• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  SATA specific part of ATA helper library
4  *
5  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
6  *  Copyright 2003-2004 Jeff Garzik
7  *  Copyright 2006 Tejun Heo <htejun@gmail.com>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <scsi/scsi_cmnd.h>
13 #include <scsi/scsi_device.h>
14 #include <linux/libata.h>
15 
16 #include "libata.h"
17 #include "libata-transport.h"
18 
19 /* debounce timing parameters in msecs { interval, duration, timeout } */
20 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
21 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
22 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
23 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
24 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
25 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
26 
27 /**
28  *	sata_scr_valid - test whether SCRs are accessible
29  *	@link: ATA link to test SCR accessibility for
30  *
31  *	Test whether SCRs are accessible for @link.
32  *
33  *	LOCKING:
34  *	None.
35  *
36  *	RETURNS:
37  *	1 if SCRs are accessible, 0 otherwise.
38  */
sata_scr_valid(struct ata_link * link)39 int sata_scr_valid(struct ata_link *link)
40 {
41 	struct ata_port *ap = link->ap;
42 
43 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
44 }
45 EXPORT_SYMBOL_GPL(sata_scr_valid);
46 
47 /**
48  *	sata_scr_read - read SCR register of the specified port
49  *	@link: ATA link to read SCR for
50  *	@reg: SCR to read
51  *	@val: Place to store read value
52  *
53  *	Read SCR register @reg of @link into *@val.  This function is
54  *	guaranteed to succeed if @link is ap->link, the cable type of
55  *	the port is SATA and the port implements ->scr_read.
56  *
57  *	LOCKING:
58  *	None if @link is ap->link.  Kernel thread context otherwise.
59  *
60  *	RETURNS:
61  *	0 on success, negative errno on failure.
62  */
sata_scr_read(struct ata_link * link,int reg,u32 * val)63 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
64 {
65 	if (ata_is_host_link(link)) {
66 		if (sata_scr_valid(link))
67 			return link->ap->ops->scr_read(link, reg, val);
68 		return -EOPNOTSUPP;
69 	}
70 
71 	return sata_pmp_scr_read(link, reg, val);
72 }
73 EXPORT_SYMBOL_GPL(sata_scr_read);
74 
75 /**
76  *	sata_scr_write - write SCR register of the specified port
77  *	@link: ATA link to write SCR for
78  *	@reg: SCR to write
79  *	@val: value to write
80  *
81  *	Write @val to SCR register @reg of @link.  This function is
82  *	guaranteed to succeed if @link is ap->link, the cable type of
83  *	the port is SATA and the port implements ->scr_read.
84  *
85  *	LOCKING:
86  *	None if @link is ap->link.  Kernel thread context otherwise.
87  *
88  *	RETURNS:
89  *	0 on success, negative errno on failure.
90  */
sata_scr_write(struct ata_link * link,int reg,u32 val)91 int sata_scr_write(struct ata_link *link, int reg, u32 val)
92 {
93 	if (ata_is_host_link(link)) {
94 		if (sata_scr_valid(link))
95 			return link->ap->ops->scr_write(link, reg, val);
96 		return -EOPNOTSUPP;
97 	}
98 
99 	return sata_pmp_scr_write(link, reg, val);
100 }
101 EXPORT_SYMBOL_GPL(sata_scr_write);
102 
103 /**
104  *	sata_scr_write_flush - write SCR register of the specified port and flush
105  *	@link: ATA link to write SCR for
106  *	@reg: SCR to write
107  *	@val: value to write
108  *
109  *	This function is identical to sata_scr_write() except that this
110  *	function performs flush after writing to the register.
111  *
112  *	LOCKING:
113  *	None if @link is ap->link.  Kernel thread context otherwise.
114  *
115  *	RETURNS:
116  *	0 on success, negative errno on failure.
117  */
sata_scr_write_flush(struct ata_link * link,int reg,u32 val)118 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
119 {
120 	if (ata_is_host_link(link)) {
121 		int rc;
122 
123 		if (sata_scr_valid(link)) {
124 			rc = link->ap->ops->scr_write(link, reg, val);
125 			if (rc == 0)
126 				rc = link->ap->ops->scr_read(link, reg, &val);
127 			return rc;
128 		}
129 		return -EOPNOTSUPP;
130 	}
131 
132 	return sata_pmp_scr_write(link, reg, val);
133 }
134 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
135 
136 /**
137  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
138  *	@tf: Taskfile to convert
139  *	@pmp: Port multiplier port
140  *	@is_cmd: This FIS is for command
141  *	@fis: Buffer into which data will output
142  *
143  *	Converts a standard ATA taskfile to a Serial ATA
144  *	FIS structure (Register - Host to Device).
145  *
146  *	LOCKING:
147  *	Inherited from caller.
148  */
ata_tf_to_fis(const struct ata_taskfile * tf,u8 pmp,int is_cmd,u8 * fis)149 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
150 {
151 	fis[0] = 0x27;			/* Register - Host to Device FIS */
152 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
153 	if (is_cmd)
154 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
155 
156 	fis[2] = tf->command;
157 	fis[3] = tf->feature;
158 
159 	fis[4] = tf->lbal;
160 	fis[5] = tf->lbam;
161 	fis[6] = tf->lbah;
162 	fis[7] = tf->device;
163 
164 	fis[8] = tf->hob_lbal;
165 	fis[9] = tf->hob_lbam;
166 	fis[10] = tf->hob_lbah;
167 	fis[11] = tf->hob_feature;
168 
169 	fis[12] = tf->nsect;
170 	fis[13] = tf->hob_nsect;
171 	fis[14] = 0;
172 	fis[15] = tf->ctl;
173 
174 	fis[16] = tf->auxiliary & 0xff;
175 	fis[17] = (tf->auxiliary >> 8) & 0xff;
176 	fis[18] = (tf->auxiliary >> 16) & 0xff;
177 	fis[19] = (tf->auxiliary >> 24) & 0xff;
178 }
179 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
180 
181 /**
182  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
183  *	@fis: Buffer from which data will be input
184  *	@tf: Taskfile to output
185  *
186  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
187  *
188  *	LOCKING:
189  *	Inherited from caller.
190  */
191 
ata_tf_from_fis(const u8 * fis,struct ata_taskfile * tf)192 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
193 {
194 	tf->command	= fis[2];	/* status */
195 	tf->feature	= fis[3];	/* error */
196 
197 	tf->lbal	= fis[4];
198 	tf->lbam	= fis[5];
199 	tf->lbah	= fis[6];
200 	tf->device	= fis[7];
201 
202 	tf->hob_lbal	= fis[8];
203 	tf->hob_lbam	= fis[9];
204 	tf->hob_lbah	= fis[10];
205 
206 	tf->nsect	= fis[12];
207 	tf->hob_nsect	= fis[13];
208 }
209 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
210 
211 /**
212  *	sata_link_debounce - debounce SATA phy status
213  *	@link: ATA link to debounce SATA phy status for
214  *	@params: timing parameters { interval, duration, timeout } in msec
215  *	@deadline: deadline jiffies for the operation
216  *
217  *	Make sure SStatus of @link reaches stable state, determined by
218  *	holding the same value where DET is not 1 for @duration polled
219  *	every @interval, before @timeout.  Timeout constraints the
220  *	beginning of the stable state.  Because DET gets stuck at 1 on
221  *	some controllers after hot unplugging, this functions waits
222  *	until timeout then returns 0 if DET is stable at 1.
223  *
224  *	@timeout is further limited by @deadline.  The sooner of the
225  *	two is used.
226  *
227  *	LOCKING:
228  *	Kernel thread context (may sleep)
229  *
230  *	RETURNS:
231  *	0 on success, -errno on failure.
232  */
sata_link_debounce(struct ata_link * link,const unsigned long * params,unsigned long deadline)233 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
234 		       unsigned long deadline)
235 {
236 	unsigned long interval = params[0];
237 	unsigned long duration = params[1];
238 	unsigned long last_jiffies, t;
239 	u32 last, cur;
240 	int rc;
241 
242 	t = ata_deadline(jiffies, params[2]);
243 	if (time_before(t, deadline))
244 		deadline = t;
245 
246 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
247 		return rc;
248 	cur &= 0xf;
249 
250 	last = cur;
251 	last_jiffies = jiffies;
252 
253 	while (1) {
254 		ata_msleep(link->ap, interval);
255 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
256 			return rc;
257 		cur &= 0xf;
258 
259 		/* DET stable? */
260 		if (cur == last) {
261 			if (cur == 1 && time_before(jiffies, deadline))
262 				continue;
263 			if (time_after(jiffies,
264 				       ata_deadline(last_jiffies, duration)))
265 				return 0;
266 			continue;
267 		}
268 
269 		/* unstable, start over */
270 		last = cur;
271 		last_jiffies = jiffies;
272 
273 		/* Check deadline.  If debouncing failed, return
274 		 * -EPIPE to tell upper layer to lower link speed.
275 		 */
276 		if (time_after(jiffies, deadline))
277 			return -EPIPE;
278 	}
279 }
280 EXPORT_SYMBOL_GPL(sata_link_debounce);
281 
282 /**
283  *	sata_link_resume - resume SATA link
284  *	@link: ATA link to resume SATA
285  *	@params: timing parameters { interval, duration, timeout } in msec
286  *	@deadline: deadline jiffies for the operation
287  *
288  *	Resume SATA phy @link and debounce it.
289  *
290  *	LOCKING:
291  *	Kernel thread context (may sleep)
292  *
293  *	RETURNS:
294  *	0 on success, -errno on failure.
295  */
sata_link_resume(struct ata_link * link,const unsigned long * params,unsigned long deadline)296 int sata_link_resume(struct ata_link *link, const unsigned long *params,
297 		     unsigned long deadline)
298 {
299 	int tries = ATA_LINK_RESUME_TRIES;
300 	u32 scontrol, serror;
301 	int rc;
302 
303 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
304 		return rc;
305 
306 	/*
307 	 * Writes to SControl sometimes get ignored under certain
308 	 * controllers (ata_piix SIDPR).  Make sure DET actually is
309 	 * cleared.
310 	 */
311 	do {
312 		scontrol = (scontrol & 0x0f0) | 0x300;
313 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
314 			return rc;
315 		/*
316 		 * Some PHYs react badly if SStatus is pounded
317 		 * immediately after resuming.  Delay 200ms before
318 		 * debouncing.
319 		 */
320 		if (!(link->flags & ATA_LFLAG_NO_DEBOUNCE_DELAY))
321 			ata_msleep(link->ap, 200);
322 
323 		/* is SControl restored correctly? */
324 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
325 			return rc;
326 	} while ((scontrol & 0xf0f) != 0x300 && --tries);
327 
328 	if ((scontrol & 0xf0f) != 0x300) {
329 		ata_link_warn(link, "failed to resume link (SControl %X)\n",
330 			     scontrol);
331 		return 0;
332 	}
333 
334 	if (tries < ATA_LINK_RESUME_TRIES)
335 		ata_link_warn(link, "link resume succeeded after %d retries\n",
336 			      ATA_LINK_RESUME_TRIES - tries);
337 
338 	if ((rc = sata_link_debounce(link, params, deadline)))
339 		return rc;
340 
341 	/* clear SError, some PHYs require this even for SRST to work */
342 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
343 		rc = sata_scr_write(link, SCR_ERROR, serror);
344 
345 	return rc != -EINVAL ? rc : 0;
346 }
347 EXPORT_SYMBOL_GPL(sata_link_resume);
348 
349 /**
350  *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
351  *	@link: ATA link to manipulate SControl for
352  *	@policy: LPM policy to configure
353  *	@spm_wakeup: initiate LPM transition to active state
354  *
355  *	Manipulate the IPM field of the SControl register of @link
356  *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
357  *	@spm_wakeup is %true, the SPM field is manipulated to wake up
358  *	the link.  This function also clears PHYRDY_CHG before
359  *	returning.
360  *
361  *	LOCKING:
362  *	EH context.
363  *
364  *	RETURNS:
365  *	0 on success, -errno otherwise.
366  */
sata_link_scr_lpm(struct ata_link * link,enum ata_lpm_policy policy,bool spm_wakeup)367 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
368 		      bool spm_wakeup)
369 {
370 	struct ata_eh_context *ehc = &link->eh_context;
371 	bool woken_up = false;
372 	u32 scontrol;
373 	int rc;
374 
375 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
376 	if (rc)
377 		return rc;
378 
379 	switch (policy) {
380 	case ATA_LPM_MAX_POWER:
381 		/* disable all LPM transitions */
382 		scontrol |= (0x7 << 8);
383 		/* initiate transition to active state */
384 		if (spm_wakeup) {
385 			scontrol |= (0x4 << 12);
386 			woken_up = true;
387 		}
388 		break;
389 	case ATA_LPM_MED_POWER:
390 		/* allow LPM to PARTIAL */
391 		scontrol &= ~(0x1 << 8);
392 		scontrol |= (0x6 << 8);
393 		break;
394 	case ATA_LPM_MED_POWER_WITH_DIPM:
395 	case ATA_LPM_MIN_POWER_WITH_PARTIAL:
396 	case ATA_LPM_MIN_POWER:
397 		if (ata_link_nr_enabled(link) > 0) {
398 			/* assume no restrictions on LPM transitions */
399 			scontrol &= ~(0x7 << 8);
400 
401 			/*
402 			 * If the controller does not support partial, slumber,
403 			 * or devsleep, then disallow these transitions.
404 			 */
405 			if (link->ap->host->flags & ATA_HOST_NO_PART)
406 				scontrol |= (0x1 << 8);
407 
408 			if (link->ap->host->flags & ATA_HOST_NO_SSC)
409 				scontrol |= (0x2 << 8);
410 
411 			if (link->ap->host->flags & ATA_HOST_NO_DEVSLP)
412 				scontrol |= (0x4 << 8);
413 		} else {
414 			/* empty port, power off */
415 			scontrol &= ~0xf;
416 			scontrol |= (0x1 << 2);
417 		}
418 		break;
419 	default:
420 		WARN_ON(1);
421 	}
422 
423 	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
424 	if (rc)
425 		return rc;
426 
427 	/* give the link time to transit out of LPM state */
428 	if (woken_up)
429 		msleep(10);
430 
431 	/* clear PHYRDY_CHG from SError */
432 	ehc->i.serror &= ~SERR_PHYRDY_CHG;
433 	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
434 }
435 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
436 
__sata_set_spd_needed(struct ata_link * link,u32 * scontrol)437 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
438 {
439 	struct ata_link *host_link = &link->ap->link;
440 	u32 limit, target, spd;
441 
442 	limit = link->sata_spd_limit;
443 
444 	/* Don't configure downstream link faster than upstream link.
445 	 * It doesn't speed up anything and some PMPs choke on such
446 	 * configuration.
447 	 */
448 	if (!ata_is_host_link(link) && host_link->sata_spd)
449 		limit &= (1 << host_link->sata_spd) - 1;
450 
451 	if (limit == UINT_MAX)
452 		target = 0;
453 	else
454 		target = fls(limit);
455 
456 	spd = (*scontrol >> 4) & 0xf;
457 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
458 
459 	return spd != target;
460 }
461 
462 /**
463  *	sata_set_spd_needed - is SATA spd configuration needed
464  *	@link: Link in question
465  *
466  *	Test whether the spd limit in SControl matches
467  *	@link->sata_spd_limit.  This function is used to determine
468  *	whether hardreset is necessary to apply SATA spd
469  *	configuration.
470  *
471  *	LOCKING:
472  *	Inherited from caller.
473  *
474  *	RETURNS:
475  *	1 if SATA spd configuration is needed, 0 otherwise.
476  */
sata_set_spd_needed(struct ata_link * link)477 static int sata_set_spd_needed(struct ata_link *link)
478 {
479 	u32 scontrol;
480 
481 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
482 		return 1;
483 
484 	return __sata_set_spd_needed(link, &scontrol);
485 }
486 
487 /**
488  *	sata_set_spd - set SATA spd according to spd limit
489  *	@link: Link to set SATA spd for
490  *
491  *	Set SATA spd of @link according to sata_spd_limit.
492  *
493  *	LOCKING:
494  *	Inherited from caller.
495  *
496  *	RETURNS:
497  *	0 if spd doesn't need to be changed, 1 if spd has been
498  *	changed.  Negative errno if SCR registers are inaccessible.
499  */
sata_set_spd(struct ata_link * link)500 int sata_set_spd(struct ata_link *link)
501 {
502 	u32 scontrol;
503 	int rc;
504 
505 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
506 		return rc;
507 
508 	if (!__sata_set_spd_needed(link, &scontrol))
509 		return 0;
510 
511 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
512 		return rc;
513 
514 	return 1;
515 }
516 EXPORT_SYMBOL_GPL(sata_set_spd);
517 
518 /**
519  *	sata_link_hardreset - reset link via SATA phy reset
520  *	@link: link to reset
521  *	@timing: timing parameters { interval, duration, timeout } in msec
522  *	@deadline: deadline jiffies for the operation
523  *	@online: optional out parameter indicating link onlineness
524  *	@check_ready: optional callback to check link readiness
525  *
526  *	SATA phy-reset @link using DET bits of SControl register.
527  *	After hardreset, link readiness is waited upon using
528  *	ata_wait_ready() if @check_ready is specified.  LLDs are
529  *	allowed to not specify @check_ready and wait itself after this
530  *	function returns.  Device classification is LLD's
531  *	responsibility.
532  *
533  *	*@online is set to one iff reset succeeded and @link is online
534  *	after reset.
535  *
536  *	LOCKING:
537  *	Kernel thread context (may sleep)
538  *
539  *	RETURNS:
540  *	0 on success, -errno otherwise.
541  */
sata_link_hardreset(struct ata_link * link,const unsigned long * timing,unsigned long deadline,bool * online,int (* check_ready)(struct ata_link *))542 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
543 			unsigned long deadline,
544 			bool *online, int (*check_ready)(struct ata_link *))
545 {
546 	u32 scontrol;
547 	int rc;
548 
549 	DPRINTK("ENTER\n");
550 
551 	if (online)
552 		*online = false;
553 
554 	if (sata_set_spd_needed(link)) {
555 		/* SATA spec says nothing about how to reconfigure
556 		 * spd.  To be on the safe side, turn off phy during
557 		 * reconfiguration.  This works for at least ICH7 AHCI
558 		 * and Sil3124.
559 		 */
560 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
561 			goto out;
562 
563 		scontrol = (scontrol & 0x0f0) | 0x304;
564 
565 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
566 			goto out;
567 
568 		sata_set_spd(link);
569 	}
570 
571 	/* issue phy wake/reset */
572 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
573 		goto out;
574 
575 	scontrol = (scontrol & 0x0f0) | 0x301;
576 
577 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
578 		goto out;
579 
580 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
581 	 * 10.4.2 says at least 1 ms.
582 	 */
583 	ata_msleep(link->ap, 1);
584 
585 	/* bring link back */
586 	rc = sata_link_resume(link, timing, deadline);
587 	if (rc)
588 		goto out;
589 	/* if link is offline nothing more to do */
590 	if (ata_phys_link_offline(link))
591 		goto out;
592 
593 	/* Link is online.  From this point, -ENODEV too is an error. */
594 	if (online)
595 		*online = true;
596 
597 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
598 		/* If PMP is supported, we have to do follow-up SRST.
599 		 * Some PMPs don't send D2H Reg FIS after hardreset if
600 		 * the first port is empty.  Wait only for
601 		 * ATA_TMOUT_PMP_SRST_WAIT.
602 		 */
603 		if (check_ready) {
604 			unsigned long pmp_deadline;
605 
606 			pmp_deadline = ata_deadline(jiffies,
607 						    ATA_TMOUT_PMP_SRST_WAIT);
608 			if (time_after(pmp_deadline, deadline))
609 				pmp_deadline = deadline;
610 			ata_wait_ready(link, pmp_deadline, check_ready);
611 		}
612 		rc = -EAGAIN;
613 		goto out;
614 	}
615 
616 	rc = 0;
617 	if (check_ready)
618 		rc = ata_wait_ready(link, deadline, check_ready);
619  out:
620 	if (rc && rc != -EAGAIN) {
621 		/* online is set iff link is online && reset succeeded */
622 		if (online)
623 			*online = false;
624 		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
625 	}
626 	DPRINTK("EXIT, rc=%d\n", rc);
627 	return rc;
628 }
629 EXPORT_SYMBOL_GPL(sata_link_hardreset);
630 
631 /**
632  *	ata_qc_complete_multiple - Complete multiple qcs successfully
633  *	@ap: port in question
634  *	@qc_active: new qc_active mask
635  *
636  *	Complete in-flight commands.  This functions is meant to be
637  *	called from low-level driver's interrupt routine to complete
638  *	requests normally.  ap->qc_active and @qc_active is compared
639  *	and commands are completed accordingly.
640  *
641  *	Always use this function when completing multiple NCQ commands
642  *	from IRQ handlers instead of calling ata_qc_complete()
643  *	multiple times to keep IRQ expect status properly in sync.
644  *
645  *	LOCKING:
646  *	spin_lock_irqsave(host lock)
647  *
648  *	RETURNS:
649  *	Number of completed commands on success, -errno otherwise.
650  */
ata_qc_complete_multiple(struct ata_port * ap,u64 qc_active)651 int ata_qc_complete_multiple(struct ata_port *ap, u64 qc_active)
652 {
653 	u64 done_mask, ap_qc_active = ap->qc_active;
654 	int nr_done = 0;
655 
656 	/*
657 	 * If the internal tag is set on ap->qc_active, then we care about
658 	 * bit0 on the passed in qc_active mask. Move that bit up to match
659 	 * the internal tag.
660 	 */
661 	if (ap_qc_active & (1ULL << ATA_TAG_INTERNAL)) {
662 		qc_active |= (qc_active & 0x01) << ATA_TAG_INTERNAL;
663 		qc_active ^= qc_active & 0x01;
664 	}
665 
666 	done_mask = ap_qc_active ^ qc_active;
667 
668 	if (unlikely(done_mask & qc_active)) {
669 		ata_port_err(ap, "illegal qc_active transition (%08llx->%08llx)\n",
670 			     ap->qc_active, qc_active);
671 		return -EINVAL;
672 	}
673 
674 	while (done_mask) {
675 		struct ata_queued_cmd *qc;
676 		unsigned int tag = __ffs64(done_mask);
677 
678 		qc = ata_qc_from_tag(ap, tag);
679 		if (qc) {
680 			ata_qc_complete(qc);
681 			nr_done++;
682 		}
683 		done_mask &= ~(1ULL << tag);
684 	}
685 
686 	return nr_done;
687 }
688 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
689 
690 /**
691  *	ata_slave_link_init - initialize slave link
692  *	@ap: port to initialize slave link for
693  *
694  *	Create and initialize slave link for @ap.  This enables slave
695  *	link handling on the port.
696  *
697  *	In libata, a port contains links and a link contains devices.
698  *	There is single host link but if a PMP is attached to it,
699  *	there can be multiple fan-out links.  On SATA, there's usually
700  *	a single device connected to a link but PATA and SATA
701  *	controllers emulating TF based interface can have two - master
702  *	and slave.
703  *
704  *	However, there are a few controllers which don't fit into this
705  *	abstraction too well - SATA controllers which emulate TF
706  *	interface with both master and slave devices but also have
707  *	separate SCR register sets for each device.  These controllers
708  *	need separate links for physical link handling
709  *	(e.g. onlineness, link speed) but should be treated like a
710  *	traditional M/S controller for everything else (e.g. command
711  *	issue, softreset).
712  *
713  *	slave_link is libata's way of handling this class of
714  *	controllers without impacting core layer too much.  For
715  *	anything other than physical link handling, the default host
716  *	link is used for both master and slave.  For physical link
717  *	handling, separate @ap->slave_link is used.  All dirty details
718  *	are implemented inside libata core layer.  From LLD's POV, the
719  *	only difference is that prereset, hardreset and postreset are
720  *	called once more for the slave link, so the reset sequence
721  *	looks like the following.
722  *
723  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
724  *	softreset(M) -> postreset(M) -> postreset(S)
725  *
726  *	Note that softreset is called only for the master.  Softreset
727  *	resets both M/S by definition, so SRST on master should handle
728  *	both (the standard method will work just fine).
729  *
730  *	LOCKING:
731  *	Should be called before host is registered.
732  *
733  *	RETURNS:
734  *	0 on success, -errno on failure.
735  */
ata_slave_link_init(struct ata_port * ap)736 int ata_slave_link_init(struct ata_port *ap)
737 {
738 	struct ata_link *link;
739 
740 	WARN_ON(ap->slave_link);
741 	WARN_ON(ap->flags & ATA_FLAG_PMP);
742 
743 	link = kzalloc(sizeof(*link), GFP_KERNEL);
744 	if (!link)
745 		return -ENOMEM;
746 
747 	ata_link_init(ap, link, 1);
748 	ap->slave_link = link;
749 	return 0;
750 }
751 EXPORT_SYMBOL_GPL(ata_slave_link_init);
752 
753 /**
754  *	sata_lpm_ignore_phy_events - test if PHY event should be ignored
755  *	@link: Link receiving the event
756  *
757  *	Test whether the received PHY event has to be ignored or not.
758  *
759  *	LOCKING:
760  *	None:
761  *
762  *	RETURNS:
763  *	True if the event has to be ignored.
764  */
sata_lpm_ignore_phy_events(struct ata_link * link)765 bool sata_lpm_ignore_phy_events(struct ata_link *link)
766 {
767 	unsigned long lpm_timeout = link->last_lpm_change +
768 				    msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
769 
770 	/* if LPM is enabled, PHYRDY doesn't mean anything */
771 	if (link->lpm_policy > ATA_LPM_MAX_POWER)
772 		return true;
773 
774 	/* ignore the first PHY event after the LPM policy changed
775 	 * as it is might be spurious
776 	 */
777 	if ((link->flags & ATA_LFLAG_CHANGED) &&
778 	    time_before(jiffies, lpm_timeout))
779 		return true;
780 
781 	return false;
782 }
783 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
784 
785 static const char *ata_lpm_policy_names[] = {
786 	[ATA_LPM_UNKNOWN]		= "max_performance",
787 	[ATA_LPM_MAX_POWER]		= "max_performance",
788 	[ATA_LPM_MED_POWER]		= "medium_power",
789 	[ATA_LPM_MED_POWER_WITH_DIPM]	= "med_power_with_dipm",
790 	[ATA_LPM_MIN_POWER_WITH_PARTIAL] = "min_power_with_partial",
791 	[ATA_LPM_MIN_POWER]		= "min_power",
792 };
793 
ata_scsi_lpm_store(struct device * device,struct device_attribute * attr,const char * buf,size_t count)794 static ssize_t ata_scsi_lpm_store(struct device *device,
795 				  struct device_attribute *attr,
796 				  const char *buf, size_t count)
797 {
798 	struct Scsi_Host *shost = class_to_shost(device);
799 	struct ata_port *ap = ata_shost_to_port(shost);
800 	struct ata_link *link;
801 	struct ata_device *dev;
802 	enum ata_lpm_policy policy;
803 	unsigned long flags;
804 
805 	/* UNKNOWN is internal state, iterate from MAX_POWER */
806 	for (policy = ATA_LPM_MAX_POWER;
807 	     policy < ARRAY_SIZE(ata_lpm_policy_names); policy++) {
808 		const char *name = ata_lpm_policy_names[policy];
809 
810 		if (strncmp(name, buf, strlen(name)) == 0)
811 			break;
812 	}
813 	if (policy == ARRAY_SIZE(ata_lpm_policy_names))
814 		return -EINVAL;
815 
816 	spin_lock_irqsave(ap->lock, flags);
817 
818 	ata_for_each_link(link, ap, EDGE) {
819 		ata_for_each_dev(dev, &ap->link, ENABLED) {
820 			if (dev->horkage & ATA_HORKAGE_NOLPM) {
821 				count = -EOPNOTSUPP;
822 				goto out_unlock;
823 			}
824 		}
825 	}
826 
827 	ap->target_lpm_policy = policy;
828 	ata_port_schedule_eh(ap);
829 out_unlock:
830 	spin_unlock_irqrestore(ap->lock, flags);
831 	return count;
832 }
833 
ata_scsi_lpm_show(struct device * dev,struct device_attribute * attr,char * buf)834 static ssize_t ata_scsi_lpm_show(struct device *dev,
835 				 struct device_attribute *attr, char *buf)
836 {
837 	struct Scsi_Host *shost = class_to_shost(dev);
838 	struct ata_port *ap = ata_shost_to_port(shost);
839 
840 	if (ap->target_lpm_policy >= ARRAY_SIZE(ata_lpm_policy_names))
841 		return -EINVAL;
842 
843 	return snprintf(buf, PAGE_SIZE, "%s\n",
844 			ata_lpm_policy_names[ap->target_lpm_policy]);
845 }
846 DEVICE_ATTR(link_power_management_policy, S_IRUGO | S_IWUSR,
847 	    ata_scsi_lpm_show, ata_scsi_lpm_store);
848 EXPORT_SYMBOL_GPL(dev_attr_link_power_management_policy);
849 
ata_ncq_prio_enable_show(struct device * device,struct device_attribute * attr,char * buf)850 static ssize_t ata_ncq_prio_enable_show(struct device *device,
851 					struct device_attribute *attr,
852 					char *buf)
853 {
854 	struct scsi_device *sdev = to_scsi_device(device);
855 	struct ata_port *ap;
856 	struct ata_device *dev;
857 	bool ncq_prio_enable;
858 	int rc = 0;
859 
860 	ap = ata_shost_to_port(sdev->host);
861 
862 	spin_lock_irq(ap->lock);
863 	dev = ata_scsi_find_dev(ap, sdev);
864 	if (!dev) {
865 		rc = -ENODEV;
866 		goto unlock;
867 	}
868 
869 	ncq_prio_enable = dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE;
870 
871 unlock:
872 	spin_unlock_irq(ap->lock);
873 
874 	return rc ? rc : snprintf(buf, 20, "%u\n", ncq_prio_enable);
875 }
876 
ata_ncq_prio_enable_store(struct device * device,struct device_attribute * attr,const char * buf,size_t len)877 static ssize_t ata_ncq_prio_enable_store(struct device *device,
878 					 struct device_attribute *attr,
879 					 const char *buf, size_t len)
880 {
881 	struct scsi_device *sdev = to_scsi_device(device);
882 	struct ata_port *ap;
883 	struct ata_device *dev;
884 	long int input;
885 	int rc;
886 
887 	rc = kstrtol(buf, 10, &input);
888 	if (rc)
889 		return rc;
890 	if ((input < 0) || (input > 1))
891 		return -EINVAL;
892 
893 	ap = ata_shost_to_port(sdev->host);
894 	dev = ata_scsi_find_dev(ap, sdev);
895 	if (unlikely(!dev))
896 		return  -ENODEV;
897 
898 	spin_lock_irq(ap->lock);
899 	if (input)
900 		dev->flags |= ATA_DFLAG_NCQ_PRIO_ENABLE;
901 	else
902 		dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLE;
903 
904 	dev->link->eh_info.action |= ATA_EH_REVALIDATE;
905 	dev->link->eh_info.flags |= ATA_EHI_QUIET;
906 	ata_port_schedule_eh(ap);
907 	spin_unlock_irq(ap->lock);
908 
909 	ata_port_wait_eh(ap);
910 
911 	if (input) {
912 		spin_lock_irq(ap->lock);
913 		if (!(dev->flags & ATA_DFLAG_NCQ_PRIO)) {
914 			dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLE;
915 			rc = -EIO;
916 		}
917 		spin_unlock_irq(ap->lock);
918 	}
919 
920 	return rc ? rc : len;
921 }
922 
923 DEVICE_ATTR(ncq_prio_enable, S_IRUGO | S_IWUSR,
924 	    ata_ncq_prio_enable_show, ata_ncq_prio_enable_store);
925 EXPORT_SYMBOL_GPL(dev_attr_ncq_prio_enable);
926 
927 struct device_attribute *ata_ncq_sdev_attrs[] = {
928 	&dev_attr_unload_heads,
929 	&dev_attr_ncq_prio_enable,
930 	NULL
931 };
932 EXPORT_SYMBOL_GPL(ata_ncq_sdev_attrs);
933 
934 static ssize_t
ata_scsi_em_message_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)935 ata_scsi_em_message_store(struct device *dev, struct device_attribute *attr,
936 			  const char *buf, size_t count)
937 {
938 	struct Scsi_Host *shost = class_to_shost(dev);
939 	struct ata_port *ap = ata_shost_to_port(shost);
940 	if (ap->ops->em_store && (ap->flags & ATA_FLAG_EM))
941 		return ap->ops->em_store(ap, buf, count);
942 	return -EINVAL;
943 }
944 
945 static ssize_t
ata_scsi_em_message_show(struct device * dev,struct device_attribute * attr,char * buf)946 ata_scsi_em_message_show(struct device *dev, struct device_attribute *attr,
947 			 char *buf)
948 {
949 	struct Scsi_Host *shost = class_to_shost(dev);
950 	struct ata_port *ap = ata_shost_to_port(shost);
951 
952 	if (ap->ops->em_show && (ap->flags & ATA_FLAG_EM))
953 		return ap->ops->em_show(ap, buf);
954 	return -EINVAL;
955 }
956 DEVICE_ATTR(em_message, S_IRUGO | S_IWUSR,
957 		ata_scsi_em_message_show, ata_scsi_em_message_store);
958 EXPORT_SYMBOL_GPL(dev_attr_em_message);
959 
960 static ssize_t
ata_scsi_em_message_type_show(struct device * dev,struct device_attribute * attr,char * buf)961 ata_scsi_em_message_type_show(struct device *dev, struct device_attribute *attr,
962 			      char *buf)
963 {
964 	struct Scsi_Host *shost = class_to_shost(dev);
965 	struct ata_port *ap = ata_shost_to_port(shost);
966 
967 	return snprintf(buf, 23, "%d\n", ap->em_message_type);
968 }
969 DEVICE_ATTR(em_message_type, S_IRUGO,
970 		  ata_scsi_em_message_type_show, NULL);
971 EXPORT_SYMBOL_GPL(dev_attr_em_message_type);
972 
973 static ssize_t
ata_scsi_activity_show(struct device * dev,struct device_attribute * attr,char * buf)974 ata_scsi_activity_show(struct device *dev, struct device_attribute *attr,
975 		char *buf)
976 {
977 	struct scsi_device *sdev = to_scsi_device(dev);
978 	struct ata_port *ap = ata_shost_to_port(sdev->host);
979 	struct ata_device *atadev = ata_scsi_find_dev(ap, sdev);
980 
981 	if (atadev && ap->ops->sw_activity_show &&
982 	    (ap->flags & ATA_FLAG_SW_ACTIVITY))
983 		return ap->ops->sw_activity_show(atadev, buf);
984 	return -EINVAL;
985 }
986 
987 static ssize_t
ata_scsi_activity_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)988 ata_scsi_activity_store(struct device *dev, struct device_attribute *attr,
989 	const char *buf, size_t count)
990 {
991 	struct scsi_device *sdev = to_scsi_device(dev);
992 	struct ata_port *ap = ata_shost_to_port(sdev->host);
993 	struct ata_device *atadev = ata_scsi_find_dev(ap, sdev);
994 	enum sw_activity val;
995 	int rc;
996 
997 	if (atadev && ap->ops->sw_activity_store &&
998 	    (ap->flags & ATA_FLAG_SW_ACTIVITY)) {
999 		val = simple_strtoul(buf, NULL, 0);
1000 		switch (val) {
1001 		case OFF: case BLINK_ON: case BLINK_OFF:
1002 			rc = ap->ops->sw_activity_store(atadev, val);
1003 			if (!rc)
1004 				return count;
1005 			else
1006 				return rc;
1007 		}
1008 	}
1009 	return -EINVAL;
1010 }
1011 DEVICE_ATTR(sw_activity, S_IWUSR | S_IRUGO, ata_scsi_activity_show,
1012 			ata_scsi_activity_store);
1013 EXPORT_SYMBOL_GPL(dev_attr_sw_activity);
1014 
1015 /**
1016  *	__ata_change_queue_depth - helper for ata_scsi_change_queue_depth
1017  *	@ap: ATA port to which the device change the queue depth
1018  *	@sdev: SCSI device to configure queue depth for
1019  *	@queue_depth: new queue depth
1020  *
1021  *	libsas and libata have different approaches for associating a sdev to
1022  *	its ata_port.
1023  *
1024  */
__ata_change_queue_depth(struct ata_port * ap,struct scsi_device * sdev,int queue_depth)1025 int __ata_change_queue_depth(struct ata_port *ap, struct scsi_device *sdev,
1026 			     int queue_depth)
1027 {
1028 	struct ata_device *dev;
1029 	unsigned long flags;
1030 
1031 	if (queue_depth < 1 || queue_depth == sdev->queue_depth)
1032 		return sdev->queue_depth;
1033 
1034 	dev = ata_scsi_find_dev(ap, sdev);
1035 	if (!dev || !ata_dev_enabled(dev))
1036 		return sdev->queue_depth;
1037 
1038 	/* NCQ enabled? */
1039 	spin_lock_irqsave(ap->lock, flags);
1040 	dev->flags &= ~ATA_DFLAG_NCQ_OFF;
1041 	if (queue_depth == 1 || !ata_ncq_enabled(dev)) {
1042 		dev->flags |= ATA_DFLAG_NCQ_OFF;
1043 		queue_depth = 1;
1044 	}
1045 	spin_unlock_irqrestore(ap->lock, flags);
1046 
1047 	/* limit and apply queue depth */
1048 	queue_depth = min(queue_depth, sdev->host->can_queue);
1049 	queue_depth = min(queue_depth, ata_id_queue_depth(dev->id));
1050 	queue_depth = min(queue_depth, ATA_MAX_QUEUE);
1051 
1052 	if (sdev->queue_depth == queue_depth)
1053 		return -EINVAL;
1054 
1055 	return scsi_change_queue_depth(sdev, queue_depth);
1056 }
1057 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
1058 
1059 /**
1060  *	ata_scsi_change_queue_depth - SCSI callback for queue depth config
1061  *	@sdev: SCSI device to configure queue depth for
1062  *	@queue_depth: new queue depth
1063  *
1064  *	This is libata standard hostt->change_queue_depth callback.
1065  *	SCSI will call into this callback when user tries to set queue
1066  *	depth via sysfs.
1067  *
1068  *	LOCKING:
1069  *	SCSI layer (we don't care)
1070  *
1071  *	RETURNS:
1072  *	Newly configured queue depth.
1073  */
ata_scsi_change_queue_depth(struct scsi_device * sdev,int queue_depth)1074 int ata_scsi_change_queue_depth(struct scsi_device *sdev, int queue_depth)
1075 {
1076 	struct ata_port *ap = ata_shost_to_port(sdev->host);
1077 
1078 	return __ata_change_queue_depth(ap, sdev, queue_depth);
1079 }
1080 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1081 
1082 /**
1083  *	port_alloc - Allocate port for a SAS attached SATA device
1084  *	@host: ATA host container for all SAS ports
1085  *	@port_info: Information from low-level host driver
1086  *	@shost: SCSI host that the scsi device is attached to
1087  *
1088  *	LOCKING:
1089  *	PCI/etc. bus probe sem.
1090  *
1091  *	RETURNS:
1092  *	ata_port pointer on success / NULL on failure.
1093  */
1094 
ata_sas_port_alloc(struct ata_host * host,struct ata_port_info * port_info,struct Scsi_Host * shost)1095 struct ata_port *ata_sas_port_alloc(struct ata_host *host,
1096 				    struct ata_port_info *port_info,
1097 				    struct Scsi_Host *shost)
1098 {
1099 	struct ata_port *ap;
1100 
1101 	ap = ata_port_alloc(host);
1102 	if (!ap)
1103 		return NULL;
1104 
1105 	ap->port_no = 0;
1106 	ap->lock = &host->lock;
1107 	ap->pio_mask = port_info->pio_mask;
1108 	ap->mwdma_mask = port_info->mwdma_mask;
1109 	ap->udma_mask = port_info->udma_mask;
1110 	ap->flags |= port_info->flags;
1111 	ap->ops = port_info->port_ops;
1112 	ap->cbl = ATA_CBL_SATA;
1113 
1114 	return ap;
1115 }
1116 EXPORT_SYMBOL_GPL(ata_sas_port_alloc);
1117 
1118 /**
1119  *	ata_sas_port_start - Set port up for dma.
1120  *	@ap: Port to initialize
1121  *
1122  *	Called just after data structures for each port are
1123  *	initialized.
1124  *
1125  *	May be used as the port_start() entry in ata_port_operations.
1126  *
1127  *	LOCKING:
1128  *	Inherited from caller.
1129  */
ata_sas_port_start(struct ata_port * ap)1130 int ata_sas_port_start(struct ata_port *ap)
1131 {
1132 	/*
1133 	 * the port is marked as frozen at allocation time, but if we don't
1134 	 * have new eh, we won't thaw it
1135 	 */
1136 	if (!ap->ops->error_handler)
1137 		ap->pflags &= ~ATA_PFLAG_FROZEN;
1138 	return 0;
1139 }
1140 EXPORT_SYMBOL_GPL(ata_sas_port_start);
1141 
1142 /**
1143  *	ata_port_stop - Undo ata_sas_port_start()
1144  *	@ap: Port to shut down
1145  *
1146  *	May be used as the port_stop() entry in ata_port_operations.
1147  *
1148  *	LOCKING:
1149  *	Inherited from caller.
1150  */
1151 
ata_sas_port_stop(struct ata_port * ap)1152 void ata_sas_port_stop(struct ata_port *ap)
1153 {
1154 }
1155 EXPORT_SYMBOL_GPL(ata_sas_port_stop);
1156 
1157 /**
1158  * ata_sas_async_probe - simply schedule probing and return
1159  * @ap: Port to probe
1160  *
1161  * For batch scheduling of probe for sas attached ata devices, assumes
1162  * the port has already been through ata_sas_port_init()
1163  */
ata_sas_async_probe(struct ata_port * ap)1164 void ata_sas_async_probe(struct ata_port *ap)
1165 {
1166 	__ata_port_probe(ap);
1167 }
1168 EXPORT_SYMBOL_GPL(ata_sas_async_probe);
1169 
ata_sas_sync_probe(struct ata_port * ap)1170 int ata_sas_sync_probe(struct ata_port *ap)
1171 {
1172 	return ata_port_probe(ap);
1173 }
1174 EXPORT_SYMBOL_GPL(ata_sas_sync_probe);
1175 
1176 
1177 /**
1178  *	ata_sas_port_init - Initialize a SATA device
1179  *	@ap: SATA port to initialize
1180  *
1181  *	LOCKING:
1182  *	PCI/etc. bus probe sem.
1183  *
1184  *	RETURNS:
1185  *	Zero on success, non-zero on error.
1186  */
1187 
ata_sas_port_init(struct ata_port * ap)1188 int ata_sas_port_init(struct ata_port *ap)
1189 {
1190 	int rc = ap->ops->port_start(ap);
1191 
1192 	if (rc)
1193 		return rc;
1194 	ap->print_id = atomic_inc_return(&ata_print_id);
1195 	return 0;
1196 }
1197 EXPORT_SYMBOL_GPL(ata_sas_port_init);
1198 
ata_sas_tport_add(struct device * parent,struct ata_port * ap)1199 int ata_sas_tport_add(struct device *parent, struct ata_port *ap)
1200 {
1201 	return ata_tport_add(parent, ap);
1202 }
1203 EXPORT_SYMBOL_GPL(ata_sas_tport_add);
1204 
ata_sas_tport_delete(struct ata_port * ap)1205 void ata_sas_tport_delete(struct ata_port *ap)
1206 {
1207 	ata_tport_delete(ap);
1208 }
1209 EXPORT_SYMBOL_GPL(ata_sas_tport_delete);
1210 
1211 /**
1212  *	ata_sas_port_destroy - Destroy a SATA port allocated by ata_sas_port_alloc
1213  *	@ap: SATA port to destroy
1214  *
1215  */
1216 
ata_sas_port_destroy(struct ata_port * ap)1217 void ata_sas_port_destroy(struct ata_port *ap)
1218 {
1219 	if (ap->ops->port_stop)
1220 		ap->ops->port_stop(ap);
1221 	kfree(ap);
1222 }
1223 EXPORT_SYMBOL_GPL(ata_sas_port_destroy);
1224 
1225 /**
1226  *	ata_sas_slave_configure - Default slave_config routine for libata devices
1227  *	@sdev: SCSI device to configure
1228  *	@ap: ATA port to which SCSI device is attached
1229  *
1230  *	RETURNS:
1231  *	Zero.
1232  */
1233 
ata_sas_slave_configure(struct scsi_device * sdev,struct ata_port * ap)1234 int ata_sas_slave_configure(struct scsi_device *sdev, struct ata_port *ap)
1235 {
1236 	ata_scsi_sdev_config(sdev);
1237 	ata_scsi_dev_config(sdev, ap->link.device);
1238 	return 0;
1239 }
1240 EXPORT_SYMBOL_GPL(ata_sas_slave_configure);
1241 
1242 /**
1243  *	ata_sas_queuecmd - Issue SCSI cdb to libata-managed device
1244  *	@cmd: SCSI command to be sent
1245  *	@ap:	ATA port to which the command is being sent
1246  *
1247  *	RETURNS:
1248  *	Return value from __ata_scsi_queuecmd() if @cmd can be queued,
1249  *	0 otherwise.
1250  */
1251 
ata_sas_queuecmd(struct scsi_cmnd * cmd,struct ata_port * ap)1252 int ata_sas_queuecmd(struct scsi_cmnd *cmd, struct ata_port *ap)
1253 {
1254 	int rc = 0;
1255 
1256 	ata_scsi_dump_cdb(ap, cmd);
1257 
1258 	if (likely(ata_dev_enabled(ap->link.device)))
1259 		rc = __ata_scsi_queuecmd(cmd, ap->link.device);
1260 	else {
1261 		cmd->result = (DID_BAD_TARGET << 16);
1262 		cmd->scsi_done(cmd);
1263 	}
1264 	return rc;
1265 }
1266 EXPORT_SYMBOL_GPL(ata_sas_queuecmd);
1267 
ata_sas_allocate_tag(struct ata_port * ap)1268 int ata_sas_allocate_tag(struct ata_port *ap)
1269 {
1270 	unsigned int max_queue = ap->host->n_tags;
1271 	unsigned int i, tag;
1272 
1273 	for (i = 0, tag = ap->sas_last_tag + 1; i < max_queue; i++, tag++) {
1274 		tag = tag < max_queue ? tag : 0;
1275 
1276 		/* the last tag is reserved for internal command. */
1277 		if (ata_tag_internal(tag))
1278 			continue;
1279 
1280 		if (!test_and_set_bit(tag, &ap->sas_tag_allocated)) {
1281 			ap->sas_last_tag = tag;
1282 			return tag;
1283 		}
1284 	}
1285 	return -1;
1286 }
1287 
ata_sas_free_tag(unsigned int tag,struct ata_port * ap)1288 void ata_sas_free_tag(unsigned int tag, struct ata_port *ap)
1289 {
1290 	clear_bit(tag, &ap->sas_tag_allocated);
1291 }
1292 
1293 /**
1294  *	sata_async_notification - SATA async notification handler
1295  *	@ap: ATA port where async notification is received
1296  *
1297  *	Handler to be called when async notification via SDB FIS is
1298  *	received.  This function schedules EH if necessary.
1299  *
1300  *	LOCKING:
1301  *	spin_lock_irqsave(host lock)
1302  *
1303  *	RETURNS:
1304  *	1 if EH is scheduled, 0 otherwise.
1305  */
sata_async_notification(struct ata_port * ap)1306 int sata_async_notification(struct ata_port *ap)
1307 {
1308 	u32 sntf;
1309 	int rc;
1310 
1311 	if (!(ap->flags & ATA_FLAG_AN))
1312 		return 0;
1313 
1314 	rc = sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf);
1315 	if (rc == 0)
1316 		sata_scr_write(&ap->link, SCR_NOTIFICATION, sntf);
1317 
1318 	if (!sata_pmp_attached(ap) || rc) {
1319 		/* PMP is not attached or SNTF is not available */
1320 		if (!sata_pmp_attached(ap)) {
1321 			/* PMP is not attached.  Check whether ATAPI
1322 			 * AN is configured.  If so, notify media
1323 			 * change.
1324 			 */
1325 			struct ata_device *dev = ap->link.device;
1326 
1327 			if ((dev->class == ATA_DEV_ATAPI) &&
1328 			    (dev->flags & ATA_DFLAG_AN))
1329 				ata_scsi_media_change_notify(dev);
1330 			return 0;
1331 		} else {
1332 			/* PMP is attached but SNTF is not available.
1333 			 * ATAPI async media change notification is
1334 			 * not used.  The PMP must be reporting PHY
1335 			 * status change, schedule EH.
1336 			 */
1337 			ata_port_schedule_eh(ap);
1338 			return 1;
1339 		}
1340 	} else {
1341 		/* PMP is attached and SNTF is available */
1342 		struct ata_link *link;
1343 
1344 		/* check and notify ATAPI AN */
1345 		ata_for_each_link(link, ap, EDGE) {
1346 			if (!(sntf & (1 << link->pmp)))
1347 				continue;
1348 
1349 			if ((link->device->class == ATA_DEV_ATAPI) &&
1350 			    (link->device->flags & ATA_DFLAG_AN))
1351 				ata_scsi_media_change_notify(link->device);
1352 		}
1353 
1354 		/* If PMP is reporting that PHY status of some
1355 		 * downstream ports has changed, schedule EH.
1356 		 */
1357 		if (sntf & (1 << SATA_PMP_CTRL_PORT)) {
1358 			ata_port_schedule_eh(ap);
1359 			return 1;
1360 		}
1361 
1362 		return 0;
1363 	}
1364 }
1365 EXPORT_SYMBOL_GPL(sata_async_notification);
1366 
1367 /**
1368  *	ata_eh_read_log_10h - Read log page 10h for NCQ error details
1369  *	@dev: Device to read log page 10h from
1370  *	@tag: Resulting tag of the failed command
1371  *	@tf: Resulting taskfile registers of the failed command
1372  *
1373  *	Read log page 10h to obtain NCQ error details and clear error
1374  *	condition.
1375  *
1376  *	LOCKING:
1377  *	Kernel thread context (may sleep).
1378  *
1379  *	RETURNS:
1380  *	0 on success, -errno otherwise.
1381  */
ata_eh_read_log_10h(struct ata_device * dev,int * tag,struct ata_taskfile * tf)1382 static int ata_eh_read_log_10h(struct ata_device *dev,
1383 			       int *tag, struct ata_taskfile *tf)
1384 {
1385 	u8 *buf = dev->link->ap->sector_buf;
1386 	unsigned int err_mask;
1387 	u8 csum;
1388 	int i;
1389 
1390 	err_mask = ata_read_log_page(dev, ATA_LOG_SATA_NCQ, 0, buf, 1);
1391 	if (err_mask)
1392 		return -EIO;
1393 
1394 	csum = 0;
1395 	for (i = 0; i < ATA_SECT_SIZE; i++)
1396 		csum += buf[i];
1397 	if (csum)
1398 		ata_dev_warn(dev, "invalid checksum 0x%x on log page 10h\n",
1399 			     csum);
1400 
1401 	if (buf[0] & 0x80)
1402 		return -ENOENT;
1403 
1404 	*tag = buf[0] & 0x1f;
1405 
1406 	tf->command = buf[2];
1407 	tf->feature = buf[3];
1408 	tf->lbal = buf[4];
1409 	tf->lbam = buf[5];
1410 	tf->lbah = buf[6];
1411 	tf->device = buf[7];
1412 	tf->hob_lbal = buf[8];
1413 	tf->hob_lbam = buf[9];
1414 	tf->hob_lbah = buf[10];
1415 	tf->nsect = buf[12];
1416 	tf->hob_nsect = buf[13];
1417 	if (dev->class == ATA_DEV_ZAC && ata_id_has_ncq_autosense(dev->id))
1418 		tf->auxiliary = buf[14] << 16 | buf[15] << 8 | buf[16];
1419 
1420 	return 0;
1421 }
1422 
1423 /**
1424  *	ata_eh_analyze_ncq_error - analyze NCQ error
1425  *	@link: ATA link to analyze NCQ error for
1426  *
1427  *	Read log page 10h, determine the offending qc and acquire
1428  *	error status TF.  For NCQ device errors, all LLDDs have to do
1429  *	is setting AC_ERR_DEV in ehi->err_mask.  This function takes
1430  *	care of the rest.
1431  *
1432  *	LOCKING:
1433  *	Kernel thread context (may sleep).
1434  */
ata_eh_analyze_ncq_error(struct ata_link * link)1435 void ata_eh_analyze_ncq_error(struct ata_link *link)
1436 {
1437 	struct ata_port *ap = link->ap;
1438 	struct ata_eh_context *ehc = &link->eh_context;
1439 	struct ata_device *dev = link->device;
1440 	struct ata_queued_cmd *qc;
1441 	struct ata_taskfile tf;
1442 	int tag, rc;
1443 
1444 	/* if frozen, we can't do much */
1445 	if (ap->pflags & ATA_PFLAG_FROZEN)
1446 		return;
1447 
1448 	/* is it NCQ device error? */
1449 	if (!link->sactive || !(ehc->i.err_mask & AC_ERR_DEV))
1450 		return;
1451 
1452 	/* has LLDD analyzed already? */
1453 	ata_qc_for_each_raw(ap, qc, tag) {
1454 		if (!(qc->flags & ATA_QCFLAG_FAILED))
1455 			continue;
1456 
1457 		if (qc->err_mask)
1458 			return;
1459 	}
1460 
1461 	/* okay, this error is ours */
1462 	memset(&tf, 0, sizeof(tf));
1463 	rc = ata_eh_read_log_10h(dev, &tag, &tf);
1464 	if (rc) {
1465 		ata_link_err(link, "failed to read log page 10h (errno=%d)\n",
1466 			     rc);
1467 		return;
1468 	}
1469 
1470 	if (!(link->sactive & (1 << tag))) {
1471 		ata_link_err(link, "log page 10h reported inactive tag %d\n",
1472 			     tag);
1473 		return;
1474 	}
1475 
1476 	/* we've got the perpetrator, condemn it */
1477 	qc = __ata_qc_from_tag(ap, tag);
1478 	memcpy(&qc->result_tf, &tf, sizeof(tf));
1479 	qc->result_tf.flags = ATA_TFLAG_ISADDR | ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
1480 	qc->err_mask |= AC_ERR_DEV | AC_ERR_NCQ;
1481 	if (dev->class == ATA_DEV_ZAC &&
1482 	    ((qc->result_tf.command & ATA_SENSE) || qc->result_tf.auxiliary)) {
1483 		char sense_key, asc, ascq;
1484 
1485 		sense_key = (qc->result_tf.auxiliary >> 16) & 0xff;
1486 		asc = (qc->result_tf.auxiliary >> 8) & 0xff;
1487 		ascq = qc->result_tf.auxiliary & 0xff;
1488 		ata_scsi_set_sense(dev, qc->scsicmd, sense_key, asc, ascq);
1489 		ata_scsi_set_sense_information(dev, qc->scsicmd,
1490 					       &qc->result_tf);
1491 		qc->flags |= ATA_QCFLAG_SENSE_VALID;
1492 	}
1493 
1494 	ehc->i.err_mask &= ~AC_ERR_DEV;
1495 }
1496 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
1497