1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/pci.h>
12 #ifndef __GENKSYMS__ /* ANDROID: KABI CRC preservation hack */
13 #include <linux/iommu.h>
14 #endif
15 #include <linux/iopoll.h>
16 #include <linux/irq.h>
17 #include <linux/log2.h>
18 #include <linux/module.h>
19 #include <linux/moduleparam.h>
20 #include <linux/slab.h>
21 #include <linux/dmi.h>
22 #include <linux/dma-mapping.h>
23
24 #include "xhci.h"
25 #include "xhci-trace.h"
26 #include "xhci-debugfs.h"
27 #include "xhci-dbgcap.h"
28
29 #define DRIVER_AUTHOR "Sarah Sharp"
30 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
31
32 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
33
34 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
35 static int link_quirk;
36 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
37 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
38
39 static unsigned long long quirks;
40 module_param(quirks, ullong, S_IRUGO);
41 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
42
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)43 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
44 {
45 struct xhci_segment *seg = ring->first_seg;
46
47 if (!td || !td->start_seg)
48 return false;
49 do {
50 if (seg == td->start_seg)
51 return true;
52 seg = seg->next;
53 } while (seg && seg != ring->first_seg);
54
55 return false;
56 }
57
58 /*
59 * xhci_handshake - spin reading hc until handshake completes or fails
60 * @ptr: address of hc register to be read
61 * @mask: bits to look at in result of read
62 * @done: value of those bits when handshake succeeds
63 * @usec: timeout in microseconds
64 *
65 * Returns negative errno, or zero on success
66 *
67 * Success happens when the "mask" bits have the specified value (hardware
68 * handshake done). There are two failure modes: "usec" have passed (major
69 * hardware flakeout), or the register reads as all-ones (hardware removed).
70 */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)71 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
72 {
73 u32 result;
74 int ret;
75
76 ret = readl_poll_timeout_atomic(ptr, result,
77 (result & mask) == done ||
78 result == U32_MAX,
79 1, timeout_us);
80 if (result == U32_MAX) /* card removed */
81 return -ENODEV;
82
83 return ret;
84 }
85
86 /*
87 * Disable interrupts and begin the xHCI halting process.
88 */
xhci_quiesce(struct xhci_hcd * xhci)89 void xhci_quiesce(struct xhci_hcd *xhci)
90 {
91 u32 halted;
92 u32 cmd;
93 u32 mask;
94
95 mask = ~(XHCI_IRQS);
96 halted = readl(&xhci->op_regs->status) & STS_HALT;
97 if (!halted)
98 mask &= ~CMD_RUN;
99
100 cmd = readl(&xhci->op_regs->command);
101 cmd &= mask;
102 writel(cmd, &xhci->op_regs->command);
103 }
104
105 /*
106 * Force HC into halt state.
107 *
108 * Disable any IRQs and clear the run/stop bit.
109 * HC will complete any current and actively pipelined transactions, and
110 * should halt within 16 ms of the run/stop bit being cleared.
111 * Read HC Halted bit in the status register to see when the HC is finished.
112 */
xhci_halt(struct xhci_hcd * xhci)113 int xhci_halt(struct xhci_hcd *xhci)
114 {
115 int ret;
116 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
117 xhci_quiesce(xhci);
118
119 ret = xhci_handshake(&xhci->op_regs->status,
120 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
121 if (ret) {
122 xhci_warn(xhci, "Host halt failed, %d\n", ret);
123 return ret;
124 }
125 xhci->xhc_state |= XHCI_STATE_HALTED;
126 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
127 return ret;
128 }
129
130 /*
131 * Set the run bit and wait for the host to be running.
132 */
xhci_start(struct xhci_hcd * xhci)133 int xhci_start(struct xhci_hcd *xhci)
134 {
135 u32 temp;
136 int ret;
137
138 temp = readl(&xhci->op_regs->command);
139 temp |= (CMD_RUN);
140 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141 temp);
142 writel(temp, &xhci->op_regs->command);
143
144 /*
145 * Wait for the HCHalted Status bit to be 0 to indicate the host is
146 * running.
147 */
148 ret = xhci_handshake(&xhci->op_regs->status,
149 STS_HALT, 0, XHCI_MAX_HALT_USEC);
150 if (ret == -ETIMEDOUT)
151 xhci_err(xhci, "Host took too long to start, "
152 "waited %u microseconds.\n",
153 XHCI_MAX_HALT_USEC);
154 if (!ret)
155 /* clear state flags. Including dying, halted or removing */
156 xhci->xhc_state = 0;
157
158 return ret;
159 }
160
161 /*
162 * Reset a halted HC.
163 *
164 * This resets pipelines, timers, counters, state machines, etc.
165 * Transactions will be terminated immediately, and operational registers
166 * will be set to their defaults.
167 */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)168 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
169 {
170 u32 command;
171 u32 state;
172 int ret;
173
174 state = readl(&xhci->op_regs->status);
175
176 if (state == ~(u32)0) {
177 xhci_warn(xhci, "Host not accessible, reset failed.\n");
178 return -ENODEV;
179 }
180
181 if ((state & STS_HALT) == 0) {
182 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
183 return 0;
184 }
185
186 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
187 command = readl(&xhci->op_regs->command);
188 command |= CMD_RESET;
189 writel(command, &xhci->op_regs->command);
190
191 /* Existing Intel xHCI controllers require a delay of 1 mS,
192 * after setting the CMD_RESET bit, and before accessing any
193 * HC registers. This allows the HC to complete the
194 * reset operation and be ready for HC register access.
195 * Without this delay, the subsequent HC register access,
196 * may result in a system hang very rarely.
197 */
198 if (xhci->quirks & XHCI_INTEL_HOST)
199 udelay(1000);
200
201 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
202 if (ret)
203 return ret;
204
205 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
206 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
207
208 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
209 "Wait for controller to be ready for doorbell rings");
210 /*
211 * xHCI cannot write to any doorbells or operational registers other
212 * than status until the "Controller Not Ready" flag is cleared.
213 */
214 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
215
216 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217 xhci->usb2_rhub.bus_state.suspended_ports = 0;
218 xhci->usb2_rhub.bus_state.resuming_ports = 0;
219 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220 xhci->usb3_rhub.bus_state.suspended_ports = 0;
221 xhci->usb3_rhub.bus_state.resuming_ports = 0;
222
223 return ret;
224 }
225
xhci_zero_64b_regs(struct xhci_hcd * xhci)226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229 struct iommu_domain *domain;
230 int err, i;
231 u64 val;
232 u32 intrs;
233
234 /*
235 * Some Renesas controllers get into a weird state if they are
236 * reset while programmed with 64bit addresses (they will preserve
237 * the top half of the address in internal, non visible
238 * registers). You end up with half the address coming from the
239 * kernel, and the other half coming from the firmware. Also,
240 * changing the programming leads to extra accesses even if the
241 * controller is supposed to be halted. The controller ends up with
242 * a fatal fault, and is then ripe for being properly reset.
243 *
244 * Special care is taken to only apply this if the device is behind
245 * an iommu. Doing anything when there is no iommu is definitely
246 * unsafe...
247 */
248 domain = iommu_get_domain_for_dev(dev);
249 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
250 domain->type == IOMMU_DOMAIN_IDENTITY)
251 return;
252
253 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
254
255 /* Clear HSEIE so that faults do not get signaled */
256 val = readl(&xhci->op_regs->command);
257 val &= ~CMD_HSEIE;
258 writel(val, &xhci->op_regs->command);
259
260 /* Clear HSE (aka FATAL) */
261 val = readl(&xhci->op_regs->status);
262 val |= STS_FATAL;
263 writel(val, &xhci->op_regs->status);
264
265 /* Now zero the registers, and brace for impact */
266 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
267 if (upper_32_bits(val))
268 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
269 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
270 if (upper_32_bits(val))
271 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
272
273 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
274 ARRAY_SIZE(xhci->run_regs->ir_set));
275
276 for (i = 0; i < intrs; i++) {
277 struct xhci_intr_reg __iomem *ir;
278
279 ir = &xhci->run_regs->ir_set[i];
280 val = xhci_read_64(xhci, &ir->erst_base);
281 if (upper_32_bits(val))
282 xhci_write_64(xhci, 0, &ir->erst_base);
283 val= xhci_read_64(xhci, &ir->erst_dequeue);
284 if (upper_32_bits(val))
285 xhci_write_64(xhci, 0, &ir->erst_dequeue);
286 }
287
288 /* Wait for the fault to appear. It will be cleared on reset */
289 err = xhci_handshake(&xhci->op_regs->status,
290 STS_FATAL, STS_FATAL,
291 XHCI_MAX_HALT_USEC);
292 if (!err)
293 xhci_info(xhci, "Fault detected\n");
294 }
295
296 #ifdef CONFIG_USB_PCI
297 /*
298 * Set up MSI
299 */
xhci_setup_msi(struct xhci_hcd * xhci)300 static int xhci_setup_msi(struct xhci_hcd *xhci)
301 {
302 int ret;
303 /*
304 * TODO:Check with MSI Soc for sysdev
305 */
306 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
307
308 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
309 if (ret < 0) {
310 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
311 "failed to allocate MSI entry");
312 return ret;
313 }
314
315 ret = request_irq(pdev->irq, xhci_msi_irq,
316 0, "xhci_hcd", xhci_to_hcd(xhci));
317 if (ret) {
318 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
319 "disable MSI interrupt");
320 pci_free_irq_vectors(pdev);
321 }
322
323 return ret;
324 }
325
326 /*
327 * Set up MSI-X
328 */
xhci_setup_msix(struct xhci_hcd * xhci)329 static int xhci_setup_msix(struct xhci_hcd *xhci)
330 {
331 int i, ret = 0;
332 struct usb_hcd *hcd = xhci_to_hcd(xhci);
333 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
334
335 /*
336 * calculate number of msi-x vectors supported.
337 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
338 * with max number of interrupters based on the xhci HCSPARAMS1.
339 * - num_online_cpus: maximum msi-x vectors per CPUs core.
340 * Add additional 1 vector to ensure always available interrupt.
341 */
342 xhci->msix_count = min(num_online_cpus() + 1,
343 HCS_MAX_INTRS(xhci->hcs_params1));
344
345 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
346 PCI_IRQ_MSIX);
347 if (ret < 0) {
348 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
349 "Failed to enable MSI-X");
350 return ret;
351 }
352
353 for (i = 0; i < xhci->msix_count; i++) {
354 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
355 "xhci_hcd", xhci_to_hcd(xhci));
356 if (ret)
357 goto disable_msix;
358 }
359
360 hcd->msix_enabled = 1;
361 return ret;
362
363 disable_msix:
364 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
365 while (--i >= 0)
366 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
367 pci_free_irq_vectors(pdev);
368 return ret;
369 }
370
371 /* Free any IRQs and disable MSI-X */
xhci_cleanup_msix(struct xhci_hcd * xhci)372 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
373 {
374 struct usb_hcd *hcd = xhci_to_hcd(xhci);
375 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
376
377 if (xhci->quirks & XHCI_PLAT)
378 return;
379
380 /* return if using legacy interrupt */
381 if (hcd->irq > 0)
382 return;
383
384 if (hcd->msix_enabled) {
385 int i;
386
387 for (i = 0; i < xhci->msix_count; i++)
388 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
389 } else {
390 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
391 }
392
393 pci_free_irq_vectors(pdev);
394 hcd->msix_enabled = 0;
395 }
396
xhci_msix_sync_irqs(struct xhci_hcd * xhci)397 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
398 {
399 struct usb_hcd *hcd = xhci_to_hcd(xhci);
400
401 if (hcd->msix_enabled) {
402 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
403 int i;
404
405 for (i = 0; i < xhci->msix_count; i++)
406 synchronize_irq(pci_irq_vector(pdev, i));
407 }
408 }
409
xhci_try_enable_msi(struct usb_hcd * hcd)410 static int xhci_try_enable_msi(struct usb_hcd *hcd)
411 {
412 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
413 struct pci_dev *pdev;
414 int ret;
415
416 /* The xhci platform device has set up IRQs through usb_add_hcd. */
417 if (xhci->quirks & XHCI_PLAT)
418 return 0;
419
420 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
421 /*
422 * Some Fresco Logic host controllers advertise MSI, but fail to
423 * generate interrupts. Don't even try to enable MSI.
424 */
425 if (xhci->quirks & XHCI_BROKEN_MSI)
426 goto legacy_irq;
427
428 /* unregister the legacy interrupt */
429 if (hcd->irq)
430 free_irq(hcd->irq, hcd);
431 hcd->irq = 0;
432
433 ret = xhci_setup_msix(xhci);
434 if (ret)
435 /* fall back to msi*/
436 ret = xhci_setup_msi(xhci);
437
438 if (!ret) {
439 hcd->msi_enabled = 1;
440 return 0;
441 }
442
443 if (!pdev->irq) {
444 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
445 return -EINVAL;
446 }
447
448 legacy_irq:
449 if (!strlen(hcd->irq_descr))
450 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
451 hcd->driver->description, hcd->self.busnum);
452
453 /* fall back to legacy interrupt*/
454 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
455 hcd->irq_descr, hcd);
456 if (ret) {
457 xhci_err(xhci, "request interrupt %d failed\n",
458 pdev->irq);
459 return ret;
460 }
461 hcd->irq = pdev->irq;
462 return 0;
463 }
464
465 #else
466
xhci_try_enable_msi(struct usb_hcd * hcd)467 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
468 {
469 return 0;
470 }
471
xhci_cleanup_msix(struct xhci_hcd * xhci)472 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
473 {
474 }
475
xhci_msix_sync_irqs(struct xhci_hcd * xhci)476 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
477 {
478 }
479
480 #endif
481
compliance_mode_recovery(struct timer_list * t)482 static void compliance_mode_recovery(struct timer_list *t)
483 {
484 struct xhci_hcd *xhci;
485 struct usb_hcd *hcd;
486 struct xhci_hub *rhub;
487 u32 temp;
488 int i;
489
490 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
491 rhub = &xhci->usb3_rhub;
492
493 for (i = 0; i < rhub->num_ports; i++) {
494 temp = readl(rhub->ports[i]->addr);
495 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
496 /*
497 * Compliance Mode Detected. Letting USB Core
498 * handle the Warm Reset
499 */
500 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
501 "Compliance mode detected->port %d",
502 i + 1);
503 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
504 "Attempting compliance mode recovery");
505 hcd = xhci->shared_hcd;
506
507 if (hcd->state == HC_STATE_SUSPENDED)
508 usb_hcd_resume_root_hub(hcd);
509
510 usb_hcd_poll_rh_status(hcd);
511 }
512 }
513
514 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
515 mod_timer(&xhci->comp_mode_recovery_timer,
516 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
517 }
518
519 /*
520 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
521 * that causes ports behind that hardware to enter compliance mode sometimes.
522 * The quirk creates a timer that polls every 2 seconds the link state of
523 * each host controller's port and recovers it by issuing a Warm reset
524 * if Compliance mode is detected, otherwise the port will become "dead" (no
525 * device connections or disconnections will be detected anymore). Becasue no
526 * status event is generated when entering compliance mode (per xhci spec),
527 * this quirk is needed on systems that have the failing hardware installed.
528 */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)529 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
530 {
531 xhci->port_status_u0 = 0;
532 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
533 0);
534 xhci->comp_mode_recovery_timer.expires = jiffies +
535 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
536
537 add_timer(&xhci->comp_mode_recovery_timer);
538 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
539 "Compliance mode recovery timer initialized");
540 }
541
542 /*
543 * This function identifies the systems that have installed the SN65LVPE502CP
544 * USB3.0 re-driver and that need the Compliance Mode Quirk.
545 * Systems:
546 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
547 */
xhci_compliance_mode_recovery_timer_quirk_check(void)548 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
549 {
550 const char *dmi_product_name, *dmi_sys_vendor;
551
552 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
553 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
554 if (!dmi_product_name || !dmi_sys_vendor)
555 return false;
556
557 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
558 return false;
559
560 if (strstr(dmi_product_name, "Z420") ||
561 strstr(dmi_product_name, "Z620") ||
562 strstr(dmi_product_name, "Z820") ||
563 strstr(dmi_product_name, "Z1 Workstation"))
564 return true;
565
566 return false;
567 }
568
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)569 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
570 {
571 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
572 }
573
574
575 /*
576 * Initialize memory for HCD and xHC (one-time init).
577 *
578 * Program the PAGESIZE register, initialize the device context array, create
579 * device contexts (?), set up a command ring segment (or two?), create event
580 * ring (one for now).
581 */
xhci_init(struct usb_hcd * hcd)582 static int xhci_init(struct usb_hcd *hcd)
583 {
584 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
585 int retval = 0;
586
587 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
588 spin_lock_init(&xhci->lock);
589 if (xhci->hci_version == 0x95 && link_quirk) {
590 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
591 "QUIRK: Not clearing Link TRB chain bits.");
592 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
593 } else {
594 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
595 "xHCI doesn't need link TRB QUIRK");
596 }
597 retval = xhci_mem_init(xhci, GFP_KERNEL);
598 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
599
600 /* Initializing Compliance Mode Recovery Data If Needed */
601 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
602 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
603 compliance_mode_recovery_timer_init(xhci);
604 }
605
606 return retval;
607 }
608
609 /*-------------------------------------------------------------------------*/
610
611
xhci_run_finished(struct xhci_hcd * xhci)612 static int xhci_run_finished(struct xhci_hcd *xhci)
613 {
614 if (xhci_start(xhci)) {
615 xhci_halt(xhci);
616 return -ENODEV;
617 }
618 xhci->shared_hcd->state = HC_STATE_RUNNING;
619 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
620
621 if (xhci->quirks & XHCI_NEC_HOST)
622 xhci_ring_cmd_db(xhci);
623
624 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
625 "Finished xhci_run for USB3 roothub");
626 return 0;
627 }
628
629 /*
630 * Start the HC after it was halted.
631 *
632 * This function is called by the USB core when the HC driver is added.
633 * Its opposite is xhci_stop().
634 *
635 * xhci_init() must be called once before this function can be called.
636 * Reset the HC, enable device slot contexts, program DCBAAP, and
637 * set command ring pointer and event ring pointer.
638 *
639 * Setup MSI-X vectors and enable interrupts.
640 */
xhci_run(struct usb_hcd * hcd)641 int xhci_run(struct usb_hcd *hcd)
642 {
643 u32 temp;
644 u64 temp_64;
645 int ret;
646 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
647
648 /* Start the xHCI host controller running only after the USB 2.0 roothub
649 * is setup.
650 */
651
652 hcd->uses_new_polling = 1;
653 if (!usb_hcd_is_primary_hcd(hcd))
654 return xhci_run_finished(xhci);
655
656 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
657
658 ret = xhci_try_enable_msi(hcd);
659 if (ret)
660 return ret;
661
662 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
663 temp_64 &= ~ERST_PTR_MASK;
664 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
665 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
666
667 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
668 "// Set the interrupt modulation register");
669 temp = readl(&xhci->ir_set->irq_control);
670 temp &= ~ER_IRQ_INTERVAL_MASK;
671 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
672 writel(temp, &xhci->ir_set->irq_control);
673
674 /* Set the HCD state before we enable the irqs */
675 temp = readl(&xhci->op_regs->command);
676 temp |= (CMD_EIE);
677 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
678 "// Enable interrupts, cmd = 0x%x.", temp);
679 writel(temp, &xhci->op_regs->command);
680
681 temp = readl(&xhci->ir_set->irq_pending);
682 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
683 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
684 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
685 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
686
687 if (xhci->quirks & XHCI_NEC_HOST) {
688 struct xhci_command *command;
689
690 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
691 if (!command)
692 return -ENOMEM;
693
694 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
695 TRB_TYPE(TRB_NEC_GET_FW));
696 if (ret)
697 xhci_free_command(xhci, command);
698 }
699 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
700 "Finished xhci_run for USB2 roothub");
701
702 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
703
704 xhci_dbc_init(xhci);
705
706 xhci_debugfs_init(xhci);
707
708 return 0;
709 }
710 EXPORT_SYMBOL_GPL(xhci_run);
711
712 /*
713 * Stop xHCI driver.
714 *
715 * This function is called by the USB core when the HC driver is removed.
716 * Its opposite is xhci_run().
717 *
718 * Disable device contexts, disable IRQs, and quiesce the HC.
719 * Reset the HC, finish any completed transactions, and cleanup memory.
720 */
xhci_stop(struct usb_hcd * hcd)721 static void xhci_stop(struct usb_hcd *hcd)
722 {
723 u32 temp;
724 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
725
726 mutex_lock(&xhci->mutex);
727
728 /* Only halt host and free memory after both hcds are removed */
729 if (!usb_hcd_is_primary_hcd(hcd)) {
730 mutex_unlock(&xhci->mutex);
731 return;
732 }
733
734 xhci_dbc_exit(xhci);
735
736 spin_lock_irq(&xhci->lock);
737 xhci->xhc_state |= XHCI_STATE_HALTED;
738 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
739 xhci_halt(xhci);
740 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
741 spin_unlock_irq(&xhci->lock);
742
743 xhci_cleanup_msix(xhci);
744
745 /* Deleting Compliance Mode Recovery Timer */
746 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
747 (!(xhci_all_ports_seen_u0(xhci)))) {
748 del_timer_sync(&xhci->comp_mode_recovery_timer);
749 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
750 "%s: compliance mode recovery timer deleted",
751 __func__);
752 }
753
754 if (xhci->quirks & XHCI_AMD_PLL_FIX)
755 usb_amd_dev_put();
756
757 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
758 "// Disabling event ring interrupts");
759 temp = readl(&xhci->op_regs->status);
760 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
761 temp = readl(&xhci->ir_set->irq_pending);
762 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
763
764 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
765 xhci_mem_cleanup(xhci);
766 xhci_debugfs_exit(xhci);
767 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
768 "xhci_stop completed - status = %x",
769 readl(&xhci->op_regs->status));
770 mutex_unlock(&xhci->mutex);
771 }
772
773 /*
774 * Shutdown HC (not bus-specific)
775 *
776 * This is called when the machine is rebooting or halting. We assume that the
777 * machine will be powered off, and the HC's internal state will be reset.
778 * Don't bother to free memory.
779 *
780 * This will only ever be called with the main usb_hcd (the USB3 roothub).
781 */
xhci_shutdown(struct usb_hcd * hcd)782 void xhci_shutdown(struct usb_hcd *hcd)
783 {
784 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
785
786 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
787 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
788
789 /* Don't poll the roothubs after shutdown. */
790 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
791 __func__, hcd->self.busnum);
792 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
793 del_timer_sync(&hcd->rh_timer);
794
795 if (xhci->shared_hcd) {
796 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
797 del_timer_sync(&xhci->shared_hcd->rh_timer);
798 }
799
800 spin_lock_irq(&xhci->lock);
801 xhci_halt(xhci);
802
803 /*
804 * Workaround for spurious wakeps at shutdown with HSW, and for boot
805 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
806 */
807 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
808 xhci->quirks & XHCI_RESET_TO_DEFAULT)
809 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
810
811 spin_unlock_irq(&xhci->lock);
812
813 xhci_cleanup_msix(xhci);
814
815 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
816 "xhci_shutdown completed - status = %x",
817 readl(&xhci->op_regs->status));
818 }
819 EXPORT_SYMBOL_GPL(xhci_shutdown);
820
821 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)822 static void xhci_save_registers(struct xhci_hcd *xhci)
823 {
824 xhci->s3.command = readl(&xhci->op_regs->command);
825 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
826 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
827 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
828 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
829 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
830 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
831 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
832 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
833 }
834
xhci_restore_registers(struct xhci_hcd * xhci)835 static void xhci_restore_registers(struct xhci_hcd *xhci)
836 {
837 writel(xhci->s3.command, &xhci->op_regs->command);
838 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
839 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
840 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
841 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
842 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
843 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
844 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
845 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
846 }
847
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)848 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
849 {
850 u64 val_64;
851
852 /* step 2: initialize command ring buffer */
853 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
854 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
855 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
856 xhci->cmd_ring->dequeue) &
857 (u64) ~CMD_RING_RSVD_BITS) |
858 xhci->cmd_ring->cycle_state;
859 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
860 "// Setting command ring address to 0x%llx",
861 (long unsigned long) val_64);
862 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
863 }
864
865 /*
866 * The whole command ring must be cleared to zero when we suspend the host.
867 *
868 * The host doesn't save the command ring pointer in the suspend well, so we
869 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
870 * aligned, because of the reserved bits in the command ring dequeue pointer
871 * register. Therefore, we can't just set the dequeue pointer back in the
872 * middle of the ring (TRBs are 16-byte aligned).
873 */
xhci_clear_command_ring(struct xhci_hcd * xhci)874 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
875 {
876 struct xhci_ring *ring;
877 struct xhci_segment *seg;
878
879 ring = xhci->cmd_ring;
880 seg = ring->deq_seg;
881 do {
882 memset(seg->trbs, 0,
883 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
884 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
885 cpu_to_le32(~TRB_CYCLE);
886 seg = seg->next;
887 } while (seg != ring->deq_seg);
888
889 /* Reset the software enqueue and dequeue pointers */
890 ring->deq_seg = ring->first_seg;
891 ring->dequeue = ring->first_seg->trbs;
892 ring->enq_seg = ring->deq_seg;
893 ring->enqueue = ring->dequeue;
894
895 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
896 /*
897 * Ring is now zeroed, so the HW should look for change of ownership
898 * when the cycle bit is set to 1.
899 */
900 ring->cycle_state = 1;
901
902 /*
903 * Reset the hardware dequeue pointer.
904 * Yes, this will need to be re-written after resume, but we're paranoid
905 * and want to make sure the hardware doesn't access bogus memory
906 * because, say, the BIOS or an SMI started the host without changing
907 * the command ring pointers.
908 */
909 xhci_set_cmd_ring_deq(xhci);
910 }
911
912 /*
913 * Disable port wake bits if do_wakeup is not set.
914 *
915 * Also clear a possible internal port wake state left hanging for ports that
916 * detected termination but never successfully enumerated (trained to 0U).
917 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
918 * at enumeration clears this wake, force one here as well for unconnected ports
919 */
920
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)921 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
922 struct xhci_hub *rhub,
923 bool do_wakeup)
924 {
925 unsigned long flags;
926 u32 t1, t2, portsc;
927 int i;
928
929 spin_lock_irqsave(&xhci->lock, flags);
930
931 for (i = 0; i < rhub->num_ports; i++) {
932 portsc = readl(rhub->ports[i]->addr);
933 t1 = xhci_port_state_to_neutral(portsc);
934 t2 = t1;
935
936 /* clear wake bits if do_wake is not set */
937 if (!do_wakeup)
938 t2 &= ~PORT_WAKE_BITS;
939
940 /* Don't touch csc bit if connected or connect change is set */
941 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
942 t2 |= PORT_CSC;
943
944 if (t1 != t2) {
945 writel(t2, rhub->ports[i]->addr);
946 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
947 rhub->hcd->self.busnum, i + 1, portsc, t2);
948 }
949 }
950 spin_unlock_irqrestore(&xhci->lock, flags);
951 }
952
xhci_pending_portevent(struct xhci_hcd * xhci)953 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
954 {
955 struct xhci_port **ports;
956 int port_index;
957 u32 status;
958 u32 portsc;
959
960 status = readl(&xhci->op_regs->status);
961 if (status & STS_EINT)
962 return true;
963 /*
964 * Checking STS_EINT is not enough as there is a lag between a change
965 * bit being set and the Port Status Change Event that it generated
966 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
967 */
968
969 port_index = xhci->usb2_rhub.num_ports;
970 ports = xhci->usb2_rhub.ports;
971 while (port_index--) {
972 portsc = readl(ports[port_index]->addr);
973 if (portsc & PORT_CHANGE_MASK ||
974 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
975 return true;
976 }
977 port_index = xhci->usb3_rhub.num_ports;
978 ports = xhci->usb3_rhub.ports;
979 while (port_index--) {
980 portsc = readl(ports[port_index]->addr);
981 if (portsc & PORT_CHANGE_MASK ||
982 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
983 return true;
984 }
985 return false;
986 }
987
988 /*
989 * Stop HC (not bus-specific)
990 *
991 * This is called when the machine transition into S3/S4 mode.
992 *
993 */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)994 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
995 {
996 int rc = 0;
997 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
998 struct usb_hcd *hcd = xhci_to_hcd(xhci);
999 u32 command;
1000 u32 res;
1001
1002 if (!hcd->state)
1003 return 0;
1004
1005 if (hcd->state != HC_STATE_SUSPENDED ||
1006 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
1007 return -EINVAL;
1008
1009 /* Clear root port wake on bits if wakeup not allowed. */
1010 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1011 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1012
1013 if (!HCD_HW_ACCESSIBLE(hcd))
1014 return 0;
1015
1016 xhci_dbc_suspend(xhci);
1017
1018 /* Don't poll the roothubs on bus suspend. */
1019 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
1020 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1021 del_timer_sync(&hcd->rh_timer);
1022 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1023 del_timer_sync(&xhci->shared_hcd->rh_timer);
1024
1025 if (xhci->quirks & XHCI_SUSPEND_DELAY)
1026 usleep_range(1000, 1500);
1027
1028 spin_lock_irq(&xhci->lock);
1029 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1030 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1031 /* step 1: stop endpoint */
1032 /* skipped assuming that port suspend has done */
1033
1034 /* step 2: clear Run/Stop bit */
1035 command = readl(&xhci->op_regs->command);
1036 command &= ~CMD_RUN;
1037 writel(command, &xhci->op_regs->command);
1038
1039 /* Some chips from Fresco Logic need an extraordinary delay */
1040 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1041
1042 if (xhci_handshake(&xhci->op_regs->status,
1043 STS_HALT, STS_HALT, delay)) {
1044 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1045 spin_unlock_irq(&xhci->lock);
1046 return -ETIMEDOUT;
1047 }
1048 xhci_clear_command_ring(xhci);
1049
1050 /* step 3: save registers */
1051 xhci_save_registers(xhci);
1052
1053 /* step 4: set CSS flag */
1054 command = readl(&xhci->op_regs->command);
1055 command |= CMD_CSS;
1056 writel(command, &xhci->op_regs->command);
1057 xhci->broken_suspend = 0;
1058 if (xhci_handshake(&xhci->op_regs->status,
1059 STS_SAVE, 0, 20 * 1000)) {
1060 /*
1061 * AMD SNPS xHC 3.0 occasionally does not clear the
1062 * SSS bit of USBSTS and when driver tries to poll
1063 * to see if the xHC clears BIT(8) which never happens
1064 * and driver assumes that controller is not responding
1065 * and times out. To workaround this, its good to check
1066 * if SRE and HCE bits are not set (as per xhci
1067 * Section 5.4.2) and bypass the timeout.
1068 */
1069 res = readl(&xhci->op_regs->status);
1070 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1071 (((res & STS_SRE) == 0) &&
1072 ((res & STS_HCE) == 0))) {
1073 xhci->broken_suspend = 1;
1074 } else {
1075 xhci_warn(xhci, "WARN: xHC save state timeout\n");
1076 spin_unlock_irq(&xhci->lock);
1077 return -ETIMEDOUT;
1078 }
1079 }
1080 spin_unlock_irq(&xhci->lock);
1081
1082 /*
1083 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1084 * is about to be suspended.
1085 */
1086 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1087 (!(xhci_all_ports_seen_u0(xhci)))) {
1088 del_timer_sync(&xhci->comp_mode_recovery_timer);
1089 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1090 "%s: compliance mode recovery timer deleted",
1091 __func__);
1092 }
1093
1094 /* step 5: remove core well power */
1095 /* synchronize irq when using MSI-X */
1096 xhci_msix_sync_irqs(xhci);
1097
1098 return rc;
1099 }
1100 EXPORT_SYMBOL_GPL(xhci_suspend);
1101
1102 /*
1103 * start xHC (not bus-specific)
1104 *
1105 * This is called when the machine transition from S3/S4 mode.
1106 *
1107 */
xhci_resume(struct xhci_hcd * xhci,bool hibernated)1108 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1109 {
1110 u32 command, temp = 0;
1111 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1112 struct usb_hcd *secondary_hcd;
1113 int retval = 0;
1114 bool comp_timer_running = false;
1115 bool pending_portevent = false;
1116 bool reinit_xhc = false;
1117
1118 if (!hcd->state)
1119 return 0;
1120
1121 /* Wait a bit if either of the roothubs need to settle from the
1122 * transition into bus suspend.
1123 */
1124
1125 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1126 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1127 msleep(100);
1128
1129 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1130 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1131
1132 spin_lock_irq(&xhci->lock);
1133
1134 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1135 reinit_xhc = true;
1136
1137 if (!reinit_xhc) {
1138 /*
1139 * Some controllers might lose power during suspend, so wait
1140 * for controller not ready bit to clear, just as in xHC init.
1141 */
1142 retval = xhci_handshake(&xhci->op_regs->status,
1143 STS_CNR, 0, 10 * 1000 * 1000);
1144 if (retval) {
1145 xhci_warn(xhci, "Controller not ready at resume %d\n",
1146 retval);
1147 spin_unlock_irq(&xhci->lock);
1148 return retval;
1149 }
1150 /* step 1: restore register */
1151 xhci_restore_registers(xhci);
1152 /* step 2: initialize command ring buffer */
1153 xhci_set_cmd_ring_deq(xhci);
1154 /* step 3: restore state and start state*/
1155 /* step 3: set CRS flag */
1156 command = readl(&xhci->op_regs->command);
1157 command |= CMD_CRS;
1158 writel(command, &xhci->op_regs->command);
1159 /*
1160 * Some controllers take up to 55+ ms to complete the controller
1161 * restore so setting the timeout to 100ms. Xhci specification
1162 * doesn't mention any timeout value.
1163 */
1164 if (xhci_handshake(&xhci->op_regs->status,
1165 STS_RESTORE, 0, 100 * 1000)) {
1166 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1167 spin_unlock_irq(&xhci->lock);
1168 return -ETIMEDOUT;
1169 }
1170 }
1171
1172 temp = readl(&xhci->op_regs->status);
1173
1174 /* re-initialize the HC on Restore Error, or Host Controller Error */
1175 if (temp & (STS_SRE | STS_HCE)) {
1176 reinit_xhc = true;
1177 if (!xhci->broken_suspend)
1178 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1179 }
1180
1181 if (reinit_xhc) {
1182 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1183 !(xhci_all_ports_seen_u0(xhci))) {
1184 del_timer_sync(&xhci->comp_mode_recovery_timer);
1185 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1186 "Compliance Mode Recovery Timer deleted!");
1187 }
1188
1189 /* Let the USB core know _both_ roothubs lost power. */
1190 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1191 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1192
1193 xhci_dbg(xhci, "Stop HCD\n");
1194 xhci_halt(xhci);
1195 xhci_zero_64b_regs(xhci);
1196 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1197 spin_unlock_irq(&xhci->lock);
1198 if (retval)
1199 return retval;
1200 xhci_cleanup_msix(xhci);
1201
1202 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1203 temp = readl(&xhci->op_regs->status);
1204 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1205 temp = readl(&xhci->ir_set->irq_pending);
1206 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1207
1208 xhci_dbg(xhci, "cleaning up memory\n");
1209 xhci_mem_cleanup(xhci);
1210 xhci_debugfs_exit(xhci);
1211 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1212 readl(&xhci->op_regs->status));
1213
1214 /* USB core calls the PCI reinit and start functions twice:
1215 * first with the primary HCD, and then with the secondary HCD.
1216 * If we don't do the same, the host will never be started.
1217 */
1218 if (!usb_hcd_is_primary_hcd(hcd))
1219 secondary_hcd = hcd;
1220 else
1221 secondary_hcd = xhci->shared_hcd;
1222
1223 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1224 retval = xhci_init(hcd->primary_hcd);
1225 if (retval)
1226 return retval;
1227 comp_timer_running = true;
1228
1229 xhci_dbg(xhci, "Start the primary HCD\n");
1230 retval = xhci_run(hcd->primary_hcd);
1231 if (!retval) {
1232 xhci_dbg(xhci, "Start the secondary HCD\n");
1233 retval = xhci_run(secondary_hcd);
1234 }
1235 hcd->state = HC_STATE_SUSPENDED;
1236 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1237 goto done;
1238 }
1239
1240 /* step 4: set Run/Stop bit */
1241 command = readl(&xhci->op_regs->command);
1242 command |= CMD_RUN;
1243 writel(command, &xhci->op_regs->command);
1244 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1245 0, 250 * 1000);
1246
1247 /* step 5: walk topology and initialize portsc,
1248 * portpmsc and portli
1249 */
1250 /* this is done in bus_resume */
1251
1252 /* step 6: restart each of the previously
1253 * Running endpoints by ringing their doorbells
1254 */
1255
1256 spin_unlock_irq(&xhci->lock);
1257
1258 xhci_dbc_resume(xhci);
1259
1260 done:
1261 if (retval == 0) {
1262 /*
1263 * Resume roothubs only if there are pending events.
1264 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1265 * the first wake signalling failed, give it that chance.
1266 */
1267 pending_portevent = xhci_pending_portevent(xhci);
1268 if (!pending_portevent) {
1269 msleep(120);
1270 pending_portevent = xhci_pending_portevent(xhci);
1271 }
1272
1273 if (pending_portevent) {
1274 usb_hcd_resume_root_hub(xhci->shared_hcd);
1275 usb_hcd_resume_root_hub(hcd);
1276 }
1277 }
1278 /*
1279 * If system is subject to the Quirk, Compliance Mode Timer needs to
1280 * be re-initialized Always after a system resume. Ports are subject
1281 * to suffer the Compliance Mode issue again. It doesn't matter if
1282 * ports have entered previously to U0 before system's suspension.
1283 */
1284 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1285 compliance_mode_recovery_timer_init(xhci);
1286
1287 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1288 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1289
1290 /* Re-enable port polling. */
1291 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1292 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1293 usb_hcd_poll_rh_status(xhci->shared_hcd);
1294 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1295 usb_hcd_poll_rh_status(hcd);
1296
1297 return retval;
1298 }
1299 EXPORT_SYMBOL_GPL(xhci_resume);
1300 #endif /* CONFIG_PM */
1301
1302 /*-------------------------------------------------------------------------*/
1303
1304 /*
1305 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1306 * we'll copy the actual data into the TRB address register. This is limited to
1307 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1308 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1309 */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1310 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1311 gfp_t mem_flags)
1312 {
1313 if (xhci_urb_suitable_for_idt(urb))
1314 return 0;
1315
1316 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1317 }
1318
1319 /*
1320 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1321 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1322 * value to right shift 1 for the bitmask.
1323 *
1324 * Index = (epnum * 2) + direction - 1,
1325 * where direction = 0 for OUT, 1 for IN.
1326 * For control endpoints, the IN index is used (OUT index is unused), so
1327 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1328 */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1329 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1330 {
1331 unsigned int index;
1332 if (usb_endpoint_xfer_control(desc))
1333 index = (unsigned int) (usb_endpoint_num(desc)*2);
1334 else
1335 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1336 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1337 return index;
1338 }
1339 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1340
1341 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1342 * address from the XHCI endpoint index.
1343 */
xhci_get_endpoint_address(unsigned int ep_index)1344 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1345 {
1346 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1347 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1348 return direction | number;
1349 }
1350 EXPORT_SYMBOL_GPL(xhci_get_endpoint_address);
1351
1352 /* Find the flag for this endpoint (for use in the control context). Use the
1353 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1354 * bit 1, etc.
1355 */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1356 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1357 {
1358 return 1 << (xhci_get_endpoint_index(desc) + 1);
1359 }
1360
1361 /* Compute the last valid endpoint context index. Basically, this is the
1362 * endpoint index plus one. For slot contexts with more than valid endpoint,
1363 * we find the most significant bit set in the added contexts flags.
1364 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1365 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1366 */
xhci_last_valid_endpoint(u32 added_ctxs)1367 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1368 {
1369 return fls(added_ctxs) - 1;
1370 }
1371
1372 /* Returns 1 if the arguments are OK;
1373 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1374 */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1375 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1376 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1377 const char *func) {
1378 struct xhci_hcd *xhci;
1379 struct xhci_virt_device *virt_dev;
1380
1381 if (!hcd || (check_ep && !ep) || !udev) {
1382 pr_debug("xHCI %s called with invalid args\n", func);
1383 return -EINVAL;
1384 }
1385 if (!udev->parent) {
1386 pr_debug("xHCI %s called for root hub\n", func);
1387 return 0;
1388 }
1389
1390 xhci = hcd_to_xhci(hcd);
1391 if (check_virt_dev) {
1392 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1393 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1394 func);
1395 return -EINVAL;
1396 }
1397
1398 virt_dev = xhci->devs[udev->slot_id];
1399 if (virt_dev->udev != udev) {
1400 xhci_dbg(xhci, "xHCI %s called with udev and "
1401 "virt_dev does not match\n", func);
1402 return -EINVAL;
1403 }
1404 }
1405
1406 if (xhci->xhc_state & XHCI_STATE_HALTED)
1407 return -ENODEV;
1408
1409 return 1;
1410 }
1411
1412 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1413 struct usb_device *udev, struct xhci_command *command,
1414 bool ctx_change, bool must_succeed);
1415
1416 /*
1417 * Full speed devices may have a max packet size greater than 8 bytes, but the
1418 * USB core doesn't know that until it reads the first 8 bytes of the
1419 * descriptor. If the usb_device's max packet size changes after that point,
1420 * we need to issue an evaluate context command and wait on it.
1421 */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb,gfp_t mem_flags)1422 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1423 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1424 {
1425 struct xhci_container_ctx *out_ctx;
1426 struct xhci_input_control_ctx *ctrl_ctx;
1427 struct xhci_ep_ctx *ep_ctx;
1428 struct xhci_command *command;
1429 int max_packet_size;
1430 int hw_max_packet_size;
1431 int ret = 0;
1432
1433 out_ctx = xhci->devs[slot_id]->out_ctx;
1434 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1435 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1436 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1437 if (hw_max_packet_size != max_packet_size) {
1438 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1439 "Max Packet Size for ep 0 changed.");
1440 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1441 "Max packet size in usb_device = %d",
1442 max_packet_size);
1443 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1444 "Max packet size in xHCI HW = %d",
1445 hw_max_packet_size);
1446 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1447 "Issuing evaluate context command.");
1448
1449 /* Set up the input context flags for the command */
1450 /* FIXME: This won't work if a non-default control endpoint
1451 * changes max packet sizes.
1452 */
1453
1454 command = xhci_alloc_command(xhci, true, mem_flags);
1455 if (!command)
1456 return -ENOMEM;
1457
1458 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1459 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1460 if (!ctrl_ctx) {
1461 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1462 __func__);
1463 ret = -ENOMEM;
1464 goto command_cleanup;
1465 }
1466 /* Set up the modified control endpoint 0 */
1467 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1468 xhci->devs[slot_id]->out_ctx, ep_index);
1469
1470 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1471 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1472 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1473 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1474
1475 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1476 ctrl_ctx->drop_flags = 0;
1477
1478 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1479 true, false);
1480
1481 /* Clean up the input context for later use by bandwidth
1482 * functions.
1483 */
1484 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1485 command_cleanup:
1486 kfree(command->completion);
1487 kfree(command);
1488 }
1489 return ret;
1490 }
1491
1492 /*
1493 * non-error returns are a promise to giveback() the urb later
1494 * we drop ownership so next owner (or urb unlink) can get it
1495 */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1496 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1497 {
1498 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1499 unsigned long flags;
1500 int ret = 0;
1501 unsigned int slot_id, ep_index;
1502 unsigned int *ep_state;
1503 struct urb_priv *urb_priv;
1504 int num_tds;
1505
1506 if (!urb)
1507 return -EINVAL;
1508 ret = xhci_check_args(hcd, urb->dev, urb->ep,
1509 true, true, __func__);
1510 if (ret <= 0)
1511 return ret ? ret : -EINVAL;
1512
1513 slot_id = urb->dev->slot_id;
1514 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1515 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1516
1517 if (!HCD_HW_ACCESSIBLE(hcd)) {
1518 if (!in_interrupt())
1519 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1520 return -ESHUTDOWN;
1521 }
1522 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1523 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1524 return -ENODEV;
1525 }
1526
1527 if (xhci_vendor_usb_offload_skip_urb(xhci, urb)) {
1528 xhci_dbg(xhci, "skip urb for usb offload\n");
1529 return -EOPNOTSUPP;
1530 }
1531
1532 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1533 num_tds = urb->number_of_packets;
1534 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1535 urb->transfer_buffer_length > 0 &&
1536 urb->transfer_flags & URB_ZERO_PACKET &&
1537 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1538 num_tds = 2;
1539 else
1540 num_tds = 1;
1541
1542 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1543 if (!urb_priv)
1544 return -ENOMEM;
1545
1546 urb_priv->num_tds = num_tds;
1547 urb_priv->num_tds_done = 0;
1548 urb->hcpriv = urb_priv;
1549
1550 trace_xhci_urb_enqueue(urb);
1551
1552 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1553 /* Check to see if the max packet size for the default control
1554 * endpoint changed during FS device enumeration
1555 */
1556 if (urb->dev->speed == USB_SPEED_FULL) {
1557 ret = xhci_check_maxpacket(xhci, slot_id,
1558 ep_index, urb, mem_flags);
1559 if (ret < 0) {
1560 xhci_urb_free_priv(urb_priv);
1561 urb->hcpriv = NULL;
1562 return ret;
1563 }
1564 }
1565 }
1566
1567 spin_lock_irqsave(&xhci->lock, flags);
1568
1569 if (xhci->xhc_state & XHCI_STATE_DYING) {
1570 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1571 urb->ep->desc.bEndpointAddress, urb);
1572 ret = -ESHUTDOWN;
1573 goto free_priv;
1574 }
1575 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1576 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1577 *ep_state);
1578 ret = -EINVAL;
1579 goto free_priv;
1580 }
1581 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1582 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1583 ret = -EINVAL;
1584 goto free_priv;
1585 }
1586
1587 switch (usb_endpoint_type(&urb->ep->desc)) {
1588
1589 case USB_ENDPOINT_XFER_CONTROL:
1590 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1591 slot_id, ep_index);
1592 break;
1593 case USB_ENDPOINT_XFER_BULK:
1594 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1595 slot_id, ep_index);
1596 break;
1597 case USB_ENDPOINT_XFER_INT:
1598 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1599 slot_id, ep_index);
1600 break;
1601 case USB_ENDPOINT_XFER_ISOC:
1602 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1603 slot_id, ep_index);
1604 }
1605
1606 if (ret) {
1607 free_priv:
1608 xhci_urb_free_priv(urb_priv);
1609 urb->hcpriv = NULL;
1610 }
1611 spin_unlock_irqrestore(&xhci->lock, flags);
1612 return ret;
1613 }
1614
1615 /*
1616 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1617 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1618 * should pick up where it left off in the TD, unless a Set Transfer Ring
1619 * Dequeue Pointer is issued.
1620 *
1621 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1622 * the ring. Since the ring is a contiguous structure, they can't be physically
1623 * removed. Instead, there are two options:
1624 *
1625 * 1) If the HC is in the middle of processing the URB to be canceled, we
1626 * simply move the ring's dequeue pointer past those TRBs using the Set
1627 * Transfer Ring Dequeue Pointer command. This will be the common case,
1628 * when drivers timeout on the last submitted URB and attempt to cancel.
1629 *
1630 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1631 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1632 * HC will need to invalidate the any TRBs it has cached after the stop
1633 * endpoint command, as noted in the xHCI 0.95 errata.
1634 *
1635 * 3) The TD may have completed by the time the Stop Endpoint Command
1636 * completes, so software needs to handle that case too.
1637 *
1638 * This function should protect against the TD enqueueing code ringing the
1639 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1640 * It also needs to account for multiple cancellations on happening at the same
1641 * time for the same endpoint.
1642 *
1643 * Note that this function can be called in any context, or so says
1644 * usb_hcd_unlink_urb()
1645 */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1646 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1647 {
1648 unsigned long flags;
1649 int ret, i;
1650 u32 temp;
1651 struct xhci_hcd *xhci;
1652 struct urb_priv *urb_priv;
1653 struct xhci_td *td;
1654 unsigned int ep_index;
1655 struct xhci_ring *ep_ring;
1656 struct xhci_virt_ep *ep;
1657 struct xhci_command *command;
1658 struct xhci_virt_device *vdev;
1659
1660 xhci = hcd_to_xhci(hcd);
1661 spin_lock_irqsave(&xhci->lock, flags);
1662
1663 trace_xhci_urb_dequeue(urb);
1664
1665 /* Make sure the URB hasn't completed or been unlinked already */
1666 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1667 if (ret)
1668 goto done;
1669
1670 /* give back URB now if we can't queue it for cancel */
1671 vdev = xhci->devs[urb->dev->slot_id];
1672 urb_priv = urb->hcpriv;
1673 if (!vdev || !urb_priv)
1674 goto err_giveback;
1675
1676 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1677 ep = &vdev->eps[ep_index];
1678 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1679 if (!ep || !ep_ring)
1680 goto err_giveback;
1681
1682 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1683 temp = readl(&xhci->op_regs->status);
1684 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1685 xhci_hc_died(xhci);
1686 goto done;
1687 }
1688
1689 /*
1690 * check ring is not re-allocated since URB was enqueued. If it is, then
1691 * make sure none of the ring related pointers in this URB private data
1692 * are touched, such as td_list, otherwise we overwrite freed data
1693 */
1694 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1695 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1696 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1697 td = &urb_priv->td[i];
1698 if (!list_empty(&td->cancelled_td_list))
1699 list_del_init(&td->cancelled_td_list);
1700 }
1701 goto err_giveback;
1702 }
1703
1704 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1705 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1706 "HC halted, freeing TD manually.");
1707 for (i = urb_priv->num_tds_done;
1708 i < urb_priv->num_tds;
1709 i++) {
1710 td = &urb_priv->td[i];
1711 if (!list_empty(&td->td_list))
1712 list_del_init(&td->td_list);
1713 if (!list_empty(&td->cancelled_td_list))
1714 list_del_init(&td->cancelled_td_list);
1715 }
1716 goto err_giveback;
1717 }
1718
1719 i = urb_priv->num_tds_done;
1720 if (i < urb_priv->num_tds)
1721 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1722 "Cancel URB %p, dev %s, ep 0x%x, "
1723 "starting at offset 0x%llx",
1724 urb, urb->dev->devpath,
1725 urb->ep->desc.bEndpointAddress,
1726 (unsigned long long) xhci_trb_virt_to_dma(
1727 urb_priv->td[i].start_seg,
1728 urb_priv->td[i].first_trb));
1729
1730 for (; i < urb_priv->num_tds; i++) {
1731 td = &urb_priv->td[i];
1732 /* TD can already be on cancelled list if ep halted on it */
1733 if (list_empty(&td->cancelled_td_list)) {
1734 td->cancel_status = TD_DIRTY;
1735 list_add_tail(&td->cancelled_td_list,
1736 &ep->cancelled_td_list);
1737 }
1738 }
1739
1740 /* Queue a stop endpoint command, but only if this is
1741 * the first cancellation to be handled.
1742 */
1743 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1744 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1745 if (!command) {
1746 ret = -ENOMEM;
1747 goto done;
1748 }
1749 ep->ep_state |= EP_STOP_CMD_PENDING;
1750 ep->stop_cmd_timer.expires = jiffies +
1751 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1752 add_timer(&ep->stop_cmd_timer);
1753 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1754 ep_index, 0);
1755 xhci_ring_cmd_db(xhci);
1756 }
1757 done:
1758 spin_unlock_irqrestore(&xhci->lock, flags);
1759 return ret;
1760
1761 err_giveback:
1762 if (urb_priv)
1763 xhci_urb_free_priv(urb_priv);
1764 usb_hcd_unlink_urb_from_ep(hcd, urb);
1765 spin_unlock_irqrestore(&xhci->lock, flags);
1766 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1767 return ret;
1768 }
1769
1770 /* Drop an endpoint from a new bandwidth configuration for this device.
1771 * Only one call to this function is allowed per endpoint before
1772 * check_bandwidth() or reset_bandwidth() must be called.
1773 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1774 * add the endpoint to the schedule with possibly new parameters denoted by a
1775 * different endpoint descriptor in usb_host_endpoint.
1776 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1777 * not allowed.
1778 *
1779 * The USB core will not allow URBs to be queued to an endpoint that is being
1780 * disabled, so there's no need for mutual exclusion to protect
1781 * the xhci->devs[slot_id] structure.
1782 */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1783 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1784 struct usb_host_endpoint *ep)
1785 {
1786 struct xhci_hcd *xhci;
1787 struct xhci_container_ctx *in_ctx, *out_ctx;
1788 struct xhci_input_control_ctx *ctrl_ctx;
1789 unsigned int ep_index;
1790 struct xhci_ep_ctx *ep_ctx;
1791 u32 drop_flag;
1792 u32 new_add_flags, new_drop_flags;
1793 int ret;
1794
1795 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1796 if (ret <= 0)
1797 return ret;
1798 xhci = hcd_to_xhci(hcd);
1799 if (xhci->xhc_state & XHCI_STATE_DYING)
1800 return -ENODEV;
1801
1802 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1803 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1804 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1805 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1806 __func__, drop_flag);
1807 return 0;
1808 }
1809
1810 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1811 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1812 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1813 if (!ctrl_ctx) {
1814 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1815 __func__);
1816 return 0;
1817 }
1818
1819 ep_index = xhci_get_endpoint_index(&ep->desc);
1820 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1821 /* If the HC already knows the endpoint is disabled,
1822 * or the HCD has noted it is disabled, ignore this request
1823 */
1824 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1825 le32_to_cpu(ctrl_ctx->drop_flags) &
1826 xhci_get_endpoint_flag(&ep->desc)) {
1827 /* Do not warn when called after a usb_device_reset */
1828 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1829 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1830 __func__, ep);
1831 return 0;
1832 }
1833
1834 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1835 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1836
1837 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1838 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1839
1840 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1841
1842 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1843
1844 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1845 (unsigned int) ep->desc.bEndpointAddress,
1846 udev->slot_id,
1847 (unsigned int) new_drop_flags,
1848 (unsigned int) new_add_flags);
1849 return 0;
1850 }
1851 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1852
1853 /* Add an endpoint to a new possible bandwidth configuration for this device.
1854 * Only one call to this function is allowed per endpoint before
1855 * check_bandwidth() or reset_bandwidth() must be called.
1856 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1857 * add the endpoint to the schedule with possibly new parameters denoted by a
1858 * different endpoint descriptor in usb_host_endpoint.
1859 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1860 * not allowed.
1861 *
1862 * The USB core will not allow URBs to be queued to an endpoint until the
1863 * configuration or alt setting is installed in the device, so there's no need
1864 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1865 */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1866 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1867 struct usb_host_endpoint *ep)
1868 {
1869 struct xhci_hcd *xhci;
1870 struct xhci_container_ctx *in_ctx;
1871 unsigned int ep_index;
1872 struct xhci_input_control_ctx *ctrl_ctx;
1873 struct xhci_ep_ctx *ep_ctx;
1874 u32 added_ctxs;
1875 u32 new_add_flags, new_drop_flags;
1876 struct xhci_virt_device *virt_dev;
1877 int ret = 0;
1878
1879 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1880 if (ret <= 0) {
1881 /* So we won't queue a reset ep command for a root hub */
1882 ep->hcpriv = NULL;
1883 return ret;
1884 }
1885 xhci = hcd_to_xhci(hcd);
1886 if (xhci->xhc_state & XHCI_STATE_DYING)
1887 return -ENODEV;
1888
1889 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1890 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1891 /* FIXME when we have to issue an evaluate endpoint command to
1892 * deal with ep0 max packet size changing once we get the
1893 * descriptors
1894 */
1895 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1896 __func__, added_ctxs);
1897 return 0;
1898 }
1899
1900 virt_dev = xhci->devs[udev->slot_id];
1901 in_ctx = virt_dev->in_ctx;
1902 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1903 if (!ctrl_ctx) {
1904 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1905 __func__);
1906 return 0;
1907 }
1908
1909 ep_index = xhci_get_endpoint_index(&ep->desc);
1910 /* If this endpoint is already in use, and the upper layers are trying
1911 * to add it again without dropping it, reject the addition.
1912 */
1913 if (virt_dev->eps[ep_index].ring &&
1914 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1915 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1916 "without dropping it.\n",
1917 (unsigned int) ep->desc.bEndpointAddress);
1918 return -EINVAL;
1919 }
1920
1921 /* If the HCD has already noted the endpoint is enabled,
1922 * ignore this request.
1923 */
1924 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1925 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1926 __func__, ep);
1927 return 0;
1928 }
1929
1930 /*
1931 * Configuration and alternate setting changes must be done in
1932 * process context, not interrupt context (or so documenation
1933 * for usb_set_interface() and usb_set_configuration() claim).
1934 */
1935 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1936 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1937 __func__, ep->desc.bEndpointAddress);
1938 return -ENOMEM;
1939 }
1940
1941 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1942 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1943
1944 /* If xhci_endpoint_disable() was called for this endpoint, but the
1945 * xHC hasn't been notified yet through the check_bandwidth() call,
1946 * this re-adds a new state for the endpoint from the new endpoint
1947 * descriptors. We must drop and re-add this endpoint, so we leave the
1948 * drop flags alone.
1949 */
1950 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1951
1952 /* Store the usb_device pointer for later use */
1953 ep->hcpriv = udev;
1954
1955 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1956 trace_xhci_add_endpoint(ep_ctx);
1957
1958 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1959 (unsigned int) ep->desc.bEndpointAddress,
1960 udev->slot_id,
1961 (unsigned int) new_drop_flags,
1962 (unsigned int) new_add_flags);
1963 return 0;
1964 }
1965 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1966
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1967 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1968 {
1969 struct xhci_input_control_ctx *ctrl_ctx;
1970 struct xhci_ep_ctx *ep_ctx;
1971 struct xhci_slot_ctx *slot_ctx;
1972 int i;
1973
1974 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1975 if (!ctrl_ctx) {
1976 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1977 __func__);
1978 return;
1979 }
1980
1981 /* When a device's add flag and drop flag are zero, any subsequent
1982 * configure endpoint command will leave that endpoint's state
1983 * untouched. Make sure we don't leave any old state in the input
1984 * endpoint contexts.
1985 */
1986 ctrl_ctx->drop_flags = 0;
1987 ctrl_ctx->add_flags = 0;
1988 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1989 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1990 /* Endpoint 0 is always valid */
1991 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1992 for (i = 1; i < 31; i++) {
1993 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1994 ep_ctx->ep_info = 0;
1995 ep_ctx->ep_info2 = 0;
1996 ep_ctx->deq = 0;
1997 ep_ctx->tx_info = 0;
1998 }
1999 }
2000
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2001 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2002 struct usb_device *udev, u32 *cmd_status)
2003 {
2004 int ret;
2005
2006 switch (*cmd_status) {
2007 case COMP_COMMAND_ABORTED:
2008 case COMP_COMMAND_RING_STOPPED:
2009 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2010 ret = -ETIME;
2011 break;
2012 case COMP_RESOURCE_ERROR:
2013 dev_warn(&udev->dev,
2014 "Not enough host controller resources for new device state.\n");
2015 ret = -ENOMEM;
2016 /* FIXME: can we allocate more resources for the HC? */
2017 break;
2018 case COMP_BANDWIDTH_ERROR:
2019 case COMP_SECONDARY_BANDWIDTH_ERROR:
2020 dev_warn(&udev->dev,
2021 "Not enough bandwidth for new device state.\n");
2022 ret = -ENOSPC;
2023 /* FIXME: can we go back to the old state? */
2024 break;
2025 case COMP_TRB_ERROR:
2026 /* the HCD set up something wrong */
2027 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2028 "add flag = 1, "
2029 "and endpoint is not disabled.\n");
2030 ret = -EINVAL;
2031 break;
2032 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2033 dev_warn(&udev->dev,
2034 "ERROR: Incompatible device for endpoint configure command.\n");
2035 ret = -ENODEV;
2036 break;
2037 case COMP_SUCCESS:
2038 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2039 "Successful Endpoint Configure command");
2040 ret = 0;
2041 break;
2042 default:
2043 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2044 *cmd_status);
2045 ret = -EINVAL;
2046 break;
2047 }
2048 return ret;
2049 }
2050
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2051 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2052 struct usb_device *udev, u32 *cmd_status)
2053 {
2054 int ret;
2055
2056 switch (*cmd_status) {
2057 case COMP_COMMAND_ABORTED:
2058 case COMP_COMMAND_RING_STOPPED:
2059 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2060 ret = -ETIME;
2061 break;
2062 case COMP_PARAMETER_ERROR:
2063 dev_warn(&udev->dev,
2064 "WARN: xHCI driver setup invalid evaluate context command.\n");
2065 ret = -EINVAL;
2066 break;
2067 case COMP_SLOT_NOT_ENABLED_ERROR:
2068 dev_warn(&udev->dev,
2069 "WARN: slot not enabled for evaluate context command.\n");
2070 ret = -EINVAL;
2071 break;
2072 case COMP_CONTEXT_STATE_ERROR:
2073 dev_warn(&udev->dev,
2074 "WARN: invalid context state for evaluate context command.\n");
2075 ret = -EINVAL;
2076 break;
2077 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2078 dev_warn(&udev->dev,
2079 "ERROR: Incompatible device for evaluate context command.\n");
2080 ret = -ENODEV;
2081 break;
2082 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2083 /* Max Exit Latency too large error */
2084 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2085 ret = -EINVAL;
2086 break;
2087 case COMP_SUCCESS:
2088 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2089 "Successful evaluate context command");
2090 ret = 0;
2091 break;
2092 default:
2093 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2094 *cmd_status);
2095 ret = -EINVAL;
2096 break;
2097 }
2098 return ret;
2099 }
2100
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2101 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2102 struct xhci_input_control_ctx *ctrl_ctx)
2103 {
2104 u32 valid_add_flags;
2105 u32 valid_drop_flags;
2106
2107 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2108 * (bit 1). The default control endpoint is added during the Address
2109 * Device command and is never removed until the slot is disabled.
2110 */
2111 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2112 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2113
2114 /* Use hweight32 to count the number of ones in the add flags, or
2115 * number of endpoints added. Don't count endpoints that are changed
2116 * (both added and dropped).
2117 */
2118 return hweight32(valid_add_flags) -
2119 hweight32(valid_add_flags & valid_drop_flags);
2120 }
2121
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2122 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2123 struct xhci_input_control_ctx *ctrl_ctx)
2124 {
2125 u32 valid_add_flags;
2126 u32 valid_drop_flags;
2127
2128 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2129 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2130
2131 return hweight32(valid_drop_flags) -
2132 hweight32(valid_add_flags & valid_drop_flags);
2133 }
2134
2135 /*
2136 * We need to reserve the new number of endpoints before the configure endpoint
2137 * command completes. We can't subtract the dropped endpoints from the number
2138 * of active endpoints until the command completes because we can oversubscribe
2139 * the host in this case:
2140 *
2141 * - the first configure endpoint command drops more endpoints than it adds
2142 * - a second configure endpoint command that adds more endpoints is queued
2143 * - the first configure endpoint command fails, so the config is unchanged
2144 * - the second command may succeed, even though there isn't enough resources
2145 *
2146 * Must be called with xhci->lock held.
2147 */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2148 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2149 struct xhci_input_control_ctx *ctrl_ctx)
2150 {
2151 u32 added_eps;
2152
2153 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2154 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2155 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2156 "Not enough ep ctxs: "
2157 "%u active, need to add %u, limit is %u.",
2158 xhci->num_active_eps, added_eps,
2159 xhci->limit_active_eps);
2160 return -ENOMEM;
2161 }
2162 xhci->num_active_eps += added_eps;
2163 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2164 "Adding %u ep ctxs, %u now active.", added_eps,
2165 xhci->num_active_eps);
2166 return 0;
2167 }
2168
2169 /*
2170 * The configure endpoint was failed by the xHC for some other reason, so we
2171 * need to revert the resources that failed configuration would have used.
2172 *
2173 * Must be called with xhci->lock held.
2174 */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2175 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2176 struct xhci_input_control_ctx *ctrl_ctx)
2177 {
2178 u32 num_failed_eps;
2179
2180 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2181 xhci->num_active_eps -= num_failed_eps;
2182 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2183 "Removing %u failed ep ctxs, %u now active.",
2184 num_failed_eps,
2185 xhci->num_active_eps);
2186 }
2187
2188 /*
2189 * Now that the command has completed, clean up the active endpoint count by
2190 * subtracting out the endpoints that were dropped (but not changed).
2191 *
2192 * Must be called with xhci->lock held.
2193 */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2194 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2195 struct xhci_input_control_ctx *ctrl_ctx)
2196 {
2197 u32 num_dropped_eps;
2198
2199 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2200 xhci->num_active_eps -= num_dropped_eps;
2201 if (num_dropped_eps)
2202 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2203 "Removing %u dropped ep ctxs, %u now active.",
2204 num_dropped_eps,
2205 xhci->num_active_eps);
2206 }
2207
xhci_get_block_size(struct usb_device * udev)2208 static unsigned int xhci_get_block_size(struct usb_device *udev)
2209 {
2210 switch (udev->speed) {
2211 case USB_SPEED_LOW:
2212 case USB_SPEED_FULL:
2213 return FS_BLOCK;
2214 case USB_SPEED_HIGH:
2215 return HS_BLOCK;
2216 case USB_SPEED_SUPER:
2217 case USB_SPEED_SUPER_PLUS:
2218 return SS_BLOCK;
2219 case USB_SPEED_UNKNOWN:
2220 case USB_SPEED_WIRELESS:
2221 default:
2222 /* Should never happen */
2223 return 1;
2224 }
2225 }
2226
2227 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2228 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2229 {
2230 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2231 return LS_OVERHEAD;
2232 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2233 return FS_OVERHEAD;
2234 return HS_OVERHEAD;
2235 }
2236
2237 /* If we are changing a LS/FS device under a HS hub,
2238 * make sure (if we are activating a new TT) that the HS bus has enough
2239 * bandwidth for this new TT.
2240 */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2241 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2242 struct xhci_virt_device *virt_dev,
2243 int old_active_eps)
2244 {
2245 struct xhci_interval_bw_table *bw_table;
2246 struct xhci_tt_bw_info *tt_info;
2247
2248 /* Find the bandwidth table for the root port this TT is attached to. */
2249 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2250 tt_info = virt_dev->tt_info;
2251 /* If this TT already had active endpoints, the bandwidth for this TT
2252 * has already been added. Removing all periodic endpoints (and thus
2253 * making the TT enactive) will only decrease the bandwidth used.
2254 */
2255 if (old_active_eps)
2256 return 0;
2257 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2258 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2259 return -ENOMEM;
2260 return 0;
2261 }
2262 /* Not sure why we would have no new active endpoints...
2263 *
2264 * Maybe because of an Evaluate Context change for a hub update or a
2265 * control endpoint 0 max packet size change?
2266 * FIXME: skip the bandwidth calculation in that case.
2267 */
2268 return 0;
2269 }
2270
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2271 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2272 struct xhci_virt_device *virt_dev)
2273 {
2274 unsigned int bw_reserved;
2275
2276 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2277 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2278 return -ENOMEM;
2279
2280 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2281 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2282 return -ENOMEM;
2283
2284 return 0;
2285 }
2286
2287 /*
2288 * This algorithm is a very conservative estimate of the worst-case scheduling
2289 * scenario for any one interval. The hardware dynamically schedules the
2290 * packets, so we can't tell which microframe could be the limiting factor in
2291 * the bandwidth scheduling. This only takes into account periodic endpoints.
2292 *
2293 * Obviously, we can't solve an NP complete problem to find the minimum worst
2294 * case scenario. Instead, we come up with an estimate that is no less than
2295 * the worst case bandwidth used for any one microframe, but may be an
2296 * over-estimate.
2297 *
2298 * We walk the requirements for each endpoint by interval, starting with the
2299 * smallest interval, and place packets in the schedule where there is only one
2300 * possible way to schedule packets for that interval. In order to simplify
2301 * this algorithm, we record the largest max packet size for each interval, and
2302 * assume all packets will be that size.
2303 *
2304 * For interval 0, we obviously must schedule all packets for each interval.
2305 * The bandwidth for interval 0 is just the amount of data to be transmitted
2306 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2307 * the number of packets).
2308 *
2309 * For interval 1, we have two possible microframes to schedule those packets
2310 * in. For this algorithm, if we can schedule the same number of packets for
2311 * each possible scheduling opportunity (each microframe), we will do so. The
2312 * remaining number of packets will be saved to be transmitted in the gaps in
2313 * the next interval's scheduling sequence.
2314 *
2315 * As we move those remaining packets to be scheduled with interval 2 packets,
2316 * we have to double the number of remaining packets to transmit. This is
2317 * because the intervals are actually powers of 2, and we would be transmitting
2318 * the previous interval's packets twice in this interval. We also have to be
2319 * sure that when we look at the largest max packet size for this interval, we
2320 * also look at the largest max packet size for the remaining packets and take
2321 * the greater of the two.
2322 *
2323 * The algorithm continues to evenly distribute packets in each scheduling
2324 * opportunity, and push the remaining packets out, until we get to the last
2325 * interval. Then those packets and their associated overhead are just added
2326 * to the bandwidth used.
2327 */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2328 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2329 struct xhci_virt_device *virt_dev,
2330 int old_active_eps)
2331 {
2332 unsigned int bw_reserved;
2333 unsigned int max_bandwidth;
2334 unsigned int bw_used;
2335 unsigned int block_size;
2336 struct xhci_interval_bw_table *bw_table;
2337 unsigned int packet_size = 0;
2338 unsigned int overhead = 0;
2339 unsigned int packets_transmitted = 0;
2340 unsigned int packets_remaining = 0;
2341 unsigned int i;
2342
2343 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2344 return xhci_check_ss_bw(xhci, virt_dev);
2345
2346 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2347 max_bandwidth = HS_BW_LIMIT;
2348 /* Convert percent of bus BW reserved to blocks reserved */
2349 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2350 } else {
2351 max_bandwidth = FS_BW_LIMIT;
2352 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2353 }
2354
2355 bw_table = virt_dev->bw_table;
2356 /* We need to translate the max packet size and max ESIT payloads into
2357 * the units the hardware uses.
2358 */
2359 block_size = xhci_get_block_size(virt_dev->udev);
2360
2361 /* If we are manipulating a LS/FS device under a HS hub, double check
2362 * that the HS bus has enough bandwidth if we are activing a new TT.
2363 */
2364 if (virt_dev->tt_info) {
2365 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2366 "Recalculating BW for rootport %u",
2367 virt_dev->real_port);
2368 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2369 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2370 "newly activated TT.\n");
2371 return -ENOMEM;
2372 }
2373 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2374 "Recalculating BW for TT slot %u port %u",
2375 virt_dev->tt_info->slot_id,
2376 virt_dev->tt_info->ttport);
2377 } else {
2378 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2379 "Recalculating BW for rootport %u",
2380 virt_dev->real_port);
2381 }
2382
2383 /* Add in how much bandwidth will be used for interval zero, or the
2384 * rounded max ESIT payload + number of packets * largest overhead.
2385 */
2386 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2387 bw_table->interval_bw[0].num_packets *
2388 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2389
2390 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2391 unsigned int bw_added;
2392 unsigned int largest_mps;
2393 unsigned int interval_overhead;
2394
2395 /*
2396 * How many packets could we transmit in this interval?
2397 * If packets didn't fit in the previous interval, we will need
2398 * to transmit that many packets twice within this interval.
2399 */
2400 packets_remaining = 2 * packets_remaining +
2401 bw_table->interval_bw[i].num_packets;
2402
2403 /* Find the largest max packet size of this or the previous
2404 * interval.
2405 */
2406 if (list_empty(&bw_table->interval_bw[i].endpoints))
2407 largest_mps = 0;
2408 else {
2409 struct xhci_virt_ep *virt_ep;
2410 struct list_head *ep_entry;
2411
2412 ep_entry = bw_table->interval_bw[i].endpoints.next;
2413 virt_ep = list_entry(ep_entry,
2414 struct xhci_virt_ep, bw_endpoint_list);
2415 /* Convert to blocks, rounding up */
2416 largest_mps = DIV_ROUND_UP(
2417 virt_ep->bw_info.max_packet_size,
2418 block_size);
2419 }
2420 if (largest_mps > packet_size)
2421 packet_size = largest_mps;
2422
2423 /* Use the larger overhead of this or the previous interval. */
2424 interval_overhead = xhci_get_largest_overhead(
2425 &bw_table->interval_bw[i]);
2426 if (interval_overhead > overhead)
2427 overhead = interval_overhead;
2428
2429 /* How many packets can we evenly distribute across
2430 * (1 << (i + 1)) possible scheduling opportunities?
2431 */
2432 packets_transmitted = packets_remaining >> (i + 1);
2433
2434 /* Add in the bandwidth used for those scheduled packets */
2435 bw_added = packets_transmitted * (overhead + packet_size);
2436
2437 /* How many packets do we have remaining to transmit? */
2438 packets_remaining = packets_remaining % (1 << (i + 1));
2439
2440 /* What largest max packet size should those packets have? */
2441 /* If we've transmitted all packets, don't carry over the
2442 * largest packet size.
2443 */
2444 if (packets_remaining == 0) {
2445 packet_size = 0;
2446 overhead = 0;
2447 } else if (packets_transmitted > 0) {
2448 /* Otherwise if we do have remaining packets, and we've
2449 * scheduled some packets in this interval, take the
2450 * largest max packet size from endpoints with this
2451 * interval.
2452 */
2453 packet_size = largest_mps;
2454 overhead = interval_overhead;
2455 }
2456 /* Otherwise carry over packet_size and overhead from the last
2457 * time we had a remainder.
2458 */
2459 bw_used += bw_added;
2460 if (bw_used > max_bandwidth) {
2461 xhci_warn(xhci, "Not enough bandwidth. "
2462 "Proposed: %u, Max: %u\n",
2463 bw_used, max_bandwidth);
2464 return -ENOMEM;
2465 }
2466 }
2467 /*
2468 * Ok, we know we have some packets left over after even-handedly
2469 * scheduling interval 15. We don't know which microframes they will
2470 * fit into, so we over-schedule and say they will be scheduled every
2471 * microframe.
2472 */
2473 if (packets_remaining > 0)
2474 bw_used += overhead + packet_size;
2475
2476 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2477 unsigned int port_index = virt_dev->real_port - 1;
2478
2479 /* OK, we're manipulating a HS device attached to a
2480 * root port bandwidth domain. Include the number of active TTs
2481 * in the bandwidth used.
2482 */
2483 bw_used += TT_HS_OVERHEAD *
2484 xhci->rh_bw[port_index].num_active_tts;
2485 }
2486
2487 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2488 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2489 "Available: %u " "percent",
2490 bw_used, max_bandwidth, bw_reserved,
2491 (max_bandwidth - bw_used - bw_reserved) * 100 /
2492 max_bandwidth);
2493
2494 bw_used += bw_reserved;
2495 if (bw_used > max_bandwidth) {
2496 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2497 bw_used, max_bandwidth);
2498 return -ENOMEM;
2499 }
2500
2501 bw_table->bw_used = bw_used;
2502 return 0;
2503 }
2504
xhci_is_async_ep(unsigned int ep_type)2505 static bool xhci_is_async_ep(unsigned int ep_type)
2506 {
2507 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2508 ep_type != ISOC_IN_EP &&
2509 ep_type != INT_IN_EP);
2510 }
2511
xhci_is_sync_in_ep(unsigned int ep_type)2512 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2513 {
2514 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2515 }
2516
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2517 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2518 {
2519 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2520
2521 if (ep_bw->ep_interval == 0)
2522 return SS_OVERHEAD_BURST +
2523 (ep_bw->mult * ep_bw->num_packets *
2524 (SS_OVERHEAD + mps));
2525 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2526 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2527 1 << ep_bw->ep_interval);
2528
2529 }
2530
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2531 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2532 struct xhci_bw_info *ep_bw,
2533 struct xhci_interval_bw_table *bw_table,
2534 struct usb_device *udev,
2535 struct xhci_virt_ep *virt_ep,
2536 struct xhci_tt_bw_info *tt_info)
2537 {
2538 struct xhci_interval_bw *interval_bw;
2539 int normalized_interval;
2540
2541 if (xhci_is_async_ep(ep_bw->type))
2542 return;
2543
2544 if (udev->speed >= USB_SPEED_SUPER) {
2545 if (xhci_is_sync_in_ep(ep_bw->type))
2546 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2547 xhci_get_ss_bw_consumed(ep_bw);
2548 else
2549 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2550 xhci_get_ss_bw_consumed(ep_bw);
2551 return;
2552 }
2553
2554 /* SuperSpeed endpoints never get added to intervals in the table, so
2555 * this check is only valid for HS/FS/LS devices.
2556 */
2557 if (list_empty(&virt_ep->bw_endpoint_list))
2558 return;
2559 /* For LS/FS devices, we need to translate the interval expressed in
2560 * microframes to frames.
2561 */
2562 if (udev->speed == USB_SPEED_HIGH)
2563 normalized_interval = ep_bw->ep_interval;
2564 else
2565 normalized_interval = ep_bw->ep_interval - 3;
2566
2567 if (normalized_interval == 0)
2568 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2569 interval_bw = &bw_table->interval_bw[normalized_interval];
2570 interval_bw->num_packets -= ep_bw->num_packets;
2571 switch (udev->speed) {
2572 case USB_SPEED_LOW:
2573 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2574 break;
2575 case USB_SPEED_FULL:
2576 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2577 break;
2578 case USB_SPEED_HIGH:
2579 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2580 break;
2581 case USB_SPEED_SUPER:
2582 case USB_SPEED_SUPER_PLUS:
2583 case USB_SPEED_UNKNOWN:
2584 case USB_SPEED_WIRELESS:
2585 /* Should never happen because only LS/FS/HS endpoints will get
2586 * added to the endpoint list.
2587 */
2588 return;
2589 }
2590 if (tt_info)
2591 tt_info->active_eps -= 1;
2592 list_del_init(&virt_ep->bw_endpoint_list);
2593 }
2594
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2595 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2596 struct xhci_bw_info *ep_bw,
2597 struct xhci_interval_bw_table *bw_table,
2598 struct usb_device *udev,
2599 struct xhci_virt_ep *virt_ep,
2600 struct xhci_tt_bw_info *tt_info)
2601 {
2602 struct xhci_interval_bw *interval_bw;
2603 struct xhci_virt_ep *smaller_ep;
2604 int normalized_interval;
2605
2606 if (xhci_is_async_ep(ep_bw->type))
2607 return;
2608
2609 if (udev->speed == USB_SPEED_SUPER) {
2610 if (xhci_is_sync_in_ep(ep_bw->type))
2611 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2612 xhci_get_ss_bw_consumed(ep_bw);
2613 else
2614 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2615 xhci_get_ss_bw_consumed(ep_bw);
2616 return;
2617 }
2618
2619 /* For LS/FS devices, we need to translate the interval expressed in
2620 * microframes to frames.
2621 */
2622 if (udev->speed == USB_SPEED_HIGH)
2623 normalized_interval = ep_bw->ep_interval;
2624 else
2625 normalized_interval = ep_bw->ep_interval - 3;
2626
2627 if (normalized_interval == 0)
2628 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2629 interval_bw = &bw_table->interval_bw[normalized_interval];
2630 interval_bw->num_packets += ep_bw->num_packets;
2631 switch (udev->speed) {
2632 case USB_SPEED_LOW:
2633 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2634 break;
2635 case USB_SPEED_FULL:
2636 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2637 break;
2638 case USB_SPEED_HIGH:
2639 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2640 break;
2641 case USB_SPEED_SUPER:
2642 case USB_SPEED_SUPER_PLUS:
2643 case USB_SPEED_UNKNOWN:
2644 case USB_SPEED_WIRELESS:
2645 /* Should never happen because only LS/FS/HS endpoints will get
2646 * added to the endpoint list.
2647 */
2648 return;
2649 }
2650
2651 if (tt_info)
2652 tt_info->active_eps += 1;
2653 /* Insert the endpoint into the list, largest max packet size first. */
2654 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2655 bw_endpoint_list) {
2656 if (ep_bw->max_packet_size >=
2657 smaller_ep->bw_info.max_packet_size) {
2658 /* Add the new ep before the smaller endpoint */
2659 list_add_tail(&virt_ep->bw_endpoint_list,
2660 &smaller_ep->bw_endpoint_list);
2661 return;
2662 }
2663 }
2664 /* Add the new endpoint at the end of the list. */
2665 list_add_tail(&virt_ep->bw_endpoint_list,
2666 &interval_bw->endpoints);
2667 }
2668
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2669 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2670 struct xhci_virt_device *virt_dev,
2671 int old_active_eps)
2672 {
2673 struct xhci_root_port_bw_info *rh_bw_info;
2674 if (!virt_dev->tt_info)
2675 return;
2676
2677 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2678 if (old_active_eps == 0 &&
2679 virt_dev->tt_info->active_eps != 0) {
2680 rh_bw_info->num_active_tts += 1;
2681 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2682 } else if (old_active_eps != 0 &&
2683 virt_dev->tt_info->active_eps == 0) {
2684 rh_bw_info->num_active_tts -= 1;
2685 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2686 }
2687 }
2688
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2689 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2690 struct xhci_virt_device *virt_dev,
2691 struct xhci_container_ctx *in_ctx)
2692 {
2693 struct xhci_bw_info ep_bw_info[31];
2694 int i;
2695 struct xhci_input_control_ctx *ctrl_ctx;
2696 int old_active_eps = 0;
2697
2698 if (virt_dev->tt_info)
2699 old_active_eps = virt_dev->tt_info->active_eps;
2700
2701 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2702 if (!ctrl_ctx) {
2703 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2704 __func__);
2705 return -ENOMEM;
2706 }
2707
2708 for (i = 0; i < 31; i++) {
2709 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2710 continue;
2711
2712 /* Make a copy of the BW info in case we need to revert this */
2713 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2714 sizeof(ep_bw_info[i]));
2715 /* Drop the endpoint from the interval table if the endpoint is
2716 * being dropped or changed.
2717 */
2718 if (EP_IS_DROPPED(ctrl_ctx, i))
2719 xhci_drop_ep_from_interval_table(xhci,
2720 &virt_dev->eps[i].bw_info,
2721 virt_dev->bw_table,
2722 virt_dev->udev,
2723 &virt_dev->eps[i],
2724 virt_dev->tt_info);
2725 }
2726 /* Overwrite the information stored in the endpoints' bw_info */
2727 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2728 for (i = 0; i < 31; i++) {
2729 /* Add any changed or added endpoints to the interval table */
2730 if (EP_IS_ADDED(ctrl_ctx, i))
2731 xhci_add_ep_to_interval_table(xhci,
2732 &virt_dev->eps[i].bw_info,
2733 virt_dev->bw_table,
2734 virt_dev->udev,
2735 &virt_dev->eps[i],
2736 virt_dev->tt_info);
2737 }
2738
2739 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2740 /* Ok, this fits in the bandwidth we have.
2741 * Update the number of active TTs.
2742 */
2743 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2744 return 0;
2745 }
2746
2747 /* We don't have enough bandwidth for this, revert the stored info. */
2748 for (i = 0; i < 31; i++) {
2749 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2750 continue;
2751
2752 /* Drop the new copies of any added or changed endpoints from
2753 * the interval table.
2754 */
2755 if (EP_IS_ADDED(ctrl_ctx, i)) {
2756 xhci_drop_ep_from_interval_table(xhci,
2757 &virt_dev->eps[i].bw_info,
2758 virt_dev->bw_table,
2759 virt_dev->udev,
2760 &virt_dev->eps[i],
2761 virt_dev->tt_info);
2762 }
2763 /* Revert the endpoint back to its old information */
2764 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2765 sizeof(ep_bw_info[i]));
2766 /* Add any changed or dropped endpoints back into the table */
2767 if (EP_IS_DROPPED(ctrl_ctx, i))
2768 xhci_add_ep_to_interval_table(xhci,
2769 &virt_dev->eps[i].bw_info,
2770 virt_dev->bw_table,
2771 virt_dev->udev,
2772 &virt_dev->eps[i],
2773 virt_dev->tt_info);
2774 }
2775 return -ENOMEM;
2776 }
2777
2778
2779 /* Issue a configure endpoint command or evaluate context command
2780 * and wait for it to finish.
2781 */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2782 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2783 struct usb_device *udev,
2784 struct xhci_command *command,
2785 bool ctx_change, bool must_succeed)
2786 {
2787 int ret;
2788 unsigned long flags;
2789 struct xhci_input_control_ctx *ctrl_ctx;
2790 struct xhci_virt_device *virt_dev;
2791 struct xhci_slot_ctx *slot_ctx;
2792
2793 if (!command)
2794 return -EINVAL;
2795
2796 spin_lock_irqsave(&xhci->lock, flags);
2797
2798 if (xhci->xhc_state & XHCI_STATE_DYING) {
2799 spin_unlock_irqrestore(&xhci->lock, flags);
2800 return -ESHUTDOWN;
2801 }
2802
2803 virt_dev = xhci->devs[udev->slot_id];
2804
2805 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2806 if (!ctrl_ctx) {
2807 spin_unlock_irqrestore(&xhci->lock, flags);
2808 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2809 __func__);
2810 return -ENOMEM;
2811 }
2812
2813 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2814 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2815 spin_unlock_irqrestore(&xhci->lock, flags);
2816 xhci_warn(xhci, "Not enough host resources, "
2817 "active endpoint contexts = %u\n",
2818 xhci->num_active_eps);
2819 return -ENOMEM;
2820 }
2821 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2822 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2823 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2824 xhci_free_host_resources(xhci, ctrl_ctx);
2825 spin_unlock_irqrestore(&xhci->lock, flags);
2826 xhci_warn(xhci, "Not enough bandwidth\n");
2827 return -ENOMEM;
2828 }
2829
2830 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2831
2832 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2833 trace_xhci_configure_endpoint(slot_ctx);
2834
2835 if (!ctx_change)
2836 ret = xhci_queue_configure_endpoint(xhci, command,
2837 command->in_ctx->dma,
2838 udev->slot_id, must_succeed);
2839 else
2840 ret = xhci_queue_evaluate_context(xhci, command,
2841 command->in_ctx->dma,
2842 udev->slot_id, must_succeed);
2843 if (ret < 0) {
2844 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2845 xhci_free_host_resources(xhci, ctrl_ctx);
2846 spin_unlock_irqrestore(&xhci->lock, flags);
2847 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2848 "FIXME allocate a new ring segment");
2849 return -ENOMEM;
2850 }
2851 xhci_ring_cmd_db(xhci);
2852 spin_unlock_irqrestore(&xhci->lock, flags);
2853
2854 /* Wait for the configure endpoint command to complete */
2855 wait_for_completion(command->completion);
2856
2857 if (!ctx_change)
2858 ret = xhci_configure_endpoint_result(xhci, udev,
2859 &command->status);
2860 else
2861 ret = xhci_evaluate_context_result(xhci, udev,
2862 &command->status);
2863
2864 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2865 spin_lock_irqsave(&xhci->lock, flags);
2866 /* If the command failed, remove the reserved resources.
2867 * Otherwise, clean up the estimate to include dropped eps.
2868 */
2869 if (ret)
2870 xhci_free_host_resources(xhci, ctrl_ctx);
2871 else
2872 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2873 spin_unlock_irqrestore(&xhci->lock, flags);
2874 }
2875 if (ret)
2876 goto failed;
2877
2878 ret = xhci_vendor_sync_dev_ctx(xhci, udev->slot_id);
2879 if (ret)
2880 xhci_warn(xhci, "sync device context failed, ret=%d", ret);
2881
2882 failed:
2883 return ret;
2884 }
2885
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2886 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2887 struct xhci_virt_device *vdev, int i)
2888 {
2889 struct xhci_virt_ep *ep = &vdev->eps[i];
2890
2891 if (ep->ep_state & EP_HAS_STREAMS) {
2892 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2893 xhci_get_endpoint_address(i));
2894 xhci_free_stream_info(xhci, ep->stream_info);
2895 ep->stream_info = NULL;
2896 ep->ep_state &= ~EP_HAS_STREAMS;
2897 }
2898 }
2899
2900 /* Called after one or more calls to xhci_add_endpoint() or
2901 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2902 * to call xhci_reset_bandwidth().
2903 *
2904 * Since we are in the middle of changing either configuration or
2905 * installing a new alt setting, the USB core won't allow URBs to be
2906 * enqueued for any endpoint on the old config or interface. Nothing
2907 * else should be touching the xhci->devs[slot_id] structure, so we
2908 * don't need to take the xhci->lock for manipulating that.
2909 */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2910 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2911 {
2912 int i;
2913 int ret = 0;
2914 struct xhci_hcd *xhci;
2915 struct xhci_virt_device *virt_dev;
2916 struct xhci_input_control_ctx *ctrl_ctx;
2917 struct xhci_slot_ctx *slot_ctx;
2918 struct xhci_command *command;
2919
2920 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2921 if (ret <= 0)
2922 return ret;
2923 xhci = hcd_to_xhci(hcd);
2924 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2925 (xhci->xhc_state & XHCI_STATE_REMOVING))
2926 return -ENODEV;
2927
2928 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2929 virt_dev = xhci->devs[udev->slot_id];
2930
2931 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2932 if (!command)
2933 return -ENOMEM;
2934
2935 command->in_ctx = virt_dev->in_ctx;
2936
2937 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2938 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2939 if (!ctrl_ctx) {
2940 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2941 __func__);
2942 ret = -ENOMEM;
2943 goto command_cleanup;
2944 }
2945 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2946 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2947 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2948
2949 /* Don't issue the command if there's no endpoints to update. */
2950 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2951 ctrl_ctx->drop_flags == 0) {
2952 ret = 0;
2953 goto command_cleanup;
2954 }
2955 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2956 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2957 for (i = 31; i >= 1; i--) {
2958 __le32 le32 = cpu_to_le32(BIT(i));
2959
2960 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2961 || (ctrl_ctx->add_flags & le32) || i == 1) {
2962 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2963 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2964 break;
2965 }
2966 }
2967
2968 ret = xhci_configure_endpoint(xhci, udev, command,
2969 false, false);
2970 if (ret)
2971 /* Callee should call reset_bandwidth() */
2972 goto command_cleanup;
2973
2974 /* Free any rings that were dropped, but not changed. */
2975 for (i = 1; i < 31; i++) {
2976 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2977 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2978 xhci_free_endpoint_ring(xhci, virt_dev, i);
2979 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2980 }
2981 }
2982 xhci_zero_in_ctx(xhci, virt_dev);
2983 /*
2984 * Install any rings for completely new endpoints or changed endpoints,
2985 * and free any old rings from changed endpoints.
2986 */
2987 for (i = 1; i < 31; i++) {
2988 if (!virt_dev->eps[i].new_ring)
2989 continue;
2990 /* Only free the old ring if it exists.
2991 * It may not if this is the first add of an endpoint.
2992 */
2993 if (virt_dev->eps[i].ring) {
2994 xhci_free_endpoint_ring(xhci, virt_dev, i);
2995 }
2996 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2997 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2998 virt_dev->eps[i].new_ring = NULL;
2999 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3000 }
3001 command_cleanup:
3002 kfree(command->completion);
3003 kfree(command);
3004
3005 return ret;
3006 }
3007 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3008
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3009 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3010 {
3011 struct xhci_hcd *xhci;
3012 struct xhci_virt_device *virt_dev;
3013 int i, ret;
3014
3015 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3016 if (ret <= 0)
3017 return;
3018 xhci = hcd_to_xhci(hcd);
3019
3020 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3021 virt_dev = xhci->devs[udev->slot_id];
3022 /* Free any rings allocated for added endpoints */
3023 for (i = 0; i < 31; i++) {
3024 if (virt_dev->eps[i].new_ring) {
3025 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3026 if (xhci_vendor_is_usb_offload_enabled(xhci, virt_dev, i))
3027 xhci_vendor_free_transfer_ring(xhci, virt_dev, i);
3028 else
3029 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3030
3031 virt_dev->eps[i].new_ring = NULL;
3032 }
3033 }
3034 xhci_zero_in_ctx(xhci, virt_dev);
3035 }
3036 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3037
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3038 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3039 struct xhci_container_ctx *in_ctx,
3040 struct xhci_container_ctx *out_ctx,
3041 struct xhci_input_control_ctx *ctrl_ctx,
3042 u32 add_flags, u32 drop_flags)
3043 {
3044 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3045 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3046 xhci_slot_copy(xhci, in_ctx, out_ctx);
3047 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3048 }
3049
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3050 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3051 struct usb_host_endpoint *host_ep)
3052 {
3053 struct xhci_hcd *xhci;
3054 struct xhci_virt_device *vdev;
3055 struct xhci_virt_ep *ep;
3056 struct usb_device *udev;
3057 unsigned long flags;
3058 unsigned int ep_index;
3059
3060 xhci = hcd_to_xhci(hcd);
3061 rescan:
3062 spin_lock_irqsave(&xhci->lock, flags);
3063
3064 udev = (struct usb_device *)host_ep->hcpriv;
3065 if (!udev || !udev->slot_id)
3066 goto done;
3067
3068 vdev = xhci->devs[udev->slot_id];
3069 if (!vdev)
3070 goto done;
3071
3072 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3073 ep = &vdev->eps[ep_index];
3074 if (!ep)
3075 goto done;
3076
3077 /* wait for hub_tt_work to finish clearing hub TT */
3078 if (ep->ep_state & EP_CLEARING_TT) {
3079 spin_unlock_irqrestore(&xhci->lock, flags);
3080 schedule_timeout_uninterruptible(1);
3081 goto rescan;
3082 }
3083
3084 if (ep->ep_state)
3085 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3086 ep->ep_state);
3087 done:
3088 host_ep->hcpriv = NULL;
3089 spin_unlock_irqrestore(&xhci->lock, flags);
3090 }
3091
3092 /*
3093 * Called after usb core issues a clear halt control message.
3094 * The host side of the halt should already be cleared by a reset endpoint
3095 * command issued when the STALL event was received.
3096 *
3097 * The reset endpoint command may only be issued to endpoints in the halted
3098 * state. For software that wishes to reset the data toggle or sequence number
3099 * of an endpoint that isn't in the halted state this function will issue a
3100 * configure endpoint command with the Drop and Add bits set for the target
3101 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3102 */
3103
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3104 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3105 struct usb_host_endpoint *host_ep)
3106 {
3107 struct xhci_hcd *xhci;
3108 struct usb_device *udev;
3109 struct xhci_virt_device *vdev;
3110 struct xhci_virt_ep *ep;
3111 struct xhci_input_control_ctx *ctrl_ctx;
3112 struct xhci_command *stop_cmd, *cfg_cmd;
3113 unsigned int ep_index;
3114 unsigned long flags;
3115 u32 ep_flag;
3116 int err;
3117
3118 xhci = hcd_to_xhci(hcd);
3119 if (!host_ep->hcpriv)
3120 return;
3121 udev = (struct usb_device *) host_ep->hcpriv;
3122 vdev = xhci->devs[udev->slot_id];
3123
3124 /*
3125 * vdev may be lost due to xHC restore error and re-initialization
3126 * during S3/S4 resume. A new vdev will be allocated later by
3127 * xhci_discover_or_reset_device()
3128 */
3129 if (!udev->slot_id || !vdev)
3130 return;
3131 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3132 ep = &vdev->eps[ep_index];
3133 if (!ep)
3134 return;
3135
3136 /* Bail out if toggle is already being cleared by a endpoint reset */
3137 spin_lock_irqsave(&xhci->lock, flags);
3138 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3139 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3140 spin_unlock_irqrestore(&xhci->lock, flags);
3141 return;
3142 }
3143 spin_unlock_irqrestore(&xhci->lock, flags);
3144 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3145 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3146 usb_endpoint_xfer_isoc(&host_ep->desc))
3147 return;
3148
3149 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3150
3151 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3152 return;
3153
3154 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3155 if (!stop_cmd)
3156 return;
3157
3158 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3159 if (!cfg_cmd)
3160 goto cleanup;
3161
3162 spin_lock_irqsave(&xhci->lock, flags);
3163
3164 /* block queuing new trbs and ringing ep doorbell */
3165 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3166
3167 /*
3168 * Make sure endpoint ring is empty before resetting the toggle/seq.
3169 * Driver is required to synchronously cancel all transfer request.
3170 * Stop the endpoint to force xHC to update the output context
3171 */
3172
3173 if (!list_empty(&ep->ring->td_list)) {
3174 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3175 spin_unlock_irqrestore(&xhci->lock, flags);
3176 xhci_free_command(xhci, cfg_cmd);
3177 goto cleanup;
3178 }
3179
3180 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3181 ep_index, 0);
3182 if (err < 0) {
3183 spin_unlock_irqrestore(&xhci->lock, flags);
3184 xhci_free_command(xhci, cfg_cmd);
3185 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3186 __func__, err);
3187 goto cleanup;
3188 }
3189
3190 xhci_ring_cmd_db(xhci);
3191 spin_unlock_irqrestore(&xhci->lock, flags);
3192
3193 wait_for_completion(stop_cmd->completion);
3194
3195 err = xhci_vendor_sync_dev_ctx(xhci, udev->slot_id);
3196 if (err) {
3197 xhci_warn(xhci, "%s: Failed to sync device context failed, err=%d",
3198 __func__, err);
3199 goto cleanup;
3200 }
3201
3202 spin_lock_irqsave(&xhci->lock, flags);
3203
3204 /* config ep command clears toggle if add and drop ep flags are set */
3205 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3206 if (!ctrl_ctx) {
3207 spin_unlock_irqrestore(&xhci->lock, flags);
3208 xhci_free_command(xhci, cfg_cmd);
3209 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3210 __func__);
3211 goto cleanup;
3212 }
3213
3214 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3215 ctrl_ctx, ep_flag, ep_flag);
3216 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3217
3218 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3219 udev->slot_id, false);
3220 if (err < 0) {
3221 spin_unlock_irqrestore(&xhci->lock, flags);
3222 xhci_free_command(xhci, cfg_cmd);
3223 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3224 __func__, err);
3225 goto cleanup;
3226 }
3227
3228 xhci_ring_cmd_db(xhci);
3229 spin_unlock_irqrestore(&xhci->lock, flags);
3230
3231 wait_for_completion(cfg_cmd->completion);
3232
3233 err = xhci_vendor_sync_dev_ctx(xhci, udev->slot_id);
3234 if (err)
3235 xhci_warn(xhci, "%s: Failed to sync device context failed, err=%d",
3236 __func__, err);
3237
3238 xhci_free_command(xhci, cfg_cmd);
3239 cleanup:
3240 xhci_free_command(xhci, stop_cmd);
3241 spin_lock_irqsave(&xhci->lock, flags);
3242 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3243 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3244 spin_unlock_irqrestore(&xhci->lock, flags);
3245 }
3246
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3247 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3248 struct usb_device *udev, struct usb_host_endpoint *ep,
3249 unsigned int slot_id)
3250 {
3251 int ret;
3252 unsigned int ep_index;
3253 unsigned int ep_state;
3254
3255 if (!ep)
3256 return -EINVAL;
3257 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3258 if (ret <= 0)
3259 return ret ? ret : -EINVAL;
3260 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3261 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3262 " descriptor for ep 0x%x does not support streams\n",
3263 ep->desc.bEndpointAddress);
3264 return -EINVAL;
3265 }
3266
3267 ep_index = xhci_get_endpoint_index(&ep->desc);
3268 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3269 if (ep_state & EP_HAS_STREAMS ||
3270 ep_state & EP_GETTING_STREAMS) {
3271 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3272 "already has streams set up.\n",
3273 ep->desc.bEndpointAddress);
3274 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3275 "dynamic stream context array reallocation.\n");
3276 return -EINVAL;
3277 }
3278 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3279 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3280 "endpoint 0x%x; URBs are pending.\n",
3281 ep->desc.bEndpointAddress);
3282 return -EINVAL;
3283 }
3284 return 0;
3285 }
3286
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3287 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3288 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3289 {
3290 unsigned int max_streams;
3291
3292 /* The stream context array size must be a power of two */
3293 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3294 /*
3295 * Find out how many primary stream array entries the host controller
3296 * supports. Later we may use secondary stream arrays (similar to 2nd
3297 * level page entries), but that's an optional feature for xHCI host
3298 * controllers. xHCs must support at least 4 stream IDs.
3299 */
3300 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3301 if (*num_stream_ctxs > max_streams) {
3302 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3303 max_streams);
3304 *num_stream_ctxs = max_streams;
3305 *num_streams = max_streams;
3306 }
3307 }
3308
3309 /* Returns an error code if one of the endpoint already has streams.
3310 * This does not change any data structures, it only checks and gathers
3311 * information.
3312 */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3313 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3314 struct usb_device *udev,
3315 struct usb_host_endpoint **eps, unsigned int num_eps,
3316 unsigned int *num_streams, u32 *changed_ep_bitmask)
3317 {
3318 unsigned int max_streams;
3319 unsigned int endpoint_flag;
3320 int i;
3321 int ret;
3322
3323 for (i = 0; i < num_eps; i++) {
3324 ret = xhci_check_streams_endpoint(xhci, udev,
3325 eps[i], udev->slot_id);
3326 if (ret < 0)
3327 return ret;
3328
3329 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3330 if (max_streams < (*num_streams - 1)) {
3331 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3332 eps[i]->desc.bEndpointAddress,
3333 max_streams);
3334 *num_streams = max_streams+1;
3335 }
3336
3337 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3338 if (*changed_ep_bitmask & endpoint_flag)
3339 return -EINVAL;
3340 *changed_ep_bitmask |= endpoint_flag;
3341 }
3342 return 0;
3343 }
3344
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3345 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3346 struct usb_device *udev,
3347 struct usb_host_endpoint **eps, unsigned int num_eps)
3348 {
3349 u32 changed_ep_bitmask = 0;
3350 unsigned int slot_id;
3351 unsigned int ep_index;
3352 unsigned int ep_state;
3353 int i;
3354
3355 slot_id = udev->slot_id;
3356 if (!xhci->devs[slot_id])
3357 return 0;
3358
3359 for (i = 0; i < num_eps; i++) {
3360 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3361 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3362 /* Are streams already being freed for the endpoint? */
3363 if (ep_state & EP_GETTING_NO_STREAMS) {
3364 xhci_warn(xhci, "WARN Can't disable streams for "
3365 "endpoint 0x%x, "
3366 "streams are being disabled already\n",
3367 eps[i]->desc.bEndpointAddress);
3368 return 0;
3369 }
3370 /* Are there actually any streams to free? */
3371 if (!(ep_state & EP_HAS_STREAMS) &&
3372 !(ep_state & EP_GETTING_STREAMS)) {
3373 xhci_warn(xhci, "WARN Can't disable streams for "
3374 "endpoint 0x%x, "
3375 "streams are already disabled!\n",
3376 eps[i]->desc.bEndpointAddress);
3377 xhci_warn(xhci, "WARN xhci_free_streams() called "
3378 "with non-streams endpoint\n");
3379 return 0;
3380 }
3381 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3382 }
3383 return changed_ep_bitmask;
3384 }
3385
3386 /*
3387 * The USB device drivers use this function (through the HCD interface in USB
3388 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3389 * coordinate mass storage command queueing across multiple endpoints (basically
3390 * a stream ID == a task ID).
3391 *
3392 * Setting up streams involves allocating the same size stream context array
3393 * for each endpoint and issuing a configure endpoint command for all endpoints.
3394 *
3395 * Don't allow the call to succeed if one endpoint only supports one stream
3396 * (which means it doesn't support streams at all).
3397 *
3398 * Drivers may get less stream IDs than they asked for, if the host controller
3399 * hardware or endpoints claim they can't support the number of requested
3400 * stream IDs.
3401 */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3402 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3403 struct usb_host_endpoint **eps, unsigned int num_eps,
3404 unsigned int num_streams, gfp_t mem_flags)
3405 {
3406 int i, ret;
3407 struct xhci_hcd *xhci;
3408 struct xhci_virt_device *vdev;
3409 struct xhci_command *config_cmd;
3410 struct xhci_input_control_ctx *ctrl_ctx;
3411 unsigned int ep_index;
3412 unsigned int num_stream_ctxs;
3413 unsigned int max_packet;
3414 unsigned long flags;
3415 u32 changed_ep_bitmask = 0;
3416
3417 if (!eps)
3418 return -EINVAL;
3419
3420 /* Add one to the number of streams requested to account for
3421 * stream 0 that is reserved for xHCI usage.
3422 */
3423 num_streams += 1;
3424 xhci = hcd_to_xhci(hcd);
3425 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3426 num_streams);
3427
3428 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3429 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3430 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3431 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3432 return -ENOSYS;
3433 }
3434
3435 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3436 if (!config_cmd)
3437 return -ENOMEM;
3438
3439 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3440 if (!ctrl_ctx) {
3441 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3442 __func__);
3443 xhci_free_command(xhci, config_cmd);
3444 return -ENOMEM;
3445 }
3446
3447 /* Check to make sure all endpoints are not already configured for
3448 * streams. While we're at it, find the maximum number of streams that
3449 * all the endpoints will support and check for duplicate endpoints.
3450 */
3451 spin_lock_irqsave(&xhci->lock, flags);
3452 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3453 num_eps, &num_streams, &changed_ep_bitmask);
3454 if (ret < 0) {
3455 xhci_free_command(xhci, config_cmd);
3456 spin_unlock_irqrestore(&xhci->lock, flags);
3457 return ret;
3458 }
3459 if (num_streams <= 1) {
3460 xhci_warn(xhci, "WARN: endpoints can't handle "
3461 "more than one stream.\n");
3462 xhci_free_command(xhci, config_cmd);
3463 spin_unlock_irqrestore(&xhci->lock, flags);
3464 return -EINVAL;
3465 }
3466 vdev = xhci->devs[udev->slot_id];
3467 /* Mark each endpoint as being in transition, so
3468 * xhci_urb_enqueue() will reject all URBs.
3469 */
3470 for (i = 0; i < num_eps; i++) {
3471 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3472 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3473 }
3474 spin_unlock_irqrestore(&xhci->lock, flags);
3475
3476 /* Setup internal data structures and allocate HW data structures for
3477 * streams (but don't install the HW structures in the input context
3478 * until we're sure all memory allocation succeeded).
3479 */
3480 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3481 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3482 num_stream_ctxs, num_streams);
3483
3484 for (i = 0; i < num_eps; i++) {
3485 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3486 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3487 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3488 num_stream_ctxs,
3489 num_streams,
3490 max_packet, mem_flags);
3491 if (!vdev->eps[ep_index].stream_info)
3492 goto cleanup;
3493 /* Set maxPstreams in endpoint context and update deq ptr to
3494 * point to stream context array. FIXME
3495 */
3496 }
3497
3498 /* Set up the input context for a configure endpoint command. */
3499 for (i = 0; i < num_eps; i++) {
3500 struct xhci_ep_ctx *ep_ctx;
3501
3502 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3503 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3504
3505 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3506 vdev->out_ctx, ep_index);
3507 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3508 vdev->eps[ep_index].stream_info);
3509 }
3510 /* Tell the HW to drop its old copy of the endpoint context info
3511 * and add the updated copy from the input context.
3512 */
3513 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3514 vdev->out_ctx, ctrl_ctx,
3515 changed_ep_bitmask, changed_ep_bitmask);
3516
3517 /* Issue and wait for the configure endpoint command */
3518 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3519 false, false);
3520
3521 /* xHC rejected the configure endpoint command for some reason, so we
3522 * leave the old ring intact and free our internal streams data
3523 * structure.
3524 */
3525 if (ret < 0)
3526 goto cleanup;
3527
3528 spin_lock_irqsave(&xhci->lock, flags);
3529 for (i = 0; i < num_eps; i++) {
3530 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3531 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3532 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3533 udev->slot_id, ep_index);
3534 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3535 }
3536 xhci_free_command(xhci, config_cmd);
3537 spin_unlock_irqrestore(&xhci->lock, flags);
3538
3539 for (i = 0; i < num_eps; i++) {
3540 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3541 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3542 }
3543 /* Subtract 1 for stream 0, which drivers can't use */
3544 return num_streams - 1;
3545
3546 cleanup:
3547 /* If it didn't work, free the streams! */
3548 for (i = 0; i < num_eps; i++) {
3549 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3550 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3551 vdev->eps[ep_index].stream_info = NULL;
3552 /* FIXME Unset maxPstreams in endpoint context and
3553 * update deq ptr to point to normal string ring.
3554 */
3555 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3556 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3557 xhci_endpoint_zero(xhci, vdev, eps[i]);
3558 }
3559 xhci_free_command(xhci, config_cmd);
3560 return -ENOMEM;
3561 }
3562
3563 /* Transition the endpoint from using streams to being a "normal" endpoint
3564 * without streams.
3565 *
3566 * Modify the endpoint context state, submit a configure endpoint command,
3567 * and free all endpoint rings for streams if that completes successfully.
3568 */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3569 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3570 struct usb_host_endpoint **eps, unsigned int num_eps,
3571 gfp_t mem_flags)
3572 {
3573 int i, ret;
3574 struct xhci_hcd *xhci;
3575 struct xhci_virt_device *vdev;
3576 struct xhci_command *command;
3577 struct xhci_input_control_ctx *ctrl_ctx;
3578 unsigned int ep_index;
3579 unsigned long flags;
3580 u32 changed_ep_bitmask;
3581
3582 xhci = hcd_to_xhci(hcd);
3583 vdev = xhci->devs[udev->slot_id];
3584
3585 /* Set up a configure endpoint command to remove the streams rings */
3586 spin_lock_irqsave(&xhci->lock, flags);
3587 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3588 udev, eps, num_eps);
3589 if (changed_ep_bitmask == 0) {
3590 spin_unlock_irqrestore(&xhci->lock, flags);
3591 return -EINVAL;
3592 }
3593
3594 /* Use the xhci_command structure from the first endpoint. We may have
3595 * allocated too many, but the driver may call xhci_free_streams() for
3596 * each endpoint it grouped into one call to xhci_alloc_streams().
3597 */
3598 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3599 command = vdev->eps[ep_index].stream_info->free_streams_command;
3600 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3601 if (!ctrl_ctx) {
3602 spin_unlock_irqrestore(&xhci->lock, flags);
3603 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3604 __func__);
3605 return -EINVAL;
3606 }
3607
3608 for (i = 0; i < num_eps; i++) {
3609 struct xhci_ep_ctx *ep_ctx;
3610
3611 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3612 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3613 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3614 EP_GETTING_NO_STREAMS;
3615
3616 xhci_endpoint_copy(xhci, command->in_ctx,
3617 vdev->out_ctx, ep_index);
3618 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3619 &vdev->eps[ep_index]);
3620 }
3621 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3622 vdev->out_ctx, ctrl_ctx,
3623 changed_ep_bitmask, changed_ep_bitmask);
3624 spin_unlock_irqrestore(&xhci->lock, flags);
3625
3626 /* Issue and wait for the configure endpoint command,
3627 * which must succeed.
3628 */
3629 ret = xhci_configure_endpoint(xhci, udev, command,
3630 false, true);
3631
3632 /* xHC rejected the configure endpoint command for some reason, so we
3633 * leave the streams rings intact.
3634 */
3635 if (ret < 0)
3636 return ret;
3637
3638 spin_lock_irqsave(&xhci->lock, flags);
3639 for (i = 0; i < num_eps; i++) {
3640 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3641 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3642 vdev->eps[ep_index].stream_info = NULL;
3643 /* FIXME Unset maxPstreams in endpoint context and
3644 * update deq ptr to point to normal string ring.
3645 */
3646 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3647 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3648 }
3649 spin_unlock_irqrestore(&xhci->lock, flags);
3650
3651 return 0;
3652 }
3653
3654 /*
3655 * Deletes endpoint resources for endpoints that were active before a Reset
3656 * Device command, or a Disable Slot command. The Reset Device command leaves
3657 * the control endpoint intact, whereas the Disable Slot command deletes it.
3658 *
3659 * Must be called with xhci->lock held.
3660 */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3661 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3662 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3663 {
3664 int i;
3665 unsigned int num_dropped_eps = 0;
3666 unsigned int drop_flags = 0;
3667
3668 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3669 if (virt_dev->eps[i].ring) {
3670 drop_flags |= 1 << i;
3671 num_dropped_eps++;
3672 }
3673 }
3674 xhci->num_active_eps -= num_dropped_eps;
3675 if (num_dropped_eps)
3676 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3677 "Dropped %u ep ctxs, flags = 0x%x, "
3678 "%u now active.",
3679 num_dropped_eps, drop_flags,
3680 xhci->num_active_eps);
3681 }
3682
3683 /*
3684 * This submits a Reset Device Command, which will set the device state to 0,
3685 * set the device address to 0, and disable all the endpoints except the default
3686 * control endpoint. The USB core should come back and call
3687 * xhci_address_device(), and then re-set up the configuration. If this is
3688 * called because of a usb_reset_and_verify_device(), then the old alternate
3689 * settings will be re-installed through the normal bandwidth allocation
3690 * functions.
3691 *
3692 * Wait for the Reset Device command to finish. Remove all structures
3693 * associated with the endpoints that were disabled. Clear the input device
3694 * structure? Reset the control endpoint 0 max packet size?
3695 *
3696 * If the virt_dev to be reset does not exist or does not match the udev,
3697 * it means the device is lost, possibly due to the xHC restore error and
3698 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3699 * re-allocate the device.
3700 */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3701 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3702 struct usb_device *udev)
3703 {
3704 int ret, i;
3705 unsigned long flags;
3706 struct xhci_hcd *xhci;
3707 unsigned int slot_id;
3708 struct xhci_virt_device *virt_dev;
3709 struct xhci_command *reset_device_cmd;
3710 struct xhci_slot_ctx *slot_ctx;
3711 int old_active_eps = 0;
3712
3713 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3714 if (ret <= 0)
3715 return ret;
3716 xhci = hcd_to_xhci(hcd);
3717 slot_id = udev->slot_id;
3718 virt_dev = xhci->devs[slot_id];
3719 if (!virt_dev) {
3720 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3721 "not exist. Re-allocate the device\n", slot_id);
3722 ret = xhci_alloc_dev(hcd, udev);
3723 if (ret == 1)
3724 return 0;
3725 else
3726 return -EINVAL;
3727 }
3728
3729 if (virt_dev->tt_info)
3730 old_active_eps = virt_dev->tt_info->active_eps;
3731
3732 if (virt_dev->udev != udev) {
3733 /* If the virt_dev and the udev does not match, this virt_dev
3734 * may belong to another udev.
3735 * Re-allocate the device.
3736 */
3737 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3738 "not match the udev. Re-allocate the device\n",
3739 slot_id);
3740 ret = xhci_alloc_dev(hcd, udev);
3741 if (ret == 1)
3742 return 0;
3743 else
3744 return -EINVAL;
3745 }
3746
3747 /* If device is not setup, there is no point in resetting it */
3748 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3749 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3750 SLOT_STATE_DISABLED)
3751 return 0;
3752
3753 trace_xhci_discover_or_reset_device(slot_ctx);
3754
3755 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3756 /* Allocate the command structure that holds the struct completion.
3757 * Assume we're in process context, since the normal device reset
3758 * process has to wait for the device anyway. Storage devices are
3759 * reset as part of error handling, so use GFP_NOIO instead of
3760 * GFP_KERNEL.
3761 */
3762 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3763 if (!reset_device_cmd) {
3764 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3765 return -ENOMEM;
3766 }
3767
3768 /* Attempt to submit the Reset Device command to the command ring */
3769 spin_lock_irqsave(&xhci->lock, flags);
3770
3771 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3772 if (ret) {
3773 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3774 spin_unlock_irqrestore(&xhci->lock, flags);
3775 goto command_cleanup;
3776 }
3777 xhci_ring_cmd_db(xhci);
3778 spin_unlock_irqrestore(&xhci->lock, flags);
3779
3780 /* Wait for the Reset Device command to finish */
3781 wait_for_completion(reset_device_cmd->completion);
3782
3783 ret = xhci_vendor_sync_dev_ctx(xhci, slot_id);
3784 if (ret) {
3785 xhci_warn(xhci, "%s: Failed to sync device context failed, err=%d",
3786 __func__, ret);
3787 goto command_cleanup;
3788 }
3789
3790 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3791 * unless we tried to reset a slot ID that wasn't enabled,
3792 * or the device wasn't in the addressed or configured state.
3793 */
3794 ret = reset_device_cmd->status;
3795 switch (ret) {
3796 case COMP_COMMAND_ABORTED:
3797 case COMP_COMMAND_RING_STOPPED:
3798 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3799 ret = -ETIME;
3800 goto command_cleanup;
3801 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3802 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3803 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3804 slot_id,
3805 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3806 xhci_dbg(xhci, "Not freeing device rings.\n");
3807 /* Don't treat this as an error. May change my mind later. */
3808 ret = 0;
3809 goto command_cleanup;
3810 case COMP_SUCCESS:
3811 xhci_dbg(xhci, "Successful reset device command.\n");
3812 break;
3813 default:
3814 if (xhci_is_vendor_info_code(xhci, ret))
3815 break;
3816 xhci_warn(xhci, "Unknown completion code %u for "
3817 "reset device command.\n", ret);
3818 ret = -EINVAL;
3819 goto command_cleanup;
3820 }
3821
3822 /* Free up host controller endpoint resources */
3823 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3824 spin_lock_irqsave(&xhci->lock, flags);
3825 /* Don't delete the default control endpoint resources */
3826 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3827 spin_unlock_irqrestore(&xhci->lock, flags);
3828 }
3829
3830 /* Everything but endpoint 0 is disabled, so free the rings. */
3831 for (i = 1; i < 31; i++) {
3832 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3833
3834 if (ep->ep_state & EP_HAS_STREAMS) {
3835 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3836 xhci_get_endpoint_address(i));
3837 xhci_free_stream_info(xhci, ep->stream_info);
3838 ep->stream_info = NULL;
3839 ep->ep_state &= ~EP_HAS_STREAMS;
3840 }
3841
3842 if (ep->ring) {
3843 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3844 xhci_free_endpoint_ring(xhci, virt_dev, i);
3845 }
3846 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3847 xhci_drop_ep_from_interval_table(xhci,
3848 &virt_dev->eps[i].bw_info,
3849 virt_dev->bw_table,
3850 udev,
3851 &virt_dev->eps[i],
3852 virt_dev->tt_info);
3853 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3854 }
3855 /* If necessary, update the number of active TTs on this root port */
3856 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3857 virt_dev->flags = 0;
3858 ret = 0;
3859
3860 command_cleanup:
3861 xhci_free_command(xhci, reset_device_cmd);
3862 return ret;
3863 }
3864
3865 /*
3866 * At this point, the struct usb_device is about to go away, the device has
3867 * disconnected, and all traffic has been stopped and the endpoints have been
3868 * disabled. Free any HC data structures associated with that device.
3869 */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3870 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3871 {
3872 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3873 struct xhci_virt_device *virt_dev;
3874 struct xhci_slot_ctx *slot_ctx;
3875 unsigned long flags;
3876 int i, ret;
3877
3878 /*
3879 * We called pm_runtime_get_noresume when the device was attached.
3880 * Decrement the counter here to allow controller to runtime suspend
3881 * if no devices remain.
3882 */
3883 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3884 pm_runtime_put_noidle(hcd->self.controller);
3885
3886 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3887 /* If the host is halted due to driver unload, we still need to free the
3888 * device.
3889 */
3890 if (ret <= 0 && ret != -ENODEV)
3891 return;
3892
3893 virt_dev = xhci->devs[udev->slot_id];
3894 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3895 trace_xhci_free_dev(slot_ctx);
3896
3897 /* Stop any wayward timer functions (which may grab the lock) */
3898 for (i = 0; i < 31; i++) {
3899 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3900 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3901 }
3902 virt_dev->udev = NULL;
3903 xhci_disable_slot(xhci, udev->slot_id);
3904
3905 spin_lock_irqsave(&xhci->lock, flags);
3906 xhci_free_virt_device(xhci, udev->slot_id);
3907 spin_unlock_irqrestore(&xhci->lock, flags);
3908
3909 }
3910
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)3911 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3912 {
3913 struct xhci_command *command;
3914 unsigned long flags;
3915 u32 state;
3916 int ret = 0;
3917
3918 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3919 if (!command)
3920 return -ENOMEM;
3921
3922 xhci_debugfs_remove_slot(xhci, slot_id);
3923
3924 spin_lock_irqsave(&xhci->lock, flags);
3925 /* Don't disable the slot if the host controller is dead. */
3926 state = readl(&xhci->op_regs->status);
3927 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3928 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3929 spin_unlock_irqrestore(&xhci->lock, flags);
3930 kfree(command);
3931 return -ENODEV;
3932 }
3933
3934 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3935 slot_id);
3936 if (ret) {
3937 spin_unlock_irqrestore(&xhci->lock, flags);
3938 kfree(command);
3939 return ret;
3940 }
3941 xhci_ring_cmd_db(xhci);
3942 spin_unlock_irqrestore(&xhci->lock, flags);
3943
3944 wait_for_completion(command->completion);
3945
3946 if (command->status != COMP_SUCCESS)
3947 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3948 slot_id, command->status);
3949
3950 xhci_free_command(xhci, command);
3951
3952 return ret;
3953 }
3954
3955 /*
3956 * Checks if we have enough host controller resources for the default control
3957 * endpoint.
3958 *
3959 * Must be called with xhci->lock held.
3960 */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)3961 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3962 {
3963 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3964 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3965 "Not enough ep ctxs: "
3966 "%u active, need to add 1, limit is %u.",
3967 xhci->num_active_eps, xhci->limit_active_eps);
3968 return -ENOMEM;
3969 }
3970 xhci->num_active_eps += 1;
3971 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3972 "Adding 1 ep ctx, %u now active.",
3973 xhci->num_active_eps);
3974 return 0;
3975 }
3976
3977
3978 /*
3979 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3980 * timed out, or allocating memory failed. Returns 1 on success.
3981 */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)3982 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3983 {
3984 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3985 struct xhci_virt_device *vdev;
3986 struct xhci_slot_ctx *slot_ctx;
3987 unsigned long flags;
3988 int ret, slot_id;
3989 struct xhci_command *command;
3990
3991 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3992 if (!command)
3993 return 0;
3994
3995 spin_lock_irqsave(&xhci->lock, flags);
3996 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3997 if (ret) {
3998 spin_unlock_irqrestore(&xhci->lock, flags);
3999 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4000 xhci_free_command(xhci, command);
4001 return 0;
4002 }
4003 xhci_ring_cmd_db(xhci);
4004 spin_unlock_irqrestore(&xhci->lock, flags);
4005
4006 wait_for_completion(command->completion);
4007 slot_id = command->slot_id;
4008
4009 if (!slot_id || command->status != COMP_SUCCESS) {
4010 xhci_err(xhci, "Error while assigning device slot ID\n");
4011 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4012 HCS_MAX_SLOTS(
4013 readl(&xhci->cap_regs->hcs_params1)));
4014 xhci_free_command(xhci, command);
4015 return 0;
4016 }
4017
4018 xhci_free_command(xhci, command);
4019
4020 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4021 spin_lock_irqsave(&xhci->lock, flags);
4022 ret = xhci_reserve_host_control_ep_resources(xhci);
4023 if (ret) {
4024 spin_unlock_irqrestore(&xhci->lock, flags);
4025 xhci_warn(xhci, "Not enough host resources, "
4026 "active endpoint contexts = %u\n",
4027 xhci->num_active_eps);
4028 goto disable_slot;
4029 }
4030 spin_unlock_irqrestore(&xhci->lock, flags);
4031 }
4032 /* Use GFP_NOIO, since this function can be called from
4033 * xhci_discover_or_reset_device(), which may be called as part of
4034 * mass storage driver error handling.
4035 */
4036 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4037 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4038 goto disable_slot;
4039 }
4040
4041 ret = xhci_vendor_sync_dev_ctx(xhci, slot_id);
4042 if (ret) {
4043 xhci_warn(xhci, "%s: Failed to sync device context failed, err=%d",
4044 __func__, ret);
4045 goto disable_slot;
4046 }
4047
4048 vdev = xhci->devs[slot_id];
4049 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4050 trace_xhci_alloc_dev(slot_ctx);
4051
4052 udev->slot_id = slot_id;
4053
4054 xhci_debugfs_create_slot(xhci, slot_id);
4055
4056 /*
4057 * If resetting upon resume, we can't put the controller into runtime
4058 * suspend if there is a device attached.
4059 */
4060 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4061 pm_runtime_get_noresume(hcd->self.controller);
4062
4063 /* Is this a LS or FS device under a HS hub? */
4064 /* Hub or peripherial? */
4065 return 1;
4066
4067 disable_slot:
4068 xhci_disable_slot(xhci, udev->slot_id);
4069 xhci_free_virt_device(xhci, udev->slot_id);
4070
4071 return 0;
4072 }
4073
4074 /*
4075 * Issue an Address Device command and optionally send a corresponding
4076 * SetAddress request to the device.
4077 */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup)4078 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4079 enum xhci_setup_dev setup)
4080 {
4081 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4082 unsigned long flags;
4083 struct xhci_virt_device *virt_dev;
4084 int ret = 0;
4085 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4086 struct xhci_slot_ctx *slot_ctx;
4087 struct xhci_input_control_ctx *ctrl_ctx;
4088 u64 temp_64;
4089 struct xhci_command *command = NULL;
4090
4091 mutex_lock(&xhci->mutex);
4092
4093 if (xhci->xhc_state) { /* dying, removing or halted */
4094 ret = -ESHUTDOWN;
4095 goto out;
4096 }
4097
4098 if (!udev->slot_id) {
4099 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4100 "Bad Slot ID %d", udev->slot_id);
4101 ret = -EINVAL;
4102 goto out;
4103 }
4104
4105 virt_dev = xhci->devs[udev->slot_id];
4106
4107 if (WARN_ON(!virt_dev)) {
4108 /*
4109 * In plug/unplug torture test with an NEC controller,
4110 * a zero-dereference was observed once due to virt_dev = 0.
4111 * Print useful debug rather than crash if it is observed again!
4112 */
4113 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4114 udev->slot_id);
4115 ret = -EINVAL;
4116 goto out;
4117 }
4118 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4119 trace_xhci_setup_device_slot(slot_ctx);
4120
4121 if (setup == SETUP_CONTEXT_ONLY) {
4122 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4123 SLOT_STATE_DEFAULT) {
4124 xhci_dbg(xhci, "Slot already in default state\n");
4125 goto out;
4126 }
4127 }
4128
4129 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4130 if (!command) {
4131 ret = -ENOMEM;
4132 goto out;
4133 }
4134
4135 command->in_ctx = virt_dev->in_ctx;
4136
4137 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4138 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4139 if (!ctrl_ctx) {
4140 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4141 __func__);
4142 ret = -EINVAL;
4143 goto out;
4144 }
4145 /*
4146 * If this is the first Set Address since device plug-in or
4147 * virt_device realloaction after a resume with an xHCI power loss,
4148 * then set up the slot context.
4149 */
4150 if (!slot_ctx->dev_info)
4151 xhci_setup_addressable_virt_dev(xhci, udev);
4152 /* Otherwise, update the control endpoint ring enqueue pointer. */
4153 else
4154 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4155 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4156 ctrl_ctx->drop_flags = 0;
4157
4158 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4159 le32_to_cpu(slot_ctx->dev_info) >> 27);
4160
4161 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4162 spin_lock_irqsave(&xhci->lock, flags);
4163 trace_xhci_setup_device(virt_dev);
4164 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4165 udev->slot_id, setup);
4166 if (ret) {
4167 spin_unlock_irqrestore(&xhci->lock, flags);
4168 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4169 "FIXME: allocate a command ring segment");
4170 goto out;
4171 }
4172 xhci_ring_cmd_db(xhci);
4173 spin_unlock_irqrestore(&xhci->lock, flags);
4174
4175 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4176 wait_for_completion(command->completion);
4177
4178 ret = xhci_vendor_sync_dev_ctx(xhci, udev->slot_id);
4179 if (ret) {
4180 xhci_warn(xhci, "%s: Failed to sync device context failed, err=%d",
4181 __func__, ret);
4182 goto out;
4183 }
4184
4185 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4186 * the SetAddress() "recovery interval" required by USB and aborting the
4187 * command on a timeout.
4188 */
4189 switch (command->status) {
4190 case COMP_COMMAND_ABORTED:
4191 case COMP_COMMAND_RING_STOPPED:
4192 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4193 ret = -ETIME;
4194 break;
4195 case COMP_CONTEXT_STATE_ERROR:
4196 case COMP_SLOT_NOT_ENABLED_ERROR:
4197 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4198 act, udev->slot_id);
4199 ret = -EINVAL;
4200 break;
4201 case COMP_USB_TRANSACTION_ERROR:
4202 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4203
4204 mutex_unlock(&xhci->mutex);
4205 ret = xhci_disable_slot(xhci, udev->slot_id);
4206 xhci_free_virt_device(xhci, udev->slot_id);
4207 if (!ret)
4208 xhci_alloc_dev(hcd, udev);
4209 kfree(command->completion);
4210 kfree(command);
4211 return -EPROTO;
4212 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4213 dev_warn(&udev->dev,
4214 "ERROR: Incompatible device for setup %s command\n", act);
4215 ret = -ENODEV;
4216 break;
4217 case COMP_SUCCESS:
4218 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4219 "Successful setup %s command", act);
4220 break;
4221 default:
4222 xhci_err(xhci,
4223 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4224 act, command->status);
4225 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4226 ret = -EINVAL;
4227 break;
4228 }
4229 if (ret)
4230 goto out;
4231 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4232 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4233 "Op regs DCBAA ptr = %#016llx", temp_64);
4234 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4235 "Slot ID %d dcbaa entry @%p = %#016llx",
4236 udev->slot_id,
4237 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4238 (unsigned long long)
4239 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4240 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4241 "Output Context DMA address = %#08llx",
4242 (unsigned long long)virt_dev->out_ctx->dma);
4243 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4244 le32_to_cpu(slot_ctx->dev_info) >> 27);
4245 /*
4246 * USB core uses address 1 for the roothubs, so we add one to the
4247 * address given back to us by the HC.
4248 */
4249 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4250 le32_to_cpu(slot_ctx->dev_info) >> 27);
4251 /* Zero the input context control for later use */
4252 ctrl_ctx->add_flags = 0;
4253 ctrl_ctx->drop_flags = 0;
4254 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4255 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4256
4257 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4258 "Internal device address = %d",
4259 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4260 out:
4261 mutex_unlock(&xhci->mutex);
4262 if (command) {
4263 kfree(command->completion);
4264 kfree(command);
4265 }
4266 return ret;
4267 }
4268
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev)4269 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4270 {
4271 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4272 }
4273 EXPORT_SYMBOL_GPL(xhci_address_device);
4274
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4275 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4276 {
4277 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4278 }
4279
4280 /*
4281 * Transfer the port index into real index in the HW port status
4282 * registers. Caculate offset between the port's PORTSC register
4283 * and port status base. Divide the number of per port register
4284 * to get the real index. The raw port number bases 1.
4285 */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4286 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4287 {
4288 struct xhci_hub *rhub;
4289
4290 rhub = xhci_get_rhub(hcd);
4291 return rhub->ports[port1 - 1]->hw_portnum + 1;
4292 }
4293
4294 /*
4295 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4296 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4297 */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4298 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4299 struct usb_device *udev, u16 max_exit_latency)
4300 {
4301 struct xhci_virt_device *virt_dev;
4302 struct xhci_command *command;
4303 struct xhci_input_control_ctx *ctrl_ctx;
4304 struct xhci_slot_ctx *slot_ctx;
4305 unsigned long flags;
4306 int ret;
4307
4308 spin_lock_irqsave(&xhci->lock, flags);
4309
4310 virt_dev = xhci->devs[udev->slot_id];
4311
4312 /*
4313 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4314 * xHC was re-initialized. Exit latency will be set later after
4315 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4316 */
4317
4318 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4319 spin_unlock_irqrestore(&xhci->lock, flags);
4320 return 0;
4321 }
4322
4323 /* Attempt to issue an Evaluate Context command to change the MEL. */
4324 command = xhci->lpm_command;
4325 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4326 if (!ctrl_ctx) {
4327 spin_unlock_irqrestore(&xhci->lock, flags);
4328 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4329 __func__);
4330 return -ENOMEM;
4331 }
4332
4333 ret = xhci_vendor_sync_dev_ctx(xhci, udev->slot_id);
4334 if (ret) {
4335 spin_unlock_irqrestore(&xhci->lock, flags);
4336 xhci_warn(xhci, "%s: Failed to sync device context failed, err=%d",
4337 __func__, ret);
4338 return ret;
4339 }
4340
4341 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4342 spin_unlock_irqrestore(&xhci->lock, flags);
4343
4344 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4345 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4346 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4347 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4348 slot_ctx->dev_state = 0;
4349
4350 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4351 "Set up evaluate context for LPM MEL change.");
4352
4353 /* Issue and wait for the evaluate context command. */
4354 ret = xhci_configure_endpoint(xhci, udev, command,
4355 true, true);
4356
4357 if (!ret) {
4358 spin_lock_irqsave(&xhci->lock, flags);
4359 virt_dev->current_mel = max_exit_latency;
4360 spin_unlock_irqrestore(&xhci->lock, flags);
4361 }
4362 return ret;
4363 }
4364
xhci_vendor_get_ops(struct xhci_hcd * xhci)4365 struct xhci_vendor_ops *xhci_vendor_get_ops(struct xhci_hcd *xhci)
4366 {
4367 return xhci->vendor_ops;
4368 }
4369 EXPORT_SYMBOL_GPL(xhci_vendor_get_ops);
4370
xhci_vendor_sync_dev_ctx(struct xhci_hcd * xhci,unsigned int slot_id)4371 int xhci_vendor_sync_dev_ctx(struct xhci_hcd *xhci, unsigned int slot_id)
4372 {
4373 struct xhci_vendor_ops *ops = xhci_vendor_get_ops(xhci);
4374
4375 if (ops && ops->sync_dev_ctx)
4376 return ops->sync_dev_ctx(xhci, slot_id);
4377 return 0;
4378 }
4379
xhci_vendor_usb_offload_skip_urb(struct xhci_hcd * xhci,struct urb * urb)4380 bool xhci_vendor_usb_offload_skip_urb(struct xhci_hcd *xhci, struct urb *urb)
4381 {
4382 struct xhci_vendor_ops *ops = xhci_vendor_get_ops(xhci);
4383
4384 if (ops && ops->usb_offload_skip_urb)
4385 return ops->usb_offload_skip_urb(xhci, urb);
4386 return false;
4387 }
4388
4389 #ifdef CONFIG_PM
4390
4391 /* BESL to HIRD Encoding array for USB2 LPM */
4392 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4393 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4394
4395 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4396 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4397 struct usb_device *udev)
4398 {
4399 int u2del, besl, besl_host;
4400 int besl_device = 0;
4401 u32 field;
4402
4403 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4404 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4405
4406 if (field & USB_BESL_SUPPORT) {
4407 for (besl_host = 0; besl_host < 16; besl_host++) {
4408 if (xhci_besl_encoding[besl_host] >= u2del)
4409 break;
4410 }
4411 /* Use baseline BESL value as default */
4412 if (field & USB_BESL_BASELINE_VALID)
4413 besl_device = USB_GET_BESL_BASELINE(field);
4414 else if (field & USB_BESL_DEEP_VALID)
4415 besl_device = USB_GET_BESL_DEEP(field);
4416 } else {
4417 if (u2del <= 50)
4418 besl_host = 0;
4419 else
4420 besl_host = (u2del - 51) / 75 + 1;
4421 }
4422
4423 besl = besl_host + besl_device;
4424 if (besl > 15)
4425 besl = 15;
4426
4427 return besl;
4428 }
4429
4430 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4431 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4432 {
4433 u32 field;
4434 int l1;
4435 int besld = 0;
4436 int hirdm = 0;
4437
4438 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4439
4440 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4441 l1 = udev->l1_params.timeout / 256;
4442
4443 /* device has preferred BESLD */
4444 if (field & USB_BESL_DEEP_VALID) {
4445 besld = USB_GET_BESL_DEEP(field);
4446 hirdm = 1;
4447 }
4448
4449 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4450 }
4451
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4452 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4453 struct usb_device *udev, int enable)
4454 {
4455 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4456 struct xhci_port **ports;
4457 __le32 __iomem *pm_addr, *hlpm_addr;
4458 u32 pm_val, hlpm_val, field;
4459 unsigned int port_num;
4460 unsigned long flags;
4461 int hird, exit_latency;
4462 int ret;
4463
4464 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4465 return -EPERM;
4466
4467 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4468 !udev->lpm_capable)
4469 return -EPERM;
4470
4471 if (!udev->parent || udev->parent->parent ||
4472 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4473 return -EPERM;
4474
4475 if (udev->usb2_hw_lpm_capable != 1)
4476 return -EPERM;
4477
4478 spin_lock_irqsave(&xhci->lock, flags);
4479
4480 ports = xhci->usb2_rhub.ports;
4481 port_num = udev->portnum - 1;
4482 pm_addr = ports[port_num]->addr + PORTPMSC;
4483 pm_val = readl(pm_addr);
4484 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4485
4486 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4487 enable ? "enable" : "disable", port_num + 1);
4488
4489 if (enable) {
4490 /* Host supports BESL timeout instead of HIRD */
4491 if (udev->usb2_hw_lpm_besl_capable) {
4492 /* if device doesn't have a preferred BESL value use a
4493 * default one which works with mixed HIRD and BESL
4494 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4495 */
4496 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4497 if ((field & USB_BESL_SUPPORT) &&
4498 (field & USB_BESL_BASELINE_VALID))
4499 hird = USB_GET_BESL_BASELINE(field);
4500 else
4501 hird = udev->l1_params.besl;
4502
4503 exit_latency = xhci_besl_encoding[hird];
4504 spin_unlock_irqrestore(&xhci->lock, flags);
4505
4506 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4507 * input context for link powermanagement evaluate
4508 * context commands. It is protected by hcd->bandwidth
4509 * mutex and is shared by all devices. We need to set
4510 * the max ext latency in USB 2 BESL LPM as well, so
4511 * use the same mutex and xhci_change_max_exit_latency()
4512 */
4513 mutex_lock(hcd->bandwidth_mutex);
4514 ret = xhci_change_max_exit_latency(xhci, udev,
4515 exit_latency);
4516 mutex_unlock(hcd->bandwidth_mutex);
4517
4518 if (ret < 0)
4519 return ret;
4520 spin_lock_irqsave(&xhci->lock, flags);
4521
4522 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4523 writel(hlpm_val, hlpm_addr);
4524 /* flush write */
4525 readl(hlpm_addr);
4526 } else {
4527 hird = xhci_calculate_hird_besl(xhci, udev);
4528 }
4529
4530 pm_val &= ~PORT_HIRD_MASK;
4531 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4532 writel(pm_val, pm_addr);
4533 pm_val = readl(pm_addr);
4534 pm_val |= PORT_HLE;
4535 writel(pm_val, pm_addr);
4536 /* flush write */
4537 readl(pm_addr);
4538 } else {
4539 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4540 writel(pm_val, pm_addr);
4541 /* flush write */
4542 readl(pm_addr);
4543 if (udev->usb2_hw_lpm_besl_capable) {
4544 spin_unlock_irqrestore(&xhci->lock, flags);
4545 mutex_lock(hcd->bandwidth_mutex);
4546 xhci_change_max_exit_latency(xhci, udev, 0);
4547 mutex_unlock(hcd->bandwidth_mutex);
4548 readl_poll_timeout(ports[port_num]->addr, pm_val,
4549 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4550 100, 10000);
4551 return 0;
4552 }
4553 }
4554
4555 spin_unlock_irqrestore(&xhci->lock, flags);
4556 return 0;
4557 }
4558
4559 /* check if a usb2 port supports a given extened capability protocol
4560 * only USB2 ports extended protocol capability values are cached.
4561 * Return 1 if capability is supported
4562 */
xhci_check_usb2_port_capability(struct xhci_hcd * xhci,int port,unsigned capability)4563 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4564 unsigned capability)
4565 {
4566 u32 port_offset, port_count;
4567 int i;
4568
4569 for (i = 0; i < xhci->num_ext_caps; i++) {
4570 if (xhci->ext_caps[i] & capability) {
4571 /* port offsets starts at 1 */
4572 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4573 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4574 if (port >= port_offset &&
4575 port < port_offset + port_count)
4576 return 1;
4577 }
4578 }
4579 return 0;
4580 }
4581
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4582 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4583 {
4584 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4585 int portnum = udev->portnum - 1;
4586
4587 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4588 return 0;
4589
4590 /* we only support lpm for non-hub device connected to root hub yet */
4591 if (!udev->parent || udev->parent->parent ||
4592 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4593 return 0;
4594
4595 if (xhci->hw_lpm_support == 1 &&
4596 xhci_check_usb2_port_capability(
4597 xhci, portnum, XHCI_HLC)) {
4598 udev->usb2_hw_lpm_capable = 1;
4599 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4600 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4601 if (xhci_check_usb2_port_capability(xhci, portnum,
4602 XHCI_BLC))
4603 udev->usb2_hw_lpm_besl_capable = 1;
4604 }
4605
4606 return 0;
4607 }
4608
4609 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4610
4611 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4612 static unsigned long long xhci_service_interval_to_ns(
4613 struct usb_endpoint_descriptor *desc)
4614 {
4615 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4616 }
4617
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4618 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4619 enum usb3_link_state state)
4620 {
4621 unsigned long long sel;
4622 unsigned long long pel;
4623 unsigned int max_sel_pel;
4624 char *state_name;
4625
4626 switch (state) {
4627 case USB3_LPM_U1:
4628 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4629 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4630 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4631 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4632 state_name = "U1";
4633 break;
4634 case USB3_LPM_U2:
4635 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4636 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4637 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4638 state_name = "U2";
4639 break;
4640 default:
4641 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4642 __func__);
4643 return USB3_LPM_DISABLED;
4644 }
4645
4646 if (sel <= max_sel_pel && pel <= max_sel_pel)
4647 return USB3_LPM_DEVICE_INITIATED;
4648
4649 if (sel > max_sel_pel)
4650 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4651 "due to long SEL %llu ms\n",
4652 state_name, sel);
4653 else
4654 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4655 "due to long PEL %llu ms\n",
4656 state_name, pel);
4657 return USB3_LPM_DISABLED;
4658 }
4659
4660 /* The U1 timeout should be the maximum of the following values:
4661 * - For control endpoints, U1 system exit latency (SEL) * 3
4662 * - For bulk endpoints, U1 SEL * 5
4663 * - For interrupt endpoints:
4664 * - Notification EPs, U1 SEL * 3
4665 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4666 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4667 */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4668 static unsigned long long xhci_calculate_intel_u1_timeout(
4669 struct usb_device *udev,
4670 struct usb_endpoint_descriptor *desc)
4671 {
4672 unsigned long long timeout_ns;
4673 int ep_type;
4674 int intr_type;
4675
4676 ep_type = usb_endpoint_type(desc);
4677 switch (ep_type) {
4678 case USB_ENDPOINT_XFER_CONTROL:
4679 timeout_ns = udev->u1_params.sel * 3;
4680 break;
4681 case USB_ENDPOINT_XFER_BULK:
4682 timeout_ns = udev->u1_params.sel * 5;
4683 break;
4684 case USB_ENDPOINT_XFER_INT:
4685 intr_type = usb_endpoint_interrupt_type(desc);
4686 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4687 timeout_ns = udev->u1_params.sel * 3;
4688 break;
4689 }
4690 /* Otherwise the calculation is the same as isoc eps */
4691 fallthrough;
4692 case USB_ENDPOINT_XFER_ISOC:
4693 timeout_ns = xhci_service_interval_to_ns(desc);
4694 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4695 if (timeout_ns < udev->u1_params.sel * 2)
4696 timeout_ns = udev->u1_params.sel * 2;
4697 break;
4698 default:
4699 return 0;
4700 }
4701
4702 return timeout_ns;
4703 }
4704
4705 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4706 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4707 struct usb_device *udev,
4708 struct usb_endpoint_descriptor *desc)
4709 {
4710 unsigned long long timeout_ns;
4711
4712 /* Prevent U1 if service interval is shorter than U1 exit latency */
4713 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4714 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4715 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4716 return USB3_LPM_DISABLED;
4717 }
4718 }
4719
4720 if (xhci->quirks & XHCI_INTEL_HOST)
4721 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4722 else
4723 timeout_ns = udev->u1_params.sel;
4724
4725 /* The U1 timeout is encoded in 1us intervals.
4726 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4727 */
4728 if (timeout_ns == USB3_LPM_DISABLED)
4729 timeout_ns = 1;
4730 else
4731 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4732
4733 /* If the necessary timeout value is bigger than what we can set in the
4734 * USB 3.0 hub, we have to disable hub-initiated U1.
4735 */
4736 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4737 return timeout_ns;
4738 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4739 "due to long timeout %llu ms\n", timeout_ns);
4740 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4741 }
4742
4743 /* The U2 timeout should be the maximum of:
4744 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4745 * - largest bInterval of any active periodic endpoint (to avoid going
4746 * into lower power link states between intervals).
4747 * - the U2 Exit Latency of the device
4748 */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4749 static unsigned long long xhci_calculate_intel_u2_timeout(
4750 struct usb_device *udev,
4751 struct usb_endpoint_descriptor *desc)
4752 {
4753 unsigned long long timeout_ns;
4754 unsigned long long u2_del_ns;
4755
4756 timeout_ns = 10 * 1000 * 1000;
4757
4758 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4759 (xhci_service_interval_to_ns(desc) > timeout_ns))
4760 timeout_ns = xhci_service_interval_to_ns(desc);
4761
4762 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4763 if (u2_del_ns > timeout_ns)
4764 timeout_ns = u2_del_ns;
4765
4766 return timeout_ns;
4767 }
4768
4769 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4770 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4771 struct usb_device *udev,
4772 struct usb_endpoint_descriptor *desc)
4773 {
4774 unsigned long long timeout_ns;
4775
4776 /* Prevent U2 if service interval is shorter than U2 exit latency */
4777 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4778 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4779 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4780 return USB3_LPM_DISABLED;
4781 }
4782 }
4783
4784 if (xhci->quirks & XHCI_INTEL_HOST)
4785 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4786 else
4787 timeout_ns = udev->u2_params.sel;
4788
4789 /* The U2 timeout is encoded in 256us intervals */
4790 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4791 /* If the necessary timeout value is bigger than what we can set in the
4792 * USB 3.0 hub, we have to disable hub-initiated U2.
4793 */
4794 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4795 return timeout_ns;
4796 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4797 "due to long timeout %llu ms\n", timeout_ns);
4798 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4799 }
4800
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4801 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4802 struct usb_device *udev,
4803 struct usb_endpoint_descriptor *desc,
4804 enum usb3_link_state state,
4805 u16 *timeout)
4806 {
4807 if (state == USB3_LPM_U1)
4808 return xhci_calculate_u1_timeout(xhci, udev, desc);
4809 else if (state == USB3_LPM_U2)
4810 return xhci_calculate_u2_timeout(xhci, udev, desc);
4811
4812 return USB3_LPM_DISABLED;
4813 }
4814
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4815 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4816 struct usb_device *udev,
4817 struct usb_endpoint_descriptor *desc,
4818 enum usb3_link_state state,
4819 u16 *timeout)
4820 {
4821 u16 alt_timeout;
4822
4823 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4824 desc, state, timeout);
4825
4826 /* If we found we can't enable hub-initiated LPM, and
4827 * the U1 or U2 exit latency was too high to allow
4828 * device-initiated LPM as well, then we will disable LPM
4829 * for this device, so stop searching any further.
4830 */
4831 if (alt_timeout == USB3_LPM_DISABLED) {
4832 *timeout = alt_timeout;
4833 return -E2BIG;
4834 }
4835 if (alt_timeout > *timeout)
4836 *timeout = alt_timeout;
4837 return 0;
4838 }
4839
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4840 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4841 struct usb_device *udev,
4842 struct usb_host_interface *alt,
4843 enum usb3_link_state state,
4844 u16 *timeout)
4845 {
4846 int j;
4847
4848 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4849 if (xhci_update_timeout_for_endpoint(xhci, udev,
4850 &alt->endpoint[j].desc, state, timeout))
4851 return -E2BIG;
4852 continue;
4853 }
4854 return 0;
4855 }
4856
xhci_check_intel_tier_policy(struct usb_device * udev,enum usb3_link_state state)4857 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4858 enum usb3_link_state state)
4859 {
4860 struct usb_device *parent;
4861 unsigned int num_hubs;
4862
4863 if (state == USB3_LPM_U2)
4864 return 0;
4865
4866 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4867 for (parent = udev->parent, num_hubs = 0; parent->parent;
4868 parent = parent->parent)
4869 num_hubs++;
4870
4871 if (num_hubs < 2)
4872 return 0;
4873
4874 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4875 " below second-tier hub.\n");
4876 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4877 "to decrease power consumption.\n");
4878 return -E2BIG;
4879 }
4880
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4881 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4882 struct usb_device *udev,
4883 enum usb3_link_state state)
4884 {
4885 if (xhci->quirks & XHCI_INTEL_HOST)
4886 return xhci_check_intel_tier_policy(udev, state);
4887 else
4888 return 0;
4889 }
4890
4891 /* Returns the U1 or U2 timeout that should be enabled.
4892 * If the tier check or timeout setting functions return with a non-zero exit
4893 * code, that means the timeout value has been finalized and we shouldn't look
4894 * at any more endpoints.
4895 */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4896 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4897 struct usb_device *udev, enum usb3_link_state state)
4898 {
4899 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4900 struct usb_host_config *config;
4901 char *state_name;
4902 int i;
4903 u16 timeout = USB3_LPM_DISABLED;
4904
4905 if (state == USB3_LPM_U1)
4906 state_name = "U1";
4907 else if (state == USB3_LPM_U2)
4908 state_name = "U2";
4909 else {
4910 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4911 state);
4912 return timeout;
4913 }
4914
4915 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4916 return timeout;
4917
4918 /* Gather some information about the currently installed configuration
4919 * and alternate interface settings.
4920 */
4921 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4922 state, &timeout))
4923 return timeout;
4924
4925 config = udev->actconfig;
4926 if (!config)
4927 return timeout;
4928
4929 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4930 struct usb_driver *driver;
4931 struct usb_interface *intf = config->interface[i];
4932
4933 if (!intf)
4934 continue;
4935
4936 /* Check if any currently bound drivers want hub-initiated LPM
4937 * disabled.
4938 */
4939 if (intf->dev.driver) {
4940 driver = to_usb_driver(intf->dev.driver);
4941 if (driver && driver->disable_hub_initiated_lpm) {
4942 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4943 state_name, driver->name);
4944 timeout = xhci_get_timeout_no_hub_lpm(udev,
4945 state);
4946 if (timeout == USB3_LPM_DISABLED)
4947 return timeout;
4948 }
4949 }
4950
4951 /* Not sure how this could happen... */
4952 if (!intf->cur_altsetting)
4953 continue;
4954
4955 if (xhci_update_timeout_for_interface(xhci, udev,
4956 intf->cur_altsetting,
4957 state, &timeout))
4958 return timeout;
4959 }
4960 return timeout;
4961 }
4962
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4963 static int calculate_max_exit_latency(struct usb_device *udev,
4964 enum usb3_link_state state_changed,
4965 u16 hub_encoded_timeout)
4966 {
4967 unsigned long long u1_mel_us = 0;
4968 unsigned long long u2_mel_us = 0;
4969 unsigned long long mel_us = 0;
4970 bool disabling_u1;
4971 bool disabling_u2;
4972 bool enabling_u1;
4973 bool enabling_u2;
4974
4975 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4976 hub_encoded_timeout == USB3_LPM_DISABLED);
4977 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4978 hub_encoded_timeout == USB3_LPM_DISABLED);
4979
4980 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4981 hub_encoded_timeout != USB3_LPM_DISABLED);
4982 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4983 hub_encoded_timeout != USB3_LPM_DISABLED);
4984
4985 /* If U1 was already enabled and we're not disabling it,
4986 * or we're going to enable U1, account for the U1 max exit latency.
4987 */
4988 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4989 enabling_u1)
4990 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4991 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4992 enabling_u2)
4993 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4994
4995 if (u1_mel_us > u2_mel_us)
4996 mel_us = u1_mel_us;
4997 else
4998 mel_us = u2_mel_us;
4999 /* xHCI host controller max exit latency field is only 16 bits wide. */
5000 if (mel_us > MAX_EXIT) {
5001 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5002 "is too big.\n", mel_us);
5003 return -E2BIG;
5004 }
5005 return mel_us;
5006 }
5007
5008 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5009 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5010 struct usb_device *udev, enum usb3_link_state state)
5011 {
5012 struct xhci_hcd *xhci;
5013 u16 hub_encoded_timeout;
5014 int mel;
5015 int ret;
5016
5017 xhci = hcd_to_xhci(hcd);
5018 /* The LPM timeout values are pretty host-controller specific, so don't
5019 * enable hub-initiated timeouts unless the vendor has provided
5020 * information about their timeout algorithm.
5021 */
5022 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5023 !xhci->devs[udev->slot_id])
5024 return USB3_LPM_DISABLED;
5025
5026 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5027 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5028 if (mel < 0) {
5029 /* Max Exit Latency is too big, disable LPM. */
5030 hub_encoded_timeout = USB3_LPM_DISABLED;
5031 mel = 0;
5032 }
5033
5034 ret = xhci_change_max_exit_latency(xhci, udev, mel);
5035 if (ret)
5036 return ret;
5037 return hub_encoded_timeout;
5038 }
5039
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5040 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5041 struct usb_device *udev, enum usb3_link_state state)
5042 {
5043 struct xhci_hcd *xhci;
5044 u16 mel;
5045
5046 xhci = hcd_to_xhci(hcd);
5047 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5048 !xhci->devs[udev->slot_id])
5049 return 0;
5050
5051 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5052 return xhci_change_max_exit_latency(xhci, udev, mel);
5053 }
5054 #else /* CONFIG_PM */
5055
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)5056 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5057 struct usb_device *udev, int enable)
5058 {
5059 return 0;
5060 }
5061
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5062 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5063 {
5064 return 0;
5065 }
5066
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5067 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5068 struct usb_device *udev, enum usb3_link_state state)
5069 {
5070 return USB3_LPM_DISABLED;
5071 }
5072
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5073 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5074 struct usb_device *udev, enum usb3_link_state state)
5075 {
5076 return 0;
5077 }
5078 #endif /* CONFIG_PM */
5079
5080 /*-------------------------------------------------------------------------*/
5081
5082 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5083 * internal data structures for the device.
5084 */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5085 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5086 struct usb_tt *tt, gfp_t mem_flags)
5087 {
5088 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5089 struct xhci_virt_device *vdev;
5090 struct xhci_command *config_cmd;
5091 struct xhci_input_control_ctx *ctrl_ctx;
5092 struct xhci_slot_ctx *slot_ctx;
5093 unsigned long flags;
5094 unsigned think_time;
5095 int ret;
5096
5097 /* Ignore root hubs */
5098 if (!hdev->parent)
5099 return 0;
5100
5101 vdev = xhci->devs[hdev->slot_id];
5102 if (!vdev) {
5103 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5104 return -EINVAL;
5105 }
5106
5107 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5108 if (!config_cmd)
5109 return -ENOMEM;
5110
5111 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5112 if (!ctrl_ctx) {
5113 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5114 __func__);
5115 xhci_free_command(xhci, config_cmd);
5116 return -ENOMEM;
5117 }
5118
5119 spin_lock_irqsave(&xhci->lock, flags);
5120 if (hdev->speed == USB_SPEED_HIGH &&
5121 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5122 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5123 xhci_free_command(xhci, config_cmd);
5124 spin_unlock_irqrestore(&xhci->lock, flags);
5125 return -ENOMEM;
5126 }
5127
5128 ret = xhci_vendor_sync_dev_ctx(xhci, hdev->slot_id);
5129 if (ret) {
5130 xhci_warn(xhci, "%s: Failed to sync device context failed, err=%d",
5131 __func__, ret);
5132 xhci_free_command(xhci, config_cmd);
5133 spin_unlock_irqrestore(&xhci->lock, flags);
5134 return ret;
5135 }
5136
5137 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5138 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5139 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5140 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5141 /*
5142 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5143 * but it may be already set to 1 when setup an xHCI virtual
5144 * device, so clear it anyway.
5145 */
5146 if (tt->multi)
5147 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5148 else if (hdev->speed == USB_SPEED_FULL)
5149 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5150
5151 if (xhci->hci_version > 0x95) {
5152 xhci_dbg(xhci, "xHCI version %x needs hub "
5153 "TT think time and number of ports\n",
5154 (unsigned int) xhci->hci_version);
5155 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5156 /* Set TT think time - convert from ns to FS bit times.
5157 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5158 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5159 *
5160 * xHCI 1.0: this field shall be 0 if the device is not a
5161 * High-spped hub.
5162 */
5163 think_time = tt->think_time;
5164 if (think_time != 0)
5165 think_time = (think_time / 666) - 1;
5166 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5167 slot_ctx->tt_info |=
5168 cpu_to_le32(TT_THINK_TIME(think_time));
5169 } else {
5170 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5171 "TT think time or number of ports\n",
5172 (unsigned int) xhci->hci_version);
5173 }
5174 slot_ctx->dev_state = 0;
5175 spin_unlock_irqrestore(&xhci->lock, flags);
5176
5177 xhci_dbg(xhci, "Set up %s for hub device.\n",
5178 (xhci->hci_version > 0x95) ?
5179 "configure endpoint" : "evaluate context");
5180
5181 /* Issue and wait for the configure endpoint or
5182 * evaluate context command.
5183 */
5184 if (xhci->hci_version > 0x95)
5185 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5186 false, false);
5187 else
5188 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5189 true, false);
5190
5191 xhci_free_command(xhci, config_cmd);
5192 return ret;
5193 }
5194
xhci_get_frame(struct usb_hcd * hcd)5195 static int xhci_get_frame(struct usb_hcd *hcd)
5196 {
5197 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5198 /* EHCI mods by the periodic size. Why? */
5199 return readl(&xhci->run_regs->microframe_index) >> 3;
5200 }
5201
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5202 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5203 {
5204 struct xhci_hcd *xhci;
5205 /*
5206 * TODO: Check with DWC3 clients for sysdev according to
5207 * quirks
5208 */
5209 struct device *dev = hcd->self.sysdev;
5210 unsigned int minor_rev;
5211 int retval;
5212
5213 /* Accept arbitrarily long scatter-gather lists */
5214 hcd->self.sg_tablesize = ~0;
5215
5216 /* support to build packet from discontinuous buffers */
5217 hcd->self.no_sg_constraint = 1;
5218
5219 /* XHCI controllers don't stop the ep queue on short packets :| */
5220 hcd->self.no_stop_on_short = 1;
5221
5222 xhci = hcd_to_xhci(hcd);
5223
5224 if (usb_hcd_is_primary_hcd(hcd)) {
5225 xhci->main_hcd = hcd;
5226 xhci->usb2_rhub.hcd = hcd;
5227 /* Mark the first roothub as being USB 2.0.
5228 * The xHCI driver will register the USB 3.0 roothub.
5229 */
5230 hcd->speed = HCD_USB2;
5231 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5232 /*
5233 * USB 2.0 roothub under xHCI has an integrated TT,
5234 * (rate matching hub) as opposed to having an OHCI/UHCI
5235 * companion controller.
5236 */
5237 hcd->has_tt = 1;
5238 } else {
5239 /*
5240 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5241 * should return 0x31 for sbrn, or that the minor revision
5242 * is a two digit BCD containig minor and sub-minor numbers.
5243 * This was later clarified in xHCI 1.2.
5244 *
5245 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5246 * minor revision set to 0x1 instead of 0x10.
5247 */
5248 if (xhci->usb3_rhub.min_rev == 0x1)
5249 minor_rev = 1;
5250 else
5251 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5252
5253 switch (minor_rev) {
5254 case 2:
5255 hcd->speed = HCD_USB32;
5256 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5257 hcd->self.root_hub->rx_lanes = 2;
5258 hcd->self.root_hub->tx_lanes = 2;
5259 break;
5260 case 1:
5261 hcd->speed = HCD_USB31;
5262 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5263 break;
5264 }
5265 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5266 minor_rev,
5267 minor_rev ? "Enhanced " : "");
5268
5269 xhci->usb3_rhub.hcd = hcd;
5270 /* xHCI private pointer was set in xhci_pci_probe for the second
5271 * registered roothub.
5272 */
5273 return 0;
5274 }
5275
5276 mutex_init(&xhci->mutex);
5277 xhci->cap_regs = hcd->regs;
5278 xhci->op_regs = hcd->regs +
5279 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5280 xhci->run_regs = hcd->regs +
5281 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5282 /* Cache read-only capability registers */
5283 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5284 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5285 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5286 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5287 xhci->hci_version = HC_VERSION(xhci->hcc_params);
5288 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5289 if (xhci->hci_version > 0x100)
5290 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5291
5292 xhci->quirks |= quirks;
5293
5294 get_quirks(dev, xhci);
5295
5296 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5297 * success event after a short transfer. This quirk will ignore such
5298 * spurious event.
5299 */
5300 if (xhci->hci_version > 0x96)
5301 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5302
5303 /* Make sure the HC is halted. */
5304 retval = xhci_halt(xhci);
5305 if (retval)
5306 return retval;
5307
5308 xhci_zero_64b_regs(xhci);
5309
5310 xhci_dbg(xhci, "Resetting HCD\n");
5311 /* Reset the internal HC memory state and registers. */
5312 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5313 if (retval)
5314 return retval;
5315 xhci_dbg(xhci, "Reset complete\n");
5316
5317 /*
5318 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5319 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5320 * address memory pointers actually. So, this driver clears the AC64
5321 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5322 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5323 */
5324 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5325 xhci->hcc_params &= ~BIT(0);
5326
5327 /* Set dma_mask and coherent_dma_mask to 64-bits,
5328 * if xHC supports 64-bit addressing */
5329 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5330 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5331 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5332 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5333 } else {
5334 /*
5335 * This is to avoid error in cases where a 32-bit USB
5336 * controller is used on a 64-bit capable system.
5337 */
5338 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5339 if (retval)
5340 return retval;
5341 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5342 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5343 }
5344
5345 xhci_dbg(xhci, "Calling HCD init\n");
5346 /* Initialize HCD and host controller data structures. */
5347 retval = xhci_init(hcd);
5348 if (retval)
5349 return retval;
5350 xhci_dbg(xhci, "Called HCD init\n");
5351
5352 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5353 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5354
5355 return 0;
5356 }
5357 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5358
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5359 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5360 struct usb_host_endpoint *ep)
5361 {
5362 struct xhci_hcd *xhci;
5363 struct usb_device *udev;
5364 unsigned int slot_id;
5365 unsigned int ep_index;
5366 unsigned long flags;
5367
5368 xhci = hcd_to_xhci(hcd);
5369
5370 spin_lock_irqsave(&xhci->lock, flags);
5371 udev = (struct usb_device *)ep->hcpriv;
5372 slot_id = udev->slot_id;
5373 ep_index = xhci_get_endpoint_index(&ep->desc);
5374
5375 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5376 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5377 spin_unlock_irqrestore(&xhci->lock, flags);
5378 }
5379
5380 static const struct hc_driver xhci_hc_driver = {
5381 .description = "xhci-hcd",
5382 .product_desc = "xHCI Host Controller",
5383 .hcd_priv_size = sizeof(struct xhci_hcd),
5384
5385 /*
5386 * generic hardware linkage
5387 */
5388 .irq = xhci_irq,
5389 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5390 HCD_BH,
5391
5392 /*
5393 * basic lifecycle operations
5394 */
5395 .reset = NULL, /* set in xhci_init_driver() */
5396 .start = xhci_run,
5397 .stop = xhci_stop,
5398 .shutdown = xhci_shutdown,
5399
5400 /*
5401 * managing i/o requests and associated device resources
5402 */
5403 .map_urb_for_dma = xhci_map_urb_for_dma,
5404 .urb_enqueue = xhci_urb_enqueue,
5405 .urb_dequeue = xhci_urb_dequeue,
5406 .alloc_dev = xhci_alloc_dev,
5407 .free_dev = xhci_free_dev,
5408 .alloc_streams = xhci_alloc_streams,
5409 .free_streams = xhci_free_streams,
5410 .add_endpoint = xhci_add_endpoint,
5411 .drop_endpoint = xhci_drop_endpoint,
5412 .endpoint_disable = xhci_endpoint_disable,
5413 .endpoint_reset = xhci_endpoint_reset,
5414 .check_bandwidth = xhci_check_bandwidth,
5415 .reset_bandwidth = xhci_reset_bandwidth,
5416 .address_device = xhci_address_device,
5417 .enable_device = xhci_enable_device,
5418 .update_hub_device = xhci_update_hub_device,
5419 .reset_device = xhci_discover_or_reset_device,
5420
5421 /*
5422 * scheduling support
5423 */
5424 .get_frame_number = xhci_get_frame,
5425
5426 /*
5427 * root hub support
5428 */
5429 .hub_control = xhci_hub_control,
5430 .hub_status_data = xhci_hub_status_data,
5431 .bus_suspend = xhci_bus_suspend,
5432 .bus_resume = xhci_bus_resume,
5433 .get_resuming_ports = xhci_get_resuming_ports,
5434
5435 /*
5436 * call back when device connected and addressed
5437 */
5438 .update_device = xhci_update_device,
5439 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5440 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5441 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5442 .find_raw_port_number = xhci_find_raw_port_number,
5443 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5444 };
5445
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5446 void xhci_init_driver(struct hc_driver *drv,
5447 const struct xhci_driver_overrides *over)
5448 {
5449 BUG_ON(!over);
5450
5451 /* Copy the generic table to drv then apply the overrides */
5452 *drv = xhci_hc_driver;
5453
5454 if (over) {
5455 drv->hcd_priv_size += over->extra_priv_size;
5456 if (over->reset)
5457 drv->reset = over->reset;
5458 if (over->start)
5459 drv->start = over->start;
5460 if (over->add_endpoint)
5461 drv->add_endpoint = over->add_endpoint;
5462 if (over->drop_endpoint)
5463 drv->drop_endpoint = over->drop_endpoint;
5464 if (over->check_bandwidth)
5465 drv->check_bandwidth = over->check_bandwidth;
5466 if (over->reset_bandwidth)
5467 drv->reset_bandwidth = over->reset_bandwidth;
5468 if (over->address_device)
5469 drv->address_device = over->address_device;
5470 if (over->bus_suspend)
5471 drv->bus_suspend = over->bus_suspend;
5472 if (over->bus_resume)
5473 drv->bus_resume = over->bus_resume;
5474 }
5475 }
5476 EXPORT_SYMBOL_GPL(xhci_init_driver);
5477
5478 MODULE_DESCRIPTION(DRIVER_DESC);
5479 MODULE_AUTHOR(DRIVER_AUTHOR);
5480 MODULE_LICENSE("GPL");
5481
xhci_hcd_init(void)5482 static int __init xhci_hcd_init(void)
5483 {
5484 /*
5485 * Check the compiler generated sizes of structures that must be laid
5486 * out in specific ways for hardware access.
5487 */
5488 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5489 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5490 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5491 /* xhci_device_control has eight fields, and also
5492 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5493 */
5494 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5495 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5496 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5497 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5498 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5499 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5500 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5501
5502 if (usb_disabled())
5503 return -ENODEV;
5504
5505 xhci_debugfs_create_root();
5506
5507 return 0;
5508 }
5509
5510 /*
5511 * If an init function is provided, an exit function must also be provided
5512 * to allow module unload.
5513 */
xhci_hcd_fini(void)5514 static void __exit xhci_hcd_fini(void)
5515 {
5516 xhci_debugfs_remove_root();
5517 }
5518
5519 module_init(xhci_hcd_init);
5520 module_exit(xhci_hcd_fini);
5521