1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_inode.h"
18 #include "xfs_inode_item.h"
19 #include "xfs_quota.h"
20 #include "xfs_dquot_item.h"
21 #include "xfs_dquot.h"
22 #include "xfs_trace.h"
23 #include "xfs_log.h"
24
25
26 kmem_zone_t *xfs_buf_item_zone;
27
BUF_ITEM(struct xfs_log_item * lip)28 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
29 {
30 return container_of(lip, struct xfs_buf_log_item, bli_item);
31 }
32
33 /* Is this log iovec plausibly large enough to contain the buffer log format? */
34 bool
xfs_buf_log_check_iovec(struct xfs_log_iovec * iovec)35 xfs_buf_log_check_iovec(
36 struct xfs_log_iovec *iovec)
37 {
38 struct xfs_buf_log_format *blfp = iovec->i_addr;
39 char *bmp_end;
40 char *item_end;
41
42 if (offsetof(struct xfs_buf_log_format, blf_data_map) > iovec->i_len)
43 return false;
44
45 item_end = (char *)iovec->i_addr + iovec->i_len;
46 bmp_end = (char *)&blfp->blf_data_map[blfp->blf_map_size];
47 return bmp_end <= item_end;
48 }
49
50 static inline int
xfs_buf_log_format_size(struct xfs_buf_log_format * blfp)51 xfs_buf_log_format_size(
52 struct xfs_buf_log_format *blfp)
53 {
54 return offsetof(struct xfs_buf_log_format, blf_data_map) +
55 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
56 }
57
58 /*
59 * Return the number of log iovecs and space needed to log the given buf log
60 * item segment.
61 *
62 * It calculates this as 1 iovec for the buf log format structure and 1 for each
63 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
64 * in a single iovec.
65 */
66 STATIC void
xfs_buf_item_size_segment(struct xfs_buf_log_item * bip,struct xfs_buf_log_format * blfp,int * nvecs,int * nbytes)67 xfs_buf_item_size_segment(
68 struct xfs_buf_log_item *bip,
69 struct xfs_buf_log_format *blfp,
70 int *nvecs,
71 int *nbytes)
72 {
73 struct xfs_buf *bp = bip->bli_buf;
74 int next_bit;
75 int last_bit;
76
77 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
78 if (last_bit == -1)
79 return;
80
81 /*
82 * initial count for a dirty buffer is 2 vectors - the format structure
83 * and the first dirty region.
84 */
85 *nvecs += 2;
86 *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
87
88 while (last_bit != -1) {
89 /*
90 * This takes the bit number to start looking from and
91 * returns the next set bit from there. It returns -1
92 * if there are no more bits set or the start bit is
93 * beyond the end of the bitmap.
94 */
95 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
96 last_bit + 1);
97 /*
98 * If we run out of bits, leave the loop,
99 * else if we find a new set of bits bump the number of vecs,
100 * else keep scanning the current set of bits.
101 */
102 if (next_bit == -1) {
103 break;
104 } else if (next_bit != last_bit + 1) {
105 last_bit = next_bit;
106 (*nvecs)++;
107 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
108 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
109 XFS_BLF_CHUNK)) {
110 last_bit = next_bit;
111 (*nvecs)++;
112 } else {
113 last_bit++;
114 }
115 *nbytes += XFS_BLF_CHUNK;
116 }
117 }
118
119 /*
120 * Return the number of log iovecs and space needed to log the given buf log
121 * item.
122 *
123 * Discontiguous buffers need a format structure per region that is being
124 * logged. This makes the changes in the buffer appear to log recovery as though
125 * they came from separate buffers, just like would occur if multiple buffers
126 * were used instead of a single discontiguous buffer. This enables
127 * discontiguous buffers to be in-memory constructs, completely transparent to
128 * what ends up on disk.
129 *
130 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
131 * format structures. If the item has previously been logged and has dirty
132 * regions, we do not relog them in stale buffers. This has the effect of
133 * reducing the size of the relogged item by the amount of dirty data tracked
134 * by the log item. This can result in the committing transaction reducing the
135 * amount of space being consumed by the CIL.
136 */
137 STATIC void
xfs_buf_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)138 xfs_buf_item_size(
139 struct xfs_log_item *lip,
140 int *nvecs,
141 int *nbytes)
142 {
143 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
144 int i;
145
146 ASSERT(atomic_read(&bip->bli_refcount) > 0);
147 if (bip->bli_flags & XFS_BLI_STALE) {
148 /*
149 * The buffer is stale, so all we need to log is the buf log
150 * format structure with the cancel flag in it as we are never
151 * going to replay the changes tracked in the log item.
152 */
153 trace_xfs_buf_item_size_stale(bip);
154 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
155 *nvecs += bip->bli_format_count;
156 for (i = 0; i < bip->bli_format_count; i++) {
157 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
158 }
159 return;
160 }
161
162 ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
163
164 if (bip->bli_flags & XFS_BLI_ORDERED) {
165 /*
166 * The buffer has been logged just to order it. It is not being
167 * included in the transaction commit, so no vectors are used at
168 * all.
169 */
170 trace_xfs_buf_item_size_ordered(bip);
171 *nvecs = XFS_LOG_VEC_ORDERED;
172 return;
173 }
174
175 /*
176 * the vector count is based on the number of buffer vectors we have
177 * dirty bits in. This will only be greater than one when we have a
178 * compound buffer with more than one segment dirty. Hence for compound
179 * buffers we need to track which segment the dirty bits correspond to,
180 * and when we move from one segment to the next increment the vector
181 * count for the extra buf log format structure that will need to be
182 * written.
183 */
184 for (i = 0; i < bip->bli_format_count; i++) {
185 xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
186 nvecs, nbytes);
187 }
188 trace_xfs_buf_item_size(bip);
189 }
190
191 static inline void
xfs_buf_item_copy_iovec(struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp,struct xfs_buf * bp,uint offset,int first_bit,uint nbits)192 xfs_buf_item_copy_iovec(
193 struct xfs_log_vec *lv,
194 struct xfs_log_iovec **vecp,
195 struct xfs_buf *bp,
196 uint offset,
197 int first_bit,
198 uint nbits)
199 {
200 offset += first_bit * XFS_BLF_CHUNK;
201 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
202 xfs_buf_offset(bp, offset),
203 nbits * XFS_BLF_CHUNK);
204 }
205
206 static inline bool
xfs_buf_item_straddle(struct xfs_buf * bp,uint offset,int next_bit,int last_bit)207 xfs_buf_item_straddle(
208 struct xfs_buf *bp,
209 uint offset,
210 int next_bit,
211 int last_bit)
212 {
213 return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
214 (xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
215 XFS_BLF_CHUNK);
216 }
217
218 static void
xfs_buf_item_format_segment(struct xfs_buf_log_item * bip,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp,uint offset,struct xfs_buf_log_format * blfp)219 xfs_buf_item_format_segment(
220 struct xfs_buf_log_item *bip,
221 struct xfs_log_vec *lv,
222 struct xfs_log_iovec **vecp,
223 uint offset,
224 struct xfs_buf_log_format *blfp)
225 {
226 struct xfs_buf *bp = bip->bli_buf;
227 uint base_size;
228 int first_bit;
229 int last_bit;
230 int next_bit;
231 uint nbits;
232
233 /* copy the flags across from the base format item */
234 blfp->blf_flags = bip->__bli_format.blf_flags;
235
236 /*
237 * Base size is the actual size of the ondisk structure - it reflects
238 * the actual size of the dirty bitmap rather than the size of the in
239 * memory structure.
240 */
241 base_size = xfs_buf_log_format_size(blfp);
242
243 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
244 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
245 /*
246 * If the map is not be dirty in the transaction, mark
247 * the size as zero and do not advance the vector pointer.
248 */
249 return;
250 }
251
252 blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
253 blfp->blf_size = 1;
254
255 if (bip->bli_flags & XFS_BLI_STALE) {
256 /*
257 * The buffer is stale, so all we need to log
258 * is the buf log format structure with the
259 * cancel flag in it.
260 */
261 trace_xfs_buf_item_format_stale(bip);
262 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
263 return;
264 }
265
266
267 /*
268 * Fill in an iovec for each set of contiguous chunks.
269 */
270 last_bit = first_bit;
271 nbits = 1;
272 for (;;) {
273 /*
274 * This takes the bit number to start looking from and
275 * returns the next set bit from there. It returns -1
276 * if there are no more bits set or the start bit is
277 * beyond the end of the bitmap.
278 */
279 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
280 (uint)last_bit + 1);
281 /*
282 * If we run out of bits fill in the last iovec and get out of
283 * the loop. Else if we start a new set of bits then fill in
284 * the iovec for the series we were looking at and start
285 * counting the bits in the new one. Else we're still in the
286 * same set of bits so just keep counting and scanning.
287 */
288 if (next_bit == -1) {
289 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
290 first_bit, nbits);
291 blfp->blf_size++;
292 break;
293 } else if (next_bit != last_bit + 1 ||
294 xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
295 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
296 first_bit, nbits);
297 blfp->blf_size++;
298 first_bit = next_bit;
299 last_bit = next_bit;
300 nbits = 1;
301 } else {
302 last_bit++;
303 nbits++;
304 }
305 }
306 }
307
308 /*
309 * This is called to fill in the vector of log iovecs for the
310 * given log buf item. It fills the first entry with a buf log
311 * format structure, and the rest point to contiguous chunks
312 * within the buffer.
313 */
314 STATIC void
xfs_buf_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)315 xfs_buf_item_format(
316 struct xfs_log_item *lip,
317 struct xfs_log_vec *lv)
318 {
319 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
320 struct xfs_buf *bp = bip->bli_buf;
321 struct xfs_log_iovec *vecp = NULL;
322 uint offset = 0;
323 int i;
324
325 ASSERT(atomic_read(&bip->bli_refcount) > 0);
326 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
327 (bip->bli_flags & XFS_BLI_STALE));
328 ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
329 (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
330 && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
331 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
332 (bip->bli_flags & XFS_BLI_STALE));
333
334
335 /*
336 * If it is an inode buffer, transfer the in-memory state to the
337 * format flags and clear the in-memory state.
338 *
339 * For buffer based inode allocation, we do not transfer
340 * this state if the inode buffer allocation has not yet been committed
341 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
342 * correct replay of the inode allocation.
343 *
344 * For icreate item based inode allocation, the buffers aren't written
345 * to the journal during allocation, and hence we should always tag the
346 * buffer as an inode buffer so that the correct unlinked list replay
347 * occurs during recovery.
348 */
349 if (bip->bli_flags & XFS_BLI_INODE_BUF) {
350 if (xfs_sb_version_has_v3inode(&lip->li_mountp->m_sb) ||
351 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
352 xfs_log_item_in_current_chkpt(lip)))
353 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
354 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
355 }
356
357 for (i = 0; i < bip->bli_format_count; i++) {
358 xfs_buf_item_format_segment(bip, lv, &vecp, offset,
359 &bip->bli_formats[i]);
360 offset += BBTOB(bp->b_maps[i].bm_len);
361 }
362
363 /*
364 * Check to make sure everything is consistent.
365 */
366 trace_xfs_buf_item_format(bip);
367 }
368
369 /*
370 * This is called to pin the buffer associated with the buf log item in memory
371 * so it cannot be written out.
372 *
373 * We also always take a reference to the buffer log item here so that the bli
374 * is held while the item is pinned in memory. This means that we can
375 * unconditionally drop the reference count a transaction holds when the
376 * transaction is completed.
377 */
378 STATIC void
xfs_buf_item_pin(struct xfs_log_item * lip)379 xfs_buf_item_pin(
380 struct xfs_log_item *lip)
381 {
382 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
383
384 ASSERT(atomic_read(&bip->bli_refcount) > 0);
385 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
386 (bip->bli_flags & XFS_BLI_ORDERED) ||
387 (bip->bli_flags & XFS_BLI_STALE));
388
389 trace_xfs_buf_item_pin(bip);
390
391 atomic_inc(&bip->bli_refcount);
392 atomic_inc(&bip->bli_buf->b_pin_count);
393 }
394
395 /*
396 * This is called to unpin the buffer associated with the buf log item which
397 * was previously pinned with a call to xfs_buf_item_pin().
398 */
399 STATIC void
xfs_buf_item_unpin(struct xfs_log_item * lip,int remove)400 xfs_buf_item_unpin(
401 struct xfs_log_item *lip,
402 int remove)
403 {
404 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
405 xfs_buf_t *bp = bip->bli_buf;
406 int stale = bip->bli_flags & XFS_BLI_STALE;
407 int freed;
408
409 ASSERT(bp->b_log_item == bip);
410 ASSERT(atomic_read(&bip->bli_refcount) > 0);
411
412 trace_xfs_buf_item_unpin(bip);
413
414 /*
415 * Drop the bli ref associated with the pin and grab the hold required
416 * for the I/O simulation failure in the abort case. We have to do this
417 * before the pin count drops because the AIL doesn't acquire a bli
418 * reference. Therefore if the refcount drops to zero, the bli could
419 * still be AIL resident and the buffer submitted for I/O (and freed on
420 * completion) at any point before we return. This can be removed once
421 * the AIL properly holds a reference on the bli.
422 */
423 freed = atomic_dec_and_test(&bip->bli_refcount);
424 if (freed && !stale && remove)
425 xfs_buf_hold(bp);
426 if (atomic_dec_and_test(&bp->b_pin_count))
427 wake_up_all(&bp->b_waiters);
428
429 /* nothing to do but drop the pin count if the bli is active */
430 if (!freed)
431 return;
432
433 if (stale) {
434 ASSERT(bip->bli_flags & XFS_BLI_STALE);
435 ASSERT(xfs_buf_islocked(bp));
436 ASSERT(bp->b_flags & XBF_STALE);
437 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
438 ASSERT(list_empty(&lip->li_trans));
439 ASSERT(!bp->b_transp);
440
441 trace_xfs_buf_item_unpin_stale(bip);
442
443 /*
444 * If we get called here because of an IO error, we may or may
445 * not have the item on the AIL. xfs_trans_ail_delete() will
446 * take care of that situation. xfs_trans_ail_delete() drops
447 * the AIL lock.
448 */
449 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
450 xfs_buf_item_done(bp);
451 xfs_buf_inode_iodone(bp);
452 ASSERT(list_empty(&bp->b_li_list));
453 } else {
454 xfs_trans_ail_delete(lip, SHUTDOWN_LOG_IO_ERROR);
455 xfs_buf_item_relse(bp);
456 ASSERT(bp->b_log_item == NULL);
457 }
458 xfs_buf_relse(bp);
459 } else if (remove) {
460 /*
461 * The buffer must be locked and held by the caller to simulate
462 * an async I/O failure. We acquired the hold for this case
463 * before the buffer was unpinned.
464 */
465 xfs_buf_lock(bp);
466 bp->b_flags |= XBF_ASYNC;
467 xfs_buf_ioend_fail(bp);
468 }
469 }
470
471 STATIC uint
xfs_buf_item_push(struct xfs_log_item * lip,struct list_head * buffer_list)472 xfs_buf_item_push(
473 struct xfs_log_item *lip,
474 struct list_head *buffer_list)
475 {
476 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
477 struct xfs_buf *bp = bip->bli_buf;
478 uint rval = XFS_ITEM_SUCCESS;
479
480 if (xfs_buf_ispinned(bp))
481 return XFS_ITEM_PINNED;
482 if (!xfs_buf_trylock(bp)) {
483 /*
484 * If we have just raced with a buffer being pinned and it has
485 * been marked stale, we could end up stalling until someone else
486 * issues a log force to unpin the stale buffer. Check for the
487 * race condition here so xfsaild recognizes the buffer is pinned
488 * and queues a log force to move it along.
489 */
490 if (xfs_buf_ispinned(bp))
491 return XFS_ITEM_PINNED;
492 return XFS_ITEM_LOCKED;
493 }
494
495 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
496
497 trace_xfs_buf_item_push(bip);
498
499 /* has a previous flush failed due to IO errors? */
500 if (bp->b_flags & XBF_WRITE_FAIL) {
501 xfs_buf_alert_ratelimited(bp, "XFS: Failing async write",
502 "Failing async write on buffer block 0x%llx. Retrying async write.",
503 (long long)bp->b_bn);
504 }
505
506 if (!xfs_buf_delwri_queue(bp, buffer_list))
507 rval = XFS_ITEM_FLUSHING;
508 xfs_buf_unlock(bp);
509 return rval;
510 }
511
512 /*
513 * Drop the buffer log item refcount and take appropriate action. This helper
514 * determines whether the bli must be freed or not, since a decrement to zero
515 * does not necessarily mean the bli is unused.
516 *
517 * Return true if the bli is freed, false otherwise.
518 */
519 bool
xfs_buf_item_put(struct xfs_buf_log_item * bip)520 xfs_buf_item_put(
521 struct xfs_buf_log_item *bip)
522 {
523 struct xfs_log_item *lip = &bip->bli_item;
524 bool aborted;
525 bool dirty;
526
527 /* drop the bli ref and return if it wasn't the last one */
528 if (!atomic_dec_and_test(&bip->bli_refcount))
529 return false;
530
531 /*
532 * We dropped the last ref and must free the item if clean or aborted.
533 * If the bli is dirty and non-aborted, the buffer was clean in the
534 * transaction but still awaiting writeback from previous changes. In
535 * that case, the bli is freed on buffer writeback completion.
536 */
537 aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) ||
538 XFS_FORCED_SHUTDOWN(lip->li_mountp);
539 dirty = bip->bli_flags & XFS_BLI_DIRTY;
540 if (dirty && !aborted)
541 return false;
542
543 /*
544 * The bli is aborted or clean. An aborted item may be in the AIL
545 * regardless of dirty state. For example, consider an aborted
546 * transaction that invalidated a dirty bli and cleared the dirty
547 * state.
548 */
549 if (aborted)
550 xfs_trans_ail_delete(lip, 0);
551 xfs_buf_item_relse(bip->bli_buf);
552 return true;
553 }
554
555 /*
556 * Release the buffer associated with the buf log item. If there is no dirty
557 * logged data associated with the buffer recorded in the buf log item, then
558 * free the buf log item and remove the reference to it in the buffer.
559 *
560 * This call ignores the recursion count. It is only called when the buffer
561 * should REALLY be unlocked, regardless of the recursion count.
562 *
563 * We unconditionally drop the transaction's reference to the log item. If the
564 * item was logged, then another reference was taken when it was pinned, so we
565 * can safely drop the transaction reference now. This also allows us to avoid
566 * potential races with the unpin code freeing the bli by not referencing the
567 * bli after we've dropped the reference count.
568 *
569 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
570 * if necessary but do not unlock the buffer. This is for support of
571 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
572 * free the item.
573 */
574 STATIC void
xfs_buf_item_release(struct xfs_log_item * lip)575 xfs_buf_item_release(
576 struct xfs_log_item *lip)
577 {
578 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
579 struct xfs_buf *bp = bip->bli_buf;
580 bool released;
581 bool hold = bip->bli_flags & XFS_BLI_HOLD;
582 bool stale = bip->bli_flags & XFS_BLI_STALE;
583 #if defined(DEBUG) || defined(XFS_WARN)
584 bool ordered = bip->bli_flags & XFS_BLI_ORDERED;
585 bool dirty = bip->bli_flags & XFS_BLI_DIRTY;
586 bool aborted = test_bit(XFS_LI_ABORTED,
587 &lip->li_flags);
588 #endif
589
590 trace_xfs_buf_item_release(bip);
591
592 /*
593 * The bli dirty state should match whether the blf has logged segments
594 * except for ordered buffers, where only the bli should be dirty.
595 */
596 ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
597 (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
598 ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
599
600 /*
601 * Clear the buffer's association with this transaction and
602 * per-transaction state from the bli, which has been copied above.
603 */
604 bp->b_transp = NULL;
605 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
606
607 /*
608 * Unref the item and unlock the buffer unless held or stale. Stale
609 * buffers remain locked until final unpin unless the bli is freed by
610 * the unref call. The latter implies shutdown because buffer
611 * invalidation dirties the bli and transaction.
612 */
613 released = xfs_buf_item_put(bip);
614 if (hold || (stale && !released))
615 return;
616 ASSERT(!stale || aborted);
617 xfs_buf_relse(bp);
618 }
619
620 STATIC void
xfs_buf_item_committing(struct xfs_log_item * lip,xfs_csn_t seq)621 xfs_buf_item_committing(
622 struct xfs_log_item *lip,
623 xfs_csn_t seq)
624 {
625 return xfs_buf_item_release(lip);
626 }
627
628 /*
629 * This is called to find out where the oldest active copy of the
630 * buf log item in the on disk log resides now that the last log
631 * write of it completed at the given lsn.
632 * We always re-log all the dirty data in a buffer, so usually the
633 * latest copy in the on disk log is the only one that matters. For
634 * those cases we simply return the given lsn.
635 *
636 * The one exception to this is for buffers full of newly allocated
637 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
638 * flag set, indicating that only the di_next_unlinked fields from the
639 * inodes in the buffers will be replayed during recovery. If the
640 * original newly allocated inode images have not yet been flushed
641 * when the buffer is so relogged, then we need to make sure that we
642 * keep the old images in the 'active' portion of the log. We do this
643 * by returning the original lsn of that transaction here rather than
644 * the current one.
645 */
646 STATIC xfs_lsn_t
xfs_buf_item_committed(struct xfs_log_item * lip,xfs_lsn_t lsn)647 xfs_buf_item_committed(
648 struct xfs_log_item *lip,
649 xfs_lsn_t lsn)
650 {
651 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
652
653 trace_xfs_buf_item_committed(bip);
654
655 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
656 return lip->li_lsn;
657 return lsn;
658 }
659
660 static const struct xfs_item_ops xfs_buf_item_ops = {
661 .iop_size = xfs_buf_item_size,
662 .iop_format = xfs_buf_item_format,
663 .iop_pin = xfs_buf_item_pin,
664 .iop_unpin = xfs_buf_item_unpin,
665 .iop_release = xfs_buf_item_release,
666 .iop_committing = xfs_buf_item_committing,
667 .iop_committed = xfs_buf_item_committed,
668 .iop_push = xfs_buf_item_push,
669 };
670
671 STATIC void
xfs_buf_item_get_format(struct xfs_buf_log_item * bip,int count)672 xfs_buf_item_get_format(
673 struct xfs_buf_log_item *bip,
674 int count)
675 {
676 ASSERT(bip->bli_formats == NULL);
677 bip->bli_format_count = count;
678
679 if (count == 1) {
680 bip->bli_formats = &bip->__bli_format;
681 return;
682 }
683
684 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
685 0);
686 }
687
688 STATIC void
xfs_buf_item_free_format(struct xfs_buf_log_item * bip)689 xfs_buf_item_free_format(
690 struct xfs_buf_log_item *bip)
691 {
692 if (bip->bli_formats != &bip->__bli_format) {
693 kmem_free(bip->bli_formats);
694 bip->bli_formats = NULL;
695 }
696 }
697
698 /*
699 * Allocate a new buf log item to go with the given buffer.
700 * Set the buffer's b_log_item field to point to the new
701 * buf log item.
702 */
703 int
xfs_buf_item_init(struct xfs_buf * bp,struct xfs_mount * mp)704 xfs_buf_item_init(
705 struct xfs_buf *bp,
706 struct xfs_mount *mp)
707 {
708 struct xfs_buf_log_item *bip = bp->b_log_item;
709 int chunks;
710 int map_size;
711 int i;
712
713 /*
714 * Check to see if there is already a buf log item for
715 * this buffer. If we do already have one, there is
716 * nothing to do here so return.
717 */
718 ASSERT(bp->b_mount == mp);
719 if (bip) {
720 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
721 ASSERT(!bp->b_transp);
722 ASSERT(bip->bli_buf == bp);
723 return 0;
724 }
725
726 bip = kmem_cache_zalloc(xfs_buf_item_zone, GFP_KERNEL | __GFP_NOFAIL);
727 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
728 bip->bli_buf = bp;
729
730 /*
731 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
732 * can be divided into. Make sure not to truncate any pieces.
733 * map_size is the size of the bitmap needed to describe the
734 * chunks of the buffer.
735 *
736 * Discontiguous buffer support follows the layout of the underlying
737 * buffer. This makes the implementation as simple as possible.
738 */
739 xfs_buf_item_get_format(bip, bp->b_map_count);
740
741 for (i = 0; i < bip->bli_format_count; i++) {
742 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
743 XFS_BLF_CHUNK);
744 map_size = DIV_ROUND_UP(chunks, NBWORD);
745
746 if (map_size > XFS_BLF_DATAMAP_SIZE) {
747 kmem_cache_free(xfs_buf_item_zone, bip);
748 xfs_err(mp,
749 "buffer item dirty bitmap (%u uints) too small to reflect %u bytes!",
750 map_size,
751 BBTOB(bp->b_maps[i].bm_len));
752 return -EFSCORRUPTED;
753 }
754
755 bip->bli_formats[i].blf_type = XFS_LI_BUF;
756 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
757 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
758 bip->bli_formats[i].blf_map_size = map_size;
759 }
760
761 bp->b_log_item = bip;
762 xfs_buf_hold(bp);
763 return 0;
764 }
765
766
767 /*
768 * Mark bytes first through last inclusive as dirty in the buf
769 * item's bitmap.
770 */
771 static void
xfs_buf_item_log_segment(uint first,uint last,uint * map)772 xfs_buf_item_log_segment(
773 uint first,
774 uint last,
775 uint *map)
776 {
777 uint first_bit;
778 uint last_bit;
779 uint bits_to_set;
780 uint bits_set;
781 uint word_num;
782 uint *wordp;
783 uint bit;
784 uint end_bit;
785 uint mask;
786
787 ASSERT(first < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
788 ASSERT(last < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
789
790 /*
791 * Convert byte offsets to bit numbers.
792 */
793 first_bit = first >> XFS_BLF_SHIFT;
794 last_bit = last >> XFS_BLF_SHIFT;
795
796 /*
797 * Calculate the total number of bits to be set.
798 */
799 bits_to_set = last_bit - first_bit + 1;
800
801 /*
802 * Get a pointer to the first word in the bitmap
803 * to set a bit in.
804 */
805 word_num = first_bit >> BIT_TO_WORD_SHIFT;
806 wordp = &map[word_num];
807
808 /*
809 * Calculate the starting bit in the first word.
810 */
811 bit = first_bit & (uint)(NBWORD - 1);
812
813 /*
814 * First set any bits in the first word of our range.
815 * If it starts at bit 0 of the word, it will be
816 * set below rather than here. That is what the variable
817 * bit tells us. The variable bits_set tracks the number
818 * of bits that have been set so far. End_bit is the number
819 * of the last bit to be set in this word plus one.
820 */
821 if (bit) {
822 end_bit = min(bit + bits_to_set, (uint)NBWORD);
823 mask = ((1U << (end_bit - bit)) - 1) << bit;
824 *wordp |= mask;
825 wordp++;
826 bits_set = end_bit - bit;
827 } else {
828 bits_set = 0;
829 }
830
831 /*
832 * Now set bits a whole word at a time that are between
833 * first_bit and last_bit.
834 */
835 while ((bits_to_set - bits_set) >= NBWORD) {
836 *wordp = 0xffffffff;
837 bits_set += NBWORD;
838 wordp++;
839 }
840
841 /*
842 * Finally, set any bits left to be set in one last partial word.
843 */
844 end_bit = bits_to_set - bits_set;
845 if (end_bit) {
846 mask = (1U << end_bit) - 1;
847 *wordp |= mask;
848 }
849 }
850
851 /*
852 * Mark bytes first through last inclusive as dirty in the buf
853 * item's bitmap.
854 */
855 void
xfs_buf_item_log(struct xfs_buf_log_item * bip,uint first,uint last)856 xfs_buf_item_log(
857 struct xfs_buf_log_item *bip,
858 uint first,
859 uint last)
860 {
861 int i;
862 uint start;
863 uint end;
864 struct xfs_buf *bp = bip->bli_buf;
865
866 /*
867 * walk each buffer segment and mark them dirty appropriately.
868 */
869 start = 0;
870 for (i = 0; i < bip->bli_format_count; i++) {
871 if (start > last)
872 break;
873 end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
874
875 /* skip to the map that includes the first byte to log */
876 if (first > end) {
877 start += BBTOB(bp->b_maps[i].bm_len);
878 continue;
879 }
880
881 /*
882 * Trim the range to this segment and mark it in the bitmap.
883 * Note that we must convert buffer offsets to segment relative
884 * offsets (e.g., the first byte of each segment is byte 0 of
885 * that segment).
886 */
887 if (first < start)
888 first = start;
889 if (end > last)
890 end = last;
891 xfs_buf_item_log_segment(first - start, end - start,
892 &bip->bli_formats[i].blf_data_map[0]);
893
894 start += BBTOB(bp->b_maps[i].bm_len);
895 }
896 }
897
898
899 /*
900 * Return true if the buffer has any ranges logged/dirtied by a transaction,
901 * false otherwise.
902 */
903 bool
xfs_buf_item_dirty_format(struct xfs_buf_log_item * bip)904 xfs_buf_item_dirty_format(
905 struct xfs_buf_log_item *bip)
906 {
907 int i;
908
909 for (i = 0; i < bip->bli_format_count; i++) {
910 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
911 bip->bli_formats[i].blf_map_size))
912 return true;
913 }
914
915 return false;
916 }
917
918 STATIC void
xfs_buf_item_free(struct xfs_buf_log_item * bip)919 xfs_buf_item_free(
920 struct xfs_buf_log_item *bip)
921 {
922 xfs_buf_item_free_format(bip);
923 kmem_free(bip->bli_item.li_lv_shadow);
924 kmem_cache_free(xfs_buf_item_zone, bip);
925 }
926
927 /*
928 * xfs_buf_item_relse() is called when the buf log item is no longer needed.
929 */
930 void
xfs_buf_item_relse(xfs_buf_t * bp)931 xfs_buf_item_relse(
932 xfs_buf_t *bp)
933 {
934 struct xfs_buf_log_item *bip = bp->b_log_item;
935
936 trace_xfs_buf_item_relse(bp, _RET_IP_);
937 ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags));
938
939 bp->b_log_item = NULL;
940 xfs_buf_rele(bp);
941 xfs_buf_item_free(bip);
942 }
943
944 void
xfs_buf_item_done(struct xfs_buf * bp)945 xfs_buf_item_done(
946 struct xfs_buf *bp)
947 {
948 /*
949 * If we are forcibly shutting down, this may well be off the AIL
950 * already. That's because we simulate the log-committed callbacks to
951 * unpin these buffers. Or we may never have put this item on AIL
952 * because of the transaction was aborted forcibly.
953 * xfs_trans_ail_delete() takes care of these.
954 *
955 * Either way, AIL is useless if we're forcing a shutdown.
956 *
957 * Note that log recovery writes might have buffer items that are not on
958 * the AIL even when the file system is not shut down.
959 */
960 xfs_trans_ail_delete(&bp->b_log_item->bli_item,
961 (bp->b_flags & _XBF_LOGRECOVERY) ? 0 :
962 SHUTDOWN_CORRUPT_INCORE);
963 xfs_buf_item_relse(bp);
964 }
965