• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_errortag.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_alloc.h"
22 #include "xfs_log.h"
23 #include "xfs_btree_staging.h"
24 
25 /*
26  * Cursor allocation zone.
27  */
28 kmem_zone_t	*xfs_btree_cur_zone;
29 
30 /*
31  * Btree magic numbers.
32  */
33 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
34 	{ XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
35 	  XFS_FIBT_MAGIC, 0 },
36 	{ XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
37 	  XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
38 	  XFS_REFC_CRC_MAGIC }
39 };
40 
41 uint32_t
xfs_btree_magic(int crc,xfs_btnum_t btnum)42 xfs_btree_magic(
43 	int			crc,
44 	xfs_btnum_t		btnum)
45 {
46 	uint32_t		magic = xfs_magics[crc][btnum];
47 
48 	/* Ensure we asked for crc for crc-only magics. */
49 	ASSERT(magic != 0);
50 	return magic;
51 }
52 
53 /*
54  * Check a long btree block header.  Return the address of the failing check,
55  * or NULL if everything is ok.
56  */
57 xfs_failaddr_t
__xfs_btree_check_lblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)58 __xfs_btree_check_lblock(
59 	struct xfs_btree_cur	*cur,
60 	struct xfs_btree_block	*block,
61 	int			level,
62 	struct xfs_buf		*bp)
63 {
64 	struct xfs_mount	*mp = cur->bc_mp;
65 	xfs_btnum_t		btnum = cur->bc_btnum;
66 	int			crc = xfs_sb_version_hascrc(&mp->m_sb);
67 
68 	if (crc) {
69 		if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
70 			return __this_address;
71 		if (block->bb_u.l.bb_blkno !=
72 		    cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
73 			return __this_address;
74 		if (block->bb_u.l.bb_pad != cpu_to_be32(0))
75 			return __this_address;
76 	}
77 
78 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
79 		return __this_address;
80 	if (be16_to_cpu(block->bb_level) != level)
81 		return __this_address;
82 	if (be16_to_cpu(block->bb_numrecs) >
83 	    cur->bc_ops->get_maxrecs(cur, level))
84 		return __this_address;
85 	if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
86 	    !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
87 			level + 1))
88 		return __this_address;
89 	if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
90 	    !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
91 			level + 1))
92 		return __this_address;
93 
94 	return NULL;
95 }
96 
97 /* Check a long btree block header. */
98 static int
xfs_btree_check_lblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)99 xfs_btree_check_lblock(
100 	struct xfs_btree_cur	*cur,
101 	struct xfs_btree_block	*block,
102 	int			level,
103 	struct xfs_buf		*bp)
104 {
105 	struct xfs_mount	*mp = cur->bc_mp;
106 	xfs_failaddr_t		fa;
107 
108 	fa = __xfs_btree_check_lblock(cur, block, level, bp);
109 	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
110 	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
111 		if (bp)
112 			trace_xfs_btree_corrupt(bp, _RET_IP_);
113 		return -EFSCORRUPTED;
114 	}
115 	return 0;
116 }
117 
118 /*
119  * Check a short btree block header.  Return the address of the failing check,
120  * or NULL if everything is ok.
121  */
122 xfs_failaddr_t
__xfs_btree_check_sblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)123 __xfs_btree_check_sblock(
124 	struct xfs_btree_cur	*cur,
125 	struct xfs_btree_block	*block,
126 	int			level,
127 	struct xfs_buf		*bp)
128 {
129 	struct xfs_mount	*mp = cur->bc_mp;
130 	xfs_btnum_t		btnum = cur->bc_btnum;
131 	int			crc = xfs_sb_version_hascrc(&mp->m_sb);
132 
133 	if (crc) {
134 		if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
135 			return __this_address;
136 		if (block->bb_u.s.bb_blkno !=
137 		    cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
138 			return __this_address;
139 	}
140 
141 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
142 		return __this_address;
143 	if (be16_to_cpu(block->bb_level) != level)
144 		return __this_address;
145 	if (be16_to_cpu(block->bb_numrecs) >
146 	    cur->bc_ops->get_maxrecs(cur, level))
147 		return __this_address;
148 	if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
149 	    !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
150 			level + 1))
151 		return __this_address;
152 	if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
153 	    !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
154 			level + 1))
155 		return __this_address;
156 
157 	return NULL;
158 }
159 
160 /* Check a short btree block header. */
161 STATIC int
xfs_btree_check_sblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)162 xfs_btree_check_sblock(
163 	struct xfs_btree_cur	*cur,
164 	struct xfs_btree_block	*block,
165 	int			level,
166 	struct xfs_buf		*bp)
167 {
168 	struct xfs_mount	*mp = cur->bc_mp;
169 	xfs_failaddr_t		fa;
170 
171 	fa = __xfs_btree_check_sblock(cur, block, level, bp);
172 	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
173 	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
174 		if (bp)
175 			trace_xfs_btree_corrupt(bp, _RET_IP_);
176 		return -EFSCORRUPTED;
177 	}
178 	return 0;
179 }
180 
181 /*
182  * Debug routine: check that block header is ok.
183  */
184 int
xfs_btree_check_block(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)185 xfs_btree_check_block(
186 	struct xfs_btree_cur	*cur,	/* btree cursor */
187 	struct xfs_btree_block	*block,	/* generic btree block pointer */
188 	int			level,	/* level of the btree block */
189 	struct xfs_buf		*bp)	/* buffer containing block, if any */
190 {
191 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
192 		return xfs_btree_check_lblock(cur, block, level, bp);
193 	else
194 		return xfs_btree_check_sblock(cur, block, level, bp);
195 }
196 
197 /* Check that this long pointer is valid and points within the fs. */
198 bool
xfs_btree_check_lptr(struct xfs_btree_cur * cur,xfs_fsblock_t fsbno,int level)199 xfs_btree_check_lptr(
200 	struct xfs_btree_cur	*cur,
201 	xfs_fsblock_t		fsbno,
202 	int			level)
203 {
204 	if (level <= 0)
205 		return false;
206 	return xfs_verify_fsbno(cur->bc_mp, fsbno);
207 }
208 
209 /* Check that this short pointer is valid and points within the AG. */
210 bool
xfs_btree_check_sptr(struct xfs_btree_cur * cur,xfs_agblock_t agbno,int level)211 xfs_btree_check_sptr(
212 	struct xfs_btree_cur	*cur,
213 	xfs_agblock_t		agbno,
214 	int			level)
215 {
216 	if (level <= 0)
217 		return false;
218 	return xfs_verify_agbno(cur->bc_mp, cur->bc_ag.agno, agbno);
219 }
220 
221 /*
222  * Check that a given (indexed) btree pointer at a certain level of a
223  * btree is valid and doesn't point past where it should.
224  */
225 static int
xfs_btree_check_ptr(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int index,int level)226 xfs_btree_check_ptr(
227 	struct xfs_btree_cur	*cur,
228 	union xfs_btree_ptr	*ptr,
229 	int			index,
230 	int			level)
231 {
232 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
233 		if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
234 				level))
235 			return 0;
236 		xfs_err(cur->bc_mp,
237 "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
238 				cur->bc_ino.ip->i_ino,
239 				cur->bc_ino.whichfork, cur->bc_btnum,
240 				level, index);
241 	} else {
242 		if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
243 				level))
244 			return 0;
245 		xfs_err(cur->bc_mp,
246 "AG %u: Corrupt btree %d pointer at level %d index %d.",
247 				cur->bc_ag.agno, cur->bc_btnum,
248 				level, index);
249 	}
250 
251 	return -EFSCORRUPTED;
252 }
253 
254 #ifdef DEBUG
255 # define xfs_btree_debug_check_ptr	xfs_btree_check_ptr
256 #else
257 # define xfs_btree_debug_check_ptr(...)	(0)
258 #endif
259 
260 /*
261  * Calculate CRC on the whole btree block and stuff it into the
262  * long-form btree header.
263  *
264  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
265  * it into the buffer so recovery knows what the last modification was that made
266  * it to disk.
267  */
268 void
xfs_btree_lblock_calc_crc(struct xfs_buf * bp)269 xfs_btree_lblock_calc_crc(
270 	struct xfs_buf		*bp)
271 {
272 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
273 	struct xfs_buf_log_item	*bip = bp->b_log_item;
274 
275 	if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
276 		return;
277 	if (bip)
278 		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
279 	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
280 }
281 
282 bool
xfs_btree_lblock_verify_crc(struct xfs_buf * bp)283 xfs_btree_lblock_verify_crc(
284 	struct xfs_buf		*bp)
285 {
286 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
287 	struct xfs_mount	*mp = bp->b_mount;
288 
289 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
290 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
291 			return false;
292 		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
293 	}
294 
295 	return true;
296 }
297 
298 /*
299  * Calculate CRC on the whole btree block and stuff it into the
300  * short-form btree header.
301  *
302  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
303  * it into the buffer so recovery knows what the last modification was that made
304  * it to disk.
305  */
306 void
xfs_btree_sblock_calc_crc(struct xfs_buf * bp)307 xfs_btree_sblock_calc_crc(
308 	struct xfs_buf		*bp)
309 {
310 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
311 	struct xfs_buf_log_item	*bip = bp->b_log_item;
312 
313 	if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
314 		return;
315 	if (bip)
316 		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
317 	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
318 }
319 
320 bool
xfs_btree_sblock_verify_crc(struct xfs_buf * bp)321 xfs_btree_sblock_verify_crc(
322 	struct xfs_buf		*bp)
323 {
324 	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
325 	struct xfs_mount	*mp = bp->b_mount;
326 
327 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
328 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
329 			return false;
330 		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
331 	}
332 
333 	return true;
334 }
335 
336 static int
xfs_btree_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)337 xfs_btree_free_block(
338 	struct xfs_btree_cur	*cur,
339 	struct xfs_buf		*bp)
340 {
341 	int			error;
342 
343 	error = cur->bc_ops->free_block(cur, bp);
344 	if (!error) {
345 		xfs_trans_binval(cur->bc_tp, bp);
346 		XFS_BTREE_STATS_INC(cur, free);
347 	}
348 	return error;
349 }
350 
351 /*
352  * Delete the btree cursor.
353  */
354 void
xfs_btree_del_cursor(struct xfs_btree_cur * cur,int error)355 xfs_btree_del_cursor(
356 	struct xfs_btree_cur	*cur,		/* btree cursor */
357 	int			error)		/* del because of error */
358 {
359 	int			i;		/* btree level */
360 
361 	/*
362 	 * Clear the buffer pointers and release the buffers. If we're doing
363 	 * this because of an error, inspect all of the entries in the bc_bufs
364 	 * array for buffers to be unlocked. This is because some of the btree
365 	 * code works from level n down to 0, and if we get an error along the
366 	 * way we won't have initialized all the entries down to 0.
367 	 */
368 	for (i = 0; i < cur->bc_nlevels; i++) {
369 		if (cur->bc_bufs[i])
370 			xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
371 		else if (!error)
372 			break;
373 	}
374 
375 	/*
376 	 * If we are doing a BMBT update, the number of unaccounted blocks
377 	 * allocated during this cursor life time should be zero. If it's not
378 	 * zero, then we should be shut down or on our way to shutdown due to
379 	 * cancelling a dirty transaction on error.
380 	 */
381 	ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 ||
382 	       XFS_FORCED_SHUTDOWN(cur->bc_mp) || error != 0);
383 	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING))
384 		kmem_free(cur->bc_ops);
385 	kmem_cache_free(xfs_btree_cur_zone, cur);
386 }
387 
388 /*
389  * Duplicate the btree cursor.
390  * Allocate a new one, copy the record, re-get the buffers.
391  */
392 int					/* error */
xfs_btree_dup_cursor(xfs_btree_cur_t * cur,xfs_btree_cur_t ** ncur)393 xfs_btree_dup_cursor(
394 	xfs_btree_cur_t	*cur,		/* input cursor */
395 	xfs_btree_cur_t	**ncur)		/* output cursor */
396 {
397 	xfs_buf_t	*bp;		/* btree block's buffer pointer */
398 	int		error;		/* error return value */
399 	int		i;		/* level number of btree block */
400 	xfs_mount_t	*mp;		/* mount structure for filesystem */
401 	xfs_btree_cur_t	*new;		/* new cursor value */
402 	xfs_trans_t	*tp;		/* transaction pointer, can be NULL */
403 
404 	tp = cur->bc_tp;
405 	mp = cur->bc_mp;
406 
407 	/*
408 	 * Allocate a new cursor like the old one.
409 	 */
410 	new = cur->bc_ops->dup_cursor(cur);
411 
412 	/*
413 	 * Copy the record currently in the cursor.
414 	 */
415 	new->bc_rec = cur->bc_rec;
416 
417 	/*
418 	 * For each level current, re-get the buffer and copy the ptr value.
419 	 */
420 	for (i = 0; i < new->bc_nlevels; i++) {
421 		new->bc_ptrs[i] = cur->bc_ptrs[i];
422 		new->bc_ra[i] = cur->bc_ra[i];
423 		bp = cur->bc_bufs[i];
424 		if (bp) {
425 			error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
426 						   XFS_BUF_ADDR(bp), mp->m_bsize,
427 						   0, &bp,
428 						   cur->bc_ops->buf_ops);
429 			if (error) {
430 				xfs_btree_del_cursor(new, error);
431 				*ncur = NULL;
432 				return error;
433 			}
434 		}
435 		new->bc_bufs[i] = bp;
436 	}
437 	*ncur = new;
438 	return 0;
439 }
440 
441 /*
442  * XFS btree block layout and addressing:
443  *
444  * There are two types of blocks in the btree: leaf and non-leaf blocks.
445  *
446  * The leaf record start with a header then followed by records containing
447  * the values.  A non-leaf block also starts with the same header, and
448  * then first contains lookup keys followed by an equal number of pointers
449  * to the btree blocks at the previous level.
450  *
451  *		+--------+-------+-------+-------+-------+-------+-------+
452  * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
453  *		+--------+-------+-------+-------+-------+-------+-------+
454  *
455  *		+--------+-------+-------+-------+-------+-------+-------+
456  * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
457  *		+--------+-------+-------+-------+-------+-------+-------+
458  *
459  * The header is called struct xfs_btree_block for reasons better left unknown
460  * and comes in different versions for short (32bit) and long (64bit) block
461  * pointers.  The record and key structures are defined by the btree instances
462  * and opaque to the btree core.  The block pointers are simple disk endian
463  * integers, available in a short (32bit) and long (64bit) variant.
464  *
465  * The helpers below calculate the offset of a given record, key or pointer
466  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
467  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
468  * inside the btree block is done using indices starting at one, not zero!
469  *
470  * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
471  * overlapping intervals.  In such a tree, records are still sorted lowest to
472  * highest and indexed by the smallest key value that refers to the record.
473  * However, nodes are different: each pointer has two associated keys -- one
474  * indexing the lowest key available in the block(s) below (the same behavior
475  * as the key in a regular btree) and another indexing the highest key
476  * available in the block(s) below.  Because records are /not/ sorted by the
477  * highest key, all leaf block updates require us to compute the highest key
478  * that matches any record in the leaf and to recursively update the high keys
479  * in the nodes going further up in the tree, if necessary.  Nodes look like
480  * this:
481  *
482  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
483  * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
484  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
485  *
486  * To perform an interval query on an overlapped tree, perform the usual
487  * depth-first search and use the low and high keys to decide if we can skip
488  * that particular node.  If a leaf node is reached, return the records that
489  * intersect the interval.  Note that an interval query may return numerous
490  * entries.  For a non-overlapped tree, simply search for the record associated
491  * with the lowest key and iterate forward until a non-matching record is
492  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
493  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
494  * more detail.
495  *
496  * Why do we care about overlapping intervals?  Let's say you have a bunch of
497  * reverse mapping records on a reflink filesystem:
498  *
499  * 1: +- file A startblock B offset C length D -----------+
500  * 2:      +- file E startblock F offset G length H --------------+
501  * 3:      +- file I startblock F offset J length K --+
502  * 4:                                                        +- file L... --+
503  *
504  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
505  * we'd simply increment the length of record 1.  But how do we find the record
506  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
507  * record 3 because the keys are ordered first by startblock.  An interval
508  * query would return records 1 and 2 because they both overlap (B+D-1), and
509  * from that we can pick out record 1 as the appropriate left neighbor.
510  *
511  * In the non-overlapped case you can do a LE lookup and decrement the cursor
512  * because a record's interval must end before the next record.
513  */
514 
515 /*
516  * Return size of the btree block header for this btree instance.
517  */
xfs_btree_block_len(struct xfs_btree_cur * cur)518 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
519 {
520 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
521 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
522 			return XFS_BTREE_LBLOCK_CRC_LEN;
523 		return XFS_BTREE_LBLOCK_LEN;
524 	}
525 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
526 		return XFS_BTREE_SBLOCK_CRC_LEN;
527 	return XFS_BTREE_SBLOCK_LEN;
528 }
529 
530 /*
531  * Return size of btree block pointers for this btree instance.
532  */
xfs_btree_ptr_len(struct xfs_btree_cur * cur)533 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
534 {
535 	return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
536 		sizeof(__be64) : sizeof(__be32);
537 }
538 
539 /*
540  * Calculate offset of the n-th record in a btree block.
541  */
542 STATIC size_t
xfs_btree_rec_offset(struct xfs_btree_cur * cur,int n)543 xfs_btree_rec_offset(
544 	struct xfs_btree_cur	*cur,
545 	int			n)
546 {
547 	return xfs_btree_block_len(cur) +
548 		(n - 1) * cur->bc_ops->rec_len;
549 }
550 
551 /*
552  * Calculate offset of the n-th key in a btree block.
553  */
554 STATIC size_t
xfs_btree_key_offset(struct xfs_btree_cur * cur,int n)555 xfs_btree_key_offset(
556 	struct xfs_btree_cur	*cur,
557 	int			n)
558 {
559 	return xfs_btree_block_len(cur) +
560 		(n - 1) * cur->bc_ops->key_len;
561 }
562 
563 /*
564  * Calculate offset of the n-th high key in a btree block.
565  */
566 STATIC size_t
xfs_btree_high_key_offset(struct xfs_btree_cur * cur,int n)567 xfs_btree_high_key_offset(
568 	struct xfs_btree_cur	*cur,
569 	int			n)
570 {
571 	return xfs_btree_block_len(cur) +
572 		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
573 }
574 
575 /*
576  * Calculate offset of the n-th block pointer in a btree block.
577  */
578 STATIC size_t
xfs_btree_ptr_offset(struct xfs_btree_cur * cur,int n,int level)579 xfs_btree_ptr_offset(
580 	struct xfs_btree_cur	*cur,
581 	int			n,
582 	int			level)
583 {
584 	return xfs_btree_block_len(cur) +
585 		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
586 		(n - 1) * xfs_btree_ptr_len(cur);
587 }
588 
589 /*
590  * Return a pointer to the n-th record in the btree block.
591  */
592 union xfs_btree_rec *
xfs_btree_rec_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)593 xfs_btree_rec_addr(
594 	struct xfs_btree_cur	*cur,
595 	int			n,
596 	struct xfs_btree_block	*block)
597 {
598 	return (union xfs_btree_rec *)
599 		((char *)block + xfs_btree_rec_offset(cur, n));
600 }
601 
602 /*
603  * Return a pointer to the n-th key in the btree block.
604  */
605 union xfs_btree_key *
xfs_btree_key_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)606 xfs_btree_key_addr(
607 	struct xfs_btree_cur	*cur,
608 	int			n,
609 	struct xfs_btree_block	*block)
610 {
611 	return (union xfs_btree_key *)
612 		((char *)block + xfs_btree_key_offset(cur, n));
613 }
614 
615 /*
616  * Return a pointer to the n-th high key in the btree block.
617  */
618 union xfs_btree_key *
xfs_btree_high_key_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)619 xfs_btree_high_key_addr(
620 	struct xfs_btree_cur	*cur,
621 	int			n,
622 	struct xfs_btree_block	*block)
623 {
624 	return (union xfs_btree_key *)
625 		((char *)block + xfs_btree_high_key_offset(cur, n));
626 }
627 
628 /*
629  * Return a pointer to the n-th block pointer in the btree block.
630  */
631 union xfs_btree_ptr *
xfs_btree_ptr_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)632 xfs_btree_ptr_addr(
633 	struct xfs_btree_cur	*cur,
634 	int			n,
635 	struct xfs_btree_block	*block)
636 {
637 	int			level = xfs_btree_get_level(block);
638 
639 	ASSERT(block->bb_level != 0);
640 
641 	return (union xfs_btree_ptr *)
642 		((char *)block + xfs_btree_ptr_offset(cur, n, level));
643 }
644 
645 struct xfs_ifork *
xfs_btree_ifork_ptr(struct xfs_btree_cur * cur)646 xfs_btree_ifork_ptr(
647 	struct xfs_btree_cur	*cur)
648 {
649 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
650 
651 	if (cur->bc_flags & XFS_BTREE_STAGING)
652 		return cur->bc_ino.ifake->if_fork;
653 	return XFS_IFORK_PTR(cur->bc_ino.ip, cur->bc_ino.whichfork);
654 }
655 
656 /*
657  * Get the root block which is stored in the inode.
658  *
659  * For now this btree implementation assumes the btree root is always
660  * stored in the if_broot field of an inode fork.
661  */
662 STATIC struct xfs_btree_block *
xfs_btree_get_iroot(struct xfs_btree_cur * cur)663 xfs_btree_get_iroot(
664 	struct xfs_btree_cur	*cur)
665 {
666 	struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
667 
668 	return (struct xfs_btree_block *)ifp->if_broot;
669 }
670 
671 /*
672  * Retrieve the block pointer from the cursor at the given level.
673  * This may be an inode btree root or from a buffer.
674  */
675 struct xfs_btree_block *		/* generic btree block pointer */
xfs_btree_get_block(struct xfs_btree_cur * cur,int level,struct xfs_buf ** bpp)676 xfs_btree_get_block(
677 	struct xfs_btree_cur	*cur,	/* btree cursor */
678 	int			level,	/* level in btree */
679 	struct xfs_buf		**bpp)	/* buffer containing the block */
680 {
681 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
682 	    (level == cur->bc_nlevels - 1)) {
683 		*bpp = NULL;
684 		return xfs_btree_get_iroot(cur);
685 	}
686 
687 	*bpp = cur->bc_bufs[level];
688 	return XFS_BUF_TO_BLOCK(*bpp);
689 }
690 
691 /*
692  * Change the cursor to point to the first record at the given level.
693  * Other levels are unaffected.
694  */
695 STATIC int				/* success=1, failure=0 */
xfs_btree_firstrec(xfs_btree_cur_t * cur,int level)696 xfs_btree_firstrec(
697 	xfs_btree_cur_t		*cur,	/* btree cursor */
698 	int			level)	/* level to change */
699 {
700 	struct xfs_btree_block	*block;	/* generic btree block pointer */
701 	xfs_buf_t		*bp;	/* buffer containing block */
702 
703 	/*
704 	 * Get the block pointer for this level.
705 	 */
706 	block = xfs_btree_get_block(cur, level, &bp);
707 	if (xfs_btree_check_block(cur, block, level, bp))
708 		return 0;
709 	/*
710 	 * It's empty, there is no such record.
711 	 */
712 	if (!block->bb_numrecs)
713 		return 0;
714 	/*
715 	 * Set the ptr value to 1, that's the first record/key.
716 	 */
717 	cur->bc_ptrs[level] = 1;
718 	return 1;
719 }
720 
721 /*
722  * Change the cursor to point to the last record in the current block
723  * at the given level.  Other levels are unaffected.
724  */
725 STATIC int				/* success=1, failure=0 */
xfs_btree_lastrec(xfs_btree_cur_t * cur,int level)726 xfs_btree_lastrec(
727 	xfs_btree_cur_t		*cur,	/* btree cursor */
728 	int			level)	/* level to change */
729 {
730 	struct xfs_btree_block	*block;	/* generic btree block pointer */
731 	xfs_buf_t		*bp;	/* buffer containing block */
732 
733 	/*
734 	 * Get the block pointer for this level.
735 	 */
736 	block = xfs_btree_get_block(cur, level, &bp);
737 	if (xfs_btree_check_block(cur, block, level, bp))
738 		return 0;
739 	/*
740 	 * It's empty, there is no such record.
741 	 */
742 	if (!block->bb_numrecs)
743 		return 0;
744 	/*
745 	 * Set the ptr value to numrecs, that's the last record/key.
746 	 */
747 	cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
748 	return 1;
749 }
750 
751 /*
752  * Compute first and last byte offsets for the fields given.
753  * Interprets the offsets table, which contains struct field offsets.
754  */
755 void
xfs_btree_offsets(int64_t fields,const short * offsets,int nbits,int * first,int * last)756 xfs_btree_offsets(
757 	int64_t		fields,		/* bitmask of fields */
758 	const short	*offsets,	/* table of field offsets */
759 	int		nbits,		/* number of bits to inspect */
760 	int		*first,		/* output: first byte offset */
761 	int		*last)		/* output: last byte offset */
762 {
763 	int		i;		/* current bit number */
764 	int64_t		imask;		/* mask for current bit number */
765 
766 	ASSERT(fields != 0);
767 	/*
768 	 * Find the lowest bit, so the first byte offset.
769 	 */
770 	for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
771 		if (imask & fields) {
772 			*first = offsets[i];
773 			break;
774 		}
775 	}
776 	/*
777 	 * Find the highest bit, so the last byte offset.
778 	 */
779 	for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
780 		if (imask & fields) {
781 			*last = offsets[i + 1] - 1;
782 			break;
783 		}
784 	}
785 }
786 
787 /*
788  * Get a buffer for the block, return it read in.
789  * Long-form addressing.
790  */
791 int
xfs_btree_read_bufl(struct xfs_mount * mp,struct xfs_trans * tp,xfs_fsblock_t fsbno,struct xfs_buf ** bpp,int refval,const struct xfs_buf_ops * ops)792 xfs_btree_read_bufl(
793 	struct xfs_mount	*mp,		/* file system mount point */
794 	struct xfs_trans	*tp,		/* transaction pointer */
795 	xfs_fsblock_t		fsbno,		/* file system block number */
796 	struct xfs_buf		**bpp,		/* buffer for fsbno */
797 	int			refval,		/* ref count value for buffer */
798 	const struct xfs_buf_ops *ops)
799 {
800 	struct xfs_buf		*bp;		/* return value */
801 	xfs_daddr_t		d;		/* real disk block address */
802 	int			error;
803 
804 	if (!xfs_verify_fsbno(mp, fsbno))
805 		return -EFSCORRUPTED;
806 	d = XFS_FSB_TO_DADDR(mp, fsbno);
807 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
808 				   mp->m_bsize, 0, &bp, ops);
809 	if (error)
810 		return error;
811 	if (bp)
812 		xfs_buf_set_ref(bp, refval);
813 	*bpp = bp;
814 	return 0;
815 }
816 
817 /*
818  * Read-ahead the block, don't wait for it, don't return a buffer.
819  * Long-form addressing.
820  */
821 /* ARGSUSED */
822 void
xfs_btree_reada_bufl(struct xfs_mount * mp,xfs_fsblock_t fsbno,xfs_extlen_t count,const struct xfs_buf_ops * ops)823 xfs_btree_reada_bufl(
824 	struct xfs_mount	*mp,		/* file system mount point */
825 	xfs_fsblock_t		fsbno,		/* file system block number */
826 	xfs_extlen_t		count,		/* count of filesystem blocks */
827 	const struct xfs_buf_ops *ops)
828 {
829 	xfs_daddr_t		d;
830 
831 	ASSERT(fsbno != NULLFSBLOCK);
832 	d = XFS_FSB_TO_DADDR(mp, fsbno);
833 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
834 }
835 
836 /*
837  * Read-ahead the block, don't wait for it, don't return a buffer.
838  * Short-form addressing.
839  */
840 /* ARGSUSED */
841 void
xfs_btree_reada_bufs(struct xfs_mount * mp,xfs_agnumber_t agno,xfs_agblock_t agbno,xfs_extlen_t count,const struct xfs_buf_ops * ops)842 xfs_btree_reada_bufs(
843 	struct xfs_mount	*mp,		/* file system mount point */
844 	xfs_agnumber_t		agno,		/* allocation group number */
845 	xfs_agblock_t		agbno,		/* allocation group block number */
846 	xfs_extlen_t		count,		/* count of filesystem blocks */
847 	const struct xfs_buf_ops *ops)
848 {
849 	xfs_daddr_t		d;
850 
851 	ASSERT(agno != NULLAGNUMBER);
852 	ASSERT(agbno != NULLAGBLOCK);
853 	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
854 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
855 }
856 
857 STATIC int
xfs_btree_readahead_lblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)858 xfs_btree_readahead_lblock(
859 	struct xfs_btree_cur	*cur,
860 	int			lr,
861 	struct xfs_btree_block	*block)
862 {
863 	int			rval = 0;
864 	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
865 	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
866 
867 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
868 		xfs_btree_reada_bufl(cur->bc_mp, left, 1,
869 				     cur->bc_ops->buf_ops);
870 		rval++;
871 	}
872 
873 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
874 		xfs_btree_reada_bufl(cur->bc_mp, right, 1,
875 				     cur->bc_ops->buf_ops);
876 		rval++;
877 	}
878 
879 	return rval;
880 }
881 
882 STATIC int
xfs_btree_readahead_sblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)883 xfs_btree_readahead_sblock(
884 	struct xfs_btree_cur	*cur,
885 	int			lr,
886 	struct xfs_btree_block *block)
887 {
888 	int			rval = 0;
889 	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
890 	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
891 
892 
893 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
894 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.agno,
895 				     left, 1, cur->bc_ops->buf_ops);
896 		rval++;
897 	}
898 
899 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
900 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.agno,
901 				     right, 1, cur->bc_ops->buf_ops);
902 		rval++;
903 	}
904 
905 	return rval;
906 }
907 
908 /*
909  * Read-ahead btree blocks, at the given level.
910  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
911  */
912 STATIC int
xfs_btree_readahead(struct xfs_btree_cur * cur,int lev,int lr)913 xfs_btree_readahead(
914 	struct xfs_btree_cur	*cur,		/* btree cursor */
915 	int			lev,		/* level in btree */
916 	int			lr)		/* left/right bits */
917 {
918 	struct xfs_btree_block	*block;
919 
920 	/*
921 	 * No readahead needed if we are at the root level and the
922 	 * btree root is stored in the inode.
923 	 */
924 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
925 	    (lev == cur->bc_nlevels - 1))
926 		return 0;
927 
928 	if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
929 		return 0;
930 
931 	cur->bc_ra[lev] |= lr;
932 	block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
933 
934 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
935 		return xfs_btree_readahead_lblock(cur, lr, block);
936 	return xfs_btree_readahead_sblock(cur, lr, block);
937 }
938 
939 STATIC int
xfs_btree_ptr_to_daddr(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,xfs_daddr_t * daddr)940 xfs_btree_ptr_to_daddr(
941 	struct xfs_btree_cur	*cur,
942 	union xfs_btree_ptr	*ptr,
943 	xfs_daddr_t		*daddr)
944 {
945 	xfs_fsblock_t		fsbno;
946 	xfs_agblock_t		agbno;
947 	int			error;
948 
949 	error = xfs_btree_check_ptr(cur, ptr, 0, 1);
950 	if (error)
951 		return error;
952 
953 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
954 		fsbno = be64_to_cpu(ptr->l);
955 		*daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
956 	} else {
957 		agbno = be32_to_cpu(ptr->s);
958 		*daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.agno,
959 				agbno);
960 	}
961 
962 	return 0;
963 }
964 
965 /*
966  * Readahead @count btree blocks at the given @ptr location.
967  *
968  * We don't need to care about long or short form btrees here as we have a
969  * method of converting the ptr directly to a daddr available to us.
970  */
971 STATIC void
xfs_btree_readahead_ptr(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,xfs_extlen_t count)972 xfs_btree_readahead_ptr(
973 	struct xfs_btree_cur	*cur,
974 	union xfs_btree_ptr	*ptr,
975 	xfs_extlen_t		count)
976 {
977 	xfs_daddr_t		daddr;
978 
979 	if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
980 		return;
981 	xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
982 			  cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
983 }
984 
985 /*
986  * Set the buffer for level "lev" in the cursor to bp, releasing
987  * any previous buffer.
988  */
989 STATIC void
xfs_btree_setbuf(xfs_btree_cur_t * cur,int lev,xfs_buf_t * bp)990 xfs_btree_setbuf(
991 	xfs_btree_cur_t		*cur,	/* btree cursor */
992 	int			lev,	/* level in btree */
993 	xfs_buf_t		*bp)	/* new buffer to set */
994 {
995 	struct xfs_btree_block	*b;	/* btree block */
996 
997 	if (cur->bc_bufs[lev])
998 		xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
999 	cur->bc_bufs[lev] = bp;
1000 	cur->bc_ra[lev] = 0;
1001 
1002 	b = XFS_BUF_TO_BLOCK(bp);
1003 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1004 		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1005 			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1006 		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1007 			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1008 	} else {
1009 		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1010 			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1011 		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1012 			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1013 	}
1014 }
1015 
1016 bool
xfs_btree_ptr_is_null(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)1017 xfs_btree_ptr_is_null(
1018 	struct xfs_btree_cur	*cur,
1019 	union xfs_btree_ptr	*ptr)
1020 {
1021 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1022 		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1023 	else
1024 		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1025 }
1026 
1027 void
xfs_btree_set_ptr_null(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)1028 xfs_btree_set_ptr_null(
1029 	struct xfs_btree_cur	*cur,
1030 	union xfs_btree_ptr	*ptr)
1031 {
1032 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1033 		ptr->l = cpu_to_be64(NULLFSBLOCK);
1034 	else
1035 		ptr->s = cpu_to_be32(NULLAGBLOCK);
1036 }
1037 
1038 /*
1039  * Get/set/init sibling pointers
1040  */
1041 void
xfs_btree_get_sibling(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_ptr * ptr,int lr)1042 xfs_btree_get_sibling(
1043 	struct xfs_btree_cur	*cur,
1044 	struct xfs_btree_block	*block,
1045 	union xfs_btree_ptr	*ptr,
1046 	int			lr)
1047 {
1048 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1049 
1050 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1051 		if (lr == XFS_BB_RIGHTSIB)
1052 			ptr->l = block->bb_u.l.bb_rightsib;
1053 		else
1054 			ptr->l = block->bb_u.l.bb_leftsib;
1055 	} else {
1056 		if (lr == XFS_BB_RIGHTSIB)
1057 			ptr->s = block->bb_u.s.bb_rightsib;
1058 		else
1059 			ptr->s = block->bb_u.s.bb_leftsib;
1060 	}
1061 }
1062 
1063 void
xfs_btree_set_sibling(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_ptr * ptr,int lr)1064 xfs_btree_set_sibling(
1065 	struct xfs_btree_cur	*cur,
1066 	struct xfs_btree_block	*block,
1067 	union xfs_btree_ptr	*ptr,
1068 	int			lr)
1069 {
1070 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1071 
1072 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1073 		if (lr == XFS_BB_RIGHTSIB)
1074 			block->bb_u.l.bb_rightsib = ptr->l;
1075 		else
1076 			block->bb_u.l.bb_leftsib = ptr->l;
1077 	} else {
1078 		if (lr == XFS_BB_RIGHTSIB)
1079 			block->bb_u.s.bb_rightsib = ptr->s;
1080 		else
1081 			block->bb_u.s.bb_leftsib = ptr->s;
1082 	}
1083 }
1084 
1085 void
xfs_btree_init_block_int(struct xfs_mount * mp,struct xfs_btree_block * buf,xfs_daddr_t blkno,xfs_btnum_t btnum,__u16 level,__u16 numrecs,__u64 owner,unsigned int flags)1086 xfs_btree_init_block_int(
1087 	struct xfs_mount	*mp,
1088 	struct xfs_btree_block	*buf,
1089 	xfs_daddr_t		blkno,
1090 	xfs_btnum_t		btnum,
1091 	__u16			level,
1092 	__u16			numrecs,
1093 	__u64			owner,
1094 	unsigned int		flags)
1095 {
1096 	int			crc = xfs_sb_version_hascrc(&mp->m_sb);
1097 	__u32			magic = xfs_btree_magic(crc, btnum);
1098 
1099 	buf->bb_magic = cpu_to_be32(magic);
1100 	buf->bb_level = cpu_to_be16(level);
1101 	buf->bb_numrecs = cpu_to_be16(numrecs);
1102 
1103 	if (flags & XFS_BTREE_LONG_PTRS) {
1104 		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1105 		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1106 		if (crc) {
1107 			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1108 			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1109 			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1110 			buf->bb_u.l.bb_pad = 0;
1111 			buf->bb_u.l.bb_lsn = 0;
1112 		}
1113 	} else {
1114 		/* owner is a 32 bit value on short blocks */
1115 		__u32 __owner = (__u32)owner;
1116 
1117 		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1118 		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1119 		if (crc) {
1120 			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1121 			buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1122 			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1123 			buf->bb_u.s.bb_lsn = 0;
1124 		}
1125 	}
1126 }
1127 
1128 void
xfs_btree_init_block(struct xfs_mount * mp,struct xfs_buf * bp,xfs_btnum_t btnum,__u16 level,__u16 numrecs,__u64 owner)1129 xfs_btree_init_block(
1130 	struct xfs_mount *mp,
1131 	struct xfs_buf	*bp,
1132 	xfs_btnum_t	btnum,
1133 	__u16		level,
1134 	__u16		numrecs,
1135 	__u64		owner)
1136 {
1137 	xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1138 				 btnum, level, numrecs, owner, 0);
1139 }
1140 
1141 void
xfs_btree_init_block_cur(struct xfs_btree_cur * cur,struct xfs_buf * bp,int level,int numrecs)1142 xfs_btree_init_block_cur(
1143 	struct xfs_btree_cur	*cur,
1144 	struct xfs_buf		*bp,
1145 	int			level,
1146 	int			numrecs)
1147 {
1148 	__u64			owner;
1149 
1150 	/*
1151 	 * we can pull the owner from the cursor right now as the different
1152 	 * owners align directly with the pointer size of the btree. This may
1153 	 * change in future, but is safe for current users of the generic btree
1154 	 * code.
1155 	 */
1156 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1157 		owner = cur->bc_ino.ip->i_ino;
1158 	else
1159 		owner = cur->bc_ag.agno;
1160 
1161 	xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1162 				 cur->bc_btnum, level, numrecs,
1163 				 owner, cur->bc_flags);
1164 }
1165 
1166 /*
1167  * Return true if ptr is the last record in the btree and
1168  * we need to track updates to this record.  The decision
1169  * will be further refined in the update_lastrec method.
1170  */
1171 STATIC int
xfs_btree_is_lastrec(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level)1172 xfs_btree_is_lastrec(
1173 	struct xfs_btree_cur	*cur,
1174 	struct xfs_btree_block	*block,
1175 	int			level)
1176 {
1177 	union xfs_btree_ptr	ptr;
1178 
1179 	if (level > 0)
1180 		return 0;
1181 	if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1182 		return 0;
1183 
1184 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1185 	if (!xfs_btree_ptr_is_null(cur, &ptr))
1186 		return 0;
1187 	return 1;
1188 }
1189 
1190 STATIC void
xfs_btree_buf_to_ptr(struct xfs_btree_cur * cur,struct xfs_buf * bp,union xfs_btree_ptr * ptr)1191 xfs_btree_buf_to_ptr(
1192 	struct xfs_btree_cur	*cur,
1193 	struct xfs_buf		*bp,
1194 	union xfs_btree_ptr	*ptr)
1195 {
1196 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1197 		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1198 					XFS_BUF_ADDR(bp)));
1199 	else {
1200 		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1201 					XFS_BUF_ADDR(bp)));
1202 	}
1203 }
1204 
1205 STATIC void
xfs_btree_set_refs(struct xfs_btree_cur * cur,struct xfs_buf * bp)1206 xfs_btree_set_refs(
1207 	struct xfs_btree_cur	*cur,
1208 	struct xfs_buf		*bp)
1209 {
1210 	switch (cur->bc_btnum) {
1211 	case XFS_BTNUM_BNO:
1212 	case XFS_BTNUM_CNT:
1213 		xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1214 		break;
1215 	case XFS_BTNUM_INO:
1216 	case XFS_BTNUM_FINO:
1217 		xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1218 		break;
1219 	case XFS_BTNUM_BMAP:
1220 		xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1221 		break;
1222 	case XFS_BTNUM_RMAP:
1223 		xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1224 		break;
1225 	case XFS_BTNUM_REFC:
1226 		xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1227 		break;
1228 	default:
1229 		ASSERT(0);
1230 	}
1231 }
1232 
1233 int
xfs_btree_get_buf_block(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,struct xfs_btree_block ** block,struct xfs_buf ** bpp)1234 xfs_btree_get_buf_block(
1235 	struct xfs_btree_cur	*cur,
1236 	union xfs_btree_ptr	*ptr,
1237 	struct xfs_btree_block	**block,
1238 	struct xfs_buf		**bpp)
1239 {
1240 	struct xfs_mount	*mp = cur->bc_mp;
1241 	xfs_daddr_t		d;
1242 	int			error;
1243 
1244 	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1245 	if (error)
1246 		return error;
1247 	error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
1248 			0, bpp);
1249 	if (error)
1250 		return error;
1251 
1252 	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1253 	*block = XFS_BUF_TO_BLOCK(*bpp);
1254 	return 0;
1255 }
1256 
1257 /*
1258  * Read in the buffer at the given ptr and return the buffer and
1259  * the block pointer within the buffer.
1260  */
1261 STATIC int
xfs_btree_read_buf_block(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int flags,struct xfs_btree_block ** block,struct xfs_buf ** bpp)1262 xfs_btree_read_buf_block(
1263 	struct xfs_btree_cur	*cur,
1264 	union xfs_btree_ptr	*ptr,
1265 	int			flags,
1266 	struct xfs_btree_block	**block,
1267 	struct xfs_buf		**bpp)
1268 {
1269 	struct xfs_mount	*mp = cur->bc_mp;
1270 	xfs_daddr_t		d;
1271 	int			error;
1272 
1273 	/* need to sort out how callers deal with failures first */
1274 	ASSERT(!(flags & XBF_TRYLOCK));
1275 
1276 	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1277 	if (error)
1278 		return error;
1279 	error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1280 				   mp->m_bsize, flags, bpp,
1281 				   cur->bc_ops->buf_ops);
1282 	if (error)
1283 		return error;
1284 
1285 	xfs_btree_set_refs(cur, *bpp);
1286 	*block = XFS_BUF_TO_BLOCK(*bpp);
1287 	return 0;
1288 }
1289 
1290 /*
1291  * Copy keys from one btree block to another.
1292  */
1293 void
xfs_btree_copy_keys(struct xfs_btree_cur * cur,union xfs_btree_key * dst_key,union xfs_btree_key * src_key,int numkeys)1294 xfs_btree_copy_keys(
1295 	struct xfs_btree_cur	*cur,
1296 	union xfs_btree_key	*dst_key,
1297 	union xfs_btree_key	*src_key,
1298 	int			numkeys)
1299 {
1300 	ASSERT(numkeys >= 0);
1301 	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1302 }
1303 
1304 /*
1305  * Copy records from one btree block to another.
1306  */
1307 STATIC void
xfs_btree_copy_recs(struct xfs_btree_cur * cur,union xfs_btree_rec * dst_rec,union xfs_btree_rec * src_rec,int numrecs)1308 xfs_btree_copy_recs(
1309 	struct xfs_btree_cur	*cur,
1310 	union xfs_btree_rec	*dst_rec,
1311 	union xfs_btree_rec	*src_rec,
1312 	int			numrecs)
1313 {
1314 	ASSERT(numrecs >= 0);
1315 	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1316 }
1317 
1318 /*
1319  * Copy block pointers from one btree block to another.
1320  */
1321 void
xfs_btree_copy_ptrs(struct xfs_btree_cur * cur,union xfs_btree_ptr * dst_ptr,const union xfs_btree_ptr * src_ptr,int numptrs)1322 xfs_btree_copy_ptrs(
1323 	struct xfs_btree_cur	*cur,
1324 	union xfs_btree_ptr	*dst_ptr,
1325 	const union xfs_btree_ptr *src_ptr,
1326 	int			numptrs)
1327 {
1328 	ASSERT(numptrs >= 0);
1329 	memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1330 }
1331 
1332 /*
1333  * Shift keys one index left/right inside a single btree block.
1334  */
1335 STATIC void
xfs_btree_shift_keys(struct xfs_btree_cur * cur,union xfs_btree_key * key,int dir,int numkeys)1336 xfs_btree_shift_keys(
1337 	struct xfs_btree_cur	*cur,
1338 	union xfs_btree_key	*key,
1339 	int			dir,
1340 	int			numkeys)
1341 {
1342 	char			*dst_key;
1343 
1344 	ASSERT(numkeys >= 0);
1345 	ASSERT(dir == 1 || dir == -1);
1346 
1347 	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1348 	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1349 }
1350 
1351 /*
1352  * Shift records one index left/right inside a single btree block.
1353  */
1354 STATIC void
xfs_btree_shift_recs(struct xfs_btree_cur * cur,union xfs_btree_rec * rec,int dir,int numrecs)1355 xfs_btree_shift_recs(
1356 	struct xfs_btree_cur	*cur,
1357 	union xfs_btree_rec	*rec,
1358 	int			dir,
1359 	int			numrecs)
1360 {
1361 	char			*dst_rec;
1362 
1363 	ASSERT(numrecs >= 0);
1364 	ASSERT(dir == 1 || dir == -1);
1365 
1366 	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1367 	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1368 }
1369 
1370 /*
1371  * Shift block pointers one index left/right inside a single btree block.
1372  */
1373 STATIC void
xfs_btree_shift_ptrs(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int dir,int numptrs)1374 xfs_btree_shift_ptrs(
1375 	struct xfs_btree_cur	*cur,
1376 	union xfs_btree_ptr	*ptr,
1377 	int			dir,
1378 	int			numptrs)
1379 {
1380 	char			*dst_ptr;
1381 
1382 	ASSERT(numptrs >= 0);
1383 	ASSERT(dir == 1 || dir == -1);
1384 
1385 	dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1386 	memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1387 }
1388 
1389 /*
1390  * Log key values from the btree block.
1391  */
1392 STATIC void
xfs_btree_log_keys(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1393 xfs_btree_log_keys(
1394 	struct xfs_btree_cur	*cur,
1395 	struct xfs_buf		*bp,
1396 	int			first,
1397 	int			last)
1398 {
1399 
1400 	if (bp) {
1401 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1402 		xfs_trans_log_buf(cur->bc_tp, bp,
1403 				  xfs_btree_key_offset(cur, first),
1404 				  xfs_btree_key_offset(cur, last + 1) - 1);
1405 	} else {
1406 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1407 				xfs_ilog_fbroot(cur->bc_ino.whichfork));
1408 	}
1409 }
1410 
1411 /*
1412  * Log record values from the btree block.
1413  */
1414 void
xfs_btree_log_recs(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1415 xfs_btree_log_recs(
1416 	struct xfs_btree_cur	*cur,
1417 	struct xfs_buf		*bp,
1418 	int			first,
1419 	int			last)
1420 {
1421 
1422 	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1423 	xfs_trans_log_buf(cur->bc_tp, bp,
1424 			  xfs_btree_rec_offset(cur, first),
1425 			  xfs_btree_rec_offset(cur, last + 1) - 1);
1426 
1427 }
1428 
1429 /*
1430  * Log block pointer fields from a btree block (nonleaf).
1431  */
1432 STATIC void
xfs_btree_log_ptrs(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1433 xfs_btree_log_ptrs(
1434 	struct xfs_btree_cur	*cur,	/* btree cursor */
1435 	struct xfs_buf		*bp,	/* buffer containing btree block */
1436 	int			first,	/* index of first pointer to log */
1437 	int			last)	/* index of last pointer to log */
1438 {
1439 
1440 	if (bp) {
1441 		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
1442 		int			level = xfs_btree_get_level(block);
1443 
1444 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1445 		xfs_trans_log_buf(cur->bc_tp, bp,
1446 				xfs_btree_ptr_offset(cur, first, level),
1447 				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1448 	} else {
1449 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1450 			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1451 	}
1452 
1453 }
1454 
1455 /*
1456  * Log fields from a btree block header.
1457  */
1458 void
xfs_btree_log_block(struct xfs_btree_cur * cur,struct xfs_buf * bp,int fields)1459 xfs_btree_log_block(
1460 	struct xfs_btree_cur	*cur,	/* btree cursor */
1461 	struct xfs_buf		*bp,	/* buffer containing btree block */
1462 	int			fields)	/* mask of fields: XFS_BB_... */
1463 {
1464 	int			first;	/* first byte offset logged */
1465 	int			last;	/* last byte offset logged */
1466 	static const short	soffsets[] = {	/* table of offsets (short) */
1467 		offsetof(struct xfs_btree_block, bb_magic),
1468 		offsetof(struct xfs_btree_block, bb_level),
1469 		offsetof(struct xfs_btree_block, bb_numrecs),
1470 		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1471 		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1472 		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1473 		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1474 		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1475 		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1476 		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1477 		XFS_BTREE_SBLOCK_CRC_LEN
1478 	};
1479 	static const short	loffsets[] = {	/* table of offsets (long) */
1480 		offsetof(struct xfs_btree_block, bb_magic),
1481 		offsetof(struct xfs_btree_block, bb_level),
1482 		offsetof(struct xfs_btree_block, bb_numrecs),
1483 		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1484 		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1485 		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1486 		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1487 		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1488 		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1489 		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1490 		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1491 		XFS_BTREE_LBLOCK_CRC_LEN
1492 	};
1493 
1494 	if (bp) {
1495 		int nbits;
1496 
1497 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1498 			/*
1499 			 * We don't log the CRC when updating a btree
1500 			 * block but instead recreate it during log
1501 			 * recovery.  As the log buffers have checksums
1502 			 * of their own this is safe and avoids logging a crc
1503 			 * update in a lot of places.
1504 			 */
1505 			if (fields == XFS_BB_ALL_BITS)
1506 				fields = XFS_BB_ALL_BITS_CRC;
1507 			nbits = XFS_BB_NUM_BITS_CRC;
1508 		} else {
1509 			nbits = XFS_BB_NUM_BITS;
1510 		}
1511 		xfs_btree_offsets(fields,
1512 				  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1513 					loffsets : soffsets,
1514 				  nbits, &first, &last);
1515 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1516 		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1517 	} else {
1518 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1519 			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1520 	}
1521 }
1522 
1523 /*
1524  * Increment cursor by one record at the level.
1525  * For nonzero levels the leaf-ward information is untouched.
1526  */
1527 int						/* error */
xfs_btree_increment(struct xfs_btree_cur * cur,int level,int * stat)1528 xfs_btree_increment(
1529 	struct xfs_btree_cur	*cur,
1530 	int			level,
1531 	int			*stat)		/* success/failure */
1532 {
1533 	struct xfs_btree_block	*block;
1534 	union xfs_btree_ptr	ptr;
1535 	struct xfs_buf		*bp;
1536 	int			error;		/* error return value */
1537 	int			lev;
1538 
1539 	ASSERT(level < cur->bc_nlevels);
1540 
1541 	/* Read-ahead to the right at this level. */
1542 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1543 
1544 	/* Get a pointer to the btree block. */
1545 	block = xfs_btree_get_block(cur, level, &bp);
1546 
1547 #ifdef DEBUG
1548 	error = xfs_btree_check_block(cur, block, level, bp);
1549 	if (error)
1550 		goto error0;
1551 #endif
1552 
1553 	/* We're done if we remain in the block after the increment. */
1554 	if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1555 		goto out1;
1556 
1557 	/* Fail if we just went off the right edge of the tree. */
1558 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1559 	if (xfs_btree_ptr_is_null(cur, &ptr))
1560 		goto out0;
1561 
1562 	XFS_BTREE_STATS_INC(cur, increment);
1563 
1564 	/*
1565 	 * March up the tree incrementing pointers.
1566 	 * Stop when we don't go off the right edge of a block.
1567 	 */
1568 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1569 		block = xfs_btree_get_block(cur, lev, &bp);
1570 
1571 #ifdef DEBUG
1572 		error = xfs_btree_check_block(cur, block, lev, bp);
1573 		if (error)
1574 			goto error0;
1575 #endif
1576 
1577 		if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1578 			break;
1579 
1580 		/* Read-ahead the right block for the next loop. */
1581 		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1582 	}
1583 
1584 	/*
1585 	 * If we went off the root then we are either seriously
1586 	 * confused or have the tree root in an inode.
1587 	 */
1588 	if (lev == cur->bc_nlevels) {
1589 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1590 			goto out0;
1591 		ASSERT(0);
1592 		error = -EFSCORRUPTED;
1593 		goto error0;
1594 	}
1595 	ASSERT(lev < cur->bc_nlevels);
1596 
1597 	/*
1598 	 * Now walk back down the tree, fixing up the cursor's buffer
1599 	 * pointers and key numbers.
1600 	 */
1601 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1602 		union xfs_btree_ptr	*ptrp;
1603 
1604 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1605 		--lev;
1606 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1607 		if (error)
1608 			goto error0;
1609 
1610 		xfs_btree_setbuf(cur, lev, bp);
1611 		cur->bc_ptrs[lev] = 1;
1612 	}
1613 out1:
1614 	*stat = 1;
1615 	return 0;
1616 
1617 out0:
1618 	*stat = 0;
1619 	return 0;
1620 
1621 error0:
1622 	return error;
1623 }
1624 
1625 /*
1626  * Decrement cursor by one record at the level.
1627  * For nonzero levels the leaf-ward information is untouched.
1628  */
1629 int						/* error */
xfs_btree_decrement(struct xfs_btree_cur * cur,int level,int * stat)1630 xfs_btree_decrement(
1631 	struct xfs_btree_cur	*cur,
1632 	int			level,
1633 	int			*stat)		/* success/failure */
1634 {
1635 	struct xfs_btree_block	*block;
1636 	xfs_buf_t		*bp;
1637 	int			error;		/* error return value */
1638 	int			lev;
1639 	union xfs_btree_ptr	ptr;
1640 
1641 	ASSERT(level < cur->bc_nlevels);
1642 
1643 	/* Read-ahead to the left at this level. */
1644 	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1645 
1646 	/* We're done if we remain in the block after the decrement. */
1647 	if (--cur->bc_ptrs[level] > 0)
1648 		goto out1;
1649 
1650 	/* Get a pointer to the btree block. */
1651 	block = xfs_btree_get_block(cur, level, &bp);
1652 
1653 #ifdef DEBUG
1654 	error = xfs_btree_check_block(cur, block, level, bp);
1655 	if (error)
1656 		goto error0;
1657 #endif
1658 
1659 	/* Fail if we just went off the left edge of the tree. */
1660 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1661 	if (xfs_btree_ptr_is_null(cur, &ptr))
1662 		goto out0;
1663 
1664 	XFS_BTREE_STATS_INC(cur, decrement);
1665 
1666 	/*
1667 	 * March up the tree decrementing pointers.
1668 	 * Stop when we don't go off the left edge of a block.
1669 	 */
1670 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1671 		if (--cur->bc_ptrs[lev] > 0)
1672 			break;
1673 		/* Read-ahead the left block for the next loop. */
1674 		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1675 	}
1676 
1677 	/*
1678 	 * If we went off the root then we are seriously confused.
1679 	 * or the root of the tree is in an inode.
1680 	 */
1681 	if (lev == cur->bc_nlevels) {
1682 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1683 			goto out0;
1684 		ASSERT(0);
1685 		error = -EFSCORRUPTED;
1686 		goto error0;
1687 	}
1688 	ASSERT(lev < cur->bc_nlevels);
1689 
1690 	/*
1691 	 * Now walk back down the tree, fixing up the cursor's buffer
1692 	 * pointers and key numbers.
1693 	 */
1694 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1695 		union xfs_btree_ptr	*ptrp;
1696 
1697 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1698 		--lev;
1699 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1700 		if (error)
1701 			goto error0;
1702 		xfs_btree_setbuf(cur, lev, bp);
1703 		cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1704 	}
1705 out1:
1706 	*stat = 1;
1707 	return 0;
1708 
1709 out0:
1710 	*stat = 0;
1711 	return 0;
1712 
1713 error0:
1714 	return error;
1715 }
1716 
1717 int
xfs_btree_lookup_get_block(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * pp,struct xfs_btree_block ** blkp)1718 xfs_btree_lookup_get_block(
1719 	struct xfs_btree_cur	*cur,	/* btree cursor */
1720 	int			level,	/* level in the btree */
1721 	union xfs_btree_ptr	*pp,	/* ptr to btree block */
1722 	struct xfs_btree_block	**blkp) /* return btree block */
1723 {
1724 	struct xfs_buf		*bp;	/* buffer pointer for btree block */
1725 	xfs_daddr_t		daddr;
1726 	int			error = 0;
1727 
1728 	/* special case the root block if in an inode */
1729 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1730 	    (level == cur->bc_nlevels - 1)) {
1731 		*blkp = xfs_btree_get_iroot(cur);
1732 		return 0;
1733 	}
1734 
1735 	/*
1736 	 * If the old buffer at this level for the disk address we are
1737 	 * looking for re-use it.
1738 	 *
1739 	 * Otherwise throw it away and get a new one.
1740 	 */
1741 	bp = cur->bc_bufs[level];
1742 	error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1743 	if (error)
1744 		return error;
1745 	if (bp && XFS_BUF_ADDR(bp) == daddr) {
1746 		*blkp = XFS_BUF_TO_BLOCK(bp);
1747 		return 0;
1748 	}
1749 
1750 	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1751 	if (error)
1752 		return error;
1753 
1754 	/* Check the inode owner since the verifiers don't. */
1755 	if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1756 	    !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) &&
1757 	    (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1758 	    be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1759 			cur->bc_ino.ip->i_ino)
1760 		goto out_bad;
1761 
1762 	/* Did we get the level we were looking for? */
1763 	if (be16_to_cpu((*blkp)->bb_level) != level)
1764 		goto out_bad;
1765 
1766 	/* Check that internal nodes have at least one record. */
1767 	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1768 		goto out_bad;
1769 
1770 	xfs_btree_setbuf(cur, level, bp);
1771 	return 0;
1772 
1773 out_bad:
1774 	*blkp = NULL;
1775 	xfs_buf_mark_corrupt(bp);
1776 	xfs_trans_brelse(cur->bc_tp, bp);
1777 	return -EFSCORRUPTED;
1778 }
1779 
1780 /*
1781  * Get current search key.  For level 0 we don't actually have a key
1782  * structure so we make one up from the record.  For all other levels
1783  * we just return the right key.
1784  */
1785 STATIC union xfs_btree_key *
xfs_lookup_get_search_key(struct xfs_btree_cur * cur,int level,int keyno,struct xfs_btree_block * block,union xfs_btree_key * kp)1786 xfs_lookup_get_search_key(
1787 	struct xfs_btree_cur	*cur,
1788 	int			level,
1789 	int			keyno,
1790 	struct xfs_btree_block	*block,
1791 	union xfs_btree_key	*kp)
1792 {
1793 	if (level == 0) {
1794 		cur->bc_ops->init_key_from_rec(kp,
1795 				xfs_btree_rec_addr(cur, keyno, block));
1796 		return kp;
1797 	}
1798 
1799 	return xfs_btree_key_addr(cur, keyno, block);
1800 }
1801 
1802 /*
1803  * Lookup the record.  The cursor is made to point to it, based on dir.
1804  * stat is set to 0 if can't find any such record, 1 for success.
1805  */
1806 int					/* error */
xfs_btree_lookup(struct xfs_btree_cur * cur,xfs_lookup_t dir,int * stat)1807 xfs_btree_lookup(
1808 	struct xfs_btree_cur	*cur,	/* btree cursor */
1809 	xfs_lookup_t		dir,	/* <=, ==, or >= */
1810 	int			*stat)	/* success/failure */
1811 {
1812 	struct xfs_btree_block	*block;	/* current btree block */
1813 	int64_t			diff;	/* difference for the current key */
1814 	int			error;	/* error return value */
1815 	int			keyno;	/* current key number */
1816 	int			level;	/* level in the btree */
1817 	union xfs_btree_ptr	*pp;	/* ptr to btree block */
1818 	union xfs_btree_ptr	ptr;	/* ptr to btree block */
1819 
1820 	XFS_BTREE_STATS_INC(cur, lookup);
1821 
1822 	/* No such thing as a zero-level tree. */
1823 	if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
1824 		return -EFSCORRUPTED;
1825 
1826 	block = NULL;
1827 	keyno = 0;
1828 
1829 	/* initialise start pointer from cursor */
1830 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1831 	pp = &ptr;
1832 
1833 	/*
1834 	 * Iterate over each level in the btree, starting at the root.
1835 	 * For each level above the leaves, find the key we need, based
1836 	 * on the lookup record, then follow the corresponding block
1837 	 * pointer down to the next level.
1838 	 */
1839 	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1840 		/* Get the block we need to do the lookup on. */
1841 		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1842 		if (error)
1843 			goto error0;
1844 
1845 		if (diff == 0) {
1846 			/*
1847 			 * If we already had a key match at a higher level, we
1848 			 * know we need to use the first entry in this block.
1849 			 */
1850 			keyno = 1;
1851 		} else {
1852 			/* Otherwise search this block. Do a binary search. */
1853 
1854 			int	high;	/* high entry number */
1855 			int	low;	/* low entry number */
1856 
1857 			/* Set low and high entry numbers, 1-based. */
1858 			low = 1;
1859 			high = xfs_btree_get_numrecs(block);
1860 			if (!high) {
1861 				/* Block is empty, must be an empty leaf. */
1862 				if (level != 0 || cur->bc_nlevels != 1) {
1863 					XFS_CORRUPTION_ERROR(__func__,
1864 							XFS_ERRLEVEL_LOW,
1865 							cur->bc_mp, block,
1866 							sizeof(*block));
1867 					return -EFSCORRUPTED;
1868 				}
1869 
1870 				cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1871 				*stat = 0;
1872 				return 0;
1873 			}
1874 
1875 			/* Binary search the block. */
1876 			while (low <= high) {
1877 				union xfs_btree_key	key;
1878 				union xfs_btree_key	*kp;
1879 
1880 				XFS_BTREE_STATS_INC(cur, compare);
1881 
1882 				/* keyno is average of low and high. */
1883 				keyno = (low + high) >> 1;
1884 
1885 				/* Get current search key */
1886 				kp = xfs_lookup_get_search_key(cur, level,
1887 						keyno, block, &key);
1888 
1889 				/*
1890 				 * Compute difference to get next direction:
1891 				 *  - less than, move right
1892 				 *  - greater than, move left
1893 				 *  - equal, we're done
1894 				 */
1895 				diff = cur->bc_ops->key_diff(cur, kp);
1896 				if (diff < 0)
1897 					low = keyno + 1;
1898 				else if (diff > 0)
1899 					high = keyno - 1;
1900 				else
1901 					break;
1902 			}
1903 		}
1904 
1905 		/*
1906 		 * If there are more levels, set up for the next level
1907 		 * by getting the block number and filling in the cursor.
1908 		 */
1909 		if (level > 0) {
1910 			/*
1911 			 * If we moved left, need the previous key number,
1912 			 * unless there isn't one.
1913 			 */
1914 			if (diff > 0 && --keyno < 1)
1915 				keyno = 1;
1916 			pp = xfs_btree_ptr_addr(cur, keyno, block);
1917 
1918 			error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1919 			if (error)
1920 				goto error0;
1921 
1922 			cur->bc_ptrs[level] = keyno;
1923 		}
1924 	}
1925 
1926 	/* Done with the search. See if we need to adjust the results. */
1927 	if (dir != XFS_LOOKUP_LE && diff < 0) {
1928 		keyno++;
1929 		/*
1930 		 * If ge search and we went off the end of the block, but it's
1931 		 * not the last block, we're in the wrong block.
1932 		 */
1933 		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1934 		if (dir == XFS_LOOKUP_GE &&
1935 		    keyno > xfs_btree_get_numrecs(block) &&
1936 		    !xfs_btree_ptr_is_null(cur, &ptr)) {
1937 			int	i;
1938 
1939 			cur->bc_ptrs[0] = keyno;
1940 			error = xfs_btree_increment(cur, 0, &i);
1941 			if (error)
1942 				goto error0;
1943 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1944 				return -EFSCORRUPTED;
1945 			*stat = 1;
1946 			return 0;
1947 		}
1948 	} else if (dir == XFS_LOOKUP_LE && diff > 0)
1949 		keyno--;
1950 	cur->bc_ptrs[0] = keyno;
1951 
1952 	/* Return if we succeeded or not. */
1953 	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1954 		*stat = 0;
1955 	else if (dir != XFS_LOOKUP_EQ || diff == 0)
1956 		*stat = 1;
1957 	else
1958 		*stat = 0;
1959 	return 0;
1960 
1961 error0:
1962 	return error;
1963 }
1964 
1965 /* Find the high key storage area from a regular key. */
1966 union xfs_btree_key *
xfs_btree_high_key_from_key(struct xfs_btree_cur * cur,union xfs_btree_key * key)1967 xfs_btree_high_key_from_key(
1968 	struct xfs_btree_cur	*cur,
1969 	union xfs_btree_key	*key)
1970 {
1971 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
1972 	return (union xfs_btree_key *)((char *)key +
1973 			(cur->bc_ops->key_len / 2));
1974 }
1975 
1976 /* Determine the low (and high if overlapped) keys of a leaf block */
1977 STATIC void
xfs_btree_get_leaf_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)1978 xfs_btree_get_leaf_keys(
1979 	struct xfs_btree_cur	*cur,
1980 	struct xfs_btree_block	*block,
1981 	union xfs_btree_key	*key)
1982 {
1983 	union xfs_btree_key	max_hkey;
1984 	union xfs_btree_key	hkey;
1985 	union xfs_btree_rec	*rec;
1986 	union xfs_btree_key	*high;
1987 	int			n;
1988 
1989 	rec = xfs_btree_rec_addr(cur, 1, block);
1990 	cur->bc_ops->init_key_from_rec(key, rec);
1991 
1992 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
1993 
1994 		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
1995 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
1996 			rec = xfs_btree_rec_addr(cur, n, block);
1997 			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
1998 			if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
1999 					> 0)
2000 				max_hkey = hkey;
2001 		}
2002 
2003 		high = xfs_btree_high_key_from_key(cur, key);
2004 		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2005 	}
2006 }
2007 
2008 /* Determine the low (and high if overlapped) keys of a node block */
2009 STATIC void
xfs_btree_get_node_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2010 xfs_btree_get_node_keys(
2011 	struct xfs_btree_cur	*cur,
2012 	struct xfs_btree_block	*block,
2013 	union xfs_btree_key	*key)
2014 {
2015 	union xfs_btree_key	*hkey;
2016 	union xfs_btree_key	*max_hkey;
2017 	union xfs_btree_key	*high;
2018 	int			n;
2019 
2020 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2021 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2022 				cur->bc_ops->key_len / 2);
2023 
2024 		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2025 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2026 			hkey = xfs_btree_high_key_addr(cur, n, block);
2027 			if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2028 				max_hkey = hkey;
2029 		}
2030 
2031 		high = xfs_btree_high_key_from_key(cur, key);
2032 		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2033 	} else {
2034 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2035 				cur->bc_ops->key_len);
2036 	}
2037 }
2038 
2039 /* Derive the keys for any btree block. */
2040 void
xfs_btree_get_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2041 xfs_btree_get_keys(
2042 	struct xfs_btree_cur	*cur,
2043 	struct xfs_btree_block	*block,
2044 	union xfs_btree_key	*key)
2045 {
2046 	if (be16_to_cpu(block->bb_level) == 0)
2047 		xfs_btree_get_leaf_keys(cur, block, key);
2048 	else
2049 		xfs_btree_get_node_keys(cur, block, key);
2050 }
2051 
2052 /*
2053  * Decide if we need to update the parent keys of a btree block.  For
2054  * a standard btree this is only necessary if we're updating the first
2055  * record/key.  For an overlapping btree, we must always update the
2056  * keys because the highest key can be in any of the records or keys
2057  * in the block.
2058  */
2059 static inline bool
xfs_btree_needs_key_update(struct xfs_btree_cur * cur,int ptr)2060 xfs_btree_needs_key_update(
2061 	struct xfs_btree_cur	*cur,
2062 	int			ptr)
2063 {
2064 	return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2065 }
2066 
2067 /*
2068  * Update the low and high parent keys of the given level, progressing
2069  * towards the root.  If force_all is false, stop if the keys for a given
2070  * level do not need updating.
2071  */
2072 STATIC int
__xfs_btree_updkeys(struct xfs_btree_cur * cur,int level,struct xfs_btree_block * block,struct xfs_buf * bp0,bool force_all)2073 __xfs_btree_updkeys(
2074 	struct xfs_btree_cur	*cur,
2075 	int			level,
2076 	struct xfs_btree_block	*block,
2077 	struct xfs_buf		*bp0,
2078 	bool			force_all)
2079 {
2080 	union xfs_btree_key	key;	/* keys from current level */
2081 	union xfs_btree_key	*lkey;	/* keys from the next level up */
2082 	union xfs_btree_key	*hkey;
2083 	union xfs_btree_key	*nlkey;	/* keys from the next level up */
2084 	union xfs_btree_key	*nhkey;
2085 	struct xfs_buf		*bp;
2086 	int			ptr;
2087 
2088 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2089 
2090 	/* Exit if there aren't any parent levels to update. */
2091 	if (level + 1 >= cur->bc_nlevels)
2092 		return 0;
2093 
2094 	trace_xfs_btree_updkeys(cur, level, bp0);
2095 
2096 	lkey = &key;
2097 	hkey = xfs_btree_high_key_from_key(cur, lkey);
2098 	xfs_btree_get_keys(cur, block, lkey);
2099 	for (level++; level < cur->bc_nlevels; level++) {
2100 #ifdef DEBUG
2101 		int		error;
2102 #endif
2103 		block = xfs_btree_get_block(cur, level, &bp);
2104 		trace_xfs_btree_updkeys(cur, level, bp);
2105 #ifdef DEBUG
2106 		error = xfs_btree_check_block(cur, block, level, bp);
2107 		if (error)
2108 			return error;
2109 #endif
2110 		ptr = cur->bc_ptrs[level];
2111 		nlkey = xfs_btree_key_addr(cur, ptr, block);
2112 		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2113 		if (!force_all &&
2114 		    !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2115 		      cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2116 			break;
2117 		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2118 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2119 		if (level + 1 >= cur->bc_nlevels)
2120 			break;
2121 		xfs_btree_get_node_keys(cur, block, lkey);
2122 	}
2123 
2124 	return 0;
2125 }
2126 
2127 /* Update all the keys from some level in cursor back to the root. */
2128 STATIC int
xfs_btree_updkeys_force(struct xfs_btree_cur * cur,int level)2129 xfs_btree_updkeys_force(
2130 	struct xfs_btree_cur	*cur,
2131 	int			level)
2132 {
2133 	struct xfs_buf		*bp;
2134 	struct xfs_btree_block	*block;
2135 
2136 	block = xfs_btree_get_block(cur, level, &bp);
2137 	return __xfs_btree_updkeys(cur, level, block, bp, true);
2138 }
2139 
2140 /*
2141  * Update the parent keys of the given level, progressing towards the root.
2142  */
2143 STATIC int
xfs_btree_update_keys(struct xfs_btree_cur * cur,int level)2144 xfs_btree_update_keys(
2145 	struct xfs_btree_cur	*cur,
2146 	int			level)
2147 {
2148 	struct xfs_btree_block	*block;
2149 	struct xfs_buf		*bp;
2150 	union xfs_btree_key	*kp;
2151 	union xfs_btree_key	key;
2152 	int			ptr;
2153 
2154 	ASSERT(level >= 0);
2155 
2156 	block = xfs_btree_get_block(cur, level, &bp);
2157 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2158 		return __xfs_btree_updkeys(cur, level, block, bp, false);
2159 
2160 	/*
2161 	 * Go up the tree from this level toward the root.
2162 	 * At each level, update the key value to the value input.
2163 	 * Stop when we reach a level where the cursor isn't pointing
2164 	 * at the first entry in the block.
2165 	 */
2166 	xfs_btree_get_keys(cur, block, &key);
2167 	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2168 #ifdef DEBUG
2169 		int		error;
2170 #endif
2171 		block = xfs_btree_get_block(cur, level, &bp);
2172 #ifdef DEBUG
2173 		error = xfs_btree_check_block(cur, block, level, bp);
2174 		if (error)
2175 			return error;
2176 #endif
2177 		ptr = cur->bc_ptrs[level];
2178 		kp = xfs_btree_key_addr(cur, ptr, block);
2179 		xfs_btree_copy_keys(cur, kp, &key, 1);
2180 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2181 	}
2182 
2183 	return 0;
2184 }
2185 
2186 /*
2187  * Update the record referred to by cur to the value in the
2188  * given record. This either works (return 0) or gets an
2189  * EFSCORRUPTED error.
2190  */
2191 int
xfs_btree_update(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)2192 xfs_btree_update(
2193 	struct xfs_btree_cur	*cur,
2194 	union xfs_btree_rec	*rec)
2195 {
2196 	struct xfs_btree_block	*block;
2197 	struct xfs_buf		*bp;
2198 	int			error;
2199 	int			ptr;
2200 	union xfs_btree_rec	*rp;
2201 
2202 	/* Pick up the current block. */
2203 	block = xfs_btree_get_block(cur, 0, &bp);
2204 
2205 #ifdef DEBUG
2206 	error = xfs_btree_check_block(cur, block, 0, bp);
2207 	if (error)
2208 		goto error0;
2209 #endif
2210 	/* Get the address of the rec to be updated. */
2211 	ptr = cur->bc_ptrs[0];
2212 	rp = xfs_btree_rec_addr(cur, ptr, block);
2213 
2214 	/* Fill in the new contents and log them. */
2215 	xfs_btree_copy_recs(cur, rp, rec, 1);
2216 	xfs_btree_log_recs(cur, bp, ptr, ptr);
2217 
2218 	/*
2219 	 * If we are tracking the last record in the tree and
2220 	 * we are at the far right edge of the tree, update it.
2221 	 */
2222 	if (xfs_btree_is_lastrec(cur, block, 0)) {
2223 		cur->bc_ops->update_lastrec(cur, block, rec,
2224 					    ptr, LASTREC_UPDATE);
2225 	}
2226 
2227 	/* Pass new key value up to our parent. */
2228 	if (xfs_btree_needs_key_update(cur, ptr)) {
2229 		error = xfs_btree_update_keys(cur, 0);
2230 		if (error)
2231 			goto error0;
2232 	}
2233 
2234 	return 0;
2235 
2236 error0:
2237 	return error;
2238 }
2239 
2240 /*
2241  * Move 1 record left from cur/level if possible.
2242  * Update cur to reflect the new path.
2243  */
2244 STATIC int					/* error */
xfs_btree_lshift(struct xfs_btree_cur * cur,int level,int * stat)2245 xfs_btree_lshift(
2246 	struct xfs_btree_cur	*cur,
2247 	int			level,
2248 	int			*stat)		/* success/failure */
2249 {
2250 	struct xfs_buf		*lbp;		/* left buffer pointer */
2251 	struct xfs_btree_block	*left;		/* left btree block */
2252 	int			lrecs;		/* left record count */
2253 	struct xfs_buf		*rbp;		/* right buffer pointer */
2254 	struct xfs_btree_block	*right;		/* right btree block */
2255 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2256 	int			rrecs;		/* right record count */
2257 	union xfs_btree_ptr	lptr;		/* left btree pointer */
2258 	union xfs_btree_key	*rkp = NULL;	/* right btree key */
2259 	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
2260 	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
2261 	int			error;		/* error return value */
2262 	int			i;
2263 
2264 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2265 	    level == cur->bc_nlevels - 1)
2266 		goto out0;
2267 
2268 	/* Set up variables for this block as "right". */
2269 	right = xfs_btree_get_block(cur, level, &rbp);
2270 
2271 #ifdef DEBUG
2272 	error = xfs_btree_check_block(cur, right, level, rbp);
2273 	if (error)
2274 		goto error0;
2275 #endif
2276 
2277 	/* If we've got no left sibling then we can't shift an entry left. */
2278 	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2279 	if (xfs_btree_ptr_is_null(cur, &lptr))
2280 		goto out0;
2281 
2282 	/*
2283 	 * If the cursor entry is the one that would be moved, don't
2284 	 * do it... it's too complicated.
2285 	 */
2286 	if (cur->bc_ptrs[level] <= 1)
2287 		goto out0;
2288 
2289 	/* Set up the left neighbor as "left". */
2290 	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2291 	if (error)
2292 		goto error0;
2293 
2294 	/* If it's full, it can't take another entry. */
2295 	lrecs = xfs_btree_get_numrecs(left);
2296 	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2297 		goto out0;
2298 
2299 	rrecs = xfs_btree_get_numrecs(right);
2300 
2301 	/*
2302 	 * We add one entry to the left side and remove one for the right side.
2303 	 * Account for it here, the changes will be updated on disk and logged
2304 	 * later.
2305 	 */
2306 	lrecs++;
2307 	rrecs--;
2308 
2309 	XFS_BTREE_STATS_INC(cur, lshift);
2310 	XFS_BTREE_STATS_ADD(cur, moves, 1);
2311 
2312 	/*
2313 	 * If non-leaf, copy a key and a ptr to the left block.
2314 	 * Log the changes to the left block.
2315 	 */
2316 	if (level > 0) {
2317 		/* It's a non-leaf.  Move keys and pointers. */
2318 		union xfs_btree_key	*lkp;	/* left btree key */
2319 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2320 
2321 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2322 		rkp = xfs_btree_key_addr(cur, 1, right);
2323 
2324 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2325 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2326 
2327 		error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2328 		if (error)
2329 			goto error0;
2330 
2331 		xfs_btree_copy_keys(cur, lkp, rkp, 1);
2332 		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2333 
2334 		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2335 		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2336 
2337 		ASSERT(cur->bc_ops->keys_inorder(cur,
2338 			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2339 	} else {
2340 		/* It's a leaf.  Move records.  */
2341 		union xfs_btree_rec	*lrp;	/* left record pointer */
2342 
2343 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2344 		rrp = xfs_btree_rec_addr(cur, 1, right);
2345 
2346 		xfs_btree_copy_recs(cur, lrp, rrp, 1);
2347 		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2348 
2349 		ASSERT(cur->bc_ops->recs_inorder(cur,
2350 			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2351 	}
2352 
2353 	xfs_btree_set_numrecs(left, lrecs);
2354 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2355 
2356 	xfs_btree_set_numrecs(right, rrecs);
2357 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2358 
2359 	/*
2360 	 * Slide the contents of right down one entry.
2361 	 */
2362 	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2363 	if (level > 0) {
2364 		/* It's a nonleaf. operate on keys and ptrs */
2365 		for (i = 0; i < rrecs; i++) {
2366 			error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2367 			if (error)
2368 				goto error0;
2369 		}
2370 
2371 		xfs_btree_shift_keys(cur,
2372 				xfs_btree_key_addr(cur, 2, right),
2373 				-1, rrecs);
2374 		xfs_btree_shift_ptrs(cur,
2375 				xfs_btree_ptr_addr(cur, 2, right),
2376 				-1, rrecs);
2377 
2378 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2379 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2380 	} else {
2381 		/* It's a leaf. operate on records */
2382 		xfs_btree_shift_recs(cur,
2383 			xfs_btree_rec_addr(cur, 2, right),
2384 			-1, rrecs);
2385 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2386 	}
2387 
2388 	/*
2389 	 * Using a temporary cursor, update the parent key values of the
2390 	 * block on the left.
2391 	 */
2392 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2393 		error = xfs_btree_dup_cursor(cur, &tcur);
2394 		if (error)
2395 			goto error0;
2396 		i = xfs_btree_firstrec(tcur, level);
2397 		if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2398 			error = -EFSCORRUPTED;
2399 			goto error0;
2400 		}
2401 
2402 		error = xfs_btree_decrement(tcur, level, &i);
2403 		if (error)
2404 			goto error1;
2405 
2406 		/* Update the parent high keys of the left block, if needed. */
2407 		error = xfs_btree_update_keys(tcur, level);
2408 		if (error)
2409 			goto error1;
2410 
2411 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2412 	}
2413 
2414 	/* Update the parent keys of the right block. */
2415 	error = xfs_btree_update_keys(cur, level);
2416 	if (error)
2417 		goto error0;
2418 
2419 	/* Slide the cursor value left one. */
2420 	cur->bc_ptrs[level]--;
2421 
2422 	*stat = 1;
2423 	return 0;
2424 
2425 out0:
2426 	*stat = 0;
2427 	return 0;
2428 
2429 error0:
2430 	return error;
2431 
2432 error1:
2433 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2434 	return error;
2435 }
2436 
2437 /*
2438  * Move 1 record right from cur/level if possible.
2439  * Update cur to reflect the new path.
2440  */
2441 STATIC int					/* error */
xfs_btree_rshift(struct xfs_btree_cur * cur,int level,int * stat)2442 xfs_btree_rshift(
2443 	struct xfs_btree_cur	*cur,
2444 	int			level,
2445 	int			*stat)		/* success/failure */
2446 {
2447 	struct xfs_buf		*lbp;		/* left buffer pointer */
2448 	struct xfs_btree_block	*left;		/* left btree block */
2449 	struct xfs_buf		*rbp;		/* right buffer pointer */
2450 	struct xfs_btree_block	*right;		/* right btree block */
2451 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2452 	union xfs_btree_ptr	rptr;		/* right block pointer */
2453 	union xfs_btree_key	*rkp;		/* right btree key */
2454 	int			rrecs;		/* right record count */
2455 	int			lrecs;		/* left record count */
2456 	int			error;		/* error return value */
2457 	int			i;		/* loop counter */
2458 
2459 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2460 	    (level == cur->bc_nlevels - 1))
2461 		goto out0;
2462 
2463 	/* Set up variables for this block as "left". */
2464 	left = xfs_btree_get_block(cur, level, &lbp);
2465 
2466 #ifdef DEBUG
2467 	error = xfs_btree_check_block(cur, left, level, lbp);
2468 	if (error)
2469 		goto error0;
2470 #endif
2471 
2472 	/* If we've got no right sibling then we can't shift an entry right. */
2473 	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2474 	if (xfs_btree_ptr_is_null(cur, &rptr))
2475 		goto out0;
2476 
2477 	/*
2478 	 * If the cursor entry is the one that would be moved, don't
2479 	 * do it... it's too complicated.
2480 	 */
2481 	lrecs = xfs_btree_get_numrecs(left);
2482 	if (cur->bc_ptrs[level] >= lrecs)
2483 		goto out0;
2484 
2485 	/* Set up the right neighbor as "right". */
2486 	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2487 	if (error)
2488 		goto error0;
2489 
2490 	/* If it's full, it can't take another entry. */
2491 	rrecs = xfs_btree_get_numrecs(right);
2492 	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2493 		goto out0;
2494 
2495 	XFS_BTREE_STATS_INC(cur, rshift);
2496 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2497 
2498 	/*
2499 	 * Make a hole at the start of the right neighbor block, then
2500 	 * copy the last left block entry to the hole.
2501 	 */
2502 	if (level > 0) {
2503 		/* It's a nonleaf. make a hole in the keys and ptrs */
2504 		union xfs_btree_key	*lkp;
2505 		union xfs_btree_ptr	*lpp;
2506 		union xfs_btree_ptr	*rpp;
2507 
2508 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2509 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2510 		rkp = xfs_btree_key_addr(cur, 1, right);
2511 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2512 
2513 		for (i = rrecs - 1; i >= 0; i--) {
2514 			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2515 			if (error)
2516 				goto error0;
2517 		}
2518 
2519 		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2520 		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2521 
2522 		error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2523 		if (error)
2524 			goto error0;
2525 
2526 		/* Now put the new data in, and log it. */
2527 		xfs_btree_copy_keys(cur, rkp, lkp, 1);
2528 		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2529 
2530 		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2531 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2532 
2533 		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2534 			xfs_btree_key_addr(cur, 2, right)));
2535 	} else {
2536 		/* It's a leaf. make a hole in the records */
2537 		union xfs_btree_rec	*lrp;
2538 		union xfs_btree_rec	*rrp;
2539 
2540 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2541 		rrp = xfs_btree_rec_addr(cur, 1, right);
2542 
2543 		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2544 
2545 		/* Now put the new data in, and log it. */
2546 		xfs_btree_copy_recs(cur, rrp, lrp, 1);
2547 		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2548 	}
2549 
2550 	/*
2551 	 * Decrement and log left's numrecs, bump and log right's numrecs.
2552 	 */
2553 	xfs_btree_set_numrecs(left, --lrecs);
2554 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2555 
2556 	xfs_btree_set_numrecs(right, ++rrecs);
2557 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2558 
2559 	/*
2560 	 * Using a temporary cursor, update the parent key values of the
2561 	 * block on the right.
2562 	 */
2563 	error = xfs_btree_dup_cursor(cur, &tcur);
2564 	if (error)
2565 		goto error0;
2566 	i = xfs_btree_lastrec(tcur, level);
2567 	if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2568 		error = -EFSCORRUPTED;
2569 		goto error0;
2570 	}
2571 
2572 	error = xfs_btree_increment(tcur, level, &i);
2573 	if (error)
2574 		goto error1;
2575 
2576 	/* Update the parent high keys of the left block, if needed. */
2577 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2578 		error = xfs_btree_update_keys(cur, level);
2579 		if (error)
2580 			goto error1;
2581 	}
2582 
2583 	/* Update the parent keys of the right block. */
2584 	error = xfs_btree_update_keys(tcur, level);
2585 	if (error)
2586 		goto error1;
2587 
2588 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2589 
2590 	*stat = 1;
2591 	return 0;
2592 
2593 out0:
2594 	*stat = 0;
2595 	return 0;
2596 
2597 error0:
2598 	return error;
2599 
2600 error1:
2601 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2602 	return error;
2603 }
2604 
2605 /*
2606  * Split cur/level block in half.
2607  * Return new block number and the key to its first
2608  * record (to be inserted into parent).
2609  */
2610 STATIC int					/* error */
__xfs_btree_split(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)2611 __xfs_btree_split(
2612 	struct xfs_btree_cur	*cur,
2613 	int			level,
2614 	union xfs_btree_ptr	*ptrp,
2615 	union xfs_btree_key	*key,
2616 	struct xfs_btree_cur	**curp,
2617 	int			*stat)		/* success/failure */
2618 {
2619 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
2620 	struct xfs_buf		*lbp;		/* left buffer pointer */
2621 	struct xfs_btree_block	*left;		/* left btree block */
2622 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
2623 	struct xfs_buf		*rbp;		/* right buffer pointer */
2624 	struct xfs_btree_block	*right;		/* right btree block */
2625 	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
2626 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
2627 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
2628 	int			lrecs;
2629 	int			rrecs;
2630 	int			src_index;
2631 	int			error;		/* error return value */
2632 	int			i;
2633 
2634 	XFS_BTREE_STATS_INC(cur, split);
2635 
2636 	/* Set up left block (current one). */
2637 	left = xfs_btree_get_block(cur, level, &lbp);
2638 
2639 #ifdef DEBUG
2640 	error = xfs_btree_check_block(cur, left, level, lbp);
2641 	if (error)
2642 		goto error0;
2643 #endif
2644 
2645 	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2646 
2647 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2648 	error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2649 	if (error)
2650 		goto error0;
2651 	if (*stat == 0)
2652 		goto out0;
2653 	XFS_BTREE_STATS_INC(cur, alloc);
2654 
2655 	/* Set up the new block as "right". */
2656 	error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2657 	if (error)
2658 		goto error0;
2659 
2660 	/* Fill in the btree header for the new right block. */
2661 	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2662 
2663 	/*
2664 	 * Split the entries between the old and the new block evenly.
2665 	 * Make sure that if there's an odd number of entries now, that
2666 	 * each new block will have the same number of entries.
2667 	 */
2668 	lrecs = xfs_btree_get_numrecs(left);
2669 	rrecs = lrecs / 2;
2670 	if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2671 		rrecs++;
2672 	src_index = (lrecs - rrecs + 1);
2673 
2674 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2675 
2676 	/* Adjust numrecs for the later get_*_keys() calls. */
2677 	lrecs -= rrecs;
2678 	xfs_btree_set_numrecs(left, lrecs);
2679 	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2680 
2681 	/*
2682 	 * Copy btree block entries from the left block over to the
2683 	 * new block, the right. Update the right block and log the
2684 	 * changes.
2685 	 */
2686 	if (level > 0) {
2687 		/* It's a non-leaf.  Move keys and pointers. */
2688 		union xfs_btree_key	*lkp;	/* left btree key */
2689 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2690 		union xfs_btree_key	*rkp;	/* right btree key */
2691 		union xfs_btree_ptr	*rpp;	/* right address pointer */
2692 
2693 		lkp = xfs_btree_key_addr(cur, src_index, left);
2694 		lpp = xfs_btree_ptr_addr(cur, src_index, left);
2695 		rkp = xfs_btree_key_addr(cur, 1, right);
2696 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2697 
2698 		for (i = src_index; i < rrecs; i++) {
2699 			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2700 			if (error)
2701 				goto error0;
2702 		}
2703 
2704 		/* Copy the keys & pointers to the new block. */
2705 		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2706 		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2707 
2708 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2709 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2710 
2711 		/* Stash the keys of the new block for later insertion. */
2712 		xfs_btree_get_node_keys(cur, right, key);
2713 	} else {
2714 		/* It's a leaf.  Move records.  */
2715 		union xfs_btree_rec	*lrp;	/* left record pointer */
2716 		union xfs_btree_rec	*rrp;	/* right record pointer */
2717 
2718 		lrp = xfs_btree_rec_addr(cur, src_index, left);
2719 		rrp = xfs_btree_rec_addr(cur, 1, right);
2720 
2721 		/* Copy records to the new block. */
2722 		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2723 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2724 
2725 		/* Stash the keys of the new block for later insertion. */
2726 		xfs_btree_get_leaf_keys(cur, right, key);
2727 	}
2728 
2729 	/*
2730 	 * Find the left block number by looking in the buffer.
2731 	 * Adjust sibling pointers.
2732 	 */
2733 	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2734 	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2735 	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2736 	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2737 
2738 	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2739 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2740 
2741 	/*
2742 	 * If there's a block to the new block's right, make that block
2743 	 * point back to right instead of to left.
2744 	 */
2745 	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2746 		error = xfs_btree_read_buf_block(cur, &rrptr,
2747 							0, &rrblock, &rrbp);
2748 		if (error)
2749 			goto error0;
2750 		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2751 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2752 	}
2753 
2754 	/* Update the parent high keys of the left block, if needed. */
2755 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2756 		error = xfs_btree_update_keys(cur, level);
2757 		if (error)
2758 			goto error0;
2759 	}
2760 
2761 	/*
2762 	 * If the cursor is really in the right block, move it there.
2763 	 * If it's just pointing past the last entry in left, then we'll
2764 	 * insert there, so don't change anything in that case.
2765 	 */
2766 	if (cur->bc_ptrs[level] > lrecs + 1) {
2767 		xfs_btree_setbuf(cur, level, rbp);
2768 		cur->bc_ptrs[level] -= lrecs;
2769 	}
2770 	/*
2771 	 * If there are more levels, we'll need another cursor which refers
2772 	 * the right block, no matter where this cursor was.
2773 	 */
2774 	if (level + 1 < cur->bc_nlevels) {
2775 		error = xfs_btree_dup_cursor(cur, curp);
2776 		if (error)
2777 			goto error0;
2778 		(*curp)->bc_ptrs[level + 1]++;
2779 	}
2780 	*ptrp = rptr;
2781 	*stat = 1;
2782 	return 0;
2783 out0:
2784 	*stat = 0;
2785 	return 0;
2786 
2787 error0:
2788 	return error;
2789 }
2790 
2791 struct xfs_btree_split_args {
2792 	struct xfs_btree_cur	*cur;
2793 	int			level;
2794 	union xfs_btree_ptr	*ptrp;
2795 	union xfs_btree_key	*key;
2796 	struct xfs_btree_cur	**curp;
2797 	int			*stat;		/* success/failure */
2798 	int			result;
2799 	bool			kswapd;	/* allocation in kswapd context */
2800 	struct completion	*done;
2801 	struct work_struct	work;
2802 };
2803 
2804 /*
2805  * Stack switching interfaces for allocation
2806  */
2807 static void
xfs_btree_split_worker(struct work_struct * work)2808 xfs_btree_split_worker(
2809 	struct work_struct	*work)
2810 {
2811 	struct xfs_btree_split_args	*args = container_of(work,
2812 						struct xfs_btree_split_args, work);
2813 	unsigned long		pflags;
2814 	unsigned long		new_pflags = 0;
2815 
2816 	/*
2817 	 * we are in a transaction context here, but may also be doing work
2818 	 * in kswapd context, and hence we may need to inherit that state
2819 	 * temporarily to ensure that we don't block waiting for memory reclaim
2820 	 * in any way.
2821 	 */
2822 	if (args->kswapd)
2823 		new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2824 
2825 	current_set_flags_nested(&pflags, new_pflags);
2826 	xfs_trans_set_context(args->cur->bc_tp);
2827 
2828 	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2829 					 args->key, args->curp, args->stat);
2830 
2831 	xfs_trans_clear_context(args->cur->bc_tp);
2832 	current_restore_flags_nested(&pflags, new_pflags);
2833 
2834 	/*
2835 	 * Do not access args after complete() has run here. We don't own args
2836 	 * and the owner may run and free args before we return here.
2837 	 */
2838 	complete(args->done);
2839 
2840 }
2841 
2842 /*
2843  * BMBT split requests often come in with little stack to work on. Push
2844  * them off to a worker thread so there is lots of stack to use. For the other
2845  * btree types, just call directly to avoid the context switch overhead here.
2846  */
2847 STATIC int					/* error */
xfs_btree_split(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)2848 xfs_btree_split(
2849 	struct xfs_btree_cur	*cur,
2850 	int			level,
2851 	union xfs_btree_ptr	*ptrp,
2852 	union xfs_btree_key	*key,
2853 	struct xfs_btree_cur	**curp,
2854 	int			*stat)		/* success/failure */
2855 {
2856 	struct xfs_btree_split_args	args;
2857 	DECLARE_COMPLETION_ONSTACK(done);
2858 
2859 	if (cur->bc_btnum != XFS_BTNUM_BMAP)
2860 		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2861 
2862 	args.cur = cur;
2863 	args.level = level;
2864 	args.ptrp = ptrp;
2865 	args.key = key;
2866 	args.curp = curp;
2867 	args.stat = stat;
2868 	args.done = &done;
2869 	args.kswapd = current_is_kswapd();
2870 	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2871 	queue_work(xfs_alloc_wq, &args.work);
2872 	wait_for_completion(&done);
2873 	destroy_work_on_stack(&args.work);
2874 	return args.result;
2875 }
2876 
2877 
2878 /*
2879  * Copy the old inode root contents into a real block and make the
2880  * broot point to it.
2881  */
2882 int						/* error */
xfs_btree_new_iroot(struct xfs_btree_cur * cur,int * logflags,int * stat)2883 xfs_btree_new_iroot(
2884 	struct xfs_btree_cur	*cur,		/* btree cursor */
2885 	int			*logflags,	/* logging flags for inode */
2886 	int			*stat)		/* return status - 0 fail */
2887 {
2888 	struct xfs_buf		*cbp;		/* buffer for cblock */
2889 	struct xfs_btree_block	*block;		/* btree block */
2890 	struct xfs_btree_block	*cblock;	/* child btree block */
2891 	union xfs_btree_key	*ckp;		/* child key pointer */
2892 	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
2893 	union xfs_btree_key	*kp;		/* pointer to btree key */
2894 	union xfs_btree_ptr	*pp;		/* pointer to block addr */
2895 	union xfs_btree_ptr	nptr;		/* new block addr */
2896 	int			level;		/* btree level */
2897 	int			error;		/* error return code */
2898 	int			i;		/* loop counter */
2899 
2900 	XFS_BTREE_STATS_INC(cur, newroot);
2901 
2902 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2903 
2904 	level = cur->bc_nlevels - 1;
2905 
2906 	block = xfs_btree_get_iroot(cur);
2907 	pp = xfs_btree_ptr_addr(cur, 1, block);
2908 
2909 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2910 	error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2911 	if (error)
2912 		goto error0;
2913 	if (*stat == 0)
2914 		return 0;
2915 
2916 	XFS_BTREE_STATS_INC(cur, alloc);
2917 
2918 	/* Copy the root into a real block. */
2919 	error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
2920 	if (error)
2921 		goto error0;
2922 
2923 	/*
2924 	 * we can't just memcpy() the root in for CRC enabled btree blocks.
2925 	 * In that case have to also ensure the blkno remains correct
2926 	 */
2927 	memcpy(cblock, block, xfs_btree_block_len(cur));
2928 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2929 		if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2930 			cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2931 		else
2932 			cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2933 	}
2934 
2935 	be16_add_cpu(&block->bb_level, 1);
2936 	xfs_btree_set_numrecs(block, 1);
2937 	cur->bc_nlevels++;
2938 	cur->bc_ptrs[level + 1] = 1;
2939 
2940 	kp = xfs_btree_key_addr(cur, 1, block);
2941 	ckp = xfs_btree_key_addr(cur, 1, cblock);
2942 	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2943 
2944 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2945 	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2946 		error = xfs_btree_debug_check_ptr(cur, pp, i, level);
2947 		if (error)
2948 			goto error0;
2949 	}
2950 
2951 	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2952 
2953 	error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
2954 	if (error)
2955 		goto error0;
2956 
2957 	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2958 
2959 	xfs_iroot_realloc(cur->bc_ino.ip,
2960 			  1 - xfs_btree_get_numrecs(cblock),
2961 			  cur->bc_ino.whichfork);
2962 
2963 	xfs_btree_setbuf(cur, level, cbp);
2964 
2965 	/*
2966 	 * Do all this logging at the end so that
2967 	 * the root is at the right level.
2968 	 */
2969 	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
2970 	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2971 	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2972 
2973 	*logflags |=
2974 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
2975 	*stat = 1;
2976 	return 0;
2977 error0:
2978 	return error;
2979 }
2980 
2981 /*
2982  * Allocate a new root block, fill it in.
2983  */
2984 STATIC int				/* error */
xfs_btree_new_root(struct xfs_btree_cur * cur,int * stat)2985 xfs_btree_new_root(
2986 	struct xfs_btree_cur	*cur,	/* btree cursor */
2987 	int			*stat)	/* success/failure */
2988 {
2989 	struct xfs_btree_block	*block;	/* one half of the old root block */
2990 	struct xfs_buf		*bp;	/* buffer containing block */
2991 	int			error;	/* error return value */
2992 	struct xfs_buf		*lbp;	/* left buffer pointer */
2993 	struct xfs_btree_block	*left;	/* left btree block */
2994 	struct xfs_buf		*nbp;	/* new (root) buffer */
2995 	struct xfs_btree_block	*new;	/* new (root) btree block */
2996 	int			nptr;	/* new value for key index, 1 or 2 */
2997 	struct xfs_buf		*rbp;	/* right buffer pointer */
2998 	struct xfs_btree_block	*right;	/* right btree block */
2999 	union xfs_btree_ptr	rptr;
3000 	union xfs_btree_ptr	lptr;
3001 
3002 	XFS_BTREE_STATS_INC(cur, newroot);
3003 
3004 	/* initialise our start point from the cursor */
3005 	cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3006 
3007 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3008 	error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3009 	if (error)
3010 		goto error0;
3011 	if (*stat == 0)
3012 		goto out0;
3013 	XFS_BTREE_STATS_INC(cur, alloc);
3014 
3015 	/* Set up the new block. */
3016 	error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3017 	if (error)
3018 		goto error0;
3019 
3020 	/* Set the root in the holding structure  increasing the level by 1. */
3021 	cur->bc_ops->set_root(cur, &lptr, 1);
3022 
3023 	/*
3024 	 * At the previous root level there are now two blocks: the old root,
3025 	 * and the new block generated when it was split.  We don't know which
3026 	 * one the cursor is pointing at, so we set up variables "left" and
3027 	 * "right" for each case.
3028 	 */
3029 	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3030 
3031 #ifdef DEBUG
3032 	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3033 	if (error)
3034 		goto error0;
3035 #endif
3036 
3037 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3038 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3039 		/* Our block is left, pick up the right block. */
3040 		lbp = bp;
3041 		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3042 		left = block;
3043 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3044 		if (error)
3045 			goto error0;
3046 		bp = rbp;
3047 		nptr = 1;
3048 	} else {
3049 		/* Our block is right, pick up the left block. */
3050 		rbp = bp;
3051 		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3052 		right = block;
3053 		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3054 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3055 		if (error)
3056 			goto error0;
3057 		bp = lbp;
3058 		nptr = 2;
3059 	}
3060 
3061 	/* Fill in the new block's btree header and log it. */
3062 	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3063 	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3064 	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3065 			!xfs_btree_ptr_is_null(cur, &rptr));
3066 
3067 	/* Fill in the key data in the new root. */
3068 	if (xfs_btree_get_level(left) > 0) {
3069 		/*
3070 		 * Get the keys for the left block's keys and put them directly
3071 		 * in the parent block.  Do the same for the right block.
3072 		 */
3073 		xfs_btree_get_node_keys(cur, left,
3074 				xfs_btree_key_addr(cur, 1, new));
3075 		xfs_btree_get_node_keys(cur, right,
3076 				xfs_btree_key_addr(cur, 2, new));
3077 	} else {
3078 		/*
3079 		 * Get the keys for the left block's records and put them
3080 		 * directly in the parent block.  Do the same for the right
3081 		 * block.
3082 		 */
3083 		xfs_btree_get_leaf_keys(cur, left,
3084 			xfs_btree_key_addr(cur, 1, new));
3085 		xfs_btree_get_leaf_keys(cur, right,
3086 			xfs_btree_key_addr(cur, 2, new));
3087 	}
3088 	xfs_btree_log_keys(cur, nbp, 1, 2);
3089 
3090 	/* Fill in the pointer data in the new root. */
3091 	xfs_btree_copy_ptrs(cur,
3092 		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3093 	xfs_btree_copy_ptrs(cur,
3094 		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3095 	xfs_btree_log_ptrs(cur, nbp, 1, 2);
3096 
3097 	/* Fix up the cursor. */
3098 	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3099 	cur->bc_ptrs[cur->bc_nlevels] = nptr;
3100 	cur->bc_nlevels++;
3101 	*stat = 1;
3102 	return 0;
3103 error0:
3104 	return error;
3105 out0:
3106 	*stat = 0;
3107 	return 0;
3108 }
3109 
3110 STATIC int
xfs_btree_make_block_unfull(struct xfs_btree_cur * cur,int level,int numrecs,int * oindex,int * index,union xfs_btree_ptr * nptr,struct xfs_btree_cur ** ncur,union xfs_btree_key * key,int * stat)3111 xfs_btree_make_block_unfull(
3112 	struct xfs_btree_cur	*cur,	/* btree cursor */
3113 	int			level,	/* btree level */
3114 	int			numrecs,/* # of recs in block */
3115 	int			*oindex,/* old tree index */
3116 	int			*index,	/* new tree index */
3117 	union xfs_btree_ptr	*nptr,	/* new btree ptr */
3118 	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3119 	union xfs_btree_key	*key,	/* key of new block */
3120 	int			*stat)
3121 {
3122 	int			error = 0;
3123 
3124 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3125 	    level == cur->bc_nlevels - 1) {
3126 		struct xfs_inode *ip = cur->bc_ino.ip;
3127 
3128 		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3129 			/* A root block that can be made bigger. */
3130 			xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3131 			*stat = 1;
3132 		} else {
3133 			/* A root block that needs replacing */
3134 			int	logflags = 0;
3135 
3136 			error = xfs_btree_new_iroot(cur, &logflags, stat);
3137 			if (error || *stat == 0)
3138 				return error;
3139 
3140 			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3141 		}
3142 
3143 		return 0;
3144 	}
3145 
3146 	/* First, try shifting an entry to the right neighbor. */
3147 	error = xfs_btree_rshift(cur, level, stat);
3148 	if (error || *stat)
3149 		return error;
3150 
3151 	/* Next, try shifting an entry to the left neighbor. */
3152 	error = xfs_btree_lshift(cur, level, stat);
3153 	if (error)
3154 		return error;
3155 
3156 	if (*stat) {
3157 		*oindex = *index = cur->bc_ptrs[level];
3158 		return 0;
3159 	}
3160 
3161 	/*
3162 	 * Next, try splitting the current block in half.
3163 	 *
3164 	 * If this works we have to re-set our variables because we
3165 	 * could be in a different block now.
3166 	 */
3167 	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3168 	if (error || *stat == 0)
3169 		return error;
3170 
3171 
3172 	*index = cur->bc_ptrs[level];
3173 	return 0;
3174 }
3175 
3176 /*
3177  * Insert one record/level.  Return information to the caller
3178  * allowing the next level up to proceed if necessary.
3179  */
3180 STATIC int
xfs_btree_insrec(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_rec * rec,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)3181 xfs_btree_insrec(
3182 	struct xfs_btree_cur	*cur,	/* btree cursor */
3183 	int			level,	/* level to insert record at */
3184 	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3185 	union xfs_btree_rec	*rec,	/* record to insert */
3186 	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3187 	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
3188 	int			*stat)	/* success/failure */
3189 {
3190 	struct xfs_btree_block	*block;	/* btree block */
3191 	struct xfs_buf		*bp;	/* buffer for block */
3192 	union xfs_btree_ptr	nptr;	/* new block ptr */
3193 	struct xfs_btree_cur	*ncur = NULL;	/* new btree cursor */
3194 	union xfs_btree_key	nkey;	/* new block key */
3195 	union xfs_btree_key	*lkey;
3196 	int			optr;	/* old key/record index */
3197 	int			ptr;	/* key/record index */
3198 	int			numrecs;/* number of records */
3199 	int			error;	/* error return value */
3200 	int			i;
3201 	xfs_daddr_t		old_bn;
3202 
3203 	ncur = NULL;
3204 	lkey = &nkey;
3205 
3206 	/*
3207 	 * If we have an external root pointer, and we've made it to the
3208 	 * root level, allocate a new root block and we're done.
3209 	 */
3210 	if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3211 	    (level >= cur->bc_nlevels)) {
3212 		error = xfs_btree_new_root(cur, stat);
3213 		xfs_btree_set_ptr_null(cur, ptrp);
3214 
3215 		return error;
3216 	}
3217 
3218 	/* If we're off the left edge, return failure. */
3219 	ptr = cur->bc_ptrs[level];
3220 	if (ptr == 0) {
3221 		*stat = 0;
3222 		return 0;
3223 	}
3224 
3225 	optr = ptr;
3226 
3227 	XFS_BTREE_STATS_INC(cur, insrec);
3228 
3229 	/* Get pointers to the btree buffer and block. */
3230 	block = xfs_btree_get_block(cur, level, &bp);
3231 	old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3232 	numrecs = xfs_btree_get_numrecs(block);
3233 
3234 #ifdef DEBUG
3235 	error = xfs_btree_check_block(cur, block, level, bp);
3236 	if (error)
3237 		goto error0;
3238 
3239 	/* Check that the new entry is being inserted in the right place. */
3240 	if (ptr <= numrecs) {
3241 		if (level == 0) {
3242 			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3243 				xfs_btree_rec_addr(cur, ptr, block)));
3244 		} else {
3245 			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3246 				xfs_btree_key_addr(cur, ptr, block)));
3247 		}
3248 	}
3249 #endif
3250 
3251 	/*
3252 	 * If the block is full, we can't insert the new entry until we
3253 	 * make the block un-full.
3254 	 */
3255 	xfs_btree_set_ptr_null(cur, &nptr);
3256 	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3257 		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3258 					&optr, &ptr, &nptr, &ncur, lkey, stat);
3259 		if (error || *stat == 0)
3260 			goto error0;
3261 	}
3262 
3263 	/*
3264 	 * The current block may have changed if the block was
3265 	 * previously full and we have just made space in it.
3266 	 */
3267 	block = xfs_btree_get_block(cur, level, &bp);
3268 	numrecs = xfs_btree_get_numrecs(block);
3269 
3270 #ifdef DEBUG
3271 	error = xfs_btree_check_block(cur, block, level, bp);
3272 	if (error)
3273 		goto error0;
3274 #endif
3275 
3276 	/*
3277 	 * At this point we know there's room for our new entry in the block
3278 	 * we're pointing at.
3279 	 */
3280 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3281 
3282 	if (level > 0) {
3283 		/* It's a nonleaf. make a hole in the keys and ptrs */
3284 		union xfs_btree_key	*kp;
3285 		union xfs_btree_ptr	*pp;
3286 
3287 		kp = xfs_btree_key_addr(cur, ptr, block);
3288 		pp = xfs_btree_ptr_addr(cur, ptr, block);
3289 
3290 		for (i = numrecs - ptr; i >= 0; i--) {
3291 			error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3292 			if (error)
3293 				goto error0;
3294 		}
3295 
3296 		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3297 		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3298 
3299 		error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3300 		if (error)
3301 			goto error0;
3302 
3303 		/* Now put the new data in, bump numrecs and log it. */
3304 		xfs_btree_copy_keys(cur, kp, key, 1);
3305 		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3306 		numrecs++;
3307 		xfs_btree_set_numrecs(block, numrecs);
3308 		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3309 		xfs_btree_log_keys(cur, bp, ptr, numrecs);
3310 #ifdef DEBUG
3311 		if (ptr < numrecs) {
3312 			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3313 				xfs_btree_key_addr(cur, ptr + 1, block)));
3314 		}
3315 #endif
3316 	} else {
3317 		/* It's a leaf. make a hole in the records */
3318 		union xfs_btree_rec             *rp;
3319 
3320 		rp = xfs_btree_rec_addr(cur, ptr, block);
3321 
3322 		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3323 
3324 		/* Now put the new data in, bump numrecs and log it. */
3325 		xfs_btree_copy_recs(cur, rp, rec, 1);
3326 		xfs_btree_set_numrecs(block, ++numrecs);
3327 		xfs_btree_log_recs(cur, bp, ptr, numrecs);
3328 #ifdef DEBUG
3329 		if (ptr < numrecs) {
3330 			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3331 				xfs_btree_rec_addr(cur, ptr + 1, block)));
3332 		}
3333 #endif
3334 	}
3335 
3336 	/* Log the new number of records in the btree header. */
3337 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3338 
3339 	/*
3340 	 * If we just inserted into a new tree block, we have to
3341 	 * recalculate nkey here because nkey is out of date.
3342 	 *
3343 	 * Otherwise we're just updating an existing block (having shoved
3344 	 * some records into the new tree block), so use the regular key
3345 	 * update mechanism.
3346 	 */
3347 	if (bp && bp->b_bn != old_bn) {
3348 		xfs_btree_get_keys(cur, block, lkey);
3349 	} else if (xfs_btree_needs_key_update(cur, optr)) {
3350 		error = xfs_btree_update_keys(cur, level);
3351 		if (error)
3352 			goto error0;
3353 	}
3354 
3355 	/*
3356 	 * If we are tracking the last record in the tree and
3357 	 * we are at the far right edge of the tree, update it.
3358 	 */
3359 	if (xfs_btree_is_lastrec(cur, block, level)) {
3360 		cur->bc_ops->update_lastrec(cur, block, rec,
3361 					    ptr, LASTREC_INSREC);
3362 	}
3363 
3364 	/*
3365 	 * Return the new block number, if any.
3366 	 * If there is one, give back a record value and a cursor too.
3367 	 */
3368 	*ptrp = nptr;
3369 	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3370 		xfs_btree_copy_keys(cur, key, lkey, 1);
3371 		*curp = ncur;
3372 	}
3373 
3374 	*stat = 1;
3375 	return 0;
3376 
3377 error0:
3378 	if (ncur)
3379 		xfs_btree_del_cursor(ncur, error);
3380 	return error;
3381 }
3382 
3383 /*
3384  * Insert the record at the point referenced by cur.
3385  *
3386  * A multi-level split of the tree on insert will invalidate the original
3387  * cursor.  All callers of this function should assume that the cursor is
3388  * no longer valid and revalidate it.
3389  */
3390 int
xfs_btree_insert(struct xfs_btree_cur * cur,int * stat)3391 xfs_btree_insert(
3392 	struct xfs_btree_cur	*cur,
3393 	int			*stat)
3394 {
3395 	int			error;	/* error return value */
3396 	int			i;	/* result value, 0 for failure */
3397 	int			level;	/* current level number in btree */
3398 	union xfs_btree_ptr	nptr;	/* new block number (split result) */
3399 	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
3400 	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3401 	union xfs_btree_key	bkey;	/* key of block to insert */
3402 	union xfs_btree_key	*key;
3403 	union xfs_btree_rec	rec;	/* record to insert */
3404 
3405 	level = 0;
3406 	ncur = NULL;
3407 	pcur = cur;
3408 	key = &bkey;
3409 
3410 	xfs_btree_set_ptr_null(cur, &nptr);
3411 
3412 	/* Make a key out of the record data to be inserted, and save it. */
3413 	cur->bc_ops->init_rec_from_cur(cur, &rec);
3414 	cur->bc_ops->init_key_from_rec(key, &rec);
3415 
3416 	/*
3417 	 * Loop going up the tree, starting at the leaf level.
3418 	 * Stop when we don't get a split block, that must mean that
3419 	 * the insert is finished with this level.
3420 	 */
3421 	do {
3422 		/*
3423 		 * Insert nrec/nptr into this level of the tree.
3424 		 * Note if we fail, nptr will be null.
3425 		 */
3426 		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3427 				&ncur, &i);
3428 		if (error) {
3429 			if (pcur != cur)
3430 				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3431 			goto error0;
3432 		}
3433 
3434 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3435 			error = -EFSCORRUPTED;
3436 			goto error0;
3437 		}
3438 		level++;
3439 
3440 		/*
3441 		 * See if the cursor we just used is trash.
3442 		 * Can't trash the caller's cursor, but otherwise we should
3443 		 * if ncur is a new cursor or we're about to be done.
3444 		 */
3445 		if (pcur != cur &&
3446 		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3447 			/* Save the state from the cursor before we trash it */
3448 			if (cur->bc_ops->update_cursor)
3449 				cur->bc_ops->update_cursor(pcur, cur);
3450 			cur->bc_nlevels = pcur->bc_nlevels;
3451 			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3452 		}
3453 		/* If we got a new cursor, switch to it. */
3454 		if (ncur) {
3455 			pcur = ncur;
3456 			ncur = NULL;
3457 		}
3458 	} while (!xfs_btree_ptr_is_null(cur, &nptr));
3459 
3460 	*stat = i;
3461 	return 0;
3462 error0:
3463 	return error;
3464 }
3465 
3466 /*
3467  * Try to merge a non-leaf block back into the inode root.
3468  *
3469  * Note: the killroot names comes from the fact that we're effectively
3470  * killing the old root block.  But because we can't just delete the
3471  * inode we have to copy the single block it was pointing to into the
3472  * inode.
3473  */
3474 STATIC int
xfs_btree_kill_iroot(struct xfs_btree_cur * cur)3475 xfs_btree_kill_iroot(
3476 	struct xfs_btree_cur	*cur)
3477 {
3478 	int			whichfork = cur->bc_ino.whichfork;
3479 	struct xfs_inode	*ip = cur->bc_ino.ip;
3480 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
3481 	struct xfs_btree_block	*block;
3482 	struct xfs_btree_block	*cblock;
3483 	union xfs_btree_key	*kp;
3484 	union xfs_btree_key	*ckp;
3485 	union xfs_btree_ptr	*pp;
3486 	union xfs_btree_ptr	*cpp;
3487 	struct xfs_buf		*cbp;
3488 	int			level;
3489 	int			index;
3490 	int			numrecs;
3491 	int			error;
3492 #ifdef DEBUG
3493 	union xfs_btree_ptr	ptr;
3494 #endif
3495 	int			i;
3496 
3497 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3498 	ASSERT(cur->bc_nlevels > 1);
3499 
3500 	/*
3501 	 * Don't deal with the root block needs to be a leaf case.
3502 	 * We're just going to turn the thing back into extents anyway.
3503 	 */
3504 	level = cur->bc_nlevels - 1;
3505 	if (level == 1)
3506 		goto out0;
3507 
3508 	/*
3509 	 * Give up if the root has multiple children.
3510 	 */
3511 	block = xfs_btree_get_iroot(cur);
3512 	if (xfs_btree_get_numrecs(block) != 1)
3513 		goto out0;
3514 
3515 	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3516 	numrecs = xfs_btree_get_numrecs(cblock);
3517 
3518 	/*
3519 	 * Only do this if the next level will fit.
3520 	 * Then the data must be copied up to the inode,
3521 	 * instead of freeing the root you free the next level.
3522 	 */
3523 	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3524 		goto out0;
3525 
3526 	XFS_BTREE_STATS_INC(cur, killroot);
3527 
3528 #ifdef DEBUG
3529 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3530 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3531 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3532 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3533 #endif
3534 
3535 	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3536 	if (index) {
3537 		xfs_iroot_realloc(cur->bc_ino.ip, index,
3538 				  cur->bc_ino.whichfork);
3539 		block = ifp->if_broot;
3540 	}
3541 
3542 	be16_add_cpu(&block->bb_numrecs, index);
3543 	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3544 
3545 	kp = xfs_btree_key_addr(cur, 1, block);
3546 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3547 	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3548 
3549 	pp = xfs_btree_ptr_addr(cur, 1, block);
3550 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3551 
3552 	for (i = 0; i < numrecs; i++) {
3553 		error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3554 		if (error)
3555 			return error;
3556 	}
3557 
3558 	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3559 
3560 	error = xfs_btree_free_block(cur, cbp);
3561 	if (error)
3562 		return error;
3563 
3564 	cur->bc_bufs[level - 1] = NULL;
3565 	be16_add_cpu(&block->bb_level, -1);
3566 	xfs_trans_log_inode(cur->bc_tp, ip,
3567 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3568 	cur->bc_nlevels--;
3569 out0:
3570 	return 0;
3571 }
3572 
3573 /*
3574  * Kill the current root node, and replace it with it's only child node.
3575  */
3576 STATIC int
xfs_btree_kill_root(struct xfs_btree_cur * cur,struct xfs_buf * bp,int level,union xfs_btree_ptr * newroot)3577 xfs_btree_kill_root(
3578 	struct xfs_btree_cur	*cur,
3579 	struct xfs_buf		*bp,
3580 	int			level,
3581 	union xfs_btree_ptr	*newroot)
3582 {
3583 	int			error;
3584 
3585 	XFS_BTREE_STATS_INC(cur, killroot);
3586 
3587 	/*
3588 	 * Update the root pointer, decreasing the level by 1 and then
3589 	 * free the old root.
3590 	 */
3591 	cur->bc_ops->set_root(cur, newroot, -1);
3592 
3593 	error = xfs_btree_free_block(cur, bp);
3594 	if (error)
3595 		return error;
3596 
3597 	cur->bc_bufs[level] = NULL;
3598 	cur->bc_ra[level] = 0;
3599 	cur->bc_nlevels--;
3600 
3601 	return 0;
3602 }
3603 
3604 STATIC int
xfs_btree_dec_cursor(struct xfs_btree_cur * cur,int level,int * stat)3605 xfs_btree_dec_cursor(
3606 	struct xfs_btree_cur	*cur,
3607 	int			level,
3608 	int			*stat)
3609 {
3610 	int			error;
3611 	int			i;
3612 
3613 	if (level > 0) {
3614 		error = xfs_btree_decrement(cur, level, &i);
3615 		if (error)
3616 			return error;
3617 	}
3618 
3619 	*stat = 1;
3620 	return 0;
3621 }
3622 
3623 /*
3624  * Single level of the btree record deletion routine.
3625  * Delete record pointed to by cur/level.
3626  * Remove the record from its block then rebalance the tree.
3627  * Return 0 for error, 1 for done, 2 to go on to the next level.
3628  */
3629 STATIC int					/* error */
xfs_btree_delrec(struct xfs_btree_cur * cur,int level,int * stat)3630 xfs_btree_delrec(
3631 	struct xfs_btree_cur	*cur,		/* btree cursor */
3632 	int			level,		/* level removing record from */
3633 	int			*stat)		/* fail/done/go-on */
3634 {
3635 	struct xfs_btree_block	*block;		/* btree block */
3636 	union xfs_btree_ptr	cptr;		/* current block ptr */
3637 	struct xfs_buf		*bp;		/* buffer for block */
3638 	int			error;		/* error return value */
3639 	int			i;		/* loop counter */
3640 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
3641 	struct xfs_buf		*lbp;		/* left buffer pointer */
3642 	struct xfs_btree_block	*left;		/* left btree block */
3643 	int			lrecs = 0;	/* left record count */
3644 	int			ptr;		/* key/record index */
3645 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
3646 	struct xfs_buf		*rbp;		/* right buffer pointer */
3647 	struct xfs_btree_block	*right;		/* right btree block */
3648 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
3649 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
3650 	int			rrecs = 0;	/* right record count */
3651 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
3652 	int			numrecs;	/* temporary numrec count */
3653 
3654 	tcur = NULL;
3655 
3656 	/* Get the index of the entry being deleted, check for nothing there. */
3657 	ptr = cur->bc_ptrs[level];
3658 	if (ptr == 0) {
3659 		*stat = 0;
3660 		return 0;
3661 	}
3662 
3663 	/* Get the buffer & block containing the record or key/ptr. */
3664 	block = xfs_btree_get_block(cur, level, &bp);
3665 	numrecs = xfs_btree_get_numrecs(block);
3666 
3667 #ifdef DEBUG
3668 	error = xfs_btree_check_block(cur, block, level, bp);
3669 	if (error)
3670 		goto error0;
3671 #endif
3672 
3673 	/* Fail if we're off the end of the block. */
3674 	if (ptr > numrecs) {
3675 		*stat = 0;
3676 		return 0;
3677 	}
3678 
3679 	XFS_BTREE_STATS_INC(cur, delrec);
3680 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3681 
3682 	/* Excise the entries being deleted. */
3683 	if (level > 0) {
3684 		/* It's a nonleaf. operate on keys and ptrs */
3685 		union xfs_btree_key	*lkp;
3686 		union xfs_btree_ptr	*lpp;
3687 
3688 		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3689 		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3690 
3691 		for (i = 0; i < numrecs - ptr; i++) {
3692 			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3693 			if (error)
3694 				goto error0;
3695 		}
3696 
3697 		if (ptr < numrecs) {
3698 			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3699 			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3700 			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3701 			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3702 		}
3703 	} else {
3704 		/* It's a leaf. operate on records */
3705 		if (ptr < numrecs) {
3706 			xfs_btree_shift_recs(cur,
3707 				xfs_btree_rec_addr(cur, ptr + 1, block),
3708 				-1, numrecs - ptr);
3709 			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3710 		}
3711 	}
3712 
3713 	/*
3714 	 * Decrement and log the number of entries in the block.
3715 	 */
3716 	xfs_btree_set_numrecs(block, --numrecs);
3717 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3718 
3719 	/*
3720 	 * If we are tracking the last record in the tree and
3721 	 * we are at the far right edge of the tree, update it.
3722 	 */
3723 	if (xfs_btree_is_lastrec(cur, block, level)) {
3724 		cur->bc_ops->update_lastrec(cur, block, NULL,
3725 					    ptr, LASTREC_DELREC);
3726 	}
3727 
3728 	/*
3729 	 * We're at the root level.  First, shrink the root block in-memory.
3730 	 * Try to get rid of the next level down.  If we can't then there's
3731 	 * nothing left to do.
3732 	 */
3733 	if (level == cur->bc_nlevels - 1) {
3734 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3735 			xfs_iroot_realloc(cur->bc_ino.ip, -1,
3736 					  cur->bc_ino.whichfork);
3737 
3738 			error = xfs_btree_kill_iroot(cur);
3739 			if (error)
3740 				goto error0;
3741 
3742 			error = xfs_btree_dec_cursor(cur, level, stat);
3743 			if (error)
3744 				goto error0;
3745 			*stat = 1;
3746 			return 0;
3747 		}
3748 
3749 		/*
3750 		 * If this is the root level, and there's only one entry left,
3751 		 * and it's NOT the leaf level, then we can get rid of this
3752 		 * level.
3753 		 */
3754 		if (numrecs == 1 && level > 0) {
3755 			union xfs_btree_ptr	*pp;
3756 			/*
3757 			 * pp is still set to the first pointer in the block.
3758 			 * Make it the new root of the btree.
3759 			 */
3760 			pp = xfs_btree_ptr_addr(cur, 1, block);
3761 			error = xfs_btree_kill_root(cur, bp, level, pp);
3762 			if (error)
3763 				goto error0;
3764 		} else if (level > 0) {
3765 			error = xfs_btree_dec_cursor(cur, level, stat);
3766 			if (error)
3767 				goto error0;
3768 		}
3769 		*stat = 1;
3770 		return 0;
3771 	}
3772 
3773 	/*
3774 	 * If we deleted the leftmost entry in the block, update the
3775 	 * key values above us in the tree.
3776 	 */
3777 	if (xfs_btree_needs_key_update(cur, ptr)) {
3778 		error = xfs_btree_update_keys(cur, level);
3779 		if (error)
3780 			goto error0;
3781 	}
3782 
3783 	/*
3784 	 * If the number of records remaining in the block is at least
3785 	 * the minimum, we're done.
3786 	 */
3787 	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3788 		error = xfs_btree_dec_cursor(cur, level, stat);
3789 		if (error)
3790 			goto error0;
3791 		return 0;
3792 	}
3793 
3794 	/*
3795 	 * Otherwise, we have to move some records around to keep the
3796 	 * tree balanced.  Look at the left and right sibling blocks to
3797 	 * see if we can re-balance by moving only one record.
3798 	 */
3799 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3800 	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3801 
3802 	if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3803 		/*
3804 		 * One child of root, need to get a chance to copy its contents
3805 		 * into the root and delete it. Can't go up to next level,
3806 		 * there's nothing to delete there.
3807 		 */
3808 		if (xfs_btree_ptr_is_null(cur, &rptr) &&
3809 		    xfs_btree_ptr_is_null(cur, &lptr) &&
3810 		    level == cur->bc_nlevels - 2) {
3811 			error = xfs_btree_kill_iroot(cur);
3812 			if (!error)
3813 				error = xfs_btree_dec_cursor(cur, level, stat);
3814 			if (error)
3815 				goto error0;
3816 			return 0;
3817 		}
3818 	}
3819 
3820 	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3821 	       !xfs_btree_ptr_is_null(cur, &lptr));
3822 
3823 	/*
3824 	 * Duplicate the cursor so our btree manipulations here won't
3825 	 * disrupt the next level up.
3826 	 */
3827 	error = xfs_btree_dup_cursor(cur, &tcur);
3828 	if (error)
3829 		goto error0;
3830 
3831 	/*
3832 	 * If there's a right sibling, see if it's ok to shift an entry
3833 	 * out of it.
3834 	 */
3835 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3836 		/*
3837 		 * Move the temp cursor to the last entry in the next block.
3838 		 * Actually any entry but the first would suffice.
3839 		 */
3840 		i = xfs_btree_lastrec(tcur, level);
3841 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3842 			error = -EFSCORRUPTED;
3843 			goto error0;
3844 		}
3845 
3846 		error = xfs_btree_increment(tcur, level, &i);
3847 		if (error)
3848 			goto error0;
3849 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3850 			error = -EFSCORRUPTED;
3851 			goto error0;
3852 		}
3853 
3854 		i = xfs_btree_lastrec(tcur, level);
3855 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3856 			error = -EFSCORRUPTED;
3857 			goto error0;
3858 		}
3859 
3860 		/* Grab a pointer to the block. */
3861 		right = xfs_btree_get_block(tcur, level, &rbp);
3862 #ifdef DEBUG
3863 		error = xfs_btree_check_block(tcur, right, level, rbp);
3864 		if (error)
3865 			goto error0;
3866 #endif
3867 		/* Grab the current block number, for future use. */
3868 		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3869 
3870 		/*
3871 		 * If right block is full enough so that removing one entry
3872 		 * won't make it too empty, and left-shifting an entry out
3873 		 * of right to us works, we're done.
3874 		 */
3875 		if (xfs_btree_get_numrecs(right) - 1 >=
3876 		    cur->bc_ops->get_minrecs(tcur, level)) {
3877 			error = xfs_btree_lshift(tcur, level, &i);
3878 			if (error)
3879 				goto error0;
3880 			if (i) {
3881 				ASSERT(xfs_btree_get_numrecs(block) >=
3882 				       cur->bc_ops->get_minrecs(tcur, level));
3883 
3884 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3885 				tcur = NULL;
3886 
3887 				error = xfs_btree_dec_cursor(cur, level, stat);
3888 				if (error)
3889 					goto error0;
3890 				return 0;
3891 			}
3892 		}
3893 
3894 		/*
3895 		 * Otherwise, grab the number of records in right for
3896 		 * future reference, and fix up the temp cursor to point
3897 		 * to our block again (last record).
3898 		 */
3899 		rrecs = xfs_btree_get_numrecs(right);
3900 		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3901 			i = xfs_btree_firstrec(tcur, level);
3902 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3903 				error = -EFSCORRUPTED;
3904 				goto error0;
3905 			}
3906 
3907 			error = xfs_btree_decrement(tcur, level, &i);
3908 			if (error)
3909 				goto error0;
3910 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3911 				error = -EFSCORRUPTED;
3912 				goto error0;
3913 			}
3914 		}
3915 	}
3916 
3917 	/*
3918 	 * If there's a left sibling, see if it's ok to shift an entry
3919 	 * out of it.
3920 	 */
3921 	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3922 		/*
3923 		 * Move the temp cursor to the first entry in the
3924 		 * previous block.
3925 		 */
3926 		i = xfs_btree_firstrec(tcur, level);
3927 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3928 			error = -EFSCORRUPTED;
3929 			goto error0;
3930 		}
3931 
3932 		error = xfs_btree_decrement(tcur, level, &i);
3933 		if (error)
3934 			goto error0;
3935 		i = xfs_btree_firstrec(tcur, level);
3936 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3937 			error = -EFSCORRUPTED;
3938 			goto error0;
3939 		}
3940 
3941 		/* Grab a pointer to the block. */
3942 		left = xfs_btree_get_block(tcur, level, &lbp);
3943 #ifdef DEBUG
3944 		error = xfs_btree_check_block(cur, left, level, lbp);
3945 		if (error)
3946 			goto error0;
3947 #endif
3948 		/* Grab the current block number, for future use. */
3949 		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3950 
3951 		/*
3952 		 * If left block is full enough so that removing one entry
3953 		 * won't make it too empty, and right-shifting an entry out
3954 		 * of left to us works, we're done.
3955 		 */
3956 		if (xfs_btree_get_numrecs(left) - 1 >=
3957 		    cur->bc_ops->get_minrecs(tcur, level)) {
3958 			error = xfs_btree_rshift(tcur, level, &i);
3959 			if (error)
3960 				goto error0;
3961 			if (i) {
3962 				ASSERT(xfs_btree_get_numrecs(block) >=
3963 				       cur->bc_ops->get_minrecs(tcur, level));
3964 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3965 				tcur = NULL;
3966 				if (level == 0)
3967 					cur->bc_ptrs[0]++;
3968 
3969 				*stat = 1;
3970 				return 0;
3971 			}
3972 		}
3973 
3974 		/*
3975 		 * Otherwise, grab the number of records in right for
3976 		 * future reference.
3977 		 */
3978 		lrecs = xfs_btree_get_numrecs(left);
3979 	}
3980 
3981 	/* Delete the temp cursor, we're done with it. */
3982 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3983 	tcur = NULL;
3984 
3985 	/* If here, we need to do a join to keep the tree balanced. */
3986 	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
3987 
3988 	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
3989 	    lrecs + xfs_btree_get_numrecs(block) <=
3990 			cur->bc_ops->get_maxrecs(cur, level)) {
3991 		/*
3992 		 * Set "right" to be the starting block,
3993 		 * "left" to be the left neighbor.
3994 		 */
3995 		rptr = cptr;
3996 		right = block;
3997 		rbp = bp;
3998 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3999 		if (error)
4000 			goto error0;
4001 
4002 	/*
4003 	 * If that won't work, see if we can join with the right neighbor block.
4004 	 */
4005 	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4006 		   rrecs + xfs_btree_get_numrecs(block) <=
4007 			cur->bc_ops->get_maxrecs(cur, level)) {
4008 		/*
4009 		 * Set "left" to be the starting block,
4010 		 * "right" to be the right neighbor.
4011 		 */
4012 		lptr = cptr;
4013 		left = block;
4014 		lbp = bp;
4015 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4016 		if (error)
4017 			goto error0;
4018 
4019 	/*
4020 	 * Otherwise, we can't fix the imbalance.
4021 	 * Just return.  This is probably a logic error, but it's not fatal.
4022 	 */
4023 	} else {
4024 		error = xfs_btree_dec_cursor(cur, level, stat);
4025 		if (error)
4026 			goto error0;
4027 		return 0;
4028 	}
4029 
4030 	rrecs = xfs_btree_get_numrecs(right);
4031 	lrecs = xfs_btree_get_numrecs(left);
4032 
4033 	/*
4034 	 * We're now going to join "left" and "right" by moving all the stuff
4035 	 * in "right" to "left" and deleting "right".
4036 	 */
4037 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4038 	if (level > 0) {
4039 		/* It's a non-leaf.  Move keys and pointers. */
4040 		union xfs_btree_key	*lkp;	/* left btree key */
4041 		union xfs_btree_ptr	*lpp;	/* left address pointer */
4042 		union xfs_btree_key	*rkp;	/* right btree key */
4043 		union xfs_btree_ptr	*rpp;	/* right address pointer */
4044 
4045 		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4046 		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4047 		rkp = xfs_btree_key_addr(cur, 1, right);
4048 		rpp = xfs_btree_ptr_addr(cur, 1, right);
4049 
4050 		for (i = 1; i < rrecs; i++) {
4051 			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4052 			if (error)
4053 				goto error0;
4054 		}
4055 
4056 		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4057 		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4058 
4059 		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4060 		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4061 	} else {
4062 		/* It's a leaf.  Move records.  */
4063 		union xfs_btree_rec	*lrp;	/* left record pointer */
4064 		union xfs_btree_rec	*rrp;	/* right record pointer */
4065 
4066 		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4067 		rrp = xfs_btree_rec_addr(cur, 1, right);
4068 
4069 		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4070 		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4071 	}
4072 
4073 	XFS_BTREE_STATS_INC(cur, join);
4074 
4075 	/*
4076 	 * Fix up the number of records and right block pointer in the
4077 	 * surviving block, and log it.
4078 	 */
4079 	xfs_btree_set_numrecs(left, lrecs + rrecs);
4080 	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4081 	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4082 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4083 
4084 	/* If there is a right sibling, point it to the remaining block. */
4085 	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4086 	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4087 		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4088 		if (error)
4089 			goto error0;
4090 		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4091 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4092 	}
4093 
4094 	/* Free the deleted block. */
4095 	error = xfs_btree_free_block(cur, rbp);
4096 	if (error)
4097 		goto error0;
4098 
4099 	/*
4100 	 * If we joined with the left neighbor, set the buffer in the
4101 	 * cursor to the left block, and fix up the index.
4102 	 */
4103 	if (bp != lbp) {
4104 		cur->bc_bufs[level] = lbp;
4105 		cur->bc_ptrs[level] += lrecs;
4106 		cur->bc_ra[level] = 0;
4107 	}
4108 	/*
4109 	 * If we joined with the right neighbor and there's a level above
4110 	 * us, increment the cursor at that level.
4111 	 */
4112 	else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4113 		   (level + 1 < cur->bc_nlevels)) {
4114 		error = xfs_btree_increment(cur, level + 1, &i);
4115 		if (error)
4116 			goto error0;
4117 	}
4118 
4119 	/*
4120 	 * Readjust the ptr at this level if it's not a leaf, since it's
4121 	 * still pointing at the deletion point, which makes the cursor
4122 	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4123 	 * We can't use decrement because it would change the next level up.
4124 	 */
4125 	if (level > 0)
4126 		cur->bc_ptrs[level]--;
4127 
4128 	/*
4129 	 * We combined blocks, so we have to update the parent keys if the
4130 	 * btree supports overlapped intervals.  However, bc_ptrs[level + 1]
4131 	 * points to the old block so that the caller knows which record to
4132 	 * delete.  Therefore, the caller must be savvy enough to call updkeys
4133 	 * for us if we return stat == 2.  The other exit points from this
4134 	 * function don't require deletions further up the tree, so they can
4135 	 * call updkeys directly.
4136 	 */
4137 
4138 	/* Return value means the next level up has something to do. */
4139 	*stat = 2;
4140 	return 0;
4141 
4142 error0:
4143 	if (tcur)
4144 		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4145 	return error;
4146 }
4147 
4148 /*
4149  * Delete the record pointed to by cur.
4150  * The cursor refers to the place where the record was (could be inserted)
4151  * when the operation returns.
4152  */
4153 int					/* error */
xfs_btree_delete(struct xfs_btree_cur * cur,int * stat)4154 xfs_btree_delete(
4155 	struct xfs_btree_cur	*cur,
4156 	int			*stat)	/* success/failure */
4157 {
4158 	int			error;	/* error return value */
4159 	int			level;
4160 	int			i;
4161 	bool			joined = false;
4162 
4163 	/*
4164 	 * Go up the tree, starting at leaf level.
4165 	 *
4166 	 * If 2 is returned then a join was done; go to the next level.
4167 	 * Otherwise we are done.
4168 	 */
4169 	for (level = 0, i = 2; i == 2; level++) {
4170 		error = xfs_btree_delrec(cur, level, &i);
4171 		if (error)
4172 			goto error0;
4173 		if (i == 2)
4174 			joined = true;
4175 	}
4176 
4177 	/*
4178 	 * If we combined blocks as part of deleting the record, delrec won't
4179 	 * have updated the parent high keys so we have to do that here.
4180 	 */
4181 	if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4182 		error = xfs_btree_updkeys_force(cur, 0);
4183 		if (error)
4184 			goto error0;
4185 	}
4186 
4187 	if (i == 0) {
4188 		for (level = 1; level < cur->bc_nlevels; level++) {
4189 			if (cur->bc_ptrs[level] == 0) {
4190 				error = xfs_btree_decrement(cur, level, &i);
4191 				if (error)
4192 					goto error0;
4193 				break;
4194 			}
4195 		}
4196 	}
4197 
4198 	*stat = i;
4199 	return 0;
4200 error0:
4201 	return error;
4202 }
4203 
4204 /*
4205  * Get the data from the pointed-to record.
4206  */
4207 int					/* error */
xfs_btree_get_rec(struct xfs_btree_cur * cur,union xfs_btree_rec ** recp,int * stat)4208 xfs_btree_get_rec(
4209 	struct xfs_btree_cur	*cur,	/* btree cursor */
4210 	union xfs_btree_rec	**recp,	/* output: btree record */
4211 	int			*stat)	/* output: success/failure */
4212 {
4213 	struct xfs_btree_block	*block;	/* btree block */
4214 	struct xfs_buf		*bp;	/* buffer pointer */
4215 	int			ptr;	/* record number */
4216 #ifdef DEBUG
4217 	int			error;	/* error return value */
4218 #endif
4219 
4220 	ptr = cur->bc_ptrs[0];
4221 	block = xfs_btree_get_block(cur, 0, &bp);
4222 
4223 #ifdef DEBUG
4224 	error = xfs_btree_check_block(cur, block, 0, bp);
4225 	if (error)
4226 		return error;
4227 #endif
4228 
4229 	/*
4230 	 * Off the right end or left end, return failure.
4231 	 */
4232 	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4233 		*stat = 0;
4234 		return 0;
4235 	}
4236 
4237 	/*
4238 	 * Point to the record and extract its data.
4239 	 */
4240 	*recp = xfs_btree_rec_addr(cur, ptr, block);
4241 	*stat = 1;
4242 	return 0;
4243 }
4244 
4245 /* Visit a block in a btree. */
4246 STATIC int
xfs_btree_visit_block(struct xfs_btree_cur * cur,int level,xfs_btree_visit_blocks_fn fn,void * data)4247 xfs_btree_visit_block(
4248 	struct xfs_btree_cur		*cur,
4249 	int				level,
4250 	xfs_btree_visit_blocks_fn	fn,
4251 	void				*data)
4252 {
4253 	struct xfs_btree_block		*block;
4254 	struct xfs_buf			*bp;
4255 	union xfs_btree_ptr		rptr;
4256 	int				error;
4257 
4258 	/* do right sibling readahead */
4259 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4260 	block = xfs_btree_get_block(cur, level, &bp);
4261 
4262 	/* process the block */
4263 	error = fn(cur, level, data);
4264 	if (error)
4265 		return error;
4266 
4267 	/* now read rh sibling block for next iteration */
4268 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4269 	if (xfs_btree_ptr_is_null(cur, &rptr))
4270 		return -ENOENT;
4271 
4272 	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4273 }
4274 
4275 
4276 /* Visit every block in a btree. */
4277 int
xfs_btree_visit_blocks(struct xfs_btree_cur * cur,xfs_btree_visit_blocks_fn fn,unsigned int flags,void * data)4278 xfs_btree_visit_blocks(
4279 	struct xfs_btree_cur		*cur,
4280 	xfs_btree_visit_blocks_fn	fn,
4281 	unsigned int			flags,
4282 	void				*data)
4283 {
4284 	union xfs_btree_ptr		lptr;
4285 	int				level;
4286 	struct xfs_btree_block		*block = NULL;
4287 	int				error = 0;
4288 
4289 	cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4290 
4291 	/* for each level */
4292 	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4293 		/* grab the left hand block */
4294 		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4295 		if (error)
4296 			return error;
4297 
4298 		/* readahead the left most block for the next level down */
4299 		if (level > 0) {
4300 			union xfs_btree_ptr     *ptr;
4301 
4302 			ptr = xfs_btree_ptr_addr(cur, 1, block);
4303 			xfs_btree_readahead_ptr(cur, ptr, 1);
4304 
4305 			/* save for the next iteration of the loop */
4306 			xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4307 
4308 			if (!(flags & XFS_BTREE_VISIT_LEAVES))
4309 				continue;
4310 		} else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4311 			continue;
4312 		}
4313 
4314 		/* for each buffer in the level */
4315 		do {
4316 			error = xfs_btree_visit_block(cur, level, fn, data);
4317 		} while (!error);
4318 
4319 		if (error != -ENOENT)
4320 			return error;
4321 	}
4322 
4323 	return 0;
4324 }
4325 
4326 /*
4327  * Change the owner of a btree.
4328  *
4329  * The mechanism we use here is ordered buffer logging. Because we don't know
4330  * how many buffers were are going to need to modify, we don't really want to
4331  * have to make transaction reservations for the worst case of every buffer in a
4332  * full size btree as that may be more space that we can fit in the log....
4333  *
4334  * We do the btree walk in the most optimal manner possible - we have sibling
4335  * pointers so we can just walk all the blocks on each level from left to right
4336  * in a single pass, and then move to the next level and do the same. We can
4337  * also do readahead on the sibling pointers to get IO moving more quickly,
4338  * though for slow disks this is unlikely to make much difference to performance
4339  * as the amount of CPU work we have to do before moving to the next block is
4340  * relatively small.
4341  *
4342  * For each btree block that we load, modify the owner appropriately, set the
4343  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4344  * we mark the region we change dirty so that if the buffer is relogged in
4345  * a subsequent transaction the changes we make here as an ordered buffer are
4346  * correctly relogged in that transaction.  If we are in recovery context, then
4347  * just queue the modified buffer as delayed write buffer so the transaction
4348  * recovery completion writes the changes to disk.
4349  */
4350 struct xfs_btree_block_change_owner_info {
4351 	uint64_t		new_owner;
4352 	struct list_head	*buffer_list;
4353 };
4354 
4355 static int
xfs_btree_block_change_owner(struct xfs_btree_cur * cur,int level,void * data)4356 xfs_btree_block_change_owner(
4357 	struct xfs_btree_cur	*cur,
4358 	int			level,
4359 	void			*data)
4360 {
4361 	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4362 	struct xfs_btree_block	*block;
4363 	struct xfs_buf		*bp;
4364 
4365 	/* modify the owner */
4366 	block = xfs_btree_get_block(cur, level, &bp);
4367 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4368 		if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4369 			return 0;
4370 		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4371 	} else {
4372 		if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4373 			return 0;
4374 		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4375 	}
4376 
4377 	/*
4378 	 * If the block is a root block hosted in an inode, we might not have a
4379 	 * buffer pointer here and we shouldn't attempt to log the change as the
4380 	 * information is already held in the inode and discarded when the root
4381 	 * block is formatted into the on-disk inode fork. We still change it,
4382 	 * though, so everything is consistent in memory.
4383 	 */
4384 	if (!bp) {
4385 		ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4386 		ASSERT(level == cur->bc_nlevels - 1);
4387 		return 0;
4388 	}
4389 
4390 	if (cur->bc_tp) {
4391 		if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4392 			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4393 			return -EAGAIN;
4394 		}
4395 	} else {
4396 		xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4397 	}
4398 
4399 	return 0;
4400 }
4401 
4402 int
xfs_btree_change_owner(struct xfs_btree_cur * cur,uint64_t new_owner,struct list_head * buffer_list)4403 xfs_btree_change_owner(
4404 	struct xfs_btree_cur	*cur,
4405 	uint64_t		new_owner,
4406 	struct list_head	*buffer_list)
4407 {
4408 	struct xfs_btree_block_change_owner_info	bbcoi;
4409 
4410 	bbcoi.new_owner = new_owner;
4411 	bbcoi.buffer_list = buffer_list;
4412 
4413 	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4414 			XFS_BTREE_VISIT_ALL, &bbcoi);
4415 }
4416 
4417 /* Verify the v5 fields of a long-format btree block. */
4418 xfs_failaddr_t
xfs_btree_lblock_v5hdr_verify(struct xfs_buf * bp,uint64_t owner)4419 xfs_btree_lblock_v5hdr_verify(
4420 	struct xfs_buf		*bp,
4421 	uint64_t		owner)
4422 {
4423 	struct xfs_mount	*mp = bp->b_mount;
4424 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4425 
4426 	if (!xfs_sb_version_hascrc(&mp->m_sb))
4427 		return __this_address;
4428 	if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4429 		return __this_address;
4430 	if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn))
4431 		return __this_address;
4432 	if (owner != XFS_RMAP_OWN_UNKNOWN &&
4433 	    be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4434 		return __this_address;
4435 	return NULL;
4436 }
4437 
4438 /* Verify a long-format btree block. */
4439 xfs_failaddr_t
xfs_btree_lblock_verify(struct xfs_buf * bp,unsigned int max_recs)4440 xfs_btree_lblock_verify(
4441 	struct xfs_buf		*bp,
4442 	unsigned int		max_recs)
4443 {
4444 	struct xfs_mount	*mp = bp->b_mount;
4445 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4446 
4447 	/* numrecs verification */
4448 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4449 		return __this_address;
4450 
4451 	/* sibling pointer verification */
4452 	if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
4453 	    !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
4454 		return __this_address;
4455 	if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
4456 	    !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
4457 		return __this_address;
4458 
4459 	return NULL;
4460 }
4461 
4462 /**
4463  * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4464  *				      btree block
4465  *
4466  * @bp: buffer containing the btree block
4467  */
4468 xfs_failaddr_t
xfs_btree_sblock_v5hdr_verify(struct xfs_buf * bp)4469 xfs_btree_sblock_v5hdr_verify(
4470 	struct xfs_buf		*bp)
4471 {
4472 	struct xfs_mount	*mp = bp->b_mount;
4473 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4474 	struct xfs_perag	*pag = bp->b_pag;
4475 
4476 	if (!xfs_sb_version_hascrc(&mp->m_sb))
4477 		return __this_address;
4478 	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4479 		return __this_address;
4480 	if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4481 		return __this_address;
4482 	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4483 		return __this_address;
4484 	return NULL;
4485 }
4486 
4487 /**
4488  * xfs_btree_sblock_verify() -- verify a short-format btree block
4489  *
4490  * @bp: buffer containing the btree block
4491  * @max_recs: maximum records allowed in this btree node
4492  */
4493 xfs_failaddr_t
xfs_btree_sblock_verify(struct xfs_buf * bp,unsigned int max_recs)4494 xfs_btree_sblock_verify(
4495 	struct xfs_buf		*bp,
4496 	unsigned int		max_recs)
4497 {
4498 	struct xfs_mount	*mp = bp->b_mount;
4499 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4500 	xfs_agblock_t		agno;
4501 
4502 	/* numrecs verification */
4503 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4504 		return __this_address;
4505 
4506 	/* sibling pointer verification */
4507 	agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
4508 	if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
4509 	    !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
4510 		return __this_address;
4511 	if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
4512 	    !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
4513 		return __this_address;
4514 
4515 	return NULL;
4516 }
4517 
4518 /*
4519  * Calculate the number of btree levels needed to store a given number of
4520  * records in a short-format btree.
4521  */
4522 uint
xfs_btree_compute_maxlevels(uint * limits,unsigned long len)4523 xfs_btree_compute_maxlevels(
4524 	uint			*limits,
4525 	unsigned long		len)
4526 {
4527 	uint			level;
4528 	unsigned long		maxblocks;
4529 
4530 	maxblocks = (len + limits[0] - 1) / limits[0];
4531 	for (level = 1; maxblocks > 1; level++)
4532 		maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4533 	return level;
4534 }
4535 
4536 /*
4537  * Query a regular btree for all records overlapping a given interval.
4538  * Start with a LE lookup of the key of low_rec and return all records
4539  * until we find a record with a key greater than the key of high_rec.
4540  */
4541 STATIC int
xfs_btree_simple_query_range(struct xfs_btree_cur * cur,union xfs_btree_key * low_key,union xfs_btree_key * high_key,xfs_btree_query_range_fn fn,void * priv)4542 xfs_btree_simple_query_range(
4543 	struct xfs_btree_cur		*cur,
4544 	union xfs_btree_key		*low_key,
4545 	union xfs_btree_key		*high_key,
4546 	xfs_btree_query_range_fn	fn,
4547 	void				*priv)
4548 {
4549 	union xfs_btree_rec		*recp;
4550 	union xfs_btree_key		rec_key;
4551 	int64_t				diff;
4552 	int				stat;
4553 	bool				firstrec = true;
4554 	int				error;
4555 
4556 	ASSERT(cur->bc_ops->init_high_key_from_rec);
4557 	ASSERT(cur->bc_ops->diff_two_keys);
4558 
4559 	/*
4560 	 * Find the leftmost record.  The btree cursor must be set
4561 	 * to the low record used to generate low_key.
4562 	 */
4563 	stat = 0;
4564 	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4565 	if (error)
4566 		goto out;
4567 
4568 	/* Nothing?  See if there's anything to the right. */
4569 	if (!stat) {
4570 		error = xfs_btree_increment(cur, 0, &stat);
4571 		if (error)
4572 			goto out;
4573 	}
4574 
4575 	while (stat) {
4576 		/* Find the record. */
4577 		error = xfs_btree_get_rec(cur, &recp, &stat);
4578 		if (error || !stat)
4579 			break;
4580 
4581 		/* Skip if high_key(rec) < low_key. */
4582 		if (firstrec) {
4583 			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4584 			firstrec = false;
4585 			diff = cur->bc_ops->diff_two_keys(cur, low_key,
4586 					&rec_key);
4587 			if (diff > 0)
4588 				goto advloop;
4589 		}
4590 
4591 		/* Stop if high_key < low_key(rec). */
4592 		cur->bc_ops->init_key_from_rec(&rec_key, recp);
4593 		diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4594 		if (diff > 0)
4595 			break;
4596 
4597 		/* Callback */
4598 		error = fn(cur, recp, priv);
4599 		if (error)
4600 			break;
4601 
4602 advloop:
4603 		/* Move on to the next record. */
4604 		error = xfs_btree_increment(cur, 0, &stat);
4605 		if (error)
4606 			break;
4607 	}
4608 
4609 out:
4610 	return error;
4611 }
4612 
4613 /*
4614  * Query an overlapped interval btree for all records overlapping a given
4615  * interval.  This function roughly follows the algorithm given in
4616  * "Interval Trees" of _Introduction to Algorithms_, which is section
4617  * 14.3 in the 2nd and 3rd editions.
4618  *
4619  * First, generate keys for the low and high records passed in.
4620  *
4621  * For any leaf node, generate the high and low keys for the record.
4622  * If the record keys overlap with the query low/high keys, pass the
4623  * record to the function iterator.
4624  *
4625  * For any internal node, compare the low and high keys of each
4626  * pointer against the query low/high keys.  If there's an overlap,
4627  * follow the pointer.
4628  *
4629  * As an optimization, we stop scanning a block when we find a low key
4630  * that is greater than the query's high key.
4631  */
4632 STATIC int
xfs_btree_overlapped_query_range(struct xfs_btree_cur * cur,union xfs_btree_key * low_key,union xfs_btree_key * high_key,xfs_btree_query_range_fn fn,void * priv)4633 xfs_btree_overlapped_query_range(
4634 	struct xfs_btree_cur		*cur,
4635 	union xfs_btree_key		*low_key,
4636 	union xfs_btree_key		*high_key,
4637 	xfs_btree_query_range_fn	fn,
4638 	void				*priv)
4639 {
4640 	union xfs_btree_ptr		ptr;
4641 	union xfs_btree_ptr		*pp;
4642 	union xfs_btree_key		rec_key;
4643 	union xfs_btree_key		rec_hkey;
4644 	union xfs_btree_key		*lkp;
4645 	union xfs_btree_key		*hkp;
4646 	union xfs_btree_rec		*recp;
4647 	struct xfs_btree_block		*block;
4648 	int64_t				ldiff;
4649 	int64_t				hdiff;
4650 	int				level;
4651 	struct xfs_buf			*bp;
4652 	int				i;
4653 	int				error;
4654 
4655 	/* Load the root of the btree. */
4656 	level = cur->bc_nlevels - 1;
4657 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4658 	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4659 	if (error)
4660 		return error;
4661 	xfs_btree_get_block(cur, level, &bp);
4662 	trace_xfs_btree_overlapped_query_range(cur, level, bp);
4663 #ifdef DEBUG
4664 	error = xfs_btree_check_block(cur, block, level, bp);
4665 	if (error)
4666 		goto out;
4667 #endif
4668 	cur->bc_ptrs[level] = 1;
4669 
4670 	while (level < cur->bc_nlevels) {
4671 		block = xfs_btree_get_block(cur, level, &bp);
4672 
4673 		/* End of node, pop back towards the root. */
4674 		if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4675 pop_up:
4676 			if (level < cur->bc_nlevels - 1)
4677 				cur->bc_ptrs[level + 1]++;
4678 			level++;
4679 			continue;
4680 		}
4681 
4682 		if (level == 0) {
4683 			/* Handle a leaf node. */
4684 			recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4685 
4686 			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4687 			ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4688 					low_key);
4689 
4690 			cur->bc_ops->init_key_from_rec(&rec_key, recp);
4691 			hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4692 					&rec_key);
4693 
4694 			/*
4695 			 * If (record's high key >= query's low key) and
4696 			 *    (query's high key >= record's low key), then
4697 			 * this record overlaps the query range; callback.
4698 			 */
4699 			if (ldiff >= 0 && hdiff >= 0) {
4700 				error = fn(cur, recp, priv);
4701 				if (error)
4702 					break;
4703 			} else if (hdiff < 0) {
4704 				/* Record is larger than high key; pop. */
4705 				goto pop_up;
4706 			}
4707 			cur->bc_ptrs[level]++;
4708 			continue;
4709 		}
4710 
4711 		/* Handle an internal node. */
4712 		lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4713 		hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4714 		pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4715 
4716 		ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4717 		hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4718 
4719 		/*
4720 		 * If (pointer's high key >= query's low key) and
4721 		 *    (query's high key >= pointer's low key), then
4722 		 * this record overlaps the query range; follow pointer.
4723 		 */
4724 		if (ldiff >= 0 && hdiff >= 0) {
4725 			level--;
4726 			error = xfs_btree_lookup_get_block(cur, level, pp,
4727 					&block);
4728 			if (error)
4729 				goto out;
4730 			xfs_btree_get_block(cur, level, &bp);
4731 			trace_xfs_btree_overlapped_query_range(cur, level, bp);
4732 #ifdef DEBUG
4733 			error = xfs_btree_check_block(cur, block, level, bp);
4734 			if (error)
4735 				goto out;
4736 #endif
4737 			cur->bc_ptrs[level] = 1;
4738 			continue;
4739 		} else if (hdiff < 0) {
4740 			/* The low key is larger than the upper range; pop. */
4741 			goto pop_up;
4742 		}
4743 		cur->bc_ptrs[level]++;
4744 	}
4745 
4746 out:
4747 	/*
4748 	 * If we don't end this function with the cursor pointing at a record
4749 	 * block, a subsequent non-error cursor deletion will not release
4750 	 * node-level buffers, causing a buffer leak.  This is quite possible
4751 	 * with a zero-results range query, so release the buffers if we
4752 	 * failed to return any results.
4753 	 */
4754 	if (cur->bc_bufs[0] == NULL) {
4755 		for (i = 0; i < cur->bc_nlevels; i++) {
4756 			if (cur->bc_bufs[i]) {
4757 				xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4758 				cur->bc_bufs[i] = NULL;
4759 				cur->bc_ptrs[i] = 0;
4760 				cur->bc_ra[i] = 0;
4761 			}
4762 		}
4763 	}
4764 
4765 	return error;
4766 }
4767 
4768 /*
4769  * Query a btree for all records overlapping a given interval of keys.  The
4770  * supplied function will be called with each record found; return one of the
4771  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4772  * code.  This function returns -ECANCELED, zero, or a negative error code.
4773  */
4774 int
xfs_btree_query_range(struct xfs_btree_cur * cur,union xfs_btree_irec * low_rec,union xfs_btree_irec * high_rec,xfs_btree_query_range_fn fn,void * priv)4775 xfs_btree_query_range(
4776 	struct xfs_btree_cur		*cur,
4777 	union xfs_btree_irec		*low_rec,
4778 	union xfs_btree_irec		*high_rec,
4779 	xfs_btree_query_range_fn	fn,
4780 	void				*priv)
4781 {
4782 	union xfs_btree_rec		rec;
4783 	union xfs_btree_key		low_key;
4784 	union xfs_btree_key		high_key;
4785 
4786 	/* Find the keys of both ends of the interval. */
4787 	cur->bc_rec = *high_rec;
4788 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4789 	cur->bc_ops->init_key_from_rec(&high_key, &rec);
4790 
4791 	cur->bc_rec = *low_rec;
4792 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4793 	cur->bc_ops->init_key_from_rec(&low_key, &rec);
4794 
4795 	/* Enforce low key < high key. */
4796 	if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4797 		return -EINVAL;
4798 
4799 	if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4800 		return xfs_btree_simple_query_range(cur, &low_key,
4801 				&high_key, fn, priv);
4802 	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4803 			fn, priv);
4804 }
4805 
4806 /* Query a btree for all records. */
4807 int
xfs_btree_query_all(struct xfs_btree_cur * cur,xfs_btree_query_range_fn fn,void * priv)4808 xfs_btree_query_all(
4809 	struct xfs_btree_cur		*cur,
4810 	xfs_btree_query_range_fn	fn,
4811 	void				*priv)
4812 {
4813 	union xfs_btree_key		low_key;
4814 	union xfs_btree_key		high_key;
4815 
4816 	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4817 	memset(&low_key, 0, sizeof(low_key));
4818 	memset(&high_key, 0xFF, sizeof(high_key));
4819 
4820 	return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4821 }
4822 
4823 /*
4824  * Calculate the number of blocks needed to store a given number of records
4825  * in a short-format (per-AG metadata) btree.
4826  */
4827 unsigned long long
xfs_btree_calc_size(uint * limits,unsigned long long len)4828 xfs_btree_calc_size(
4829 	uint			*limits,
4830 	unsigned long long	len)
4831 {
4832 	int			level;
4833 	int			maxrecs;
4834 	unsigned long long	rval;
4835 
4836 	maxrecs = limits[0];
4837 	for (level = 0, rval = 0; len > 1; level++) {
4838 		len += maxrecs - 1;
4839 		do_div(len, maxrecs);
4840 		maxrecs = limits[1];
4841 		rval += len;
4842 	}
4843 	return rval;
4844 }
4845 
4846 static int
xfs_btree_count_blocks_helper(struct xfs_btree_cur * cur,int level,void * data)4847 xfs_btree_count_blocks_helper(
4848 	struct xfs_btree_cur	*cur,
4849 	int			level,
4850 	void			*data)
4851 {
4852 	xfs_extlen_t		*blocks = data;
4853 	(*blocks)++;
4854 
4855 	return 0;
4856 }
4857 
4858 /* Count the blocks in a btree and return the result in *blocks. */
4859 int
xfs_btree_count_blocks(struct xfs_btree_cur * cur,xfs_extlen_t * blocks)4860 xfs_btree_count_blocks(
4861 	struct xfs_btree_cur	*cur,
4862 	xfs_extlen_t		*blocks)
4863 {
4864 	*blocks = 0;
4865 	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4866 			XFS_BTREE_VISIT_ALL, blocks);
4867 }
4868 
4869 /* Compare two btree pointers. */
4870 int64_t
xfs_btree_diff_two_ptrs(struct xfs_btree_cur * cur,const union xfs_btree_ptr * a,const union xfs_btree_ptr * b)4871 xfs_btree_diff_two_ptrs(
4872 	struct xfs_btree_cur		*cur,
4873 	const union xfs_btree_ptr	*a,
4874 	const union xfs_btree_ptr	*b)
4875 {
4876 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4877 		return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4878 	return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4879 }
4880 
4881 /* If there's an extent, we're done. */
4882 STATIC int
xfs_btree_has_record_helper(struct xfs_btree_cur * cur,union xfs_btree_rec * rec,void * priv)4883 xfs_btree_has_record_helper(
4884 	struct xfs_btree_cur		*cur,
4885 	union xfs_btree_rec		*rec,
4886 	void				*priv)
4887 {
4888 	return -ECANCELED;
4889 }
4890 
4891 /* Is there a record covering a given range of keys? */
4892 int
xfs_btree_has_record(struct xfs_btree_cur * cur,union xfs_btree_irec * low,union xfs_btree_irec * high,bool * exists)4893 xfs_btree_has_record(
4894 	struct xfs_btree_cur	*cur,
4895 	union xfs_btree_irec	*low,
4896 	union xfs_btree_irec	*high,
4897 	bool			*exists)
4898 {
4899 	int			error;
4900 
4901 	error = xfs_btree_query_range(cur, low, high,
4902 			&xfs_btree_has_record_helper, NULL);
4903 	if (error == -ECANCELED) {
4904 		*exists = true;
4905 		return 0;
4906 	}
4907 	*exists = false;
4908 	return error;
4909 }
4910 
4911 /* Are there more records in this btree? */
4912 bool
xfs_btree_has_more_records(struct xfs_btree_cur * cur)4913 xfs_btree_has_more_records(
4914 	struct xfs_btree_cur	*cur)
4915 {
4916 	struct xfs_btree_block	*block;
4917 	struct xfs_buf		*bp;
4918 
4919 	block = xfs_btree_get_block(cur, 0, &bp);
4920 
4921 	/* There are still records in this block. */
4922 	if (cur->bc_ptrs[0] < xfs_btree_get_numrecs(block))
4923 		return true;
4924 
4925 	/* There are more record blocks. */
4926 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4927 		return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
4928 	else
4929 		return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
4930 }
4931