1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_errortag.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_alloc.h"
22 #include "xfs_log.h"
23 #include "xfs_btree_staging.h"
24
25 /*
26 * Cursor allocation zone.
27 */
28 kmem_zone_t *xfs_btree_cur_zone;
29
30 /*
31 * Btree magic numbers.
32 */
33 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
34 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
35 XFS_FIBT_MAGIC, 0 },
36 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
37 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
38 XFS_REFC_CRC_MAGIC }
39 };
40
41 uint32_t
xfs_btree_magic(int crc,xfs_btnum_t btnum)42 xfs_btree_magic(
43 int crc,
44 xfs_btnum_t btnum)
45 {
46 uint32_t magic = xfs_magics[crc][btnum];
47
48 /* Ensure we asked for crc for crc-only magics. */
49 ASSERT(magic != 0);
50 return magic;
51 }
52
53 /*
54 * Check a long btree block header. Return the address of the failing check,
55 * or NULL if everything is ok.
56 */
57 xfs_failaddr_t
__xfs_btree_check_lblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)58 __xfs_btree_check_lblock(
59 struct xfs_btree_cur *cur,
60 struct xfs_btree_block *block,
61 int level,
62 struct xfs_buf *bp)
63 {
64 struct xfs_mount *mp = cur->bc_mp;
65 xfs_btnum_t btnum = cur->bc_btnum;
66 int crc = xfs_sb_version_hascrc(&mp->m_sb);
67
68 if (crc) {
69 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
70 return __this_address;
71 if (block->bb_u.l.bb_blkno !=
72 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
73 return __this_address;
74 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
75 return __this_address;
76 }
77
78 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
79 return __this_address;
80 if (be16_to_cpu(block->bb_level) != level)
81 return __this_address;
82 if (be16_to_cpu(block->bb_numrecs) >
83 cur->bc_ops->get_maxrecs(cur, level))
84 return __this_address;
85 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
86 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
87 level + 1))
88 return __this_address;
89 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
90 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
91 level + 1))
92 return __this_address;
93
94 return NULL;
95 }
96
97 /* Check a long btree block header. */
98 static int
xfs_btree_check_lblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)99 xfs_btree_check_lblock(
100 struct xfs_btree_cur *cur,
101 struct xfs_btree_block *block,
102 int level,
103 struct xfs_buf *bp)
104 {
105 struct xfs_mount *mp = cur->bc_mp;
106 xfs_failaddr_t fa;
107
108 fa = __xfs_btree_check_lblock(cur, block, level, bp);
109 if (XFS_IS_CORRUPT(mp, fa != NULL) ||
110 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
111 if (bp)
112 trace_xfs_btree_corrupt(bp, _RET_IP_);
113 return -EFSCORRUPTED;
114 }
115 return 0;
116 }
117
118 /*
119 * Check a short btree block header. Return the address of the failing check,
120 * or NULL if everything is ok.
121 */
122 xfs_failaddr_t
__xfs_btree_check_sblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)123 __xfs_btree_check_sblock(
124 struct xfs_btree_cur *cur,
125 struct xfs_btree_block *block,
126 int level,
127 struct xfs_buf *bp)
128 {
129 struct xfs_mount *mp = cur->bc_mp;
130 xfs_btnum_t btnum = cur->bc_btnum;
131 int crc = xfs_sb_version_hascrc(&mp->m_sb);
132
133 if (crc) {
134 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
135 return __this_address;
136 if (block->bb_u.s.bb_blkno !=
137 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
138 return __this_address;
139 }
140
141 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
142 return __this_address;
143 if (be16_to_cpu(block->bb_level) != level)
144 return __this_address;
145 if (be16_to_cpu(block->bb_numrecs) >
146 cur->bc_ops->get_maxrecs(cur, level))
147 return __this_address;
148 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
149 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
150 level + 1))
151 return __this_address;
152 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
153 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
154 level + 1))
155 return __this_address;
156
157 return NULL;
158 }
159
160 /* Check a short btree block header. */
161 STATIC int
xfs_btree_check_sblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)162 xfs_btree_check_sblock(
163 struct xfs_btree_cur *cur,
164 struct xfs_btree_block *block,
165 int level,
166 struct xfs_buf *bp)
167 {
168 struct xfs_mount *mp = cur->bc_mp;
169 xfs_failaddr_t fa;
170
171 fa = __xfs_btree_check_sblock(cur, block, level, bp);
172 if (XFS_IS_CORRUPT(mp, fa != NULL) ||
173 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
174 if (bp)
175 trace_xfs_btree_corrupt(bp, _RET_IP_);
176 return -EFSCORRUPTED;
177 }
178 return 0;
179 }
180
181 /*
182 * Debug routine: check that block header is ok.
183 */
184 int
xfs_btree_check_block(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)185 xfs_btree_check_block(
186 struct xfs_btree_cur *cur, /* btree cursor */
187 struct xfs_btree_block *block, /* generic btree block pointer */
188 int level, /* level of the btree block */
189 struct xfs_buf *bp) /* buffer containing block, if any */
190 {
191 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
192 return xfs_btree_check_lblock(cur, block, level, bp);
193 else
194 return xfs_btree_check_sblock(cur, block, level, bp);
195 }
196
197 /* Check that this long pointer is valid and points within the fs. */
198 bool
xfs_btree_check_lptr(struct xfs_btree_cur * cur,xfs_fsblock_t fsbno,int level)199 xfs_btree_check_lptr(
200 struct xfs_btree_cur *cur,
201 xfs_fsblock_t fsbno,
202 int level)
203 {
204 if (level <= 0)
205 return false;
206 return xfs_verify_fsbno(cur->bc_mp, fsbno);
207 }
208
209 /* Check that this short pointer is valid and points within the AG. */
210 bool
xfs_btree_check_sptr(struct xfs_btree_cur * cur,xfs_agblock_t agbno,int level)211 xfs_btree_check_sptr(
212 struct xfs_btree_cur *cur,
213 xfs_agblock_t agbno,
214 int level)
215 {
216 if (level <= 0)
217 return false;
218 return xfs_verify_agbno(cur->bc_mp, cur->bc_ag.agno, agbno);
219 }
220
221 /*
222 * Check that a given (indexed) btree pointer at a certain level of a
223 * btree is valid and doesn't point past where it should.
224 */
225 static int
xfs_btree_check_ptr(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int index,int level)226 xfs_btree_check_ptr(
227 struct xfs_btree_cur *cur,
228 union xfs_btree_ptr *ptr,
229 int index,
230 int level)
231 {
232 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
233 if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
234 level))
235 return 0;
236 xfs_err(cur->bc_mp,
237 "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
238 cur->bc_ino.ip->i_ino,
239 cur->bc_ino.whichfork, cur->bc_btnum,
240 level, index);
241 } else {
242 if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
243 level))
244 return 0;
245 xfs_err(cur->bc_mp,
246 "AG %u: Corrupt btree %d pointer at level %d index %d.",
247 cur->bc_ag.agno, cur->bc_btnum,
248 level, index);
249 }
250
251 return -EFSCORRUPTED;
252 }
253
254 #ifdef DEBUG
255 # define xfs_btree_debug_check_ptr xfs_btree_check_ptr
256 #else
257 # define xfs_btree_debug_check_ptr(...) (0)
258 #endif
259
260 /*
261 * Calculate CRC on the whole btree block and stuff it into the
262 * long-form btree header.
263 *
264 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
265 * it into the buffer so recovery knows what the last modification was that made
266 * it to disk.
267 */
268 void
xfs_btree_lblock_calc_crc(struct xfs_buf * bp)269 xfs_btree_lblock_calc_crc(
270 struct xfs_buf *bp)
271 {
272 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
273 struct xfs_buf_log_item *bip = bp->b_log_item;
274
275 if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
276 return;
277 if (bip)
278 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
279 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
280 }
281
282 bool
xfs_btree_lblock_verify_crc(struct xfs_buf * bp)283 xfs_btree_lblock_verify_crc(
284 struct xfs_buf *bp)
285 {
286 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
287 struct xfs_mount *mp = bp->b_mount;
288
289 if (xfs_sb_version_hascrc(&mp->m_sb)) {
290 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
291 return false;
292 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
293 }
294
295 return true;
296 }
297
298 /*
299 * Calculate CRC on the whole btree block and stuff it into the
300 * short-form btree header.
301 *
302 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
303 * it into the buffer so recovery knows what the last modification was that made
304 * it to disk.
305 */
306 void
xfs_btree_sblock_calc_crc(struct xfs_buf * bp)307 xfs_btree_sblock_calc_crc(
308 struct xfs_buf *bp)
309 {
310 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
311 struct xfs_buf_log_item *bip = bp->b_log_item;
312
313 if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
314 return;
315 if (bip)
316 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
317 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
318 }
319
320 bool
xfs_btree_sblock_verify_crc(struct xfs_buf * bp)321 xfs_btree_sblock_verify_crc(
322 struct xfs_buf *bp)
323 {
324 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
325 struct xfs_mount *mp = bp->b_mount;
326
327 if (xfs_sb_version_hascrc(&mp->m_sb)) {
328 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
329 return false;
330 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
331 }
332
333 return true;
334 }
335
336 static int
xfs_btree_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)337 xfs_btree_free_block(
338 struct xfs_btree_cur *cur,
339 struct xfs_buf *bp)
340 {
341 int error;
342
343 error = cur->bc_ops->free_block(cur, bp);
344 if (!error) {
345 xfs_trans_binval(cur->bc_tp, bp);
346 XFS_BTREE_STATS_INC(cur, free);
347 }
348 return error;
349 }
350
351 /*
352 * Delete the btree cursor.
353 */
354 void
xfs_btree_del_cursor(struct xfs_btree_cur * cur,int error)355 xfs_btree_del_cursor(
356 struct xfs_btree_cur *cur, /* btree cursor */
357 int error) /* del because of error */
358 {
359 int i; /* btree level */
360
361 /*
362 * Clear the buffer pointers and release the buffers. If we're doing
363 * this because of an error, inspect all of the entries in the bc_bufs
364 * array for buffers to be unlocked. This is because some of the btree
365 * code works from level n down to 0, and if we get an error along the
366 * way we won't have initialized all the entries down to 0.
367 */
368 for (i = 0; i < cur->bc_nlevels; i++) {
369 if (cur->bc_bufs[i])
370 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
371 else if (!error)
372 break;
373 }
374
375 /*
376 * If we are doing a BMBT update, the number of unaccounted blocks
377 * allocated during this cursor life time should be zero. If it's not
378 * zero, then we should be shut down or on our way to shutdown due to
379 * cancelling a dirty transaction on error.
380 */
381 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 ||
382 XFS_FORCED_SHUTDOWN(cur->bc_mp) || error != 0);
383 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING))
384 kmem_free(cur->bc_ops);
385 kmem_cache_free(xfs_btree_cur_zone, cur);
386 }
387
388 /*
389 * Duplicate the btree cursor.
390 * Allocate a new one, copy the record, re-get the buffers.
391 */
392 int /* error */
xfs_btree_dup_cursor(xfs_btree_cur_t * cur,xfs_btree_cur_t ** ncur)393 xfs_btree_dup_cursor(
394 xfs_btree_cur_t *cur, /* input cursor */
395 xfs_btree_cur_t **ncur) /* output cursor */
396 {
397 xfs_buf_t *bp; /* btree block's buffer pointer */
398 int error; /* error return value */
399 int i; /* level number of btree block */
400 xfs_mount_t *mp; /* mount structure for filesystem */
401 xfs_btree_cur_t *new; /* new cursor value */
402 xfs_trans_t *tp; /* transaction pointer, can be NULL */
403
404 tp = cur->bc_tp;
405 mp = cur->bc_mp;
406
407 /*
408 * Allocate a new cursor like the old one.
409 */
410 new = cur->bc_ops->dup_cursor(cur);
411
412 /*
413 * Copy the record currently in the cursor.
414 */
415 new->bc_rec = cur->bc_rec;
416
417 /*
418 * For each level current, re-get the buffer and copy the ptr value.
419 */
420 for (i = 0; i < new->bc_nlevels; i++) {
421 new->bc_ptrs[i] = cur->bc_ptrs[i];
422 new->bc_ra[i] = cur->bc_ra[i];
423 bp = cur->bc_bufs[i];
424 if (bp) {
425 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
426 XFS_BUF_ADDR(bp), mp->m_bsize,
427 0, &bp,
428 cur->bc_ops->buf_ops);
429 if (error) {
430 xfs_btree_del_cursor(new, error);
431 *ncur = NULL;
432 return error;
433 }
434 }
435 new->bc_bufs[i] = bp;
436 }
437 *ncur = new;
438 return 0;
439 }
440
441 /*
442 * XFS btree block layout and addressing:
443 *
444 * There are two types of blocks in the btree: leaf and non-leaf blocks.
445 *
446 * The leaf record start with a header then followed by records containing
447 * the values. A non-leaf block also starts with the same header, and
448 * then first contains lookup keys followed by an equal number of pointers
449 * to the btree blocks at the previous level.
450 *
451 * +--------+-------+-------+-------+-------+-------+-------+
452 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
453 * +--------+-------+-------+-------+-------+-------+-------+
454 *
455 * +--------+-------+-------+-------+-------+-------+-------+
456 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
457 * +--------+-------+-------+-------+-------+-------+-------+
458 *
459 * The header is called struct xfs_btree_block for reasons better left unknown
460 * and comes in different versions for short (32bit) and long (64bit) block
461 * pointers. The record and key structures are defined by the btree instances
462 * and opaque to the btree core. The block pointers are simple disk endian
463 * integers, available in a short (32bit) and long (64bit) variant.
464 *
465 * The helpers below calculate the offset of a given record, key or pointer
466 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
467 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
468 * inside the btree block is done using indices starting at one, not zero!
469 *
470 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
471 * overlapping intervals. In such a tree, records are still sorted lowest to
472 * highest and indexed by the smallest key value that refers to the record.
473 * However, nodes are different: each pointer has two associated keys -- one
474 * indexing the lowest key available in the block(s) below (the same behavior
475 * as the key in a regular btree) and another indexing the highest key
476 * available in the block(s) below. Because records are /not/ sorted by the
477 * highest key, all leaf block updates require us to compute the highest key
478 * that matches any record in the leaf and to recursively update the high keys
479 * in the nodes going further up in the tree, if necessary. Nodes look like
480 * this:
481 *
482 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
483 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
484 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
485 *
486 * To perform an interval query on an overlapped tree, perform the usual
487 * depth-first search and use the low and high keys to decide if we can skip
488 * that particular node. If a leaf node is reached, return the records that
489 * intersect the interval. Note that an interval query may return numerous
490 * entries. For a non-overlapped tree, simply search for the record associated
491 * with the lowest key and iterate forward until a non-matching record is
492 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
493 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
494 * more detail.
495 *
496 * Why do we care about overlapping intervals? Let's say you have a bunch of
497 * reverse mapping records on a reflink filesystem:
498 *
499 * 1: +- file A startblock B offset C length D -----------+
500 * 2: +- file E startblock F offset G length H --------------+
501 * 3: +- file I startblock F offset J length K --+
502 * 4: +- file L... --+
503 *
504 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
505 * we'd simply increment the length of record 1. But how do we find the record
506 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
507 * record 3 because the keys are ordered first by startblock. An interval
508 * query would return records 1 and 2 because they both overlap (B+D-1), and
509 * from that we can pick out record 1 as the appropriate left neighbor.
510 *
511 * In the non-overlapped case you can do a LE lookup and decrement the cursor
512 * because a record's interval must end before the next record.
513 */
514
515 /*
516 * Return size of the btree block header for this btree instance.
517 */
xfs_btree_block_len(struct xfs_btree_cur * cur)518 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
519 {
520 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
521 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
522 return XFS_BTREE_LBLOCK_CRC_LEN;
523 return XFS_BTREE_LBLOCK_LEN;
524 }
525 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
526 return XFS_BTREE_SBLOCK_CRC_LEN;
527 return XFS_BTREE_SBLOCK_LEN;
528 }
529
530 /*
531 * Return size of btree block pointers for this btree instance.
532 */
xfs_btree_ptr_len(struct xfs_btree_cur * cur)533 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
534 {
535 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
536 sizeof(__be64) : sizeof(__be32);
537 }
538
539 /*
540 * Calculate offset of the n-th record in a btree block.
541 */
542 STATIC size_t
xfs_btree_rec_offset(struct xfs_btree_cur * cur,int n)543 xfs_btree_rec_offset(
544 struct xfs_btree_cur *cur,
545 int n)
546 {
547 return xfs_btree_block_len(cur) +
548 (n - 1) * cur->bc_ops->rec_len;
549 }
550
551 /*
552 * Calculate offset of the n-th key in a btree block.
553 */
554 STATIC size_t
xfs_btree_key_offset(struct xfs_btree_cur * cur,int n)555 xfs_btree_key_offset(
556 struct xfs_btree_cur *cur,
557 int n)
558 {
559 return xfs_btree_block_len(cur) +
560 (n - 1) * cur->bc_ops->key_len;
561 }
562
563 /*
564 * Calculate offset of the n-th high key in a btree block.
565 */
566 STATIC size_t
xfs_btree_high_key_offset(struct xfs_btree_cur * cur,int n)567 xfs_btree_high_key_offset(
568 struct xfs_btree_cur *cur,
569 int n)
570 {
571 return xfs_btree_block_len(cur) +
572 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
573 }
574
575 /*
576 * Calculate offset of the n-th block pointer in a btree block.
577 */
578 STATIC size_t
xfs_btree_ptr_offset(struct xfs_btree_cur * cur,int n,int level)579 xfs_btree_ptr_offset(
580 struct xfs_btree_cur *cur,
581 int n,
582 int level)
583 {
584 return xfs_btree_block_len(cur) +
585 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
586 (n - 1) * xfs_btree_ptr_len(cur);
587 }
588
589 /*
590 * Return a pointer to the n-th record in the btree block.
591 */
592 union xfs_btree_rec *
xfs_btree_rec_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)593 xfs_btree_rec_addr(
594 struct xfs_btree_cur *cur,
595 int n,
596 struct xfs_btree_block *block)
597 {
598 return (union xfs_btree_rec *)
599 ((char *)block + xfs_btree_rec_offset(cur, n));
600 }
601
602 /*
603 * Return a pointer to the n-th key in the btree block.
604 */
605 union xfs_btree_key *
xfs_btree_key_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)606 xfs_btree_key_addr(
607 struct xfs_btree_cur *cur,
608 int n,
609 struct xfs_btree_block *block)
610 {
611 return (union xfs_btree_key *)
612 ((char *)block + xfs_btree_key_offset(cur, n));
613 }
614
615 /*
616 * Return a pointer to the n-th high key in the btree block.
617 */
618 union xfs_btree_key *
xfs_btree_high_key_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)619 xfs_btree_high_key_addr(
620 struct xfs_btree_cur *cur,
621 int n,
622 struct xfs_btree_block *block)
623 {
624 return (union xfs_btree_key *)
625 ((char *)block + xfs_btree_high_key_offset(cur, n));
626 }
627
628 /*
629 * Return a pointer to the n-th block pointer in the btree block.
630 */
631 union xfs_btree_ptr *
xfs_btree_ptr_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)632 xfs_btree_ptr_addr(
633 struct xfs_btree_cur *cur,
634 int n,
635 struct xfs_btree_block *block)
636 {
637 int level = xfs_btree_get_level(block);
638
639 ASSERT(block->bb_level != 0);
640
641 return (union xfs_btree_ptr *)
642 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
643 }
644
645 struct xfs_ifork *
xfs_btree_ifork_ptr(struct xfs_btree_cur * cur)646 xfs_btree_ifork_ptr(
647 struct xfs_btree_cur *cur)
648 {
649 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
650
651 if (cur->bc_flags & XFS_BTREE_STAGING)
652 return cur->bc_ino.ifake->if_fork;
653 return XFS_IFORK_PTR(cur->bc_ino.ip, cur->bc_ino.whichfork);
654 }
655
656 /*
657 * Get the root block which is stored in the inode.
658 *
659 * For now this btree implementation assumes the btree root is always
660 * stored in the if_broot field of an inode fork.
661 */
662 STATIC struct xfs_btree_block *
xfs_btree_get_iroot(struct xfs_btree_cur * cur)663 xfs_btree_get_iroot(
664 struct xfs_btree_cur *cur)
665 {
666 struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
667
668 return (struct xfs_btree_block *)ifp->if_broot;
669 }
670
671 /*
672 * Retrieve the block pointer from the cursor at the given level.
673 * This may be an inode btree root or from a buffer.
674 */
675 struct xfs_btree_block * /* generic btree block pointer */
xfs_btree_get_block(struct xfs_btree_cur * cur,int level,struct xfs_buf ** bpp)676 xfs_btree_get_block(
677 struct xfs_btree_cur *cur, /* btree cursor */
678 int level, /* level in btree */
679 struct xfs_buf **bpp) /* buffer containing the block */
680 {
681 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
682 (level == cur->bc_nlevels - 1)) {
683 *bpp = NULL;
684 return xfs_btree_get_iroot(cur);
685 }
686
687 *bpp = cur->bc_bufs[level];
688 return XFS_BUF_TO_BLOCK(*bpp);
689 }
690
691 /*
692 * Change the cursor to point to the first record at the given level.
693 * Other levels are unaffected.
694 */
695 STATIC int /* success=1, failure=0 */
xfs_btree_firstrec(xfs_btree_cur_t * cur,int level)696 xfs_btree_firstrec(
697 xfs_btree_cur_t *cur, /* btree cursor */
698 int level) /* level to change */
699 {
700 struct xfs_btree_block *block; /* generic btree block pointer */
701 xfs_buf_t *bp; /* buffer containing block */
702
703 /*
704 * Get the block pointer for this level.
705 */
706 block = xfs_btree_get_block(cur, level, &bp);
707 if (xfs_btree_check_block(cur, block, level, bp))
708 return 0;
709 /*
710 * It's empty, there is no such record.
711 */
712 if (!block->bb_numrecs)
713 return 0;
714 /*
715 * Set the ptr value to 1, that's the first record/key.
716 */
717 cur->bc_ptrs[level] = 1;
718 return 1;
719 }
720
721 /*
722 * Change the cursor to point to the last record in the current block
723 * at the given level. Other levels are unaffected.
724 */
725 STATIC int /* success=1, failure=0 */
xfs_btree_lastrec(xfs_btree_cur_t * cur,int level)726 xfs_btree_lastrec(
727 xfs_btree_cur_t *cur, /* btree cursor */
728 int level) /* level to change */
729 {
730 struct xfs_btree_block *block; /* generic btree block pointer */
731 xfs_buf_t *bp; /* buffer containing block */
732
733 /*
734 * Get the block pointer for this level.
735 */
736 block = xfs_btree_get_block(cur, level, &bp);
737 if (xfs_btree_check_block(cur, block, level, bp))
738 return 0;
739 /*
740 * It's empty, there is no such record.
741 */
742 if (!block->bb_numrecs)
743 return 0;
744 /*
745 * Set the ptr value to numrecs, that's the last record/key.
746 */
747 cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
748 return 1;
749 }
750
751 /*
752 * Compute first and last byte offsets for the fields given.
753 * Interprets the offsets table, which contains struct field offsets.
754 */
755 void
xfs_btree_offsets(int64_t fields,const short * offsets,int nbits,int * first,int * last)756 xfs_btree_offsets(
757 int64_t fields, /* bitmask of fields */
758 const short *offsets, /* table of field offsets */
759 int nbits, /* number of bits to inspect */
760 int *first, /* output: first byte offset */
761 int *last) /* output: last byte offset */
762 {
763 int i; /* current bit number */
764 int64_t imask; /* mask for current bit number */
765
766 ASSERT(fields != 0);
767 /*
768 * Find the lowest bit, so the first byte offset.
769 */
770 for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
771 if (imask & fields) {
772 *first = offsets[i];
773 break;
774 }
775 }
776 /*
777 * Find the highest bit, so the last byte offset.
778 */
779 for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
780 if (imask & fields) {
781 *last = offsets[i + 1] - 1;
782 break;
783 }
784 }
785 }
786
787 /*
788 * Get a buffer for the block, return it read in.
789 * Long-form addressing.
790 */
791 int
xfs_btree_read_bufl(struct xfs_mount * mp,struct xfs_trans * tp,xfs_fsblock_t fsbno,struct xfs_buf ** bpp,int refval,const struct xfs_buf_ops * ops)792 xfs_btree_read_bufl(
793 struct xfs_mount *mp, /* file system mount point */
794 struct xfs_trans *tp, /* transaction pointer */
795 xfs_fsblock_t fsbno, /* file system block number */
796 struct xfs_buf **bpp, /* buffer for fsbno */
797 int refval, /* ref count value for buffer */
798 const struct xfs_buf_ops *ops)
799 {
800 struct xfs_buf *bp; /* return value */
801 xfs_daddr_t d; /* real disk block address */
802 int error;
803
804 if (!xfs_verify_fsbno(mp, fsbno))
805 return -EFSCORRUPTED;
806 d = XFS_FSB_TO_DADDR(mp, fsbno);
807 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
808 mp->m_bsize, 0, &bp, ops);
809 if (error)
810 return error;
811 if (bp)
812 xfs_buf_set_ref(bp, refval);
813 *bpp = bp;
814 return 0;
815 }
816
817 /*
818 * Read-ahead the block, don't wait for it, don't return a buffer.
819 * Long-form addressing.
820 */
821 /* ARGSUSED */
822 void
xfs_btree_reada_bufl(struct xfs_mount * mp,xfs_fsblock_t fsbno,xfs_extlen_t count,const struct xfs_buf_ops * ops)823 xfs_btree_reada_bufl(
824 struct xfs_mount *mp, /* file system mount point */
825 xfs_fsblock_t fsbno, /* file system block number */
826 xfs_extlen_t count, /* count of filesystem blocks */
827 const struct xfs_buf_ops *ops)
828 {
829 xfs_daddr_t d;
830
831 ASSERT(fsbno != NULLFSBLOCK);
832 d = XFS_FSB_TO_DADDR(mp, fsbno);
833 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
834 }
835
836 /*
837 * Read-ahead the block, don't wait for it, don't return a buffer.
838 * Short-form addressing.
839 */
840 /* ARGSUSED */
841 void
xfs_btree_reada_bufs(struct xfs_mount * mp,xfs_agnumber_t agno,xfs_agblock_t agbno,xfs_extlen_t count,const struct xfs_buf_ops * ops)842 xfs_btree_reada_bufs(
843 struct xfs_mount *mp, /* file system mount point */
844 xfs_agnumber_t agno, /* allocation group number */
845 xfs_agblock_t agbno, /* allocation group block number */
846 xfs_extlen_t count, /* count of filesystem blocks */
847 const struct xfs_buf_ops *ops)
848 {
849 xfs_daddr_t d;
850
851 ASSERT(agno != NULLAGNUMBER);
852 ASSERT(agbno != NULLAGBLOCK);
853 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
854 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
855 }
856
857 STATIC int
xfs_btree_readahead_lblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)858 xfs_btree_readahead_lblock(
859 struct xfs_btree_cur *cur,
860 int lr,
861 struct xfs_btree_block *block)
862 {
863 int rval = 0;
864 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
865 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
866
867 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
868 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
869 cur->bc_ops->buf_ops);
870 rval++;
871 }
872
873 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
874 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
875 cur->bc_ops->buf_ops);
876 rval++;
877 }
878
879 return rval;
880 }
881
882 STATIC int
xfs_btree_readahead_sblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)883 xfs_btree_readahead_sblock(
884 struct xfs_btree_cur *cur,
885 int lr,
886 struct xfs_btree_block *block)
887 {
888 int rval = 0;
889 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
890 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
891
892
893 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
894 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.agno,
895 left, 1, cur->bc_ops->buf_ops);
896 rval++;
897 }
898
899 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
900 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.agno,
901 right, 1, cur->bc_ops->buf_ops);
902 rval++;
903 }
904
905 return rval;
906 }
907
908 /*
909 * Read-ahead btree blocks, at the given level.
910 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
911 */
912 STATIC int
xfs_btree_readahead(struct xfs_btree_cur * cur,int lev,int lr)913 xfs_btree_readahead(
914 struct xfs_btree_cur *cur, /* btree cursor */
915 int lev, /* level in btree */
916 int lr) /* left/right bits */
917 {
918 struct xfs_btree_block *block;
919
920 /*
921 * No readahead needed if we are at the root level and the
922 * btree root is stored in the inode.
923 */
924 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
925 (lev == cur->bc_nlevels - 1))
926 return 0;
927
928 if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
929 return 0;
930
931 cur->bc_ra[lev] |= lr;
932 block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
933
934 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
935 return xfs_btree_readahead_lblock(cur, lr, block);
936 return xfs_btree_readahead_sblock(cur, lr, block);
937 }
938
939 STATIC int
xfs_btree_ptr_to_daddr(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,xfs_daddr_t * daddr)940 xfs_btree_ptr_to_daddr(
941 struct xfs_btree_cur *cur,
942 union xfs_btree_ptr *ptr,
943 xfs_daddr_t *daddr)
944 {
945 xfs_fsblock_t fsbno;
946 xfs_agblock_t agbno;
947 int error;
948
949 error = xfs_btree_check_ptr(cur, ptr, 0, 1);
950 if (error)
951 return error;
952
953 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
954 fsbno = be64_to_cpu(ptr->l);
955 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
956 } else {
957 agbno = be32_to_cpu(ptr->s);
958 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.agno,
959 agbno);
960 }
961
962 return 0;
963 }
964
965 /*
966 * Readahead @count btree blocks at the given @ptr location.
967 *
968 * We don't need to care about long or short form btrees here as we have a
969 * method of converting the ptr directly to a daddr available to us.
970 */
971 STATIC void
xfs_btree_readahead_ptr(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,xfs_extlen_t count)972 xfs_btree_readahead_ptr(
973 struct xfs_btree_cur *cur,
974 union xfs_btree_ptr *ptr,
975 xfs_extlen_t count)
976 {
977 xfs_daddr_t daddr;
978
979 if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
980 return;
981 xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
982 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
983 }
984
985 /*
986 * Set the buffer for level "lev" in the cursor to bp, releasing
987 * any previous buffer.
988 */
989 STATIC void
xfs_btree_setbuf(xfs_btree_cur_t * cur,int lev,xfs_buf_t * bp)990 xfs_btree_setbuf(
991 xfs_btree_cur_t *cur, /* btree cursor */
992 int lev, /* level in btree */
993 xfs_buf_t *bp) /* new buffer to set */
994 {
995 struct xfs_btree_block *b; /* btree block */
996
997 if (cur->bc_bufs[lev])
998 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
999 cur->bc_bufs[lev] = bp;
1000 cur->bc_ra[lev] = 0;
1001
1002 b = XFS_BUF_TO_BLOCK(bp);
1003 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1004 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1005 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1006 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1007 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1008 } else {
1009 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1010 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1011 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1012 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1013 }
1014 }
1015
1016 bool
xfs_btree_ptr_is_null(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)1017 xfs_btree_ptr_is_null(
1018 struct xfs_btree_cur *cur,
1019 union xfs_btree_ptr *ptr)
1020 {
1021 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1022 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1023 else
1024 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1025 }
1026
1027 void
xfs_btree_set_ptr_null(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)1028 xfs_btree_set_ptr_null(
1029 struct xfs_btree_cur *cur,
1030 union xfs_btree_ptr *ptr)
1031 {
1032 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1033 ptr->l = cpu_to_be64(NULLFSBLOCK);
1034 else
1035 ptr->s = cpu_to_be32(NULLAGBLOCK);
1036 }
1037
1038 /*
1039 * Get/set/init sibling pointers
1040 */
1041 void
xfs_btree_get_sibling(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_ptr * ptr,int lr)1042 xfs_btree_get_sibling(
1043 struct xfs_btree_cur *cur,
1044 struct xfs_btree_block *block,
1045 union xfs_btree_ptr *ptr,
1046 int lr)
1047 {
1048 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1049
1050 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1051 if (lr == XFS_BB_RIGHTSIB)
1052 ptr->l = block->bb_u.l.bb_rightsib;
1053 else
1054 ptr->l = block->bb_u.l.bb_leftsib;
1055 } else {
1056 if (lr == XFS_BB_RIGHTSIB)
1057 ptr->s = block->bb_u.s.bb_rightsib;
1058 else
1059 ptr->s = block->bb_u.s.bb_leftsib;
1060 }
1061 }
1062
1063 void
xfs_btree_set_sibling(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_ptr * ptr,int lr)1064 xfs_btree_set_sibling(
1065 struct xfs_btree_cur *cur,
1066 struct xfs_btree_block *block,
1067 union xfs_btree_ptr *ptr,
1068 int lr)
1069 {
1070 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1071
1072 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1073 if (lr == XFS_BB_RIGHTSIB)
1074 block->bb_u.l.bb_rightsib = ptr->l;
1075 else
1076 block->bb_u.l.bb_leftsib = ptr->l;
1077 } else {
1078 if (lr == XFS_BB_RIGHTSIB)
1079 block->bb_u.s.bb_rightsib = ptr->s;
1080 else
1081 block->bb_u.s.bb_leftsib = ptr->s;
1082 }
1083 }
1084
1085 void
xfs_btree_init_block_int(struct xfs_mount * mp,struct xfs_btree_block * buf,xfs_daddr_t blkno,xfs_btnum_t btnum,__u16 level,__u16 numrecs,__u64 owner,unsigned int flags)1086 xfs_btree_init_block_int(
1087 struct xfs_mount *mp,
1088 struct xfs_btree_block *buf,
1089 xfs_daddr_t blkno,
1090 xfs_btnum_t btnum,
1091 __u16 level,
1092 __u16 numrecs,
1093 __u64 owner,
1094 unsigned int flags)
1095 {
1096 int crc = xfs_sb_version_hascrc(&mp->m_sb);
1097 __u32 magic = xfs_btree_magic(crc, btnum);
1098
1099 buf->bb_magic = cpu_to_be32(magic);
1100 buf->bb_level = cpu_to_be16(level);
1101 buf->bb_numrecs = cpu_to_be16(numrecs);
1102
1103 if (flags & XFS_BTREE_LONG_PTRS) {
1104 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1105 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1106 if (crc) {
1107 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1108 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1109 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1110 buf->bb_u.l.bb_pad = 0;
1111 buf->bb_u.l.bb_lsn = 0;
1112 }
1113 } else {
1114 /* owner is a 32 bit value on short blocks */
1115 __u32 __owner = (__u32)owner;
1116
1117 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1118 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1119 if (crc) {
1120 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1121 buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1122 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1123 buf->bb_u.s.bb_lsn = 0;
1124 }
1125 }
1126 }
1127
1128 void
xfs_btree_init_block(struct xfs_mount * mp,struct xfs_buf * bp,xfs_btnum_t btnum,__u16 level,__u16 numrecs,__u64 owner)1129 xfs_btree_init_block(
1130 struct xfs_mount *mp,
1131 struct xfs_buf *bp,
1132 xfs_btnum_t btnum,
1133 __u16 level,
1134 __u16 numrecs,
1135 __u64 owner)
1136 {
1137 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1138 btnum, level, numrecs, owner, 0);
1139 }
1140
1141 void
xfs_btree_init_block_cur(struct xfs_btree_cur * cur,struct xfs_buf * bp,int level,int numrecs)1142 xfs_btree_init_block_cur(
1143 struct xfs_btree_cur *cur,
1144 struct xfs_buf *bp,
1145 int level,
1146 int numrecs)
1147 {
1148 __u64 owner;
1149
1150 /*
1151 * we can pull the owner from the cursor right now as the different
1152 * owners align directly with the pointer size of the btree. This may
1153 * change in future, but is safe for current users of the generic btree
1154 * code.
1155 */
1156 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1157 owner = cur->bc_ino.ip->i_ino;
1158 else
1159 owner = cur->bc_ag.agno;
1160
1161 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1162 cur->bc_btnum, level, numrecs,
1163 owner, cur->bc_flags);
1164 }
1165
1166 /*
1167 * Return true if ptr is the last record in the btree and
1168 * we need to track updates to this record. The decision
1169 * will be further refined in the update_lastrec method.
1170 */
1171 STATIC int
xfs_btree_is_lastrec(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level)1172 xfs_btree_is_lastrec(
1173 struct xfs_btree_cur *cur,
1174 struct xfs_btree_block *block,
1175 int level)
1176 {
1177 union xfs_btree_ptr ptr;
1178
1179 if (level > 0)
1180 return 0;
1181 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1182 return 0;
1183
1184 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1185 if (!xfs_btree_ptr_is_null(cur, &ptr))
1186 return 0;
1187 return 1;
1188 }
1189
1190 STATIC void
xfs_btree_buf_to_ptr(struct xfs_btree_cur * cur,struct xfs_buf * bp,union xfs_btree_ptr * ptr)1191 xfs_btree_buf_to_ptr(
1192 struct xfs_btree_cur *cur,
1193 struct xfs_buf *bp,
1194 union xfs_btree_ptr *ptr)
1195 {
1196 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1197 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1198 XFS_BUF_ADDR(bp)));
1199 else {
1200 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1201 XFS_BUF_ADDR(bp)));
1202 }
1203 }
1204
1205 STATIC void
xfs_btree_set_refs(struct xfs_btree_cur * cur,struct xfs_buf * bp)1206 xfs_btree_set_refs(
1207 struct xfs_btree_cur *cur,
1208 struct xfs_buf *bp)
1209 {
1210 switch (cur->bc_btnum) {
1211 case XFS_BTNUM_BNO:
1212 case XFS_BTNUM_CNT:
1213 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1214 break;
1215 case XFS_BTNUM_INO:
1216 case XFS_BTNUM_FINO:
1217 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1218 break;
1219 case XFS_BTNUM_BMAP:
1220 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1221 break;
1222 case XFS_BTNUM_RMAP:
1223 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1224 break;
1225 case XFS_BTNUM_REFC:
1226 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1227 break;
1228 default:
1229 ASSERT(0);
1230 }
1231 }
1232
1233 int
xfs_btree_get_buf_block(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,struct xfs_btree_block ** block,struct xfs_buf ** bpp)1234 xfs_btree_get_buf_block(
1235 struct xfs_btree_cur *cur,
1236 union xfs_btree_ptr *ptr,
1237 struct xfs_btree_block **block,
1238 struct xfs_buf **bpp)
1239 {
1240 struct xfs_mount *mp = cur->bc_mp;
1241 xfs_daddr_t d;
1242 int error;
1243
1244 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1245 if (error)
1246 return error;
1247 error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
1248 0, bpp);
1249 if (error)
1250 return error;
1251
1252 (*bpp)->b_ops = cur->bc_ops->buf_ops;
1253 *block = XFS_BUF_TO_BLOCK(*bpp);
1254 return 0;
1255 }
1256
1257 /*
1258 * Read in the buffer at the given ptr and return the buffer and
1259 * the block pointer within the buffer.
1260 */
1261 STATIC int
xfs_btree_read_buf_block(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int flags,struct xfs_btree_block ** block,struct xfs_buf ** bpp)1262 xfs_btree_read_buf_block(
1263 struct xfs_btree_cur *cur,
1264 union xfs_btree_ptr *ptr,
1265 int flags,
1266 struct xfs_btree_block **block,
1267 struct xfs_buf **bpp)
1268 {
1269 struct xfs_mount *mp = cur->bc_mp;
1270 xfs_daddr_t d;
1271 int error;
1272
1273 /* need to sort out how callers deal with failures first */
1274 ASSERT(!(flags & XBF_TRYLOCK));
1275
1276 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1277 if (error)
1278 return error;
1279 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1280 mp->m_bsize, flags, bpp,
1281 cur->bc_ops->buf_ops);
1282 if (error)
1283 return error;
1284
1285 xfs_btree_set_refs(cur, *bpp);
1286 *block = XFS_BUF_TO_BLOCK(*bpp);
1287 return 0;
1288 }
1289
1290 /*
1291 * Copy keys from one btree block to another.
1292 */
1293 void
xfs_btree_copy_keys(struct xfs_btree_cur * cur,union xfs_btree_key * dst_key,union xfs_btree_key * src_key,int numkeys)1294 xfs_btree_copy_keys(
1295 struct xfs_btree_cur *cur,
1296 union xfs_btree_key *dst_key,
1297 union xfs_btree_key *src_key,
1298 int numkeys)
1299 {
1300 ASSERT(numkeys >= 0);
1301 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1302 }
1303
1304 /*
1305 * Copy records from one btree block to another.
1306 */
1307 STATIC void
xfs_btree_copy_recs(struct xfs_btree_cur * cur,union xfs_btree_rec * dst_rec,union xfs_btree_rec * src_rec,int numrecs)1308 xfs_btree_copy_recs(
1309 struct xfs_btree_cur *cur,
1310 union xfs_btree_rec *dst_rec,
1311 union xfs_btree_rec *src_rec,
1312 int numrecs)
1313 {
1314 ASSERT(numrecs >= 0);
1315 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1316 }
1317
1318 /*
1319 * Copy block pointers from one btree block to another.
1320 */
1321 void
xfs_btree_copy_ptrs(struct xfs_btree_cur * cur,union xfs_btree_ptr * dst_ptr,const union xfs_btree_ptr * src_ptr,int numptrs)1322 xfs_btree_copy_ptrs(
1323 struct xfs_btree_cur *cur,
1324 union xfs_btree_ptr *dst_ptr,
1325 const union xfs_btree_ptr *src_ptr,
1326 int numptrs)
1327 {
1328 ASSERT(numptrs >= 0);
1329 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1330 }
1331
1332 /*
1333 * Shift keys one index left/right inside a single btree block.
1334 */
1335 STATIC void
xfs_btree_shift_keys(struct xfs_btree_cur * cur,union xfs_btree_key * key,int dir,int numkeys)1336 xfs_btree_shift_keys(
1337 struct xfs_btree_cur *cur,
1338 union xfs_btree_key *key,
1339 int dir,
1340 int numkeys)
1341 {
1342 char *dst_key;
1343
1344 ASSERT(numkeys >= 0);
1345 ASSERT(dir == 1 || dir == -1);
1346
1347 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1348 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1349 }
1350
1351 /*
1352 * Shift records one index left/right inside a single btree block.
1353 */
1354 STATIC void
xfs_btree_shift_recs(struct xfs_btree_cur * cur,union xfs_btree_rec * rec,int dir,int numrecs)1355 xfs_btree_shift_recs(
1356 struct xfs_btree_cur *cur,
1357 union xfs_btree_rec *rec,
1358 int dir,
1359 int numrecs)
1360 {
1361 char *dst_rec;
1362
1363 ASSERT(numrecs >= 0);
1364 ASSERT(dir == 1 || dir == -1);
1365
1366 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1367 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1368 }
1369
1370 /*
1371 * Shift block pointers one index left/right inside a single btree block.
1372 */
1373 STATIC void
xfs_btree_shift_ptrs(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int dir,int numptrs)1374 xfs_btree_shift_ptrs(
1375 struct xfs_btree_cur *cur,
1376 union xfs_btree_ptr *ptr,
1377 int dir,
1378 int numptrs)
1379 {
1380 char *dst_ptr;
1381
1382 ASSERT(numptrs >= 0);
1383 ASSERT(dir == 1 || dir == -1);
1384
1385 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1386 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1387 }
1388
1389 /*
1390 * Log key values from the btree block.
1391 */
1392 STATIC void
xfs_btree_log_keys(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1393 xfs_btree_log_keys(
1394 struct xfs_btree_cur *cur,
1395 struct xfs_buf *bp,
1396 int first,
1397 int last)
1398 {
1399
1400 if (bp) {
1401 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1402 xfs_trans_log_buf(cur->bc_tp, bp,
1403 xfs_btree_key_offset(cur, first),
1404 xfs_btree_key_offset(cur, last + 1) - 1);
1405 } else {
1406 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1407 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1408 }
1409 }
1410
1411 /*
1412 * Log record values from the btree block.
1413 */
1414 void
xfs_btree_log_recs(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1415 xfs_btree_log_recs(
1416 struct xfs_btree_cur *cur,
1417 struct xfs_buf *bp,
1418 int first,
1419 int last)
1420 {
1421
1422 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1423 xfs_trans_log_buf(cur->bc_tp, bp,
1424 xfs_btree_rec_offset(cur, first),
1425 xfs_btree_rec_offset(cur, last + 1) - 1);
1426
1427 }
1428
1429 /*
1430 * Log block pointer fields from a btree block (nonleaf).
1431 */
1432 STATIC void
xfs_btree_log_ptrs(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1433 xfs_btree_log_ptrs(
1434 struct xfs_btree_cur *cur, /* btree cursor */
1435 struct xfs_buf *bp, /* buffer containing btree block */
1436 int first, /* index of first pointer to log */
1437 int last) /* index of last pointer to log */
1438 {
1439
1440 if (bp) {
1441 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1442 int level = xfs_btree_get_level(block);
1443
1444 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1445 xfs_trans_log_buf(cur->bc_tp, bp,
1446 xfs_btree_ptr_offset(cur, first, level),
1447 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1448 } else {
1449 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1450 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1451 }
1452
1453 }
1454
1455 /*
1456 * Log fields from a btree block header.
1457 */
1458 void
xfs_btree_log_block(struct xfs_btree_cur * cur,struct xfs_buf * bp,int fields)1459 xfs_btree_log_block(
1460 struct xfs_btree_cur *cur, /* btree cursor */
1461 struct xfs_buf *bp, /* buffer containing btree block */
1462 int fields) /* mask of fields: XFS_BB_... */
1463 {
1464 int first; /* first byte offset logged */
1465 int last; /* last byte offset logged */
1466 static const short soffsets[] = { /* table of offsets (short) */
1467 offsetof(struct xfs_btree_block, bb_magic),
1468 offsetof(struct xfs_btree_block, bb_level),
1469 offsetof(struct xfs_btree_block, bb_numrecs),
1470 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1471 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1472 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1473 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1474 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1475 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1476 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1477 XFS_BTREE_SBLOCK_CRC_LEN
1478 };
1479 static const short loffsets[] = { /* table of offsets (long) */
1480 offsetof(struct xfs_btree_block, bb_magic),
1481 offsetof(struct xfs_btree_block, bb_level),
1482 offsetof(struct xfs_btree_block, bb_numrecs),
1483 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1484 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1485 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1486 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1487 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1488 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1489 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1490 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1491 XFS_BTREE_LBLOCK_CRC_LEN
1492 };
1493
1494 if (bp) {
1495 int nbits;
1496
1497 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1498 /*
1499 * We don't log the CRC when updating a btree
1500 * block but instead recreate it during log
1501 * recovery. As the log buffers have checksums
1502 * of their own this is safe and avoids logging a crc
1503 * update in a lot of places.
1504 */
1505 if (fields == XFS_BB_ALL_BITS)
1506 fields = XFS_BB_ALL_BITS_CRC;
1507 nbits = XFS_BB_NUM_BITS_CRC;
1508 } else {
1509 nbits = XFS_BB_NUM_BITS;
1510 }
1511 xfs_btree_offsets(fields,
1512 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1513 loffsets : soffsets,
1514 nbits, &first, &last);
1515 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1516 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1517 } else {
1518 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1519 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1520 }
1521 }
1522
1523 /*
1524 * Increment cursor by one record at the level.
1525 * For nonzero levels the leaf-ward information is untouched.
1526 */
1527 int /* error */
xfs_btree_increment(struct xfs_btree_cur * cur,int level,int * stat)1528 xfs_btree_increment(
1529 struct xfs_btree_cur *cur,
1530 int level,
1531 int *stat) /* success/failure */
1532 {
1533 struct xfs_btree_block *block;
1534 union xfs_btree_ptr ptr;
1535 struct xfs_buf *bp;
1536 int error; /* error return value */
1537 int lev;
1538
1539 ASSERT(level < cur->bc_nlevels);
1540
1541 /* Read-ahead to the right at this level. */
1542 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1543
1544 /* Get a pointer to the btree block. */
1545 block = xfs_btree_get_block(cur, level, &bp);
1546
1547 #ifdef DEBUG
1548 error = xfs_btree_check_block(cur, block, level, bp);
1549 if (error)
1550 goto error0;
1551 #endif
1552
1553 /* We're done if we remain in the block after the increment. */
1554 if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1555 goto out1;
1556
1557 /* Fail if we just went off the right edge of the tree. */
1558 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1559 if (xfs_btree_ptr_is_null(cur, &ptr))
1560 goto out0;
1561
1562 XFS_BTREE_STATS_INC(cur, increment);
1563
1564 /*
1565 * March up the tree incrementing pointers.
1566 * Stop when we don't go off the right edge of a block.
1567 */
1568 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1569 block = xfs_btree_get_block(cur, lev, &bp);
1570
1571 #ifdef DEBUG
1572 error = xfs_btree_check_block(cur, block, lev, bp);
1573 if (error)
1574 goto error0;
1575 #endif
1576
1577 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1578 break;
1579
1580 /* Read-ahead the right block for the next loop. */
1581 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1582 }
1583
1584 /*
1585 * If we went off the root then we are either seriously
1586 * confused or have the tree root in an inode.
1587 */
1588 if (lev == cur->bc_nlevels) {
1589 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1590 goto out0;
1591 ASSERT(0);
1592 error = -EFSCORRUPTED;
1593 goto error0;
1594 }
1595 ASSERT(lev < cur->bc_nlevels);
1596
1597 /*
1598 * Now walk back down the tree, fixing up the cursor's buffer
1599 * pointers and key numbers.
1600 */
1601 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1602 union xfs_btree_ptr *ptrp;
1603
1604 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1605 --lev;
1606 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1607 if (error)
1608 goto error0;
1609
1610 xfs_btree_setbuf(cur, lev, bp);
1611 cur->bc_ptrs[lev] = 1;
1612 }
1613 out1:
1614 *stat = 1;
1615 return 0;
1616
1617 out0:
1618 *stat = 0;
1619 return 0;
1620
1621 error0:
1622 return error;
1623 }
1624
1625 /*
1626 * Decrement cursor by one record at the level.
1627 * For nonzero levels the leaf-ward information is untouched.
1628 */
1629 int /* error */
xfs_btree_decrement(struct xfs_btree_cur * cur,int level,int * stat)1630 xfs_btree_decrement(
1631 struct xfs_btree_cur *cur,
1632 int level,
1633 int *stat) /* success/failure */
1634 {
1635 struct xfs_btree_block *block;
1636 xfs_buf_t *bp;
1637 int error; /* error return value */
1638 int lev;
1639 union xfs_btree_ptr ptr;
1640
1641 ASSERT(level < cur->bc_nlevels);
1642
1643 /* Read-ahead to the left at this level. */
1644 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1645
1646 /* We're done if we remain in the block after the decrement. */
1647 if (--cur->bc_ptrs[level] > 0)
1648 goto out1;
1649
1650 /* Get a pointer to the btree block. */
1651 block = xfs_btree_get_block(cur, level, &bp);
1652
1653 #ifdef DEBUG
1654 error = xfs_btree_check_block(cur, block, level, bp);
1655 if (error)
1656 goto error0;
1657 #endif
1658
1659 /* Fail if we just went off the left edge of the tree. */
1660 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1661 if (xfs_btree_ptr_is_null(cur, &ptr))
1662 goto out0;
1663
1664 XFS_BTREE_STATS_INC(cur, decrement);
1665
1666 /*
1667 * March up the tree decrementing pointers.
1668 * Stop when we don't go off the left edge of a block.
1669 */
1670 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1671 if (--cur->bc_ptrs[lev] > 0)
1672 break;
1673 /* Read-ahead the left block for the next loop. */
1674 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1675 }
1676
1677 /*
1678 * If we went off the root then we are seriously confused.
1679 * or the root of the tree is in an inode.
1680 */
1681 if (lev == cur->bc_nlevels) {
1682 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1683 goto out0;
1684 ASSERT(0);
1685 error = -EFSCORRUPTED;
1686 goto error0;
1687 }
1688 ASSERT(lev < cur->bc_nlevels);
1689
1690 /*
1691 * Now walk back down the tree, fixing up the cursor's buffer
1692 * pointers and key numbers.
1693 */
1694 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1695 union xfs_btree_ptr *ptrp;
1696
1697 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1698 --lev;
1699 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1700 if (error)
1701 goto error0;
1702 xfs_btree_setbuf(cur, lev, bp);
1703 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1704 }
1705 out1:
1706 *stat = 1;
1707 return 0;
1708
1709 out0:
1710 *stat = 0;
1711 return 0;
1712
1713 error0:
1714 return error;
1715 }
1716
1717 int
xfs_btree_lookup_get_block(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * pp,struct xfs_btree_block ** blkp)1718 xfs_btree_lookup_get_block(
1719 struct xfs_btree_cur *cur, /* btree cursor */
1720 int level, /* level in the btree */
1721 union xfs_btree_ptr *pp, /* ptr to btree block */
1722 struct xfs_btree_block **blkp) /* return btree block */
1723 {
1724 struct xfs_buf *bp; /* buffer pointer for btree block */
1725 xfs_daddr_t daddr;
1726 int error = 0;
1727
1728 /* special case the root block if in an inode */
1729 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1730 (level == cur->bc_nlevels - 1)) {
1731 *blkp = xfs_btree_get_iroot(cur);
1732 return 0;
1733 }
1734
1735 /*
1736 * If the old buffer at this level for the disk address we are
1737 * looking for re-use it.
1738 *
1739 * Otherwise throw it away and get a new one.
1740 */
1741 bp = cur->bc_bufs[level];
1742 error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1743 if (error)
1744 return error;
1745 if (bp && XFS_BUF_ADDR(bp) == daddr) {
1746 *blkp = XFS_BUF_TO_BLOCK(bp);
1747 return 0;
1748 }
1749
1750 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1751 if (error)
1752 return error;
1753
1754 /* Check the inode owner since the verifiers don't. */
1755 if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1756 !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) &&
1757 (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1758 be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1759 cur->bc_ino.ip->i_ino)
1760 goto out_bad;
1761
1762 /* Did we get the level we were looking for? */
1763 if (be16_to_cpu((*blkp)->bb_level) != level)
1764 goto out_bad;
1765
1766 /* Check that internal nodes have at least one record. */
1767 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1768 goto out_bad;
1769
1770 xfs_btree_setbuf(cur, level, bp);
1771 return 0;
1772
1773 out_bad:
1774 *blkp = NULL;
1775 xfs_buf_mark_corrupt(bp);
1776 xfs_trans_brelse(cur->bc_tp, bp);
1777 return -EFSCORRUPTED;
1778 }
1779
1780 /*
1781 * Get current search key. For level 0 we don't actually have a key
1782 * structure so we make one up from the record. For all other levels
1783 * we just return the right key.
1784 */
1785 STATIC union xfs_btree_key *
xfs_lookup_get_search_key(struct xfs_btree_cur * cur,int level,int keyno,struct xfs_btree_block * block,union xfs_btree_key * kp)1786 xfs_lookup_get_search_key(
1787 struct xfs_btree_cur *cur,
1788 int level,
1789 int keyno,
1790 struct xfs_btree_block *block,
1791 union xfs_btree_key *kp)
1792 {
1793 if (level == 0) {
1794 cur->bc_ops->init_key_from_rec(kp,
1795 xfs_btree_rec_addr(cur, keyno, block));
1796 return kp;
1797 }
1798
1799 return xfs_btree_key_addr(cur, keyno, block);
1800 }
1801
1802 /*
1803 * Lookup the record. The cursor is made to point to it, based on dir.
1804 * stat is set to 0 if can't find any such record, 1 for success.
1805 */
1806 int /* error */
xfs_btree_lookup(struct xfs_btree_cur * cur,xfs_lookup_t dir,int * stat)1807 xfs_btree_lookup(
1808 struct xfs_btree_cur *cur, /* btree cursor */
1809 xfs_lookup_t dir, /* <=, ==, or >= */
1810 int *stat) /* success/failure */
1811 {
1812 struct xfs_btree_block *block; /* current btree block */
1813 int64_t diff; /* difference for the current key */
1814 int error; /* error return value */
1815 int keyno; /* current key number */
1816 int level; /* level in the btree */
1817 union xfs_btree_ptr *pp; /* ptr to btree block */
1818 union xfs_btree_ptr ptr; /* ptr to btree block */
1819
1820 XFS_BTREE_STATS_INC(cur, lookup);
1821
1822 /* No such thing as a zero-level tree. */
1823 if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
1824 return -EFSCORRUPTED;
1825
1826 block = NULL;
1827 keyno = 0;
1828
1829 /* initialise start pointer from cursor */
1830 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1831 pp = &ptr;
1832
1833 /*
1834 * Iterate over each level in the btree, starting at the root.
1835 * For each level above the leaves, find the key we need, based
1836 * on the lookup record, then follow the corresponding block
1837 * pointer down to the next level.
1838 */
1839 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1840 /* Get the block we need to do the lookup on. */
1841 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1842 if (error)
1843 goto error0;
1844
1845 if (diff == 0) {
1846 /*
1847 * If we already had a key match at a higher level, we
1848 * know we need to use the first entry in this block.
1849 */
1850 keyno = 1;
1851 } else {
1852 /* Otherwise search this block. Do a binary search. */
1853
1854 int high; /* high entry number */
1855 int low; /* low entry number */
1856
1857 /* Set low and high entry numbers, 1-based. */
1858 low = 1;
1859 high = xfs_btree_get_numrecs(block);
1860 if (!high) {
1861 /* Block is empty, must be an empty leaf. */
1862 if (level != 0 || cur->bc_nlevels != 1) {
1863 XFS_CORRUPTION_ERROR(__func__,
1864 XFS_ERRLEVEL_LOW,
1865 cur->bc_mp, block,
1866 sizeof(*block));
1867 return -EFSCORRUPTED;
1868 }
1869
1870 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1871 *stat = 0;
1872 return 0;
1873 }
1874
1875 /* Binary search the block. */
1876 while (low <= high) {
1877 union xfs_btree_key key;
1878 union xfs_btree_key *kp;
1879
1880 XFS_BTREE_STATS_INC(cur, compare);
1881
1882 /* keyno is average of low and high. */
1883 keyno = (low + high) >> 1;
1884
1885 /* Get current search key */
1886 kp = xfs_lookup_get_search_key(cur, level,
1887 keyno, block, &key);
1888
1889 /*
1890 * Compute difference to get next direction:
1891 * - less than, move right
1892 * - greater than, move left
1893 * - equal, we're done
1894 */
1895 diff = cur->bc_ops->key_diff(cur, kp);
1896 if (diff < 0)
1897 low = keyno + 1;
1898 else if (diff > 0)
1899 high = keyno - 1;
1900 else
1901 break;
1902 }
1903 }
1904
1905 /*
1906 * If there are more levels, set up for the next level
1907 * by getting the block number and filling in the cursor.
1908 */
1909 if (level > 0) {
1910 /*
1911 * If we moved left, need the previous key number,
1912 * unless there isn't one.
1913 */
1914 if (diff > 0 && --keyno < 1)
1915 keyno = 1;
1916 pp = xfs_btree_ptr_addr(cur, keyno, block);
1917
1918 error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1919 if (error)
1920 goto error0;
1921
1922 cur->bc_ptrs[level] = keyno;
1923 }
1924 }
1925
1926 /* Done with the search. See if we need to adjust the results. */
1927 if (dir != XFS_LOOKUP_LE && diff < 0) {
1928 keyno++;
1929 /*
1930 * If ge search and we went off the end of the block, but it's
1931 * not the last block, we're in the wrong block.
1932 */
1933 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1934 if (dir == XFS_LOOKUP_GE &&
1935 keyno > xfs_btree_get_numrecs(block) &&
1936 !xfs_btree_ptr_is_null(cur, &ptr)) {
1937 int i;
1938
1939 cur->bc_ptrs[0] = keyno;
1940 error = xfs_btree_increment(cur, 0, &i);
1941 if (error)
1942 goto error0;
1943 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1944 return -EFSCORRUPTED;
1945 *stat = 1;
1946 return 0;
1947 }
1948 } else if (dir == XFS_LOOKUP_LE && diff > 0)
1949 keyno--;
1950 cur->bc_ptrs[0] = keyno;
1951
1952 /* Return if we succeeded or not. */
1953 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1954 *stat = 0;
1955 else if (dir != XFS_LOOKUP_EQ || diff == 0)
1956 *stat = 1;
1957 else
1958 *stat = 0;
1959 return 0;
1960
1961 error0:
1962 return error;
1963 }
1964
1965 /* Find the high key storage area from a regular key. */
1966 union xfs_btree_key *
xfs_btree_high_key_from_key(struct xfs_btree_cur * cur,union xfs_btree_key * key)1967 xfs_btree_high_key_from_key(
1968 struct xfs_btree_cur *cur,
1969 union xfs_btree_key *key)
1970 {
1971 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
1972 return (union xfs_btree_key *)((char *)key +
1973 (cur->bc_ops->key_len / 2));
1974 }
1975
1976 /* Determine the low (and high if overlapped) keys of a leaf block */
1977 STATIC void
xfs_btree_get_leaf_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)1978 xfs_btree_get_leaf_keys(
1979 struct xfs_btree_cur *cur,
1980 struct xfs_btree_block *block,
1981 union xfs_btree_key *key)
1982 {
1983 union xfs_btree_key max_hkey;
1984 union xfs_btree_key hkey;
1985 union xfs_btree_rec *rec;
1986 union xfs_btree_key *high;
1987 int n;
1988
1989 rec = xfs_btree_rec_addr(cur, 1, block);
1990 cur->bc_ops->init_key_from_rec(key, rec);
1991
1992 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
1993
1994 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
1995 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
1996 rec = xfs_btree_rec_addr(cur, n, block);
1997 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
1998 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
1999 > 0)
2000 max_hkey = hkey;
2001 }
2002
2003 high = xfs_btree_high_key_from_key(cur, key);
2004 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2005 }
2006 }
2007
2008 /* Determine the low (and high if overlapped) keys of a node block */
2009 STATIC void
xfs_btree_get_node_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2010 xfs_btree_get_node_keys(
2011 struct xfs_btree_cur *cur,
2012 struct xfs_btree_block *block,
2013 union xfs_btree_key *key)
2014 {
2015 union xfs_btree_key *hkey;
2016 union xfs_btree_key *max_hkey;
2017 union xfs_btree_key *high;
2018 int n;
2019
2020 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2021 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2022 cur->bc_ops->key_len / 2);
2023
2024 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2025 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2026 hkey = xfs_btree_high_key_addr(cur, n, block);
2027 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2028 max_hkey = hkey;
2029 }
2030
2031 high = xfs_btree_high_key_from_key(cur, key);
2032 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2033 } else {
2034 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2035 cur->bc_ops->key_len);
2036 }
2037 }
2038
2039 /* Derive the keys for any btree block. */
2040 void
xfs_btree_get_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2041 xfs_btree_get_keys(
2042 struct xfs_btree_cur *cur,
2043 struct xfs_btree_block *block,
2044 union xfs_btree_key *key)
2045 {
2046 if (be16_to_cpu(block->bb_level) == 0)
2047 xfs_btree_get_leaf_keys(cur, block, key);
2048 else
2049 xfs_btree_get_node_keys(cur, block, key);
2050 }
2051
2052 /*
2053 * Decide if we need to update the parent keys of a btree block. For
2054 * a standard btree this is only necessary if we're updating the first
2055 * record/key. For an overlapping btree, we must always update the
2056 * keys because the highest key can be in any of the records or keys
2057 * in the block.
2058 */
2059 static inline bool
xfs_btree_needs_key_update(struct xfs_btree_cur * cur,int ptr)2060 xfs_btree_needs_key_update(
2061 struct xfs_btree_cur *cur,
2062 int ptr)
2063 {
2064 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2065 }
2066
2067 /*
2068 * Update the low and high parent keys of the given level, progressing
2069 * towards the root. If force_all is false, stop if the keys for a given
2070 * level do not need updating.
2071 */
2072 STATIC int
__xfs_btree_updkeys(struct xfs_btree_cur * cur,int level,struct xfs_btree_block * block,struct xfs_buf * bp0,bool force_all)2073 __xfs_btree_updkeys(
2074 struct xfs_btree_cur *cur,
2075 int level,
2076 struct xfs_btree_block *block,
2077 struct xfs_buf *bp0,
2078 bool force_all)
2079 {
2080 union xfs_btree_key key; /* keys from current level */
2081 union xfs_btree_key *lkey; /* keys from the next level up */
2082 union xfs_btree_key *hkey;
2083 union xfs_btree_key *nlkey; /* keys from the next level up */
2084 union xfs_btree_key *nhkey;
2085 struct xfs_buf *bp;
2086 int ptr;
2087
2088 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2089
2090 /* Exit if there aren't any parent levels to update. */
2091 if (level + 1 >= cur->bc_nlevels)
2092 return 0;
2093
2094 trace_xfs_btree_updkeys(cur, level, bp0);
2095
2096 lkey = &key;
2097 hkey = xfs_btree_high_key_from_key(cur, lkey);
2098 xfs_btree_get_keys(cur, block, lkey);
2099 for (level++; level < cur->bc_nlevels; level++) {
2100 #ifdef DEBUG
2101 int error;
2102 #endif
2103 block = xfs_btree_get_block(cur, level, &bp);
2104 trace_xfs_btree_updkeys(cur, level, bp);
2105 #ifdef DEBUG
2106 error = xfs_btree_check_block(cur, block, level, bp);
2107 if (error)
2108 return error;
2109 #endif
2110 ptr = cur->bc_ptrs[level];
2111 nlkey = xfs_btree_key_addr(cur, ptr, block);
2112 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2113 if (!force_all &&
2114 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2115 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2116 break;
2117 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2118 xfs_btree_log_keys(cur, bp, ptr, ptr);
2119 if (level + 1 >= cur->bc_nlevels)
2120 break;
2121 xfs_btree_get_node_keys(cur, block, lkey);
2122 }
2123
2124 return 0;
2125 }
2126
2127 /* Update all the keys from some level in cursor back to the root. */
2128 STATIC int
xfs_btree_updkeys_force(struct xfs_btree_cur * cur,int level)2129 xfs_btree_updkeys_force(
2130 struct xfs_btree_cur *cur,
2131 int level)
2132 {
2133 struct xfs_buf *bp;
2134 struct xfs_btree_block *block;
2135
2136 block = xfs_btree_get_block(cur, level, &bp);
2137 return __xfs_btree_updkeys(cur, level, block, bp, true);
2138 }
2139
2140 /*
2141 * Update the parent keys of the given level, progressing towards the root.
2142 */
2143 STATIC int
xfs_btree_update_keys(struct xfs_btree_cur * cur,int level)2144 xfs_btree_update_keys(
2145 struct xfs_btree_cur *cur,
2146 int level)
2147 {
2148 struct xfs_btree_block *block;
2149 struct xfs_buf *bp;
2150 union xfs_btree_key *kp;
2151 union xfs_btree_key key;
2152 int ptr;
2153
2154 ASSERT(level >= 0);
2155
2156 block = xfs_btree_get_block(cur, level, &bp);
2157 if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2158 return __xfs_btree_updkeys(cur, level, block, bp, false);
2159
2160 /*
2161 * Go up the tree from this level toward the root.
2162 * At each level, update the key value to the value input.
2163 * Stop when we reach a level where the cursor isn't pointing
2164 * at the first entry in the block.
2165 */
2166 xfs_btree_get_keys(cur, block, &key);
2167 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2168 #ifdef DEBUG
2169 int error;
2170 #endif
2171 block = xfs_btree_get_block(cur, level, &bp);
2172 #ifdef DEBUG
2173 error = xfs_btree_check_block(cur, block, level, bp);
2174 if (error)
2175 return error;
2176 #endif
2177 ptr = cur->bc_ptrs[level];
2178 kp = xfs_btree_key_addr(cur, ptr, block);
2179 xfs_btree_copy_keys(cur, kp, &key, 1);
2180 xfs_btree_log_keys(cur, bp, ptr, ptr);
2181 }
2182
2183 return 0;
2184 }
2185
2186 /*
2187 * Update the record referred to by cur to the value in the
2188 * given record. This either works (return 0) or gets an
2189 * EFSCORRUPTED error.
2190 */
2191 int
xfs_btree_update(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)2192 xfs_btree_update(
2193 struct xfs_btree_cur *cur,
2194 union xfs_btree_rec *rec)
2195 {
2196 struct xfs_btree_block *block;
2197 struct xfs_buf *bp;
2198 int error;
2199 int ptr;
2200 union xfs_btree_rec *rp;
2201
2202 /* Pick up the current block. */
2203 block = xfs_btree_get_block(cur, 0, &bp);
2204
2205 #ifdef DEBUG
2206 error = xfs_btree_check_block(cur, block, 0, bp);
2207 if (error)
2208 goto error0;
2209 #endif
2210 /* Get the address of the rec to be updated. */
2211 ptr = cur->bc_ptrs[0];
2212 rp = xfs_btree_rec_addr(cur, ptr, block);
2213
2214 /* Fill in the new contents and log them. */
2215 xfs_btree_copy_recs(cur, rp, rec, 1);
2216 xfs_btree_log_recs(cur, bp, ptr, ptr);
2217
2218 /*
2219 * If we are tracking the last record in the tree and
2220 * we are at the far right edge of the tree, update it.
2221 */
2222 if (xfs_btree_is_lastrec(cur, block, 0)) {
2223 cur->bc_ops->update_lastrec(cur, block, rec,
2224 ptr, LASTREC_UPDATE);
2225 }
2226
2227 /* Pass new key value up to our parent. */
2228 if (xfs_btree_needs_key_update(cur, ptr)) {
2229 error = xfs_btree_update_keys(cur, 0);
2230 if (error)
2231 goto error0;
2232 }
2233
2234 return 0;
2235
2236 error0:
2237 return error;
2238 }
2239
2240 /*
2241 * Move 1 record left from cur/level if possible.
2242 * Update cur to reflect the new path.
2243 */
2244 STATIC int /* error */
xfs_btree_lshift(struct xfs_btree_cur * cur,int level,int * stat)2245 xfs_btree_lshift(
2246 struct xfs_btree_cur *cur,
2247 int level,
2248 int *stat) /* success/failure */
2249 {
2250 struct xfs_buf *lbp; /* left buffer pointer */
2251 struct xfs_btree_block *left; /* left btree block */
2252 int lrecs; /* left record count */
2253 struct xfs_buf *rbp; /* right buffer pointer */
2254 struct xfs_btree_block *right; /* right btree block */
2255 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2256 int rrecs; /* right record count */
2257 union xfs_btree_ptr lptr; /* left btree pointer */
2258 union xfs_btree_key *rkp = NULL; /* right btree key */
2259 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2260 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2261 int error; /* error return value */
2262 int i;
2263
2264 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2265 level == cur->bc_nlevels - 1)
2266 goto out0;
2267
2268 /* Set up variables for this block as "right". */
2269 right = xfs_btree_get_block(cur, level, &rbp);
2270
2271 #ifdef DEBUG
2272 error = xfs_btree_check_block(cur, right, level, rbp);
2273 if (error)
2274 goto error0;
2275 #endif
2276
2277 /* If we've got no left sibling then we can't shift an entry left. */
2278 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2279 if (xfs_btree_ptr_is_null(cur, &lptr))
2280 goto out0;
2281
2282 /*
2283 * If the cursor entry is the one that would be moved, don't
2284 * do it... it's too complicated.
2285 */
2286 if (cur->bc_ptrs[level] <= 1)
2287 goto out0;
2288
2289 /* Set up the left neighbor as "left". */
2290 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2291 if (error)
2292 goto error0;
2293
2294 /* If it's full, it can't take another entry. */
2295 lrecs = xfs_btree_get_numrecs(left);
2296 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2297 goto out0;
2298
2299 rrecs = xfs_btree_get_numrecs(right);
2300
2301 /*
2302 * We add one entry to the left side and remove one for the right side.
2303 * Account for it here, the changes will be updated on disk and logged
2304 * later.
2305 */
2306 lrecs++;
2307 rrecs--;
2308
2309 XFS_BTREE_STATS_INC(cur, lshift);
2310 XFS_BTREE_STATS_ADD(cur, moves, 1);
2311
2312 /*
2313 * If non-leaf, copy a key and a ptr to the left block.
2314 * Log the changes to the left block.
2315 */
2316 if (level > 0) {
2317 /* It's a non-leaf. Move keys and pointers. */
2318 union xfs_btree_key *lkp; /* left btree key */
2319 union xfs_btree_ptr *lpp; /* left address pointer */
2320
2321 lkp = xfs_btree_key_addr(cur, lrecs, left);
2322 rkp = xfs_btree_key_addr(cur, 1, right);
2323
2324 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2325 rpp = xfs_btree_ptr_addr(cur, 1, right);
2326
2327 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2328 if (error)
2329 goto error0;
2330
2331 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2332 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2333
2334 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2335 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2336
2337 ASSERT(cur->bc_ops->keys_inorder(cur,
2338 xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2339 } else {
2340 /* It's a leaf. Move records. */
2341 union xfs_btree_rec *lrp; /* left record pointer */
2342
2343 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2344 rrp = xfs_btree_rec_addr(cur, 1, right);
2345
2346 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2347 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2348
2349 ASSERT(cur->bc_ops->recs_inorder(cur,
2350 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2351 }
2352
2353 xfs_btree_set_numrecs(left, lrecs);
2354 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2355
2356 xfs_btree_set_numrecs(right, rrecs);
2357 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2358
2359 /*
2360 * Slide the contents of right down one entry.
2361 */
2362 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2363 if (level > 0) {
2364 /* It's a nonleaf. operate on keys and ptrs */
2365 for (i = 0; i < rrecs; i++) {
2366 error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2367 if (error)
2368 goto error0;
2369 }
2370
2371 xfs_btree_shift_keys(cur,
2372 xfs_btree_key_addr(cur, 2, right),
2373 -1, rrecs);
2374 xfs_btree_shift_ptrs(cur,
2375 xfs_btree_ptr_addr(cur, 2, right),
2376 -1, rrecs);
2377
2378 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2379 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2380 } else {
2381 /* It's a leaf. operate on records */
2382 xfs_btree_shift_recs(cur,
2383 xfs_btree_rec_addr(cur, 2, right),
2384 -1, rrecs);
2385 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2386 }
2387
2388 /*
2389 * Using a temporary cursor, update the parent key values of the
2390 * block on the left.
2391 */
2392 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2393 error = xfs_btree_dup_cursor(cur, &tcur);
2394 if (error)
2395 goto error0;
2396 i = xfs_btree_firstrec(tcur, level);
2397 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2398 error = -EFSCORRUPTED;
2399 goto error0;
2400 }
2401
2402 error = xfs_btree_decrement(tcur, level, &i);
2403 if (error)
2404 goto error1;
2405
2406 /* Update the parent high keys of the left block, if needed. */
2407 error = xfs_btree_update_keys(tcur, level);
2408 if (error)
2409 goto error1;
2410
2411 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2412 }
2413
2414 /* Update the parent keys of the right block. */
2415 error = xfs_btree_update_keys(cur, level);
2416 if (error)
2417 goto error0;
2418
2419 /* Slide the cursor value left one. */
2420 cur->bc_ptrs[level]--;
2421
2422 *stat = 1;
2423 return 0;
2424
2425 out0:
2426 *stat = 0;
2427 return 0;
2428
2429 error0:
2430 return error;
2431
2432 error1:
2433 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2434 return error;
2435 }
2436
2437 /*
2438 * Move 1 record right from cur/level if possible.
2439 * Update cur to reflect the new path.
2440 */
2441 STATIC int /* error */
xfs_btree_rshift(struct xfs_btree_cur * cur,int level,int * stat)2442 xfs_btree_rshift(
2443 struct xfs_btree_cur *cur,
2444 int level,
2445 int *stat) /* success/failure */
2446 {
2447 struct xfs_buf *lbp; /* left buffer pointer */
2448 struct xfs_btree_block *left; /* left btree block */
2449 struct xfs_buf *rbp; /* right buffer pointer */
2450 struct xfs_btree_block *right; /* right btree block */
2451 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2452 union xfs_btree_ptr rptr; /* right block pointer */
2453 union xfs_btree_key *rkp; /* right btree key */
2454 int rrecs; /* right record count */
2455 int lrecs; /* left record count */
2456 int error; /* error return value */
2457 int i; /* loop counter */
2458
2459 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2460 (level == cur->bc_nlevels - 1))
2461 goto out0;
2462
2463 /* Set up variables for this block as "left". */
2464 left = xfs_btree_get_block(cur, level, &lbp);
2465
2466 #ifdef DEBUG
2467 error = xfs_btree_check_block(cur, left, level, lbp);
2468 if (error)
2469 goto error0;
2470 #endif
2471
2472 /* If we've got no right sibling then we can't shift an entry right. */
2473 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2474 if (xfs_btree_ptr_is_null(cur, &rptr))
2475 goto out0;
2476
2477 /*
2478 * If the cursor entry is the one that would be moved, don't
2479 * do it... it's too complicated.
2480 */
2481 lrecs = xfs_btree_get_numrecs(left);
2482 if (cur->bc_ptrs[level] >= lrecs)
2483 goto out0;
2484
2485 /* Set up the right neighbor as "right". */
2486 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2487 if (error)
2488 goto error0;
2489
2490 /* If it's full, it can't take another entry. */
2491 rrecs = xfs_btree_get_numrecs(right);
2492 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2493 goto out0;
2494
2495 XFS_BTREE_STATS_INC(cur, rshift);
2496 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2497
2498 /*
2499 * Make a hole at the start of the right neighbor block, then
2500 * copy the last left block entry to the hole.
2501 */
2502 if (level > 0) {
2503 /* It's a nonleaf. make a hole in the keys and ptrs */
2504 union xfs_btree_key *lkp;
2505 union xfs_btree_ptr *lpp;
2506 union xfs_btree_ptr *rpp;
2507
2508 lkp = xfs_btree_key_addr(cur, lrecs, left);
2509 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2510 rkp = xfs_btree_key_addr(cur, 1, right);
2511 rpp = xfs_btree_ptr_addr(cur, 1, right);
2512
2513 for (i = rrecs - 1; i >= 0; i--) {
2514 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2515 if (error)
2516 goto error0;
2517 }
2518
2519 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2520 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2521
2522 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2523 if (error)
2524 goto error0;
2525
2526 /* Now put the new data in, and log it. */
2527 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2528 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2529
2530 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2531 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2532
2533 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2534 xfs_btree_key_addr(cur, 2, right)));
2535 } else {
2536 /* It's a leaf. make a hole in the records */
2537 union xfs_btree_rec *lrp;
2538 union xfs_btree_rec *rrp;
2539
2540 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2541 rrp = xfs_btree_rec_addr(cur, 1, right);
2542
2543 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2544
2545 /* Now put the new data in, and log it. */
2546 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2547 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2548 }
2549
2550 /*
2551 * Decrement and log left's numrecs, bump and log right's numrecs.
2552 */
2553 xfs_btree_set_numrecs(left, --lrecs);
2554 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2555
2556 xfs_btree_set_numrecs(right, ++rrecs);
2557 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2558
2559 /*
2560 * Using a temporary cursor, update the parent key values of the
2561 * block on the right.
2562 */
2563 error = xfs_btree_dup_cursor(cur, &tcur);
2564 if (error)
2565 goto error0;
2566 i = xfs_btree_lastrec(tcur, level);
2567 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2568 error = -EFSCORRUPTED;
2569 goto error0;
2570 }
2571
2572 error = xfs_btree_increment(tcur, level, &i);
2573 if (error)
2574 goto error1;
2575
2576 /* Update the parent high keys of the left block, if needed. */
2577 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2578 error = xfs_btree_update_keys(cur, level);
2579 if (error)
2580 goto error1;
2581 }
2582
2583 /* Update the parent keys of the right block. */
2584 error = xfs_btree_update_keys(tcur, level);
2585 if (error)
2586 goto error1;
2587
2588 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2589
2590 *stat = 1;
2591 return 0;
2592
2593 out0:
2594 *stat = 0;
2595 return 0;
2596
2597 error0:
2598 return error;
2599
2600 error1:
2601 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2602 return error;
2603 }
2604
2605 /*
2606 * Split cur/level block in half.
2607 * Return new block number and the key to its first
2608 * record (to be inserted into parent).
2609 */
2610 STATIC int /* error */
__xfs_btree_split(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)2611 __xfs_btree_split(
2612 struct xfs_btree_cur *cur,
2613 int level,
2614 union xfs_btree_ptr *ptrp,
2615 union xfs_btree_key *key,
2616 struct xfs_btree_cur **curp,
2617 int *stat) /* success/failure */
2618 {
2619 union xfs_btree_ptr lptr; /* left sibling block ptr */
2620 struct xfs_buf *lbp; /* left buffer pointer */
2621 struct xfs_btree_block *left; /* left btree block */
2622 union xfs_btree_ptr rptr; /* right sibling block ptr */
2623 struct xfs_buf *rbp; /* right buffer pointer */
2624 struct xfs_btree_block *right; /* right btree block */
2625 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2626 struct xfs_buf *rrbp; /* right-right buffer pointer */
2627 struct xfs_btree_block *rrblock; /* right-right btree block */
2628 int lrecs;
2629 int rrecs;
2630 int src_index;
2631 int error; /* error return value */
2632 int i;
2633
2634 XFS_BTREE_STATS_INC(cur, split);
2635
2636 /* Set up left block (current one). */
2637 left = xfs_btree_get_block(cur, level, &lbp);
2638
2639 #ifdef DEBUG
2640 error = xfs_btree_check_block(cur, left, level, lbp);
2641 if (error)
2642 goto error0;
2643 #endif
2644
2645 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2646
2647 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2648 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2649 if (error)
2650 goto error0;
2651 if (*stat == 0)
2652 goto out0;
2653 XFS_BTREE_STATS_INC(cur, alloc);
2654
2655 /* Set up the new block as "right". */
2656 error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2657 if (error)
2658 goto error0;
2659
2660 /* Fill in the btree header for the new right block. */
2661 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2662
2663 /*
2664 * Split the entries between the old and the new block evenly.
2665 * Make sure that if there's an odd number of entries now, that
2666 * each new block will have the same number of entries.
2667 */
2668 lrecs = xfs_btree_get_numrecs(left);
2669 rrecs = lrecs / 2;
2670 if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2671 rrecs++;
2672 src_index = (lrecs - rrecs + 1);
2673
2674 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2675
2676 /* Adjust numrecs for the later get_*_keys() calls. */
2677 lrecs -= rrecs;
2678 xfs_btree_set_numrecs(left, lrecs);
2679 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2680
2681 /*
2682 * Copy btree block entries from the left block over to the
2683 * new block, the right. Update the right block and log the
2684 * changes.
2685 */
2686 if (level > 0) {
2687 /* It's a non-leaf. Move keys and pointers. */
2688 union xfs_btree_key *lkp; /* left btree key */
2689 union xfs_btree_ptr *lpp; /* left address pointer */
2690 union xfs_btree_key *rkp; /* right btree key */
2691 union xfs_btree_ptr *rpp; /* right address pointer */
2692
2693 lkp = xfs_btree_key_addr(cur, src_index, left);
2694 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2695 rkp = xfs_btree_key_addr(cur, 1, right);
2696 rpp = xfs_btree_ptr_addr(cur, 1, right);
2697
2698 for (i = src_index; i < rrecs; i++) {
2699 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2700 if (error)
2701 goto error0;
2702 }
2703
2704 /* Copy the keys & pointers to the new block. */
2705 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2706 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2707
2708 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2709 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2710
2711 /* Stash the keys of the new block for later insertion. */
2712 xfs_btree_get_node_keys(cur, right, key);
2713 } else {
2714 /* It's a leaf. Move records. */
2715 union xfs_btree_rec *lrp; /* left record pointer */
2716 union xfs_btree_rec *rrp; /* right record pointer */
2717
2718 lrp = xfs_btree_rec_addr(cur, src_index, left);
2719 rrp = xfs_btree_rec_addr(cur, 1, right);
2720
2721 /* Copy records to the new block. */
2722 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2723 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2724
2725 /* Stash the keys of the new block for later insertion. */
2726 xfs_btree_get_leaf_keys(cur, right, key);
2727 }
2728
2729 /*
2730 * Find the left block number by looking in the buffer.
2731 * Adjust sibling pointers.
2732 */
2733 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2734 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2735 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2736 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2737
2738 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2739 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2740
2741 /*
2742 * If there's a block to the new block's right, make that block
2743 * point back to right instead of to left.
2744 */
2745 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2746 error = xfs_btree_read_buf_block(cur, &rrptr,
2747 0, &rrblock, &rrbp);
2748 if (error)
2749 goto error0;
2750 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2751 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2752 }
2753
2754 /* Update the parent high keys of the left block, if needed. */
2755 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2756 error = xfs_btree_update_keys(cur, level);
2757 if (error)
2758 goto error0;
2759 }
2760
2761 /*
2762 * If the cursor is really in the right block, move it there.
2763 * If it's just pointing past the last entry in left, then we'll
2764 * insert there, so don't change anything in that case.
2765 */
2766 if (cur->bc_ptrs[level] > lrecs + 1) {
2767 xfs_btree_setbuf(cur, level, rbp);
2768 cur->bc_ptrs[level] -= lrecs;
2769 }
2770 /*
2771 * If there are more levels, we'll need another cursor which refers
2772 * the right block, no matter where this cursor was.
2773 */
2774 if (level + 1 < cur->bc_nlevels) {
2775 error = xfs_btree_dup_cursor(cur, curp);
2776 if (error)
2777 goto error0;
2778 (*curp)->bc_ptrs[level + 1]++;
2779 }
2780 *ptrp = rptr;
2781 *stat = 1;
2782 return 0;
2783 out0:
2784 *stat = 0;
2785 return 0;
2786
2787 error0:
2788 return error;
2789 }
2790
2791 struct xfs_btree_split_args {
2792 struct xfs_btree_cur *cur;
2793 int level;
2794 union xfs_btree_ptr *ptrp;
2795 union xfs_btree_key *key;
2796 struct xfs_btree_cur **curp;
2797 int *stat; /* success/failure */
2798 int result;
2799 bool kswapd; /* allocation in kswapd context */
2800 struct completion *done;
2801 struct work_struct work;
2802 };
2803
2804 /*
2805 * Stack switching interfaces for allocation
2806 */
2807 static void
xfs_btree_split_worker(struct work_struct * work)2808 xfs_btree_split_worker(
2809 struct work_struct *work)
2810 {
2811 struct xfs_btree_split_args *args = container_of(work,
2812 struct xfs_btree_split_args, work);
2813 unsigned long pflags;
2814 unsigned long new_pflags = 0;
2815
2816 /*
2817 * we are in a transaction context here, but may also be doing work
2818 * in kswapd context, and hence we may need to inherit that state
2819 * temporarily to ensure that we don't block waiting for memory reclaim
2820 * in any way.
2821 */
2822 if (args->kswapd)
2823 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2824
2825 current_set_flags_nested(&pflags, new_pflags);
2826 xfs_trans_set_context(args->cur->bc_tp);
2827
2828 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2829 args->key, args->curp, args->stat);
2830
2831 xfs_trans_clear_context(args->cur->bc_tp);
2832 current_restore_flags_nested(&pflags, new_pflags);
2833
2834 /*
2835 * Do not access args after complete() has run here. We don't own args
2836 * and the owner may run and free args before we return here.
2837 */
2838 complete(args->done);
2839
2840 }
2841
2842 /*
2843 * BMBT split requests often come in with little stack to work on. Push
2844 * them off to a worker thread so there is lots of stack to use. For the other
2845 * btree types, just call directly to avoid the context switch overhead here.
2846 */
2847 STATIC int /* error */
xfs_btree_split(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)2848 xfs_btree_split(
2849 struct xfs_btree_cur *cur,
2850 int level,
2851 union xfs_btree_ptr *ptrp,
2852 union xfs_btree_key *key,
2853 struct xfs_btree_cur **curp,
2854 int *stat) /* success/failure */
2855 {
2856 struct xfs_btree_split_args args;
2857 DECLARE_COMPLETION_ONSTACK(done);
2858
2859 if (cur->bc_btnum != XFS_BTNUM_BMAP)
2860 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2861
2862 args.cur = cur;
2863 args.level = level;
2864 args.ptrp = ptrp;
2865 args.key = key;
2866 args.curp = curp;
2867 args.stat = stat;
2868 args.done = &done;
2869 args.kswapd = current_is_kswapd();
2870 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2871 queue_work(xfs_alloc_wq, &args.work);
2872 wait_for_completion(&done);
2873 destroy_work_on_stack(&args.work);
2874 return args.result;
2875 }
2876
2877
2878 /*
2879 * Copy the old inode root contents into a real block and make the
2880 * broot point to it.
2881 */
2882 int /* error */
xfs_btree_new_iroot(struct xfs_btree_cur * cur,int * logflags,int * stat)2883 xfs_btree_new_iroot(
2884 struct xfs_btree_cur *cur, /* btree cursor */
2885 int *logflags, /* logging flags for inode */
2886 int *stat) /* return status - 0 fail */
2887 {
2888 struct xfs_buf *cbp; /* buffer for cblock */
2889 struct xfs_btree_block *block; /* btree block */
2890 struct xfs_btree_block *cblock; /* child btree block */
2891 union xfs_btree_key *ckp; /* child key pointer */
2892 union xfs_btree_ptr *cpp; /* child ptr pointer */
2893 union xfs_btree_key *kp; /* pointer to btree key */
2894 union xfs_btree_ptr *pp; /* pointer to block addr */
2895 union xfs_btree_ptr nptr; /* new block addr */
2896 int level; /* btree level */
2897 int error; /* error return code */
2898 int i; /* loop counter */
2899
2900 XFS_BTREE_STATS_INC(cur, newroot);
2901
2902 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2903
2904 level = cur->bc_nlevels - 1;
2905
2906 block = xfs_btree_get_iroot(cur);
2907 pp = xfs_btree_ptr_addr(cur, 1, block);
2908
2909 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2910 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2911 if (error)
2912 goto error0;
2913 if (*stat == 0)
2914 return 0;
2915
2916 XFS_BTREE_STATS_INC(cur, alloc);
2917
2918 /* Copy the root into a real block. */
2919 error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
2920 if (error)
2921 goto error0;
2922
2923 /*
2924 * we can't just memcpy() the root in for CRC enabled btree blocks.
2925 * In that case have to also ensure the blkno remains correct
2926 */
2927 memcpy(cblock, block, xfs_btree_block_len(cur));
2928 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2929 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2930 cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2931 else
2932 cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2933 }
2934
2935 be16_add_cpu(&block->bb_level, 1);
2936 xfs_btree_set_numrecs(block, 1);
2937 cur->bc_nlevels++;
2938 cur->bc_ptrs[level + 1] = 1;
2939
2940 kp = xfs_btree_key_addr(cur, 1, block);
2941 ckp = xfs_btree_key_addr(cur, 1, cblock);
2942 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2943
2944 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2945 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2946 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
2947 if (error)
2948 goto error0;
2949 }
2950
2951 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2952
2953 error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
2954 if (error)
2955 goto error0;
2956
2957 xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2958
2959 xfs_iroot_realloc(cur->bc_ino.ip,
2960 1 - xfs_btree_get_numrecs(cblock),
2961 cur->bc_ino.whichfork);
2962
2963 xfs_btree_setbuf(cur, level, cbp);
2964
2965 /*
2966 * Do all this logging at the end so that
2967 * the root is at the right level.
2968 */
2969 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
2970 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2971 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2972
2973 *logflags |=
2974 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
2975 *stat = 1;
2976 return 0;
2977 error0:
2978 return error;
2979 }
2980
2981 /*
2982 * Allocate a new root block, fill it in.
2983 */
2984 STATIC int /* error */
xfs_btree_new_root(struct xfs_btree_cur * cur,int * stat)2985 xfs_btree_new_root(
2986 struct xfs_btree_cur *cur, /* btree cursor */
2987 int *stat) /* success/failure */
2988 {
2989 struct xfs_btree_block *block; /* one half of the old root block */
2990 struct xfs_buf *bp; /* buffer containing block */
2991 int error; /* error return value */
2992 struct xfs_buf *lbp; /* left buffer pointer */
2993 struct xfs_btree_block *left; /* left btree block */
2994 struct xfs_buf *nbp; /* new (root) buffer */
2995 struct xfs_btree_block *new; /* new (root) btree block */
2996 int nptr; /* new value for key index, 1 or 2 */
2997 struct xfs_buf *rbp; /* right buffer pointer */
2998 struct xfs_btree_block *right; /* right btree block */
2999 union xfs_btree_ptr rptr;
3000 union xfs_btree_ptr lptr;
3001
3002 XFS_BTREE_STATS_INC(cur, newroot);
3003
3004 /* initialise our start point from the cursor */
3005 cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3006
3007 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3008 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3009 if (error)
3010 goto error0;
3011 if (*stat == 0)
3012 goto out0;
3013 XFS_BTREE_STATS_INC(cur, alloc);
3014
3015 /* Set up the new block. */
3016 error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3017 if (error)
3018 goto error0;
3019
3020 /* Set the root in the holding structure increasing the level by 1. */
3021 cur->bc_ops->set_root(cur, &lptr, 1);
3022
3023 /*
3024 * At the previous root level there are now two blocks: the old root,
3025 * and the new block generated when it was split. We don't know which
3026 * one the cursor is pointing at, so we set up variables "left" and
3027 * "right" for each case.
3028 */
3029 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3030
3031 #ifdef DEBUG
3032 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3033 if (error)
3034 goto error0;
3035 #endif
3036
3037 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3038 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3039 /* Our block is left, pick up the right block. */
3040 lbp = bp;
3041 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3042 left = block;
3043 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3044 if (error)
3045 goto error0;
3046 bp = rbp;
3047 nptr = 1;
3048 } else {
3049 /* Our block is right, pick up the left block. */
3050 rbp = bp;
3051 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3052 right = block;
3053 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3054 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3055 if (error)
3056 goto error0;
3057 bp = lbp;
3058 nptr = 2;
3059 }
3060
3061 /* Fill in the new block's btree header and log it. */
3062 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3063 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3064 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3065 !xfs_btree_ptr_is_null(cur, &rptr));
3066
3067 /* Fill in the key data in the new root. */
3068 if (xfs_btree_get_level(left) > 0) {
3069 /*
3070 * Get the keys for the left block's keys and put them directly
3071 * in the parent block. Do the same for the right block.
3072 */
3073 xfs_btree_get_node_keys(cur, left,
3074 xfs_btree_key_addr(cur, 1, new));
3075 xfs_btree_get_node_keys(cur, right,
3076 xfs_btree_key_addr(cur, 2, new));
3077 } else {
3078 /*
3079 * Get the keys for the left block's records and put them
3080 * directly in the parent block. Do the same for the right
3081 * block.
3082 */
3083 xfs_btree_get_leaf_keys(cur, left,
3084 xfs_btree_key_addr(cur, 1, new));
3085 xfs_btree_get_leaf_keys(cur, right,
3086 xfs_btree_key_addr(cur, 2, new));
3087 }
3088 xfs_btree_log_keys(cur, nbp, 1, 2);
3089
3090 /* Fill in the pointer data in the new root. */
3091 xfs_btree_copy_ptrs(cur,
3092 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3093 xfs_btree_copy_ptrs(cur,
3094 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3095 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3096
3097 /* Fix up the cursor. */
3098 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3099 cur->bc_ptrs[cur->bc_nlevels] = nptr;
3100 cur->bc_nlevels++;
3101 *stat = 1;
3102 return 0;
3103 error0:
3104 return error;
3105 out0:
3106 *stat = 0;
3107 return 0;
3108 }
3109
3110 STATIC int
xfs_btree_make_block_unfull(struct xfs_btree_cur * cur,int level,int numrecs,int * oindex,int * index,union xfs_btree_ptr * nptr,struct xfs_btree_cur ** ncur,union xfs_btree_key * key,int * stat)3111 xfs_btree_make_block_unfull(
3112 struct xfs_btree_cur *cur, /* btree cursor */
3113 int level, /* btree level */
3114 int numrecs,/* # of recs in block */
3115 int *oindex,/* old tree index */
3116 int *index, /* new tree index */
3117 union xfs_btree_ptr *nptr, /* new btree ptr */
3118 struct xfs_btree_cur **ncur, /* new btree cursor */
3119 union xfs_btree_key *key, /* key of new block */
3120 int *stat)
3121 {
3122 int error = 0;
3123
3124 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3125 level == cur->bc_nlevels - 1) {
3126 struct xfs_inode *ip = cur->bc_ino.ip;
3127
3128 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3129 /* A root block that can be made bigger. */
3130 xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3131 *stat = 1;
3132 } else {
3133 /* A root block that needs replacing */
3134 int logflags = 0;
3135
3136 error = xfs_btree_new_iroot(cur, &logflags, stat);
3137 if (error || *stat == 0)
3138 return error;
3139
3140 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3141 }
3142
3143 return 0;
3144 }
3145
3146 /* First, try shifting an entry to the right neighbor. */
3147 error = xfs_btree_rshift(cur, level, stat);
3148 if (error || *stat)
3149 return error;
3150
3151 /* Next, try shifting an entry to the left neighbor. */
3152 error = xfs_btree_lshift(cur, level, stat);
3153 if (error)
3154 return error;
3155
3156 if (*stat) {
3157 *oindex = *index = cur->bc_ptrs[level];
3158 return 0;
3159 }
3160
3161 /*
3162 * Next, try splitting the current block in half.
3163 *
3164 * If this works we have to re-set our variables because we
3165 * could be in a different block now.
3166 */
3167 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3168 if (error || *stat == 0)
3169 return error;
3170
3171
3172 *index = cur->bc_ptrs[level];
3173 return 0;
3174 }
3175
3176 /*
3177 * Insert one record/level. Return information to the caller
3178 * allowing the next level up to proceed if necessary.
3179 */
3180 STATIC int
xfs_btree_insrec(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_rec * rec,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)3181 xfs_btree_insrec(
3182 struct xfs_btree_cur *cur, /* btree cursor */
3183 int level, /* level to insert record at */
3184 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
3185 union xfs_btree_rec *rec, /* record to insert */
3186 union xfs_btree_key *key, /* i/o: block key for ptrp */
3187 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3188 int *stat) /* success/failure */
3189 {
3190 struct xfs_btree_block *block; /* btree block */
3191 struct xfs_buf *bp; /* buffer for block */
3192 union xfs_btree_ptr nptr; /* new block ptr */
3193 struct xfs_btree_cur *ncur = NULL; /* new btree cursor */
3194 union xfs_btree_key nkey; /* new block key */
3195 union xfs_btree_key *lkey;
3196 int optr; /* old key/record index */
3197 int ptr; /* key/record index */
3198 int numrecs;/* number of records */
3199 int error; /* error return value */
3200 int i;
3201 xfs_daddr_t old_bn;
3202
3203 ncur = NULL;
3204 lkey = &nkey;
3205
3206 /*
3207 * If we have an external root pointer, and we've made it to the
3208 * root level, allocate a new root block and we're done.
3209 */
3210 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3211 (level >= cur->bc_nlevels)) {
3212 error = xfs_btree_new_root(cur, stat);
3213 xfs_btree_set_ptr_null(cur, ptrp);
3214
3215 return error;
3216 }
3217
3218 /* If we're off the left edge, return failure. */
3219 ptr = cur->bc_ptrs[level];
3220 if (ptr == 0) {
3221 *stat = 0;
3222 return 0;
3223 }
3224
3225 optr = ptr;
3226
3227 XFS_BTREE_STATS_INC(cur, insrec);
3228
3229 /* Get pointers to the btree buffer and block. */
3230 block = xfs_btree_get_block(cur, level, &bp);
3231 old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3232 numrecs = xfs_btree_get_numrecs(block);
3233
3234 #ifdef DEBUG
3235 error = xfs_btree_check_block(cur, block, level, bp);
3236 if (error)
3237 goto error0;
3238
3239 /* Check that the new entry is being inserted in the right place. */
3240 if (ptr <= numrecs) {
3241 if (level == 0) {
3242 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3243 xfs_btree_rec_addr(cur, ptr, block)));
3244 } else {
3245 ASSERT(cur->bc_ops->keys_inorder(cur, key,
3246 xfs_btree_key_addr(cur, ptr, block)));
3247 }
3248 }
3249 #endif
3250
3251 /*
3252 * If the block is full, we can't insert the new entry until we
3253 * make the block un-full.
3254 */
3255 xfs_btree_set_ptr_null(cur, &nptr);
3256 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3257 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3258 &optr, &ptr, &nptr, &ncur, lkey, stat);
3259 if (error || *stat == 0)
3260 goto error0;
3261 }
3262
3263 /*
3264 * The current block may have changed if the block was
3265 * previously full and we have just made space in it.
3266 */
3267 block = xfs_btree_get_block(cur, level, &bp);
3268 numrecs = xfs_btree_get_numrecs(block);
3269
3270 #ifdef DEBUG
3271 error = xfs_btree_check_block(cur, block, level, bp);
3272 if (error)
3273 goto error0;
3274 #endif
3275
3276 /*
3277 * At this point we know there's room for our new entry in the block
3278 * we're pointing at.
3279 */
3280 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3281
3282 if (level > 0) {
3283 /* It's a nonleaf. make a hole in the keys and ptrs */
3284 union xfs_btree_key *kp;
3285 union xfs_btree_ptr *pp;
3286
3287 kp = xfs_btree_key_addr(cur, ptr, block);
3288 pp = xfs_btree_ptr_addr(cur, ptr, block);
3289
3290 for (i = numrecs - ptr; i >= 0; i--) {
3291 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3292 if (error)
3293 goto error0;
3294 }
3295
3296 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3297 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3298
3299 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3300 if (error)
3301 goto error0;
3302
3303 /* Now put the new data in, bump numrecs and log it. */
3304 xfs_btree_copy_keys(cur, kp, key, 1);
3305 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3306 numrecs++;
3307 xfs_btree_set_numrecs(block, numrecs);
3308 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3309 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3310 #ifdef DEBUG
3311 if (ptr < numrecs) {
3312 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3313 xfs_btree_key_addr(cur, ptr + 1, block)));
3314 }
3315 #endif
3316 } else {
3317 /* It's a leaf. make a hole in the records */
3318 union xfs_btree_rec *rp;
3319
3320 rp = xfs_btree_rec_addr(cur, ptr, block);
3321
3322 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3323
3324 /* Now put the new data in, bump numrecs and log it. */
3325 xfs_btree_copy_recs(cur, rp, rec, 1);
3326 xfs_btree_set_numrecs(block, ++numrecs);
3327 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3328 #ifdef DEBUG
3329 if (ptr < numrecs) {
3330 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3331 xfs_btree_rec_addr(cur, ptr + 1, block)));
3332 }
3333 #endif
3334 }
3335
3336 /* Log the new number of records in the btree header. */
3337 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3338
3339 /*
3340 * If we just inserted into a new tree block, we have to
3341 * recalculate nkey here because nkey is out of date.
3342 *
3343 * Otherwise we're just updating an existing block (having shoved
3344 * some records into the new tree block), so use the regular key
3345 * update mechanism.
3346 */
3347 if (bp && bp->b_bn != old_bn) {
3348 xfs_btree_get_keys(cur, block, lkey);
3349 } else if (xfs_btree_needs_key_update(cur, optr)) {
3350 error = xfs_btree_update_keys(cur, level);
3351 if (error)
3352 goto error0;
3353 }
3354
3355 /*
3356 * If we are tracking the last record in the tree and
3357 * we are at the far right edge of the tree, update it.
3358 */
3359 if (xfs_btree_is_lastrec(cur, block, level)) {
3360 cur->bc_ops->update_lastrec(cur, block, rec,
3361 ptr, LASTREC_INSREC);
3362 }
3363
3364 /*
3365 * Return the new block number, if any.
3366 * If there is one, give back a record value and a cursor too.
3367 */
3368 *ptrp = nptr;
3369 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3370 xfs_btree_copy_keys(cur, key, lkey, 1);
3371 *curp = ncur;
3372 }
3373
3374 *stat = 1;
3375 return 0;
3376
3377 error0:
3378 if (ncur)
3379 xfs_btree_del_cursor(ncur, error);
3380 return error;
3381 }
3382
3383 /*
3384 * Insert the record at the point referenced by cur.
3385 *
3386 * A multi-level split of the tree on insert will invalidate the original
3387 * cursor. All callers of this function should assume that the cursor is
3388 * no longer valid and revalidate it.
3389 */
3390 int
xfs_btree_insert(struct xfs_btree_cur * cur,int * stat)3391 xfs_btree_insert(
3392 struct xfs_btree_cur *cur,
3393 int *stat)
3394 {
3395 int error; /* error return value */
3396 int i; /* result value, 0 for failure */
3397 int level; /* current level number in btree */
3398 union xfs_btree_ptr nptr; /* new block number (split result) */
3399 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3400 struct xfs_btree_cur *pcur; /* previous level's cursor */
3401 union xfs_btree_key bkey; /* key of block to insert */
3402 union xfs_btree_key *key;
3403 union xfs_btree_rec rec; /* record to insert */
3404
3405 level = 0;
3406 ncur = NULL;
3407 pcur = cur;
3408 key = &bkey;
3409
3410 xfs_btree_set_ptr_null(cur, &nptr);
3411
3412 /* Make a key out of the record data to be inserted, and save it. */
3413 cur->bc_ops->init_rec_from_cur(cur, &rec);
3414 cur->bc_ops->init_key_from_rec(key, &rec);
3415
3416 /*
3417 * Loop going up the tree, starting at the leaf level.
3418 * Stop when we don't get a split block, that must mean that
3419 * the insert is finished with this level.
3420 */
3421 do {
3422 /*
3423 * Insert nrec/nptr into this level of the tree.
3424 * Note if we fail, nptr will be null.
3425 */
3426 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3427 &ncur, &i);
3428 if (error) {
3429 if (pcur != cur)
3430 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3431 goto error0;
3432 }
3433
3434 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3435 error = -EFSCORRUPTED;
3436 goto error0;
3437 }
3438 level++;
3439
3440 /*
3441 * See if the cursor we just used is trash.
3442 * Can't trash the caller's cursor, but otherwise we should
3443 * if ncur is a new cursor or we're about to be done.
3444 */
3445 if (pcur != cur &&
3446 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3447 /* Save the state from the cursor before we trash it */
3448 if (cur->bc_ops->update_cursor)
3449 cur->bc_ops->update_cursor(pcur, cur);
3450 cur->bc_nlevels = pcur->bc_nlevels;
3451 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3452 }
3453 /* If we got a new cursor, switch to it. */
3454 if (ncur) {
3455 pcur = ncur;
3456 ncur = NULL;
3457 }
3458 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3459
3460 *stat = i;
3461 return 0;
3462 error0:
3463 return error;
3464 }
3465
3466 /*
3467 * Try to merge a non-leaf block back into the inode root.
3468 *
3469 * Note: the killroot names comes from the fact that we're effectively
3470 * killing the old root block. But because we can't just delete the
3471 * inode we have to copy the single block it was pointing to into the
3472 * inode.
3473 */
3474 STATIC int
xfs_btree_kill_iroot(struct xfs_btree_cur * cur)3475 xfs_btree_kill_iroot(
3476 struct xfs_btree_cur *cur)
3477 {
3478 int whichfork = cur->bc_ino.whichfork;
3479 struct xfs_inode *ip = cur->bc_ino.ip;
3480 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
3481 struct xfs_btree_block *block;
3482 struct xfs_btree_block *cblock;
3483 union xfs_btree_key *kp;
3484 union xfs_btree_key *ckp;
3485 union xfs_btree_ptr *pp;
3486 union xfs_btree_ptr *cpp;
3487 struct xfs_buf *cbp;
3488 int level;
3489 int index;
3490 int numrecs;
3491 int error;
3492 #ifdef DEBUG
3493 union xfs_btree_ptr ptr;
3494 #endif
3495 int i;
3496
3497 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3498 ASSERT(cur->bc_nlevels > 1);
3499
3500 /*
3501 * Don't deal with the root block needs to be a leaf case.
3502 * We're just going to turn the thing back into extents anyway.
3503 */
3504 level = cur->bc_nlevels - 1;
3505 if (level == 1)
3506 goto out0;
3507
3508 /*
3509 * Give up if the root has multiple children.
3510 */
3511 block = xfs_btree_get_iroot(cur);
3512 if (xfs_btree_get_numrecs(block) != 1)
3513 goto out0;
3514
3515 cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3516 numrecs = xfs_btree_get_numrecs(cblock);
3517
3518 /*
3519 * Only do this if the next level will fit.
3520 * Then the data must be copied up to the inode,
3521 * instead of freeing the root you free the next level.
3522 */
3523 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3524 goto out0;
3525
3526 XFS_BTREE_STATS_INC(cur, killroot);
3527
3528 #ifdef DEBUG
3529 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3530 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3531 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3532 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3533 #endif
3534
3535 index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3536 if (index) {
3537 xfs_iroot_realloc(cur->bc_ino.ip, index,
3538 cur->bc_ino.whichfork);
3539 block = ifp->if_broot;
3540 }
3541
3542 be16_add_cpu(&block->bb_numrecs, index);
3543 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3544
3545 kp = xfs_btree_key_addr(cur, 1, block);
3546 ckp = xfs_btree_key_addr(cur, 1, cblock);
3547 xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3548
3549 pp = xfs_btree_ptr_addr(cur, 1, block);
3550 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3551
3552 for (i = 0; i < numrecs; i++) {
3553 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3554 if (error)
3555 return error;
3556 }
3557
3558 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3559
3560 error = xfs_btree_free_block(cur, cbp);
3561 if (error)
3562 return error;
3563
3564 cur->bc_bufs[level - 1] = NULL;
3565 be16_add_cpu(&block->bb_level, -1);
3566 xfs_trans_log_inode(cur->bc_tp, ip,
3567 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3568 cur->bc_nlevels--;
3569 out0:
3570 return 0;
3571 }
3572
3573 /*
3574 * Kill the current root node, and replace it with it's only child node.
3575 */
3576 STATIC int
xfs_btree_kill_root(struct xfs_btree_cur * cur,struct xfs_buf * bp,int level,union xfs_btree_ptr * newroot)3577 xfs_btree_kill_root(
3578 struct xfs_btree_cur *cur,
3579 struct xfs_buf *bp,
3580 int level,
3581 union xfs_btree_ptr *newroot)
3582 {
3583 int error;
3584
3585 XFS_BTREE_STATS_INC(cur, killroot);
3586
3587 /*
3588 * Update the root pointer, decreasing the level by 1 and then
3589 * free the old root.
3590 */
3591 cur->bc_ops->set_root(cur, newroot, -1);
3592
3593 error = xfs_btree_free_block(cur, bp);
3594 if (error)
3595 return error;
3596
3597 cur->bc_bufs[level] = NULL;
3598 cur->bc_ra[level] = 0;
3599 cur->bc_nlevels--;
3600
3601 return 0;
3602 }
3603
3604 STATIC int
xfs_btree_dec_cursor(struct xfs_btree_cur * cur,int level,int * stat)3605 xfs_btree_dec_cursor(
3606 struct xfs_btree_cur *cur,
3607 int level,
3608 int *stat)
3609 {
3610 int error;
3611 int i;
3612
3613 if (level > 0) {
3614 error = xfs_btree_decrement(cur, level, &i);
3615 if (error)
3616 return error;
3617 }
3618
3619 *stat = 1;
3620 return 0;
3621 }
3622
3623 /*
3624 * Single level of the btree record deletion routine.
3625 * Delete record pointed to by cur/level.
3626 * Remove the record from its block then rebalance the tree.
3627 * Return 0 for error, 1 for done, 2 to go on to the next level.
3628 */
3629 STATIC int /* error */
xfs_btree_delrec(struct xfs_btree_cur * cur,int level,int * stat)3630 xfs_btree_delrec(
3631 struct xfs_btree_cur *cur, /* btree cursor */
3632 int level, /* level removing record from */
3633 int *stat) /* fail/done/go-on */
3634 {
3635 struct xfs_btree_block *block; /* btree block */
3636 union xfs_btree_ptr cptr; /* current block ptr */
3637 struct xfs_buf *bp; /* buffer for block */
3638 int error; /* error return value */
3639 int i; /* loop counter */
3640 union xfs_btree_ptr lptr; /* left sibling block ptr */
3641 struct xfs_buf *lbp; /* left buffer pointer */
3642 struct xfs_btree_block *left; /* left btree block */
3643 int lrecs = 0; /* left record count */
3644 int ptr; /* key/record index */
3645 union xfs_btree_ptr rptr; /* right sibling block ptr */
3646 struct xfs_buf *rbp; /* right buffer pointer */
3647 struct xfs_btree_block *right; /* right btree block */
3648 struct xfs_btree_block *rrblock; /* right-right btree block */
3649 struct xfs_buf *rrbp; /* right-right buffer pointer */
3650 int rrecs = 0; /* right record count */
3651 struct xfs_btree_cur *tcur; /* temporary btree cursor */
3652 int numrecs; /* temporary numrec count */
3653
3654 tcur = NULL;
3655
3656 /* Get the index of the entry being deleted, check for nothing there. */
3657 ptr = cur->bc_ptrs[level];
3658 if (ptr == 0) {
3659 *stat = 0;
3660 return 0;
3661 }
3662
3663 /* Get the buffer & block containing the record or key/ptr. */
3664 block = xfs_btree_get_block(cur, level, &bp);
3665 numrecs = xfs_btree_get_numrecs(block);
3666
3667 #ifdef DEBUG
3668 error = xfs_btree_check_block(cur, block, level, bp);
3669 if (error)
3670 goto error0;
3671 #endif
3672
3673 /* Fail if we're off the end of the block. */
3674 if (ptr > numrecs) {
3675 *stat = 0;
3676 return 0;
3677 }
3678
3679 XFS_BTREE_STATS_INC(cur, delrec);
3680 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3681
3682 /* Excise the entries being deleted. */
3683 if (level > 0) {
3684 /* It's a nonleaf. operate on keys and ptrs */
3685 union xfs_btree_key *lkp;
3686 union xfs_btree_ptr *lpp;
3687
3688 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3689 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3690
3691 for (i = 0; i < numrecs - ptr; i++) {
3692 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3693 if (error)
3694 goto error0;
3695 }
3696
3697 if (ptr < numrecs) {
3698 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3699 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3700 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3701 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3702 }
3703 } else {
3704 /* It's a leaf. operate on records */
3705 if (ptr < numrecs) {
3706 xfs_btree_shift_recs(cur,
3707 xfs_btree_rec_addr(cur, ptr + 1, block),
3708 -1, numrecs - ptr);
3709 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3710 }
3711 }
3712
3713 /*
3714 * Decrement and log the number of entries in the block.
3715 */
3716 xfs_btree_set_numrecs(block, --numrecs);
3717 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3718
3719 /*
3720 * If we are tracking the last record in the tree and
3721 * we are at the far right edge of the tree, update it.
3722 */
3723 if (xfs_btree_is_lastrec(cur, block, level)) {
3724 cur->bc_ops->update_lastrec(cur, block, NULL,
3725 ptr, LASTREC_DELREC);
3726 }
3727
3728 /*
3729 * We're at the root level. First, shrink the root block in-memory.
3730 * Try to get rid of the next level down. If we can't then there's
3731 * nothing left to do.
3732 */
3733 if (level == cur->bc_nlevels - 1) {
3734 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3735 xfs_iroot_realloc(cur->bc_ino.ip, -1,
3736 cur->bc_ino.whichfork);
3737
3738 error = xfs_btree_kill_iroot(cur);
3739 if (error)
3740 goto error0;
3741
3742 error = xfs_btree_dec_cursor(cur, level, stat);
3743 if (error)
3744 goto error0;
3745 *stat = 1;
3746 return 0;
3747 }
3748
3749 /*
3750 * If this is the root level, and there's only one entry left,
3751 * and it's NOT the leaf level, then we can get rid of this
3752 * level.
3753 */
3754 if (numrecs == 1 && level > 0) {
3755 union xfs_btree_ptr *pp;
3756 /*
3757 * pp is still set to the first pointer in the block.
3758 * Make it the new root of the btree.
3759 */
3760 pp = xfs_btree_ptr_addr(cur, 1, block);
3761 error = xfs_btree_kill_root(cur, bp, level, pp);
3762 if (error)
3763 goto error0;
3764 } else if (level > 0) {
3765 error = xfs_btree_dec_cursor(cur, level, stat);
3766 if (error)
3767 goto error0;
3768 }
3769 *stat = 1;
3770 return 0;
3771 }
3772
3773 /*
3774 * If we deleted the leftmost entry in the block, update the
3775 * key values above us in the tree.
3776 */
3777 if (xfs_btree_needs_key_update(cur, ptr)) {
3778 error = xfs_btree_update_keys(cur, level);
3779 if (error)
3780 goto error0;
3781 }
3782
3783 /*
3784 * If the number of records remaining in the block is at least
3785 * the minimum, we're done.
3786 */
3787 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3788 error = xfs_btree_dec_cursor(cur, level, stat);
3789 if (error)
3790 goto error0;
3791 return 0;
3792 }
3793
3794 /*
3795 * Otherwise, we have to move some records around to keep the
3796 * tree balanced. Look at the left and right sibling blocks to
3797 * see if we can re-balance by moving only one record.
3798 */
3799 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3800 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3801
3802 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3803 /*
3804 * One child of root, need to get a chance to copy its contents
3805 * into the root and delete it. Can't go up to next level,
3806 * there's nothing to delete there.
3807 */
3808 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3809 xfs_btree_ptr_is_null(cur, &lptr) &&
3810 level == cur->bc_nlevels - 2) {
3811 error = xfs_btree_kill_iroot(cur);
3812 if (!error)
3813 error = xfs_btree_dec_cursor(cur, level, stat);
3814 if (error)
3815 goto error0;
3816 return 0;
3817 }
3818 }
3819
3820 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3821 !xfs_btree_ptr_is_null(cur, &lptr));
3822
3823 /*
3824 * Duplicate the cursor so our btree manipulations here won't
3825 * disrupt the next level up.
3826 */
3827 error = xfs_btree_dup_cursor(cur, &tcur);
3828 if (error)
3829 goto error0;
3830
3831 /*
3832 * If there's a right sibling, see if it's ok to shift an entry
3833 * out of it.
3834 */
3835 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3836 /*
3837 * Move the temp cursor to the last entry in the next block.
3838 * Actually any entry but the first would suffice.
3839 */
3840 i = xfs_btree_lastrec(tcur, level);
3841 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3842 error = -EFSCORRUPTED;
3843 goto error0;
3844 }
3845
3846 error = xfs_btree_increment(tcur, level, &i);
3847 if (error)
3848 goto error0;
3849 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3850 error = -EFSCORRUPTED;
3851 goto error0;
3852 }
3853
3854 i = xfs_btree_lastrec(tcur, level);
3855 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3856 error = -EFSCORRUPTED;
3857 goto error0;
3858 }
3859
3860 /* Grab a pointer to the block. */
3861 right = xfs_btree_get_block(tcur, level, &rbp);
3862 #ifdef DEBUG
3863 error = xfs_btree_check_block(tcur, right, level, rbp);
3864 if (error)
3865 goto error0;
3866 #endif
3867 /* Grab the current block number, for future use. */
3868 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3869
3870 /*
3871 * If right block is full enough so that removing one entry
3872 * won't make it too empty, and left-shifting an entry out
3873 * of right to us works, we're done.
3874 */
3875 if (xfs_btree_get_numrecs(right) - 1 >=
3876 cur->bc_ops->get_minrecs(tcur, level)) {
3877 error = xfs_btree_lshift(tcur, level, &i);
3878 if (error)
3879 goto error0;
3880 if (i) {
3881 ASSERT(xfs_btree_get_numrecs(block) >=
3882 cur->bc_ops->get_minrecs(tcur, level));
3883
3884 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3885 tcur = NULL;
3886
3887 error = xfs_btree_dec_cursor(cur, level, stat);
3888 if (error)
3889 goto error0;
3890 return 0;
3891 }
3892 }
3893
3894 /*
3895 * Otherwise, grab the number of records in right for
3896 * future reference, and fix up the temp cursor to point
3897 * to our block again (last record).
3898 */
3899 rrecs = xfs_btree_get_numrecs(right);
3900 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3901 i = xfs_btree_firstrec(tcur, level);
3902 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3903 error = -EFSCORRUPTED;
3904 goto error0;
3905 }
3906
3907 error = xfs_btree_decrement(tcur, level, &i);
3908 if (error)
3909 goto error0;
3910 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3911 error = -EFSCORRUPTED;
3912 goto error0;
3913 }
3914 }
3915 }
3916
3917 /*
3918 * If there's a left sibling, see if it's ok to shift an entry
3919 * out of it.
3920 */
3921 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3922 /*
3923 * Move the temp cursor to the first entry in the
3924 * previous block.
3925 */
3926 i = xfs_btree_firstrec(tcur, level);
3927 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3928 error = -EFSCORRUPTED;
3929 goto error0;
3930 }
3931
3932 error = xfs_btree_decrement(tcur, level, &i);
3933 if (error)
3934 goto error0;
3935 i = xfs_btree_firstrec(tcur, level);
3936 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3937 error = -EFSCORRUPTED;
3938 goto error0;
3939 }
3940
3941 /* Grab a pointer to the block. */
3942 left = xfs_btree_get_block(tcur, level, &lbp);
3943 #ifdef DEBUG
3944 error = xfs_btree_check_block(cur, left, level, lbp);
3945 if (error)
3946 goto error0;
3947 #endif
3948 /* Grab the current block number, for future use. */
3949 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3950
3951 /*
3952 * If left block is full enough so that removing one entry
3953 * won't make it too empty, and right-shifting an entry out
3954 * of left to us works, we're done.
3955 */
3956 if (xfs_btree_get_numrecs(left) - 1 >=
3957 cur->bc_ops->get_minrecs(tcur, level)) {
3958 error = xfs_btree_rshift(tcur, level, &i);
3959 if (error)
3960 goto error0;
3961 if (i) {
3962 ASSERT(xfs_btree_get_numrecs(block) >=
3963 cur->bc_ops->get_minrecs(tcur, level));
3964 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3965 tcur = NULL;
3966 if (level == 0)
3967 cur->bc_ptrs[0]++;
3968
3969 *stat = 1;
3970 return 0;
3971 }
3972 }
3973
3974 /*
3975 * Otherwise, grab the number of records in right for
3976 * future reference.
3977 */
3978 lrecs = xfs_btree_get_numrecs(left);
3979 }
3980
3981 /* Delete the temp cursor, we're done with it. */
3982 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3983 tcur = NULL;
3984
3985 /* If here, we need to do a join to keep the tree balanced. */
3986 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
3987
3988 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
3989 lrecs + xfs_btree_get_numrecs(block) <=
3990 cur->bc_ops->get_maxrecs(cur, level)) {
3991 /*
3992 * Set "right" to be the starting block,
3993 * "left" to be the left neighbor.
3994 */
3995 rptr = cptr;
3996 right = block;
3997 rbp = bp;
3998 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3999 if (error)
4000 goto error0;
4001
4002 /*
4003 * If that won't work, see if we can join with the right neighbor block.
4004 */
4005 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4006 rrecs + xfs_btree_get_numrecs(block) <=
4007 cur->bc_ops->get_maxrecs(cur, level)) {
4008 /*
4009 * Set "left" to be the starting block,
4010 * "right" to be the right neighbor.
4011 */
4012 lptr = cptr;
4013 left = block;
4014 lbp = bp;
4015 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4016 if (error)
4017 goto error0;
4018
4019 /*
4020 * Otherwise, we can't fix the imbalance.
4021 * Just return. This is probably a logic error, but it's not fatal.
4022 */
4023 } else {
4024 error = xfs_btree_dec_cursor(cur, level, stat);
4025 if (error)
4026 goto error0;
4027 return 0;
4028 }
4029
4030 rrecs = xfs_btree_get_numrecs(right);
4031 lrecs = xfs_btree_get_numrecs(left);
4032
4033 /*
4034 * We're now going to join "left" and "right" by moving all the stuff
4035 * in "right" to "left" and deleting "right".
4036 */
4037 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4038 if (level > 0) {
4039 /* It's a non-leaf. Move keys and pointers. */
4040 union xfs_btree_key *lkp; /* left btree key */
4041 union xfs_btree_ptr *lpp; /* left address pointer */
4042 union xfs_btree_key *rkp; /* right btree key */
4043 union xfs_btree_ptr *rpp; /* right address pointer */
4044
4045 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4046 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4047 rkp = xfs_btree_key_addr(cur, 1, right);
4048 rpp = xfs_btree_ptr_addr(cur, 1, right);
4049
4050 for (i = 1; i < rrecs; i++) {
4051 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4052 if (error)
4053 goto error0;
4054 }
4055
4056 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4057 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4058
4059 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4060 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4061 } else {
4062 /* It's a leaf. Move records. */
4063 union xfs_btree_rec *lrp; /* left record pointer */
4064 union xfs_btree_rec *rrp; /* right record pointer */
4065
4066 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4067 rrp = xfs_btree_rec_addr(cur, 1, right);
4068
4069 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4070 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4071 }
4072
4073 XFS_BTREE_STATS_INC(cur, join);
4074
4075 /*
4076 * Fix up the number of records and right block pointer in the
4077 * surviving block, and log it.
4078 */
4079 xfs_btree_set_numrecs(left, lrecs + rrecs);
4080 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4081 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4082 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4083
4084 /* If there is a right sibling, point it to the remaining block. */
4085 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4086 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4087 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4088 if (error)
4089 goto error0;
4090 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4091 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4092 }
4093
4094 /* Free the deleted block. */
4095 error = xfs_btree_free_block(cur, rbp);
4096 if (error)
4097 goto error0;
4098
4099 /*
4100 * If we joined with the left neighbor, set the buffer in the
4101 * cursor to the left block, and fix up the index.
4102 */
4103 if (bp != lbp) {
4104 cur->bc_bufs[level] = lbp;
4105 cur->bc_ptrs[level] += lrecs;
4106 cur->bc_ra[level] = 0;
4107 }
4108 /*
4109 * If we joined with the right neighbor and there's a level above
4110 * us, increment the cursor at that level.
4111 */
4112 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4113 (level + 1 < cur->bc_nlevels)) {
4114 error = xfs_btree_increment(cur, level + 1, &i);
4115 if (error)
4116 goto error0;
4117 }
4118
4119 /*
4120 * Readjust the ptr at this level if it's not a leaf, since it's
4121 * still pointing at the deletion point, which makes the cursor
4122 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4123 * We can't use decrement because it would change the next level up.
4124 */
4125 if (level > 0)
4126 cur->bc_ptrs[level]--;
4127
4128 /*
4129 * We combined blocks, so we have to update the parent keys if the
4130 * btree supports overlapped intervals. However, bc_ptrs[level + 1]
4131 * points to the old block so that the caller knows which record to
4132 * delete. Therefore, the caller must be savvy enough to call updkeys
4133 * for us if we return stat == 2. The other exit points from this
4134 * function don't require deletions further up the tree, so they can
4135 * call updkeys directly.
4136 */
4137
4138 /* Return value means the next level up has something to do. */
4139 *stat = 2;
4140 return 0;
4141
4142 error0:
4143 if (tcur)
4144 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4145 return error;
4146 }
4147
4148 /*
4149 * Delete the record pointed to by cur.
4150 * The cursor refers to the place where the record was (could be inserted)
4151 * when the operation returns.
4152 */
4153 int /* error */
xfs_btree_delete(struct xfs_btree_cur * cur,int * stat)4154 xfs_btree_delete(
4155 struct xfs_btree_cur *cur,
4156 int *stat) /* success/failure */
4157 {
4158 int error; /* error return value */
4159 int level;
4160 int i;
4161 bool joined = false;
4162
4163 /*
4164 * Go up the tree, starting at leaf level.
4165 *
4166 * If 2 is returned then a join was done; go to the next level.
4167 * Otherwise we are done.
4168 */
4169 for (level = 0, i = 2; i == 2; level++) {
4170 error = xfs_btree_delrec(cur, level, &i);
4171 if (error)
4172 goto error0;
4173 if (i == 2)
4174 joined = true;
4175 }
4176
4177 /*
4178 * If we combined blocks as part of deleting the record, delrec won't
4179 * have updated the parent high keys so we have to do that here.
4180 */
4181 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4182 error = xfs_btree_updkeys_force(cur, 0);
4183 if (error)
4184 goto error0;
4185 }
4186
4187 if (i == 0) {
4188 for (level = 1; level < cur->bc_nlevels; level++) {
4189 if (cur->bc_ptrs[level] == 0) {
4190 error = xfs_btree_decrement(cur, level, &i);
4191 if (error)
4192 goto error0;
4193 break;
4194 }
4195 }
4196 }
4197
4198 *stat = i;
4199 return 0;
4200 error0:
4201 return error;
4202 }
4203
4204 /*
4205 * Get the data from the pointed-to record.
4206 */
4207 int /* error */
xfs_btree_get_rec(struct xfs_btree_cur * cur,union xfs_btree_rec ** recp,int * stat)4208 xfs_btree_get_rec(
4209 struct xfs_btree_cur *cur, /* btree cursor */
4210 union xfs_btree_rec **recp, /* output: btree record */
4211 int *stat) /* output: success/failure */
4212 {
4213 struct xfs_btree_block *block; /* btree block */
4214 struct xfs_buf *bp; /* buffer pointer */
4215 int ptr; /* record number */
4216 #ifdef DEBUG
4217 int error; /* error return value */
4218 #endif
4219
4220 ptr = cur->bc_ptrs[0];
4221 block = xfs_btree_get_block(cur, 0, &bp);
4222
4223 #ifdef DEBUG
4224 error = xfs_btree_check_block(cur, block, 0, bp);
4225 if (error)
4226 return error;
4227 #endif
4228
4229 /*
4230 * Off the right end or left end, return failure.
4231 */
4232 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4233 *stat = 0;
4234 return 0;
4235 }
4236
4237 /*
4238 * Point to the record and extract its data.
4239 */
4240 *recp = xfs_btree_rec_addr(cur, ptr, block);
4241 *stat = 1;
4242 return 0;
4243 }
4244
4245 /* Visit a block in a btree. */
4246 STATIC int
xfs_btree_visit_block(struct xfs_btree_cur * cur,int level,xfs_btree_visit_blocks_fn fn,void * data)4247 xfs_btree_visit_block(
4248 struct xfs_btree_cur *cur,
4249 int level,
4250 xfs_btree_visit_blocks_fn fn,
4251 void *data)
4252 {
4253 struct xfs_btree_block *block;
4254 struct xfs_buf *bp;
4255 union xfs_btree_ptr rptr;
4256 int error;
4257
4258 /* do right sibling readahead */
4259 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4260 block = xfs_btree_get_block(cur, level, &bp);
4261
4262 /* process the block */
4263 error = fn(cur, level, data);
4264 if (error)
4265 return error;
4266
4267 /* now read rh sibling block for next iteration */
4268 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4269 if (xfs_btree_ptr_is_null(cur, &rptr))
4270 return -ENOENT;
4271
4272 return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4273 }
4274
4275
4276 /* Visit every block in a btree. */
4277 int
xfs_btree_visit_blocks(struct xfs_btree_cur * cur,xfs_btree_visit_blocks_fn fn,unsigned int flags,void * data)4278 xfs_btree_visit_blocks(
4279 struct xfs_btree_cur *cur,
4280 xfs_btree_visit_blocks_fn fn,
4281 unsigned int flags,
4282 void *data)
4283 {
4284 union xfs_btree_ptr lptr;
4285 int level;
4286 struct xfs_btree_block *block = NULL;
4287 int error = 0;
4288
4289 cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4290
4291 /* for each level */
4292 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4293 /* grab the left hand block */
4294 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4295 if (error)
4296 return error;
4297
4298 /* readahead the left most block for the next level down */
4299 if (level > 0) {
4300 union xfs_btree_ptr *ptr;
4301
4302 ptr = xfs_btree_ptr_addr(cur, 1, block);
4303 xfs_btree_readahead_ptr(cur, ptr, 1);
4304
4305 /* save for the next iteration of the loop */
4306 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4307
4308 if (!(flags & XFS_BTREE_VISIT_LEAVES))
4309 continue;
4310 } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4311 continue;
4312 }
4313
4314 /* for each buffer in the level */
4315 do {
4316 error = xfs_btree_visit_block(cur, level, fn, data);
4317 } while (!error);
4318
4319 if (error != -ENOENT)
4320 return error;
4321 }
4322
4323 return 0;
4324 }
4325
4326 /*
4327 * Change the owner of a btree.
4328 *
4329 * The mechanism we use here is ordered buffer logging. Because we don't know
4330 * how many buffers were are going to need to modify, we don't really want to
4331 * have to make transaction reservations for the worst case of every buffer in a
4332 * full size btree as that may be more space that we can fit in the log....
4333 *
4334 * We do the btree walk in the most optimal manner possible - we have sibling
4335 * pointers so we can just walk all the blocks on each level from left to right
4336 * in a single pass, and then move to the next level and do the same. We can
4337 * also do readahead on the sibling pointers to get IO moving more quickly,
4338 * though for slow disks this is unlikely to make much difference to performance
4339 * as the amount of CPU work we have to do before moving to the next block is
4340 * relatively small.
4341 *
4342 * For each btree block that we load, modify the owner appropriately, set the
4343 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4344 * we mark the region we change dirty so that if the buffer is relogged in
4345 * a subsequent transaction the changes we make here as an ordered buffer are
4346 * correctly relogged in that transaction. If we are in recovery context, then
4347 * just queue the modified buffer as delayed write buffer so the transaction
4348 * recovery completion writes the changes to disk.
4349 */
4350 struct xfs_btree_block_change_owner_info {
4351 uint64_t new_owner;
4352 struct list_head *buffer_list;
4353 };
4354
4355 static int
xfs_btree_block_change_owner(struct xfs_btree_cur * cur,int level,void * data)4356 xfs_btree_block_change_owner(
4357 struct xfs_btree_cur *cur,
4358 int level,
4359 void *data)
4360 {
4361 struct xfs_btree_block_change_owner_info *bbcoi = data;
4362 struct xfs_btree_block *block;
4363 struct xfs_buf *bp;
4364
4365 /* modify the owner */
4366 block = xfs_btree_get_block(cur, level, &bp);
4367 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4368 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4369 return 0;
4370 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4371 } else {
4372 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4373 return 0;
4374 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4375 }
4376
4377 /*
4378 * If the block is a root block hosted in an inode, we might not have a
4379 * buffer pointer here and we shouldn't attempt to log the change as the
4380 * information is already held in the inode and discarded when the root
4381 * block is formatted into the on-disk inode fork. We still change it,
4382 * though, so everything is consistent in memory.
4383 */
4384 if (!bp) {
4385 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4386 ASSERT(level == cur->bc_nlevels - 1);
4387 return 0;
4388 }
4389
4390 if (cur->bc_tp) {
4391 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4392 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4393 return -EAGAIN;
4394 }
4395 } else {
4396 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4397 }
4398
4399 return 0;
4400 }
4401
4402 int
xfs_btree_change_owner(struct xfs_btree_cur * cur,uint64_t new_owner,struct list_head * buffer_list)4403 xfs_btree_change_owner(
4404 struct xfs_btree_cur *cur,
4405 uint64_t new_owner,
4406 struct list_head *buffer_list)
4407 {
4408 struct xfs_btree_block_change_owner_info bbcoi;
4409
4410 bbcoi.new_owner = new_owner;
4411 bbcoi.buffer_list = buffer_list;
4412
4413 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4414 XFS_BTREE_VISIT_ALL, &bbcoi);
4415 }
4416
4417 /* Verify the v5 fields of a long-format btree block. */
4418 xfs_failaddr_t
xfs_btree_lblock_v5hdr_verify(struct xfs_buf * bp,uint64_t owner)4419 xfs_btree_lblock_v5hdr_verify(
4420 struct xfs_buf *bp,
4421 uint64_t owner)
4422 {
4423 struct xfs_mount *mp = bp->b_mount;
4424 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4425
4426 if (!xfs_sb_version_hascrc(&mp->m_sb))
4427 return __this_address;
4428 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4429 return __this_address;
4430 if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn))
4431 return __this_address;
4432 if (owner != XFS_RMAP_OWN_UNKNOWN &&
4433 be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4434 return __this_address;
4435 return NULL;
4436 }
4437
4438 /* Verify a long-format btree block. */
4439 xfs_failaddr_t
xfs_btree_lblock_verify(struct xfs_buf * bp,unsigned int max_recs)4440 xfs_btree_lblock_verify(
4441 struct xfs_buf *bp,
4442 unsigned int max_recs)
4443 {
4444 struct xfs_mount *mp = bp->b_mount;
4445 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4446
4447 /* numrecs verification */
4448 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4449 return __this_address;
4450
4451 /* sibling pointer verification */
4452 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
4453 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
4454 return __this_address;
4455 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
4456 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
4457 return __this_address;
4458
4459 return NULL;
4460 }
4461
4462 /**
4463 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4464 * btree block
4465 *
4466 * @bp: buffer containing the btree block
4467 */
4468 xfs_failaddr_t
xfs_btree_sblock_v5hdr_verify(struct xfs_buf * bp)4469 xfs_btree_sblock_v5hdr_verify(
4470 struct xfs_buf *bp)
4471 {
4472 struct xfs_mount *mp = bp->b_mount;
4473 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4474 struct xfs_perag *pag = bp->b_pag;
4475
4476 if (!xfs_sb_version_hascrc(&mp->m_sb))
4477 return __this_address;
4478 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4479 return __this_address;
4480 if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4481 return __this_address;
4482 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4483 return __this_address;
4484 return NULL;
4485 }
4486
4487 /**
4488 * xfs_btree_sblock_verify() -- verify a short-format btree block
4489 *
4490 * @bp: buffer containing the btree block
4491 * @max_recs: maximum records allowed in this btree node
4492 */
4493 xfs_failaddr_t
xfs_btree_sblock_verify(struct xfs_buf * bp,unsigned int max_recs)4494 xfs_btree_sblock_verify(
4495 struct xfs_buf *bp,
4496 unsigned int max_recs)
4497 {
4498 struct xfs_mount *mp = bp->b_mount;
4499 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4500 xfs_agblock_t agno;
4501
4502 /* numrecs verification */
4503 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4504 return __this_address;
4505
4506 /* sibling pointer verification */
4507 agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
4508 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
4509 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
4510 return __this_address;
4511 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
4512 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
4513 return __this_address;
4514
4515 return NULL;
4516 }
4517
4518 /*
4519 * Calculate the number of btree levels needed to store a given number of
4520 * records in a short-format btree.
4521 */
4522 uint
xfs_btree_compute_maxlevels(uint * limits,unsigned long len)4523 xfs_btree_compute_maxlevels(
4524 uint *limits,
4525 unsigned long len)
4526 {
4527 uint level;
4528 unsigned long maxblocks;
4529
4530 maxblocks = (len + limits[0] - 1) / limits[0];
4531 for (level = 1; maxblocks > 1; level++)
4532 maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4533 return level;
4534 }
4535
4536 /*
4537 * Query a regular btree for all records overlapping a given interval.
4538 * Start with a LE lookup of the key of low_rec and return all records
4539 * until we find a record with a key greater than the key of high_rec.
4540 */
4541 STATIC int
xfs_btree_simple_query_range(struct xfs_btree_cur * cur,union xfs_btree_key * low_key,union xfs_btree_key * high_key,xfs_btree_query_range_fn fn,void * priv)4542 xfs_btree_simple_query_range(
4543 struct xfs_btree_cur *cur,
4544 union xfs_btree_key *low_key,
4545 union xfs_btree_key *high_key,
4546 xfs_btree_query_range_fn fn,
4547 void *priv)
4548 {
4549 union xfs_btree_rec *recp;
4550 union xfs_btree_key rec_key;
4551 int64_t diff;
4552 int stat;
4553 bool firstrec = true;
4554 int error;
4555
4556 ASSERT(cur->bc_ops->init_high_key_from_rec);
4557 ASSERT(cur->bc_ops->diff_two_keys);
4558
4559 /*
4560 * Find the leftmost record. The btree cursor must be set
4561 * to the low record used to generate low_key.
4562 */
4563 stat = 0;
4564 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4565 if (error)
4566 goto out;
4567
4568 /* Nothing? See if there's anything to the right. */
4569 if (!stat) {
4570 error = xfs_btree_increment(cur, 0, &stat);
4571 if (error)
4572 goto out;
4573 }
4574
4575 while (stat) {
4576 /* Find the record. */
4577 error = xfs_btree_get_rec(cur, &recp, &stat);
4578 if (error || !stat)
4579 break;
4580
4581 /* Skip if high_key(rec) < low_key. */
4582 if (firstrec) {
4583 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4584 firstrec = false;
4585 diff = cur->bc_ops->diff_two_keys(cur, low_key,
4586 &rec_key);
4587 if (diff > 0)
4588 goto advloop;
4589 }
4590
4591 /* Stop if high_key < low_key(rec). */
4592 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4593 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4594 if (diff > 0)
4595 break;
4596
4597 /* Callback */
4598 error = fn(cur, recp, priv);
4599 if (error)
4600 break;
4601
4602 advloop:
4603 /* Move on to the next record. */
4604 error = xfs_btree_increment(cur, 0, &stat);
4605 if (error)
4606 break;
4607 }
4608
4609 out:
4610 return error;
4611 }
4612
4613 /*
4614 * Query an overlapped interval btree for all records overlapping a given
4615 * interval. This function roughly follows the algorithm given in
4616 * "Interval Trees" of _Introduction to Algorithms_, which is section
4617 * 14.3 in the 2nd and 3rd editions.
4618 *
4619 * First, generate keys for the low and high records passed in.
4620 *
4621 * For any leaf node, generate the high and low keys for the record.
4622 * If the record keys overlap with the query low/high keys, pass the
4623 * record to the function iterator.
4624 *
4625 * For any internal node, compare the low and high keys of each
4626 * pointer against the query low/high keys. If there's an overlap,
4627 * follow the pointer.
4628 *
4629 * As an optimization, we stop scanning a block when we find a low key
4630 * that is greater than the query's high key.
4631 */
4632 STATIC int
xfs_btree_overlapped_query_range(struct xfs_btree_cur * cur,union xfs_btree_key * low_key,union xfs_btree_key * high_key,xfs_btree_query_range_fn fn,void * priv)4633 xfs_btree_overlapped_query_range(
4634 struct xfs_btree_cur *cur,
4635 union xfs_btree_key *low_key,
4636 union xfs_btree_key *high_key,
4637 xfs_btree_query_range_fn fn,
4638 void *priv)
4639 {
4640 union xfs_btree_ptr ptr;
4641 union xfs_btree_ptr *pp;
4642 union xfs_btree_key rec_key;
4643 union xfs_btree_key rec_hkey;
4644 union xfs_btree_key *lkp;
4645 union xfs_btree_key *hkp;
4646 union xfs_btree_rec *recp;
4647 struct xfs_btree_block *block;
4648 int64_t ldiff;
4649 int64_t hdiff;
4650 int level;
4651 struct xfs_buf *bp;
4652 int i;
4653 int error;
4654
4655 /* Load the root of the btree. */
4656 level = cur->bc_nlevels - 1;
4657 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4658 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4659 if (error)
4660 return error;
4661 xfs_btree_get_block(cur, level, &bp);
4662 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4663 #ifdef DEBUG
4664 error = xfs_btree_check_block(cur, block, level, bp);
4665 if (error)
4666 goto out;
4667 #endif
4668 cur->bc_ptrs[level] = 1;
4669
4670 while (level < cur->bc_nlevels) {
4671 block = xfs_btree_get_block(cur, level, &bp);
4672
4673 /* End of node, pop back towards the root. */
4674 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4675 pop_up:
4676 if (level < cur->bc_nlevels - 1)
4677 cur->bc_ptrs[level + 1]++;
4678 level++;
4679 continue;
4680 }
4681
4682 if (level == 0) {
4683 /* Handle a leaf node. */
4684 recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4685
4686 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4687 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4688 low_key);
4689
4690 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4691 hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4692 &rec_key);
4693
4694 /*
4695 * If (record's high key >= query's low key) and
4696 * (query's high key >= record's low key), then
4697 * this record overlaps the query range; callback.
4698 */
4699 if (ldiff >= 0 && hdiff >= 0) {
4700 error = fn(cur, recp, priv);
4701 if (error)
4702 break;
4703 } else if (hdiff < 0) {
4704 /* Record is larger than high key; pop. */
4705 goto pop_up;
4706 }
4707 cur->bc_ptrs[level]++;
4708 continue;
4709 }
4710
4711 /* Handle an internal node. */
4712 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4713 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4714 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4715
4716 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4717 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4718
4719 /*
4720 * If (pointer's high key >= query's low key) and
4721 * (query's high key >= pointer's low key), then
4722 * this record overlaps the query range; follow pointer.
4723 */
4724 if (ldiff >= 0 && hdiff >= 0) {
4725 level--;
4726 error = xfs_btree_lookup_get_block(cur, level, pp,
4727 &block);
4728 if (error)
4729 goto out;
4730 xfs_btree_get_block(cur, level, &bp);
4731 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4732 #ifdef DEBUG
4733 error = xfs_btree_check_block(cur, block, level, bp);
4734 if (error)
4735 goto out;
4736 #endif
4737 cur->bc_ptrs[level] = 1;
4738 continue;
4739 } else if (hdiff < 0) {
4740 /* The low key is larger than the upper range; pop. */
4741 goto pop_up;
4742 }
4743 cur->bc_ptrs[level]++;
4744 }
4745
4746 out:
4747 /*
4748 * If we don't end this function with the cursor pointing at a record
4749 * block, a subsequent non-error cursor deletion will not release
4750 * node-level buffers, causing a buffer leak. This is quite possible
4751 * with a zero-results range query, so release the buffers if we
4752 * failed to return any results.
4753 */
4754 if (cur->bc_bufs[0] == NULL) {
4755 for (i = 0; i < cur->bc_nlevels; i++) {
4756 if (cur->bc_bufs[i]) {
4757 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4758 cur->bc_bufs[i] = NULL;
4759 cur->bc_ptrs[i] = 0;
4760 cur->bc_ra[i] = 0;
4761 }
4762 }
4763 }
4764
4765 return error;
4766 }
4767
4768 /*
4769 * Query a btree for all records overlapping a given interval of keys. The
4770 * supplied function will be called with each record found; return one of the
4771 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4772 * code. This function returns -ECANCELED, zero, or a negative error code.
4773 */
4774 int
xfs_btree_query_range(struct xfs_btree_cur * cur,union xfs_btree_irec * low_rec,union xfs_btree_irec * high_rec,xfs_btree_query_range_fn fn,void * priv)4775 xfs_btree_query_range(
4776 struct xfs_btree_cur *cur,
4777 union xfs_btree_irec *low_rec,
4778 union xfs_btree_irec *high_rec,
4779 xfs_btree_query_range_fn fn,
4780 void *priv)
4781 {
4782 union xfs_btree_rec rec;
4783 union xfs_btree_key low_key;
4784 union xfs_btree_key high_key;
4785
4786 /* Find the keys of both ends of the interval. */
4787 cur->bc_rec = *high_rec;
4788 cur->bc_ops->init_rec_from_cur(cur, &rec);
4789 cur->bc_ops->init_key_from_rec(&high_key, &rec);
4790
4791 cur->bc_rec = *low_rec;
4792 cur->bc_ops->init_rec_from_cur(cur, &rec);
4793 cur->bc_ops->init_key_from_rec(&low_key, &rec);
4794
4795 /* Enforce low key < high key. */
4796 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4797 return -EINVAL;
4798
4799 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4800 return xfs_btree_simple_query_range(cur, &low_key,
4801 &high_key, fn, priv);
4802 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4803 fn, priv);
4804 }
4805
4806 /* Query a btree for all records. */
4807 int
xfs_btree_query_all(struct xfs_btree_cur * cur,xfs_btree_query_range_fn fn,void * priv)4808 xfs_btree_query_all(
4809 struct xfs_btree_cur *cur,
4810 xfs_btree_query_range_fn fn,
4811 void *priv)
4812 {
4813 union xfs_btree_key low_key;
4814 union xfs_btree_key high_key;
4815
4816 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4817 memset(&low_key, 0, sizeof(low_key));
4818 memset(&high_key, 0xFF, sizeof(high_key));
4819
4820 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4821 }
4822
4823 /*
4824 * Calculate the number of blocks needed to store a given number of records
4825 * in a short-format (per-AG metadata) btree.
4826 */
4827 unsigned long long
xfs_btree_calc_size(uint * limits,unsigned long long len)4828 xfs_btree_calc_size(
4829 uint *limits,
4830 unsigned long long len)
4831 {
4832 int level;
4833 int maxrecs;
4834 unsigned long long rval;
4835
4836 maxrecs = limits[0];
4837 for (level = 0, rval = 0; len > 1; level++) {
4838 len += maxrecs - 1;
4839 do_div(len, maxrecs);
4840 maxrecs = limits[1];
4841 rval += len;
4842 }
4843 return rval;
4844 }
4845
4846 static int
xfs_btree_count_blocks_helper(struct xfs_btree_cur * cur,int level,void * data)4847 xfs_btree_count_blocks_helper(
4848 struct xfs_btree_cur *cur,
4849 int level,
4850 void *data)
4851 {
4852 xfs_extlen_t *blocks = data;
4853 (*blocks)++;
4854
4855 return 0;
4856 }
4857
4858 /* Count the blocks in a btree and return the result in *blocks. */
4859 int
xfs_btree_count_blocks(struct xfs_btree_cur * cur,xfs_extlen_t * blocks)4860 xfs_btree_count_blocks(
4861 struct xfs_btree_cur *cur,
4862 xfs_extlen_t *blocks)
4863 {
4864 *blocks = 0;
4865 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4866 XFS_BTREE_VISIT_ALL, blocks);
4867 }
4868
4869 /* Compare two btree pointers. */
4870 int64_t
xfs_btree_diff_two_ptrs(struct xfs_btree_cur * cur,const union xfs_btree_ptr * a,const union xfs_btree_ptr * b)4871 xfs_btree_diff_two_ptrs(
4872 struct xfs_btree_cur *cur,
4873 const union xfs_btree_ptr *a,
4874 const union xfs_btree_ptr *b)
4875 {
4876 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4877 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4878 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4879 }
4880
4881 /* If there's an extent, we're done. */
4882 STATIC int
xfs_btree_has_record_helper(struct xfs_btree_cur * cur,union xfs_btree_rec * rec,void * priv)4883 xfs_btree_has_record_helper(
4884 struct xfs_btree_cur *cur,
4885 union xfs_btree_rec *rec,
4886 void *priv)
4887 {
4888 return -ECANCELED;
4889 }
4890
4891 /* Is there a record covering a given range of keys? */
4892 int
xfs_btree_has_record(struct xfs_btree_cur * cur,union xfs_btree_irec * low,union xfs_btree_irec * high,bool * exists)4893 xfs_btree_has_record(
4894 struct xfs_btree_cur *cur,
4895 union xfs_btree_irec *low,
4896 union xfs_btree_irec *high,
4897 bool *exists)
4898 {
4899 int error;
4900
4901 error = xfs_btree_query_range(cur, low, high,
4902 &xfs_btree_has_record_helper, NULL);
4903 if (error == -ECANCELED) {
4904 *exists = true;
4905 return 0;
4906 }
4907 *exists = false;
4908 return error;
4909 }
4910
4911 /* Are there more records in this btree? */
4912 bool
xfs_btree_has_more_records(struct xfs_btree_cur * cur)4913 xfs_btree_has_more_records(
4914 struct xfs_btree_cur *cur)
4915 {
4916 struct xfs_btree_block *block;
4917 struct xfs_buf *bp;
4918
4919 block = xfs_btree_get_block(cur, 0, &bp);
4920
4921 /* There are still records in this block. */
4922 if (cur->bc_ptrs[0] < xfs_btree_get_numrecs(block))
4923 return true;
4924
4925 /* There are more record blocks. */
4926 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4927 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
4928 else
4929 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
4930 }
4931