1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_error.h"
25 #include "xfs_quota.h"
26 #include "xfs_fsops.h"
27 #include "xfs_icache.h"
28 #include "xfs_sysfs.h"
29 #include "xfs_rmap_btree.h"
30 #include "xfs_refcount_btree.h"
31 #include "xfs_reflink.h"
32 #include "xfs_extent_busy.h"
33 #include "xfs_health.h"
34 #include "xfs_trace.h"
35
36 static DEFINE_MUTEX(xfs_uuid_table_mutex);
37 static int xfs_uuid_table_size;
38 static uuid_t *xfs_uuid_table;
39
40 void
xfs_uuid_table_free(void)41 xfs_uuid_table_free(void)
42 {
43 if (xfs_uuid_table_size == 0)
44 return;
45 kmem_free(xfs_uuid_table);
46 xfs_uuid_table = NULL;
47 xfs_uuid_table_size = 0;
48 }
49
50 /*
51 * See if the UUID is unique among mounted XFS filesystems.
52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
53 */
54 STATIC int
xfs_uuid_mount(struct xfs_mount * mp)55 xfs_uuid_mount(
56 struct xfs_mount *mp)
57 {
58 uuid_t *uuid = &mp->m_sb.sb_uuid;
59 int hole, i;
60
61 /* Publish UUID in struct super_block */
62 uuid_copy(&mp->m_super->s_uuid, uuid);
63
64 if (mp->m_flags & XFS_MOUNT_NOUUID)
65 return 0;
66
67 if (uuid_is_null(uuid)) {
68 xfs_warn(mp, "Filesystem has null UUID - can't mount");
69 return -EINVAL;
70 }
71
72 mutex_lock(&xfs_uuid_table_mutex);
73 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
74 if (uuid_is_null(&xfs_uuid_table[i])) {
75 hole = i;
76 continue;
77 }
78 if (uuid_equal(uuid, &xfs_uuid_table[i]))
79 goto out_duplicate;
80 }
81
82 if (hole < 0) {
83 xfs_uuid_table = krealloc(xfs_uuid_table,
84 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
85 GFP_KERNEL | __GFP_NOFAIL);
86 hole = xfs_uuid_table_size++;
87 }
88 xfs_uuid_table[hole] = *uuid;
89 mutex_unlock(&xfs_uuid_table_mutex);
90
91 return 0;
92
93 out_duplicate:
94 mutex_unlock(&xfs_uuid_table_mutex);
95 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
96 return -EINVAL;
97 }
98
99 STATIC void
xfs_uuid_unmount(struct xfs_mount * mp)100 xfs_uuid_unmount(
101 struct xfs_mount *mp)
102 {
103 uuid_t *uuid = &mp->m_sb.sb_uuid;
104 int i;
105
106 if (mp->m_flags & XFS_MOUNT_NOUUID)
107 return;
108
109 mutex_lock(&xfs_uuid_table_mutex);
110 for (i = 0; i < xfs_uuid_table_size; i++) {
111 if (uuid_is_null(&xfs_uuid_table[i]))
112 continue;
113 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
114 continue;
115 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
116 break;
117 }
118 ASSERT(i < xfs_uuid_table_size);
119 mutex_unlock(&xfs_uuid_table_mutex);
120 }
121
122
123 STATIC void
__xfs_free_perag(struct rcu_head * head)124 __xfs_free_perag(
125 struct rcu_head *head)
126 {
127 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
128
129 kmem_free(pag);
130 }
131
132 /*
133 * Free up the per-ag resources associated with the mount structure.
134 */
135 STATIC void
xfs_free_perag(xfs_mount_t * mp)136 xfs_free_perag(
137 xfs_mount_t *mp)
138 {
139 xfs_agnumber_t agno;
140 struct xfs_perag *pag;
141
142 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
143 spin_lock(&mp->m_perag_lock);
144 pag = radix_tree_delete(&mp->m_perag_tree, agno);
145 spin_unlock(&mp->m_perag_lock);
146 ASSERT(pag);
147 XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_ref) != 0);
148 xfs_iunlink_destroy(pag);
149 xfs_buf_hash_destroy(pag);
150 call_rcu(&pag->rcu_head, __xfs_free_perag);
151 }
152 }
153
154 /*
155 * Check size of device based on the (data/realtime) block count.
156 * Note: this check is used by the growfs code as well as mount.
157 */
158 int
xfs_sb_validate_fsb_count(xfs_sb_t * sbp,uint64_t nblocks)159 xfs_sb_validate_fsb_count(
160 xfs_sb_t *sbp,
161 uint64_t nblocks)
162 {
163 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
164 ASSERT(sbp->sb_blocklog >= BBSHIFT);
165
166 /* Limited by ULONG_MAX of page cache index */
167 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
168 return -EFBIG;
169 return 0;
170 }
171
172 int
xfs_initialize_perag(xfs_mount_t * mp,xfs_agnumber_t agcount,xfs_agnumber_t * maxagi)173 xfs_initialize_perag(
174 xfs_mount_t *mp,
175 xfs_agnumber_t agcount,
176 xfs_agnumber_t *maxagi)
177 {
178 xfs_agnumber_t index;
179 xfs_agnumber_t first_initialised = NULLAGNUMBER;
180 xfs_perag_t *pag;
181 int error = -ENOMEM;
182
183 /*
184 * Walk the current per-ag tree so we don't try to initialise AGs
185 * that already exist (growfs case). Allocate and insert all the
186 * AGs we don't find ready for initialisation.
187 */
188 for (index = 0; index < agcount; index++) {
189 pag = xfs_perag_get(mp, index);
190 if (pag) {
191 xfs_perag_put(pag);
192 continue;
193 }
194
195 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
196 if (!pag) {
197 error = -ENOMEM;
198 goto out_unwind_new_pags;
199 }
200 pag->pag_agno = index;
201 pag->pag_mount = mp;
202 spin_lock_init(&pag->pag_ici_lock);
203 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
204
205 error = xfs_buf_hash_init(pag);
206 if (error)
207 goto out_free_pag;
208 init_waitqueue_head(&pag->pagb_wait);
209 spin_lock_init(&pag->pagb_lock);
210 pag->pagb_count = 0;
211 pag->pagb_tree = RB_ROOT;
212
213 error = radix_tree_preload(GFP_NOFS);
214 if (error)
215 goto out_hash_destroy;
216
217 spin_lock(&mp->m_perag_lock);
218 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
219 WARN_ON_ONCE(1);
220 spin_unlock(&mp->m_perag_lock);
221 radix_tree_preload_end();
222 error = -EEXIST;
223 goto out_hash_destroy;
224 }
225 spin_unlock(&mp->m_perag_lock);
226 radix_tree_preload_end();
227 /* first new pag is fully initialized */
228 if (first_initialised == NULLAGNUMBER)
229 first_initialised = index;
230 error = xfs_iunlink_init(pag);
231 if (error)
232 goto out_hash_destroy;
233 spin_lock_init(&pag->pag_state_lock);
234 }
235
236 index = xfs_set_inode_alloc(mp, agcount);
237
238 if (maxagi)
239 *maxagi = index;
240
241 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
242 return 0;
243
244 out_hash_destroy:
245 xfs_buf_hash_destroy(pag);
246 out_free_pag:
247 kmem_free(pag);
248 out_unwind_new_pags:
249 /* unwind any prior newly initialized pags */
250 for (index = first_initialised; index < agcount; index++) {
251 pag = radix_tree_delete(&mp->m_perag_tree, index);
252 if (!pag)
253 break;
254 xfs_buf_hash_destroy(pag);
255 xfs_iunlink_destroy(pag);
256 kmem_free(pag);
257 }
258 return error;
259 }
260
261 /*
262 * xfs_readsb
263 *
264 * Does the initial read of the superblock.
265 */
266 int
xfs_readsb(struct xfs_mount * mp,int flags)267 xfs_readsb(
268 struct xfs_mount *mp,
269 int flags)
270 {
271 unsigned int sector_size;
272 struct xfs_buf *bp;
273 struct xfs_sb *sbp = &mp->m_sb;
274 int error;
275 int loud = !(flags & XFS_MFSI_QUIET);
276 const struct xfs_buf_ops *buf_ops;
277
278 ASSERT(mp->m_sb_bp == NULL);
279 ASSERT(mp->m_ddev_targp != NULL);
280
281 /*
282 * For the initial read, we must guess at the sector
283 * size based on the block device. It's enough to
284 * get the sb_sectsize out of the superblock and
285 * then reread with the proper length.
286 * We don't verify it yet, because it may not be complete.
287 */
288 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
289 buf_ops = NULL;
290
291 /*
292 * Allocate a (locked) buffer to hold the superblock. This will be kept
293 * around at all times to optimize access to the superblock. Therefore,
294 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
295 * elevated.
296 */
297 reread:
298 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
299 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
300 buf_ops);
301 if (error) {
302 if (loud)
303 xfs_warn(mp, "SB validate failed with error %d.", error);
304 /* bad CRC means corrupted metadata */
305 if (error == -EFSBADCRC)
306 error = -EFSCORRUPTED;
307 return error;
308 }
309
310 /*
311 * Initialize the mount structure from the superblock.
312 */
313 xfs_sb_from_disk(sbp, bp->b_addr);
314
315 /*
316 * If we haven't validated the superblock, do so now before we try
317 * to check the sector size and reread the superblock appropriately.
318 */
319 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
320 if (loud)
321 xfs_warn(mp, "Invalid superblock magic number");
322 error = -EINVAL;
323 goto release_buf;
324 }
325
326 /*
327 * We must be able to do sector-sized and sector-aligned IO.
328 */
329 if (sector_size > sbp->sb_sectsize) {
330 if (loud)
331 xfs_warn(mp, "device supports %u byte sectors (not %u)",
332 sector_size, sbp->sb_sectsize);
333 error = -ENOSYS;
334 goto release_buf;
335 }
336
337 if (buf_ops == NULL) {
338 /*
339 * Re-read the superblock so the buffer is correctly sized,
340 * and properly verified.
341 */
342 xfs_buf_relse(bp);
343 sector_size = sbp->sb_sectsize;
344 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
345 goto reread;
346 }
347
348 xfs_reinit_percpu_counters(mp);
349
350 /* no need to be quiet anymore, so reset the buf ops */
351 bp->b_ops = &xfs_sb_buf_ops;
352
353 mp->m_sb_bp = bp;
354 xfs_buf_unlock(bp);
355 return 0;
356
357 release_buf:
358 xfs_buf_relse(bp);
359 return error;
360 }
361
362 /*
363 * If the sunit/swidth change would move the precomputed root inode value, we
364 * must reject the ondisk change because repair will stumble over that.
365 * However, we allow the mount to proceed because we never rejected this
366 * combination before. Returns true to update the sb, false otherwise.
367 */
368 static inline int
xfs_check_new_dalign(struct xfs_mount * mp,int new_dalign,bool * update_sb)369 xfs_check_new_dalign(
370 struct xfs_mount *mp,
371 int new_dalign,
372 bool *update_sb)
373 {
374 struct xfs_sb *sbp = &mp->m_sb;
375 xfs_ino_t calc_ino;
376
377 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
378 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
379
380 if (sbp->sb_rootino == calc_ino) {
381 *update_sb = true;
382 return 0;
383 }
384
385 xfs_warn(mp,
386 "Cannot change stripe alignment; would require moving root inode.");
387
388 /*
389 * XXX: Next time we add a new incompat feature, this should start
390 * returning -EINVAL to fail the mount. Until then, spit out a warning
391 * that we're ignoring the administrator's instructions.
392 */
393 xfs_warn(mp, "Skipping superblock stripe alignment update.");
394 *update_sb = false;
395 return 0;
396 }
397
398 /*
399 * If we were provided with new sunit/swidth values as mount options, make sure
400 * that they pass basic alignment and superblock feature checks, and convert
401 * them into the same units (FSB) that everything else expects. This step
402 * /must/ be done before computing the inode geometry.
403 */
404 STATIC int
xfs_validate_new_dalign(struct xfs_mount * mp)405 xfs_validate_new_dalign(
406 struct xfs_mount *mp)
407 {
408 if (mp->m_dalign == 0)
409 return 0;
410
411 /*
412 * If stripe unit and stripe width are not multiples
413 * of the fs blocksize turn off alignment.
414 */
415 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
416 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
417 xfs_warn(mp,
418 "alignment check failed: sunit/swidth vs. blocksize(%d)",
419 mp->m_sb.sb_blocksize);
420 return -EINVAL;
421 } else {
422 /*
423 * Convert the stripe unit and width to FSBs.
424 */
425 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
426 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
427 xfs_warn(mp,
428 "alignment check failed: sunit/swidth vs. agsize(%d)",
429 mp->m_sb.sb_agblocks);
430 return -EINVAL;
431 } else if (mp->m_dalign) {
432 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
433 } else {
434 xfs_warn(mp,
435 "alignment check failed: sunit(%d) less than bsize(%d)",
436 mp->m_dalign, mp->m_sb.sb_blocksize);
437 return -EINVAL;
438 }
439 }
440
441 if (!xfs_sb_version_hasdalign(&mp->m_sb)) {
442 xfs_warn(mp,
443 "cannot change alignment: superblock does not support data alignment");
444 return -EINVAL;
445 }
446
447 return 0;
448 }
449
450 /* Update alignment values based on mount options and sb values. */
451 STATIC int
xfs_update_alignment(struct xfs_mount * mp)452 xfs_update_alignment(
453 struct xfs_mount *mp)
454 {
455 struct xfs_sb *sbp = &mp->m_sb;
456
457 if (mp->m_dalign) {
458 bool update_sb;
459 int error;
460
461 if (sbp->sb_unit == mp->m_dalign &&
462 sbp->sb_width == mp->m_swidth)
463 return 0;
464
465 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
466 if (error || !update_sb)
467 return error;
468
469 sbp->sb_unit = mp->m_dalign;
470 sbp->sb_width = mp->m_swidth;
471 mp->m_update_sb = true;
472 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
473 xfs_sb_version_hasdalign(&mp->m_sb)) {
474 mp->m_dalign = sbp->sb_unit;
475 mp->m_swidth = sbp->sb_width;
476 }
477
478 return 0;
479 }
480
481 /*
482 * precalculate the low space thresholds for dynamic speculative preallocation.
483 */
484 void
xfs_set_low_space_thresholds(struct xfs_mount * mp)485 xfs_set_low_space_thresholds(
486 struct xfs_mount *mp)
487 {
488 int i;
489
490 for (i = 0; i < XFS_LOWSP_MAX; i++) {
491 uint64_t space = mp->m_sb.sb_dblocks;
492
493 do_div(space, 100);
494 mp->m_low_space[i] = space * (i + 1);
495 }
496 }
497
498 /*
499 * Check that the data (and log if separate) is an ok size.
500 */
501 STATIC int
xfs_check_sizes(struct xfs_mount * mp)502 xfs_check_sizes(
503 struct xfs_mount *mp)
504 {
505 struct xfs_buf *bp;
506 xfs_daddr_t d;
507 int error;
508
509 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
510 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
511 xfs_warn(mp, "filesystem size mismatch detected");
512 return -EFBIG;
513 }
514 error = xfs_buf_read_uncached(mp->m_ddev_targp,
515 d - XFS_FSS_TO_BB(mp, 1),
516 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
517 if (error) {
518 xfs_warn(mp, "last sector read failed");
519 return error;
520 }
521 xfs_buf_relse(bp);
522
523 if (mp->m_logdev_targp == mp->m_ddev_targp)
524 return 0;
525
526 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
527 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
528 xfs_warn(mp, "log size mismatch detected");
529 return -EFBIG;
530 }
531 error = xfs_buf_read_uncached(mp->m_logdev_targp,
532 d - XFS_FSB_TO_BB(mp, 1),
533 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
534 if (error) {
535 xfs_warn(mp, "log device read failed");
536 return error;
537 }
538 xfs_buf_relse(bp);
539 return 0;
540 }
541
542 /*
543 * Clear the quotaflags in memory and in the superblock.
544 */
545 int
xfs_mount_reset_sbqflags(struct xfs_mount * mp)546 xfs_mount_reset_sbqflags(
547 struct xfs_mount *mp)
548 {
549 mp->m_qflags = 0;
550
551 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
552 if (mp->m_sb.sb_qflags == 0)
553 return 0;
554 spin_lock(&mp->m_sb_lock);
555 mp->m_sb.sb_qflags = 0;
556 spin_unlock(&mp->m_sb_lock);
557
558 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
559 return 0;
560
561 return xfs_sync_sb(mp, false);
562 }
563
564 uint64_t
xfs_default_resblks(xfs_mount_t * mp)565 xfs_default_resblks(xfs_mount_t *mp)
566 {
567 uint64_t resblks;
568
569 /*
570 * We default to 5% or 8192 fsbs of space reserved, whichever is
571 * smaller. This is intended to cover concurrent allocation
572 * transactions when we initially hit enospc. These each require a 4
573 * block reservation. Hence by default we cover roughly 2000 concurrent
574 * allocation reservations.
575 */
576 resblks = mp->m_sb.sb_dblocks;
577 do_div(resblks, 20);
578 resblks = min_t(uint64_t, resblks, 8192);
579 return resblks;
580 }
581
582 /* Ensure the summary counts are correct. */
583 STATIC int
xfs_check_summary_counts(struct xfs_mount * mp)584 xfs_check_summary_counts(
585 struct xfs_mount *mp)
586 {
587 /*
588 * The AG0 superblock verifier rejects in-progress filesystems,
589 * so we should never see the flag set this far into mounting.
590 */
591 if (mp->m_sb.sb_inprogress) {
592 xfs_err(mp, "sb_inprogress set after log recovery??");
593 WARN_ON(1);
594 return -EFSCORRUPTED;
595 }
596
597 /*
598 * Now the log is mounted, we know if it was an unclean shutdown or
599 * not. If it was, with the first phase of recovery has completed, we
600 * have consistent AG blocks on disk. We have not recovered EFIs yet,
601 * but they are recovered transactionally in the second recovery phase
602 * later.
603 *
604 * If the log was clean when we mounted, we can check the summary
605 * counters. If any of them are obviously incorrect, we can recompute
606 * them from the AGF headers in the next step.
607 */
608 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
609 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
610 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
611 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
612 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
613
614 /*
615 * We can safely re-initialise incore superblock counters from the
616 * per-ag data. These may not be correct if the filesystem was not
617 * cleanly unmounted, so we waited for recovery to finish before doing
618 * this.
619 *
620 * If the filesystem was cleanly unmounted or the previous check did
621 * not flag anything weird, then we can trust the values in the
622 * superblock to be correct and we don't need to do anything here.
623 * Otherwise, recalculate the summary counters.
624 */
625 if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
626 XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
627 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
628 return 0;
629
630 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
631 }
632
633 /*
634 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
635 * internal inode structures can be sitting in the CIL and AIL at this point,
636 * so we need to unpin them, write them back and/or reclaim them before unmount
637 * can proceed.
638 *
639 * An inode cluster that has been freed can have its buffer still pinned in
640 * memory because the transaction is still sitting in a iclog. The stale inodes
641 * on that buffer will be pinned to the buffer until the transaction hits the
642 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
643 * may never see the pinned buffer, so nothing will push out the iclog and
644 * unpin the buffer.
645 *
646 * Hence we need to force the log to unpin everything first. However, log
647 * forces don't wait for the discards they issue to complete, so we have to
648 * explicitly wait for them to complete here as well.
649 *
650 * Then we can tell the world we are unmounting so that error handling knows
651 * that the filesystem is going away and we should error out anything that we
652 * have been retrying in the background. This will prevent never-ending
653 * retries in AIL pushing from hanging the unmount.
654 *
655 * Finally, we can push the AIL to clean all the remaining dirty objects, then
656 * reclaim the remaining inodes that are still in memory at this point in time.
657 */
658 static void
xfs_unmount_flush_inodes(struct xfs_mount * mp)659 xfs_unmount_flush_inodes(
660 struct xfs_mount *mp)
661 {
662 xfs_log_force(mp, XFS_LOG_SYNC);
663 xfs_extent_busy_wait_all(mp);
664 flush_workqueue(xfs_discard_wq);
665
666 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
667
668 xfs_ail_push_all_sync(mp->m_ail);
669 cancel_delayed_work_sync(&mp->m_reclaim_work);
670 xfs_reclaim_inodes(mp);
671 xfs_health_unmount(mp);
672 }
673
674 /*
675 * This function does the following on an initial mount of a file system:
676 * - reads the superblock from disk and init the mount struct
677 * - if we're a 32-bit kernel, do a size check on the superblock
678 * so we don't mount terabyte filesystems
679 * - init mount struct realtime fields
680 * - allocate inode hash table for fs
681 * - init directory manager
682 * - perform recovery and init the log manager
683 */
684 int
xfs_mountfs(struct xfs_mount * mp)685 xfs_mountfs(
686 struct xfs_mount *mp)
687 {
688 struct xfs_sb *sbp = &(mp->m_sb);
689 struct xfs_inode *rip;
690 struct xfs_ino_geometry *igeo = M_IGEO(mp);
691 uint64_t resblks;
692 uint quotamount = 0;
693 uint quotaflags = 0;
694 int error = 0;
695
696 xfs_sb_mount_common(mp, sbp);
697
698 /*
699 * Check for a mismatched features2 values. Older kernels read & wrote
700 * into the wrong sb offset for sb_features2 on some platforms due to
701 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
702 * which made older superblock reading/writing routines swap it as a
703 * 64-bit value.
704 *
705 * For backwards compatibility, we make both slots equal.
706 *
707 * If we detect a mismatched field, we OR the set bits into the existing
708 * features2 field in case it has already been modified; we don't want
709 * to lose any features. We then update the bad location with the ORed
710 * value so that older kernels will see any features2 flags. The
711 * superblock writeback code ensures the new sb_features2 is copied to
712 * sb_bad_features2 before it is logged or written to disk.
713 */
714 if (xfs_sb_has_mismatched_features2(sbp)) {
715 xfs_warn(mp, "correcting sb_features alignment problem");
716 sbp->sb_features2 |= sbp->sb_bad_features2;
717 mp->m_update_sb = true;
718
719 /*
720 * Re-check for ATTR2 in case it was found in bad_features2
721 * slot.
722 */
723 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
724 !(mp->m_flags & XFS_MOUNT_NOATTR2))
725 mp->m_flags |= XFS_MOUNT_ATTR2;
726 }
727
728 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
729 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
730 xfs_sb_version_removeattr2(&mp->m_sb);
731 mp->m_update_sb = true;
732
733 /* update sb_versionnum for the clearing of the morebits */
734 if (!sbp->sb_features2)
735 mp->m_update_sb = true;
736 }
737
738 /* always use v2 inodes by default now */
739 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
740 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
741 mp->m_update_sb = true;
742 }
743
744 /*
745 * If we were given new sunit/swidth options, do some basic validation
746 * checks and convert the incore dalign and swidth values to the
747 * same units (FSB) that everything else uses. This /must/ happen
748 * before computing the inode geometry.
749 */
750 error = xfs_validate_new_dalign(mp);
751 if (error)
752 goto out;
753
754 xfs_alloc_compute_maxlevels(mp);
755 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
756 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
757 xfs_ialloc_setup_geometry(mp);
758 xfs_rmapbt_compute_maxlevels(mp);
759 xfs_refcountbt_compute_maxlevels(mp);
760
761 /*
762 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
763 * is NOT aligned turn off m_dalign since allocator alignment is within
764 * an ag, therefore ag has to be aligned at stripe boundary. Note that
765 * we must compute the free space and rmap btree geometry before doing
766 * this.
767 */
768 error = xfs_update_alignment(mp);
769 if (error)
770 goto out;
771
772 /* enable fail_at_unmount as default */
773 mp->m_fail_unmount = true;
774
775 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
776 NULL, mp->m_super->s_id);
777 if (error)
778 goto out;
779
780 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
781 &mp->m_kobj, "stats");
782 if (error)
783 goto out_remove_sysfs;
784
785 error = xfs_error_sysfs_init(mp);
786 if (error)
787 goto out_del_stats;
788
789 error = xfs_errortag_init(mp);
790 if (error)
791 goto out_remove_error_sysfs;
792
793 error = xfs_uuid_mount(mp);
794 if (error)
795 goto out_remove_errortag;
796
797 /*
798 * Update the preferred write size based on the information from the
799 * on-disk superblock.
800 */
801 mp->m_allocsize_log =
802 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
803 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
804
805 /* set the low space thresholds for dynamic preallocation */
806 xfs_set_low_space_thresholds(mp);
807
808 /*
809 * If enabled, sparse inode chunk alignment is expected to match the
810 * cluster size. Full inode chunk alignment must match the chunk size,
811 * but that is checked on sb read verification...
812 */
813 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
814 mp->m_sb.sb_spino_align !=
815 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
816 xfs_warn(mp,
817 "Sparse inode block alignment (%u) must match cluster size (%llu).",
818 mp->m_sb.sb_spino_align,
819 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
820 error = -EINVAL;
821 goto out_remove_uuid;
822 }
823
824 /*
825 * Check that the data (and log if separate) is an ok size.
826 */
827 error = xfs_check_sizes(mp);
828 if (error)
829 goto out_remove_uuid;
830
831 /*
832 * Initialize realtime fields in the mount structure
833 */
834 error = xfs_rtmount_init(mp);
835 if (error) {
836 xfs_warn(mp, "RT mount failed");
837 goto out_remove_uuid;
838 }
839
840 /*
841 * Copies the low order bits of the timestamp and the randomly
842 * set "sequence" number out of a UUID.
843 */
844 mp->m_fixedfsid[0] =
845 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
846 get_unaligned_be16(&sbp->sb_uuid.b[4]);
847 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
848
849 error = xfs_da_mount(mp);
850 if (error) {
851 xfs_warn(mp, "Failed dir/attr init: %d", error);
852 goto out_remove_uuid;
853 }
854
855 /*
856 * Initialize the precomputed transaction reservations values.
857 */
858 xfs_trans_init(mp);
859
860 /*
861 * Allocate and initialize the per-ag data.
862 */
863 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
864 if (error) {
865 xfs_warn(mp, "Failed per-ag init: %d", error);
866 goto out_free_dir;
867 }
868
869 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
870 xfs_warn(mp, "no log defined");
871 error = -EFSCORRUPTED;
872 goto out_free_perag;
873 }
874
875 /*
876 * Log's mount-time initialization. The first part of recovery can place
877 * some items on the AIL, to be handled when recovery is finished or
878 * cancelled.
879 */
880 error = xfs_log_mount(mp, mp->m_logdev_targp,
881 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
882 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
883 if (error) {
884 xfs_warn(mp, "log mount failed");
885 goto out_fail_wait;
886 }
887
888 /* Make sure the summary counts are ok. */
889 error = xfs_check_summary_counts(mp);
890 if (error)
891 goto out_log_dealloc;
892
893 /*
894 * Get and sanity-check the root inode.
895 * Save the pointer to it in the mount structure.
896 */
897 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
898 XFS_ILOCK_EXCL, &rip);
899 if (error) {
900 xfs_warn(mp,
901 "Failed to read root inode 0x%llx, error %d",
902 sbp->sb_rootino, -error);
903 goto out_log_dealloc;
904 }
905
906 ASSERT(rip != NULL);
907
908 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
909 xfs_warn(mp, "corrupted root inode %llu: not a directory",
910 (unsigned long long)rip->i_ino);
911 xfs_iunlock(rip, XFS_ILOCK_EXCL);
912 error = -EFSCORRUPTED;
913 goto out_rele_rip;
914 }
915 mp->m_rootip = rip; /* save it */
916
917 xfs_iunlock(rip, XFS_ILOCK_EXCL);
918
919 /*
920 * Initialize realtime inode pointers in the mount structure
921 */
922 error = xfs_rtmount_inodes(mp);
923 if (error) {
924 /*
925 * Free up the root inode.
926 */
927 xfs_warn(mp, "failed to read RT inodes");
928 goto out_rele_rip;
929 }
930
931 /*
932 * If this is a read-only mount defer the superblock updates until
933 * the next remount into writeable mode. Otherwise we would never
934 * perform the update e.g. for the root filesystem.
935 */
936 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
937 error = xfs_sync_sb(mp, false);
938 if (error) {
939 xfs_warn(mp, "failed to write sb changes");
940 goto out_rtunmount;
941 }
942 }
943
944 /*
945 * Initialise the XFS quota management subsystem for this mount
946 */
947 if (XFS_IS_QUOTA_RUNNING(mp)) {
948 error = xfs_qm_newmount(mp, "amount, "aflags);
949 if (error)
950 goto out_rtunmount;
951 } else {
952 ASSERT(!XFS_IS_QUOTA_ON(mp));
953
954 /*
955 * If a file system had quotas running earlier, but decided to
956 * mount without -o uquota/pquota/gquota options, revoke the
957 * quotachecked license.
958 */
959 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
960 xfs_notice(mp, "resetting quota flags");
961 error = xfs_mount_reset_sbqflags(mp);
962 if (error)
963 goto out_rtunmount;
964 }
965 }
966
967 /*
968 * Finish recovering the file system. This part needed to be delayed
969 * until after the root and real-time bitmap inodes were consistently
970 * read in. Temporarily create per-AG space reservations for metadata
971 * btree shape changes because space freeing transactions (for inode
972 * inactivation) require the per-AG reservation in lieu of reserving
973 * blocks.
974 */
975 error = xfs_fs_reserve_ag_blocks(mp);
976 if (error && error == -ENOSPC)
977 xfs_warn(mp,
978 "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
979 error = xfs_log_mount_finish(mp);
980 xfs_fs_unreserve_ag_blocks(mp);
981 if (error) {
982 xfs_warn(mp, "log mount finish failed");
983 goto out_rtunmount;
984 }
985
986 /*
987 * Now the log is fully replayed, we can transition to full read-only
988 * mode for read-only mounts. This will sync all the metadata and clean
989 * the log so that the recovery we just performed does not have to be
990 * replayed again on the next mount.
991 *
992 * We use the same quiesce mechanism as the rw->ro remount, as they are
993 * semantically identical operations.
994 */
995 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
996 XFS_MOUNT_RDONLY) {
997 xfs_quiesce_attr(mp);
998 }
999
1000 /*
1001 * Complete the quota initialisation, post-log-replay component.
1002 */
1003 if (quotamount) {
1004 ASSERT(mp->m_qflags == 0);
1005 mp->m_qflags = quotaflags;
1006
1007 xfs_qm_mount_quotas(mp);
1008 }
1009
1010 /*
1011 * Now we are mounted, reserve a small amount of unused space for
1012 * privileged transactions. This is needed so that transaction
1013 * space required for critical operations can dip into this pool
1014 * when at ENOSPC. This is needed for operations like create with
1015 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1016 * are not allowed to use this reserved space.
1017 *
1018 * This may drive us straight to ENOSPC on mount, but that implies
1019 * we were already there on the last unmount. Warn if this occurs.
1020 */
1021 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1022 resblks = xfs_default_resblks(mp);
1023 error = xfs_reserve_blocks(mp, &resblks, NULL);
1024 if (error)
1025 xfs_warn(mp,
1026 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1027
1028 /* Recover any CoW blocks that never got remapped. */
1029 error = xfs_reflink_recover_cow(mp);
1030 if (error) {
1031 xfs_err(mp,
1032 "Error %d recovering leftover CoW allocations.", error);
1033 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1034 goto out_quota;
1035 }
1036
1037 /* Reserve AG blocks for future btree expansion. */
1038 error = xfs_fs_reserve_ag_blocks(mp);
1039 if (error && error != -ENOSPC)
1040 goto out_agresv;
1041 }
1042
1043 return 0;
1044
1045 out_agresv:
1046 xfs_fs_unreserve_ag_blocks(mp);
1047 out_quota:
1048 xfs_qm_unmount_quotas(mp);
1049 out_rtunmount:
1050 xfs_rtunmount_inodes(mp);
1051 out_rele_rip:
1052 xfs_irele(rip);
1053 /* Clean out dquots that might be in memory after quotacheck. */
1054 xfs_qm_unmount(mp);
1055 /*
1056 * Flush all inode reclamation work and flush the log.
1057 * We have to do this /after/ rtunmount and qm_unmount because those
1058 * two will have scheduled delayed reclaim for the rt/quota inodes.
1059 *
1060 * This is slightly different from the unmountfs call sequence
1061 * because we could be tearing down a partially set up mount. In
1062 * particular, if log_mount_finish fails we bail out without calling
1063 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1064 * quota inodes.
1065 */
1066 xfs_unmount_flush_inodes(mp);
1067 out_log_dealloc:
1068 xfs_log_mount_cancel(mp);
1069 out_fail_wait:
1070 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1071 xfs_wait_buftarg(mp->m_logdev_targp);
1072 xfs_wait_buftarg(mp->m_ddev_targp);
1073 out_free_perag:
1074 xfs_free_perag(mp);
1075 out_free_dir:
1076 xfs_da_unmount(mp);
1077 out_remove_uuid:
1078 xfs_uuid_unmount(mp);
1079 out_remove_errortag:
1080 xfs_errortag_del(mp);
1081 out_remove_error_sysfs:
1082 xfs_error_sysfs_del(mp);
1083 out_del_stats:
1084 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1085 out_remove_sysfs:
1086 xfs_sysfs_del(&mp->m_kobj);
1087 out:
1088 return error;
1089 }
1090
1091 /*
1092 * This flushes out the inodes,dquots and the superblock, unmounts the
1093 * log and makes sure that incore structures are freed.
1094 */
1095 void
xfs_unmountfs(struct xfs_mount * mp)1096 xfs_unmountfs(
1097 struct xfs_mount *mp)
1098 {
1099 uint64_t resblks;
1100 int error;
1101
1102 xfs_stop_block_reaping(mp);
1103 xfs_fs_unreserve_ag_blocks(mp);
1104 xfs_qm_unmount_quotas(mp);
1105 xfs_rtunmount_inodes(mp);
1106 xfs_irele(mp->m_rootip);
1107
1108 xfs_unmount_flush_inodes(mp);
1109
1110 xfs_qm_unmount(mp);
1111
1112 /*
1113 * Unreserve any blocks we have so that when we unmount we don't account
1114 * the reserved free space as used. This is really only necessary for
1115 * lazy superblock counting because it trusts the incore superblock
1116 * counters to be absolutely correct on clean unmount.
1117 *
1118 * We don't bother correcting this elsewhere for lazy superblock
1119 * counting because on mount of an unclean filesystem we reconstruct the
1120 * correct counter value and this is irrelevant.
1121 *
1122 * For non-lazy counter filesystems, this doesn't matter at all because
1123 * we only every apply deltas to the superblock and hence the incore
1124 * value does not matter....
1125 */
1126 resblks = 0;
1127 error = xfs_reserve_blocks(mp, &resblks, NULL);
1128 if (error)
1129 xfs_warn(mp, "Unable to free reserved block pool. "
1130 "Freespace may not be correct on next mount.");
1131
1132 error = xfs_log_sbcount(mp);
1133 if (error)
1134 xfs_warn(mp, "Unable to update superblock counters. "
1135 "Freespace may not be correct on next mount.");
1136
1137
1138 xfs_log_unmount(mp);
1139 xfs_da_unmount(mp);
1140 xfs_uuid_unmount(mp);
1141
1142 #if defined(DEBUG)
1143 xfs_errortag_clearall(mp);
1144 #endif
1145 xfs_free_perag(mp);
1146
1147 xfs_errortag_del(mp);
1148 xfs_error_sysfs_del(mp);
1149 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1150 xfs_sysfs_del(&mp->m_kobj);
1151 }
1152
1153 /*
1154 * Determine whether modifications can proceed. The caller specifies the minimum
1155 * freeze level for which modifications should not be allowed. This allows
1156 * certain operations to proceed while the freeze sequence is in progress, if
1157 * necessary.
1158 */
1159 bool
xfs_fs_writable(struct xfs_mount * mp,int level)1160 xfs_fs_writable(
1161 struct xfs_mount *mp,
1162 int level)
1163 {
1164 ASSERT(level > SB_UNFROZEN);
1165 if ((mp->m_super->s_writers.frozen >= level) ||
1166 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1167 return false;
1168
1169 return true;
1170 }
1171
1172 /*
1173 * xfs_log_sbcount
1174 *
1175 * Sync the superblock counters to disk.
1176 *
1177 * Note this code can be called during the process of freezing, so we use the
1178 * transaction allocator that does not block when the transaction subsystem is
1179 * in its frozen state.
1180 */
1181 int
xfs_log_sbcount(xfs_mount_t * mp)1182 xfs_log_sbcount(xfs_mount_t *mp)
1183 {
1184 if (!xfs_log_writable(mp))
1185 return 0;
1186
1187 /*
1188 * we don't need to do this if we are updating the superblock
1189 * counters on every modification.
1190 */
1191 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1192 return 0;
1193
1194 return xfs_sync_sb(mp, true);
1195 }
1196
1197 /*
1198 * Deltas for the block count can vary from 1 to very large, but lock contention
1199 * only occurs on frequent small block count updates such as in the delayed
1200 * allocation path for buffered writes (page a time updates). Hence we set
1201 * a large batch count (1024) to minimise global counter updates except when
1202 * we get near to ENOSPC and we have to be very accurate with our updates.
1203 */
1204 #define XFS_FDBLOCKS_BATCH 1024
1205 int
xfs_mod_fdblocks(struct xfs_mount * mp,int64_t delta,bool rsvd)1206 xfs_mod_fdblocks(
1207 struct xfs_mount *mp,
1208 int64_t delta,
1209 bool rsvd)
1210 {
1211 int64_t lcounter;
1212 long long res_used;
1213 s32 batch;
1214
1215 if (delta > 0) {
1216 /*
1217 * If the reserve pool is depleted, put blocks back into it
1218 * first. Most of the time the pool is full.
1219 */
1220 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1221 percpu_counter_add(&mp->m_fdblocks, delta);
1222 return 0;
1223 }
1224
1225 spin_lock(&mp->m_sb_lock);
1226 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1227
1228 if (res_used > delta) {
1229 mp->m_resblks_avail += delta;
1230 } else {
1231 delta -= res_used;
1232 mp->m_resblks_avail = mp->m_resblks;
1233 percpu_counter_add(&mp->m_fdblocks, delta);
1234 }
1235 spin_unlock(&mp->m_sb_lock);
1236 return 0;
1237 }
1238
1239 /*
1240 * Taking blocks away, need to be more accurate the closer we
1241 * are to zero.
1242 *
1243 * If the counter has a value of less than 2 * max batch size,
1244 * then make everything serialise as we are real close to
1245 * ENOSPC.
1246 */
1247 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1248 XFS_FDBLOCKS_BATCH) < 0)
1249 batch = 1;
1250 else
1251 batch = XFS_FDBLOCKS_BATCH;
1252
1253 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1254 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1255 XFS_FDBLOCKS_BATCH) >= 0) {
1256 /* we had space! */
1257 return 0;
1258 }
1259
1260 /*
1261 * lock up the sb for dipping into reserves before releasing the space
1262 * that took us to ENOSPC.
1263 */
1264 spin_lock(&mp->m_sb_lock);
1265 percpu_counter_add(&mp->m_fdblocks, -delta);
1266 if (!rsvd)
1267 goto fdblocks_enospc;
1268
1269 lcounter = (long long)mp->m_resblks_avail + delta;
1270 if (lcounter >= 0) {
1271 mp->m_resblks_avail = lcounter;
1272 spin_unlock(&mp->m_sb_lock);
1273 return 0;
1274 }
1275 xfs_warn_once(mp,
1276 "Reserve blocks depleted! Consider increasing reserve pool size.");
1277
1278 fdblocks_enospc:
1279 spin_unlock(&mp->m_sb_lock);
1280 return -ENOSPC;
1281 }
1282
1283 int
xfs_mod_frextents(struct xfs_mount * mp,int64_t delta)1284 xfs_mod_frextents(
1285 struct xfs_mount *mp,
1286 int64_t delta)
1287 {
1288 int64_t lcounter;
1289 int ret = 0;
1290
1291 spin_lock(&mp->m_sb_lock);
1292 lcounter = mp->m_sb.sb_frextents + delta;
1293 if (lcounter < 0)
1294 ret = -ENOSPC;
1295 else
1296 mp->m_sb.sb_frextents = lcounter;
1297 spin_unlock(&mp->m_sb_lock);
1298 return ret;
1299 }
1300
1301 /*
1302 * Used to free the superblock along various error paths.
1303 */
1304 void
xfs_freesb(struct xfs_mount * mp)1305 xfs_freesb(
1306 struct xfs_mount *mp)
1307 {
1308 struct xfs_buf *bp = mp->m_sb_bp;
1309
1310 xfs_buf_lock(bp);
1311 mp->m_sb_bp = NULL;
1312 xfs_buf_relse(bp);
1313 }
1314
1315 /*
1316 * If the underlying (data/log/rt) device is readonly, there are some
1317 * operations that cannot proceed.
1318 */
1319 int
xfs_dev_is_read_only(struct xfs_mount * mp,char * message)1320 xfs_dev_is_read_only(
1321 struct xfs_mount *mp,
1322 char *message)
1323 {
1324 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1325 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1326 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1327 xfs_notice(mp, "%s required on read-only device.", message);
1328 xfs_notice(mp, "write access unavailable, cannot proceed.");
1329 return -EROFS;
1330 }
1331 return 0;
1332 }
1333
1334 /* Force the summary counters to be recalculated at next mount. */
1335 void
xfs_force_summary_recalc(struct xfs_mount * mp)1336 xfs_force_summary_recalc(
1337 struct xfs_mount *mp)
1338 {
1339 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1340 return;
1341
1342 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1343 }
1344
1345 /*
1346 * Update the in-core delayed block counter.
1347 *
1348 * We prefer to update the counter without having to take a spinlock for every
1349 * counter update (i.e. batching). Each change to delayed allocation
1350 * reservations can change can easily exceed the default percpu counter
1351 * batching, so we use a larger batch factor here.
1352 *
1353 * Note that we don't currently have any callers requiring fast summation
1354 * (e.g. percpu_counter_read) so we can use a big batch value here.
1355 */
1356 #define XFS_DELALLOC_BATCH (4096)
1357 void
xfs_mod_delalloc(struct xfs_mount * mp,int64_t delta)1358 xfs_mod_delalloc(
1359 struct xfs_mount *mp,
1360 int64_t delta)
1361 {
1362 percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1363 XFS_DELALLOC_BATCH);
1364 }
1365