1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com>
4 */
5 /*
6 * This driver supports the sensor part of the first and second revision of
7 * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
8 * of lack of specs the CPU/RAM voltage & frequency control is not supported!
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/jiffies.h>
18 #include <linux/mutex.h>
19 #include <linux/err.h>
20 #include <linux/delay.h>
21 #include <linux/platform_device.h>
22 #include <linux/hwmon.h>
23 #include <linux/hwmon-sysfs.h>
24 #include <linux/dmi.h>
25 #include <linux/io.h>
26
27 /* Banks */
28 #define ABIT_UGURU_ALARM_BANK 0x20 /* 1x 3 bytes */
29 #define ABIT_UGURU_SENSOR_BANK1 0x21 /* 16x volt and temp */
30 #define ABIT_UGURU_FAN_PWM 0x24 /* 3x 5 bytes */
31 #define ABIT_UGURU_SENSOR_BANK2 0x26 /* fans */
32 /* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
33 #define ABIT_UGURU_MAX_BANK1_SENSORS 16
34 /*
35 * Warning if you increase one of the 2 MAX defines below to 10 or higher you
36 * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number!
37 */
38 /* max nr of sensors in bank2, currently mb's with max 6 fans are known */
39 #define ABIT_UGURU_MAX_BANK2_SENSORS 6
40 /* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
41 #define ABIT_UGURU_MAX_PWMS 5
42 /* uGuru sensor bank 1 flags */ /* Alarm if: */
43 #define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE 0x01 /* temp over warn */
44 #define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE 0x02 /* volt over max */
45 #define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE 0x04 /* volt under min */
46 #define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG 0x10 /* temp is over warn */
47 #define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG 0x20 /* volt is over max */
48 #define ABIT_UGURU_VOLT_LOW_ALARM_FLAG 0x40 /* volt is under min */
49 /* uGuru sensor bank 2 flags */ /* Alarm if: */
50 #define ABIT_UGURU_FAN_LOW_ALARM_ENABLE 0x01 /* fan under min */
51 /* uGuru sensor bank common flags */
52 #define ABIT_UGURU_BEEP_ENABLE 0x08 /* beep if alarm */
53 #define ABIT_UGURU_SHUTDOWN_ENABLE 0x80 /* shutdown if alarm */
54 /* uGuru fan PWM (speed control) flags */
55 #define ABIT_UGURU_FAN_PWM_ENABLE 0x80 /* enable speed control */
56 /* Values used for conversion */
57 #define ABIT_UGURU_FAN_MAX 15300 /* RPM */
58 /* Bank1 sensor types */
59 #define ABIT_UGURU_IN_SENSOR 0
60 #define ABIT_UGURU_TEMP_SENSOR 1
61 #define ABIT_UGURU_NC 2
62 /*
63 * In many cases we need to wait for the uGuru to reach a certain status, most
64 * of the time it will reach this status within 30 - 90 ISA reads, and thus we
65 * can best busy wait. This define gives the total amount of reads to try.
66 */
67 #define ABIT_UGURU_WAIT_TIMEOUT 125
68 /*
69 * However sometimes older versions of the uGuru seem to be distracted and they
70 * do not respond for a long time. To handle this we sleep before each of the
71 * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries.
72 */
73 #define ABIT_UGURU_WAIT_TIMEOUT_SLEEP 5
74 /*
75 * Normally all expected status in abituguru_ready, are reported after the
76 * first read, but sometimes not and we need to poll.
77 */
78 #define ABIT_UGURU_READY_TIMEOUT 5
79 /* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
80 #define ABIT_UGURU_MAX_RETRIES 3
81 #define ABIT_UGURU_RETRY_DELAY (HZ/5)
82 /* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
83 #define ABIT_UGURU_MAX_TIMEOUTS 2
84 /* utility macros */
85 #define ABIT_UGURU_NAME "abituguru"
86 #define ABIT_UGURU_DEBUG(level, format, arg...) \
87 do { \
88 if (level <= verbose) \
89 pr_debug(format , ## arg); \
90 } while (0)
91
92 /* Macros to help calculate the sysfs_names array length */
93 /*
94 * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
95 * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0
96 */
97 #define ABITUGURU_IN_NAMES_LENGTH (11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
98 /*
99 * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
100 * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0
101 */
102 #define ABITUGURU_TEMP_NAMES_LENGTH (13 + 11 + 12 + 13 + 20 + 12 + 16)
103 /*
104 * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
105 * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0
106 */
107 #define ABITUGURU_FAN_NAMES_LENGTH (11 + 9 + 11 + 18 + 10 + 14)
108 /*
109 * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
110 * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0
111 */
112 #define ABITUGURU_PWM_NAMES_LENGTH (12 + 24 + 2 * 21 + 2 * 22)
113 /* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
114 #define ABITUGURU_SYSFS_NAMES_LENGTH ( \
115 ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
116 ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
117 ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
118
119 /*
120 * All the macros below are named identical to the oguru and oguru2 programs
121 * reverse engineered by Olle Sandberg, hence the names might not be 100%
122 * logical. I could come up with better names, but I prefer keeping the names
123 * identical so that this driver can be compared with his work more easily.
124 */
125 /* Two i/o-ports are used by uGuru */
126 #define ABIT_UGURU_BASE 0x00E0
127 /* Used to tell uGuru what to read and to read the actual data */
128 #define ABIT_UGURU_CMD 0x00
129 /* Mostly used to check if uGuru is busy */
130 #define ABIT_UGURU_DATA 0x04
131 #define ABIT_UGURU_REGION_LENGTH 5
132 /* uGuru status' */
133 #define ABIT_UGURU_STATUS_WRITE 0x00 /* Ready to be written */
134 #define ABIT_UGURU_STATUS_READ 0x01 /* Ready to be read */
135 #define ABIT_UGURU_STATUS_INPUT 0x08 /* More input */
136 #define ABIT_UGURU_STATUS_READY 0x09 /* Ready to be written */
137
138 /* Constants */
139 /* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
140 static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
141 /*
142 * Min / Max allowed values for sensor2 (fan) alarm threshold, these values
143 * correspond to 300-3000 RPM
144 */
145 static const u8 abituguru_bank2_min_threshold = 5;
146 static const u8 abituguru_bank2_max_threshold = 50;
147 /*
148 * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
149 * are temperature trip points.
150 */
151 static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
152 /*
153 * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
154 * special case the minimum allowed pwm% setting for this is 30% (77) on
155 * some MB's this special case is handled in the code!
156 */
157 static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
158 static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
159
160
161 /* Insmod parameters */
162 static bool force;
163 module_param(force, bool, 0);
164 MODULE_PARM_DESC(force, "Set to one to force detection.");
165 static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
166 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
167 module_param_array(bank1_types, int, NULL, 0);
168 MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
169 " -1 autodetect\n"
170 " 0 volt sensor\n"
171 " 1 temp sensor\n"
172 " 2 not connected");
173 static int fan_sensors;
174 module_param(fan_sensors, int, 0);
175 MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
176 "(0 = autodetect)");
177 static int pwms;
178 module_param(pwms, int, 0);
179 MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
180 "(0 = autodetect)");
181
182 /* Default verbose is 2, since this driver is still in the testing phase */
183 static int verbose = 2;
184 module_param(verbose, int, 0644);
185 MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
186 " 0 normal output\n"
187 " 1 + verbose error reporting\n"
188 " 2 + sensors type probing info\n"
189 " 3 + retryable error reporting");
190
191
192 /*
193 * For the Abit uGuru, we need to keep some data in memory.
194 * The structure is dynamically allocated, at the same time when a new
195 * abituguru device is allocated.
196 */
197 struct abituguru_data {
198 struct device *hwmon_dev; /* hwmon registered device */
199 struct mutex update_lock; /* protect access to data and uGuru */
200 unsigned long last_updated; /* In jiffies */
201 unsigned short addr; /* uguru base address */
202 char uguru_ready; /* is the uguru in ready state? */
203 unsigned char update_timeouts; /*
204 * number of update timeouts since last
205 * successful update
206 */
207
208 /*
209 * The sysfs attr and their names are generated automatically, for bank1
210 * we cannot use a predefined array because we don't know beforehand
211 * of a sensor is a volt or a temp sensor, for bank2 and the pwms its
212 * easier todo things the same way. For in sensors we have 9 (temp 7)
213 * sysfs entries per sensor, for bank2 and pwms 6.
214 */
215 struct sensor_device_attribute_2 sysfs_attr[
216 ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
217 ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
218 /* Buffer to store the dynamically generated sysfs names */
219 char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
220
221 /* Bank 1 data */
222 /* number of and addresses of [0] in, [1] temp sensors */
223 u8 bank1_sensors[2];
224 u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
225 u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
226 /*
227 * This array holds 3 entries per sensor for the bank 1 sensor settings
228 * (flags, min, max for voltage / flags, warn, shutdown for temp).
229 */
230 u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
231 /*
232 * Maximum value for each sensor used for scaling in mV/millidegrees
233 * Celsius.
234 */
235 int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
236
237 /* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
238 u8 bank2_sensors; /* actual number of bank2 sensors found */
239 u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
240 u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
241
242 /* Alarms 2 bytes for bank1, 1 byte for bank2 */
243 u8 alarms[3];
244
245 /* Fan PWM (speed control) 5 bytes per PWM */
246 u8 pwms; /* actual number of pwms found */
247 u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
248 };
249
250 static const char *never_happen = "This should never happen.";
251 static const char *report_this =
252 "Please report this to the abituguru maintainer (see MAINTAINERS)";
253
254 /* wait till the uguru is in the specified state */
abituguru_wait(struct abituguru_data * data,u8 state)255 static int abituguru_wait(struct abituguru_data *data, u8 state)
256 {
257 int timeout = ABIT_UGURU_WAIT_TIMEOUT;
258
259 while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
260 timeout--;
261 if (timeout == 0)
262 return -EBUSY;
263 /*
264 * sleep a bit before our last few tries, see the comment on
265 * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined.
266 */
267 if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
268 msleep(0);
269 }
270 return 0;
271 }
272
273 /* Put the uguru in ready for input state */
abituguru_ready(struct abituguru_data * data)274 static int abituguru_ready(struct abituguru_data *data)
275 {
276 int timeout = ABIT_UGURU_READY_TIMEOUT;
277
278 if (data->uguru_ready)
279 return 0;
280
281 /* Reset? / Prepare for next read/write cycle */
282 outb(0x00, data->addr + ABIT_UGURU_DATA);
283
284 /* Wait till the uguru is ready */
285 if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
286 ABIT_UGURU_DEBUG(1,
287 "timeout exceeded waiting for ready state\n");
288 return -EIO;
289 }
290
291 /* Cmd port MUST be read now and should contain 0xAC */
292 while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
293 timeout--;
294 if (timeout == 0) {
295 ABIT_UGURU_DEBUG(1,
296 "CMD reg does not hold 0xAC after ready command\n");
297 return -EIO;
298 }
299 msleep(0);
300 }
301
302 /*
303 * After this the ABIT_UGURU_DATA port should contain
304 * ABIT_UGURU_STATUS_INPUT
305 */
306 timeout = ABIT_UGURU_READY_TIMEOUT;
307 while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
308 timeout--;
309 if (timeout == 0) {
310 ABIT_UGURU_DEBUG(1,
311 "state != more input after ready command\n");
312 return -EIO;
313 }
314 msleep(0);
315 }
316
317 data->uguru_ready = 1;
318 return 0;
319 }
320
321 /*
322 * Send the bank and then sensor address to the uGuru for the next read/write
323 * cycle. This function gets called as the first part of a read/write by
324 * abituguru_read and abituguru_write. This function should never be
325 * called by any other function.
326 */
abituguru_send_address(struct abituguru_data * data,u8 bank_addr,u8 sensor_addr,int retries)327 static int abituguru_send_address(struct abituguru_data *data,
328 u8 bank_addr, u8 sensor_addr, int retries)
329 {
330 /*
331 * assume the caller does error handling itself if it has not requested
332 * any retries, and thus be quiet.
333 */
334 int report_errors = retries;
335
336 for (;;) {
337 /*
338 * Make sure the uguru is ready and then send the bank address,
339 * after this the uguru is no longer "ready".
340 */
341 if (abituguru_ready(data) != 0)
342 return -EIO;
343 outb(bank_addr, data->addr + ABIT_UGURU_DATA);
344 data->uguru_ready = 0;
345
346 /*
347 * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
348 * and send the sensor addr
349 */
350 if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
351 if (retries) {
352 ABIT_UGURU_DEBUG(3, "timeout exceeded "
353 "waiting for more input state, %d "
354 "tries remaining\n", retries);
355 set_current_state(TASK_UNINTERRUPTIBLE);
356 schedule_timeout(ABIT_UGURU_RETRY_DELAY);
357 retries--;
358 continue;
359 }
360 if (report_errors)
361 ABIT_UGURU_DEBUG(1, "timeout exceeded "
362 "waiting for more input state "
363 "(bank: %d)\n", (int)bank_addr);
364 return -EBUSY;
365 }
366 outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
367 return 0;
368 }
369 }
370
371 /*
372 * Read count bytes from sensor sensor_addr in bank bank_addr and store the
373 * result in buf, retry the send address part of the read retries times.
374 */
abituguru_read(struct abituguru_data * data,u8 bank_addr,u8 sensor_addr,u8 * buf,int count,int retries)375 static int abituguru_read(struct abituguru_data *data,
376 u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
377 {
378 int i;
379
380 /* Send the address */
381 i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
382 if (i)
383 return i;
384
385 /* And read the data */
386 for (i = 0; i < count; i++) {
387 if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
388 ABIT_UGURU_DEBUG(retries ? 1 : 3,
389 "timeout exceeded waiting for "
390 "read state (bank: %d, sensor: %d)\n",
391 (int)bank_addr, (int)sensor_addr);
392 break;
393 }
394 buf[i] = inb(data->addr + ABIT_UGURU_CMD);
395 }
396
397 /* Last put the chip back in ready state */
398 abituguru_ready(data);
399
400 return i;
401 }
402
403 /*
404 * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
405 * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times.
406 */
abituguru_write(struct abituguru_data * data,u8 bank_addr,u8 sensor_addr,u8 * buf,int count)407 static int abituguru_write(struct abituguru_data *data,
408 u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
409 {
410 /*
411 * We use the ready timeout as we have to wait for 0xAC just like the
412 * ready function
413 */
414 int i, timeout = ABIT_UGURU_READY_TIMEOUT;
415
416 /* Send the address */
417 i = abituguru_send_address(data, bank_addr, sensor_addr,
418 ABIT_UGURU_MAX_RETRIES);
419 if (i)
420 return i;
421
422 /* And write the data */
423 for (i = 0; i < count; i++) {
424 if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
425 ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
426 "write state (bank: %d, sensor: %d)\n",
427 (int)bank_addr, (int)sensor_addr);
428 break;
429 }
430 outb(buf[i], data->addr + ABIT_UGURU_CMD);
431 }
432
433 /*
434 * Now we need to wait till the chip is ready to be read again,
435 * so that we can read 0xAC as confirmation that our write has
436 * succeeded.
437 */
438 if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
439 ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
440 "after write (bank: %d, sensor: %d)\n", (int)bank_addr,
441 (int)sensor_addr);
442 return -EIO;
443 }
444
445 /* Cmd port MUST be read now and should contain 0xAC */
446 while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
447 timeout--;
448 if (timeout == 0) {
449 ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
450 "write (bank: %d, sensor: %d)\n",
451 (int)bank_addr, (int)sensor_addr);
452 return -EIO;
453 }
454 msleep(0);
455 }
456
457 /* Last put the chip back in ready state */
458 abituguru_ready(data);
459
460 return i;
461 }
462
463 /*
464 * Detect sensor type. Temp and Volt sensors are enabled with
465 * different masks and will ignore enable masks not meant for them.
466 * This enables us to test what kind of sensor we're dealing with.
467 * By setting the alarm thresholds so that we will always get an
468 * alarm for sensor type X and then enabling the sensor as sensor type
469 * X, if we then get an alarm it is a sensor of type X.
470 */
471 static int
abituguru_detect_bank1_sensor_type(struct abituguru_data * data,u8 sensor_addr)472 abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
473 u8 sensor_addr)
474 {
475 u8 val, test_flag, buf[3];
476 int i, ret = -ENODEV; /* error is the most common used retval :| */
477
478 /* If overriden by the user return the user selected type */
479 if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
480 bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
481 ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
482 "%d because of \"bank1_types\" module param\n",
483 bank1_types[sensor_addr], (int)sensor_addr);
484 return bank1_types[sensor_addr];
485 }
486
487 /* First read the sensor and the current settings */
488 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
489 1, ABIT_UGURU_MAX_RETRIES) != 1)
490 return -ENODEV;
491
492 /* Test val is sane / usable for sensor type detection. */
493 if ((val < 10u) || (val > 250u)) {
494 pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
495 "unable to determine sensor type, skipping sensor\n",
496 (int)sensor_addr, (int)val);
497 /*
498 * assume no sensor is there for sensors for which we can't
499 * determine the sensor type because their reading is too close
500 * to their limits, this usually means no sensor is there.
501 */
502 return ABIT_UGURU_NC;
503 }
504
505 ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
506 /*
507 * Volt sensor test, enable volt low alarm, set min value ridiculously
508 * high, or vica versa if the reading is very high. If its a volt
509 * sensor this should always give us an alarm.
510 */
511 if (val <= 240u) {
512 buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
513 buf[1] = 245;
514 buf[2] = 250;
515 test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
516 } else {
517 buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE;
518 buf[1] = 5;
519 buf[2] = 10;
520 test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG;
521 }
522
523 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
524 buf, 3) != 3)
525 goto abituguru_detect_bank1_sensor_type_exit;
526 /*
527 * Now we need 20 ms to give the uguru time to read the sensors
528 * and raise a voltage alarm
529 */
530 set_current_state(TASK_UNINTERRUPTIBLE);
531 schedule_timeout(HZ/50);
532 /* Check for alarm and check the alarm is a volt low alarm. */
533 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
534 ABIT_UGURU_MAX_RETRIES) != 3)
535 goto abituguru_detect_bank1_sensor_type_exit;
536 if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
537 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
538 sensor_addr, buf, 3,
539 ABIT_UGURU_MAX_RETRIES) != 3)
540 goto abituguru_detect_bank1_sensor_type_exit;
541 if (buf[0] & test_flag) {
542 ABIT_UGURU_DEBUG(2, " found volt sensor\n");
543 ret = ABIT_UGURU_IN_SENSOR;
544 goto abituguru_detect_bank1_sensor_type_exit;
545 } else
546 ABIT_UGURU_DEBUG(2, " alarm raised during volt "
547 "sensor test, but volt range flag not set\n");
548 } else
549 ABIT_UGURU_DEBUG(2, " alarm not raised during volt sensor "
550 "test\n");
551
552 /*
553 * Temp sensor test, enable sensor as a temp sensor, set beep value
554 * ridiculously low (but not too low, otherwise uguru ignores it).
555 * If its a temp sensor this should always give us an alarm.
556 */
557 buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
558 buf[1] = 5;
559 buf[2] = 10;
560 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
561 buf, 3) != 3)
562 goto abituguru_detect_bank1_sensor_type_exit;
563 /*
564 * Now we need 50 ms to give the uguru time to read the sensors
565 * and raise a temp alarm
566 */
567 set_current_state(TASK_UNINTERRUPTIBLE);
568 schedule_timeout(HZ/20);
569 /* Check for alarm and check the alarm is a temp high alarm. */
570 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
571 ABIT_UGURU_MAX_RETRIES) != 3)
572 goto abituguru_detect_bank1_sensor_type_exit;
573 if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
574 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
575 sensor_addr, buf, 3,
576 ABIT_UGURU_MAX_RETRIES) != 3)
577 goto abituguru_detect_bank1_sensor_type_exit;
578 if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
579 ABIT_UGURU_DEBUG(2, " found temp sensor\n");
580 ret = ABIT_UGURU_TEMP_SENSOR;
581 goto abituguru_detect_bank1_sensor_type_exit;
582 } else
583 ABIT_UGURU_DEBUG(2, " alarm raised during temp "
584 "sensor test, but temp high flag not set\n");
585 } else
586 ABIT_UGURU_DEBUG(2, " alarm not raised during temp sensor "
587 "test\n");
588
589 ret = ABIT_UGURU_NC;
590 abituguru_detect_bank1_sensor_type_exit:
591 /*
592 * Restore original settings, failing here is really BAD, it has been
593 * reported that some BIOS-es hang when entering the uGuru menu with
594 * invalid settings present in the uGuru, so we try this 3 times.
595 */
596 for (i = 0; i < 3; i++)
597 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
598 sensor_addr, data->bank1_settings[sensor_addr],
599 3) == 3)
600 break;
601 if (i == 3) {
602 pr_err("Fatal error could not restore original settings. %s %s\n",
603 never_happen, report_this);
604 return -ENODEV;
605 }
606 return ret;
607 }
608
609 /*
610 * These functions try to find out how many sensors there are in bank2 and how
611 * many pwms there are. The purpose of this is to make sure that we don't give
612 * the user the possibility to change settings for non-existent sensors / pwm.
613 * The uGuru will happily read / write whatever memory happens to be after the
614 * memory storing the PWM settings when reading/writing to a PWM which is not
615 * there. Notice even if we detect a PWM which doesn't exist we normally won't
616 * write to it, unless the user tries to change the settings.
617 *
618 * Although the uGuru allows reading (settings) from non existing bank2
619 * sensors, my version of the uGuru does seem to stop writing to them, the
620 * write function above aborts in this case with:
621 * "CMD reg does not hold 0xAC after write"
622 *
623 * Notice these 2 tests are non destructive iow read-only tests, otherwise
624 * they would defeat their purpose. Although for the bank2_sensors detection a
625 * read/write test would be feasible because of the reaction above, I've
626 * however opted to stay on the safe side.
627 */
628 static void
abituguru_detect_no_bank2_sensors(struct abituguru_data * data)629 abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
630 {
631 int i;
632
633 if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
634 data->bank2_sensors = fan_sensors;
635 ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
636 "\"fan_sensors\" module param\n",
637 (int)data->bank2_sensors);
638 return;
639 }
640
641 ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
642 for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
643 /*
644 * 0x89 are the known used bits:
645 * -0x80 enable shutdown
646 * -0x08 enable beep
647 * -0x01 enable alarm
648 * All other bits should be 0, but on some motherboards
649 * 0x40 (bit 6) is also high for some of the fans??
650 */
651 if (data->bank2_settings[i][0] & ~0xC9) {
652 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
653 "to be a fan sensor: settings[0] = %02X\n",
654 i, (unsigned int)data->bank2_settings[i][0]);
655 break;
656 }
657
658 /* check if the threshold is within the allowed range */
659 if (data->bank2_settings[i][1] <
660 abituguru_bank2_min_threshold) {
661 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
662 "to be a fan sensor: the threshold (%d) is "
663 "below the minimum (%d)\n", i,
664 (int)data->bank2_settings[i][1],
665 (int)abituguru_bank2_min_threshold);
666 break;
667 }
668 if (data->bank2_settings[i][1] >
669 abituguru_bank2_max_threshold) {
670 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
671 "to be a fan sensor: the threshold (%d) is "
672 "above the maximum (%d)\n", i,
673 (int)data->bank2_settings[i][1],
674 (int)abituguru_bank2_max_threshold);
675 break;
676 }
677 }
678
679 data->bank2_sensors = i;
680 ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
681 (int)data->bank2_sensors);
682 }
683
684 static void
abituguru_detect_no_pwms(struct abituguru_data * data)685 abituguru_detect_no_pwms(struct abituguru_data *data)
686 {
687 int i, j;
688
689 if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
690 data->pwms = pwms;
691 ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
692 "\"pwms\" module param\n", (int)data->pwms);
693 return;
694 }
695
696 ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
697 for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
698 /*
699 * 0x80 is the enable bit and the low
700 * nibble is which temp sensor to use,
701 * the other bits should be 0
702 */
703 if (data->pwm_settings[i][0] & ~0x8F) {
704 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
705 "to be a pwm channel: settings[0] = %02X\n",
706 i, (unsigned int)data->pwm_settings[i][0]);
707 break;
708 }
709
710 /*
711 * the low nibble must correspond to one of the temp sensors
712 * we've found
713 */
714 for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
715 j++) {
716 if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
717 (data->pwm_settings[i][0] & 0x0F))
718 break;
719 }
720 if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
721 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
722 "to be a pwm channel: %d is not a valid temp "
723 "sensor address\n", i,
724 data->pwm_settings[i][0] & 0x0F);
725 break;
726 }
727
728 /* check if all other settings are within the allowed range */
729 for (j = 1; j < 5; j++) {
730 u8 min;
731 /* special case pwm1 min pwm% */
732 if ((i == 0) && ((j == 1) || (j == 2)))
733 min = 77;
734 else
735 min = abituguru_pwm_min[j];
736 if (data->pwm_settings[i][j] < min) {
737 ABIT_UGURU_DEBUG(2, " pwm channel %d does "
738 "not seem to be a pwm channel: "
739 "setting %d (%d) is below the minimum "
740 "value (%d)\n", i, j,
741 (int)data->pwm_settings[i][j],
742 (int)min);
743 goto abituguru_detect_no_pwms_exit;
744 }
745 if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
746 ABIT_UGURU_DEBUG(2, " pwm channel %d does "
747 "not seem to be a pwm channel: "
748 "setting %d (%d) is above the maximum "
749 "value (%d)\n", i, j,
750 (int)data->pwm_settings[i][j],
751 (int)abituguru_pwm_max[j]);
752 goto abituguru_detect_no_pwms_exit;
753 }
754 }
755
756 /* check that min temp < max temp and min pwm < max pwm */
757 if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
758 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
759 "to be a pwm channel: min pwm (%d) >= "
760 "max pwm (%d)\n", i,
761 (int)data->pwm_settings[i][1],
762 (int)data->pwm_settings[i][2]);
763 break;
764 }
765 if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
766 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
767 "to be a pwm channel: min temp (%d) >= "
768 "max temp (%d)\n", i,
769 (int)data->pwm_settings[i][3],
770 (int)data->pwm_settings[i][4]);
771 break;
772 }
773 }
774
775 abituguru_detect_no_pwms_exit:
776 data->pwms = i;
777 ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
778 }
779
780 /*
781 * Following are the sysfs callback functions. These functions expect:
782 * sensor_device_attribute_2->index: sensor address/offset in the bank
783 * sensor_device_attribute_2->nr: register offset, bitmask or NA.
784 */
785 static struct abituguru_data *abituguru_update_device(struct device *dev);
786
show_bank1_value(struct device * dev,struct device_attribute * devattr,char * buf)787 static ssize_t show_bank1_value(struct device *dev,
788 struct device_attribute *devattr, char *buf)
789 {
790 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
791 struct abituguru_data *data = abituguru_update_device(dev);
792 if (!data)
793 return -EIO;
794 return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
795 data->bank1_max_value[attr->index] + 128) / 255);
796 }
797
show_bank1_setting(struct device * dev,struct device_attribute * devattr,char * buf)798 static ssize_t show_bank1_setting(struct device *dev,
799 struct device_attribute *devattr, char *buf)
800 {
801 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
802 struct abituguru_data *data = dev_get_drvdata(dev);
803 return sprintf(buf, "%d\n",
804 (data->bank1_settings[attr->index][attr->nr] *
805 data->bank1_max_value[attr->index] + 128) / 255);
806 }
807
show_bank2_value(struct device * dev,struct device_attribute * devattr,char * buf)808 static ssize_t show_bank2_value(struct device *dev,
809 struct device_attribute *devattr, char *buf)
810 {
811 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
812 struct abituguru_data *data = abituguru_update_device(dev);
813 if (!data)
814 return -EIO;
815 return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
816 ABIT_UGURU_FAN_MAX + 128) / 255);
817 }
818
show_bank2_setting(struct device * dev,struct device_attribute * devattr,char * buf)819 static ssize_t show_bank2_setting(struct device *dev,
820 struct device_attribute *devattr, char *buf)
821 {
822 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
823 struct abituguru_data *data = dev_get_drvdata(dev);
824 return sprintf(buf, "%d\n",
825 (data->bank2_settings[attr->index][attr->nr] *
826 ABIT_UGURU_FAN_MAX + 128) / 255);
827 }
828
store_bank1_setting(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)829 static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
830 *devattr, const char *buf, size_t count)
831 {
832 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
833 struct abituguru_data *data = dev_get_drvdata(dev);
834 unsigned long val;
835 ssize_t ret;
836
837 ret = kstrtoul(buf, 10, &val);
838 if (ret)
839 return ret;
840
841 ret = count;
842 val = (val * 255 + data->bank1_max_value[attr->index] / 2) /
843 data->bank1_max_value[attr->index];
844 if (val > 255)
845 return -EINVAL;
846
847 mutex_lock(&data->update_lock);
848 if (data->bank1_settings[attr->index][attr->nr] != val) {
849 u8 orig_val = data->bank1_settings[attr->index][attr->nr];
850 data->bank1_settings[attr->index][attr->nr] = val;
851 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
852 attr->index, data->bank1_settings[attr->index],
853 3) <= attr->nr) {
854 data->bank1_settings[attr->index][attr->nr] = orig_val;
855 ret = -EIO;
856 }
857 }
858 mutex_unlock(&data->update_lock);
859 return ret;
860 }
861
store_bank2_setting(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)862 static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
863 *devattr, const char *buf, size_t count)
864 {
865 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
866 struct abituguru_data *data = dev_get_drvdata(dev);
867 unsigned long val;
868 ssize_t ret;
869
870 ret = kstrtoul(buf, 10, &val);
871 if (ret)
872 return ret;
873
874 ret = count;
875 val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX;
876
877 /* this check can be done before taking the lock */
878 if (val < abituguru_bank2_min_threshold ||
879 val > abituguru_bank2_max_threshold)
880 return -EINVAL;
881
882 mutex_lock(&data->update_lock);
883 if (data->bank2_settings[attr->index][attr->nr] != val) {
884 u8 orig_val = data->bank2_settings[attr->index][attr->nr];
885 data->bank2_settings[attr->index][attr->nr] = val;
886 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
887 attr->index, data->bank2_settings[attr->index],
888 2) <= attr->nr) {
889 data->bank2_settings[attr->index][attr->nr] = orig_val;
890 ret = -EIO;
891 }
892 }
893 mutex_unlock(&data->update_lock);
894 return ret;
895 }
896
show_bank1_alarm(struct device * dev,struct device_attribute * devattr,char * buf)897 static ssize_t show_bank1_alarm(struct device *dev,
898 struct device_attribute *devattr, char *buf)
899 {
900 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
901 struct abituguru_data *data = abituguru_update_device(dev);
902 if (!data)
903 return -EIO;
904 /*
905 * See if the alarm bit for this sensor is set, and if the
906 * alarm matches the type of alarm we're looking for (for volt
907 * it can be either low or high). The type is stored in a few
908 * readonly bits in the settings part of the relevant sensor.
909 * The bitmask of the type is passed to us in attr->nr.
910 */
911 if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
912 (data->bank1_settings[attr->index][0] & attr->nr))
913 return sprintf(buf, "1\n");
914 else
915 return sprintf(buf, "0\n");
916 }
917
show_bank2_alarm(struct device * dev,struct device_attribute * devattr,char * buf)918 static ssize_t show_bank2_alarm(struct device *dev,
919 struct device_attribute *devattr, char *buf)
920 {
921 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
922 struct abituguru_data *data = abituguru_update_device(dev);
923 if (!data)
924 return -EIO;
925 if (data->alarms[2] & (0x01 << attr->index))
926 return sprintf(buf, "1\n");
927 else
928 return sprintf(buf, "0\n");
929 }
930
show_bank1_mask(struct device * dev,struct device_attribute * devattr,char * buf)931 static ssize_t show_bank1_mask(struct device *dev,
932 struct device_attribute *devattr, char *buf)
933 {
934 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
935 struct abituguru_data *data = dev_get_drvdata(dev);
936 if (data->bank1_settings[attr->index][0] & attr->nr)
937 return sprintf(buf, "1\n");
938 else
939 return sprintf(buf, "0\n");
940 }
941
show_bank2_mask(struct device * dev,struct device_attribute * devattr,char * buf)942 static ssize_t show_bank2_mask(struct device *dev,
943 struct device_attribute *devattr, char *buf)
944 {
945 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
946 struct abituguru_data *data = dev_get_drvdata(dev);
947 if (data->bank2_settings[attr->index][0] & attr->nr)
948 return sprintf(buf, "1\n");
949 else
950 return sprintf(buf, "0\n");
951 }
952
store_bank1_mask(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)953 static ssize_t store_bank1_mask(struct device *dev,
954 struct device_attribute *devattr, const char *buf, size_t count)
955 {
956 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
957 struct abituguru_data *data = dev_get_drvdata(dev);
958 ssize_t ret;
959 u8 orig_val;
960 unsigned long mask;
961
962 ret = kstrtoul(buf, 10, &mask);
963 if (ret)
964 return ret;
965
966 ret = count;
967 mutex_lock(&data->update_lock);
968 orig_val = data->bank1_settings[attr->index][0];
969
970 if (mask)
971 data->bank1_settings[attr->index][0] |= attr->nr;
972 else
973 data->bank1_settings[attr->index][0] &= ~attr->nr;
974
975 if ((data->bank1_settings[attr->index][0] != orig_val) &&
976 (abituguru_write(data,
977 ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
978 data->bank1_settings[attr->index], 3) < 1)) {
979 data->bank1_settings[attr->index][0] = orig_val;
980 ret = -EIO;
981 }
982 mutex_unlock(&data->update_lock);
983 return ret;
984 }
985
store_bank2_mask(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)986 static ssize_t store_bank2_mask(struct device *dev,
987 struct device_attribute *devattr, const char *buf, size_t count)
988 {
989 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
990 struct abituguru_data *data = dev_get_drvdata(dev);
991 ssize_t ret;
992 u8 orig_val;
993 unsigned long mask;
994
995 ret = kstrtoul(buf, 10, &mask);
996 if (ret)
997 return ret;
998
999 ret = count;
1000 mutex_lock(&data->update_lock);
1001 orig_val = data->bank2_settings[attr->index][0];
1002
1003 if (mask)
1004 data->bank2_settings[attr->index][0] |= attr->nr;
1005 else
1006 data->bank2_settings[attr->index][0] &= ~attr->nr;
1007
1008 if ((data->bank2_settings[attr->index][0] != orig_val) &&
1009 (abituguru_write(data,
1010 ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
1011 data->bank2_settings[attr->index], 2) < 1)) {
1012 data->bank2_settings[attr->index][0] = orig_val;
1013 ret = -EIO;
1014 }
1015 mutex_unlock(&data->update_lock);
1016 return ret;
1017 }
1018
1019 /* Fan PWM (speed control) */
show_pwm_setting(struct device * dev,struct device_attribute * devattr,char * buf)1020 static ssize_t show_pwm_setting(struct device *dev,
1021 struct device_attribute *devattr, char *buf)
1022 {
1023 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1024 struct abituguru_data *data = dev_get_drvdata(dev);
1025 return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
1026 abituguru_pwm_settings_multiplier[attr->nr]);
1027 }
1028
store_pwm_setting(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)1029 static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
1030 *devattr, const char *buf, size_t count)
1031 {
1032 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1033 struct abituguru_data *data = dev_get_drvdata(dev);
1034 u8 min;
1035 unsigned long val;
1036 ssize_t ret;
1037
1038 ret = kstrtoul(buf, 10, &val);
1039 if (ret)
1040 return ret;
1041
1042 ret = count;
1043 val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) /
1044 abituguru_pwm_settings_multiplier[attr->nr];
1045
1046 /* special case pwm1 min pwm% */
1047 if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
1048 min = 77;
1049 else
1050 min = abituguru_pwm_min[attr->nr];
1051
1052 /* this check can be done before taking the lock */
1053 if (val < min || val > abituguru_pwm_max[attr->nr])
1054 return -EINVAL;
1055
1056 mutex_lock(&data->update_lock);
1057 /* this check needs to be done after taking the lock */
1058 if ((attr->nr & 1) &&
1059 (val >= data->pwm_settings[attr->index][attr->nr + 1]))
1060 ret = -EINVAL;
1061 else if (!(attr->nr & 1) &&
1062 (val <= data->pwm_settings[attr->index][attr->nr - 1]))
1063 ret = -EINVAL;
1064 else if (data->pwm_settings[attr->index][attr->nr] != val) {
1065 u8 orig_val = data->pwm_settings[attr->index][attr->nr];
1066 data->pwm_settings[attr->index][attr->nr] = val;
1067 if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1068 attr->index, data->pwm_settings[attr->index],
1069 5) <= attr->nr) {
1070 data->pwm_settings[attr->index][attr->nr] =
1071 orig_val;
1072 ret = -EIO;
1073 }
1074 }
1075 mutex_unlock(&data->update_lock);
1076 return ret;
1077 }
1078
show_pwm_sensor(struct device * dev,struct device_attribute * devattr,char * buf)1079 static ssize_t show_pwm_sensor(struct device *dev,
1080 struct device_attribute *devattr, char *buf)
1081 {
1082 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1083 struct abituguru_data *data = dev_get_drvdata(dev);
1084 int i;
1085 /*
1086 * We need to walk to the temp sensor addresses to find what
1087 * the userspace id of the configured temp sensor is.
1088 */
1089 for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
1090 if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
1091 (data->pwm_settings[attr->index][0] & 0x0F))
1092 return sprintf(buf, "%d\n", i+1);
1093
1094 return -ENXIO;
1095 }
1096
store_pwm_sensor(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)1097 static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
1098 *devattr, const char *buf, size_t count)
1099 {
1100 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1101 struct abituguru_data *data = dev_get_drvdata(dev);
1102 ssize_t ret;
1103 unsigned long val;
1104 u8 orig_val;
1105 u8 address;
1106
1107 ret = kstrtoul(buf, 10, &val);
1108 if (ret)
1109 return ret;
1110
1111 if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR])
1112 return -EINVAL;
1113
1114 val -= 1;
1115 ret = count;
1116 mutex_lock(&data->update_lock);
1117 orig_val = data->pwm_settings[attr->index][0];
1118 address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
1119 data->pwm_settings[attr->index][0] &= 0xF0;
1120 data->pwm_settings[attr->index][0] |= address;
1121 if (data->pwm_settings[attr->index][0] != orig_val) {
1122 if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index,
1123 data->pwm_settings[attr->index], 5) < 1) {
1124 data->pwm_settings[attr->index][0] = orig_val;
1125 ret = -EIO;
1126 }
1127 }
1128 mutex_unlock(&data->update_lock);
1129 return ret;
1130 }
1131
show_pwm_enable(struct device * dev,struct device_attribute * devattr,char * buf)1132 static ssize_t show_pwm_enable(struct device *dev,
1133 struct device_attribute *devattr, char *buf)
1134 {
1135 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1136 struct abituguru_data *data = dev_get_drvdata(dev);
1137 int res = 0;
1138 if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
1139 res = 2;
1140 return sprintf(buf, "%d\n", res);
1141 }
1142
store_pwm_enable(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)1143 static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
1144 *devattr, const char *buf, size_t count)
1145 {
1146 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1147 struct abituguru_data *data = dev_get_drvdata(dev);
1148 u8 orig_val;
1149 ssize_t ret;
1150 unsigned long user_val;
1151
1152 ret = kstrtoul(buf, 10, &user_val);
1153 if (ret)
1154 return ret;
1155
1156 ret = count;
1157 mutex_lock(&data->update_lock);
1158 orig_val = data->pwm_settings[attr->index][0];
1159 switch (user_val) {
1160 case 0:
1161 data->pwm_settings[attr->index][0] &=
1162 ~ABIT_UGURU_FAN_PWM_ENABLE;
1163 break;
1164 case 2:
1165 data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE;
1166 break;
1167 default:
1168 ret = -EINVAL;
1169 }
1170 if ((data->pwm_settings[attr->index][0] != orig_val) &&
1171 (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1172 attr->index, data->pwm_settings[attr->index],
1173 5) < 1)) {
1174 data->pwm_settings[attr->index][0] = orig_val;
1175 ret = -EIO;
1176 }
1177 mutex_unlock(&data->update_lock);
1178 return ret;
1179 }
1180
show_name(struct device * dev,struct device_attribute * devattr,char * buf)1181 static ssize_t show_name(struct device *dev,
1182 struct device_attribute *devattr, char *buf)
1183 {
1184 return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
1185 }
1186
1187 /* Sysfs attr templates, the real entries are generated automatically. */
1188 static const
1189 struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
1190 {
1191 SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
1192 SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
1193 store_bank1_setting, 1, 0),
1194 SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
1195 ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
1196 SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
1197 store_bank1_setting, 2, 0),
1198 SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
1199 ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
1200 SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
1201 store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1202 SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
1203 store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1204 SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
1205 store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
1206 SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
1207 store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
1208 }, {
1209 SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
1210 SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
1211 ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
1212 SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
1213 store_bank1_setting, 1, 0),
1214 SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
1215 store_bank1_setting, 2, 0),
1216 SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
1217 store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1218 SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
1219 store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1220 SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
1221 store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
1222 }
1223 };
1224
1225 static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
1226 SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
1227 SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
1228 SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
1229 store_bank2_setting, 1, 0),
1230 SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
1231 store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1232 SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
1233 store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1234 SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
1235 store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
1236 };
1237
1238 static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
1239 SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
1240 store_pwm_enable, 0, 0),
1241 SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
1242 store_pwm_sensor, 0, 0),
1243 SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
1244 store_pwm_setting, 1, 0),
1245 SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
1246 store_pwm_setting, 2, 0),
1247 SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
1248 store_pwm_setting, 3, 0),
1249 SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
1250 store_pwm_setting, 4, 0),
1251 };
1252
1253 static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
1254 SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
1255 };
1256
abituguru_probe(struct platform_device * pdev)1257 static int abituguru_probe(struct platform_device *pdev)
1258 {
1259 struct abituguru_data *data;
1260 int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
1261 char *sysfs_filename;
1262
1263 /*
1264 * El weirdo probe order, to keep the sysfs order identical to the
1265 * BIOS and window-appliction listing order.
1266 */
1267 static const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
1268 0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
1269 0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
1270
1271 data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data),
1272 GFP_KERNEL);
1273 if (!data)
1274 return -ENOMEM;
1275
1276 data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
1277 mutex_init(&data->update_lock);
1278 platform_set_drvdata(pdev, data);
1279
1280 /* See if the uGuru is ready */
1281 if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
1282 data->uguru_ready = 1;
1283
1284 /*
1285 * Completely read the uGuru this has 2 purposes:
1286 * - testread / see if one really is there.
1287 * - make an in memory copy of all the uguru settings for future use.
1288 */
1289 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1290 data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
1291 goto abituguru_probe_error;
1292
1293 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1294 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
1295 &data->bank1_value[i], 1,
1296 ABIT_UGURU_MAX_RETRIES) != 1)
1297 goto abituguru_probe_error;
1298 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
1299 data->bank1_settings[i], 3,
1300 ABIT_UGURU_MAX_RETRIES) != 3)
1301 goto abituguru_probe_error;
1302 }
1303 /*
1304 * Note: We don't know how many bank2 sensors / pwms there really are,
1305 * but in order to "detect" this we need to read the maximum amount
1306 * anyways. If we read sensors/pwms not there we'll just read crap
1307 * this can't hurt. We need the detection because we don't want
1308 * unwanted writes, which will hurt!
1309 */
1310 for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
1311 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1312 &data->bank2_value[i], 1,
1313 ABIT_UGURU_MAX_RETRIES) != 1)
1314 goto abituguru_probe_error;
1315 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
1316 data->bank2_settings[i], 2,
1317 ABIT_UGURU_MAX_RETRIES) != 2)
1318 goto abituguru_probe_error;
1319 }
1320 for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
1321 if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
1322 data->pwm_settings[i], 5,
1323 ABIT_UGURU_MAX_RETRIES) != 5)
1324 goto abituguru_probe_error;
1325 }
1326 data->last_updated = jiffies;
1327
1328 /* Detect sensor types and fill the sysfs attr for bank1 */
1329 sysfs_attr_i = 0;
1330 sysfs_filename = data->sysfs_names;
1331 sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
1332 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1333 res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
1334 if (res < 0)
1335 goto abituguru_probe_error;
1336 if (res == ABIT_UGURU_NC)
1337 continue;
1338
1339 /* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
1340 for (j = 0; j < (res ? 7 : 9); j++) {
1341 used = snprintf(sysfs_filename, sysfs_names_free,
1342 abituguru_sysfs_bank1_templ[res][j].dev_attr.
1343 attr.name, data->bank1_sensors[res] + res)
1344 + 1;
1345 data->sysfs_attr[sysfs_attr_i] =
1346 abituguru_sysfs_bank1_templ[res][j];
1347 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1348 sysfs_filename;
1349 data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
1350 sysfs_filename += used;
1351 sysfs_names_free -= used;
1352 sysfs_attr_i++;
1353 }
1354 data->bank1_max_value[probe_order[i]] =
1355 abituguru_bank1_max_value[res];
1356 data->bank1_address[res][data->bank1_sensors[res]] =
1357 probe_order[i];
1358 data->bank1_sensors[res]++;
1359 }
1360 /* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
1361 abituguru_detect_no_bank2_sensors(data);
1362 for (i = 0; i < data->bank2_sensors; i++) {
1363 for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
1364 used = snprintf(sysfs_filename, sysfs_names_free,
1365 abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
1366 i + 1) + 1;
1367 data->sysfs_attr[sysfs_attr_i] =
1368 abituguru_sysfs_fan_templ[j];
1369 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1370 sysfs_filename;
1371 data->sysfs_attr[sysfs_attr_i].index = i;
1372 sysfs_filename += used;
1373 sysfs_names_free -= used;
1374 sysfs_attr_i++;
1375 }
1376 }
1377 /* Detect number of sensors and fill the sysfs attr for pwms */
1378 abituguru_detect_no_pwms(data);
1379 for (i = 0; i < data->pwms; i++) {
1380 for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
1381 used = snprintf(sysfs_filename, sysfs_names_free,
1382 abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
1383 i + 1) + 1;
1384 data->sysfs_attr[sysfs_attr_i] =
1385 abituguru_sysfs_pwm_templ[j];
1386 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1387 sysfs_filename;
1388 data->sysfs_attr[sysfs_attr_i].index = i;
1389 sysfs_filename += used;
1390 sysfs_names_free -= used;
1391 sysfs_attr_i++;
1392 }
1393 }
1394 /* Fail safe check, this should never happen! */
1395 if (sysfs_names_free < 0) {
1396 pr_err("Fatal error ran out of space for sysfs attr names. %s %s",
1397 never_happen, report_this);
1398 res = -ENAMETOOLONG;
1399 goto abituguru_probe_error;
1400 }
1401 pr_info("found Abit uGuru\n");
1402
1403 /* Register sysfs hooks */
1404 for (i = 0; i < sysfs_attr_i; i++) {
1405 res = device_create_file(&pdev->dev,
1406 &data->sysfs_attr[i].dev_attr);
1407 if (res)
1408 goto abituguru_probe_error;
1409 }
1410 for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) {
1411 res = device_create_file(&pdev->dev,
1412 &abituguru_sysfs_attr[i].dev_attr);
1413 if (res)
1414 goto abituguru_probe_error;
1415 }
1416
1417 data->hwmon_dev = hwmon_device_register(&pdev->dev);
1418 if (!IS_ERR(data->hwmon_dev))
1419 return 0; /* success */
1420
1421 res = PTR_ERR(data->hwmon_dev);
1422 abituguru_probe_error:
1423 for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1424 device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1425 for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1426 device_remove_file(&pdev->dev,
1427 &abituguru_sysfs_attr[i].dev_attr);
1428 return res;
1429 }
1430
abituguru_remove(struct platform_device * pdev)1431 static int abituguru_remove(struct platform_device *pdev)
1432 {
1433 int i;
1434 struct abituguru_data *data = platform_get_drvdata(pdev);
1435
1436 hwmon_device_unregister(data->hwmon_dev);
1437 for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1438 device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1439 for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1440 device_remove_file(&pdev->dev,
1441 &abituguru_sysfs_attr[i].dev_attr);
1442
1443 return 0;
1444 }
1445
abituguru_update_device(struct device * dev)1446 static struct abituguru_data *abituguru_update_device(struct device *dev)
1447 {
1448 int i, err;
1449 struct abituguru_data *data = dev_get_drvdata(dev);
1450 /* fake a complete successful read if no update necessary. */
1451 char success = 1;
1452
1453 mutex_lock(&data->update_lock);
1454 if (time_after(jiffies, data->last_updated + HZ)) {
1455 success = 0;
1456 err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1457 data->alarms, 3, 0);
1458 if (err != 3)
1459 goto LEAVE_UPDATE;
1460 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1461 err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1,
1462 i, &data->bank1_value[i], 1, 0);
1463 if (err != 1)
1464 goto LEAVE_UPDATE;
1465 err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
1466 i, data->bank1_settings[i], 3, 0);
1467 if (err != 3)
1468 goto LEAVE_UPDATE;
1469 }
1470 for (i = 0; i < data->bank2_sensors; i++) {
1471 err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1472 &data->bank2_value[i], 1, 0);
1473 if (err != 1)
1474 goto LEAVE_UPDATE;
1475 }
1476 /* success! */
1477 success = 1;
1478 data->update_timeouts = 0;
1479 LEAVE_UPDATE:
1480 /* handle timeout condition */
1481 if (!success && (err == -EBUSY || err >= 0)) {
1482 /* No overflow please */
1483 if (data->update_timeouts < 255u)
1484 data->update_timeouts++;
1485 if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
1486 ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
1487 "try again next update\n");
1488 /* Just a timeout, fake a successful read */
1489 success = 1;
1490 } else
1491 ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
1492 "times waiting for more input state\n",
1493 (int)data->update_timeouts);
1494 }
1495 /* On success set last_updated */
1496 if (success)
1497 data->last_updated = jiffies;
1498 }
1499 mutex_unlock(&data->update_lock);
1500
1501 if (success)
1502 return data;
1503 else
1504 return NULL;
1505 }
1506
1507 #ifdef CONFIG_PM_SLEEP
abituguru_suspend(struct device * dev)1508 static int abituguru_suspend(struct device *dev)
1509 {
1510 struct abituguru_data *data = dev_get_drvdata(dev);
1511 /*
1512 * make sure all communications with the uguru are done and no new
1513 * ones are started
1514 */
1515 mutex_lock(&data->update_lock);
1516 return 0;
1517 }
1518
abituguru_resume(struct device * dev)1519 static int abituguru_resume(struct device *dev)
1520 {
1521 struct abituguru_data *data = dev_get_drvdata(dev);
1522 /* See if the uGuru is still ready */
1523 if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
1524 data->uguru_ready = 0;
1525 mutex_unlock(&data->update_lock);
1526 return 0;
1527 }
1528
1529 static SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume);
1530 #define ABIT_UGURU_PM (&abituguru_pm)
1531 #else
1532 #define ABIT_UGURU_PM NULL
1533 #endif /* CONFIG_PM */
1534
1535 static struct platform_driver abituguru_driver = {
1536 .driver = {
1537 .name = ABIT_UGURU_NAME,
1538 .pm = ABIT_UGURU_PM,
1539 },
1540 .probe = abituguru_probe,
1541 .remove = abituguru_remove,
1542 };
1543
abituguru_detect(void)1544 static int __init abituguru_detect(void)
1545 {
1546 /*
1547 * See if there is an uguru there. After a reboot uGuru will hold 0x00
1548 * at DATA and 0xAC, when this driver has already been loaded once
1549 * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
1550 * scenario but some will hold 0x00.
1551 * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08
1552 * after reading CMD first, so CMD must be read first!
1553 */
1554 u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
1555 u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
1556 if (((data_val == 0x00) || (data_val == 0x08)) &&
1557 ((cmd_val == 0x00) || (cmd_val == 0xAC)))
1558 return ABIT_UGURU_BASE;
1559
1560 ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
1561 "0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
1562
1563 if (force) {
1564 pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n");
1565 return ABIT_UGURU_BASE;
1566 }
1567
1568 /* No uGuru found */
1569 return -ENODEV;
1570 }
1571
1572 static struct platform_device *abituguru_pdev;
1573
abituguru_init(void)1574 static int __init abituguru_init(void)
1575 {
1576 int address, err;
1577 struct resource res = { .flags = IORESOURCE_IO };
1578 const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
1579
1580 /* safety check, refuse to load on non Abit motherboards */
1581 if (!force && (!board_vendor ||
1582 strcmp(board_vendor, "http://www.abit.com.tw/")))
1583 return -ENODEV;
1584
1585 address = abituguru_detect();
1586 if (address < 0)
1587 return address;
1588
1589 err = platform_driver_register(&abituguru_driver);
1590 if (err)
1591 goto exit;
1592
1593 abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
1594 if (!abituguru_pdev) {
1595 pr_err("Device allocation failed\n");
1596 err = -ENOMEM;
1597 goto exit_driver_unregister;
1598 }
1599
1600 res.start = address;
1601 res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
1602 res.name = ABIT_UGURU_NAME;
1603
1604 err = platform_device_add_resources(abituguru_pdev, &res, 1);
1605 if (err) {
1606 pr_err("Device resource addition failed (%d)\n", err);
1607 goto exit_device_put;
1608 }
1609
1610 err = platform_device_add(abituguru_pdev);
1611 if (err) {
1612 pr_err("Device addition failed (%d)\n", err);
1613 goto exit_device_put;
1614 }
1615
1616 return 0;
1617
1618 exit_device_put:
1619 platform_device_put(abituguru_pdev);
1620 exit_driver_unregister:
1621 platform_driver_unregister(&abituguru_driver);
1622 exit:
1623 return err;
1624 }
1625
abituguru_exit(void)1626 static void __exit abituguru_exit(void)
1627 {
1628 platform_device_unregister(abituguru_pdev);
1629 platform_driver_unregister(&abituguru_driver);
1630 }
1631
1632 MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
1633 MODULE_DESCRIPTION("Abit uGuru Sensor device");
1634 MODULE_LICENSE("GPL");
1635
1636 module_init(abituguru_init);
1637 module_exit(abituguru_exit);
1638