ->private_list must be from the same address_space: the blockdev's.
451  *
452  * address_spaces which do not place buffers at ->private_list via these
453  * utility functions are free to use private_lock and private_list for
454  * whatever they want.  The only requirement is that list_empty(private_list)
455  * be true at clear_inode() time.
456  *
457  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
458  * filesystems should do that.  invalidate_inode_buffers() should just go
459  * BUG_ON(!list_empty).
460  *
461  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
462  * take an address_space, not an inode.  And it should be called
463  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
464  * queued up.
465  *
466  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
467  * list if it is already on a list.  Because if the buffer is on a list,
468  * it *must* already be on the right one.  If not, the filesystem is being
469  * silly.  This will save a ton of locking.  But first we have to ensure
470  * that buffers are taken *off* the old inode's list when they are freed
471  * (presumably in truncate).  That requires careful auditing of all
472  * filesystems (do it inside bforget()).  It could also be done by bringing
473  * b_inode back.
474  */
475 
476 /*
477  * The buffer's backing address_space's private_lock must be held
478  */
__remove_assoc_queue(struct buffer_head * bh)479 static void __remove_assoc_queue(struct buffer_head *bh)
480 {
481 	list_del_init(&bh->b_assoc_buffers);
482 	WARN_ON(!bh->b_assoc_map);
483 	bh->b_assoc_map = NULL;
484 }
485 
inode_has_buffers(struct inode * inode)486 int inode_has_buffers(struct inode *inode)
487 {
488 	return !list_empty(&inode->i_data.private_list);
489 }
490 
491 /*
492  * osync is designed to support O_SYNC io.  It waits synchronously for
493  * all already-submitted IO to complete, but does not queue any new
494  * writes to the disk.
495  *
496  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
497  * you dirty the buffers, and then use osync_inode_buffers to wait for
498  * completion.  Any other dirty buffers which are not yet queued for
499  * write will not be flushed to disk by the osync.
500  */
osync_buffers_list(spinlock_t * lock,struct list_head * list)501 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
502 {
503 	struct buffer_head *bh;
504 	struct list_head *p;
505 	int err = 0;
506 
507 	spin_lock(lock);
508 repeat:
509 	list_for_each_prev(p, list) {
510 		bh = BH_ENTRY(p);
511 		if (buffer_locked(bh)) {
512 			get_bh(bh);
513 			spin_unlock(lock);
514 			wait_on_buffer(bh);
515 			if (!buffer_uptodate(bh))
516 				err = -EIO;
517 			brelse(bh);
518 			spin_lock(lock);
519 			goto repeat;
520 		}
521 	}
522 	spin_unlock(lock);
523 	return err;
524 }
525 
emergency_thaw_bdev(struct super_block * sb)526 void emergency_thaw_bdev(struct super_block *sb)
527 {
528 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
529 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
530 }
531 
532 /**
533  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
534  * @mapping: the mapping which wants those buffers written
535  *
536  * Starts I/O against the buffers at mapping->private_list, and waits upon
537  * that I/O.
538  *
539  * Basically, this is a convenience function for fsync().
540  * @mapping is a file or directory which needs those buffers to be written for
541  * a successful fsync().
542  */
sync_mapping_buffers(struct address_space * mapping)543 int sync_mapping_buffers(struct address_space *mapping)
544 {
545 	struct address_space *buffer_mapping = mapping->private_data;
546 
547 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
548 		return 0;
549 
550 	return fsync_buffers_list(&buffer_mapping->private_lock,
551 					&mapping->private_list);
552 }
553 EXPORT_SYMBOL(sync_mapping_buffers);
554 
555 /*
556  * Called when we've recently written block `bblock', and it is known that
557  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
558  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
559  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
560  */
write_boundary_block(struct block_device * bdev,sector_t bblock,unsigned blocksize)561 void write_boundary_block(struct block_device *bdev,
562 			sector_t bblock, unsigned blocksize)
563 {
564 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
565 	if (bh) {
566 		if (buffer_dirty(bh))
567 			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
568 		put_bh(bh);
569 	}
570 }
571 
mark_buffer_dirty_inode(struct buffer_head * bh,struct inode * inode)572 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
573 {
574 	struct address_space *mapping = inode->i_mapping;
575 	struct address_space *buffer_mapping = bh->b_page->mapping;
576 
577 	mark_buffer_dirty(bh);
578 	if (!mapping->private_data) {
579 		mapping->private_data = buffer_mapping;
580 	} else {
581 		BUG_ON(mapping->private_data != buffer_mapping);
582 	}
583 	if (!bh->b_assoc_map) {
584 		spin_lock(&buffer_mapping->private_lock);
585 		list_move_tail(&bh->b_assoc_buffers,
586 				&mapping->private_list);
587 		bh->b_assoc_map = mapping;
588 		spin_unlock(&buffer_mapping->private_lock);
589 	}
590 }
591 EXPORT_SYMBOL(mark_buffer_dirty_inode);
592 
593 /*
594  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
595  * dirty.
596  *
597  * If warn is true, then emit a warning if the page is not uptodate and has
598  * not been truncated.
599  *
600  * The caller must hold lock_page_memcg().
601  */
__set_page_dirty(struct page * page,struct address_space * mapping,int warn)602 void __set_page_dirty(struct page *page, struct address_space *mapping,
603 			     int warn)
604 {
605 	unsigned long flags;
606 
607 	xa_lock_irqsave(&mapping->i_pages, flags);
608 	if (page->mapping) {	/* Race with truncate? */
609 		WARN_ON_ONCE(warn && !PageUptodate(page));
610 		account_page_dirtied(page, mapping);
611 		__xa_set_mark(&mapping->i_pages, page_index(page),
612 				PAGECACHE_TAG_DIRTY);
613 	}
614 	xa_unlock_irqrestore(&mapping->i_pages, flags);
615 }
616 EXPORT_SYMBOL_GPL(__set_page_dirty);
617 
618 /*
619  * Add a page to the dirty page list.
620  *
621  * It is a sad fact of life that this function is called from several places
622  * deeply under spinlocking.  It may not sleep.
623  *
624  * If the page has buffers, the uptodate buffers are set dirty, to preserve
625  * dirty-state coherency between the page and the buffers.  It the page does
626  * not have buffers then when they are later attached they will all be set
627  * dirty.
628  *
629  * The buffers are dirtied before the page is dirtied.  There's a small race
630  * window in which a writepage caller may see the page cleanness but not the
631  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
632  * before the buffers, a concurrent writepage caller could clear the page dirty
633  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
634  * page on the dirty page list.
635  *
636  * We use private_lock to lock against try_to_free_buffers while using the
637  * page's buffer list.  Also use this to protect against clean buffers being
638  * added to the page after it was set dirty.
639  *
640  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
641  * address_space though.
642  */
__set_page_dirty_buffers(struct page * page)643 int __set_page_dirty_buffers(struct page *page)
644 {
645 	int newly_dirty;
646 	struct address_space *mapping = page_mapping(page);
647 
648 	if (unlikely(!mapping))
649 		return !TestSetPageDirty(page);
650 
651 	spin_lock(&mapping->private_lock);
652 	if (page_has_buffers(page)) {
653 		struct buffer_head *head = page_buffers(page);
654 		struct buffer_head *bh = head;
655 
656 		do {
657 			set_buffer_dirty(bh);
658 			bh = bh->b_this_page;
659 		} while (bh != head);
660 	}
661 	/*
662 	 * Lock out page->mem_cgroup migration to keep PageDirty
663 	 * synchronized with per-memcg dirty page counters.
664 	 */
665 	lock_page_memcg(page);
666 	newly_dirty = !TestSetPageDirty(page);
667 	spin_unlock(&mapping->private_lock);
668 
669 	if (newly_dirty)
670 		__set_page_dirty(page, mapping, 1);
671 
672 	unlock_page_memcg(page);
673 
674 	if (newly_dirty)
675 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
676 
677 	return newly_dirty;
678 }
679 EXPORT_SYMBOL_NS(__set_page_dirty_buffers, ANDROID_GKI_VFS_EXPORT_ONLY);
680 
681 /*
682  * Write out and wait upon a list of buffers.
683  *
684  * We have conflicting pressures: we want to make sure that all
685  * initially dirty buffers get waited on, but that any subsequently
686  * dirtied buffers don't.  After all, we don't want fsync to last
687  * forever if somebody is actively writing to the file.
688  *
689  * Do this in two main stages: first we copy dirty buffers to a
690  * temporary inode list, queueing the writes as we go.  Then we clean
691  * up, waiting for those writes to complete.
692  *
693  * During this second stage, any subsequent updates to the file may end
694  * up refiling the buffer on the original inode's dirty list again, so
695  * there is a chance we will end up with a buffer queued for write but
696  * not yet completed on that list.  So, as a final cleanup we go through
697  * the osync code to catch these locked, dirty buffers without requeuing
698  * any newly dirty buffers for write.
699  */
fsync_buffers_list(spinlock_t * lock,struct list_head * list)700 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
701 {
702 	struct buffer_head *bh;
703 	struct list_head tmp;
704 	struct address_space *mapping;
705 	int err = 0, err2;
706 	struct blk_plug plug;
707 
708 	INIT_LIST_HEAD(&tmp);
709 	blk_start_plug(&plug);
710 
711 	spin_lock(lock);
712 	while (!list_empty(list)) {
713 		bh = BH_ENTRY(list->next);
714 		mapping = bh->b_assoc_map;
715 		__remove_assoc_queue(bh);
716 		/* Avoid race with mark_buffer_dirty_inode() which does
717 		 * a lockless check and we rely on seeing the dirty bit */
718 		smp_mb();
719 		if (buffer_dirty(bh) || buffer_locked(bh)) {
720 			list_add(&bh->b_assoc_buffers, &tmp);
721 			bh->b_assoc_map = mapping;
722 			if (buffer_dirty(bh)) {
723 				get_bh(bh);
724 				spin_unlock(lock);
725 				/*
726 				 * Ensure any pending I/O completes so that
727 				 * write_dirty_buffer() actually writes the
728 				 * current contents - it is a noop if I/O is
729 				 * still in flight on potentially older
730 				 * contents.
731 				 */
732 				write_dirty_buffer(bh, REQ_SYNC);
733 
734 				/*
735 				 * Kick off IO for the previous mapping. Note
736 				 * that we will not run the very last mapping,
737 				 * wait_on_buffer() will do that for us
738 				 * through sync_buffer().
739 				 */
740 				brelse(bh);
741 				spin_lock(lock);
742 			}
743 		}
744 	}
745 
746 	spin_unlock(lock);
747 	blk_finish_plug(&plug);
748 	spin_lock(lock);
749 
750 	while (!list_empty(&tmp)) {
751 		bh = BH_ENTRY(tmp.prev);
752 		get_bh(bh);
753 		mapping = bh->b_assoc_map;
754 		__remove_assoc_queue(bh);
755 		/* Avoid race with mark_buffer_dirty_inode() which does
756 		 * a lockless check and we rely on seeing the dirty bit */
757 		smp_mb();
758 		if (buffer_dirty(bh)) {
759 			list_add(&bh->b_assoc_buffers,
760 				 &mapping->private_list);
761 			bh->b_assoc_map = mapping;
762 		}
763 		spin_unlock(lock);
764 		wait_on_buffer(bh);
765 		if (!buffer_uptodate(bh))
766 			err = -EIO;
767 		brelse(bh);
768 		spin_lock(lock);
769 	}
770 
771 	spin_unlock(lock);
772 	err2 = osync_buffers_list(lock, list);
773 	if (err)
774 		return err;
775 	else
776 		return err2;
777 }
778 
779 /*
780  * Invalidate any and all dirty buffers on a given inode.  We are
781  * probably unmounting the fs, but that doesn't mean we have already
782  * done a sync().  Just drop the buffers from the inode list.
783  *
784  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
785  * assumes that all the buffers are against the blockdev.  Not true
786  * for reiserfs.
787  */
invalidate_inode_buffers(struct inode * inode)788 void invalidate_inode_buffers(struct inode *inode)
789 {
790 	if (inode_has_buffers(inode)) {
791 		struct address_space *mapping = &inode->i_data;
792 		struct list_head *list = &mapping->private_list;
793 		struct address_space *buffer_mapping = mapping->private_data;
794 
795 		spin_lock(&buffer_mapping->private_lock);
796 		while (!list_empty(list))
797 			__remove_assoc_queue(BH_ENTRY(list->next));
798 		spin_unlock(&buffer_mapping->private_lock);
799 	}
800 }
801 EXPORT_SYMBOL(invalidate_inode_buffers);
802 
803 /*
804  * Remove any clean buffers from the inode's buffer list.  This is called
805  * when we're trying to free the inode itself.  Those buffers can pin it.
806  *
807  * Returns true if all buffers were removed.
808  */
remove_inode_buffers(struct inode * inode)809 int remove_inode_buffers(struct inode *inode)
810 {
811 	int ret = 1;
812 
813 	if (inode_has_buffers(inode)) {
814 		struct address_space *mapping = &inode->i_data;
815 		struct list_head *list = &mapping->private_list;
816 		struct address_space *buffer_mapping = mapping->private_data;
817 
818 		spin_lock(&buffer_mapping->private_lock);
819 		while (!list_empty(list)) {
820 			struct buffer_head *bh = BH_ENTRY(list->next);
821 			if (buffer_dirty(bh)) {
822 				ret = 0;
823 				break;
824 			}
825 			__remove_assoc_queue(bh);
826 		}
827 		spin_unlock(&buffer_mapping->private_lock);
828 	}
829 	return ret;
830 }
831 
832 /*
833  * Create the appropriate buffers when given a page for data area and
834  * the size of each buffer.. Use the bh->b_this_page linked list to
835  * follow the buffers created.  Return NULL if unable to create more
836  * buffers.
837  *
838  * The retry flag is used to differentiate async IO (paging, swapping)
839  * which may not fail from ordinary buffer allocations.
840  */
alloc_page_buffers(struct page * page,unsigned long size,bool retry)841 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
842 		bool retry)
843 {
844 	struct buffer_head *bh, *head;
845 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
846 	long offset;
847 	struct mem_cgroup *memcg, *old_memcg;
848 
849 	if (retry)
850 		gfp |= __GFP_NOFAIL;
851 
852 	memcg = get_mem_cgroup_from_page(page);
853 	old_memcg = set_active_memcg(memcg);
854 
855 	head = NULL;
856 	offset = PAGE_SIZE;
857 	while ((offset -= size) >= 0) {
858 		bh = alloc_buffer_head(gfp);
859 		if (!bh)
860 			goto no_grow;
861 
862 		bh->b_this_page = head;
863 		bh->b_blocknr = -1;
864 		head = bh;
865 
866 		bh->b_size = size;
867 
868 		/* Link the buffer to its page */
869 		set_bh_page(bh, page, offset);
870 	}
871 out:
872 	set_active_memcg(old_memcg);
873 	mem_cgroup_put(memcg);
874 	return head;
875 /*
876  * In case anything failed, we just free everything we got.
877  */
878 no_grow:
879 	if (head) {
880 		do {
881 			bh = head;
882 			head = head->b_this_page;
883 			free_buffer_head(bh);
884 		} while (head);
885 	}
886 
887 	goto out;
888 }
889 EXPORT_SYMBOL_GPL(alloc_page_buffers);
890 
891 static inline void
link_dev_buffers(struct page * page,struct buffer_head * head)892 link_dev_buffers(struct page *page, struct buffer_head *head)
893 {
894 	struct buffer_head *bh, *tail;
895 
896 	bh = head;
897 	do {
898 		tail = bh;
899 		bh = bh->b_this_page;
900 	} while (bh);
901 	tail->b_this_page = head;
902 	attach_page_private(page, head);
903 }
904 
blkdev_max_block(struct block_device * bdev,unsigned int size)905 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
906 {
907 	sector_t retval = ~((sector_t)0);
908 	loff_t sz = i_size_read(bdev->bd_inode);
909 
910 	if (sz) {
911 		unsigned int sizebits = blksize_bits(size);
912 		retval = (sz >> sizebits);
913 	}
914 	return retval;
915 }
916 
917 /*
918  * Initialise the state of a blockdev page's buffers.
919  */
920 static sector_t
init_page_buffers(struct page * page,struct block_device * bdev,sector_t block,int size)921 init_page_buffers(struct page *page, struct block_device *bdev,
922 			sector_t block, int size)
923 {
924 	struct buffer_head *head = page_buffers(page);
925 	struct buffer_head *bh = head;
926 	int uptodate = PageUptodate(page);
927 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
928 
929 	do {
930 		if (!buffer_mapped(bh)) {
931 			bh->b_end_io = NULL;
932 			bh->b_private = NULL;
933 			bh->b_bdev = bdev;
934 			bh->b_blocknr = block;
935 			if (uptodate)
936 				set_buffer_uptodate(bh);
937 			if (block < end_block)
938 				set_buffer_mapped(bh);
939 		}
940 		block++;
941 		bh = bh->b_this_page;
942 	} while (bh != head);
943 
944 	/*
945 	 * Caller needs to validate requested block against end of device.
946 	 */
947 	return end_block;
948 }
949 
950 /*
951  * Create the page-cache page that contains the requested block.
952  *
953  * This is used purely for blockdev mappings.
954  */
955 static int
grow_dev_page(struct block_device * bdev,sector_t block,pgoff_t index,int size,int sizebits,gfp_t gfp)956 grow_dev_page(struct block_device *bdev, sector_t block,
957 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
958 {
959 	struct inode *inode = bdev->bd_inode;
960 	struct page *page;
961 	struct buffer_head *bh;
962 	sector_t end_block;
963 	int ret = 0;
964 	gfp_t gfp_mask;
965 
966 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
967 
968 	/*
969 	 * XXX: __getblk_slow() can not really deal with failure and
970 	 * will endlessly loop on improvised global reclaim.  Prefer
971 	 * looping in the allocator rather than here, at least that
972 	 * code knows what it's doing.
973 	 */
974 	gfp_mask |= __GFP_NOFAIL;
975 
976 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
977 
978 	BUG_ON(!PageLocked(page));
979 
980 	if (page_has_buffers(page)) {
981 		bh = page_buffers(page);
982 		if (bh->b_size == size) {
983 			end_block = init_page_buffers(page, bdev,
984 						(sector_t)index << sizebits,
985 						size);
986 			goto done;
987 		}
988 		if (!try_to_free_buffers(page))
989 			goto failed;
990 	}
991 
992 	/*
993 	 * Allocate some buffers for this page
994 	 */
995 	bh = alloc_page_buffers(page, size, true);
996 
997 	/*
998 	 * Link the page to the buffers and initialise them.  Take the
999 	 * lock to be atomic wrt __find_get_block(), which does not
1000 	 * run under the page lock.
1001 	 */
1002 	spin_lock(&inode->i_mapping->private_lock);
1003 	link_dev_buffers(page, bh);
1004 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1005 			size);
1006 	spin_unlock(&inode->i_mapping->private_lock);
1007 done:
1008 	ret = (block < end_block) ? 1 : -ENXIO;
1009 failed:
1010 	unlock_page(page);
1011 	put_page(page);
1012 	return ret;
1013 }
1014 
1015 /*
1016  * Create buffers for the specified block device block's page.  If
1017  * that page was dirty, the buffers are set dirty also.
1018  */
1019 static int
grow_buffers(struct block_device * bdev,sector_t block,int size,gfp_t gfp)1020 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1021 {
1022 	pgoff_t index;
1023 	int sizebits;
1024 
1025 	sizebits = -1;
1026 	do {
1027 		sizebits++;
1028 	} while ((size << sizebits) < PAGE_SIZE);
1029 
1030 	index = block >> sizebits;
1031 
1032 	/*
1033 	 * Check for a block which wants to lie outside our maximum possible
1034 	 * pagecache index.  (this comparison is done using sector_t types).
1035 	 */
1036 	if (unlikely(index != block >> sizebits)) {
1037 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1038 			"device %pg\n",
1039 			__func__, (unsigned long long)block,
1040 			bdev);
1041 		return -EIO;
1042 	}
1043 
1044 	/* Create a page with the proper size buffers.. */
1045 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1046 }
1047 
1048 static struct buffer_head *
__getblk_slow(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1049 __getblk_slow(struct block_device *bdev, sector_t block,
1050 	     unsigned size, gfp_t gfp)
1051 {
1052 	/* Size must be multiple of hard sectorsize */
1053 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1054 			(size < 512 || size > PAGE_SIZE))) {
1055 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1056 					size);
1057 		printk(KERN_ERR "logical block size: %d\n",
1058 					bdev_logical_block_size(bdev));
1059 
1060 		dump_stack();
1061 		return NULL;
1062 	}
1063 
1064 	for (;;) {
1065 		struct buffer_head *bh;
1066 		int ret;
1067 
1068 		bh = __find_get_block(bdev, block, size);
1069 		if (bh)
1070 			return bh;
1071 
1072 		ret = grow_buffers(bdev, block, size, gfp);
1073 		if (ret < 0)
1074 			return NULL;
1075 	}
1076 }
1077 
1078 /*
1079  * The relationship between dirty buffers and dirty pages:
1080  *
1081  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1082  * the page is tagged dirty in the page cache.
1083  *
1084  * At all times, the dirtiness of the buffers represents the dirtiness of
1085  * subsections of the page.  If the page has buffers, the page dirty bit is
1086  * merely a hint about the true dirty state.
1087  *
1088  * When a page is set dirty in its entirety, all its buffers are marked dirty
1089  * (if the page has buffers).
1090  *
1091  * When a buffer is marked dirty, its page is dirtied, but the page's other
1092  * buffers are not.
1093  *
1094  * Also.  When blockdev buffers are explicitly read with bread(), they
1095  * individually become uptodate.  But their backing page remains not
1096  * uptodate - even if all of its buffers are uptodate.  A subsequent
1097  * block_read_full_page() against that page will discover all the uptodate
1098  * buffers, will set the page uptodate and will perform no I/O.
1099  */
1100 
1101 /**
1102  * mark_buffer_dirty - mark a buffer_head as needing writeout
1103  * @bh: the buffer_head to mark dirty
1104  *
1105  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1106  * its backing page dirty, then tag the page as dirty in the page cache
1107  * and then attach the address_space's inode to its superblock's dirty
1108  * inode list.
1109  *
1110  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1111  * i_pages lock and mapping->host->i_lock.
1112  */
mark_buffer_dirty(struct buffer_head * bh)1113 void mark_buffer_dirty(struct buffer_head *bh)
1114 {
1115 	WARN_ON_ONCE(!buffer_uptodate(bh));
1116 
1117 	trace_block_dirty_buffer(bh);
1118 
1119 	/*
1120 	 * Very *carefully* optimize the it-is-already-dirty case.
1121 	 *
1122 	 * Don't let the final "is it dirty" escape to before we
1123 	 * perhaps modified the buffer.
1124 	 */
1125 	if (buffer_dirty(bh)) {
1126 		smp_mb();
1127 		if (buffer_dirty(bh))
1128 			return;
1129 	}
1130 
1131 	if (!test_set_buffer_dirty(bh)) {
1132 		struct page *page = bh->b_page;
1133 		struct address_space *mapping = NULL;
1134 
1135 		lock_page_memcg(page);
1136 		if (!TestSetPageDirty(page)) {
1137 			mapping = page_mapping(page);
1138 			if (mapping)
1139 				__set_page_dirty(page, mapping, 0);
1140 		}
1141 		unlock_page_memcg(page);
1142 		if (mapping)
1143 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1144 	}
1145 }
1146 EXPORT_SYMBOL_NS(mark_buffer_dirty, ANDROID_GKI_VFS_EXPORT_ONLY);
1147 
mark_buffer_write_io_error(struct buffer_head * bh)1148 void mark_buffer_write_io_error(struct buffer_head *bh)
1149 {
1150 	struct super_block *sb;
1151 
1152 	set_buffer_write_io_error(bh);
1153 	/* FIXME: do we need to set this in both places? */
1154 	if (bh->b_page && bh->b_page->mapping)
1155 		mapping_set_error(bh->b_page->mapping, -EIO);
1156 	if (bh->b_assoc_map)
1157 		mapping_set_error(bh->b_assoc_map, -EIO);
1158 	rcu_read_lock();
1159 	sb = READ_ONCE(bh->b_bdev->bd_super);
1160 	if (sb)
1161 		errseq_set(&sb->s_wb_err, -EIO);
1162 	rcu_read_unlock();
1163 }
1164 EXPORT_SYMBOL_NS(mark_buffer_write_io_error, ANDROID_GKI_VFS_EXPORT_ONLY);
1165 
1166 /*
1167  * Decrement a buffer_head's reference count.  If all buffers against a page
1168  * have zero reference count, are clean and unlocked, and if the page is clean
1169  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1170  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1171  * a page but it ends up not being freed, and buffers may later be reattached).
1172  */
__brelse(struct buffer_head * buf)1173 void __brelse(struct buffer_head * buf)
1174 {
1175 	if (atomic_read(&buf->b_count)) {
1176 		put_bh(buf);
1177 		return;
1178 	}
1179 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1180 }
1181 EXPORT_SYMBOL_NS(__brelse, ANDROID_GKI_VFS_EXPORT_ONLY);
1182 
1183 /*
1184  * bforget() is like brelse(), except it discards any
1185  * potentially dirty data.
1186  */
__bforget(struct buffer_head * bh)1187 void __bforget(struct buffer_head *bh)
1188 {
1189 	clear_buffer_dirty(bh);
1190 	if (bh->b_assoc_map) {
1191 		struct address_space *buffer_mapping = bh->b_page->mapping;
1192 
1193 		spin_lock(&buffer_mapping->private_lock);
1194 		list_del_init(&bh->b_assoc_buffers);
1195 		bh->b_assoc_map = NULL;
1196 		spin_unlock(&buffer_mapping->private_lock);
1197 	}
1198 	__brelse(bh);
1199 }
1200 EXPORT_SYMBOL_NS(__bforget, ANDROID_GKI_VFS_EXPORT_ONLY);
1201 
__bread_slow(struct buffer_head * bh)1202 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1203 {
1204 	lock_buffer(bh);
1205 	if (buffer_uptodate(bh)) {
1206 		unlock_buffer(bh);
1207 		return bh;
1208 	} else {
1209 		get_bh(bh);
1210 		bh->b_end_io = end_buffer_read_sync;
1211 		submit_bh(REQ_OP_READ, 0, bh);
1212 		wait_on_buffer(bh);
1213 		if (buffer_uptodate(bh))
1214 			return bh;
1215 	}
1216 	brelse(bh);
1217 	return NULL;
1218 }
1219 
1220 /*
1221  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1222  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1223  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1224  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1225  * CPU's LRUs at the same time.
1226  *
1227  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1228  * sb_find_get_block().
1229  *
1230  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1231  * a local interrupt disable for that.
1232  */
1233 
1234 #define BH_LRU_SIZE	16
1235 
1236 struct bh_lru {
1237 	struct buffer_head *bhs[BH_LRU_SIZE];
1238 };
1239 
1240 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1241 
1242 #ifdef CONFIG_SMP
1243 #define bh_lru_lock()	local_irq_disable()
1244 #define bh_lru_unlock()	local_irq_enable()
1245 #else
1246 #define bh_lru_lock()	preempt_disable()
1247 #define bh_lru_unlock()	preempt_enable()
1248 #endif
1249 
check_irqs_on(void)1250 static inline void check_irqs_on(void)
1251 {
1252 #ifdef irqs_disabled
1253 	BUG_ON(irqs_disabled());
1254 #endif
1255 }
1256 
1257 /*
1258  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1259  * inserted at the front, and the buffer_head at the back if any is evicted.
1260  * Or, if already in the LRU it is moved to the front.
1261  */
bh_lru_install(struct buffer_head * bh)1262 static void bh_lru_install(struct buffer_head *bh)
1263 {
1264 	struct buffer_head *evictee = bh;
1265 	struct bh_lru *b;
1266 	int i;
1267 	bool skip = false;
1268 
1269 	check_irqs_on();
1270 	/*
1271 	 * the refcount of buffer_head in bh_lru prevents dropping the
1272 	 * attached page(i.e., try_to_free_buffers) so it could cause
1273 	 * failing page migration.
1274 	 * Skip putting upcoming bh into bh_lru until migration is done.
1275 	 */
1276 	if (lru_cache_disabled())
1277 		return;
1278 
1279 	trace_android_vh_bh_lru_install(bh->b_page, &skip);
1280 	if (skip)
1281 		return;
1282 
1283 	bh_lru_lock();
1284 
1285 	b = this_cpu_ptr(&bh_lrus);
1286 	for (i = 0; i < BH_LRU_SIZE; i++) {
1287 		swap(evictee, b->bhs[i]);
1288 		if (evictee == bh) {
1289 			bh_lru_unlock();
1290 			return;
1291 		}
1292 	}
1293 
1294 	get_bh(bh);
1295 	bh_lru_unlock();
1296 	brelse(evictee);
1297 }
1298 
1299 /*
1300  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1301  */
1302 static struct buffer_head *
lookup_bh_lru(struct block_device * bdev,sector_t block,unsigned size)1303 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1304 {
1305 	struct buffer_head *ret = NULL;
1306 	unsigned int i;
1307 
1308 	check_irqs_on();
1309 	bh_lru_lock();
1310 	for (i = 0; i < BH_LRU_SIZE; i++) {
1311 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1312 
1313 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1314 		    bh->b_size == size) {
1315 			if (i) {
1316 				while (i) {
1317 					__this_cpu_write(bh_lrus.bhs[i],
1318 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1319 					i--;
1320 				}
1321 				__this_cpu_write(bh_lrus.bhs[0], bh);
1322 			}
1323 			get_bh(bh);
1324 			ret = bh;
1325 			break;
1326 		}
1327 	}
1328 	bh_lru_unlock();
1329 	return ret;
1330 }
1331 
1332 /*
1333  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1334  * it in the LRU and mark it as accessed.  If it is not present then return
1335  * NULL
1336  */
1337 struct buffer_head *
__find_get_block(struct block_device * bdev,sector_t block,unsigned size)1338 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1339 {
1340 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1341 
1342 	if (bh == NULL) {
1343 		/* __find_get_block_slow will mark the page accessed */
1344 		bh = __find_get_block_slow(bdev, block);
1345 		if (bh)
1346 			bh_lru_install(bh);
1347 	} else
1348 		touch_buffer(bh);
1349 
1350 	return bh;
1351 }
1352 EXPORT_SYMBOL(__find_get_block);
1353 
1354 /*
1355  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1356  * which corresponds to the passed block_device, block and size. The
1357  * returned buffer has its reference count incremented.
1358  *
1359  * __getblk_gfp() will lock up the machine if grow_dev_page's
1360  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1361  */
1362 struct buffer_head *
__getblk_gfp(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1363 __getblk_gfp(struct block_device *bdev, sector_t block,
1364 	     unsigned size, gfp_t gfp)
1365 {
1366 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1367 
1368 	might_sleep();
1369 	if (bh == NULL)
1370 		bh = __getblk_slow(bdev, block, size, gfp);
1371 	return bh;
1372 }
1373 EXPORT_SYMBOL(__getblk_gfp);
1374 
1375 /*
1376  * Do async read-ahead on a buffer..
1377  */
__breadahead(struct block_device * bdev,sector_t block,unsigned size)1378 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1379 {
1380 	struct buffer_head *bh = __getblk(bdev, block, size);
1381 	if (likely(bh)) {
1382 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1383 		brelse(bh);
1384 	}
1385 }
1386 EXPORT_SYMBOL_NS(__breadahead, ANDROID_GKI_VFS_EXPORT_ONLY);
1387 
__breadahead_gfp(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1388 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1389 		      gfp_t gfp)
1390 {
1391 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1392 	if (likely(bh)) {
1393 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1394 		brelse(bh);
1395 	}
1396 }
1397 EXPORT_SYMBOL(__breadahead_gfp);
1398 
1399 /**
1400  *  __bread_gfp() - reads a specified block and returns the bh
1401  *  @bdev: the block_device to read from
1402  *  @block: number of block
1403  *  @size: size (in bytes) to read
1404  *  @gfp: page allocation flag
1405  *
1406  *  Reads a specified block, and returns buffer head that contains it.
1407  *  The page cache can be allocated from non-movable area
1408  *  not to prevent page migration if you set gfp to zero.
1409  *  It returns NULL if the block was unreadable.
1410  */
1411 struct buffer_head *
__bread_gfp(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1412 __bread_gfp(struct block_device *bdev, sector_t block,
1413 		   unsigned size, gfp_t gfp)
1414 {
1415 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1416 
1417 	if (likely(bh) && !buffer_uptodate(bh))
1418 		bh = __bread_slow(bh);
1419 	return bh;
1420 }
1421 EXPORT_SYMBOL_NS(__bread_gfp, ANDROID_GKI_VFS_EXPORT_ONLY);
1422 
__invalidate_bh_lrus(struct bh_lru * b)1423 static void __invalidate_bh_lrus(struct bh_lru *b)
1424 {
1425 	int i;
1426 
1427 	for (i = 0; i < BH_LRU_SIZE; i++) {
1428 		brelse(b->bhs[i]);
1429 		b->bhs[i] = NULL;
1430 	}
1431 }
1432 /*
1433  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1434  * This doesn't race because it runs in each cpu either in irq
1435  * or with preempt disabled.
1436  */
invalidate_bh_lru(void * arg)1437 static void invalidate_bh_lru(void *arg)
1438 {
1439 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1440 
1441 	__invalidate_bh_lrus(b);
1442 	put_cpu_var(bh_lrus);
1443 }
1444 
has_bh_in_lru(int cpu,void * dummy)1445 bool has_bh_in_lru(int cpu, void *dummy)
1446 {
1447 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1448 	int i;
1449 
1450 	for (i = 0; i < BH_LRU_SIZE; i++) {
1451 		if (b->bhs[i])
1452 			return true;
1453 	}
1454 
1455 	return false;
1456 }
1457 
invalidate_bh_lrus(void)1458 void invalidate_bh_lrus(void)
1459 {
1460 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1461 }
1462 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1463 
invalidate_bh_lrus_cpu(int cpu)1464 void invalidate_bh_lrus_cpu(int cpu)
1465 {
1466 	struct bh_lru *b;
1467 
1468 	bh_lru_lock();
1469 	b = per_cpu_ptr(&bh_lrus, cpu);
1470 	__invalidate_bh_lrus(b);
1471 	bh_lru_unlock();
1472 }
1473 
set_bh_page(struct buffer_head * bh,struct page * page,unsigned long offset)1474 void set_bh_page(struct buffer_head *bh,
1475 		struct page *page, unsigned long offset)
1476 {
1477 	bh->b_page = page;
1478 	BUG_ON(offset >= PAGE_SIZE);
1479 	if (PageHighMem(page))
1480 		/*
1481 		 * This catches illegal uses and preserves the offset:
1482 		 */
1483 		bh->b_data = (char *)(0 + offset);
1484 	else
1485 		bh->b_data = page_address(page) + offset;
1486 }
1487 EXPORT_SYMBOL(set_bh_page);
1488 
1489 /*
1490  * Called when truncating a buffer on a page completely.
1491  */
1492 
1493 /* Bits that are cleared during an invalidate */
1494 #define BUFFER_FLAGS_DISCARD \
1495 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1496 	 1 << BH_Delay | 1 << BH_Unwritten)
1497 
discard_buffer(struct buffer_head * bh)1498 static void discard_buffer(struct buffer_head * bh)
1499 {
1500 	unsigned long b_state, b_state_old;
1501 
1502 	lock_buffer(bh);
1503 	clear_buffer_dirty(bh);
1504 	bh->b_bdev = NULL;
1505 	b_state = bh->b_state;
1506 	for (;;) {
1507 		b_state_old = cmpxchg(&bh->b_state, b_state,
1508 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1509 		if (b_state_old == b_state)
1510 			break;
1511 		b_state = b_state_old;
1512 	}
1513 	unlock_buffer(bh);
1514 }
1515 
1516 /**
1517  * block_invalidatepage - invalidate part or all of a buffer-backed page
1518  *
1519  * @page: the page which is affected
1520  * @offset: start of the range to invalidate
1521  * @length: length of the range to invalidate
1522  *
1523  * block_invalidatepage() is called when all or part of the page has become
1524  * invalidated by a truncate operation.
1525  *
1526  * block_invalidatepage() does not have to release all buffers, but it must
1527  * ensure that no dirty buffer is left outside @offset and that no I/O
1528  * is underway against any of the blocks which are outside the truncation
1529  * point.  Because the caller is about to free (and possibly reuse) those
1530  * blocks on-disk.
1531  */
block_invalidatepage(struct page * page,unsigned int offset,unsigned int length)1532 void block_invalidatepage(struct page *page, unsigned int offset,
1533 			  unsigned int length)
1534 {
1535 	struct buffer_head *head, *bh, *next;
1536 	unsigned int curr_off = 0;
1537 	unsigned int stop = length + offset;
1538 
1539 	BUG_ON(!PageLocked(page));
1540 	if (!page_has_buffers(page))
1541 		goto out;
1542 
1543 	/*
1544 	 * Check for overflow
1545 	 */
1546 	BUG_ON(stop > PAGE_SIZE || stop < length);
1547 
1548 	head = page_buffers(page);
1549 	bh = head;
1550 	do {
1551 		unsigned int next_off = curr_off + bh->b_size;
1552 		next = bh->b_this_page;
1553 
1554 		/*
1555 		 * Are we still fully in range ?
1556 		 */
1557 		if (next_off > stop)
1558 			goto out;
1559 
1560 		/*
1561 		 * is this block fully invalidated?
1562 		 */
1563 		if (offset <= curr_off)
1564 			discard_buffer(bh);
1565 		curr_off = next_off;
1566 		bh = next;
1567 	} while (bh != head);
1568 
1569 	/*
1570 	 * We release buffers only if the entire page is being invalidated.
1571 	 * The get_block cached value has been unconditionally invalidated,
1572 	 * so real IO is not possible anymore.
1573 	 */
1574 	if (length == PAGE_SIZE)
1575 		try_to_release_page(page, 0);
1576 out:
1577 	return;
1578 }
1579 EXPORT_SYMBOL_NS(block_invalidatepage, ANDROID_GKI_VFS_EXPORT_ONLY);
1580 
1581 
1582 /*
1583  * We attach and possibly dirty the buffers atomically wrt
1584  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1585  * is already excluded via the page lock.
1586  */
create_empty_buffers(struct page * page,unsigned long blocksize,unsigned long b_state)1587 void create_empty_buffers(struct page *page,
1588 			unsigned long blocksize, unsigned long b_state)
1589 {
1590 	struct buffer_head *bh, *head, *tail;
1591 
1592 	head = alloc_page_buffers(page, blocksize, true);
1593 	bh = head;
1594 	do {
1595 		bh->b_state |= b_state;
1596 		tail = bh;
1597 		bh = bh->b_this_page;
1598 	} while (bh);
1599 	tail->b_this_page = head;
1600 
1601 	spin_lock(&page->mapping->private_lock);
1602 	if (PageUptodate(page) || PageDirty(page)) {
1603 		bh = head;
1604 		do {
1605 			if (PageDirty(page))
1606 				set_buffer_dirty(bh);
1607 			if (PageUptodate(page))
1608 				set_buffer_uptodate(bh);
1609 			bh = bh->b_this_page;
1610 		} while (bh != head);
1611 	}
1612 	attach_page_private(page, head);
1613 	spin_unlock(&page->mapping->private_lock);
1614 }
1615 EXPORT_SYMBOL_NS(create_empty_buffers, ANDROID_GKI_VFS_EXPORT_ONLY);
1616 
1617 /**
1618  * clean_bdev_aliases: clean a range of buffers in block device
1619  * @bdev: Block device to clean buffers in
1620  * @block: Start of a range of blocks to clean
1621  * @len: Number of blocks to clean
1622  *
1623  * We are taking a range of blocks for data and we don't want writeback of any
1624  * buffer-cache aliases starting from return from this function and until the
1625  * moment when something will explicitly mark the buffer dirty (hopefully that
1626  * will not happen until we will free that block ;-) We don't even need to mark
1627  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1628  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1629  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1630  * would confuse anyone who might pick it with bread() afterwards...
1631  *
1632  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1633  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1634  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1635  * need to.  That happens here.
1636  */
clean_bdev_aliases(struct block_device * bdev,sector_t block,sector_t len)1637 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1638 {
1639 	struct inode *bd_inode = bdev->bd_inode;
1640 	struct address_space *bd_mapping = bd_inode->i_mapping;
1641 	struct pagevec pvec;
1642 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1643 	pgoff_t end;
1644 	int i, count;
1645 	struct buffer_head *bh;
1646 	struct buffer_head *head;
1647 
1648 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1649 	pagevec_init(&pvec);
1650 	while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1651 		count = pagevec_count(&pvec);
1652 		for (i = 0; i < count; i++) {
1653 			struct page *page = pvec.pages[i];
1654 
1655 			if (!page_has_buffers(page))
1656 				continue;
1657 			/*
1658 			 * We use page lock instead of bd_mapping->private_lock
1659 			 * to pin buffers here since we can afford to sleep and
1660 			 * it scales better than a global spinlock lock.
1661 			 */
1662 			lock_page(page);
1663 			/* Recheck when the page is locked which pins bhs */
1664 			if (!page_has_buffers(page))
1665 				goto unlock_page;
1666 			head = page_buffers(page);
1667 			bh = head;
1668 			do {
1669 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1670 					goto next;
1671 				if (bh->b_blocknr >= block + len)
1672 					break;
1673 				clear_buffer_dirty(bh);
1674 				wait_on_buffer(bh);
1675 				clear_buffer_req(bh);
1676 next:
1677 				bh = bh->b_this_page;
1678 			} while (bh != head);
1679 unlock_page:
1680 			unlock_page(page);
1681 		}
1682 		pagevec_release(&pvec);
1683 		cond_resched();
1684 		/* End of range already reached? */
1685 		if (index > end || !index)
1686 			break;
1687 	}
1688 }
1689 EXPORT_SYMBOL_NS(clean_bdev_aliases, ANDROID_GKI_VFS_EXPORT_ONLY);
1690 
1691 /*
1692  * Size is a power-of-two in the range 512..PAGE_SIZE,
1693  * and the case we care about most is PAGE_SIZE.
1694  *
1695  * So this *could* possibly be written with those
1696  * constraints in mind (relevant mostly if some
1697  * architecture has a slow bit-scan instruction)
1698  */
block_size_bits(unsigned int blocksize)1699 static inline int block_size_bits(unsigned int blocksize)
1700 {
1701 	return ilog2(blocksize);
1702 }
1703 
create_page_buffers(struct page * page,struct inode * inode,unsigned int b_state)1704 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1705 {
1706 	BUG_ON(!PageLocked(page));
1707 
1708 	if (!page_has_buffers(page))
1709 		create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1710 				     b_state);
1711 	return page_buffers(page);
1712 }
1713 
1714 /*
1715  * NOTE! All mapped/uptodate combinations are valid:
1716  *
1717  *	Mapped	Uptodate	Meaning
1718  *
1719  *	No	No		"unknown" - must do get_block()
1720  *	No	Yes		"hole" - zero-filled
1721  *	Yes	No		"allocated" - allocated on disk, not read in
1722  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1723  *
1724  * "Dirty" is valid only with the last case (mapped+uptodate).
1725  */
1726 
1727 /*
1728  * While block_write_full_page is writing back the dirty buffers under
1729  * the page lock, whoever dirtied the buffers may decide to clean them
1730  * again at any time.  We handle that by only looking at the buffer
1731  * state inside lock_buffer().
1732  *
1733  * If block_write_full_page() is called for regular writeback
1734  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1735  * locked buffer.   This only can happen if someone has written the buffer
1736  * directly, with submit_bh().  At the address_space level PageWriteback
1737  * prevents this contention from occurring.
1738  *
1739  * If block_write_full_page() is called with wbc->sync_mode ==
1740  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1741  * causes the writes to be flagged as synchronous writes.
1742  */
__block_write_full_page(struct inode * inode,struct page * page,get_block_t * get_block,struct writeback_control * wbc,bh_end_io_t * handler)1743 int __block_write_full_page(struct inode *inode, struct page *page,
1744 			get_block_t *get_block, struct writeback_control *wbc,
1745 			bh_end_io_t *handler)
1746 {
1747 	int err;
1748 	sector_t block;
1749 	sector_t last_block;
1750 	struct buffer_head *bh, *head;
1751 	unsigned int blocksize, bbits;
1752 	int nr_underway = 0;
1753 	int write_flags = wbc_to_write_flags(wbc);
1754 
1755 	head = create_page_buffers(page, inode,
1756 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1757 
1758 	/*
1759 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1760 	 * here, and the (potentially unmapped) buffers may become dirty at
1761 	 * any time.  If a buffer becomes dirty here after we've inspected it
1762 	 * then we just miss that fact, and the page stays dirty.
1763 	 *
1764 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1765 	 * handle that here by just cleaning them.
1766 	 */
1767 
1768 	bh = head;
1769 	blocksize = bh->b_size;
1770 	bbits = block_size_bits(blocksize);
1771 
1772 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1773 	last_block = (i_size_read(inode) - 1) >> bbits;
1774 
1775 	/*
1776 	 * Get all the dirty buffers mapped to disk addresses and
1777 	 * handle any aliases from the underlying blockdev's mapping.
1778 	 */
1779 	do {
1780 		if (block > last_block) {
1781 			/*
1782 			 * mapped buffers outside i_size will occur, because
1783 			 * this page can be outside i_size when there is a
1784 			 * truncate in progress.
1785 			 */
1786 			/*
1787 			 * The buffer was zeroed by block_write_full_page()
1788 			 */
1789 			clear_buffer_dirty(bh);
1790 			set_buffer_uptodate(bh);
1791 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1792 			   buffer_dirty(bh)) {
1793 			WARN_ON(bh->b_size != blocksize);
1794 			err = get_block(inode, block, bh, 1);
1795 			if (err)
1796 				goto recover;
1797 			clear_buffer_delay(bh);
1798 			if (buffer_new(bh)) {
1799 				/* blockdev mappings never come here */
1800 				clear_buffer_new(bh);
1801 				clean_bdev_bh_alias(bh);
1802 			}
1803 		}
1804 		bh = bh->b_this_page;
1805 		block++;
1806 	} while (bh != head);
1807 
1808 	do {
1809 		if (!buffer_mapped(bh))
1810 			continue;
1811 		/*
1812 		 * If it's a fully non-blocking write attempt and we cannot
1813 		 * lock the buffer then redirty the page.  Note that this can
1814 		 * potentially cause a busy-wait loop from writeback threads
1815 		 * and kswapd activity, but those code paths have their own
1816 		 * higher-level throttling.
1817 		 */
1818 		if (wbc->sync_mode != WB_SYNC_NONE) {
1819 			lock_buffer(bh);
1820 		} else if (!trylock_buffer(bh)) {
1821 			redirty_page_for_writepage(wbc, page);
1822 			continue;
1823 		}
1824 		if (test_clear_buffer_dirty(bh)) {
1825 			mark_buffer_async_write_endio(bh, handler);
1826 		} else {
1827 			unlock_buffer(bh);
1828 		}
1829 	} while ((bh = bh->b_this_page) != head);
1830 
1831 	/*
1832 	 * The page and its buffers are protected by PageWriteback(), so we can
1833 	 * drop the bh refcounts early.
1834 	 */
1835 	BUG_ON(PageWriteback(page));
1836 	set_page_writeback(page);
1837 
1838 	do {
1839 		struct buffer_head *next = bh->b_this_page;
1840 		if (buffer_async_write(bh)) {
1841 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1842 					inode->i_write_hint, wbc);
1843 			nr_underway++;
1844 		}
1845 		bh = next;
1846 	} while (bh != head);
1847 	unlock_page(page);
1848 
1849 	err = 0;
1850 done:
1851 	if (nr_underway == 0) {
1852 		/*
1853 		 * The page was marked dirty, but the buffers were
1854 		 * clean.  Someone wrote them back by hand with
1855 		 * ll_rw_block/submit_bh.  A rare case.
1856 		 */
1857 		end_page_writeback(page);
1858 
1859 		/*
1860 		 * The page and buffer_heads can be released at any time from
1861 		 * here on.
1862 		 */
1863 	}
1864 	return err;
1865 
1866 recover:
1867 	/*
1868 	 * ENOSPC, or some other error.  We may already have added some
1869 	 * blocks to the file, so we need to write these out to avoid
1870 	 * exposing stale data.
1871 	 * The page is currently locked and not marked for writeback
1872 	 */
1873 	bh = head;
1874 	/* Recovery: lock and submit the mapped buffers */
1875 	do {
1876 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1877 		    !buffer_delay(bh)) {
1878 			lock_buffer(bh);
1879 			mark_buffer_async_write_endio(bh, handler);
1880 		} else {
1881 			/*
1882 			 * The buffer may have been set dirty during
1883 			 * attachment to a dirty page.
1884 			 */
1885 			clear_buffer_dirty(bh);
1886 		}
1887 	} while ((bh = bh->b_this_page) != head);
1888 	SetPageError(page);
1889 	BUG_ON(PageWriteback(page));
1890 	mapping_set_error(page->mapping, err);
1891 	set_page_writeback(page);
1892 	do {
1893 		struct buffer_head *next = bh->b_this_page;
1894 		if (buffer_async_write(bh)) {
1895 			clear_buffer_dirty(bh);
1896 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1897 					inode->i_write_hint, wbc);
1898 			nr_underway++;
1899 		}
1900 		bh = next;
1901 	} while (bh != head);
1902 	unlock_page(page);
1903 	goto done;
1904 }
1905 EXPORT_SYMBOL(__block_write_full_page);
1906 
1907 /*
1908  * If a page has any new buffers, zero them out here, and mark them uptodate
1909  * and dirty so they'll be written out (in order to prevent uninitialised
1910  * block data from leaking). And clear the new bit.
1911  */
page_zero_new_buffers(struct page * page,unsigned from,unsigned to)1912 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1913 {
1914 	unsigned int block_start, block_end;
1915 	struct buffer_head *head, *bh;
1916 
1917 	BUG_ON(!PageLocked(page));
1918 	if (!page_has_buffers(page))
1919 		return;
1920 
1921 	bh = head = page_buffers(page);
1922 	block_start = 0;
1923 	do {
1924 		block_end = block_start + bh->b_size;
1925 
1926 		if (buffer_new(bh)) {
1927 			if (block_end > from && block_start < to) {
1928 				if (!PageUptodate(page)) {
1929 					unsigned start, size;
1930 
1931 					start = max(from, block_start);
1932 					size = min(to, block_end) - start;
1933 
1934 					zero_user(page, start, size);
1935 					set_buffer_uptodate(bh);
1936 				}
1937 
1938 				clear_buffer_new(bh);
1939 				mark_buffer_dirty(bh);
1940 			}
1941 		}
1942 
1943 		block_start = block_end;
1944 		bh = bh->b_this_page;
1945 	} while (bh != head);
1946 }
1947 EXPORT_SYMBOL_NS(page_zero_new_buffers, ANDROID_GKI_VFS_EXPORT_ONLY);
1948 
1949 static void
iomap_to_bh(struct inode * inode,sector_t block,struct buffer_head * bh,struct iomap * iomap)1950 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1951 		struct iomap *iomap)
1952 {
1953 	loff_t offset = block << inode->i_blkbits;
1954 
1955 	bh->b_bdev = iomap->bdev;
1956 
1957 	/*
1958 	 * Block points to offset in file we need to map, iomap contains
1959 	 * the offset at which the map starts. If the map ends before the
1960 	 * current block, then do not map the buffer and let the caller
1961 	 * handle it.
1962 	 */
1963 	BUG_ON(offset >= iomap->offset + iomap->length);
1964 
1965 	switch (iomap->type) {
1966 	case IOMAP_HOLE:
1967 		/*
1968 		 * If the buffer is not up to date or beyond the current EOF,
1969 		 * we need to mark it as new to ensure sub-block zeroing is
1970 		 * executed if necessary.
1971 		 */
1972 		if (!buffer_uptodate(bh) ||
1973 		    (offset >= i_size_read(inode)))
1974 			set_buffer_new(bh);
1975 		break;
1976 	case IOMAP_DELALLOC:
1977 		if (!buffer_uptodate(bh) ||
1978 		    (offset >= i_size_read(inode)))
1979 			set_buffer_new(bh);
1980 		set_buffer_uptodate(bh);
1981 		set_buffer_mapped(bh);
1982 		set_buffer_delay(bh);
1983 		break;
1984 	case IOMAP_UNWRITTEN:
1985 		/*
1986 		 * For unwritten regions, we always need to ensure that regions
1987 		 * in the block we are not writing to are zeroed. Mark the
1988 		 * buffer as new to ensure this.
1989 		 */
1990 		set_buffer_new(bh);
1991 		set_buffer_unwritten(bh);
1992 		fallthrough;
1993 	case IOMAP_MAPPED:
1994 		if ((iomap->flags & IOMAP_F_NEW) ||
1995 		    offset >= i_size_read(inode))
1996 			set_buffer_new(bh);
1997 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1998 				inode->i_blkbits;
1999 		set_buffer_mapped(bh);
2000 		break;
2001 	}
2002 }
2003 
__block_write_begin_int(struct page * page,loff_t pos,unsigned len,get_block_t * get_block,struct iomap * iomap)2004 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
2005 		get_block_t *get_block, struct iomap *iomap)
2006 {
2007 	unsigned from = pos & (PAGE_SIZE - 1);
2008 	unsigned to = from + len;
2009 	struct inode *inode = page->mapping->host;
2010 	unsigned block_start, block_end;
2011 	sector_t block;
2012 	int err = 0;
2013 	unsigned blocksize, bbits;
2014 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2015 
2016 	BUG_ON(!PageLocked(page));
2017 	BUG_ON(from > PAGE_SIZE);
2018 	BUG_ON(to > PAGE_SIZE);
2019 	BUG_ON(from > to);
2020 
2021 	head = create_page_buffers(page, inode, 0);
2022 	blocksize = head->b_size;
2023 	bbits = block_size_bits(blocksize);
2024 
2025 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2026 
2027 	for(bh = head, block_start = 0; bh != head || !block_start;
2028 	    block++, block_start=block_end, bh = bh->b_this_page) {
2029 		block_end = block_start + blocksize;
2030 		if (block_end <= from || block_start >= to) {
2031 			if (PageUptodate(page)) {
2032 				if (!buffer_uptodate(bh))
2033 					set_buffer_uptodate(bh);
2034 			}
2035 			continue;
2036 		}
2037 		if (buffer_new(bh))
2038 			clear_buffer_new(bh);
2039 		if (!buffer_mapped(bh)) {
2040 			WARN_ON(bh->b_size != blocksize);
2041 			if (get_block) {
2042 				err = get_block(inode, block, bh, 1);
2043 				if (err)
2044 					break;
2045 			} else {
2046 				iomap_to_bh(inode, block, bh, iomap);
2047 			}
2048 
2049 			if (buffer_new(bh)) {
2050 				clean_bdev_bh_alias(bh);
2051 				if (PageUptodate(page)) {
2052 					clear_buffer_new(bh);
2053 					set_buffer_uptodate(bh);
2054 					mark_buffer_dirty(bh);
2055 					continue;
2056 				}
2057 				if (block_end > to || block_start < from)
2058 					zero_user_segments(page,
2059 						to, block_end,
2060 						block_start, from);
2061 				continue;
2062 			}
2063 		}
2064 		if (PageUptodate(page)) {
2065 			if (!buffer_uptodate(bh))
2066 				set_buffer_uptodate(bh);
2067 			continue;
2068 		}
2069 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2070 		    !buffer_unwritten(bh) &&
2071 		     (block_start < from || block_end > to)) {
2072 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2073 			*wait_bh++=bh;
2074 		}
2075 	}
2076 	/*
2077 	 * If we issued read requests - let them complete.
2078 	 */
2079 	while(wait_bh > wait) {
2080 		wait_on_buffer(*--wait_bh);
2081 		if (!buffer_uptodate(*wait_bh))
2082 			err = -EIO;
2083 	}
2084 	if (unlikely(err))
2085 		page_zero_new_buffers(page, from, to);
2086 	return err;
2087 }
2088 
__block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)2089 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2090 		get_block_t *get_block)
2091 {
2092 	return __block_write_begin_int(page, pos, len, get_block, NULL);
2093 }
2094 EXPORT_SYMBOL(__block_write_begin);
2095 
__block_commit_write(struct inode * inode,struct page * page,unsigned from,unsigned to)2096 static int __block_commit_write(struct inode *inode, struct page *page,
2097 		unsigned from, unsigned to)
2098 {
2099 	unsigned block_start, block_end;
2100 	int partial = 0;
2101 	unsigned blocksize;
2102 	struct buffer_head *bh, *head;
2103 
2104 	bh = head = page_buffers(page);
2105 	blocksize = bh->b_size;
2106 
2107 	block_start = 0;
2108 	do {
2109 		block_end = block_start + blocksize;
2110 		if (block_end <= from || block_start >= to) {
2111 			if (!buffer_uptodate(bh))
2112 				partial = 1;
2113 		} else {
2114 			set_buffer_uptodate(bh);
2115 			mark_buffer_dirty(bh);
2116 		}
2117 		clear_buffer_new(bh);
2118 
2119 		block_start = block_end;
2120 		bh = bh->b_this_page;
2121 	} while (bh != head);
2122 
2123 	/*
2124 	 * If this is a partial write which happened to make all buffers
2125 	 * uptodate then we can optimize away a bogus readpage() for
2126 	 * the next read(). Here we 'discover' whether the page went
2127 	 * uptodate as a result of this (potentially partial) write.
2128 	 */
2129 	if (!partial)
2130 		SetPageUptodate(page);
2131 	return 0;
2132 }
2133 
2134 /*
2135  * block_write_begin takes care of the basic task of block allocation and
2136  * bringing partial write blocks uptodate first.
2137  *
2138  * The filesystem needs to handle block truncation upon failure.
2139  */
block_write_begin(struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,get_block_t * get_block)2140 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2141 		unsigned flags, struct page **pagep, get_block_t *get_block)
2142 {
2143 	pgoff_t index = pos >> PAGE_SHIFT;
2144 	struct page *page;
2145 	int status;
2146 
2147 	page = grab_cache_page_write_begin(mapping, index, flags);
2148 	if (!page)
2149 		return -ENOMEM;
2150 
2151 	status = __block_write_begin(page, pos, len, get_block);
2152 	if (unlikely(status)) {
2153 		unlock_page(page);
2154 		put_page(page);
2155 		page = NULL;
2156 	}
2157 
2158 	*pagep = page;
2159 	return status;
2160 }
2161 EXPORT_SYMBOL(block_write_begin);
2162 
block_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2163 int block_write_end(struct file *file, struct address_space *mapping,
2164 			loff_t pos, unsigned len, unsigned copied,
2165 			struct page *page, void *fsdata)
2166 {
2167 	struct inode *inode = mapping->host;
2168 	unsigned start;
2169 
2170 	start = pos & (PAGE_SIZE - 1);
2171 
2172 	if (unlikely(copied < len)) {
2173 		/*
2174 		 * The buffers that were written will now be uptodate, so we
2175 		 * don't have to worry about a readpage reading them and
2176 		 * overwriting a partial write. However if we have encountered
2177 		 * a short write and only partially written into a buffer, it
2178 		 * will not be marked uptodate, so a readpage might come in and
2179 		 * destroy our partial write.
2180 		 *
2181 		 * Do the simplest thing, and just treat any short write to a
2182 		 * non uptodate page as a zero-length write, and force the
2183 		 * caller to redo the whole thing.
2184 		 */
2185 		if (!PageUptodate(page))
2186 			copied = 0;
2187 
2188 		page_zero_new_buffers(page, start+copied, start+len);
2189 	}
2190 	flush_dcache_page(page);
2191 
2192 	/* This could be a short (even 0-length) commit */
2193 	__block_commit_write(inode, page, start, start+copied);
2194 
2195 	return copied;
2196 }
2197 EXPORT_SYMBOL(block_write_end);
2198 
generic_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2199 int generic_write_end(struct file *file, struct address_space *mapping,
2200 			loff_t pos, unsigned len, unsigned copied,
2201 			struct page *page, void *fsdata)
2202 {
2203 	struct inode *inode = mapping->host;
2204 	loff_t old_size = inode->i_size;
2205 	bool i_size_changed = false;
2206 
2207 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2208 
2209 	/*
2210 	 * No need to use i_size_read() here, the i_size cannot change under us
2211 	 * because we hold i_rwsem.
2212 	 *
2213 	 * But it's important to update i_size while still holding page lock:
2214 	 * page writeout could otherwise come in and zero beyond i_size.
2215 	 */
2216 	if (pos + copied > inode->i_size) {
2217 		i_size_write(inode, pos + copied);
2218 		i_size_changed = true;
2219 	}
2220 
2221 	unlock_page(page);
2222 	put_page(page);
2223 
2224 	if (old_size < pos)
2225 		pagecache_isize_extended(inode, old_size, pos);
2226 	/*
2227 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2228 	 * makes the holding time of page lock longer. Second, it forces lock
2229 	 * ordering of page lock and transaction start for journaling
2230 	 * filesystems.
2231 	 */
2232 	if (i_size_changed)
2233 		mark_inode_dirty(inode);
2234 	return copied;
2235 }
2236 EXPORT_SYMBOL(generic_write_end);
2237 
2238 /*
2239  * block_is_partially_uptodate checks whether buffers within a page are
2240  * uptodate or not.
2241  *
2242  * Returns true if all buffers which correspond to a file portion
2243  * we want to read are uptodate.
2244  */
block_is_partially_uptodate(struct page * page,unsigned long from,unsigned long count)2245 int block_is_partially_uptodate(struct page *page, unsigned long from,
2246 					unsigned long count)
2247 {
2248 	unsigned block_start, block_end, blocksize;
2249 	unsigned to;
2250 	struct buffer_head *bh, *head;
2251 	int ret = 1;
2252 
2253 	if (!page_has_buffers(page))
2254 		return 0;
2255 
2256 	head = page_buffers(page);
2257 	blocksize = head->b_size;
2258 	to = min_t(unsigned, PAGE_SIZE - from, count);
2259 	to = from + to;
2260 	if (from < blocksize && to > PAGE_SIZE - blocksize)
2261 		return 0;
2262 
2263 	bh = head;
2264 	block_start = 0;
2265 	do {
2266 		block_end = block_start + blocksize;
2267 		if (block_end > from && block_start < to) {
2268 			if (!buffer_uptodate(bh)) {
2269 				ret = 0;
2270 				break;
2271 			}
2272 			if (block_end >= to)
2273 				break;
2274 		}
2275 		block_start = block_end;
2276 		bh = bh->b_this_page;
2277 	} while (bh != head);
2278 
2279 	return ret;
2280 }
2281 EXPORT_SYMBOL_NS(block_is_partially_uptodate, ANDROID_GKI_VFS_EXPORT_ONLY);
2282 
2283 /*
2284  * Generic "read page" function for block devices that have the normal
2285  * get_block functionality. This is most of the block device filesystems.
2286  * Reads the page asynchronously --- the unlock_buffer() and
2287  * set/clear_buffer_uptodate() functions propagate buffer state into the
2288  * page struct once IO has completed.
2289  */
block_read_full_page(struct page * page,get_block_t * get_block)2290 int block_read_full_page(struct page *page, get_block_t *get_block)
2291 {
2292 	struct inode *inode = page->mapping->host;
2293 	sector_t iblock, lblock;
2294 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2295 	unsigned int blocksize, bbits;
2296 	int nr, i;
2297 	int fully_mapped = 1;
2298 
2299 	head = create_page_buffers(page, inode, 0);
2300 	blocksize = head->b_size;
2301 	bbits = block_size_bits(blocksize);
2302 
2303 	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2304 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2305 	bh = head;
2306 	nr = 0;
2307 	i = 0;
2308 
2309 	do {
2310 		if (buffer_uptodate(bh))
2311 			continue;
2312 
2313 		if (!buffer_mapped(bh)) {
2314 			int err = 0;
2315 
2316 			fully_mapped = 0;
2317 			if (iblock < lblock) {
2318 				WARN_ON(bh->b_size != blocksize);
2319 				err = get_block(inode, iblock, bh, 0);
2320 				if (err)
2321 					SetPageError(page);
2322 			}
2323 			if (!buffer_mapped(bh)) {
2324 				zero_user(page, i * blocksize, blocksize);
2325 				if (!err)
2326 					set_buffer_uptodate(bh);
2327 				continue;
2328 			}
2329 			/*
2330 			 * get_block() might have updated the buffer
2331 			 * synchronously
2332 			 */
2333 			if (buffer_uptodate(bh))
2334 				continue;
2335 		}
2336 		arr[nr++] = bh;
2337 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2338 
2339 	if (fully_mapped)
2340 		SetPageMappedToDisk(page);
2341 
2342 	if (!nr) {
2343 		/*
2344 		 * All buffers are uptodate - we can set the page uptodate
2345 		 * as well. But not if get_block() returned an error.
2346 		 */
2347 		if (!PageError(page))
2348 			SetPageUptodate(page);
2349 		unlock_page(page);
2350 		return 0;
2351 	}
2352 
2353 	/* Stage two: lock the buffers */
2354 	for (i = 0; i < nr; i++) {
2355 		bh = arr[i];
2356 		lock_buffer(bh);
2357 		mark_buffer_async_read(bh);
2358 	}
2359 
2360 	/*
2361 	 * Stage 3: start the IO.  Check for uptodateness
2362 	 * inside the buffer lock in case another process reading
2363 	 * the underlying blockdev brought it uptodate (the sct fix).
2364 	 */
2365 	for (i = 0; i < nr; i++) {
2366 		bh = arr[i];
2367 		if (buffer_uptodate(bh))
2368 			end_buffer_async_read(bh, 1);
2369 		else
2370 			submit_bh(REQ_OP_READ, 0, bh);
2371 	}
2372 	return 0;
2373 }
2374 EXPORT_SYMBOL(block_read_full_page);
2375 
2376 /* utility function for filesystems that need to do work on expanding
2377  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2378  * deal with the hole.
2379  */
generic_cont_expand_simple(struct inode * inode,loff_t size)2380 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2381 {
2382 	struct address_space *mapping = inode->i_mapping;
2383 	struct page *page;
2384 	void *fsdata = NULL;
2385 	int err;
2386 
2387 	err = inode_newsize_ok(inode, size);
2388 	if (err)
2389 		goto out;
2390 
2391 	err = pagecache_write_begin(NULL, mapping, size, 0,
2392 				    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2393 	if (err)
2394 		goto out;
2395 
2396 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2397 	BUG_ON(err > 0);
2398 
2399 out:
2400 	return err;
2401 }
2402 EXPORT_SYMBOL(generic_cont_expand_simple);
2403 
cont_expand_zero(struct file * file,struct address_space * mapping,loff_t pos,loff_t * bytes)2404 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2405 			    loff_t pos, loff_t *bytes)
2406 {
2407 	struct inode *inode = mapping->host;
2408 	unsigned int blocksize = i_blocksize(inode);
2409 	struct page *page;
2410 	void *fsdata = NULL;
2411 	pgoff_t index, curidx;
2412 	loff_t curpos;
2413 	unsigned zerofrom, offset, len;
2414 	int err = 0;
2415 
2416 	index = pos >> PAGE_SHIFT;
2417 	offset = pos & ~PAGE_MASK;
2418 
2419 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2420 		zerofrom = curpos & ~PAGE_MASK;
2421 		if (zerofrom & (blocksize-1)) {
2422 			*bytes |= (blocksize-1);
2423 			(*bytes)++;
2424 		}
2425 		len = PAGE_SIZE - zerofrom;
2426 
2427 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2428 					    &page, &fsdata);
2429 		if (err)
2430 			goto out;
2431 		zero_user(page, zerofrom, len);
2432 		err = pagecache_write_end(file, mapping, curpos, len, len,
2433 						page, fsdata);
2434 		if (err < 0)
2435 			goto out;
2436 		BUG_ON(err != len);
2437 		err = 0;
2438 
2439 		balance_dirty_pages_ratelimited(mapping);
2440 
2441 		if (fatal_signal_pending(current)) {
2442 			err = -EINTR;
2443 			goto out;
2444 		}
2445 	}
2446 
2447 	/* page covers the boundary, find the boundary offset */
2448 	if (index == curidx) {
2449 		zerofrom = curpos & ~PAGE_MASK;
2450 		/* if we will expand the thing last block will be filled */
2451 		if (offset <= zerofrom) {
2452 			goto out;
2453 		}
2454 		if (zerofrom & (blocksize-1)) {
2455 			*bytes |= (blocksize-1);
2456 			(*bytes)++;
2457 		}
2458 		len = offset - zerofrom;
2459 
2460 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2461 					    &page, &fsdata);
2462 		if (err)
2463 			goto out;
2464 		zero_user(page, zerofrom, len);
2465 		err = pagecache_write_end(file, mapping, curpos, len, len,
2466 						page, fsdata);
2467 		if (err < 0)
2468 			goto out;
2469 		BUG_ON(err != len);
2470 		err = 0;
2471 	}
2472 out:
2473 	return err;
2474 }
2475 
2476 /*
2477  * For moronic filesystems that do not allow holes in file.
2478  * We may have to extend the file.
2479  */
cont_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata,get_block_t * get_block,loff_t * bytes)2480 int cont_write_begin(struct file *file, struct address_space *mapping,
2481 			loff_t pos, unsigned len, unsigned flags,
2482 			struct page **pagep, void **fsdata,
2483 			get_block_t *get_block, loff_t *bytes)
2484 {
2485 	struct inode *inode = mapping->host;
2486 	unsigned int blocksize = i_blocksize(inode);
2487 	unsigned int zerofrom;
2488 	int err;
2489 
2490 	err = cont_expand_zero(file, mapping, pos, bytes);
2491 	if (err)
2492 		return err;
2493 
2494 	zerofrom = *bytes & ~PAGE_MASK;
2495 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2496 		*bytes |= (blocksize-1);
2497 		(*bytes)++;
2498 	}
2499 
2500 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2501 }
2502 EXPORT_SYMBOL(cont_write_begin);
2503 
block_commit_write(struct page * page,unsigned from,unsigned to)2504 int block_commit_write(struct page *page, unsigned from, unsigned to)
2505 {
2506 	struct inode *inode = page->mapping->host;
2507 	__block_commit_write(inode,page,from,to);
2508 	return 0;
2509 }
2510 EXPORT_SYMBOL(block_commit_write);
2511 
2512 /*
2513  * block_page_mkwrite() is not allowed to change the file size as it gets
2514  * called from a page fault handler when a page is first dirtied. Hence we must
2515  * be careful to check for EOF conditions here. We set the page up correctly
2516  * for a written page which means we get ENOSPC checking when writing into
2517  * holes and correct delalloc and unwritten extent mapping on filesystems that
2518  * support these features.
2519  *
2520  * We are not allowed to take the i_mutex here so we have to play games to
2521  * protect against truncate races as the page could now be beyond EOF.  Because
2522  * truncate writes the inode size before removing pages, once we have the
2523  * page lock we can determine safely if the page is beyond EOF. If it is not
2524  * beyond EOF, then the page is guaranteed safe against truncation until we
2525  * unlock the page.
2526  *
2527  * Direct callers of this function should protect against filesystem freezing
2528  * using sb_start_pagefault() - sb_end_pagefault() functions.
2529  */
block_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf,get_block_t get_block)2530 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2531 			 get_block_t get_block)
2532 {
2533 	struct page *page = vmf->page;
2534 	struct inode *inode = file_inode(vma->vm_file);
2535 	unsigned long end;
2536 	loff_t size;
2537 	int ret;
2538 
2539 	lock_page(page);
2540 	size = i_size_read(inode);
2541 	if ((page->mapping != inode->i_mapping) ||
2542 	    (page_offset(page) > size)) {
2543 		/* We overload EFAULT to mean page got truncated */
2544 		ret = -EFAULT;
2545 		goto out_unlock;
2546 	}
2547 
2548 	/* page is wholly or partially inside EOF */
2549 	if (((page->index + 1) << PAGE_SHIFT) > size)
2550 		end = size & ~PAGE_MASK;
2551 	else
2552 		end = PAGE_SIZE;
2553 
2554 	ret = __block_write_begin(page, 0, end, get_block);
2555 	if (!ret)
2556 		ret = block_commit_write(page, 0, end);
2557 
2558 	if (unlikely(ret < 0))
2559 		goto out_unlock;
2560 	set_page_dirty(page);
2561 	wait_for_stable_page(page);
2562 	return 0;
2563 out_unlock:
2564 	unlock_page(page);
2565 	return ret;
2566 }
2567 EXPORT_SYMBOL(block_page_mkwrite);
2568 
2569 /*
2570  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2571  * immediately, while under the page lock.  So it needs a special end_io
2572  * handler which does not touch the bh after unlocking it.
2573  */
end_buffer_read_nobh(struct buffer_head * bh,int uptodate)2574 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2575 {
2576 	__end_buffer_read_notouch(bh, uptodate);
2577 }
2578 
2579 /*
2580  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2581  * the page (converting it to circular linked list and taking care of page
2582  * dirty races).
2583  */
attach_nobh_buffers(struct page * page,struct buffer_head * head)2584 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2585 {
2586 	struct buffer_head *bh;
2587 
2588 	BUG_ON(!PageLocked(page));
2589 
2590 	spin_lock(&page->mapping->private_lock);
2591 	bh = head;
2592 	do {
2593 		if (PageDirty(page))
2594 			set_buffer_dirty(bh);
2595 		if (!bh->b_this_page)
2596 			bh->b_this_page = head;
2597 		bh = bh->b_this_page;
2598 	} while (bh != head);
2599 	attach_page_private(page, head);
2600 	spin_unlock(&page->mapping->private_lock);
2601 }
2602 
2603 /*
2604  * On entry, the page is fully not uptodate.
2605  * On exit the page is fully uptodate in the areas outside (from,to)
2606  * The filesystem needs to handle block truncation upon failure.
2607  */
nobh_write_begin(struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata,get_block_t * get_block)2608 int nobh_write_begin(struct address_space *mapping,
2609 			loff_t pos, unsigned len, unsigned flags,
2610 			struct page **pagep, void **fsdata,
2611 			get_block_t *get_block)
2612 {
2613 	struct inode *inode = mapping->host;
2614 	const unsigned blkbits = inode->i_blkbits;
2615 	const unsigned blocksize = 1 << blkbits;
2616 	struct buffer_head *head, *bh;
2617 	struct page *page;
2618 	pgoff_t index;
2619 	unsigned from, to;
2620 	unsigned block_in_page;
2621 	unsigned block_start, block_end;
2622 	sector_t block_in_file;
2623 	int nr_reads = 0;
2624 	int ret = 0;
2625 	int is_mapped_to_disk = 1;
2626 
2627 	index = pos >> PAGE_SHIFT;
2628 	from = pos & (PAGE_SIZE - 1);
2629 	to = from + len;
2630 
2631 	page = grab_cache_page_write_begin(mapping, index, flags);
2632 	if (!page)
2633 		return -ENOMEM;
2634 	*pagep = page;
2635 	*fsdata = NULL;
2636 
2637 	if (page_has_buffers(page)) {
2638 		ret = __block_write_begin(page, pos, len, get_block);
2639 		if (unlikely(ret))
2640 			goto out_release;
2641 		return ret;
2642 	}
2643 
2644 	if (PageMappedToDisk(page))
2645 		return 0;
2646 
2647 	/*
2648 	 * Allocate buffers so that we can keep track of state, and potentially
2649 	 * attach them to the page if an error occurs. In the common case of
2650 	 * no error, they will just be freed again without ever being attached
2651 	 * to the page (which is all OK, because we're under the page lock).
2652 	 *
2653 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2654 	 * than the circular one we're used to.
2655 	 */
2656 	head = alloc_page_buffers(page, blocksize, false);
2657 	if (!head) {
2658 		ret = -ENOMEM;
2659 		goto out_release;
2660 	}
2661 
2662 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2663 
2664 	/*
2665 	 * We loop across all blocks in the page, whether or not they are
2666 	 * part of the affected region.  This is so we can discover if the
2667 	 * page is fully mapped-to-disk.
2668 	 */
2669 	for (block_start = 0, block_in_page = 0, bh = head;
2670 		  block_start < PAGE_SIZE;
2671 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2672 		int create;
2673 
2674 		block_end = block_start + blocksize;
2675 		bh->b_state = 0;
2676 		create = 1;
2677 		if (block_start >= to)
2678 			create = 0;
2679 		ret = get_block(inode, block_in_file + block_in_page,
2680 					bh, create);
2681 		if (ret)
2682 			goto failed;
2683 		if (!buffer_mapped(bh))
2684 			is_mapped_to_disk = 0;
2685 		if (buffer_new(bh))
2686 			clean_bdev_bh_alias(bh);
2687 		if (PageUptodate(page)) {
2688 			set_buffer_uptodate(bh);
2689 			continue;
2690 		}
2691 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2692 			zero_user_segments(page, block_start, from,
2693 							to, block_end);
2694 			continue;
2695 		}
2696 		if (buffer_uptodate(bh))
2697 			continue;	/* reiserfs does this */
2698 		if (block_start < from || block_end > to) {
2699 			lock_buffer(bh);
2700 			bh->b_end_io = end_buffer_read_nobh;
2701 			submit_bh(REQ_OP_READ, 0, bh);
2702 			nr_reads++;
2703 		}
2704 	}
2705 
2706 	if (nr_reads) {
2707 		/*
2708 		 * The page is locked, so these buffers are protected from
2709 		 * any VM or truncate activity.  Hence we don't need to care
2710 		 * for the buffer_head refcounts.
2711 		 */
2712 		for (bh = head; bh; bh = bh->b_this_page) {
2713 			wait_on_buffer(bh);
2714 			if (!buffer_uptodate(bh))
2715 				ret = -EIO;
2716 		}
2717 		if (ret)
2718 			goto failed;
2719 	}
2720 
2721 	if (is_mapped_to_disk)
2722 		SetPageMappedToDisk(page);
2723 
2724 	*fsdata = head; /* to be released by nobh_write_end */
2725 
2726 	return 0;
2727 
2728 failed:
2729 	BUG_ON(!ret);
2730 	/*
2731 	 * Error recovery is a bit difficult. We need to zero out blocks that
2732 	 * were newly allocated, and dirty them to ensure they get written out.
2733 	 * Buffers need to be attached to the page at this point, otherwise
2734 	 * the handling of potential IO errors during writeout would be hard
2735 	 * (could try doing synchronous writeout, but what if that fails too?)
2736 	 */
2737 	attach_nobh_buffers(page, head);
2738 	page_zero_new_buffers(page, from, to);
2739 
2740 out_release:
2741 	unlock_page(page);
2742 	put_page(page);
2743 	*pagep = NULL;
2744 
2745 	return ret;
2746 }
2747 EXPORT_SYMBOL(nobh_write_begin);
2748 
nobh_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2749 int nobh_write_end(struct file *file, struct address_space *mapping,
2750 			loff_t pos, unsigned len, unsigned copied,
2751 			struct page *page, void *fsdata)
2752 {
2753 	struct inode *inode = page->mapping->host;
2754 	struct buffer_head *head = fsdata;
2755 	struct buffer_head *bh;
2756 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2757 
2758 	if (unlikely(copied < len) && head)
2759 		attach_nobh_buffers(page, head);
2760 	if (page_has_buffers(page))
2761 		return generic_write_end(file, mapping, pos, len,
2762 					copied, page, fsdata);
2763 
2764 	SetPageUptodate(page);
2765 	set_page_dirty(page);
2766 	if (pos+copied > inode->i_size) {
2767 		i_size_write(inode, pos+copied);
2768 		mark_inode_dirty(inode);
2769 	}
2770 
2771 	unlock_page(page);
2772 	put_page(page);
2773 
2774 	while (head) {
2775 		bh = head;
2776 		head = head->b_this_page;
2777 		free_buffer_head(bh);
2778 	}
2779 
2780 	return copied;
2781 }
2782 EXPORT_SYMBOL(nobh_write_end);
2783 
2784 /*
2785  * nobh_writepage() - based on block_full_write_page() except
2786  * that it tries to operate without attaching bufferheads to
2787  * the page.
2788  */
nobh_writepage(struct page * page,get_block_t * get_block,struct writeback_control * wbc)2789 int nobh_writepage(struct page *page, get_block_t *get_block,
2790 			struct writeback_control *wbc)
2791 {
2792 	struct inode * const inode = page->mapping->host;
2793 	loff_t i_size = i_size_read(inode);
2794 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2795 	unsigned offset;
2796 	int ret;
2797 
2798 	/* Is the page fully inside i_size? */
2799 	if (page->index < end_index)
2800 		goto out;
2801 
2802 	/* Is the page fully outside i_size? (truncate in progress) */
2803 	offset = i_size & (PAGE_SIZE-1);
2804 	if (page->index >= end_index+1 || !offset) {
2805 		unlock_page(page);
2806 		return 0; /* don't care */
2807 	}
2808 
2809 	/*
2810 	 * The page straddles i_size.  It must be zeroed out on each and every
2811 	 * writepage invocation because it may be mmapped.  "A file is mapped
2812 	 * in multiples of the page size.  For a file that is not a multiple of
2813 	 * the  page size, the remaining memory is zeroed when mapped, and
2814 	 * writes to that region are not written out to the file."
2815 	 */
2816 	zero_user_segment(page, offset, PAGE_SIZE);
2817 out:
2818 	ret = mpage_writepage(page, get_block, wbc);
2819 	if (ret == -EAGAIN)
2820 		ret = __block_write_full_page(inode, page, get_block, wbc,
2821 					      end_buffer_async_write);
2822 	return ret;
2823 }
2824 EXPORT_SYMBOL(nobh_writepage);
2825 
nobh_truncate_page(struct address_space * mapping,loff_t from,get_block_t * get_block)2826 int nobh_truncate_page(struct address_space *mapping,
2827 			loff_t from, get_block_t *get_block)
2828 {
2829 	pgoff_t index = from >> PAGE_SHIFT;
2830 	unsigned offset = from & (PAGE_SIZE-1);
2831 	unsigned blocksize;
2832 	sector_t iblock;
2833 	unsigned length, pos;
2834 	struct inode *inode = mapping->host;
2835 	struct page *page;
2836 	struct buffer_head map_bh;
2837 	int err;
2838 
2839 	blocksize = i_blocksize(inode);
2840 	length = offset & (blocksize - 1);
2841 
2842 	/* Block boundary? Nothing to do */
2843 	if (!length)
2844 		return 0;
2845 
2846 	length = blocksize - length;
2847 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2848 
2849 	page = grab_cache_page(mapping, index);
2850 	err = -ENOMEM;
2851 	if (!page)
2852 		goto out;
2853 
2854 	if (page_has_buffers(page)) {
2855 has_buffers:
2856 		unlock_page(page);
2857 		put_page(page);
2858 		return block_truncate_page(mapping, from, get_block);
2859 	}
2860 
2861 	/* Find the buffer that contains "offset" */
2862 	pos = blocksize;
2863 	while (offset >= pos) {
2864 		iblock++;
2865 		pos += blocksize;
2866 	}
2867 
2868 	map_bh.b_size = blocksize;
2869 	map_bh.b_state = 0;
2870 	err = get_block(inode, iblock, &map_bh, 0);
2871 	if (err)
2872 		goto unlock;
2873 	/* unmapped? It's a hole - nothing to do */
2874 	if (!buffer_mapped(&map_bh))
2875 		goto unlock;
2876 
2877 	/* Ok, it's mapped. Make sure it's up-to-date */
2878 	if (!PageUptodate(page)) {
2879 		err = mapping->a_ops->readpage(NULL, page);
2880 		if (err) {
2881 			put_page(page);
2882 			goto out;
2883 		}
2884 		lock_page(page);
2885 		if (!PageUptodate(page)) {
2886 			err = -EIO;
2887 			goto unlock;
2888 		}
2889 		if (page_has_buffers(page))
2890 			goto has_buffers;
2891 	}
2892 	zero_user(page, offset, length);
2893 	set_page_dirty(page);
2894 	err = 0;
2895 
2896 unlock:
2897 	unlock_page(page);
2898 	put_page(page);
2899 out:
2900 	return err;
2901 }
2902 EXPORT_SYMBOL(nobh_truncate_page);
2903 
block_truncate_page(struct address_space * mapping,loff_t from,get_block_t * get_block)2904 int block_truncate_page(struct address_space *mapping,
2905 			loff_t from, get_block_t *get_block)
2906 {
2907 	pgoff_t index = from >> PAGE_SHIFT;
2908 	unsigned offset = from & (PAGE_SIZE-1);
2909 	unsigned blocksize;
2910 	sector_t iblock;
2911 	unsigned length, pos;
2912 	struct inode *inode = mapping->host;
2913 	struct page *page;
2914 	struct buffer_head *bh;
2915 	int err;
2916 
2917 	blocksize = i_blocksize(inode);
2918 	length = offset & (blocksize - 1);
2919 
2920 	/* Block boundary? Nothing to do */
2921 	if (!length)
2922 		return 0;
2923 
2924 	length = blocksize - length;
2925 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2926 
2927 	page = grab_cache_page(mapping, index);
2928 	err = -ENOMEM;
2929 	if (!page)
2930 		goto out;
2931 
2932 	if (!page_has_buffers(page))
2933 		create_empty_buffers(page, blocksize, 0);
2934 
2935 	/* Find the buffer that contains "offset" */
2936 	bh = page_buffers(page);
2937 	pos = blocksize;
2938 	while (offset >= pos) {
2939 		bh = bh->b_this_page;
2940 		iblock++;
2941 		pos += blocksize;
2942 	}
2943 
2944 	err = 0;
2945 	if (!buffer_mapped(bh)) {
2946 		WARN_ON(bh->b_size != blocksize);
2947 		err = get_block(inode, iblock, bh, 0);
2948 		if (err)
2949 			goto unlock;
2950 		/* unmapped? It's a hole - nothing to do */
2951 		if (!buffer_mapped(bh))
2952 			goto unlock;
2953 	}
2954 
2955 	/* Ok, it's mapped. Make sure it's up-to-date */
2956 	if (PageUptodate(page))
2957 		set_buffer_uptodate(bh);
2958 
2959 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2960 		err = -EIO;
2961 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2962 		wait_on_buffer(bh);
2963 		/* Uhhuh. Read error. Complain and punt. */
2964 		if (!buffer_uptodate(bh))
2965 			goto unlock;
2966 	}
2967 
2968 	zero_user(page, offset, length);
2969 	mark_buffer_dirty(bh);
2970 	err = 0;
2971 
2972 unlock:
2973 	unlock_page(page);
2974 	put_page(page);
2975 out:
2976 	return err;
2977 }
2978 EXPORT_SYMBOL(block_truncate_page);
2979 
2980 /*
2981  * The generic ->writepage function for buffer-backed address_spaces
2982  */
block_write_full_page(struct page * page,get_block_t * get_block,struct writeback_control * wbc)2983 int block_write_full_page(struct page *page, get_block_t *get_block,
2984 			struct writeback_control *wbc)
2985 {
2986 	struct inode * const inode = page->mapping->host;
2987 	loff_t i_size = i_size_read(inode);
2988 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2989 	unsigned offset;
2990 
2991 	/* Is the page fully inside i_size? */
2992 	if (page->index < end_index)
2993 		return __block_write_full_page(inode, page, get_block, wbc,
2994 					       end_buffer_async_write);
2995 
2996 	/* Is the page fully outside i_size? (truncate in progress) */
2997 	offset = i_size & (PAGE_SIZE-1);
2998 	if (page->index >= end_index+1 || !offset) {
2999 		unlock_page(page);
3000 		return 0; /* don't care */
3001 	}
3002 
3003 	/*
3004 	 * The page straddles i_size.  It must be zeroed out on each and every
3005 	 * writepage invocation because it may be mmapped.  "A file is mapped
3006 	 * in multiples of the page size.  For a file that is not a multiple of
3007 	 * the  page size, the remaining memory is zeroed when mapped, and
3008 	 * writes to that region are not written out to the file."
3009 	 */
3010 	zero_user_segment(page, offset, PAGE_SIZE);
3011 	return __block_write_full_page(inode, page, get_block, wbc,
3012 							end_buffer_async_write);
3013 }
3014 EXPORT_SYMBOL(block_write_full_page);
3015 
generic_block_bmap(struct address_space * mapping,sector_t block,get_block_t * get_block)3016 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3017 			    get_block_t *get_block)
3018 {
3019 	struct inode *inode = mapping->host;
3020 	struct buffer_head tmp = {
3021 		.b_size = i_blocksize(inode),
3022 	};
3023 
3024 	get_block(inode, block, &tmp, 0);
3025 	return tmp.b_blocknr;
3026 }
3027 EXPORT_SYMBOL(generic_block_bmap);
3028 
end_bio_bh_io_sync(struct bio * bio)3029 static void end_bio_bh_io_sync(struct bio *bio)
3030 {
3031 	struct buffer_head *bh = bio->bi_private;
3032 
3033 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
3034 		set_bit(BH_Quiet, &bh->b_state);
3035 
3036 	bh->b_end_io(bh, !bio->bi_status);
3037 	bio_put(bio);
3038 }
3039 
submit_bh_wbc(int op,int op_flags,struct buffer_head * bh,enum rw_hint write_hint,struct writeback_control * wbc)3040 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3041 			 enum rw_hint write_hint, struct writeback_control *wbc)
3042 {
3043 	struct bio *bio;
3044 
3045 	BUG_ON(!buffer_locked(bh));
3046 	BUG_ON(!buffer_mapped(bh));
3047 	BUG_ON(!bh->b_end_io);
3048 	BUG_ON(buffer_delay(bh));
3049 	BUG_ON(buffer_unwritten(bh));
3050 
3051 	/*
3052 	 * Only clear out a write error when rewriting
3053 	 */
3054 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3055 		clear_buffer_write_io_error(bh);
3056 
3057 	bio = bio_alloc(GFP_NOIO, 1);
3058 
3059 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
3060 
3061 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3062 	bio_set_dev(bio, bh->b_bdev);
3063 	bio->bi_write_hint = write_hint;
3064 
3065 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3066 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3067 
3068 	bio->bi_end_io = end_bio_bh_io_sync;
3069 	bio->bi_private = bh;
3070 
3071 	if (buffer_meta(bh))
3072 		op_flags |= REQ_META;
3073 	if (buffer_prio(bh))
3074 		op_flags |= REQ_PRIO;
3075 	bio_set_op_attrs(bio, op, op_flags);
3076 
3077 	/* Take care of bh's that straddle the end of the device */
3078 	guard_bio_eod(bio);
3079 
3080 	if (wbc) {
3081 		wbc_init_bio(wbc, bio);
3082 		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3083 	}
3084 
3085 	submit_bio(bio);
3086 	return 0;
3087 }
3088 
submit_bh(int op,int op_flags,struct buffer_head * bh)3089 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3090 {
3091 	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3092 }
3093 EXPORT_SYMBOL(submit_bh);
3094 
3095 /**
3096  * ll_rw_block: low-level access to block devices (DEPRECATED)
3097  * @op: whether to %READ or %WRITE
3098  * @op_flags: req_flag_bits
3099  * @nr: number of &struct buffer_heads in the array
3100  * @bhs: array of pointers to &struct buffer_head
3101  *
3102  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3103  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3104  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3105  * %REQ_RAHEAD.
3106  *
3107  * This function drops any buffer that it cannot get a lock on (with the
3108  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3109  * request, and any buffer that appears to be up-to-date when doing read
3110  * request.  Further it marks as clean buffers that are processed for
3111  * writing (the buffer cache won't assume that they are actually clean
3112  * until the buffer gets unlocked).
3113  *
3114  * ll_rw_block sets b_end_io to simple completion handler that marks
3115  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3116  * any waiters.
3117  *
3118  * All of the buffers must be for the same device, and must also be a
3119  * multiple of the current approved size for the device.
3120  */
ll_rw_block(int op,int op_flags,int nr,struct buffer_head * bhs[])3121 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3122 {
3123 	int i;
3124 
3125 	for (i = 0; i < nr; i++) {
3126 		struct buffer_head *bh = bhs[i];
3127 
3128 		if (!trylock_buffer(bh))
3129 			continue;
3130 		if (op == WRITE) {
3131 			if (test_clear_buffer_dirty(bh)) {
3132 				bh->b_end_io = end_buffer_write_sync;
3133 				get_bh(bh);
3134 				submit_bh(op, op_flags, bh);
3135 				continue;
3136 			}
3137 		} else {
3138 			if (!buffer_uptodate(bh)) {
3139 				bh->b_end_io = end_buffer_read_sync;
3140 				get_bh(bh);
3141 				submit_bh(op, op_flags, bh);
3142 				continue;
3143 			}
3144 		}
3145 		unlock_buffer(bh);
3146 	}
3147 }
3148 EXPORT_SYMBOL_NS(ll_rw_block, ANDROID_GKI_VFS_EXPORT_ONLY);
3149 
write_dirty_buffer(struct buffer_head * bh,int op_flags)3150 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3151 {
3152 	lock_buffer(bh);
3153 	if (!test_clear_buffer_dirty(bh)) {
3154 		unlock_buffer(bh);
3155 		return;
3156 	}
3157 	bh->b_end_io = end_buffer_write_sync;
3158 	get_bh(bh);
3159 	submit_bh(REQ_OP_WRITE, op_flags, bh);
3160 }
3161 EXPORT_SYMBOL(write_dirty_buffer);
3162 
3163 /*
3164  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3165  * and then start new I/O and then wait upon it.  The caller must have a ref on
3166  * the buffer_head.
3167  */
__sync_dirty_buffer(struct buffer_head * bh,int op_flags)3168 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3169 {
3170 	int ret = 0;
3171 
3172 	WARN_ON(atomic_read(&bh->b_count) < 1);
3173 	lock_buffer(bh);
3174 	if (test_clear_buffer_dirty(bh)) {
3175 		/*
3176 		 * The bh should be mapped, but it might not be if the
3177 		 * device was hot-removed. Not much we can do but fail the I/O.
3178 		 */
3179 		if (!buffer_mapped(bh)) {
3180 			unlock_buffer(bh);
3181 			return -EIO;
3182 		}
3183 
3184 		get_bh(bh);
3185 		bh->b_end_io = end_buffer_write_sync;
3186 		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3187 		wait_on_buffer(bh);
3188 		if (!ret && !buffer_uptodate(bh))
3189 			ret = -EIO;
3190 	} else {
3191 		unlock_buffer(bh);
3192 	}
3193 	return ret;
3194 }
3195 EXPORT_SYMBOL_NS(__sync_dirty_buffer, ANDROID_GKI_VFS_EXPORT_ONLY);
3196 
sync_dirty_buffer(struct buffer_head * bh)3197 int sync_dirty_buffer(struct buffer_head *bh)
3198 {
3199 	return __sync_dirty_buffer(bh, REQ_SYNC);
3200 }
3201 EXPORT_SYMBOL_NS(sync_dirty_buffer, ANDROID_GKI_VFS_EXPORT_ONLY);
3202 
3203 /*
3204  * try_to_free_buffers() checks if all the buffers on this particular page
3205  * are unused, and releases them if so.
3206  *
3207  * Exclusion against try_to_free_buffers may be obtained by either
3208  * locking the page or by holding its mapping's private_lock.
3209  *
3210  * If the page is dirty but all the buffers are clean then we need to
3211  * be sure to mark the page clean as well.  This is because the page
3212  * may be against a block device, and a later reattachment of buffers
3213  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3214  * filesystem data on the same device.
3215  *
3216  * The same applies to regular filesystem pages: if all the buffers are
3217  * clean then we set the page clean and proceed.  To do that, we require
3218  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3219  * private_lock.
3220  *
3221  * try_to_free_buffers() is non-blocking.
3222  */
buffer_busy(struct buffer_head * bh)3223 static inline int buffer_busy(struct buffer_head *bh)
3224 {
3225 	return atomic_read(&bh->b_count) |
3226 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3227 }
3228 
3229 static int
drop_buffers(struct page * page,struct buffer_head ** buffers_to_free)3230 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3231 {
3232 	struct buffer_head *head = page_buffers(page);
3233 	struct buffer_head *bh;
3234 
3235 	bh = head;
3236 	do {
3237 		if (buffer_busy(bh))
3238 			goto failed;
3239 		bh = bh->b_this_page;
3240 	} while (bh != head);
3241 
3242 	do {
3243 		struct buffer_head *next = bh->b_this_page;
3244 
3245 		if (bh->b_assoc_map)
3246 			__remove_assoc_queue(bh);
3247 		bh = next;
3248 	} while (bh != head);
3249 	*buffers_to_free = head;
3250 	detach_page_private(page);
3251 	return 1;
3252 failed:
3253 	return 0;
3254 }
3255 
try_to_free_buffers(struct page * page)3256 int try_to_free_buffers(struct page *page)
3257 {
3258 	struct address_space * const mapping = page->mapping;
3259 	struct buffer_head *buffers_to_free = NULL;
3260 	int ret = 0;
3261 
3262 	BUG_ON(!PageLocked(page));
3263 	if (PageWriteback(page))
3264 		return 0;
3265 
3266 	if (mapping == NULL) {		/* can this still happen? */
3267 		ret = drop_buffers(page, &buffers_to_free);
3268 		goto out;
3269 	}
3270 
3271 	spin_lock(&mapping->private_lock);
3272 	ret = drop_buffers(page, &buffers_to_free);
3273 
3274 	/*
3275 	 * If the filesystem writes its buffers by hand (eg ext3)
3276 	 * then we can have clean buffers against a dirty page.  We
3277 	 * clean the page here; otherwise the VM will never notice
3278 	 * that the filesystem did any IO at all.
3279 	 *
3280 	 * Also, during truncate, discard_buffer will have marked all
3281 	 * the page's buffers clean.  We discover that here and clean
3282 	 * the page also.
3283 	 *
3284 	 * private_lock must be held over this entire operation in order
3285 	 * to synchronise against __set_page_dirty_buffers and prevent the
3286 	 * dirty bit from being lost.
3287 	 */
3288 	if (ret)
3289 		cancel_dirty_page(page);
3290 	spin_unlock(&mapping->private_lock);
3291 out:
3292 	if (buffers_to_free) {
3293 		struct buffer_head *bh = buffers_to_free;
3294 
3295 		do {
3296 			struct buffer_head *next = bh->b_this_page;
3297 			free_buffer_head(bh);
3298 			bh = next;
3299 		} while (bh != buffers_to_free);
3300 	}
3301 	return ret;
3302 }
3303 EXPORT_SYMBOL(try_to_free_buffers);
3304 
3305 /*
3306  * There are no bdflush tunables left.  But distributions are
3307  * still running obsolete flush daemons, so we terminate them here.
3308  *
3309  * Use of bdflush() is deprecated and will be removed in a future kernel.
3310  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3311  */
SYSCALL_DEFINE2(bdflush,int,func,long,data)3312 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3313 {
3314 	static int msg_count;
3315 
3316 	if (!capable(CAP_SYS_ADMIN))
3317 		return -EPERM;
3318 
3319 	if (msg_count < 5) {
3320 		msg_count++;
3321 		printk(KERN_INFO
3322 			"warning: process `%s' used the obsolete bdflush"
3323 			" system call\n", current->comm);
3324 		printk(KERN_INFO "Fix your initscripts?\n");
3325 	}
3326 
3327 	if (func == 1)
3328 		do_exit(0);
3329 	return 0;
3330 }
3331 
3332 /*
3333  * Buffer-head allocation
3334  */
3335 static struct kmem_cache *bh_cachep __read_mostly;
3336 
3337 /*
3338  * Once the number of bh's in the machine exceeds this level, we start
3339  * stripping them in writeback.
3340  */
3341 static unsigned long max_buffer_heads;
3342 
3343 int buffer_heads_over_limit;
3344 
3345 struct bh_accounting {
3346 	int nr;			/* Number of live bh's */
3347 	int ratelimit;		/* Limit cacheline bouncing */
3348 };
3349 
3350 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3351 
recalc_bh_state(void)3352 static void recalc_bh_state(void)
3353 {
3354 	int i;
3355 	int tot = 0;
3356 
3357 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3358 		return;
3359 	__this_cpu_write(bh_accounting.ratelimit, 0);
3360 	for_each_online_cpu(i)
3361 		tot += per_cpu(bh_accounting, i).nr;
3362 	buffer_heads_over_limit = (tot > max_buffer_heads);
3363 }
3364 
alloc_buffer_head(gfp_t gfp_flags)3365 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3366 {
3367 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3368 	if (ret) {
3369 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3370 		spin_lock_init(&ret->b_uptodate_lock);
3371 		preempt_disable();
3372 		__this_cpu_inc(bh_accounting.nr);
3373 		recalc_bh_state();
3374 		preempt_enable();
3375 	}
3376 	return ret;
3377 }
3378 EXPORT_SYMBOL(alloc_buffer_head);
3379 
free_buffer_head(struct buffer_head * bh)3380 void free_buffer_head(struct buffer_head *bh)
3381 {
3382 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3383 	kmem_cache_free(bh_cachep, bh);
3384 	preempt_disable();
3385 	__this_cpu_dec(bh_accounting.nr);
3386 	recalc_bh_state();
3387 	preempt_enable();
3388 }
3389 EXPORT_SYMBOL(free_buffer_head);
3390 
buffer_exit_cpu_dead(unsigned int cpu)3391 static int buffer_exit_cpu_dead(unsigned int cpu)
3392 {
3393 	int i;
3394 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3395 
3396 	for (i = 0; i < BH_LRU_SIZE; i++) {
3397 		brelse(b->bhs[i]);
3398 		b->bhs[i] = NULL;
3399 	}
3400 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3401 	per_cpu(bh_accounting, cpu).nr = 0;
3402 	return 0;
3403 }
3404 
3405 /**
3406  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3407  * @bh: struct buffer_head
3408  *
3409  * Return true if the buffer is up-to-date and false,
3410  * with the buffer locked, if not.
3411  */
bh_uptodate_or_lock(struct buffer_head * bh)3412 int bh_uptodate_or_lock(struct buffer_head *bh)
3413 {
3414 	if (!buffer_uptodate(bh)) {
3415 		lock_buffer(bh);
3416 		if (!buffer_uptodate(bh))
3417 			return 0;
3418 		unlock_buffer(bh);
3419 	}
3420 	return 1;
3421 }
3422 EXPORT_SYMBOL(bh_uptodate_or_lock);
3423 
3424 /**
3425  * bh_submit_read - Submit a locked buffer for reading
3426  * @bh: struct buffer_head
3427  *
3428  * Returns zero on success and -EIO on error.
3429  */
bh_submit_read(struct buffer_head * bh)3430 int bh_submit_read(struct buffer_head *bh)
3431 {
3432 	BUG_ON(!buffer_locked(bh));
3433 
3434 	if (buffer_uptodate(bh)) {
3435 		unlock_buffer(bh);
3436 		return 0;
3437 	}
3438 
3439 	get_bh(bh);
3440 	bh->b_end_io = end_buffer_read_sync;
3441 	submit_bh(REQ_OP_READ, 0, bh);
3442 	wait_on_buffer(bh);
3443 	if (buffer_uptodate(bh))
3444 		return 0;
3445 	return -EIO;
3446 }
3447 EXPORT_SYMBOL(bh_submit_read);
3448 
buffer_init(void)3449 void __init buffer_init(void)
3450 {
3451 	unsigned long nrpages;
3452 	int ret;
3453 
3454 	bh_cachep = kmem_cache_create("buffer_head",
3455 			sizeof(struct buffer_head), 0,
3456 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3457 				SLAB_MEM_SPREAD),
3458 				NULL);
3459 
3460 	/*
3461 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3462 	 */
3463 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3464 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3465 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3466 					NULL, buffer_exit_cpu_dead);
3467 	WARN_ON(ret < 0);
3468 }
3469