• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16 
17 #include "xhci.h"
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
20 
21 /*
22  * Allocates a generic ring segment from the ring pool, sets the dma address,
23  * initializes the segment to zero, and sets the private next pointer to NULL.
24  *
25  * Section 4.11.1.1:
26  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27  */
xhci_segment_alloc(struct xhci_hcd * xhci,unsigned int cycle_state,unsigned int max_packet,gfp_t flags)28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29 					       unsigned int cycle_state,
30 					       unsigned int max_packet,
31 					       gfp_t flags)
32 {
33 	struct xhci_segment *seg;
34 	dma_addr_t	dma;
35 	int		i;
36 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37 
38 	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39 	if (!seg)
40 		return NULL;
41 
42 	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43 	if (!seg->trbs) {
44 		kfree(seg);
45 		return NULL;
46 	}
47 
48 	if (max_packet) {
49 		seg->bounce_buf = kzalloc_node(max_packet, flags,
50 					dev_to_node(dev));
51 		if (!seg->bounce_buf) {
52 			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53 			kfree(seg);
54 			return NULL;
55 		}
56 	}
57 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 	if (cycle_state == 0) {
59 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
60 			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
61 	}
62 	seg->dma = dma;
63 	seg->next = NULL;
64 
65 	return seg;
66 }
67 
xhci_segment_free(struct xhci_hcd * xhci,struct xhci_segment * seg)68 void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70 	if (seg->trbs) {
71 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72 		seg->trbs = NULL;
73 	}
74 	kfree(seg->bounce_buf);
75 	kfree(seg);
76 }
77 EXPORT_SYMBOL_GPL(xhci_segment_free);
78 
xhci_free_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment * first)79 void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
80 				struct xhci_segment *first)
81 {
82 	struct xhci_segment *seg;
83 
84 	seg = first->next;
85 	while (seg != first) {
86 		struct xhci_segment *next = seg->next;
87 		xhci_segment_free(xhci, seg);
88 		seg = next;
89 	}
90 	xhci_segment_free(xhci, first);
91 }
92 
93 /*
94  * Make the prev segment point to the next segment.
95  *
96  * Change the last TRB in the prev segment to be a Link TRB which points to the
97  * DMA address of the next segment.  The caller needs to set any Link TRB
98  * related flags, such as End TRB, Toggle Cycle, and no snoop.
99  */
xhci_link_segments(struct xhci_segment * prev,struct xhci_segment * next,enum xhci_ring_type type,bool chain_links)100 void xhci_link_segments(struct xhci_segment *prev,
101 			struct xhci_segment *next,
102 			enum xhci_ring_type type, bool chain_links)
103 {
104 	u32 val;
105 
106 	if (!prev || !next)
107 		return;
108 	prev->next = next;
109 	if (type != TYPE_EVENT) {
110 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
111 			cpu_to_le64(next->dma);
112 
113 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
114 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
115 		val &= ~TRB_TYPE_BITMASK;
116 		val |= TRB_TYPE(TRB_LINK);
117 		if (chain_links)
118 			val |= TRB_CHAIN;
119 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
120 	}
121 }
122 EXPORT_SYMBOL_GPL(xhci_link_segments);
123 
124 /*
125  * Link the ring to the new segments.
126  * Set Toggle Cycle for the new ring if needed.
127  */
xhci_link_rings(struct xhci_hcd * xhci,struct xhci_ring * ring,struct xhci_segment * first,struct xhci_segment * last,unsigned int num_segs)128 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
129 		struct xhci_segment *first, struct xhci_segment *last,
130 		unsigned int num_segs)
131 {
132 	struct xhci_segment *next;
133 	bool chain_links;
134 
135 	if (!ring || !first || !last)
136 		return;
137 
138 	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
139 	chain_links = !!(xhci_link_trb_quirk(xhci) ||
140 			 (ring->type == TYPE_ISOC &&
141 			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
142 
143 	next = ring->enq_seg->next;
144 	xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
145 	xhci_link_segments(last, next, ring->type, chain_links);
146 	ring->num_segs += num_segs;
147 	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
148 
149 	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
150 		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
151 			&= ~cpu_to_le32(LINK_TOGGLE);
152 		last->trbs[TRBS_PER_SEGMENT-1].link.control
153 			|= cpu_to_le32(LINK_TOGGLE);
154 		ring->last_seg = last;
155 	}
156 }
157 
158 /*
159  * We need a radix tree for mapping physical addresses of TRBs to which stream
160  * ID they belong to.  We need to do this because the host controller won't tell
161  * us which stream ring the TRB came from.  We could store the stream ID in an
162  * event data TRB, but that doesn't help us for the cancellation case, since the
163  * endpoint may stop before it reaches that event data TRB.
164  *
165  * The radix tree maps the upper portion of the TRB DMA address to a ring
166  * segment that has the same upper portion of DMA addresses.  For example, say I
167  * have segments of size 1KB, that are always 1KB aligned.  A segment may
168  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
169  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
170  * pass the radix tree a key to get the right stream ID:
171  *
172  *	0x10c90fff >> 10 = 0x43243
173  *	0x10c912c0 >> 10 = 0x43244
174  *	0x10c91400 >> 10 = 0x43245
175  *
176  * Obviously, only those TRBs with DMA addresses that are within the segment
177  * will make the radix tree return the stream ID for that ring.
178  *
179  * Caveats for the radix tree:
180  *
181  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
182  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
183  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
184  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
185  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
186  * extended systems (where the DMA address can be bigger than 32-bits),
187  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
188  */
xhci_insert_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * seg,gfp_t mem_flags)189 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
190 		struct xhci_ring *ring,
191 		struct xhci_segment *seg,
192 		gfp_t mem_flags)
193 {
194 	unsigned long key;
195 	int ret;
196 
197 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
198 	/* Skip any segments that were already added. */
199 	if (radix_tree_lookup(trb_address_map, key))
200 		return 0;
201 
202 	ret = radix_tree_maybe_preload(mem_flags);
203 	if (ret)
204 		return ret;
205 	ret = radix_tree_insert(trb_address_map,
206 			key, ring);
207 	radix_tree_preload_end();
208 	return ret;
209 }
210 
xhci_remove_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_segment * seg)211 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
212 		struct xhci_segment *seg)
213 {
214 	unsigned long key;
215 
216 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
217 	if (radix_tree_lookup(trb_address_map, key))
218 		radix_tree_delete(trb_address_map, key);
219 }
220 
xhci_update_stream_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * first_seg,struct xhci_segment * last_seg,gfp_t mem_flags)221 static int xhci_update_stream_segment_mapping(
222 		struct radix_tree_root *trb_address_map,
223 		struct xhci_ring *ring,
224 		struct xhci_segment *first_seg,
225 		struct xhci_segment *last_seg,
226 		gfp_t mem_flags)
227 {
228 	struct xhci_segment *seg;
229 	struct xhci_segment *failed_seg;
230 	int ret;
231 
232 	if (WARN_ON_ONCE(trb_address_map == NULL))
233 		return 0;
234 
235 	seg = first_seg;
236 	do {
237 		ret = xhci_insert_segment_mapping(trb_address_map,
238 				ring, seg, mem_flags);
239 		if (ret)
240 			goto remove_streams;
241 		if (seg == last_seg)
242 			return 0;
243 		seg = seg->next;
244 	} while (seg != first_seg);
245 
246 	return 0;
247 
248 remove_streams:
249 	failed_seg = seg;
250 	seg = first_seg;
251 	do {
252 		xhci_remove_segment_mapping(trb_address_map, seg);
253 		if (seg == failed_seg)
254 			return ret;
255 		seg = seg->next;
256 	} while (seg != first_seg);
257 
258 	return ret;
259 }
260 
xhci_remove_stream_mapping(struct xhci_ring * ring)261 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
262 {
263 	struct xhci_segment *seg;
264 
265 	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
266 		return;
267 
268 	seg = ring->first_seg;
269 	do {
270 		xhci_remove_segment_mapping(ring->trb_address_map, seg);
271 		seg = seg->next;
272 	} while (seg != ring->first_seg);
273 }
274 
xhci_update_stream_mapping(struct xhci_ring * ring,gfp_t mem_flags)275 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
276 {
277 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
278 			ring->first_seg, ring->last_seg, mem_flags);
279 }
280 
281 /* XXX: Do we need the hcd structure in all these functions? */
xhci_ring_free(struct xhci_hcd * xhci,struct xhci_ring * ring)282 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
283 {
284 	if (!ring)
285 		return;
286 
287 	trace_xhci_ring_free(ring);
288 
289 	if (ring->first_seg) {
290 		if (ring->type == TYPE_STREAM)
291 			xhci_remove_stream_mapping(ring);
292 		xhci_free_segments_for_ring(xhci, ring->first_seg);
293 	}
294 
295 	kfree(ring);
296 }
297 EXPORT_SYMBOL_GPL(xhci_ring_free);
298 
xhci_initialize_ring_info(struct xhci_ring * ring,unsigned int cycle_state)299 void xhci_initialize_ring_info(struct xhci_ring *ring,
300 			       unsigned int cycle_state)
301 {
302 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
303 	ring->enqueue = ring->first_seg->trbs;
304 	ring->enq_seg = ring->first_seg;
305 	ring->dequeue = ring->enqueue;
306 	ring->deq_seg = ring->first_seg;
307 	/* The ring is initialized to 0. The producer must write 1 to the cycle
308 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
309 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
310 	 *
311 	 * New rings are initialized with cycle state equal to 1; if we are
312 	 * handling ring expansion, set the cycle state equal to the old ring.
313 	 */
314 	ring->cycle_state = cycle_state;
315 
316 	/*
317 	 * Each segment has a link TRB, and leave an extra TRB for SW
318 	 * accounting purpose
319 	 */
320 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
321 }
322 EXPORT_SYMBOL_GPL(xhci_initialize_ring_info);
323 
324 /* Allocate segments and link them for a ring */
xhci_alloc_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment ** first,struct xhci_segment ** last,unsigned int num_segs,unsigned int cycle_state,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)325 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
326 		struct xhci_segment **first, struct xhci_segment **last,
327 		unsigned int num_segs, unsigned int cycle_state,
328 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
329 {
330 	struct xhci_segment *prev;
331 	bool chain_links;
332 
333 	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
334 	chain_links = !!(xhci_link_trb_quirk(xhci) ||
335 			 (type == TYPE_ISOC &&
336 			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
337 
338 	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
339 	if (!prev)
340 		return -ENOMEM;
341 	num_segs--;
342 
343 	*first = prev;
344 	while (num_segs > 0) {
345 		struct xhci_segment	*next;
346 
347 		next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
348 		if (!next) {
349 			prev = *first;
350 			while (prev) {
351 				next = prev->next;
352 				xhci_segment_free(xhci, prev);
353 				prev = next;
354 			}
355 			return -ENOMEM;
356 		}
357 		xhci_link_segments(prev, next, type, chain_links);
358 
359 		prev = next;
360 		num_segs--;
361 	}
362 	xhci_link_segments(prev, *first, type, chain_links);
363 	*last = prev;
364 
365 	return 0;
366 }
367 
xhci_vendor_free_container_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)368 static void xhci_vendor_free_container_ctx(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx)
369 {
370 	struct xhci_vendor_ops *ops = xhci_vendor_get_ops(xhci);
371 
372 	if (ops && ops->free_container_ctx)
373 		ops->free_container_ctx(xhci, ctx);
374 }
375 
xhci_vendor_alloc_container_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,int type,gfp_t flags)376 static void xhci_vendor_alloc_container_ctx(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx,
377 					    int type, gfp_t flags)
378 {
379 	struct xhci_vendor_ops *ops = xhci_vendor_get_ops(xhci);
380 
381 	if (ops && ops->alloc_container_ctx)
382 		ops->alloc_container_ctx(xhci, ctx, type, flags);
383 }
384 
xhci_vendor_alloc_transfer_ring(struct xhci_hcd * xhci,u32 endpoint_type,enum xhci_ring_type ring_type,unsigned int max_packet,gfp_t mem_flags)385 static struct xhci_ring *xhci_vendor_alloc_transfer_ring(struct xhci_hcd *xhci,
386 		u32 endpoint_type, enum xhci_ring_type ring_type,
387 		unsigned int max_packet, gfp_t mem_flags)
388 {
389 	struct xhci_vendor_ops *ops = xhci_vendor_get_ops(xhci);
390 
391 	if (ops && ops->alloc_transfer_ring)
392 		return ops->alloc_transfer_ring(xhci, endpoint_type, ring_type,
393 				max_packet, mem_flags);
394 	return 0;
395 }
396 
xhci_vendor_free_transfer_ring(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,unsigned int ep_index)397 void xhci_vendor_free_transfer_ring(struct xhci_hcd *xhci,
398 		struct xhci_virt_device *virt_dev, unsigned int ep_index)
399 {
400 	struct xhci_vendor_ops *ops = xhci_vendor_get_ops(xhci);
401 
402 	if (ops && ops->free_transfer_ring)
403 		ops->free_transfer_ring(xhci, virt_dev, ep_index);
404 }
405 
xhci_vendor_is_usb_offload_enabled(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,unsigned int ep_index)406 bool xhci_vendor_is_usb_offload_enabled(struct xhci_hcd *xhci,
407 		struct xhci_virt_device *virt_dev, unsigned int ep_index)
408 {
409 	struct xhci_vendor_ops *ops = xhci_vendor_get_ops(xhci);
410 
411 	if (ops && ops->is_usb_offload_enabled)
412 		return ops->is_usb_offload_enabled(xhci, virt_dev, ep_index);
413 	return false;
414 }
415 
416 /*
417  * Create a new ring with zero or more segments.
418  *
419  * Link each segment together into a ring.
420  * Set the end flag and the cycle toggle bit on the last segment.
421  * See section 4.9.1 and figures 15 and 16.
422  */
xhci_ring_alloc(struct xhci_hcd * xhci,unsigned int num_segs,unsigned int cycle_state,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)423 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
424 		unsigned int num_segs, unsigned int cycle_state,
425 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
426 {
427 	struct xhci_ring	*ring;
428 	int ret;
429 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
430 
431 	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
432 	if (!ring)
433 		return NULL;
434 
435 	ring->num_segs = num_segs;
436 	ring->bounce_buf_len = max_packet;
437 	INIT_LIST_HEAD(&ring->td_list);
438 	ring->type = type;
439 	if (num_segs == 0)
440 		return ring;
441 
442 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
443 			&ring->last_seg, num_segs, cycle_state, type,
444 			max_packet, flags);
445 	if (ret)
446 		goto fail;
447 
448 	/* Only event ring does not use link TRB */
449 	if (type != TYPE_EVENT) {
450 		/* See section 4.9.2.1 and 6.4.4.1 */
451 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
452 			cpu_to_le32(LINK_TOGGLE);
453 	}
454 	xhci_initialize_ring_info(ring, cycle_state);
455 	trace_xhci_ring_alloc(ring);
456 	return ring;
457 
458 fail:
459 	kfree(ring);
460 	return NULL;
461 }
462 EXPORT_SYMBOL_GPL(xhci_ring_alloc);
463 
xhci_free_endpoint_ring(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,unsigned int ep_index)464 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
465 		struct xhci_virt_device *virt_dev,
466 		unsigned int ep_index)
467 {
468 	if (xhci_vendor_is_usb_offload_enabled(xhci, virt_dev, ep_index))
469 		xhci_vendor_free_transfer_ring(xhci, virt_dev, ep_index);
470 	else
471 		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
472 
473 	virt_dev->eps[ep_index].ring = NULL;
474 }
475 
476 /*
477  * Expand an existing ring.
478  * Allocate a new ring which has same segment numbers and link the two rings.
479  */
xhci_ring_expansion(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int num_trbs,gfp_t flags)480 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
481 				unsigned int num_trbs, gfp_t flags)
482 {
483 	struct xhci_segment	*first;
484 	struct xhci_segment	*last;
485 	unsigned int		num_segs;
486 	unsigned int		num_segs_needed;
487 	int			ret;
488 
489 	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
490 				(TRBS_PER_SEGMENT - 1);
491 
492 	/* Allocate number of segments we needed, or double the ring size */
493 	num_segs = ring->num_segs > num_segs_needed ?
494 			ring->num_segs : num_segs_needed;
495 
496 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
497 			num_segs, ring->cycle_state, ring->type,
498 			ring->bounce_buf_len, flags);
499 	if (ret)
500 		return -ENOMEM;
501 
502 	if (ring->type == TYPE_STREAM)
503 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
504 						ring, first, last, flags);
505 	if (ret) {
506 		struct xhci_segment *next;
507 		do {
508 			next = first->next;
509 			xhci_segment_free(xhci, first);
510 			if (first == last)
511 				break;
512 			first = next;
513 		} while (true);
514 		return ret;
515 	}
516 
517 	xhci_link_rings(xhci, ring, first, last, num_segs);
518 	trace_xhci_ring_expansion(ring);
519 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
520 			"ring expansion succeed, now has %d segments",
521 			ring->num_segs);
522 
523 	return 0;
524 }
525 
xhci_alloc_container_ctx(struct xhci_hcd * xhci,int type,gfp_t flags)526 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
527 						    int type, gfp_t flags)
528 {
529 	struct xhci_container_ctx *ctx;
530 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
531 	struct xhci_vendor_ops *ops = xhci_vendor_get_ops(xhci);
532 
533 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
534 		return NULL;
535 
536 	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
537 	if (!ctx)
538 		return NULL;
539 
540 	ctx->type = type;
541 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
542 	if (type == XHCI_CTX_TYPE_INPUT)
543 		ctx->size += CTX_SIZE(xhci->hcc_params);
544 
545 	if (xhci_vendor_is_usb_offload_enabled(xhci, NULL, 0) &&
546 	    (ops && ops->alloc_container_ctx))
547 		xhci_vendor_alloc_container_ctx(xhci, ctx, type, flags);
548 	else
549 		ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
550 
551 	if (!ctx->bytes) {
552 		kfree(ctx);
553 		return NULL;
554 	}
555 	return ctx;
556 }
557 
xhci_free_container_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)558 void xhci_free_container_ctx(struct xhci_hcd *xhci,
559 			     struct xhci_container_ctx *ctx)
560 {
561 	struct xhci_vendor_ops *ops = xhci_vendor_get_ops(xhci);
562 
563 	if (!ctx)
564 		return;
565 	if (xhci_vendor_is_usb_offload_enabled(xhci, NULL, 0) &&
566 	    (ops && ops->free_container_ctx))
567 		xhci_vendor_free_container_ctx(xhci, ctx);
568 	else
569 		dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
570 
571 	kfree(ctx);
572 }
573 
xhci_get_input_control_ctx(struct xhci_container_ctx * ctx)574 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
575 					      struct xhci_container_ctx *ctx)
576 {
577 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
578 		return NULL;
579 
580 	return (struct xhci_input_control_ctx *)ctx->bytes;
581 }
582 
xhci_get_slot_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)583 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
584 					struct xhci_container_ctx *ctx)
585 {
586 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
587 		return (struct xhci_slot_ctx *)ctx->bytes;
588 
589 	return (struct xhci_slot_ctx *)
590 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
591 }
592 EXPORT_SYMBOL_GPL(xhci_get_slot_ctx);
593 
xhci_get_ep_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,unsigned int ep_index)594 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
595 				    struct xhci_container_ctx *ctx,
596 				    unsigned int ep_index)
597 {
598 	/* increment ep index by offset of start of ep ctx array */
599 	ep_index++;
600 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
601 		ep_index++;
602 
603 	return (struct xhci_ep_ctx *)
604 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
605 }
606 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
607 
608 
609 /***************** Streams structures manipulation *************************/
610 
xhci_free_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,struct xhci_stream_ctx * stream_ctx,dma_addr_t dma)611 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
612 		unsigned int num_stream_ctxs,
613 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
614 {
615 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
616 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
617 
618 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
619 		dma_free_coherent(dev, size,
620 				stream_ctx, dma);
621 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
622 		return dma_pool_free(xhci->small_streams_pool,
623 				stream_ctx, dma);
624 	else
625 		return dma_pool_free(xhci->medium_streams_pool,
626 				stream_ctx, dma);
627 }
628 
629 /*
630  * The stream context array for each endpoint with bulk streams enabled can
631  * vary in size, based on:
632  *  - how many streams the endpoint supports,
633  *  - the maximum primary stream array size the host controller supports,
634  *  - and how many streams the device driver asks for.
635  *
636  * The stream context array must be a power of 2, and can be as small as
637  * 64 bytes or as large as 1MB.
638  */
xhci_alloc_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,dma_addr_t * dma,gfp_t mem_flags)639 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
640 		unsigned int num_stream_ctxs, dma_addr_t *dma,
641 		gfp_t mem_flags)
642 {
643 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
644 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
645 
646 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
647 		return dma_alloc_coherent(dev, size,
648 				dma, mem_flags);
649 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
650 		return dma_pool_alloc(xhci->small_streams_pool,
651 				mem_flags, dma);
652 	else
653 		return dma_pool_alloc(xhci->medium_streams_pool,
654 				mem_flags, dma);
655 }
656 
xhci_dma_to_transfer_ring(struct xhci_virt_ep * ep,u64 address)657 struct xhci_ring *xhci_dma_to_transfer_ring(
658 		struct xhci_virt_ep *ep,
659 		u64 address)
660 {
661 	if (ep->ep_state & EP_HAS_STREAMS)
662 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
663 				address >> TRB_SEGMENT_SHIFT);
664 	return ep->ring;
665 }
666 
667 /*
668  * Change an endpoint's internal structure so it supports stream IDs.  The
669  * number of requested streams includes stream 0, which cannot be used by device
670  * drivers.
671  *
672  * The number of stream contexts in the stream context array may be bigger than
673  * the number of streams the driver wants to use.  This is because the number of
674  * stream context array entries must be a power of two.
675  */
xhci_alloc_stream_info(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,unsigned int num_streams,unsigned int max_packet,gfp_t mem_flags)676 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
677 		unsigned int num_stream_ctxs,
678 		unsigned int num_streams,
679 		unsigned int max_packet, gfp_t mem_flags)
680 {
681 	struct xhci_stream_info *stream_info;
682 	u32 cur_stream;
683 	struct xhci_ring *cur_ring;
684 	u64 addr;
685 	int ret;
686 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
687 
688 	xhci_dbg(xhci, "Allocating %u streams and %u "
689 			"stream context array entries.\n",
690 			num_streams, num_stream_ctxs);
691 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
692 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
693 		return NULL;
694 	}
695 	xhci->cmd_ring_reserved_trbs++;
696 
697 	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
698 			dev_to_node(dev));
699 	if (!stream_info)
700 		goto cleanup_trbs;
701 
702 	stream_info->num_streams = num_streams;
703 	stream_info->num_stream_ctxs = num_stream_ctxs;
704 
705 	/* Initialize the array of virtual pointers to stream rings. */
706 	stream_info->stream_rings = kcalloc_node(
707 			num_streams, sizeof(struct xhci_ring *), mem_flags,
708 			dev_to_node(dev));
709 	if (!stream_info->stream_rings)
710 		goto cleanup_info;
711 
712 	/* Initialize the array of DMA addresses for stream rings for the HW. */
713 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
714 			num_stream_ctxs, &stream_info->ctx_array_dma,
715 			mem_flags);
716 	if (!stream_info->stream_ctx_array)
717 		goto cleanup_ring_array;
718 	memset(stream_info->stream_ctx_array, 0,
719 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
720 
721 	/* Allocate everything needed to free the stream rings later */
722 	stream_info->free_streams_command =
723 		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
724 	if (!stream_info->free_streams_command)
725 		goto cleanup_ctx;
726 
727 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
728 
729 	/* Allocate rings for all the streams that the driver will use,
730 	 * and add their segment DMA addresses to the radix tree.
731 	 * Stream 0 is reserved.
732 	 */
733 
734 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
735 		stream_info->stream_rings[cur_stream] =
736 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
737 					mem_flags);
738 		cur_ring = stream_info->stream_rings[cur_stream];
739 		if (!cur_ring)
740 			goto cleanup_rings;
741 		cur_ring->stream_id = cur_stream;
742 		cur_ring->trb_address_map = &stream_info->trb_address_map;
743 		/* Set deq ptr, cycle bit, and stream context type */
744 		addr = cur_ring->first_seg->dma |
745 			SCT_FOR_CTX(SCT_PRI_TR) |
746 			cur_ring->cycle_state;
747 		stream_info->stream_ctx_array[cur_stream].stream_ring =
748 			cpu_to_le64(addr);
749 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
750 				cur_stream, (unsigned long long) addr);
751 
752 		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
753 		if (ret) {
754 			xhci_ring_free(xhci, cur_ring);
755 			stream_info->stream_rings[cur_stream] = NULL;
756 			goto cleanup_rings;
757 		}
758 	}
759 	/* Leave the other unused stream ring pointers in the stream context
760 	 * array initialized to zero.  This will cause the xHC to give us an
761 	 * error if the device asks for a stream ID we don't have setup (if it
762 	 * was any other way, the host controller would assume the ring is
763 	 * "empty" and wait forever for data to be queued to that stream ID).
764 	 */
765 
766 	return stream_info;
767 
768 cleanup_rings:
769 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
770 		cur_ring = stream_info->stream_rings[cur_stream];
771 		if (cur_ring) {
772 			xhci_ring_free(xhci, cur_ring);
773 			stream_info->stream_rings[cur_stream] = NULL;
774 		}
775 	}
776 	xhci_free_command(xhci, stream_info->free_streams_command);
777 cleanup_ctx:
778 	xhci_free_stream_ctx(xhci,
779 		stream_info->num_stream_ctxs,
780 		stream_info->stream_ctx_array,
781 		stream_info->ctx_array_dma);
782 cleanup_ring_array:
783 	kfree(stream_info->stream_rings);
784 cleanup_info:
785 	kfree(stream_info);
786 cleanup_trbs:
787 	xhci->cmd_ring_reserved_trbs--;
788 	return NULL;
789 }
790 /*
791  * Sets the MaxPStreams field and the Linear Stream Array field.
792  * Sets the dequeue pointer to the stream context array.
793  */
xhci_setup_streams_ep_input_ctx(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,struct xhci_stream_info * stream_info)794 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
795 		struct xhci_ep_ctx *ep_ctx,
796 		struct xhci_stream_info *stream_info)
797 {
798 	u32 max_primary_streams;
799 	/* MaxPStreams is the number of stream context array entries, not the
800 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
801 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
802 	 */
803 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
804 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
805 			"Setting number of stream ctx array entries to %u",
806 			1 << (max_primary_streams + 1));
807 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
808 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
809 				       | EP_HAS_LSA);
810 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
811 }
812 
813 /*
814  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
815  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
816  * not at the beginning of the ring).
817  */
xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx * ep_ctx,struct xhci_virt_ep * ep)818 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
819 		struct xhci_virt_ep *ep)
820 {
821 	dma_addr_t addr;
822 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
823 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
824 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
825 }
826 
827 /* Frees all stream contexts associated with the endpoint,
828  *
829  * Caller should fix the endpoint context streams fields.
830  */
xhci_free_stream_info(struct xhci_hcd * xhci,struct xhci_stream_info * stream_info)831 void xhci_free_stream_info(struct xhci_hcd *xhci,
832 		struct xhci_stream_info *stream_info)
833 {
834 	int cur_stream;
835 	struct xhci_ring *cur_ring;
836 
837 	if (!stream_info)
838 		return;
839 
840 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
841 			cur_stream++) {
842 		cur_ring = stream_info->stream_rings[cur_stream];
843 		if (cur_ring) {
844 			xhci_ring_free(xhci, cur_ring);
845 			stream_info->stream_rings[cur_stream] = NULL;
846 		}
847 	}
848 	xhci_free_command(xhci, stream_info->free_streams_command);
849 	xhci->cmd_ring_reserved_trbs--;
850 	if (stream_info->stream_ctx_array)
851 		xhci_free_stream_ctx(xhci,
852 				stream_info->num_stream_ctxs,
853 				stream_info->stream_ctx_array,
854 				stream_info->ctx_array_dma);
855 
856 	kfree(stream_info->stream_rings);
857 	kfree(stream_info);
858 }
859 
860 
861 /***************** Device context manipulation *************************/
862 
xhci_init_endpoint_timer(struct xhci_hcd * xhci,struct xhci_virt_ep * ep)863 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
864 		struct xhci_virt_ep *ep)
865 {
866 	timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
867 		    0);
868 	ep->xhci = xhci;
869 }
870 
xhci_free_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int slot_id)871 static void xhci_free_tt_info(struct xhci_hcd *xhci,
872 		struct xhci_virt_device *virt_dev,
873 		int slot_id)
874 {
875 	struct list_head *tt_list_head;
876 	struct xhci_tt_bw_info *tt_info, *next;
877 	bool slot_found = false;
878 
879 	/* If the device never made it past the Set Address stage,
880 	 * it may not have the real_port set correctly.
881 	 */
882 	if (virt_dev->real_port == 0 ||
883 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
884 		xhci_dbg(xhci, "Bad real port.\n");
885 		return;
886 	}
887 
888 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
889 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
890 		/* Multi-TT hubs will have more than one entry */
891 		if (tt_info->slot_id == slot_id) {
892 			slot_found = true;
893 			list_del(&tt_info->tt_list);
894 			kfree(tt_info);
895 		} else if (slot_found) {
896 			break;
897 		}
898 	}
899 }
900 
xhci_alloc_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)901 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
902 		struct xhci_virt_device *virt_dev,
903 		struct usb_device *hdev,
904 		struct usb_tt *tt, gfp_t mem_flags)
905 {
906 	struct xhci_tt_bw_info		*tt_info;
907 	unsigned int			num_ports;
908 	int				i, j;
909 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
910 
911 	if (!tt->multi)
912 		num_ports = 1;
913 	else
914 		num_ports = hdev->maxchild;
915 
916 	for (i = 0; i < num_ports; i++, tt_info++) {
917 		struct xhci_interval_bw_table *bw_table;
918 
919 		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
920 				dev_to_node(dev));
921 		if (!tt_info)
922 			goto free_tts;
923 		INIT_LIST_HEAD(&tt_info->tt_list);
924 		list_add(&tt_info->tt_list,
925 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
926 		tt_info->slot_id = virt_dev->udev->slot_id;
927 		if (tt->multi)
928 			tt_info->ttport = i+1;
929 		bw_table = &tt_info->bw_table;
930 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
931 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
932 	}
933 	return 0;
934 
935 free_tts:
936 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
937 	return -ENOMEM;
938 }
939 
940 
941 /* All the xhci_tds in the ring's TD list should be freed at this point.
942  * Should be called with xhci->lock held if there is any chance the TT lists
943  * will be manipulated by the configure endpoint, allocate device, or update
944  * hub functions while this function is removing the TT entries from the list.
945  */
xhci_free_virt_device(struct xhci_hcd * xhci,int slot_id)946 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
947 {
948 	struct xhci_virt_device *dev;
949 	int i;
950 	int old_active_eps = 0;
951 
952 	/* Slot ID 0 is reserved */
953 	if (slot_id == 0 || !xhci->devs[slot_id])
954 		return;
955 
956 	dev = xhci->devs[slot_id];
957 
958 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
959 	if (!dev)
960 		return;
961 
962 	trace_xhci_free_virt_device(dev);
963 
964 	if (dev->tt_info)
965 		old_active_eps = dev->tt_info->active_eps;
966 
967 	for (i = 0; i < 31; i++) {
968 		if (dev->eps[i].ring)
969 			xhci_free_endpoint_ring(xhci, dev, i);
970 		if (dev->eps[i].stream_info)
971 			xhci_free_stream_info(xhci,
972 					dev->eps[i].stream_info);
973 		/*
974 		 * Endpoints are normally deleted from the bandwidth list when
975 		 * endpoints are dropped, before device is freed.
976 		 * If host is dying or being removed then endpoints aren't
977 		 * dropped cleanly, so delete the endpoint from list here.
978 		 * Only applicable for hosts with software bandwidth checking.
979 		 */
980 
981 		if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
982 			list_del_init(&dev->eps[i].bw_endpoint_list);
983 			xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
984 				 slot_id, i);
985 		}
986 	}
987 	/* If this is a hub, free the TT(s) from the TT list */
988 	xhci_free_tt_info(xhci, dev, slot_id);
989 	/* If necessary, update the number of active TTs on this root port */
990 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
991 
992 	if (dev->in_ctx)
993 		xhci_free_container_ctx(xhci, dev->in_ctx);
994 	if (dev->out_ctx)
995 		xhci_free_container_ctx(xhci, dev->out_ctx);
996 
997 	if (dev->udev && dev->udev->slot_id)
998 		dev->udev->slot_id = 0;
999 	kfree(xhci->devs[slot_id]);
1000 	xhci->devs[slot_id] = NULL;
1001 }
1002 
1003 /*
1004  * Free a virt_device structure.
1005  * If the virt_device added a tt_info (a hub) and has children pointing to
1006  * that tt_info, then free the child first. Recursive.
1007  * We can't rely on udev at this point to find child-parent relationships.
1008  */
xhci_free_virt_devices_depth_first(struct xhci_hcd * xhci,int slot_id)1009 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
1010 {
1011 	struct xhci_virt_device *vdev;
1012 	struct list_head *tt_list_head;
1013 	struct xhci_tt_bw_info *tt_info, *next;
1014 	int i;
1015 
1016 	vdev = xhci->devs[slot_id];
1017 	if (!vdev)
1018 		return;
1019 
1020 	if (vdev->real_port == 0 ||
1021 			vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
1022 		xhci_dbg(xhci, "Bad vdev->real_port.\n");
1023 		goto out;
1024 	}
1025 
1026 	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
1027 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
1028 		/* is this a hub device that added a tt_info to the tts list */
1029 		if (tt_info->slot_id == slot_id) {
1030 			/* are any devices using this tt_info? */
1031 			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
1032 				vdev = xhci->devs[i];
1033 				if (vdev && (vdev->tt_info == tt_info))
1034 					xhci_free_virt_devices_depth_first(
1035 						xhci, i);
1036 			}
1037 		}
1038 	}
1039 out:
1040 	/* we are now at a leaf device */
1041 	xhci_debugfs_remove_slot(xhci, slot_id);
1042 	xhci_free_virt_device(xhci, slot_id);
1043 }
1044 
xhci_alloc_virt_device(struct xhci_hcd * xhci,int slot_id,struct usb_device * udev,gfp_t flags)1045 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
1046 		struct usb_device *udev, gfp_t flags)
1047 {
1048 	struct xhci_virt_device *dev;
1049 	int i;
1050 
1051 	/* Slot ID 0 is reserved */
1052 	if (slot_id == 0 || xhci->devs[slot_id]) {
1053 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
1054 		return 0;
1055 	}
1056 
1057 	dev = kzalloc(sizeof(*dev), flags);
1058 	if (!dev)
1059 		return 0;
1060 
1061 	dev->slot_id = slot_id;
1062 
1063 	/* Allocate the (output) device context that will be used in the HC. */
1064 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1065 	if (!dev->out_ctx)
1066 		goto fail;
1067 
1068 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1069 			(unsigned long long)dev->out_ctx->dma);
1070 
1071 	/* Allocate the (input) device context for address device command */
1072 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1073 	if (!dev->in_ctx)
1074 		goto fail;
1075 
1076 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1077 			(unsigned long long)dev->in_ctx->dma);
1078 
1079 	/* Initialize the cancellation list and watchdog timers for each ep */
1080 	for (i = 0; i < 31; i++) {
1081 		dev->eps[i].ep_index = i;
1082 		dev->eps[i].vdev = dev;
1083 		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1084 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1085 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1086 	}
1087 
1088 	/* Allocate endpoint 0 ring */
1089 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1090 	if (!dev->eps[0].ring)
1091 		goto fail;
1092 
1093 	dev->udev = udev;
1094 
1095 	/* Point to output device context in dcbaa. */
1096 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1097 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1098 		 slot_id,
1099 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1100 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1101 
1102 	trace_xhci_alloc_virt_device(dev);
1103 
1104 	xhci->devs[slot_id] = dev;
1105 
1106 	return 1;
1107 fail:
1108 
1109 	if (dev->in_ctx)
1110 		xhci_free_container_ctx(xhci, dev->in_ctx);
1111 	if (dev->out_ctx)
1112 		xhci_free_container_ctx(xhci, dev->out_ctx);
1113 	kfree(dev);
1114 
1115 	return 0;
1116 }
1117 
xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd * xhci,struct usb_device * udev)1118 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1119 		struct usb_device *udev)
1120 {
1121 	struct xhci_virt_device *virt_dev;
1122 	struct xhci_ep_ctx	*ep0_ctx;
1123 	struct xhci_ring	*ep_ring;
1124 
1125 	virt_dev = xhci->devs[udev->slot_id];
1126 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1127 	ep_ring = virt_dev->eps[0].ring;
1128 	/*
1129 	 * FIXME we don't keep track of the dequeue pointer very well after a
1130 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1131 	 * host to our enqueue pointer.  This should only be called after a
1132 	 * configured device has reset, so all control transfers should have
1133 	 * been completed or cancelled before the reset.
1134 	 */
1135 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1136 							ep_ring->enqueue)
1137 				   | ep_ring->cycle_state);
1138 }
1139 
1140 /*
1141  * The xHCI roothub may have ports of differing speeds in any order in the port
1142  * status registers.
1143  *
1144  * The xHCI hardware wants to know the roothub port number that the USB device
1145  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1146  * know is the index of that port under either the USB 2.0 or the USB 3.0
1147  * roothub, but that doesn't give us the real index into the HW port status
1148  * registers. Call xhci_find_raw_port_number() to get real index.
1149  */
xhci_find_real_port_number(struct xhci_hcd * xhci,struct usb_device * udev)1150 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1151 		struct usb_device *udev)
1152 {
1153 	struct usb_device *top_dev;
1154 	struct usb_hcd *hcd;
1155 
1156 	if (udev->speed >= USB_SPEED_SUPER)
1157 		hcd = xhci->shared_hcd;
1158 	else
1159 		hcd = xhci->main_hcd;
1160 
1161 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1162 			top_dev = top_dev->parent)
1163 		/* Found device below root hub */;
1164 
1165 	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1166 }
1167 
1168 /* Setup an xHCI virtual device for a Set Address command */
xhci_setup_addressable_virt_dev(struct xhci_hcd * xhci,struct usb_device * udev)1169 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1170 {
1171 	struct xhci_virt_device *dev;
1172 	struct xhci_ep_ctx	*ep0_ctx;
1173 	struct xhci_slot_ctx    *slot_ctx;
1174 	u32			port_num;
1175 	u32			max_packets;
1176 	struct usb_device *top_dev;
1177 
1178 	dev = xhci->devs[udev->slot_id];
1179 	/* Slot ID 0 is reserved */
1180 	if (udev->slot_id == 0 || !dev) {
1181 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1182 				udev->slot_id);
1183 		return -EINVAL;
1184 	}
1185 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1186 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1187 
1188 	/* 3) Only the control endpoint is valid - one endpoint context */
1189 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1190 	switch (udev->speed) {
1191 	case USB_SPEED_SUPER_PLUS:
1192 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1193 		max_packets = MAX_PACKET(512);
1194 		break;
1195 	case USB_SPEED_SUPER:
1196 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1197 		max_packets = MAX_PACKET(512);
1198 		break;
1199 	case USB_SPEED_HIGH:
1200 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1201 		max_packets = MAX_PACKET(64);
1202 		break;
1203 	/* USB core guesses at a 64-byte max packet first for FS devices */
1204 	case USB_SPEED_FULL:
1205 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1206 		max_packets = MAX_PACKET(64);
1207 		break;
1208 	case USB_SPEED_LOW:
1209 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1210 		max_packets = MAX_PACKET(8);
1211 		break;
1212 	case USB_SPEED_WIRELESS:
1213 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1214 		return -EINVAL;
1215 		break;
1216 	default:
1217 		/* Speed was set earlier, this shouldn't happen. */
1218 		return -EINVAL;
1219 	}
1220 	/* Find the root hub port this device is under */
1221 	port_num = xhci_find_real_port_number(xhci, udev);
1222 	if (!port_num)
1223 		return -EINVAL;
1224 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1225 	/* Set the port number in the virtual_device to the faked port number */
1226 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1227 			top_dev = top_dev->parent)
1228 		/* Found device below root hub */;
1229 	dev->fake_port = top_dev->portnum;
1230 	dev->real_port = port_num;
1231 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1232 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1233 
1234 	/* Find the right bandwidth table that this device will be a part of.
1235 	 * If this is a full speed device attached directly to a root port (or a
1236 	 * decendent of one), it counts as a primary bandwidth domain, not a
1237 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1238 	 * will never be created for the HS root hub.
1239 	 */
1240 	if (!udev->tt || !udev->tt->hub->parent) {
1241 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1242 	} else {
1243 		struct xhci_root_port_bw_info *rh_bw;
1244 		struct xhci_tt_bw_info *tt_bw;
1245 
1246 		rh_bw = &xhci->rh_bw[port_num - 1];
1247 		/* Find the right TT. */
1248 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1249 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1250 				continue;
1251 
1252 			if (!dev->udev->tt->multi ||
1253 					(udev->tt->multi &&
1254 					 tt_bw->ttport == dev->udev->ttport)) {
1255 				dev->bw_table = &tt_bw->bw_table;
1256 				dev->tt_info = tt_bw;
1257 				break;
1258 			}
1259 		}
1260 		if (!dev->tt_info)
1261 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1262 	}
1263 
1264 	/* Is this a LS/FS device under an external HS hub? */
1265 	if (udev->tt && udev->tt->hub->parent) {
1266 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1267 						(udev->ttport << 8));
1268 		if (udev->tt->multi)
1269 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1270 	}
1271 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1272 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1273 
1274 	/* Step 4 - ring already allocated */
1275 	/* Step 5 */
1276 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1277 
1278 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1279 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1280 					 max_packets);
1281 
1282 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1283 				   dev->eps[0].ring->cycle_state);
1284 
1285 	trace_xhci_setup_addressable_virt_device(dev);
1286 
1287 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1288 
1289 	return 0;
1290 }
1291 
1292 /*
1293  * Convert interval expressed as 2^(bInterval - 1) == interval into
1294  * straight exponent value 2^n == interval.
1295  *
1296  */
xhci_parse_exponent_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1297 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1298 		struct usb_host_endpoint *ep)
1299 {
1300 	unsigned int interval;
1301 
1302 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1303 	if (interval != ep->desc.bInterval - 1)
1304 		dev_warn(&udev->dev,
1305 			 "ep %#x - rounding interval to %d %sframes\n",
1306 			 ep->desc.bEndpointAddress,
1307 			 1 << interval,
1308 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1309 
1310 	if (udev->speed == USB_SPEED_FULL) {
1311 		/*
1312 		 * Full speed isoc endpoints specify interval in frames,
1313 		 * not microframes. We are using microframes everywhere,
1314 		 * so adjust accordingly.
1315 		 */
1316 		interval += 3;	/* 1 frame = 2^3 uframes */
1317 	}
1318 
1319 	return interval;
1320 }
1321 
1322 /*
1323  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1324  * microframes, rounded down to nearest power of 2.
1325  */
xhci_microframes_to_exponent(struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int desc_interval,unsigned int min_exponent,unsigned int max_exponent)1326 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1327 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1328 		unsigned int min_exponent, unsigned int max_exponent)
1329 {
1330 	unsigned int interval;
1331 
1332 	interval = fls(desc_interval) - 1;
1333 	interval = clamp_val(interval, min_exponent, max_exponent);
1334 	if ((1 << interval) != desc_interval)
1335 		dev_dbg(&udev->dev,
1336 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1337 			 ep->desc.bEndpointAddress,
1338 			 1 << interval,
1339 			 desc_interval);
1340 
1341 	return interval;
1342 }
1343 
xhci_parse_microframe_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1344 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1345 		struct usb_host_endpoint *ep)
1346 {
1347 	if (ep->desc.bInterval == 0)
1348 		return 0;
1349 	return xhci_microframes_to_exponent(udev, ep,
1350 			ep->desc.bInterval, 0, 15);
1351 }
1352 
1353 
xhci_parse_frame_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1354 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1355 		struct usb_host_endpoint *ep)
1356 {
1357 	return xhci_microframes_to_exponent(udev, ep,
1358 			ep->desc.bInterval * 8, 3, 10);
1359 }
1360 
1361 /* Return the polling or NAK interval.
1362  *
1363  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1364  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1365  *
1366  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1367  * is set to 0.
1368  */
xhci_get_endpoint_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1369 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1370 		struct usb_host_endpoint *ep)
1371 {
1372 	unsigned int interval = 0;
1373 
1374 	switch (udev->speed) {
1375 	case USB_SPEED_HIGH:
1376 		/* Max NAK rate */
1377 		if (usb_endpoint_xfer_control(&ep->desc) ||
1378 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1379 			interval = xhci_parse_microframe_interval(udev, ep);
1380 			break;
1381 		}
1382 		fallthrough;	/* SS and HS isoc/int have same decoding */
1383 
1384 	case USB_SPEED_SUPER_PLUS:
1385 	case USB_SPEED_SUPER:
1386 		if (usb_endpoint_xfer_int(&ep->desc) ||
1387 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1388 			interval = xhci_parse_exponent_interval(udev, ep);
1389 		}
1390 		break;
1391 
1392 	case USB_SPEED_FULL:
1393 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1394 			interval = xhci_parse_exponent_interval(udev, ep);
1395 			break;
1396 		}
1397 		/*
1398 		 * Fall through for interrupt endpoint interval decoding
1399 		 * since it uses the same rules as low speed interrupt
1400 		 * endpoints.
1401 		 */
1402 		fallthrough;
1403 
1404 	case USB_SPEED_LOW:
1405 		if (usb_endpoint_xfer_int(&ep->desc) ||
1406 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1407 
1408 			interval = xhci_parse_frame_interval(udev, ep);
1409 		}
1410 		break;
1411 
1412 	default:
1413 		BUG();
1414 	}
1415 	return interval;
1416 }
1417 
1418 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1419  * High speed endpoint descriptors can define "the number of additional
1420  * transaction opportunities per microframe", but that goes in the Max Burst
1421  * endpoint context field.
1422  */
xhci_get_endpoint_mult(struct usb_device * udev,struct usb_host_endpoint * ep)1423 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1424 		struct usb_host_endpoint *ep)
1425 {
1426 	if (udev->speed < USB_SPEED_SUPER ||
1427 			!usb_endpoint_xfer_isoc(&ep->desc))
1428 		return 0;
1429 	return ep->ss_ep_comp.bmAttributes;
1430 }
1431 
xhci_get_endpoint_max_burst(struct usb_device * udev,struct usb_host_endpoint * ep)1432 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1433 				       struct usb_host_endpoint *ep)
1434 {
1435 	/* Super speed and Plus have max burst in ep companion desc */
1436 	if (udev->speed >= USB_SPEED_SUPER)
1437 		return ep->ss_ep_comp.bMaxBurst;
1438 
1439 	if (udev->speed == USB_SPEED_HIGH &&
1440 	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1441 	     usb_endpoint_xfer_int(&ep->desc)))
1442 		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1443 
1444 	return 0;
1445 }
1446 
xhci_get_endpoint_type(struct usb_host_endpoint * ep)1447 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1448 {
1449 	int in;
1450 
1451 	in = usb_endpoint_dir_in(&ep->desc);
1452 
1453 	switch (usb_endpoint_type(&ep->desc)) {
1454 	case USB_ENDPOINT_XFER_CONTROL:
1455 		return CTRL_EP;
1456 	case USB_ENDPOINT_XFER_BULK:
1457 		return in ? BULK_IN_EP : BULK_OUT_EP;
1458 	case USB_ENDPOINT_XFER_ISOC:
1459 		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1460 	case USB_ENDPOINT_XFER_INT:
1461 		return in ? INT_IN_EP : INT_OUT_EP;
1462 	}
1463 	return 0;
1464 }
1465 
1466 /* Return the maximum endpoint service interval time (ESIT) payload.
1467  * Basically, this is the maxpacket size, multiplied by the burst size
1468  * and mult size.
1469  */
xhci_get_max_esit_payload(struct usb_device * udev,struct usb_host_endpoint * ep)1470 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1471 		struct usb_host_endpoint *ep)
1472 {
1473 	int max_burst;
1474 	int max_packet;
1475 
1476 	/* Only applies for interrupt or isochronous endpoints */
1477 	if (usb_endpoint_xfer_control(&ep->desc) ||
1478 			usb_endpoint_xfer_bulk(&ep->desc))
1479 		return 0;
1480 
1481 	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1482 	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1483 	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1484 		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1485 	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1486 	else if (udev->speed >= USB_SPEED_SUPER)
1487 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1488 
1489 	max_packet = usb_endpoint_maxp(&ep->desc);
1490 	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1491 	/* A 0 in max burst means 1 transfer per ESIT */
1492 	return max_packet * max_burst;
1493 }
1494 
1495 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1496  * Drivers will have to call usb_alloc_streams() to do that.
1497  */
xhci_endpoint_init(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * udev,struct usb_host_endpoint * ep,gfp_t mem_flags)1498 int xhci_endpoint_init(struct xhci_hcd *xhci,
1499 		struct xhci_virt_device *virt_dev,
1500 		struct usb_device *udev,
1501 		struct usb_host_endpoint *ep,
1502 		gfp_t mem_flags)
1503 {
1504 	unsigned int ep_index;
1505 	struct xhci_ep_ctx *ep_ctx;
1506 	struct xhci_ring *ep_ring;
1507 	unsigned int max_packet;
1508 	enum xhci_ring_type ring_type;
1509 	u32 max_esit_payload;
1510 	u32 endpoint_type;
1511 	unsigned int max_burst;
1512 	unsigned int interval;
1513 	unsigned int mult;
1514 	unsigned int avg_trb_len;
1515 	unsigned int err_count = 0;
1516 
1517 	ep_index = xhci_get_endpoint_index(&ep->desc);
1518 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1519 
1520 	endpoint_type = xhci_get_endpoint_type(ep);
1521 	if (!endpoint_type)
1522 		return -EINVAL;
1523 
1524 	ring_type = usb_endpoint_type(&ep->desc);
1525 
1526 	/*
1527 	 * Get values to fill the endpoint context, mostly from ep descriptor.
1528 	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1529 	 * have no clue on scatter gather list entry size. For Isoc and Int,
1530 	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1531 	 */
1532 	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1533 	interval = xhci_get_endpoint_interval(udev, ep);
1534 
1535 	/* Periodic endpoint bInterval limit quirk */
1536 	if (usb_endpoint_xfer_int(&ep->desc) ||
1537 	    usb_endpoint_xfer_isoc(&ep->desc)) {
1538 		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1539 		    udev->speed >= USB_SPEED_HIGH &&
1540 		    interval >= 7) {
1541 			interval = 6;
1542 		}
1543 	}
1544 
1545 	mult = xhci_get_endpoint_mult(udev, ep);
1546 	max_packet = usb_endpoint_maxp(&ep->desc);
1547 	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1548 	avg_trb_len = max_esit_payload;
1549 
1550 	/* FIXME dig Mult and streams info out of ep companion desc */
1551 
1552 	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1553 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1554 		err_count = 3;
1555 	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1556 	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1557 		if (udev->speed == USB_SPEED_HIGH)
1558 			max_packet = 512;
1559 		if (udev->speed == USB_SPEED_FULL) {
1560 			max_packet = rounddown_pow_of_two(max_packet);
1561 			max_packet = clamp_val(max_packet, 8, 64);
1562 		}
1563 	}
1564 	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1565 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1566 		avg_trb_len = 8;
1567 	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1568 	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1569 		mult = 0;
1570 
1571 	/* Set up the endpoint ring */
1572 	if (xhci_vendor_is_usb_offload_enabled(xhci, virt_dev, ep_index) &&
1573 	    usb_endpoint_xfer_isoc(&ep->desc)) {
1574 		virt_dev->eps[ep_index].new_ring =
1575 			xhci_vendor_alloc_transfer_ring(xhci, endpoint_type, ring_type,
1576 							max_packet, mem_flags);
1577 	} else {
1578 		virt_dev->eps[ep_index].new_ring =
1579 			xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1580 	}
1581 
1582 	if (!virt_dev->eps[ep_index].new_ring)
1583 		return -ENOMEM;
1584 
1585 	virt_dev->eps[ep_index].skip = false;
1586 	ep_ring = virt_dev->eps[ep_index].new_ring;
1587 
1588 	/* Fill the endpoint context */
1589 	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1590 				      EP_INTERVAL(interval) |
1591 				      EP_MULT(mult));
1592 	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1593 				       MAX_PACKET(max_packet) |
1594 				       MAX_BURST(max_burst) |
1595 				       ERROR_COUNT(err_count));
1596 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1597 				  ep_ring->cycle_state);
1598 
1599 	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1600 				      EP_AVG_TRB_LENGTH(avg_trb_len));
1601 
1602 	return 0;
1603 }
1604 
xhci_endpoint_zero(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_host_endpoint * ep)1605 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1606 		struct xhci_virt_device *virt_dev,
1607 		struct usb_host_endpoint *ep)
1608 {
1609 	unsigned int ep_index;
1610 	struct xhci_ep_ctx *ep_ctx;
1611 
1612 	ep_index = xhci_get_endpoint_index(&ep->desc);
1613 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1614 
1615 	ep_ctx->ep_info = 0;
1616 	ep_ctx->ep_info2 = 0;
1617 	ep_ctx->deq = 0;
1618 	ep_ctx->tx_info = 0;
1619 	/* Don't free the endpoint ring until the set interface or configuration
1620 	 * request succeeds.
1621 	 */
1622 }
1623 
xhci_clear_endpoint_bw_info(struct xhci_bw_info * bw_info)1624 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1625 {
1626 	bw_info->ep_interval = 0;
1627 	bw_info->mult = 0;
1628 	bw_info->num_packets = 0;
1629 	bw_info->max_packet_size = 0;
1630 	bw_info->type = 0;
1631 	bw_info->max_esit_payload = 0;
1632 }
1633 
xhci_update_bw_info(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_input_control_ctx * ctrl_ctx,struct xhci_virt_device * virt_dev)1634 void xhci_update_bw_info(struct xhci_hcd *xhci,
1635 		struct xhci_container_ctx *in_ctx,
1636 		struct xhci_input_control_ctx *ctrl_ctx,
1637 		struct xhci_virt_device *virt_dev)
1638 {
1639 	struct xhci_bw_info *bw_info;
1640 	struct xhci_ep_ctx *ep_ctx;
1641 	unsigned int ep_type;
1642 	int i;
1643 
1644 	for (i = 1; i < 31; i++) {
1645 		bw_info = &virt_dev->eps[i].bw_info;
1646 
1647 		/* We can't tell what endpoint type is being dropped, but
1648 		 * unconditionally clearing the bandwidth info for non-periodic
1649 		 * endpoints should be harmless because the info will never be
1650 		 * set in the first place.
1651 		 */
1652 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1653 			/* Dropped endpoint */
1654 			xhci_clear_endpoint_bw_info(bw_info);
1655 			continue;
1656 		}
1657 
1658 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1659 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1660 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1661 
1662 			/* Ignore non-periodic endpoints */
1663 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1664 					ep_type != ISOC_IN_EP &&
1665 					ep_type != INT_IN_EP)
1666 				continue;
1667 
1668 			/* Added or changed endpoint */
1669 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1670 					le32_to_cpu(ep_ctx->ep_info));
1671 			/* Number of packets and mult are zero-based in the
1672 			 * input context, but we want one-based for the
1673 			 * interval table.
1674 			 */
1675 			bw_info->mult = CTX_TO_EP_MULT(
1676 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1677 			bw_info->num_packets = CTX_TO_MAX_BURST(
1678 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1679 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1680 					le32_to_cpu(ep_ctx->ep_info2));
1681 			bw_info->type = ep_type;
1682 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1683 					le32_to_cpu(ep_ctx->tx_info));
1684 		}
1685 	}
1686 }
1687 
1688 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1689  * Useful when you want to change one particular aspect of the endpoint and then
1690  * issue a configure endpoint command.
1691  */
xhci_endpoint_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,unsigned int ep_index)1692 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1693 		struct xhci_container_ctx *in_ctx,
1694 		struct xhci_container_ctx *out_ctx,
1695 		unsigned int ep_index)
1696 {
1697 	struct xhci_ep_ctx *out_ep_ctx;
1698 	struct xhci_ep_ctx *in_ep_ctx;
1699 
1700 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1701 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1702 
1703 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1704 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1705 	in_ep_ctx->deq = out_ep_ctx->deq;
1706 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1707 	if (xhci->quirks & XHCI_MTK_HOST) {
1708 		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1709 		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1710 	}
1711 }
1712 
1713 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1714  * Useful when you want to change one particular aspect of the endpoint and then
1715  * issue a configure endpoint command.  Only the context entries field matters,
1716  * but we'll copy the whole thing anyway.
1717  */
xhci_slot_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx)1718 void xhci_slot_copy(struct xhci_hcd *xhci,
1719 		struct xhci_container_ctx *in_ctx,
1720 		struct xhci_container_ctx *out_ctx)
1721 {
1722 	struct xhci_slot_ctx *in_slot_ctx;
1723 	struct xhci_slot_ctx *out_slot_ctx;
1724 
1725 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1726 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1727 
1728 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1729 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1730 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1731 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1732 }
1733 
1734 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
scratchpad_alloc(struct xhci_hcd * xhci,gfp_t flags)1735 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1736 {
1737 	int i;
1738 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1739 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1740 
1741 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1742 			"Allocating %d scratchpad buffers", num_sp);
1743 
1744 	if (!num_sp)
1745 		return 0;
1746 
1747 	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1748 				dev_to_node(dev));
1749 	if (!xhci->scratchpad)
1750 		goto fail_sp;
1751 
1752 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1753 				     num_sp * sizeof(u64),
1754 				     &xhci->scratchpad->sp_dma, flags);
1755 	if (!xhci->scratchpad->sp_array)
1756 		goto fail_sp2;
1757 
1758 	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1759 					flags, dev_to_node(dev));
1760 	if (!xhci->scratchpad->sp_buffers)
1761 		goto fail_sp3;
1762 
1763 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1764 	for (i = 0; i < num_sp; i++) {
1765 		dma_addr_t dma;
1766 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1767 					       flags);
1768 		if (!buf)
1769 			goto fail_sp4;
1770 
1771 		xhci->scratchpad->sp_array[i] = dma;
1772 		xhci->scratchpad->sp_buffers[i] = buf;
1773 	}
1774 
1775 	return 0;
1776 
1777  fail_sp4:
1778 	for (i = i - 1; i >= 0; i--) {
1779 		dma_free_coherent(dev, xhci->page_size,
1780 				    xhci->scratchpad->sp_buffers[i],
1781 				    xhci->scratchpad->sp_array[i]);
1782 	}
1783 
1784 	kfree(xhci->scratchpad->sp_buffers);
1785 
1786  fail_sp3:
1787 	dma_free_coherent(dev, num_sp * sizeof(u64),
1788 			    xhci->scratchpad->sp_array,
1789 			    xhci->scratchpad->sp_dma);
1790 
1791  fail_sp2:
1792 	kfree(xhci->scratchpad);
1793 	xhci->scratchpad = NULL;
1794 
1795  fail_sp:
1796 	return -ENOMEM;
1797 }
1798 
scratchpad_free(struct xhci_hcd * xhci)1799 static void scratchpad_free(struct xhci_hcd *xhci)
1800 {
1801 	int num_sp;
1802 	int i;
1803 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1804 
1805 	if (!xhci->scratchpad)
1806 		return;
1807 
1808 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1809 
1810 	for (i = 0; i < num_sp; i++) {
1811 		dma_free_coherent(dev, xhci->page_size,
1812 				    xhci->scratchpad->sp_buffers[i],
1813 				    xhci->scratchpad->sp_array[i]);
1814 	}
1815 	kfree(xhci->scratchpad->sp_buffers);
1816 	dma_free_coherent(dev, num_sp * sizeof(u64),
1817 			    xhci->scratchpad->sp_array,
1818 			    xhci->scratchpad->sp_dma);
1819 	kfree(xhci->scratchpad);
1820 	xhci->scratchpad = NULL;
1821 }
1822 
xhci_alloc_command(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1823 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1824 		bool allocate_completion, gfp_t mem_flags)
1825 {
1826 	struct xhci_command *command;
1827 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1828 
1829 	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1830 	if (!command)
1831 		return NULL;
1832 
1833 	if (allocate_completion) {
1834 		command->completion =
1835 			kzalloc_node(sizeof(struct completion), mem_flags,
1836 				dev_to_node(dev));
1837 		if (!command->completion) {
1838 			kfree(command);
1839 			return NULL;
1840 		}
1841 		init_completion(command->completion);
1842 	}
1843 
1844 	command->status = 0;
1845 	INIT_LIST_HEAD(&command->cmd_list);
1846 	return command;
1847 }
1848 
xhci_alloc_command_with_ctx(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1849 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1850 		bool allocate_completion, gfp_t mem_flags)
1851 {
1852 	struct xhci_command *command;
1853 
1854 	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1855 	if (!command)
1856 		return NULL;
1857 
1858 	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1859 						   mem_flags);
1860 	if (!command->in_ctx) {
1861 		kfree(command->completion);
1862 		kfree(command);
1863 		return NULL;
1864 	}
1865 	return command;
1866 }
1867 
xhci_urb_free_priv(struct urb_priv * urb_priv)1868 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1869 {
1870 	kfree(urb_priv);
1871 }
1872 
xhci_free_command(struct xhci_hcd * xhci,struct xhci_command * command)1873 void xhci_free_command(struct xhci_hcd *xhci,
1874 		struct xhci_command *command)
1875 {
1876 	xhci_free_container_ctx(xhci,
1877 			command->in_ctx);
1878 	kfree(command->completion);
1879 	kfree(command);
1880 }
1881 
xhci_alloc_erst(struct xhci_hcd * xhci,struct xhci_ring * evt_ring,struct xhci_erst * erst,gfp_t flags)1882 int xhci_alloc_erst(struct xhci_hcd *xhci,
1883 		    struct xhci_ring *evt_ring,
1884 		    struct xhci_erst *erst,
1885 		    gfp_t flags)
1886 {
1887 	size_t size;
1888 	unsigned int val;
1889 	struct xhci_segment *seg;
1890 	struct xhci_erst_entry *entry;
1891 
1892 	size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1893 	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1894 					   size, &erst->erst_dma_addr, flags);
1895 	if (!erst->entries)
1896 		return -ENOMEM;
1897 
1898 	erst->num_entries = evt_ring->num_segs;
1899 
1900 	seg = evt_ring->first_seg;
1901 	for (val = 0; val < evt_ring->num_segs; val++) {
1902 		entry = &erst->entries[val];
1903 		entry->seg_addr = cpu_to_le64(seg->dma);
1904 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1905 		entry->rsvd = 0;
1906 		seg = seg->next;
1907 	}
1908 
1909 	return 0;
1910 }
1911 
xhci_free_erst(struct xhci_hcd * xhci,struct xhci_erst * erst)1912 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1913 {
1914 	size_t size;
1915 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1916 
1917 	size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1918 	if (erst->entries)
1919 		dma_free_coherent(dev, size,
1920 				erst->entries,
1921 				erst->erst_dma_addr);
1922 	erst->entries = NULL;
1923 }
1924 
xhci_vendor_alloc_dcbaa(struct xhci_hcd * xhci,gfp_t flags)1925 static struct xhci_device_context_array *xhci_vendor_alloc_dcbaa(
1926 		struct xhci_hcd *xhci, gfp_t flags)
1927 {
1928 	struct xhci_vendor_ops *ops = xhci_vendor_get_ops(xhci);
1929 
1930 	if (ops && ops->alloc_dcbaa)
1931 		return ops->alloc_dcbaa(xhci, flags);
1932 	return 0;
1933 }
1934 
xhci_vendor_free_dcbaa(struct xhci_hcd * xhci)1935 static void xhci_vendor_free_dcbaa(struct xhci_hcd *xhci)
1936 {
1937 	struct xhci_vendor_ops *ops = xhci_vendor_get_ops(xhci);
1938 
1939 	if (ops && ops->free_dcbaa)
1940 		ops->free_dcbaa(xhci);
1941 }
1942 
xhci_mem_cleanup(struct xhci_hcd * xhci)1943 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1944 {
1945 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1946 	int i, j, num_ports;
1947 
1948 	cancel_delayed_work_sync(&xhci->cmd_timer);
1949 
1950 	xhci_free_erst(xhci, &xhci->erst);
1951 
1952 	if (xhci->event_ring)
1953 		xhci_ring_free(xhci, xhci->event_ring);
1954 	xhci->event_ring = NULL;
1955 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1956 
1957 	if (xhci->lpm_command)
1958 		xhci_free_command(xhci, xhci->lpm_command);
1959 	xhci->lpm_command = NULL;
1960 	if (xhci->cmd_ring)
1961 		xhci_ring_free(xhci, xhci->cmd_ring);
1962 	xhci->cmd_ring = NULL;
1963 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1964 	xhci_cleanup_command_queue(xhci);
1965 
1966 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1967 	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1968 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1969 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1970 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1971 			while (!list_empty(ep))
1972 				list_del_init(ep->next);
1973 		}
1974 	}
1975 
1976 	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1977 		xhci_free_virt_devices_depth_first(xhci, i);
1978 
1979 	dma_pool_destroy(xhci->segment_pool);
1980 	xhci->segment_pool = NULL;
1981 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1982 
1983 	dma_pool_destroy(xhci->device_pool);
1984 	xhci->device_pool = NULL;
1985 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1986 
1987 	dma_pool_destroy(xhci->small_streams_pool);
1988 	xhci->small_streams_pool = NULL;
1989 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1990 			"Freed small stream array pool");
1991 
1992 	dma_pool_destroy(xhci->medium_streams_pool);
1993 	xhci->medium_streams_pool = NULL;
1994 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1995 			"Freed medium stream array pool");
1996 
1997 	if (xhci_vendor_is_usb_offload_enabled(xhci, NULL, 0)) {
1998 		xhci_vendor_free_dcbaa(xhci);
1999 	} else {
2000 		if (xhci->dcbaa)
2001 			dma_free_coherent(dev, sizeof(*xhci->dcbaa),
2002 					xhci->dcbaa, xhci->dcbaa->dma);
2003 	}
2004 	xhci->dcbaa = NULL;
2005 
2006 	scratchpad_free(xhci);
2007 
2008 	if (!xhci->rh_bw)
2009 		goto no_bw;
2010 
2011 	for (i = 0; i < num_ports; i++) {
2012 		struct xhci_tt_bw_info *tt, *n;
2013 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
2014 			list_del(&tt->tt_list);
2015 			kfree(tt);
2016 		}
2017 	}
2018 
2019 no_bw:
2020 	xhci->cmd_ring_reserved_trbs = 0;
2021 	xhci->usb2_rhub.num_ports = 0;
2022 	xhci->usb3_rhub.num_ports = 0;
2023 	xhci->num_active_eps = 0;
2024 	kfree(xhci->usb2_rhub.ports);
2025 	kfree(xhci->usb3_rhub.ports);
2026 	kfree(xhci->hw_ports);
2027 	kfree(xhci->rh_bw);
2028 	kfree(xhci->ext_caps);
2029 	for (i = 0; i < xhci->num_port_caps; i++)
2030 		kfree(xhci->port_caps[i].psi);
2031 	kfree(xhci->port_caps);
2032 	xhci->num_port_caps = 0;
2033 
2034 	xhci->usb2_rhub.ports = NULL;
2035 	xhci->usb3_rhub.ports = NULL;
2036 	xhci->hw_ports = NULL;
2037 	xhci->rh_bw = NULL;
2038 	xhci->ext_caps = NULL;
2039 	xhci->port_caps = NULL;
2040 
2041 	xhci->page_size = 0;
2042 	xhci->page_shift = 0;
2043 	xhci->usb2_rhub.bus_state.bus_suspended = 0;
2044 	xhci->usb3_rhub.bus_state.bus_suspended = 0;
2045 }
2046 
xhci_test_trb_in_td(struct xhci_hcd * xhci,struct xhci_segment * input_seg,union xhci_trb * start_trb,union xhci_trb * end_trb,dma_addr_t input_dma,struct xhci_segment * result_seg,char * test_name,int test_number)2047 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
2048 		struct xhci_segment *input_seg,
2049 		union xhci_trb *start_trb,
2050 		union xhci_trb *end_trb,
2051 		dma_addr_t input_dma,
2052 		struct xhci_segment *result_seg,
2053 		char *test_name, int test_number)
2054 {
2055 	unsigned long long start_dma;
2056 	unsigned long long end_dma;
2057 	struct xhci_segment *seg;
2058 
2059 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
2060 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
2061 
2062 	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
2063 	if (seg != result_seg) {
2064 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
2065 				test_name, test_number);
2066 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
2067 				"input DMA 0x%llx\n",
2068 				input_seg,
2069 				(unsigned long long) input_dma);
2070 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
2071 				"ending TRB %p (0x%llx DMA)\n",
2072 				start_trb, start_dma,
2073 				end_trb, end_dma);
2074 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
2075 				result_seg, seg);
2076 		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
2077 			  true);
2078 		return -1;
2079 	}
2080 	return 0;
2081 }
2082 
2083 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
xhci_check_trb_in_td_math(struct xhci_hcd * xhci)2084 int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
2085 {
2086 	struct {
2087 		dma_addr_t		input_dma;
2088 		struct xhci_segment	*result_seg;
2089 	} simple_test_vector [] = {
2090 		/* A zeroed DMA field should fail */
2091 		{ 0, NULL },
2092 		/* One TRB before the ring start should fail */
2093 		{ xhci->event_ring->first_seg->dma - 16, NULL },
2094 		/* One byte before the ring start should fail */
2095 		{ xhci->event_ring->first_seg->dma - 1, NULL },
2096 		/* Starting TRB should succeed */
2097 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
2098 		/* Ending TRB should succeed */
2099 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
2100 			xhci->event_ring->first_seg },
2101 		/* One byte after the ring end should fail */
2102 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
2103 		/* One TRB after the ring end should fail */
2104 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
2105 		/* An address of all ones should fail */
2106 		{ (dma_addr_t) (~0), NULL },
2107 	};
2108 	struct {
2109 		struct xhci_segment	*input_seg;
2110 		union xhci_trb		*start_trb;
2111 		union xhci_trb		*end_trb;
2112 		dma_addr_t		input_dma;
2113 		struct xhci_segment	*result_seg;
2114 	} complex_test_vector [] = {
2115 		/* Test feeding a valid DMA address from a different ring */
2116 		{	.input_seg = xhci->event_ring->first_seg,
2117 			.start_trb = xhci->event_ring->first_seg->trbs,
2118 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2119 			.input_dma = xhci->cmd_ring->first_seg->dma,
2120 			.result_seg = NULL,
2121 		},
2122 		/* Test feeding a valid end TRB from a different ring */
2123 		{	.input_seg = xhci->event_ring->first_seg,
2124 			.start_trb = xhci->event_ring->first_seg->trbs,
2125 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2126 			.input_dma = xhci->cmd_ring->first_seg->dma,
2127 			.result_seg = NULL,
2128 		},
2129 		/* Test feeding a valid start and end TRB from a different ring */
2130 		{	.input_seg = xhci->event_ring->first_seg,
2131 			.start_trb = xhci->cmd_ring->first_seg->trbs,
2132 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2133 			.input_dma = xhci->cmd_ring->first_seg->dma,
2134 			.result_seg = NULL,
2135 		},
2136 		/* TRB in this ring, but after this TD */
2137 		{	.input_seg = xhci->event_ring->first_seg,
2138 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
2139 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
2140 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
2141 			.result_seg = NULL,
2142 		},
2143 		/* TRB in this ring, but before this TD */
2144 		{	.input_seg = xhci->event_ring->first_seg,
2145 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
2146 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
2147 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2148 			.result_seg = NULL,
2149 		},
2150 		/* TRB in this ring, but after this wrapped TD */
2151 		{	.input_seg = xhci->event_ring->first_seg,
2152 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2153 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2154 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2155 			.result_seg = NULL,
2156 		},
2157 		/* TRB in this ring, but before this wrapped TD */
2158 		{	.input_seg = xhci->event_ring->first_seg,
2159 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2160 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2161 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2162 			.result_seg = NULL,
2163 		},
2164 		/* TRB not in this ring, and we have a wrapped TD */
2165 		{	.input_seg = xhci->event_ring->first_seg,
2166 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2167 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2168 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2169 			.result_seg = NULL,
2170 		},
2171 	};
2172 
2173 	unsigned int num_tests;
2174 	int i, ret;
2175 
2176 	num_tests = ARRAY_SIZE(simple_test_vector);
2177 	for (i = 0; i < num_tests; i++) {
2178 		ret = xhci_test_trb_in_td(xhci,
2179 				xhci->event_ring->first_seg,
2180 				xhci->event_ring->first_seg->trbs,
2181 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2182 				simple_test_vector[i].input_dma,
2183 				simple_test_vector[i].result_seg,
2184 				"Simple", i);
2185 		if (ret < 0)
2186 			return ret;
2187 	}
2188 
2189 	num_tests = ARRAY_SIZE(complex_test_vector);
2190 	for (i = 0; i < num_tests; i++) {
2191 		ret = xhci_test_trb_in_td(xhci,
2192 				complex_test_vector[i].input_seg,
2193 				complex_test_vector[i].start_trb,
2194 				complex_test_vector[i].end_trb,
2195 				complex_test_vector[i].input_dma,
2196 				complex_test_vector[i].result_seg,
2197 				"Complex", i);
2198 		if (ret < 0)
2199 			return ret;
2200 	}
2201 	xhci_dbg(xhci, "TRB math tests passed.\n");
2202 	return 0;
2203 }
2204 EXPORT_SYMBOL_GPL(xhci_check_trb_in_td_math);
2205 
xhci_set_hc_event_deq(struct xhci_hcd * xhci)2206 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2207 {
2208 	u64 temp;
2209 	dma_addr_t deq;
2210 
2211 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2212 			xhci->event_ring->dequeue);
2213 	if (deq == 0 && !in_interrupt())
2214 		xhci_warn(xhci, "WARN something wrong with SW event ring "
2215 				"dequeue ptr.\n");
2216 	/* Update HC event ring dequeue pointer */
2217 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2218 	temp &= ERST_PTR_MASK;
2219 	/* Don't clear the EHB bit (which is RW1C) because
2220 	 * there might be more events to service.
2221 	 */
2222 	temp &= ~ERST_EHB;
2223 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2224 			"// Write event ring dequeue pointer, "
2225 			"preserving EHB bit");
2226 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2227 			&xhci->ir_set->erst_dequeue);
2228 }
2229 
xhci_add_in_port(struct xhci_hcd * xhci,unsigned int num_ports,__le32 __iomem * addr,int max_caps)2230 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2231 		__le32 __iomem *addr, int max_caps)
2232 {
2233 	u32 temp, port_offset, port_count;
2234 	int i;
2235 	u8 major_revision, minor_revision, tmp_minor_revision;
2236 	struct xhci_hub *rhub;
2237 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2238 	struct xhci_port_cap *port_cap;
2239 
2240 	temp = readl(addr);
2241 	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2242 	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2243 
2244 	if (major_revision == 0x03) {
2245 		rhub = &xhci->usb3_rhub;
2246 		/*
2247 		 * Some hosts incorrectly use sub-minor version for minor
2248 		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2249 		 * for bcdUSB 0x310). Since there is no USB release with sub
2250 		 * minor version 0x301 to 0x309, we can assume that they are
2251 		 * incorrect and fix it here.
2252 		 */
2253 		if (minor_revision > 0x00 && minor_revision < 0x10)
2254 			minor_revision <<= 4;
2255 		/*
2256 		 * Some zhaoxin's xHCI controller that follow usb3.1 spec
2257 		 * but only support Gen1.
2258 		 */
2259 		if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2260 			tmp_minor_revision = minor_revision;
2261 			minor_revision = 0;
2262 		}
2263 
2264 	} else if (major_revision <= 0x02) {
2265 		rhub = &xhci->usb2_rhub;
2266 	} else {
2267 		xhci_warn(xhci, "Ignoring unknown port speed, "
2268 				"Ext Cap %p, revision = 0x%x\n",
2269 				addr, major_revision);
2270 		/* Ignoring port protocol we can't understand. FIXME */
2271 		return;
2272 	}
2273 
2274 	/* Port offset and count in the third dword, see section 7.2 */
2275 	temp = readl(addr + 2);
2276 	port_offset = XHCI_EXT_PORT_OFF(temp);
2277 	port_count = XHCI_EXT_PORT_COUNT(temp);
2278 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2279 			"Ext Cap %p, port offset = %u, "
2280 			"count = %u, revision = 0x%x",
2281 			addr, port_offset, port_count, major_revision);
2282 	/* Port count includes the current port offset */
2283 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2284 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2285 		return;
2286 
2287 	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2288 	if (xhci->num_port_caps > max_caps)
2289 		return;
2290 
2291 	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2292 
2293 	if (port_cap->psi_count) {
2294 		port_cap->psi = kcalloc_node(port_cap->psi_count,
2295 					     sizeof(*port_cap->psi),
2296 					     GFP_KERNEL, dev_to_node(dev));
2297 		if (!port_cap->psi)
2298 			port_cap->psi_count = 0;
2299 
2300 		port_cap->psi_uid_count++;
2301 		for (i = 0; i < port_cap->psi_count; i++) {
2302 			port_cap->psi[i] = readl(addr + 4 + i);
2303 
2304 			/* count unique ID values, two consecutive entries can
2305 			 * have the same ID if link is assymetric
2306 			 */
2307 			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2308 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2309 				port_cap->psi_uid_count++;
2310 
2311 			if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2312 			    major_revision == 0x03 &&
2313 			    XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2314 				minor_revision = tmp_minor_revision;
2315 
2316 			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2317 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2318 				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2319 				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2320 				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2321 				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2322 				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2323 		}
2324 	}
2325 
2326 	rhub->maj_rev = major_revision;
2327 
2328 	if (rhub->min_rev < minor_revision)
2329 		rhub->min_rev = minor_revision;
2330 
2331 	port_cap->maj_rev = major_revision;
2332 	port_cap->min_rev = minor_revision;
2333 
2334 	/* cache usb2 port capabilities */
2335 	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2336 		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2337 
2338 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2339 		 (temp & XHCI_HLC)) {
2340 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2341 			       "xHCI 1.0: support USB2 hardware lpm");
2342 		xhci->hw_lpm_support = 1;
2343 	}
2344 
2345 	port_offset--;
2346 	for (i = port_offset; i < (port_offset + port_count); i++) {
2347 		struct xhci_port *hw_port = &xhci->hw_ports[i];
2348 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2349 		if (hw_port->rhub) {
2350 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2351 					" port %u\n", addr, i);
2352 			xhci_warn(xhci, "Port was marked as USB %u, "
2353 					"duplicated as USB %u\n",
2354 					hw_port->rhub->maj_rev, major_revision);
2355 			/* Only adjust the roothub port counts if we haven't
2356 			 * found a similar duplicate.
2357 			 */
2358 			if (hw_port->rhub != rhub &&
2359 				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2360 				hw_port->rhub->num_ports--;
2361 				hw_port->hcd_portnum = DUPLICATE_ENTRY;
2362 			}
2363 			continue;
2364 		}
2365 		hw_port->rhub = rhub;
2366 		hw_port->port_cap = port_cap;
2367 		rhub->num_ports++;
2368 	}
2369 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2370 }
2371 
xhci_create_rhub_port_array(struct xhci_hcd * xhci,struct xhci_hub * rhub,gfp_t flags)2372 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2373 					struct xhci_hub *rhub, gfp_t flags)
2374 {
2375 	int port_index = 0;
2376 	int i;
2377 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2378 
2379 	if (!rhub->num_ports)
2380 		return;
2381 	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2382 			flags, dev_to_node(dev));
2383 	if (!rhub->ports)
2384 		return;
2385 
2386 	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2387 		if (xhci->hw_ports[i].rhub != rhub ||
2388 		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2389 			continue;
2390 		xhci->hw_ports[i].hcd_portnum = port_index;
2391 		rhub->ports[port_index] = &xhci->hw_ports[i];
2392 		port_index++;
2393 		if (port_index == rhub->num_ports)
2394 			break;
2395 	}
2396 }
2397 
2398 /*
2399  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2400  * specify what speeds each port is supposed to be.  We can't count on the port
2401  * speed bits in the PORTSC register being correct until a device is connected,
2402  * but we need to set up the two fake roothubs with the correct number of USB
2403  * 3.0 and USB 2.0 ports at host controller initialization time.
2404  */
xhci_setup_port_arrays(struct xhci_hcd * xhci,gfp_t flags)2405 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2406 {
2407 	void __iomem *base;
2408 	u32 offset;
2409 	unsigned int num_ports;
2410 	int i, j;
2411 	int cap_count = 0;
2412 	u32 cap_start;
2413 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2414 
2415 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2416 	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2417 				flags, dev_to_node(dev));
2418 	if (!xhci->hw_ports)
2419 		return -ENOMEM;
2420 
2421 	for (i = 0; i < num_ports; i++) {
2422 		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2423 			NUM_PORT_REGS * i;
2424 		xhci->hw_ports[i].hw_portnum = i;
2425 	}
2426 
2427 	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2428 				   dev_to_node(dev));
2429 	if (!xhci->rh_bw)
2430 		return -ENOMEM;
2431 	for (i = 0; i < num_ports; i++) {
2432 		struct xhci_interval_bw_table *bw_table;
2433 
2434 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2435 		bw_table = &xhci->rh_bw[i].bw_table;
2436 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2437 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2438 	}
2439 	base = &xhci->cap_regs->hc_capbase;
2440 
2441 	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2442 	if (!cap_start) {
2443 		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2444 		return -ENODEV;
2445 	}
2446 
2447 	offset = cap_start;
2448 	/* count extended protocol capability entries for later caching */
2449 	while (offset) {
2450 		cap_count++;
2451 		offset = xhci_find_next_ext_cap(base, offset,
2452 						      XHCI_EXT_CAPS_PROTOCOL);
2453 	}
2454 
2455 	xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2456 				flags, dev_to_node(dev));
2457 	if (!xhci->ext_caps)
2458 		return -ENOMEM;
2459 
2460 	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2461 				flags, dev_to_node(dev));
2462 	if (!xhci->port_caps)
2463 		return -ENOMEM;
2464 
2465 	offset = cap_start;
2466 
2467 	while (offset) {
2468 		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2469 		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2470 		    num_ports)
2471 			break;
2472 		offset = xhci_find_next_ext_cap(base, offset,
2473 						XHCI_EXT_CAPS_PROTOCOL);
2474 	}
2475 	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2476 		xhci_warn(xhci, "No ports on the roothubs?\n");
2477 		return -ENODEV;
2478 	}
2479 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2480 		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2481 		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2482 
2483 	/* Place limits on the number of roothub ports so that the hub
2484 	 * descriptors aren't longer than the USB core will allocate.
2485 	 */
2486 	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2487 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2488 				"Limiting USB 3.0 roothub ports to %u.",
2489 				USB_SS_MAXPORTS);
2490 		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2491 	}
2492 	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2493 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2494 				"Limiting USB 2.0 roothub ports to %u.",
2495 				USB_MAXCHILDREN);
2496 		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2497 	}
2498 
2499 	/*
2500 	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2501 	 * Not sure how the USB core will handle a hub with no ports...
2502 	 */
2503 
2504 	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2505 	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2506 
2507 	return 0;
2508 }
2509 
xhci_mem_init(struct xhci_hcd * xhci,gfp_t flags)2510 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2511 {
2512 	dma_addr_t	dma;
2513 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2514 	unsigned int	val, val2;
2515 	u64		val_64;
2516 	u32		page_size, temp;
2517 	int		i, ret;
2518 
2519 	INIT_LIST_HEAD(&xhci->cmd_list);
2520 
2521 	/* init command timeout work */
2522 	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2523 	init_completion(&xhci->cmd_ring_stop_completion);
2524 
2525 	page_size = readl(&xhci->op_regs->page_size);
2526 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2527 			"Supported page size register = 0x%x", page_size);
2528 	for (i = 0; i < 16; i++) {
2529 		if ((0x1 & page_size) != 0)
2530 			break;
2531 		page_size = page_size >> 1;
2532 	}
2533 	if (i < 16)
2534 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2535 			"Supported page size of %iK", (1 << (i+12)) / 1024);
2536 	else
2537 		xhci_warn(xhci, "WARN: no supported page size\n");
2538 	/* Use 4K pages, since that's common and the minimum the HC supports */
2539 	xhci->page_shift = 12;
2540 	xhci->page_size = 1 << xhci->page_shift;
2541 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2542 			"HCD page size set to %iK", xhci->page_size / 1024);
2543 
2544 	/*
2545 	 * Program the Number of Device Slots Enabled field in the CONFIG
2546 	 * register with the max value of slots the HC can handle.
2547 	 */
2548 	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2549 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2550 			"// xHC can handle at most %d device slots.", val);
2551 	val2 = readl(&xhci->op_regs->config_reg);
2552 	val |= (val2 & ~HCS_SLOTS_MASK);
2553 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2554 			"// Setting Max device slots reg = 0x%x.", val);
2555 	writel(val, &xhci->op_regs->config_reg);
2556 
2557 	/*
2558 	 * xHCI section 5.4.6 - doorbell array must be
2559 	 * "physically contiguous and 64-byte (cache line) aligned".
2560 	 */
2561 	if (xhci_vendor_is_usb_offload_enabled(xhci, NULL, 0)) {
2562 		xhci->dcbaa = xhci_vendor_alloc_dcbaa(xhci, flags);
2563 		if (!xhci->dcbaa)
2564 			goto fail;
2565 	} else {
2566 		xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2567 				flags);
2568 		if (!xhci->dcbaa)
2569 			goto fail;
2570 		xhci->dcbaa->dma = dma;
2571 	}
2572 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2573 			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2574 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2575 	xhci_write_64(xhci, xhci->dcbaa->dma, &xhci->op_regs->dcbaa_ptr);
2576 
2577 	/*
2578 	 * Initialize the ring segment pool.  The ring must be a contiguous
2579 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2580 	 * however, the command ring segment needs 64-byte aligned segments
2581 	 * and our use of dma addresses in the trb_address_map radix tree needs
2582 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2583 	 */
2584 	if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH)
2585 		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2586 				TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2587 	else
2588 		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2589 				TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2590 
2591 	/* See Table 46 and Note on Figure 55 */
2592 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2593 			2112, 64, xhci->page_size);
2594 	if (!xhci->segment_pool || !xhci->device_pool)
2595 		goto fail;
2596 
2597 	/* Linear stream context arrays don't have any boundary restrictions,
2598 	 * and only need to be 16-byte aligned.
2599 	 */
2600 	xhci->small_streams_pool =
2601 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2602 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2603 	xhci->medium_streams_pool =
2604 		dma_pool_create("xHCI 1KB stream ctx arrays",
2605 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2606 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2607 	 * will be allocated with dma_alloc_coherent()
2608 	 */
2609 
2610 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2611 		goto fail;
2612 
2613 	/* Set up the command ring to have one segments for now. */
2614 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2615 	if (!xhci->cmd_ring)
2616 		goto fail;
2617 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2618 			"Allocated command ring at %p", xhci->cmd_ring);
2619 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2620 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2621 
2622 	/* Set the address in the Command Ring Control register */
2623 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2624 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2625 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2626 		xhci->cmd_ring->cycle_state;
2627 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2628 			"// Setting command ring address to 0x%016llx", val_64);
2629 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2630 
2631 	xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2632 	if (!xhci->lpm_command)
2633 		goto fail;
2634 
2635 	/* Reserve one command ring TRB for disabling LPM.
2636 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2637 	 * disabling LPM, we only need to reserve one TRB for all devices.
2638 	 */
2639 	xhci->cmd_ring_reserved_trbs++;
2640 
2641 	val = readl(&xhci->cap_regs->db_off);
2642 	val &= DBOFF_MASK;
2643 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2644 			"// Doorbell array is located at offset 0x%x"
2645 			" from cap regs base addr", val);
2646 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2647 	/* Set ir_set to interrupt register set 0 */
2648 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2649 
2650 	/*
2651 	 * Event ring setup: Allocate a normal ring, but also setup
2652 	 * the event ring segment table (ERST).  Section 4.9.3.
2653 	 */
2654 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2655 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2656 					0, flags);
2657 	if (!xhci->event_ring)
2658 		goto fail;
2659 	if (xhci_check_trb_in_td_math(xhci) < 0)
2660 		goto fail;
2661 
2662 	ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2663 	if (ret)
2664 		goto fail;
2665 
2666 	/* set ERST count with the number of entries in the segment table */
2667 	val = readl(&xhci->ir_set->erst_size);
2668 	val &= ERST_SIZE_MASK;
2669 	val |= ERST_NUM_SEGS;
2670 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2671 			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2672 			val);
2673 	writel(val, &xhci->ir_set->erst_size);
2674 
2675 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2676 			"// Set ERST entries to point to event ring.");
2677 	/* set the segment table base address */
2678 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2679 			"// Set ERST base address for ir_set 0 = 0x%llx",
2680 			(unsigned long long)xhci->erst.erst_dma_addr);
2681 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2682 	val_64 &= ERST_PTR_MASK;
2683 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2684 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2685 
2686 	/* Set the event ring dequeue address */
2687 	xhci_set_hc_event_deq(xhci);
2688 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2689 			"Wrote ERST address to ir_set 0.");
2690 
2691 	/*
2692 	 * XXX: Might need to set the Interrupter Moderation Register to
2693 	 * something other than the default (~1ms minimum between interrupts).
2694 	 * See section 5.5.1.2.
2695 	 */
2696 	for (i = 0; i < MAX_HC_SLOTS; i++)
2697 		xhci->devs[i] = NULL;
2698 	for (i = 0; i < USB_MAXCHILDREN; i++) {
2699 		xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2700 		xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2701 		/* Only the USB 2.0 completions will ever be used. */
2702 		init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2703 		init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2704 	}
2705 
2706 	if (scratchpad_alloc(xhci, flags))
2707 		goto fail;
2708 	if (xhci_setup_port_arrays(xhci, flags))
2709 		goto fail;
2710 
2711 	/* Enable USB 3.0 device notifications for function remote wake, which
2712 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2713 	 * U3 (device suspend).
2714 	 */
2715 	temp = readl(&xhci->op_regs->dev_notification);
2716 	temp &= ~DEV_NOTE_MASK;
2717 	temp |= DEV_NOTE_FWAKE;
2718 	writel(temp, &xhci->op_regs->dev_notification);
2719 
2720 	return 0;
2721 
2722 fail:
2723 	xhci_halt(xhci);
2724 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2725 	xhci_mem_cleanup(xhci);
2726 	return -ENOMEM;
2727 }
2728