• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_inode.h"
18 #include "xfs_inode_item.h"
19 #include "xfs_quota.h"
20 #include "xfs_dquot_item.h"
21 #include "xfs_dquot.h"
22 #include "xfs_trace.h"
23 #include "xfs_log.h"
24 
25 
26 kmem_zone_t	*xfs_buf_item_zone;
27 
BUF_ITEM(struct xfs_log_item * lip)28 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
29 {
30 	return container_of(lip, struct xfs_buf_log_item, bli_item);
31 }
32 
33 /* Is this log iovec plausibly large enough to contain the buffer log format? */
34 bool
xfs_buf_log_check_iovec(struct xfs_log_iovec * iovec)35 xfs_buf_log_check_iovec(
36 	struct xfs_log_iovec		*iovec)
37 {
38 	struct xfs_buf_log_format	*blfp = iovec->i_addr;
39 	char				*bmp_end;
40 	char				*item_end;
41 
42 	if (offsetof(struct xfs_buf_log_format, blf_data_map) > iovec->i_len)
43 		return false;
44 
45 	item_end = (char *)iovec->i_addr + iovec->i_len;
46 	bmp_end = (char *)&blfp->blf_data_map[blfp->blf_map_size];
47 	return bmp_end <= item_end;
48 }
49 
50 static inline int
xfs_buf_log_format_size(struct xfs_buf_log_format * blfp)51 xfs_buf_log_format_size(
52 	struct xfs_buf_log_format *blfp)
53 {
54 	return offsetof(struct xfs_buf_log_format, blf_data_map) +
55 			(blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
56 }
57 
58 /*
59  * Return the number of log iovecs and space needed to log the given buf log
60  * item segment.
61  *
62  * It calculates this as 1 iovec for the buf log format structure and 1 for each
63  * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
64  * in a single iovec.
65  */
66 STATIC void
xfs_buf_item_size_segment(struct xfs_buf_log_item * bip,struct xfs_buf_log_format * blfp,int * nvecs,int * nbytes)67 xfs_buf_item_size_segment(
68 	struct xfs_buf_log_item		*bip,
69 	struct xfs_buf_log_format	*blfp,
70 	int				*nvecs,
71 	int				*nbytes)
72 {
73 	struct xfs_buf			*bp = bip->bli_buf;
74 	int				next_bit;
75 	int				last_bit;
76 
77 	last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
78 	if (last_bit == -1)
79 		return;
80 
81 	/*
82 	 * initial count for a dirty buffer is 2 vectors - the format structure
83 	 * and the first dirty region.
84 	 */
85 	*nvecs += 2;
86 	*nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
87 
88 	while (last_bit != -1) {
89 		/*
90 		 * This takes the bit number to start looking from and
91 		 * returns the next set bit from there.  It returns -1
92 		 * if there are no more bits set or the start bit is
93 		 * beyond the end of the bitmap.
94 		 */
95 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
96 					last_bit + 1);
97 		/*
98 		 * If we run out of bits, leave the loop,
99 		 * else if we find a new set of bits bump the number of vecs,
100 		 * else keep scanning the current set of bits.
101 		 */
102 		if (next_bit == -1) {
103 			break;
104 		} else if (next_bit != last_bit + 1) {
105 			last_bit = next_bit;
106 			(*nvecs)++;
107 		} else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
108 			   (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
109 			    XFS_BLF_CHUNK)) {
110 			last_bit = next_bit;
111 			(*nvecs)++;
112 		} else {
113 			last_bit++;
114 		}
115 		*nbytes += XFS_BLF_CHUNK;
116 	}
117 }
118 
119 /*
120  * Return the number of log iovecs and space needed to log the given buf log
121  * item.
122  *
123  * Discontiguous buffers need a format structure per region that is being
124  * logged. This makes the changes in the buffer appear to log recovery as though
125  * they came from separate buffers, just like would occur if multiple buffers
126  * were used instead of a single discontiguous buffer. This enables
127  * discontiguous buffers to be in-memory constructs, completely transparent to
128  * what ends up on disk.
129  *
130  * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
131  * format structures. If the item has previously been logged and has dirty
132  * regions, we do not relog them in stale buffers. This has the effect of
133  * reducing the size of the relogged item by the amount of dirty data tracked
134  * by the log item. This can result in the committing transaction reducing the
135  * amount of space being consumed by the CIL.
136  */
137 STATIC void
xfs_buf_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)138 xfs_buf_item_size(
139 	struct xfs_log_item	*lip,
140 	int			*nvecs,
141 	int			*nbytes)
142 {
143 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
144 	int			i;
145 
146 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
147 	if (bip->bli_flags & XFS_BLI_STALE) {
148 		/*
149 		 * The buffer is stale, so all we need to log is the buf log
150 		 * format structure with the cancel flag in it as we are never
151 		 * going to replay the changes tracked in the log item.
152 		 */
153 		trace_xfs_buf_item_size_stale(bip);
154 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
155 		*nvecs += bip->bli_format_count;
156 		for (i = 0; i < bip->bli_format_count; i++) {
157 			*nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
158 		}
159 		return;
160 	}
161 
162 	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
163 
164 	if (bip->bli_flags & XFS_BLI_ORDERED) {
165 		/*
166 		 * The buffer has been logged just to order it. It is not being
167 		 * included in the transaction commit, so no vectors are used at
168 		 * all.
169 		 */
170 		trace_xfs_buf_item_size_ordered(bip);
171 		*nvecs = XFS_LOG_VEC_ORDERED;
172 		return;
173 	}
174 
175 	/*
176 	 * the vector count is based on the number of buffer vectors we have
177 	 * dirty bits in. This will only be greater than one when we have a
178 	 * compound buffer with more than one segment dirty. Hence for compound
179 	 * buffers we need to track which segment the dirty bits correspond to,
180 	 * and when we move from one segment to the next increment the vector
181 	 * count for the extra buf log format structure that will need to be
182 	 * written.
183 	 */
184 	for (i = 0; i < bip->bli_format_count; i++) {
185 		xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
186 					  nvecs, nbytes);
187 	}
188 	trace_xfs_buf_item_size(bip);
189 }
190 
191 static inline void
xfs_buf_item_copy_iovec(struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp,struct xfs_buf * bp,uint offset,int first_bit,uint nbits)192 xfs_buf_item_copy_iovec(
193 	struct xfs_log_vec	*lv,
194 	struct xfs_log_iovec	**vecp,
195 	struct xfs_buf		*bp,
196 	uint			offset,
197 	int			first_bit,
198 	uint			nbits)
199 {
200 	offset += first_bit * XFS_BLF_CHUNK;
201 	xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
202 			xfs_buf_offset(bp, offset),
203 			nbits * XFS_BLF_CHUNK);
204 }
205 
206 static inline bool
xfs_buf_item_straddle(struct xfs_buf * bp,uint offset,int next_bit,int last_bit)207 xfs_buf_item_straddle(
208 	struct xfs_buf		*bp,
209 	uint			offset,
210 	int			next_bit,
211 	int			last_bit)
212 {
213 	return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
214 		(xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
215 		 XFS_BLF_CHUNK);
216 }
217 
218 static void
xfs_buf_item_format_segment(struct xfs_buf_log_item * bip,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp,uint offset,struct xfs_buf_log_format * blfp)219 xfs_buf_item_format_segment(
220 	struct xfs_buf_log_item	*bip,
221 	struct xfs_log_vec	*lv,
222 	struct xfs_log_iovec	**vecp,
223 	uint			offset,
224 	struct xfs_buf_log_format *blfp)
225 {
226 	struct xfs_buf		*bp = bip->bli_buf;
227 	uint			base_size;
228 	int			first_bit;
229 	int			last_bit;
230 	int			next_bit;
231 	uint			nbits;
232 
233 	/* copy the flags across from the base format item */
234 	blfp->blf_flags = bip->__bli_format.blf_flags;
235 
236 	/*
237 	 * Base size is the actual size of the ondisk structure - it reflects
238 	 * the actual size of the dirty bitmap rather than the size of the in
239 	 * memory structure.
240 	 */
241 	base_size = xfs_buf_log_format_size(blfp);
242 
243 	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
244 	if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
245 		/*
246 		 * If the map is not be dirty in the transaction, mark
247 		 * the size as zero and do not advance the vector pointer.
248 		 */
249 		return;
250 	}
251 
252 	blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
253 	blfp->blf_size = 1;
254 
255 	if (bip->bli_flags & XFS_BLI_STALE) {
256 		/*
257 		 * The buffer is stale, so all we need to log
258 		 * is the buf log format structure with the
259 		 * cancel flag in it.
260 		 */
261 		trace_xfs_buf_item_format_stale(bip);
262 		ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
263 		return;
264 	}
265 
266 
267 	/*
268 	 * Fill in an iovec for each set of contiguous chunks.
269 	 */
270 	last_bit = first_bit;
271 	nbits = 1;
272 	for (;;) {
273 		/*
274 		 * This takes the bit number to start looking from and
275 		 * returns the next set bit from there.  It returns -1
276 		 * if there are no more bits set or the start bit is
277 		 * beyond the end of the bitmap.
278 		 */
279 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
280 					(uint)last_bit + 1);
281 		/*
282 		 * If we run out of bits fill in the last iovec and get out of
283 		 * the loop.  Else if we start a new set of bits then fill in
284 		 * the iovec for the series we were looking at and start
285 		 * counting the bits in the new one.  Else we're still in the
286 		 * same set of bits so just keep counting and scanning.
287 		 */
288 		if (next_bit == -1) {
289 			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
290 						first_bit, nbits);
291 			blfp->blf_size++;
292 			break;
293 		} else if (next_bit != last_bit + 1 ||
294 		           xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
295 			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
296 						first_bit, nbits);
297 			blfp->blf_size++;
298 			first_bit = next_bit;
299 			last_bit = next_bit;
300 			nbits = 1;
301 		} else {
302 			last_bit++;
303 			nbits++;
304 		}
305 	}
306 }
307 
308 /*
309  * This is called to fill in the vector of log iovecs for the
310  * given log buf item.  It fills the first entry with a buf log
311  * format structure, and the rest point to contiguous chunks
312  * within the buffer.
313  */
314 STATIC void
xfs_buf_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)315 xfs_buf_item_format(
316 	struct xfs_log_item	*lip,
317 	struct xfs_log_vec	*lv)
318 {
319 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
320 	struct xfs_buf		*bp = bip->bli_buf;
321 	struct xfs_log_iovec	*vecp = NULL;
322 	uint			offset = 0;
323 	int			i;
324 
325 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
326 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
327 	       (bip->bli_flags & XFS_BLI_STALE));
328 	ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
329 	       (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
330 	        && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
331 	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
332 	       (bip->bli_flags & XFS_BLI_STALE));
333 
334 
335 	/*
336 	 * If it is an inode buffer, transfer the in-memory state to the
337 	 * format flags and clear the in-memory state.
338 	 *
339 	 * For buffer based inode allocation, we do not transfer
340 	 * this state if the inode buffer allocation has not yet been committed
341 	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
342 	 * correct replay of the inode allocation.
343 	 *
344 	 * For icreate item based inode allocation, the buffers aren't written
345 	 * to the journal during allocation, and hence we should always tag the
346 	 * buffer as an inode buffer so that the correct unlinked list replay
347 	 * occurs during recovery.
348 	 */
349 	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
350 		if (xfs_sb_version_has_v3inode(&lip->li_mountp->m_sb) ||
351 		    !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
352 		      xfs_log_item_in_current_chkpt(lip)))
353 			bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
354 		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
355 	}
356 
357 	for (i = 0; i < bip->bli_format_count; i++) {
358 		xfs_buf_item_format_segment(bip, lv, &vecp, offset,
359 					    &bip->bli_formats[i]);
360 		offset += BBTOB(bp->b_maps[i].bm_len);
361 	}
362 
363 	/*
364 	 * Check to make sure everything is consistent.
365 	 */
366 	trace_xfs_buf_item_format(bip);
367 }
368 
369 /*
370  * This is called to pin the buffer associated with the buf log item in memory
371  * so it cannot be written out.
372  *
373  * We also always take a reference to the buffer log item here so that the bli
374  * is held while the item is pinned in memory. This means that we can
375  * unconditionally drop the reference count a transaction holds when the
376  * transaction is completed.
377  */
378 STATIC void
xfs_buf_item_pin(struct xfs_log_item * lip)379 xfs_buf_item_pin(
380 	struct xfs_log_item	*lip)
381 {
382 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
383 
384 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
385 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
386 	       (bip->bli_flags & XFS_BLI_ORDERED) ||
387 	       (bip->bli_flags & XFS_BLI_STALE));
388 
389 	trace_xfs_buf_item_pin(bip);
390 
391 	atomic_inc(&bip->bli_refcount);
392 	atomic_inc(&bip->bli_buf->b_pin_count);
393 }
394 
395 /*
396  * This is called to unpin the buffer associated with the buf log item which
397  * was previously pinned with a call to xfs_buf_item_pin().
398  */
399 STATIC void
xfs_buf_item_unpin(struct xfs_log_item * lip,int remove)400 xfs_buf_item_unpin(
401 	struct xfs_log_item	*lip,
402 	int			remove)
403 {
404 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
405 	xfs_buf_t		*bp = bip->bli_buf;
406 	int			stale = bip->bli_flags & XFS_BLI_STALE;
407 	int			freed;
408 
409 	ASSERT(bp->b_log_item == bip);
410 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
411 
412 	trace_xfs_buf_item_unpin(bip);
413 
414 	/*
415 	 * Drop the bli ref associated with the pin and grab the hold required
416 	 * for the I/O simulation failure in the abort case. We have to do this
417 	 * before the pin count drops because the AIL doesn't acquire a bli
418 	 * reference. Therefore if the refcount drops to zero, the bli could
419 	 * still be AIL resident and the buffer submitted for I/O (and freed on
420 	 * completion) at any point before we return. This can be removed once
421 	 * the AIL properly holds a reference on the bli.
422 	 */
423 	freed = atomic_dec_and_test(&bip->bli_refcount);
424 	if (freed && !stale && remove)
425 		xfs_buf_hold(bp);
426 	if (atomic_dec_and_test(&bp->b_pin_count))
427 		wake_up_all(&bp->b_waiters);
428 
429 	 /* nothing to do but drop the pin count if the bli is active */
430 	if (!freed)
431 		return;
432 
433 	if (stale) {
434 		ASSERT(bip->bli_flags & XFS_BLI_STALE);
435 		ASSERT(xfs_buf_islocked(bp));
436 		ASSERT(bp->b_flags & XBF_STALE);
437 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
438 		ASSERT(list_empty(&lip->li_trans));
439 		ASSERT(!bp->b_transp);
440 
441 		trace_xfs_buf_item_unpin_stale(bip);
442 
443 		/*
444 		 * If we get called here because of an IO error, we may or may
445 		 * not have the item on the AIL. xfs_trans_ail_delete() will
446 		 * take care of that situation. xfs_trans_ail_delete() drops
447 		 * the AIL lock.
448 		 */
449 		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
450 			xfs_buf_item_done(bp);
451 			xfs_buf_inode_iodone(bp);
452 			ASSERT(list_empty(&bp->b_li_list));
453 		} else {
454 			xfs_trans_ail_delete(lip, SHUTDOWN_LOG_IO_ERROR);
455 			xfs_buf_item_relse(bp);
456 			ASSERT(bp->b_log_item == NULL);
457 		}
458 		xfs_buf_relse(bp);
459 	} else if (remove) {
460 		/*
461 		 * The buffer must be locked and held by the caller to simulate
462 		 * an async I/O failure. We acquired the hold for this case
463 		 * before the buffer was unpinned.
464 		 */
465 		xfs_buf_lock(bp);
466 		bp->b_flags |= XBF_ASYNC;
467 		xfs_buf_ioend_fail(bp);
468 	}
469 }
470 
471 STATIC uint
xfs_buf_item_push(struct xfs_log_item * lip,struct list_head * buffer_list)472 xfs_buf_item_push(
473 	struct xfs_log_item	*lip,
474 	struct list_head	*buffer_list)
475 {
476 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
477 	struct xfs_buf		*bp = bip->bli_buf;
478 	uint			rval = XFS_ITEM_SUCCESS;
479 
480 	if (xfs_buf_ispinned(bp))
481 		return XFS_ITEM_PINNED;
482 	if (!xfs_buf_trylock(bp)) {
483 		/*
484 		 * If we have just raced with a buffer being pinned and it has
485 		 * been marked stale, we could end up stalling until someone else
486 		 * issues a log force to unpin the stale buffer. Check for the
487 		 * race condition here so xfsaild recognizes the buffer is pinned
488 		 * and queues a log force to move it along.
489 		 */
490 		if (xfs_buf_ispinned(bp))
491 			return XFS_ITEM_PINNED;
492 		return XFS_ITEM_LOCKED;
493 	}
494 
495 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
496 
497 	trace_xfs_buf_item_push(bip);
498 
499 	/* has a previous flush failed due to IO errors? */
500 	if (bp->b_flags & XBF_WRITE_FAIL) {
501 		xfs_buf_alert_ratelimited(bp, "XFS: Failing async write",
502 	    "Failing async write on buffer block 0x%llx. Retrying async write.",
503 					  (long long)bp->b_bn);
504 	}
505 
506 	if (!xfs_buf_delwri_queue(bp, buffer_list))
507 		rval = XFS_ITEM_FLUSHING;
508 	xfs_buf_unlock(bp);
509 	return rval;
510 }
511 
512 /*
513  * Drop the buffer log item refcount and take appropriate action. This helper
514  * determines whether the bli must be freed or not, since a decrement to zero
515  * does not necessarily mean the bli is unused.
516  *
517  * Return true if the bli is freed, false otherwise.
518  */
519 bool
xfs_buf_item_put(struct xfs_buf_log_item * bip)520 xfs_buf_item_put(
521 	struct xfs_buf_log_item	*bip)
522 {
523 	struct xfs_log_item	*lip = &bip->bli_item;
524 	bool			aborted;
525 	bool			dirty;
526 
527 	/* drop the bli ref and return if it wasn't the last one */
528 	if (!atomic_dec_and_test(&bip->bli_refcount))
529 		return false;
530 
531 	/*
532 	 * We dropped the last ref and must free the item if clean or aborted.
533 	 * If the bli is dirty and non-aborted, the buffer was clean in the
534 	 * transaction but still awaiting writeback from previous changes. In
535 	 * that case, the bli is freed on buffer writeback completion.
536 	 */
537 	aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) ||
538 		  XFS_FORCED_SHUTDOWN(lip->li_mountp);
539 	dirty = bip->bli_flags & XFS_BLI_DIRTY;
540 	if (dirty && !aborted)
541 		return false;
542 
543 	/*
544 	 * The bli is aborted or clean. An aborted item may be in the AIL
545 	 * regardless of dirty state.  For example, consider an aborted
546 	 * transaction that invalidated a dirty bli and cleared the dirty
547 	 * state.
548 	 */
549 	if (aborted)
550 		xfs_trans_ail_delete(lip, 0);
551 	xfs_buf_item_relse(bip->bli_buf);
552 	return true;
553 }
554 
555 /*
556  * Release the buffer associated with the buf log item.  If there is no dirty
557  * logged data associated with the buffer recorded in the buf log item, then
558  * free the buf log item and remove the reference to it in the buffer.
559  *
560  * This call ignores the recursion count.  It is only called when the buffer
561  * should REALLY be unlocked, regardless of the recursion count.
562  *
563  * We unconditionally drop the transaction's reference to the log item. If the
564  * item was logged, then another reference was taken when it was pinned, so we
565  * can safely drop the transaction reference now.  This also allows us to avoid
566  * potential races with the unpin code freeing the bli by not referencing the
567  * bli after we've dropped the reference count.
568  *
569  * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
570  * if necessary but do not unlock the buffer.  This is for support of
571  * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
572  * free the item.
573  */
574 STATIC void
xfs_buf_item_release(struct xfs_log_item * lip)575 xfs_buf_item_release(
576 	struct xfs_log_item	*lip)
577 {
578 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
579 	struct xfs_buf		*bp = bip->bli_buf;
580 	bool			released;
581 	bool			hold = bip->bli_flags & XFS_BLI_HOLD;
582 	bool			stale = bip->bli_flags & XFS_BLI_STALE;
583 #if defined(DEBUG) || defined(XFS_WARN)
584 	bool			ordered = bip->bli_flags & XFS_BLI_ORDERED;
585 	bool			dirty = bip->bli_flags & XFS_BLI_DIRTY;
586 	bool			aborted = test_bit(XFS_LI_ABORTED,
587 						   &lip->li_flags);
588 #endif
589 
590 	trace_xfs_buf_item_release(bip);
591 
592 	/*
593 	 * The bli dirty state should match whether the blf has logged segments
594 	 * except for ordered buffers, where only the bli should be dirty.
595 	 */
596 	ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
597 	       (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
598 	ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
599 
600 	/*
601 	 * Clear the buffer's association with this transaction and
602 	 * per-transaction state from the bli, which has been copied above.
603 	 */
604 	bp->b_transp = NULL;
605 	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
606 
607 	/*
608 	 * Unref the item and unlock the buffer unless held or stale. Stale
609 	 * buffers remain locked until final unpin unless the bli is freed by
610 	 * the unref call. The latter implies shutdown because buffer
611 	 * invalidation dirties the bli and transaction.
612 	 */
613 	released = xfs_buf_item_put(bip);
614 	if (hold || (stale && !released))
615 		return;
616 	ASSERT(!stale || aborted);
617 	xfs_buf_relse(bp);
618 }
619 
620 STATIC void
xfs_buf_item_committing(struct xfs_log_item * lip,xfs_csn_t seq)621 xfs_buf_item_committing(
622 	struct xfs_log_item	*lip,
623 	xfs_csn_t		seq)
624 {
625 	return xfs_buf_item_release(lip);
626 }
627 
628 /*
629  * This is called to find out where the oldest active copy of the
630  * buf log item in the on disk log resides now that the last log
631  * write of it completed at the given lsn.
632  * We always re-log all the dirty data in a buffer, so usually the
633  * latest copy in the on disk log is the only one that matters.  For
634  * those cases we simply return the given lsn.
635  *
636  * The one exception to this is for buffers full of newly allocated
637  * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
638  * flag set, indicating that only the di_next_unlinked fields from the
639  * inodes in the buffers will be replayed during recovery.  If the
640  * original newly allocated inode images have not yet been flushed
641  * when the buffer is so relogged, then we need to make sure that we
642  * keep the old images in the 'active' portion of the log.  We do this
643  * by returning the original lsn of that transaction here rather than
644  * the current one.
645  */
646 STATIC xfs_lsn_t
xfs_buf_item_committed(struct xfs_log_item * lip,xfs_lsn_t lsn)647 xfs_buf_item_committed(
648 	struct xfs_log_item	*lip,
649 	xfs_lsn_t		lsn)
650 {
651 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
652 
653 	trace_xfs_buf_item_committed(bip);
654 
655 	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
656 		return lip->li_lsn;
657 	return lsn;
658 }
659 
660 static const struct xfs_item_ops xfs_buf_item_ops = {
661 	.iop_size	= xfs_buf_item_size,
662 	.iop_format	= xfs_buf_item_format,
663 	.iop_pin	= xfs_buf_item_pin,
664 	.iop_unpin	= xfs_buf_item_unpin,
665 	.iop_release	= xfs_buf_item_release,
666 	.iop_committing	= xfs_buf_item_committing,
667 	.iop_committed	= xfs_buf_item_committed,
668 	.iop_push	= xfs_buf_item_push,
669 };
670 
671 STATIC void
xfs_buf_item_get_format(struct xfs_buf_log_item * bip,int count)672 xfs_buf_item_get_format(
673 	struct xfs_buf_log_item	*bip,
674 	int			count)
675 {
676 	ASSERT(bip->bli_formats == NULL);
677 	bip->bli_format_count = count;
678 
679 	if (count == 1) {
680 		bip->bli_formats = &bip->__bli_format;
681 		return;
682 	}
683 
684 	bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
685 				0);
686 }
687 
688 STATIC void
xfs_buf_item_free_format(struct xfs_buf_log_item * bip)689 xfs_buf_item_free_format(
690 	struct xfs_buf_log_item	*bip)
691 {
692 	if (bip->bli_formats != &bip->__bli_format) {
693 		kmem_free(bip->bli_formats);
694 		bip->bli_formats = NULL;
695 	}
696 }
697 
698 /*
699  * Allocate a new buf log item to go with the given buffer.
700  * Set the buffer's b_log_item field to point to the new
701  * buf log item.
702  */
703 int
xfs_buf_item_init(struct xfs_buf * bp,struct xfs_mount * mp)704 xfs_buf_item_init(
705 	struct xfs_buf	*bp,
706 	struct xfs_mount *mp)
707 {
708 	struct xfs_buf_log_item	*bip = bp->b_log_item;
709 	int			chunks;
710 	int			map_size;
711 	int			i;
712 
713 	/*
714 	 * Check to see if there is already a buf log item for
715 	 * this buffer. If we do already have one, there is
716 	 * nothing to do here so return.
717 	 */
718 	ASSERT(bp->b_mount == mp);
719 	if (bip) {
720 		ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
721 		ASSERT(!bp->b_transp);
722 		ASSERT(bip->bli_buf == bp);
723 		return 0;
724 	}
725 
726 	bip = kmem_cache_zalloc(xfs_buf_item_zone, GFP_KERNEL | __GFP_NOFAIL);
727 	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
728 	bip->bli_buf = bp;
729 
730 	/*
731 	 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
732 	 * can be divided into. Make sure not to truncate any pieces.
733 	 * map_size is the size of the bitmap needed to describe the
734 	 * chunks of the buffer.
735 	 *
736 	 * Discontiguous buffer support follows the layout of the underlying
737 	 * buffer. This makes the implementation as simple as possible.
738 	 */
739 	xfs_buf_item_get_format(bip, bp->b_map_count);
740 
741 	for (i = 0; i < bip->bli_format_count; i++) {
742 		chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
743 				      XFS_BLF_CHUNK);
744 		map_size = DIV_ROUND_UP(chunks, NBWORD);
745 
746 		if (map_size > XFS_BLF_DATAMAP_SIZE) {
747 			kmem_cache_free(xfs_buf_item_zone, bip);
748 			xfs_err(mp,
749 	"buffer item dirty bitmap (%u uints) too small to reflect %u bytes!",
750 					map_size,
751 					BBTOB(bp->b_maps[i].bm_len));
752 			return -EFSCORRUPTED;
753 		}
754 
755 		bip->bli_formats[i].blf_type = XFS_LI_BUF;
756 		bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
757 		bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
758 		bip->bli_formats[i].blf_map_size = map_size;
759 	}
760 
761 	bp->b_log_item = bip;
762 	xfs_buf_hold(bp);
763 	return 0;
764 }
765 
766 
767 /*
768  * Mark bytes first through last inclusive as dirty in the buf
769  * item's bitmap.
770  */
771 static void
xfs_buf_item_log_segment(uint first,uint last,uint * map)772 xfs_buf_item_log_segment(
773 	uint			first,
774 	uint			last,
775 	uint			*map)
776 {
777 	uint		first_bit;
778 	uint		last_bit;
779 	uint		bits_to_set;
780 	uint		bits_set;
781 	uint		word_num;
782 	uint		*wordp;
783 	uint		bit;
784 	uint		end_bit;
785 	uint		mask;
786 
787 	ASSERT(first < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
788 	ASSERT(last < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
789 
790 	/*
791 	 * Convert byte offsets to bit numbers.
792 	 */
793 	first_bit = first >> XFS_BLF_SHIFT;
794 	last_bit = last >> XFS_BLF_SHIFT;
795 
796 	/*
797 	 * Calculate the total number of bits to be set.
798 	 */
799 	bits_to_set = last_bit - first_bit + 1;
800 
801 	/*
802 	 * Get a pointer to the first word in the bitmap
803 	 * to set a bit in.
804 	 */
805 	word_num = first_bit >> BIT_TO_WORD_SHIFT;
806 	wordp = &map[word_num];
807 
808 	/*
809 	 * Calculate the starting bit in the first word.
810 	 */
811 	bit = first_bit & (uint)(NBWORD - 1);
812 
813 	/*
814 	 * First set any bits in the first word of our range.
815 	 * If it starts at bit 0 of the word, it will be
816 	 * set below rather than here.  That is what the variable
817 	 * bit tells us. The variable bits_set tracks the number
818 	 * of bits that have been set so far.  End_bit is the number
819 	 * of the last bit to be set in this word plus one.
820 	 */
821 	if (bit) {
822 		end_bit = min(bit + bits_to_set, (uint)NBWORD);
823 		mask = ((1U << (end_bit - bit)) - 1) << bit;
824 		*wordp |= mask;
825 		wordp++;
826 		bits_set = end_bit - bit;
827 	} else {
828 		bits_set = 0;
829 	}
830 
831 	/*
832 	 * Now set bits a whole word at a time that are between
833 	 * first_bit and last_bit.
834 	 */
835 	while ((bits_to_set - bits_set) >= NBWORD) {
836 		*wordp = 0xffffffff;
837 		bits_set += NBWORD;
838 		wordp++;
839 	}
840 
841 	/*
842 	 * Finally, set any bits left to be set in one last partial word.
843 	 */
844 	end_bit = bits_to_set - bits_set;
845 	if (end_bit) {
846 		mask = (1U << end_bit) - 1;
847 		*wordp |= mask;
848 	}
849 }
850 
851 /*
852  * Mark bytes first through last inclusive as dirty in the buf
853  * item's bitmap.
854  */
855 void
xfs_buf_item_log(struct xfs_buf_log_item * bip,uint first,uint last)856 xfs_buf_item_log(
857 	struct xfs_buf_log_item	*bip,
858 	uint			first,
859 	uint			last)
860 {
861 	int			i;
862 	uint			start;
863 	uint			end;
864 	struct xfs_buf		*bp = bip->bli_buf;
865 
866 	/*
867 	 * walk each buffer segment and mark them dirty appropriately.
868 	 */
869 	start = 0;
870 	for (i = 0; i < bip->bli_format_count; i++) {
871 		if (start > last)
872 			break;
873 		end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
874 
875 		/* skip to the map that includes the first byte to log */
876 		if (first > end) {
877 			start += BBTOB(bp->b_maps[i].bm_len);
878 			continue;
879 		}
880 
881 		/*
882 		 * Trim the range to this segment and mark it in the bitmap.
883 		 * Note that we must convert buffer offsets to segment relative
884 		 * offsets (e.g., the first byte of each segment is byte 0 of
885 		 * that segment).
886 		 */
887 		if (first < start)
888 			first = start;
889 		if (end > last)
890 			end = last;
891 		xfs_buf_item_log_segment(first - start, end - start,
892 					 &bip->bli_formats[i].blf_data_map[0]);
893 
894 		start += BBTOB(bp->b_maps[i].bm_len);
895 	}
896 }
897 
898 
899 /*
900  * Return true if the buffer has any ranges logged/dirtied by a transaction,
901  * false otherwise.
902  */
903 bool
xfs_buf_item_dirty_format(struct xfs_buf_log_item * bip)904 xfs_buf_item_dirty_format(
905 	struct xfs_buf_log_item	*bip)
906 {
907 	int			i;
908 
909 	for (i = 0; i < bip->bli_format_count; i++) {
910 		if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
911 			     bip->bli_formats[i].blf_map_size))
912 			return true;
913 	}
914 
915 	return false;
916 }
917 
918 STATIC void
xfs_buf_item_free(struct xfs_buf_log_item * bip)919 xfs_buf_item_free(
920 	struct xfs_buf_log_item	*bip)
921 {
922 	xfs_buf_item_free_format(bip);
923 	kmem_free(bip->bli_item.li_lv_shadow);
924 	kmem_cache_free(xfs_buf_item_zone, bip);
925 }
926 
927 /*
928  * xfs_buf_item_relse() is called when the buf log item is no longer needed.
929  */
930 void
xfs_buf_item_relse(xfs_buf_t * bp)931 xfs_buf_item_relse(
932 	xfs_buf_t	*bp)
933 {
934 	struct xfs_buf_log_item	*bip = bp->b_log_item;
935 
936 	trace_xfs_buf_item_relse(bp, _RET_IP_);
937 	ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags));
938 
939 	bp->b_log_item = NULL;
940 	xfs_buf_rele(bp);
941 	xfs_buf_item_free(bip);
942 }
943 
944 void
xfs_buf_item_done(struct xfs_buf * bp)945 xfs_buf_item_done(
946 	struct xfs_buf		*bp)
947 {
948 	/*
949 	 * If we are forcibly shutting down, this may well be off the AIL
950 	 * already. That's because we simulate the log-committed callbacks to
951 	 * unpin these buffers. Or we may never have put this item on AIL
952 	 * because of the transaction was aborted forcibly.
953 	 * xfs_trans_ail_delete() takes care of these.
954 	 *
955 	 * Either way, AIL is useless if we're forcing a shutdown.
956 	 *
957 	 * Note that log recovery writes might have buffer items that are not on
958 	 * the AIL even when the file system is not shut down.
959 	 */
960 	xfs_trans_ail_delete(&bp->b_log_item->bli_item,
961 			     (bp->b_flags & _XBF_LOGRECOVERY) ? 0 :
962 			     SHUTDOWN_CORRUPT_INCORE);
963 	xfs_buf_item_relse(bp);
964 }
965