1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) "OF: " fmt
3
4 #include <linux/device.h>
5 #include <linux/fwnode.h>
6 #include <linux/io.h>
7 #include <linux/ioport.h>
8 #include <linux/logic_pio.h>
9 #include <linux/module.h>
10 #include <linux/of_address.h>
11 #include <linux/pci.h>
12 #include <linux/pci_regs.h>
13 #include <linux/sizes.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/dma-direct.h> /* for bus_dma_region */
17
18 #include "of_private.h"
19
20 /* Max address size we deal with */
21 #define OF_MAX_ADDR_CELLS 4
22 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
23 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
24
25 static struct of_bus *of_match_bus(struct device_node *np);
26 static int __of_address_to_resource(struct device_node *dev,
27 const __be32 *addrp, u64 size, unsigned int flags,
28 const char *name, struct resource *r);
29
30 /* Debug utility */
31 #ifdef DEBUG
of_dump_addr(const char * s,const __be32 * addr,int na)32 static void of_dump_addr(const char *s, const __be32 *addr, int na)
33 {
34 pr_debug("%s", s);
35 while (na--)
36 pr_cont(" %08x", be32_to_cpu(*(addr++)));
37 pr_cont("\n");
38 }
39 #else
of_dump_addr(const char * s,const __be32 * addr,int na)40 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
41 #endif
42
43 /* Callbacks for bus specific translators */
44 struct of_bus {
45 const char *name;
46 const char *addresses;
47 int (*match)(struct device_node *parent);
48 void (*count_cells)(struct device_node *child,
49 int *addrc, int *sizec);
50 u64 (*map)(__be32 *addr, const __be32 *range,
51 int na, int ns, int pna);
52 int (*translate)(__be32 *addr, u64 offset, int na);
53 bool has_flags;
54 unsigned int (*get_flags)(const __be32 *addr);
55 };
56
57 /*
58 * Default translator (generic bus)
59 */
60
of_bus_default_count_cells(struct device_node * dev,int * addrc,int * sizec)61 static void of_bus_default_count_cells(struct device_node *dev,
62 int *addrc, int *sizec)
63 {
64 if (addrc)
65 *addrc = of_n_addr_cells(dev);
66 if (sizec)
67 *sizec = of_n_size_cells(dev);
68 }
69
of_bus_default_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)70 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
71 int na, int ns, int pna)
72 {
73 u64 cp, s, da;
74
75 cp = of_read_number(range, na);
76 s = of_read_number(range + na + pna, ns);
77 da = of_read_number(addr, na);
78
79 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n",
80 (unsigned long long)cp, (unsigned long long)s,
81 (unsigned long long)da);
82
83 if (da < cp || da >= (cp + s))
84 return OF_BAD_ADDR;
85 return da - cp;
86 }
87
of_bus_default_translate(__be32 * addr,u64 offset,int na)88 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
89 {
90 u64 a = of_read_number(addr, na);
91 memset(addr, 0, na * 4);
92 a += offset;
93 if (na > 1)
94 addr[na - 2] = cpu_to_be32(a >> 32);
95 addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
96
97 return 0;
98 }
99
of_bus_default_get_flags(const __be32 * addr)100 static unsigned int of_bus_default_get_flags(const __be32 *addr)
101 {
102 return IORESOURCE_MEM;
103 }
104
105 #ifdef CONFIG_PCI
of_bus_pci_get_flags(const __be32 * addr)106 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
107 {
108 unsigned int flags = 0;
109 u32 w = be32_to_cpup(addr);
110
111 if (!IS_ENABLED(CONFIG_PCI))
112 return 0;
113
114 switch((w >> 24) & 0x03) {
115 case 0x01:
116 flags |= IORESOURCE_IO;
117 break;
118 case 0x02: /* 32 bits */
119 case 0x03: /* 64 bits */
120 flags |= IORESOURCE_MEM;
121 break;
122 }
123 if (w & 0x40000000)
124 flags |= IORESOURCE_PREFETCH;
125 return flags;
126 }
127
128 /*
129 * PCI bus specific translator
130 */
131
of_node_is_pcie(struct device_node * np)132 static bool of_node_is_pcie(struct device_node *np)
133 {
134 bool is_pcie = of_node_name_eq(np, "pcie");
135
136 if (is_pcie)
137 pr_warn_once("%pOF: Missing device_type\n", np);
138
139 return is_pcie;
140 }
141
of_bus_pci_match(struct device_node * np)142 static int of_bus_pci_match(struct device_node *np)
143 {
144 /*
145 * "pciex" is PCI Express
146 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
147 * "ht" is hypertransport
148 *
149 * If none of the device_type match, and that the node name is
150 * "pcie", accept the device as PCI (with a warning).
151 */
152 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
153 of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
154 of_node_is_pcie(np);
155 }
156
of_bus_pci_count_cells(struct device_node * np,int * addrc,int * sizec)157 static void of_bus_pci_count_cells(struct device_node *np,
158 int *addrc, int *sizec)
159 {
160 if (addrc)
161 *addrc = 3;
162 if (sizec)
163 *sizec = 2;
164 }
165
of_bus_pci_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)166 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
167 int pna)
168 {
169 u64 cp, s, da;
170 unsigned int af, rf;
171
172 af = of_bus_pci_get_flags(addr);
173 rf = of_bus_pci_get_flags(range);
174
175 /* Check address type match */
176 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
177 return OF_BAD_ADDR;
178
179 /* Read address values, skipping high cell */
180 cp = of_read_number(range + 1, na - 1);
181 s = of_read_number(range + na + pna, ns);
182 da = of_read_number(addr + 1, na - 1);
183
184 pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n",
185 (unsigned long long)cp, (unsigned long long)s,
186 (unsigned long long)da);
187
188 if (da < cp || da >= (cp + s))
189 return OF_BAD_ADDR;
190 return da - cp;
191 }
192
of_bus_pci_translate(__be32 * addr,u64 offset,int na)193 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
194 {
195 return of_bus_default_translate(addr + 1, offset, na - 1);
196 }
197
of_get_pci_address(struct device_node * dev,int bar_no,u64 * size,unsigned int * flags)198 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
199 unsigned int *flags)
200 {
201 const __be32 *prop;
202 unsigned int psize;
203 struct device_node *parent;
204 struct of_bus *bus;
205 int onesize, i, na, ns;
206
207 /* Get parent & match bus type */
208 parent = of_get_parent(dev);
209 if (parent == NULL)
210 return NULL;
211 bus = of_match_bus(parent);
212 if (strcmp(bus->name, "pci")) {
213 of_node_put(parent);
214 return NULL;
215 }
216 bus->count_cells(dev, &na, &ns);
217 of_node_put(parent);
218 if (!OF_CHECK_ADDR_COUNT(na))
219 return NULL;
220
221 /* Get "reg" or "assigned-addresses" property */
222 prop = of_get_property(dev, bus->addresses, &psize);
223 if (prop == NULL)
224 return NULL;
225 psize /= 4;
226
227 onesize = na + ns;
228 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
229 u32 val = be32_to_cpu(prop[0]);
230 if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
231 if (size)
232 *size = of_read_number(prop + na, ns);
233 if (flags)
234 *flags = bus->get_flags(prop);
235 return prop;
236 }
237 }
238 return NULL;
239 }
240 EXPORT_SYMBOL(of_get_pci_address);
241
of_pci_address_to_resource(struct device_node * dev,int bar,struct resource * r)242 int of_pci_address_to_resource(struct device_node *dev, int bar,
243 struct resource *r)
244 {
245 const __be32 *addrp;
246 u64 size;
247 unsigned int flags;
248
249 addrp = of_get_pci_address(dev, bar, &size, &flags);
250 if (addrp == NULL)
251 return -EINVAL;
252 return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
253 }
254 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
255
256 /*
257 * of_pci_range_to_resource - Create a resource from an of_pci_range
258 * @range: the PCI range that describes the resource
259 * @np: device node where the range belongs to
260 * @res: pointer to a valid resource that will be updated to
261 * reflect the values contained in the range.
262 *
263 * Returns EINVAL if the range cannot be converted to resource.
264 *
265 * Note that if the range is an IO range, the resource will be converted
266 * using pci_address_to_pio() which can fail if it is called too early or
267 * if the range cannot be matched to any host bridge IO space (our case here).
268 * To guard against that we try to register the IO range first.
269 * If that fails we know that pci_address_to_pio() will do too.
270 */
of_pci_range_to_resource(struct of_pci_range * range,struct device_node * np,struct resource * res)271 int of_pci_range_to_resource(struct of_pci_range *range,
272 struct device_node *np, struct resource *res)
273 {
274 int err;
275 res->flags = range->flags;
276 res->parent = res->child = res->sibling = NULL;
277 res->name = np->full_name;
278
279 if (res->flags & IORESOURCE_IO) {
280 unsigned long port;
281 err = pci_register_io_range(&np->fwnode, range->cpu_addr,
282 range->size);
283 if (err)
284 goto invalid_range;
285 port = pci_address_to_pio(range->cpu_addr);
286 if (port == (unsigned long)-1) {
287 err = -EINVAL;
288 goto invalid_range;
289 }
290 res->start = port;
291 } else {
292 if ((sizeof(resource_size_t) < 8) &&
293 upper_32_bits(range->cpu_addr)) {
294 err = -EINVAL;
295 goto invalid_range;
296 }
297
298 res->start = range->cpu_addr;
299 }
300 res->end = res->start + range->size - 1;
301 return 0;
302
303 invalid_range:
304 res->start = (resource_size_t)OF_BAD_ADDR;
305 res->end = (resource_size_t)OF_BAD_ADDR;
306 return err;
307 }
308 EXPORT_SYMBOL(of_pci_range_to_resource);
309 #endif /* CONFIG_PCI */
310
311 /*
312 * ISA bus specific translator
313 */
314
of_bus_isa_match(struct device_node * np)315 static int of_bus_isa_match(struct device_node *np)
316 {
317 return of_node_name_eq(np, "isa");
318 }
319
of_bus_isa_count_cells(struct device_node * child,int * addrc,int * sizec)320 static void of_bus_isa_count_cells(struct device_node *child,
321 int *addrc, int *sizec)
322 {
323 if (addrc)
324 *addrc = 2;
325 if (sizec)
326 *sizec = 1;
327 }
328
of_bus_isa_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)329 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
330 int pna)
331 {
332 u64 cp, s, da;
333
334 /* Check address type match */
335 if ((addr[0] ^ range[0]) & cpu_to_be32(1))
336 return OF_BAD_ADDR;
337
338 /* Read address values, skipping high cell */
339 cp = of_read_number(range + 1, na - 1);
340 s = of_read_number(range + na + pna, ns);
341 da = of_read_number(addr + 1, na - 1);
342
343 pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n",
344 (unsigned long long)cp, (unsigned long long)s,
345 (unsigned long long)da);
346
347 if (da < cp || da >= (cp + s))
348 return OF_BAD_ADDR;
349 return da - cp;
350 }
351
of_bus_isa_translate(__be32 * addr,u64 offset,int na)352 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
353 {
354 return of_bus_default_translate(addr + 1, offset, na - 1);
355 }
356
of_bus_isa_get_flags(const __be32 * addr)357 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
358 {
359 unsigned int flags = 0;
360 u32 w = be32_to_cpup(addr);
361
362 if (w & 1)
363 flags |= IORESOURCE_IO;
364 else
365 flags |= IORESOURCE_MEM;
366 return flags;
367 }
368
369 /*
370 * Array of bus specific translators
371 */
372
373 static struct of_bus of_busses[] = {
374 #ifdef CONFIG_PCI
375 /* PCI */
376 {
377 .name = "pci",
378 .addresses = "assigned-addresses",
379 .match = of_bus_pci_match,
380 .count_cells = of_bus_pci_count_cells,
381 .map = of_bus_pci_map,
382 .translate = of_bus_pci_translate,
383 .has_flags = true,
384 .get_flags = of_bus_pci_get_flags,
385 },
386 #endif /* CONFIG_PCI */
387 /* ISA */
388 {
389 .name = "isa",
390 .addresses = "reg",
391 .match = of_bus_isa_match,
392 .count_cells = of_bus_isa_count_cells,
393 .map = of_bus_isa_map,
394 .translate = of_bus_isa_translate,
395 .has_flags = true,
396 .get_flags = of_bus_isa_get_flags,
397 },
398 /* Default */
399 {
400 .name = "default",
401 .addresses = "reg",
402 .match = NULL,
403 .count_cells = of_bus_default_count_cells,
404 .map = of_bus_default_map,
405 .translate = of_bus_default_translate,
406 .get_flags = of_bus_default_get_flags,
407 },
408 };
409
of_match_bus(struct device_node * np)410 static struct of_bus *of_match_bus(struct device_node *np)
411 {
412 int i;
413
414 for (i = 0; i < ARRAY_SIZE(of_busses); i++)
415 if (!of_busses[i].match || of_busses[i].match(np))
416 return &of_busses[i];
417 BUG();
418 return NULL;
419 }
420
of_empty_ranges_quirk(struct device_node * np)421 static int of_empty_ranges_quirk(struct device_node *np)
422 {
423 if (IS_ENABLED(CONFIG_PPC)) {
424 /* To save cycles, we cache the result for global "Mac" setting */
425 static int quirk_state = -1;
426
427 /* PA-SEMI sdc DT bug */
428 if (of_device_is_compatible(np, "1682m-sdc"))
429 return true;
430
431 /* Make quirk cached */
432 if (quirk_state < 0)
433 quirk_state =
434 of_machine_is_compatible("Power Macintosh") ||
435 of_machine_is_compatible("MacRISC");
436 return quirk_state;
437 }
438 return false;
439 }
440
of_translate_one(struct device_node * parent,struct of_bus * bus,struct of_bus * pbus,__be32 * addr,int na,int ns,int pna,const char * rprop)441 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
442 struct of_bus *pbus, __be32 *addr,
443 int na, int ns, int pna, const char *rprop)
444 {
445 const __be32 *ranges;
446 unsigned int rlen;
447 int rone;
448 u64 offset = OF_BAD_ADDR;
449
450 /*
451 * Normally, an absence of a "ranges" property means we are
452 * crossing a non-translatable boundary, and thus the addresses
453 * below the current cannot be converted to CPU physical ones.
454 * Unfortunately, while this is very clear in the spec, it's not
455 * what Apple understood, and they do have things like /uni-n or
456 * /ht nodes with no "ranges" property and a lot of perfectly
457 * useable mapped devices below them. Thus we treat the absence of
458 * "ranges" as equivalent to an empty "ranges" property which means
459 * a 1:1 translation at that level. It's up to the caller not to try
460 * to translate addresses that aren't supposed to be translated in
461 * the first place. --BenH.
462 *
463 * As far as we know, this damage only exists on Apple machines, so
464 * This code is only enabled on powerpc. --gcl
465 *
466 * This quirk also applies for 'dma-ranges' which frequently exist in
467 * child nodes without 'dma-ranges' in the parent nodes. --RobH
468 */
469 ranges = of_get_property(parent, rprop, &rlen);
470 if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
471 strcmp(rprop, "dma-ranges")) {
472 pr_debug("no ranges; cannot translate\n");
473 return 1;
474 }
475 if (ranges == NULL || rlen == 0) {
476 offset = of_read_number(addr, na);
477 memset(addr, 0, pna * 4);
478 pr_debug("empty ranges; 1:1 translation\n");
479 goto finish;
480 }
481
482 pr_debug("walking ranges...\n");
483
484 /* Now walk through the ranges */
485 rlen /= 4;
486 rone = na + pna + ns;
487 for (; rlen >= rone; rlen -= rone, ranges += rone) {
488 offset = bus->map(addr, ranges, na, ns, pna);
489 if (offset != OF_BAD_ADDR)
490 break;
491 }
492 if (offset == OF_BAD_ADDR) {
493 pr_debug("not found !\n");
494 return 1;
495 }
496 memcpy(addr, ranges + na, 4 * pna);
497
498 finish:
499 of_dump_addr("parent translation for:", addr, pna);
500 pr_debug("with offset: %llx\n", (unsigned long long)offset);
501
502 /* Translate it into parent bus space */
503 return pbus->translate(addr, offset, pna);
504 }
505
506 /*
507 * Translate an address from the device-tree into a CPU physical address,
508 * this walks up the tree and applies the various bus mappings on the
509 * way.
510 *
511 * Note: We consider that crossing any level with #size-cells == 0 to mean
512 * that translation is impossible (that is we are not dealing with a value
513 * that can be mapped to a cpu physical address). This is not really specified
514 * that way, but this is traditionally the way IBM at least do things
515 *
516 * Whenever the translation fails, the *host pointer will be set to the
517 * device that had registered logical PIO mapping, and the return code is
518 * relative to that node.
519 */
__of_translate_address(struct device_node * dev,struct device_node * (* get_parent)(const struct device_node *),const __be32 * in_addr,const char * rprop,struct device_node ** host)520 static u64 __of_translate_address(struct device_node *dev,
521 struct device_node *(*get_parent)(const struct device_node *),
522 const __be32 *in_addr, const char *rprop,
523 struct device_node **host)
524 {
525 struct device_node *parent = NULL;
526 struct of_bus *bus, *pbus;
527 __be32 addr[OF_MAX_ADDR_CELLS];
528 int na, ns, pna, pns;
529 u64 result = OF_BAD_ADDR;
530
531 pr_debug("** translation for device %pOF **\n", dev);
532
533 /* Increase refcount at current level */
534 of_node_get(dev);
535
536 *host = NULL;
537 /* Get parent & match bus type */
538 parent = get_parent(dev);
539 if (parent == NULL)
540 goto bail;
541 bus = of_match_bus(parent);
542
543 /* Count address cells & copy address locally */
544 bus->count_cells(dev, &na, &ns);
545 if (!OF_CHECK_COUNTS(na, ns)) {
546 pr_debug("Bad cell count for %pOF\n", dev);
547 goto bail;
548 }
549 memcpy(addr, in_addr, na * 4);
550
551 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
552 bus->name, na, ns, parent);
553 of_dump_addr("translating address:", addr, na);
554
555 /* Translate */
556 for (;;) {
557 struct logic_pio_hwaddr *iorange;
558
559 /* Switch to parent bus */
560 of_node_put(dev);
561 dev = parent;
562 parent = get_parent(dev);
563
564 /* If root, we have finished */
565 if (parent == NULL) {
566 pr_debug("reached root node\n");
567 result = of_read_number(addr, na);
568 break;
569 }
570
571 /*
572 * For indirectIO device which has no ranges property, get
573 * the address from reg directly.
574 */
575 iorange = find_io_range_by_fwnode(&dev->fwnode);
576 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
577 result = of_read_number(addr + 1, na - 1);
578 pr_debug("indirectIO matched(%pOF) 0x%llx\n",
579 dev, result);
580 *host = of_node_get(dev);
581 break;
582 }
583
584 /* Get new parent bus and counts */
585 pbus = of_match_bus(parent);
586 pbus->count_cells(dev, &pna, &pns);
587 if (!OF_CHECK_COUNTS(pna, pns)) {
588 pr_err("Bad cell count for %pOF\n", dev);
589 break;
590 }
591
592 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
593 pbus->name, pna, pns, parent);
594
595 /* Apply bus translation */
596 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
597 break;
598
599 /* Complete the move up one level */
600 na = pna;
601 ns = pns;
602 bus = pbus;
603
604 of_dump_addr("one level translation:", addr, na);
605 }
606 bail:
607 of_node_put(parent);
608 of_node_put(dev);
609
610 return result;
611 }
612
of_translate_address(struct device_node * dev,const __be32 * in_addr)613 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
614 {
615 struct device_node *host;
616 u64 ret;
617
618 ret = __of_translate_address(dev, of_get_parent,
619 in_addr, "ranges", &host);
620 if (host) {
621 of_node_put(host);
622 return OF_BAD_ADDR;
623 }
624
625 return ret;
626 }
627 EXPORT_SYMBOL(of_translate_address);
628
__of_get_dma_parent(const struct device_node * np)629 static struct device_node *__of_get_dma_parent(const struct device_node *np)
630 {
631 struct of_phandle_args args;
632 int ret, index;
633
634 index = of_property_match_string(np, "interconnect-names", "dma-mem");
635 if (index < 0)
636 return of_get_parent(np);
637
638 ret = of_parse_phandle_with_args(np, "interconnects",
639 "#interconnect-cells",
640 index, &args);
641 if (ret < 0)
642 return of_get_parent(np);
643
644 return of_node_get(args.np);
645 }
646
of_get_next_dma_parent(struct device_node * np)647 static struct device_node *of_get_next_dma_parent(struct device_node *np)
648 {
649 struct device_node *parent;
650
651 parent = __of_get_dma_parent(np);
652 of_node_put(np);
653
654 return parent;
655 }
656
of_translate_dma_address(struct device_node * dev,const __be32 * in_addr)657 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
658 {
659 struct device_node *host;
660 u64 ret;
661
662 ret = __of_translate_address(dev, __of_get_dma_parent,
663 in_addr, "dma-ranges", &host);
664
665 if (host) {
666 of_node_put(host);
667 return OF_BAD_ADDR;
668 }
669
670 return ret;
671 }
672 EXPORT_SYMBOL(of_translate_dma_address);
673
of_get_address(struct device_node * dev,int index,u64 * size,unsigned int * flags)674 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
675 unsigned int *flags)
676 {
677 const __be32 *prop;
678 unsigned int psize;
679 struct device_node *parent;
680 struct of_bus *bus;
681 int onesize, i, na, ns;
682
683 /* Get parent & match bus type */
684 parent = of_get_parent(dev);
685 if (parent == NULL)
686 return NULL;
687 bus = of_match_bus(parent);
688 bus->count_cells(dev, &na, &ns);
689 of_node_put(parent);
690 if (!OF_CHECK_ADDR_COUNT(na))
691 return NULL;
692
693 /* Get "reg" or "assigned-addresses" property */
694 prop = of_get_property(dev, bus->addresses, &psize);
695 if (prop == NULL)
696 return NULL;
697 psize /= 4;
698
699 onesize = na + ns;
700 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
701 if (i == index) {
702 if (size)
703 *size = of_read_number(prop + na, ns);
704 if (flags)
705 *flags = bus->get_flags(prop);
706 return prop;
707 }
708 return NULL;
709 }
710 EXPORT_SYMBOL(of_get_address);
711
parser_init(struct of_pci_range_parser * parser,struct device_node * node,const char * name)712 static int parser_init(struct of_pci_range_parser *parser,
713 struct device_node *node, const char *name)
714 {
715 int rlen;
716
717 parser->node = node;
718 parser->pna = of_n_addr_cells(node);
719 parser->na = of_bus_n_addr_cells(node);
720 parser->ns = of_bus_n_size_cells(node);
721 parser->dma = !strcmp(name, "dma-ranges");
722 parser->bus = of_match_bus(node);
723
724 parser->range = of_get_property(node, name, &rlen);
725 if (parser->range == NULL)
726 return -ENOENT;
727
728 parser->end = parser->range + rlen / sizeof(__be32);
729
730 return 0;
731 }
732
of_pci_range_parser_init(struct of_pci_range_parser * parser,struct device_node * node)733 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
734 struct device_node *node)
735 {
736 return parser_init(parser, node, "ranges");
737 }
738 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
739
of_pci_dma_range_parser_init(struct of_pci_range_parser * parser,struct device_node * node)740 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
741 struct device_node *node)
742 {
743 return parser_init(parser, node, "dma-ranges");
744 }
745 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
746 #define of_dma_range_parser_init of_pci_dma_range_parser_init
747
of_pci_range_parser_one(struct of_pci_range_parser * parser,struct of_pci_range * range)748 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
749 struct of_pci_range *range)
750 {
751 int na = parser->na;
752 int ns = parser->ns;
753 int np = parser->pna + na + ns;
754 int busflag_na = 0;
755
756 if (!range)
757 return NULL;
758
759 if (!parser->range || parser->range + np > parser->end)
760 return NULL;
761
762 range->flags = parser->bus->get_flags(parser->range);
763
764 /* A extra cell for resource flags */
765 if (parser->bus->has_flags)
766 busflag_na = 1;
767
768 range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
769
770 if (parser->dma)
771 range->cpu_addr = of_translate_dma_address(parser->node,
772 parser->range + na);
773 else
774 range->cpu_addr = of_translate_address(parser->node,
775 parser->range + na);
776 range->size = of_read_number(parser->range + parser->pna + na, ns);
777
778 parser->range += np;
779
780 /* Now consume following elements while they are contiguous */
781 while (parser->range + np <= parser->end) {
782 u32 flags = 0;
783 u64 bus_addr, cpu_addr, size;
784
785 flags = parser->bus->get_flags(parser->range);
786 bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
787 if (parser->dma)
788 cpu_addr = of_translate_dma_address(parser->node,
789 parser->range + na);
790 else
791 cpu_addr = of_translate_address(parser->node,
792 parser->range + na);
793 size = of_read_number(parser->range + parser->pna + na, ns);
794
795 if (flags != range->flags)
796 break;
797 if (bus_addr != range->bus_addr + range->size ||
798 cpu_addr != range->cpu_addr + range->size)
799 break;
800
801 range->size += size;
802 parser->range += np;
803 }
804
805 return range;
806 }
807 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
808
of_translate_ioport(struct device_node * dev,const __be32 * in_addr,u64 size)809 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
810 u64 size)
811 {
812 u64 taddr;
813 unsigned long port;
814 struct device_node *host;
815
816 taddr = __of_translate_address(dev, of_get_parent,
817 in_addr, "ranges", &host);
818 if (host) {
819 /* host-specific port access */
820 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
821 of_node_put(host);
822 } else {
823 /* memory-mapped I/O range */
824 port = pci_address_to_pio(taddr);
825 }
826
827 if (port == (unsigned long)-1)
828 return OF_BAD_ADDR;
829
830 return port;
831 }
832
__of_address_to_resource(struct device_node * dev,const __be32 * addrp,u64 size,unsigned int flags,const char * name,struct resource * r)833 static int __of_address_to_resource(struct device_node *dev,
834 const __be32 *addrp, u64 size, unsigned int flags,
835 const char *name, struct resource *r)
836 {
837 u64 taddr;
838
839 if (flags & IORESOURCE_MEM)
840 taddr = of_translate_address(dev, addrp);
841 else if (flags & IORESOURCE_IO)
842 taddr = of_translate_ioport(dev, addrp, size);
843 else
844 return -EINVAL;
845
846 if (taddr == OF_BAD_ADDR)
847 return -EINVAL;
848 memset(r, 0, sizeof(struct resource));
849
850 r->start = taddr;
851 r->end = taddr + size - 1;
852 r->flags = flags;
853 r->name = name ? name : dev->full_name;
854
855 return 0;
856 }
857
858 /**
859 * of_address_to_resource - Translate device tree address and return as resource
860 *
861 * Note that if your address is a PIO address, the conversion will fail if
862 * the physical address can't be internally converted to an IO token with
863 * pci_address_to_pio(), that is because it's either called too early or it
864 * can't be matched to any host bridge IO space
865 */
of_address_to_resource(struct device_node * dev,int index,struct resource * r)866 int of_address_to_resource(struct device_node *dev, int index,
867 struct resource *r)
868 {
869 const __be32 *addrp;
870 u64 size;
871 unsigned int flags;
872 const char *name = NULL;
873
874 addrp = of_get_address(dev, index, &size, &flags);
875 if (addrp == NULL)
876 return -EINVAL;
877
878 /* Get optional "reg-names" property to add a name to a resource */
879 of_property_read_string_index(dev, "reg-names", index, &name);
880
881 return __of_address_to_resource(dev, addrp, size, flags, name, r);
882 }
883 EXPORT_SYMBOL_GPL(of_address_to_resource);
884
885 /**
886 * of_iomap - Maps the memory mapped IO for a given device_node
887 * @np: the device whose io range will be mapped
888 * @index: index of the io range
889 *
890 * Returns a pointer to the mapped memory
891 */
of_iomap(struct device_node * np,int index)892 void __iomem *of_iomap(struct device_node *np, int index)
893 {
894 struct resource res;
895
896 if (of_address_to_resource(np, index, &res))
897 return NULL;
898
899 return ioremap(res.start, resource_size(&res));
900 }
901 EXPORT_SYMBOL(of_iomap);
902
903 /*
904 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
905 * for a given device_node
906 * @device: the device whose io range will be mapped
907 * @index: index of the io range
908 * @name: name "override" for the memory region request or NULL
909 *
910 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
911 * error code on failure. Usage example:
912 *
913 * base = of_io_request_and_map(node, 0, "foo");
914 * if (IS_ERR(base))
915 * return PTR_ERR(base);
916 */
of_io_request_and_map(struct device_node * np,int index,const char * name)917 void __iomem *of_io_request_and_map(struct device_node *np, int index,
918 const char *name)
919 {
920 struct resource res;
921 void __iomem *mem;
922
923 if (of_address_to_resource(np, index, &res))
924 return IOMEM_ERR_PTR(-EINVAL);
925
926 if (!name)
927 name = res.name;
928 if (!request_mem_region(res.start, resource_size(&res), name))
929 return IOMEM_ERR_PTR(-EBUSY);
930
931 mem = ioremap(res.start, resource_size(&res));
932 if (!mem) {
933 release_mem_region(res.start, resource_size(&res));
934 return IOMEM_ERR_PTR(-ENOMEM);
935 }
936
937 return mem;
938 }
939 EXPORT_SYMBOL(of_io_request_and_map);
940
941 #ifdef CONFIG_HAS_DMA
942 /**
943 * of_dma_get_range - Get DMA range info and put it into a map array
944 * @np: device node to get DMA range info
945 * @map: dma range structure to return
946 *
947 * Look in bottom up direction for the first "dma-ranges" property
948 * and parse it. Put the information into a DMA offset map array.
949 *
950 * dma-ranges format:
951 * DMA addr (dma_addr) : naddr cells
952 * CPU addr (phys_addr_t) : pna cells
953 * size : nsize cells
954 *
955 * It returns -ENODEV if "dma-ranges" property was not found for this
956 * device in the DT.
957 */
of_dma_get_range(struct device_node * np,const struct bus_dma_region ** map)958 int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
959 {
960 struct device_node *node = of_node_get(np);
961 const __be32 *ranges = NULL;
962 bool found_dma_ranges = false;
963 struct of_range_parser parser;
964 struct of_range range;
965 struct bus_dma_region *r;
966 int len, num_ranges = 0;
967 int ret = 0;
968
969 while (node) {
970 ranges = of_get_property(node, "dma-ranges", &len);
971
972 /* Ignore empty ranges, they imply no translation required */
973 if (ranges && len > 0)
974 break;
975
976 /* Once we find 'dma-ranges', then a missing one is an error */
977 if (found_dma_ranges && !ranges) {
978 ret = -ENODEV;
979 goto out;
980 }
981 found_dma_ranges = true;
982
983 node = of_get_next_dma_parent(node);
984 }
985
986 if (!node || !ranges) {
987 pr_debug("no dma-ranges found for node(%pOF)\n", np);
988 ret = -ENODEV;
989 goto out;
990 }
991
992 of_dma_range_parser_init(&parser, node);
993 for_each_of_range(&parser, &range) {
994 if (range.cpu_addr == OF_BAD_ADDR) {
995 pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
996 range.bus_addr, node);
997 continue;
998 }
999 num_ranges++;
1000 }
1001
1002 if (!num_ranges) {
1003 ret = -EINVAL;
1004 goto out;
1005 }
1006
1007 r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
1008 if (!r) {
1009 ret = -ENOMEM;
1010 goto out;
1011 }
1012
1013 /*
1014 * Record all info in the generic DMA ranges array for struct device,
1015 * returning an error if we don't find any parsable ranges.
1016 */
1017 *map = r;
1018 of_dma_range_parser_init(&parser, node);
1019 for_each_of_range(&parser, &range) {
1020 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
1021 range.bus_addr, range.cpu_addr, range.size);
1022 if (range.cpu_addr == OF_BAD_ADDR)
1023 continue;
1024 r->cpu_start = range.cpu_addr;
1025 r->dma_start = range.bus_addr;
1026 r->size = range.size;
1027 r->offset = range.cpu_addr - range.bus_addr;
1028 r++;
1029 }
1030 out:
1031 of_node_put(node);
1032 return ret;
1033 }
1034 #endif /* CONFIG_HAS_DMA */
1035
1036 /**
1037 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
1038 * @np: The node to start searching from or NULL to start from the root
1039 *
1040 * Gets the highest CPU physical address that is addressable by all DMA masters
1041 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
1042 * DMA constrained device is found, it returns PHYS_ADDR_MAX.
1043 */
of_dma_get_max_cpu_address(struct device_node * np)1044 phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
1045 {
1046 phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
1047 struct of_range_parser parser;
1048 phys_addr_t subtree_max_addr;
1049 struct device_node *child;
1050 struct of_range range;
1051 const __be32 *ranges;
1052 u64 cpu_end = 0;
1053 int len;
1054
1055 if (!np)
1056 np = of_root;
1057
1058 ranges = of_get_property(np, "dma-ranges", &len);
1059 if (ranges && len) {
1060 of_dma_range_parser_init(&parser, np);
1061 for_each_of_range(&parser, &range)
1062 if (range.cpu_addr + range.size > cpu_end)
1063 cpu_end = range.cpu_addr + range.size - 1;
1064
1065 if (max_cpu_addr > cpu_end)
1066 max_cpu_addr = cpu_end;
1067 }
1068
1069 for_each_available_child_of_node(np, child) {
1070 subtree_max_addr = of_dma_get_max_cpu_address(child);
1071 if (max_cpu_addr > subtree_max_addr)
1072 max_cpu_addr = subtree_max_addr;
1073 }
1074
1075 return max_cpu_addr;
1076 }
1077
1078 /**
1079 * of_dma_is_coherent - Check if device is coherent
1080 * @np: device node
1081 *
1082 * It returns true if "dma-coherent" property was found
1083 * for this device in the DT, or if DMA is coherent by
1084 * default for OF devices on the current platform.
1085 */
of_dma_is_coherent(struct device_node * np)1086 bool of_dma_is_coherent(struct device_node *np)
1087 {
1088 struct device_node *node;
1089
1090 if (IS_ENABLED(CONFIG_OF_DMA_DEFAULT_COHERENT))
1091 return true;
1092
1093 node = of_node_get(np);
1094
1095 while (node) {
1096 if (of_property_read_bool(node, "dma-coherent")) {
1097 of_node_put(node);
1098 return true;
1099 }
1100 node = of_get_next_dma_parent(node);
1101 }
1102 of_node_put(node);
1103 return false;
1104 }
1105 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1106