1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * vrf.c: device driver to encapsulate a VRF space
4 *
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8 *
9 * Based on dummy, team and ipvlan drivers
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/ip.h>
17 #include <linux/init.h>
18 #include <linux/moduleparam.h>
19 #include <linux/netfilter.h>
20 #include <linux/rtnetlink.h>
21 #include <net/rtnetlink.h>
22 #include <linux/u64_stats_sync.h>
23 #include <linux/hashtable.h>
24 #include <linux/spinlock_types.h>
25
26 #include <linux/inetdevice.h>
27 #include <net/arp.h>
28 #include <net/ip.h>
29 #include <net/ip_fib.h>
30 #include <net/ip6_fib.h>
31 #include <net/ip6_route.h>
32 #include <net/route.h>
33 #include <net/addrconf.h>
34 #include <net/l3mdev.h>
35 #include <net/fib_rules.h>
36 #include <net/netns/generic.h>
37 #include <net/netfilter/nf_conntrack.h>
38
39 #define DRV_NAME "vrf"
40 #define DRV_VERSION "1.1"
41
42 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
43
44 #define HT_MAP_BITS 4
45 #define HASH_INITVAL ((u32)0xcafef00d)
46
47 struct vrf_map {
48 DECLARE_HASHTABLE(ht, HT_MAP_BITS);
49 spinlock_t vmap_lock;
50
51 /* shared_tables:
52 * count how many distinct tables do not comply with the strict mode
53 * requirement.
54 * shared_tables value must be 0 in order to enable the strict mode.
55 *
56 * example of the evolution of shared_tables:
57 * | time
58 * add vrf0 --> table 100 shared_tables = 0 | t0
59 * add vrf1 --> table 101 shared_tables = 0 | t1
60 * add vrf2 --> table 100 shared_tables = 1 | t2
61 * add vrf3 --> table 100 shared_tables = 1 | t3
62 * add vrf4 --> table 101 shared_tables = 2 v t4
63 *
64 * shared_tables is a "step function" (or "staircase function")
65 * and it is increased by one when the second vrf is associated to a
66 * table.
67 *
68 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
69 *
70 * at t3, another dev (vrf3) is bound to the same table 100 but the
71 * value of shared_tables is still 1.
72 * This means that no matter how many new vrfs will register on the
73 * table 100, the shared_tables will not increase (considering only
74 * table 100).
75 *
76 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
77 *
78 * Looking at the value of shared_tables we can immediately know if
79 * the strict_mode can or cannot be enforced. Indeed, strict_mode
80 * can be enforced iff shared_tables = 0.
81 *
82 * Conversely, shared_tables is decreased when a vrf is de-associated
83 * from a table with exactly two associated vrfs.
84 */
85 u32 shared_tables;
86
87 bool strict_mode;
88 };
89
90 struct vrf_map_elem {
91 struct hlist_node hnode;
92 struct list_head vrf_list; /* VRFs registered to this table */
93
94 u32 table_id;
95 int users;
96 int ifindex;
97 };
98
99 static unsigned int vrf_net_id;
100
101 /* per netns vrf data */
102 struct netns_vrf {
103 /* protected by rtnl lock */
104 bool add_fib_rules;
105
106 struct vrf_map vmap;
107 struct ctl_table_header *ctl_hdr;
108 };
109
110 struct net_vrf {
111 struct rtable __rcu *rth;
112 struct rt6_info __rcu *rt6;
113 #if IS_ENABLED(CONFIG_IPV6)
114 struct fib6_table *fib6_table;
115 #endif
116 u32 tb_id;
117
118 struct list_head me_list; /* entry in vrf_map_elem */
119 int ifindex;
120 };
121
122 struct pcpu_dstats {
123 u64 tx_pkts;
124 u64 tx_bytes;
125 u64 tx_drps;
126 u64 rx_pkts;
127 u64 rx_bytes;
128 u64 rx_drps;
129 struct u64_stats_sync syncp;
130 };
131
vrf_rx_stats(struct net_device * dev,int len)132 static void vrf_rx_stats(struct net_device *dev, int len)
133 {
134 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
135
136 u64_stats_update_begin(&dstats->syncp);
137 dstats->rx_pkts++;
138 dstats->rx_bytes += len;
139 u64_stats_update_end(&dstats->syncp);
140 }
141
vrf_tx_error(struct net_device * vrf_dev,struct sk_buff * skb)142 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
143 {
144 vrf_dev->stats.tx_errors++;
145 kfree_skb(skb);
146 }
147
vrf_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)148 static void vrf_get_stats64(struct net_device *dev,
149 struct rtnl_link_stats64 *stats)
150 {
151 int i;
152
153 for_each_possible_cpu(i) {
154 const struct pcpu_dstats *dstats;
155 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
156 unsigned int start;
157
158 dstats = per_cpu_ptr(dev->dstats, i);
159 do {
160 start = u64_stats_fetch_begin_irq(&dstats->syncp);
161 tbytes = dstats->tx_bytes;
162 tpkts = dstats->tx_pkts;
163 tdrops = dstats->tx_drps;
164 rbytes = dstats->rx_bytes;
165 rpkts = dstats->rx_pkts;
166 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
167 stats->tx_bytes += tbytes;
168 stats->tx_packets += tpkts;
169 stats->tx_dropped += tdrops;
170 stats->rx_bytes += rbytes;
171 stats->rx_packets += rpkts;
172 }
173 }
174
netns_vrf_map(struct net * net)175 static struct vrf_map *netns_vrf_map(struct net *net)
176 {
177 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
178
179 return &nn_vrf->vmap;
180 }
181
netns_vrf_map_by_dev(struct net_device * dev)182 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
183 {
184 return netns_vrf_map(dev_net(dev));
185 }
186
vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem * me)187 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
188 {
189 struct list_head *me_head = &me->vrf_list;
190 struct net_vrf *vrf;
191
192 if (list_empty(me_head))
193 return -ENODEV;
194
195 vrf = list_first_entry(me_head, struct net_vrf, me_list);
196
197 return vrf->ifindex;
198 }
199
vrf_map_elem_alloc(gfp_t flags)200 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
201 {
202 struct vrf_map_elem *me;
203
204 me = kmalloc(sizeof(*me), flags);
205 if (!me)
206 return NULL;
207
208 return me;
209 }
210
vrf_map_elem_free(struct vrf_map_elem * me)211 static void vrf_map_elem_free(struct vrf_map_elem *me)
212 {
213 kfree(me);
214 }
215
vrf_map_elem_init(struct vrf_map_elem * me,int table_id,int ifindex,int users)216 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
217 int ifindex, int users)
218 {
219 me->table_id = table_id;
220 me->ifindex = ifindex;
221 me->users = users;
222 INIT_LIST_HEAD(&me->vrf_list);
223 }
224
vrf_map_lookup_elem(struct vrf_map * vmap,u32 table_id)225 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
226 u32 table_id)
227 {
228 struct vrf_map_elem *me;
229 u32 key;
230
231 key = jhash_1word(table_id, HASH_INITVAL);
232 hash_for_each_possible(vmap->ht, me, hnode, key) {
233 if (me->table_id == table_id)
234 return me;
235 }
236
237 return NULL;
238 }
239
vrf_map_add_elem(struct vrf_map * vmap,struct vrf_map_elem * me)240 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
241 {
242 u32 table_id = me->table_id;
243 u32 key;
244
245 key = jhash_1word(table_id, HASH_INITVAL);
246 hash_add(vmap->ht, &me->hnode, key);
247 }
248
vrf_map_del_elem(struct vrf_map_elem * me)249 static void vrf_map_del_elem(struct vrf_map_elem *me)
250 {
251 hash_del(&me->hnode);
252 }
253
vrf_map_lock(struct vrf_map * vmap)254 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
255 {
256 spin_lock(&vmap->vmap_lock);
257 }
258
vrf_map_unlock(struct vrf_map * vmap)259 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
260 {
261 spin_unlock(&vmap->vmap_lock);
262 }
263
264 /* called with rtnl lock held */
265 static int
vrf_map_register_dev(struct net_device * dev,struct netlink_ext_ack * extack)266 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
267 {
268 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
269 struct net_vrf *vrf = netdev_priv(dev);
270 struct vrf_map_elem *new_me, *me;
271 u32 table_id = vrf->tb_id;
272 bool free_new_me = false;
273 int users;
274 int res;
275
276 /* we pre-allocate elements used in the spin-locked section (so that we
277 * keep the spinlock as short as possibile).
278 */
279 new_me = vrf_map_elem_alloc(GFP_KERNEL);
280 if (!new_me)
281 return -ENOMEM;
282
283 vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
284
285 vrf_map_lock(vmap);
286
287 me = vrf_map_lookup_elem(vmap, table_id);
288 if (!me) {
289 me = new_me;
290 vrf_map_add_elem(vmap, me);
291 goto link_vrf;
292 }
293
294 /* we already have an entry in the vrf_map, so it means there is (at
295 * least) a vrf registered on the specific table.
296 */
297 free_new_me = true;
298 if (vmap->strict_mode) {
299 /* vrfs cannot share the same table */
300 NL_SET_ERR_MSG(extack, "Table is used by another VRF");
301 res = -EBUSY;
302 goto unlock;
303 }
304
305 link_vrf:
306 users = ++me->users;
307 if (users == 2)
308 ++vmap->shared_tables;
309
310 list_add(&vrf->me_list, &me->vrf_list);
311
312 res = 0;
313
314 unlock:
315 vrf_map_unlock(vmap);
316
317 /* clean-up, if needed */
318 if (free_new_me)
319 vrf_map_elem_free(new_me);
320
321 return res;
322 }
323
324 /* called with rtnl lock held */
vrf_map_unregister_dev(struct net_device * dev)325 static void vrf_map_unregister_dev(struct net_device *dev)
326 {
327 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
328 struct net_vrf *vrf = netdev_priv(dev);
329 u32 table_id = vrf->tb_id;
330 struct vrf_map_elem *me;
331 int users;
332
333 vrf_map_lock(vmap);
334
335 me = vrf_map_lookup_elem(vmap, table_id);
336 if (!me)
337 goto unlock;
338
339 list_del(&vrf->me_list);
340
341 users = --me->users;
342 if (users == 1) {
343 --vmap->shared_tables;
344 } else if (users == 0) {
345 vrf_map_del_elem(me);
346
347 /* no one will refer to this element anymore */
348 vrf_map_elem_free(me);
349 }
350
351 unlock:
352 vrf_map_unlock(vmap);
353 }
354
355 /* return the vrf device index associated with the table_id */
vrf_ifindex_lookup_by_table_id(struct net * net,u32 table_id)356 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
357 {
358 struct vrf_map *vmap = netns_vrf_map(net);
359 struct vrf_map_elem *me;
360 int ifindex;
361
362 vrf_map_lock(vmap);
363
364 if (!vmap->strict_mode) {
365 ifindex = -EPERM;
366 goto unlock;
367 }
368
369 me = vrf_map_lookup_elem(vmap, table_id);
370 if (!me) {
371 ifindex = -ENODEV;
372 goto unlock;
373 }
374
375 ifindex = vrf_map_elem_get_vrf_ifindex(me);
376
377 unlock:
378 vrf_map_unlock(vmap);
379
380 return ifindex;
381 }
382
383 /* by default VRF devices do not have a qdisc and are expected
384 * to be created with only a single queue.
385 */
qdisc_tx_is_default(const struct net_device * dev)386 static bool qdisc_tx_is_default(const struct net_device *dev)
387 {
388 struct netdev_queue *txq;
389 struct Qdisc *qdisc;
390
391 if (dev->num_tx_queues > 1)
392 return false;
393
394 txq = netdev_get_tx_queue(dev, 0);
395 qdisc = rcu_access_pointer(txq->qdisc);
396
397 return !qdisc->enqueue;
398 }
399
400 /* Local traffic destined to local address. Reinsert the packet to rx
401 * path, similar to loopback handling.
402 */
vrf_local_xmit(struct sk_buff * skb,struct net_device * dev,struct dst_entry * dst)403 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
404 struct dst_entry *dst)
405 {
406 int len = skb->len;
407
408 skb_orphan(skb);
409
410 skb_dst_set(skb, dst);
411
412 /* set pkt_type to avoid skb hitting packet taps twice -
413 * once on Tx and again in Rx processing
414 */
415 skb->pkt_type = PACKET_LOOPBACK;
416
417 skb->protocol = eth_type_trans(skb, dev);
418
419 if (likely(netif_rx(skb) == NET_RX_SUCCESS))
420 vrf_rx_stats(dev, len);
421 else
422 this_cpu_inc(dev->dstats->rx_drps);
423
424 return NETDEV_TX_OK;
425 }
426
vrf_nf_set_untracked(struct sk_buff * skb)427 static void vrf_nf_set_untracked(struct sk_buff *skb)
428 {
429 if (skb_get_nfct(skb) == 0)
430 nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
431 }
432
vrf_nf_reset_ct(struct sk_buff * skb)433 static void vrf_nf_reset_ct(struct sk_buff *skb)
434 {
435 if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
436 nf_reset_ct(skb);
437 }
438
439 #if IS_ENABLED(CONFIG_IPV6)
vrf_ip6_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)440 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
441 struct sk_buff *skb)
442 {
443 int err;
444
445 vrf_nf_reset_ct(skb);
446
447 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
448 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
449
450 if (likely(err == 1))
451 err = dst_output(net, sk, skb);
452
453 return err;
454 }
455
vrf_process_v6_outbound(struct sk_buff * skb,struct net_device * dev)456 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
457 struct net_device *dev)
458 {
459 const struct ipv6hdr *iph;
460 struct net *net = dev_net(skb->dev);
461 struct flowi6 fl6;
462 int ret = NET_XMIT_DROP;
463 struct dst_entry *dst;
464 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
465
466 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
467 goto err;
468
469 iph = ipv6_hdr(skb);
470
471 memset(&fl6, 0, sizeof(fl6));
472 /* needed to match OIF rule */
473 fl6.flowi6_oif = dev->ifindex;
474 fl6.flowi6_iif = LOOPBACK_IFINDEX;
475 fl6.daddr = iph->daddr;
476 fl6.saddr = iph->saddr;
477 fl6.flowlabel = ip6_flowinfo(iph);
478 fl6.flowi6_mark = skb->mark;
479 fl6.flowi6_proto = iph->nexthdr;
480 fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
481
482 dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
483 if (IS_ERR(dst) || dst == dst_null)
484 goto err;
485
486 skb_dst_drop(skb);
487
488 /* if dst.dev is loopback or the VRF device again this is locally
489 * originated traffic destined to a local address. Short circuit
490 * to Rx path
491 */
492 if (dst->dev == dev)
493 return vrf_local_xmit(skb, dev, dst);
494
495 skb_dst_set(skb, dst);
496
497 /* strip the ethernet header added for pass through VRF device */
498 __skb_pull(skb, skb_network_offset(skb));
499
500 memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
501 ret = vrf_ip6_local_out(net, skb->sk, skb);
502 if (unlikely(net_xmit_eval(ret)))
503 dev->stats.tx_errors++;
504 else
505 ret = NET_XMIT_SUCCESS;
506
507 return ret;
508 err:
509 vrf_tx_error(dev, skb);
510 return NET_XMIT_DROP;
511 }
512 #else
vrf_process_v6_outbound(struct sk_buff * skb,struct net_device * dev)513 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
514 struct net_device *dev)
515 {
516 vrf_tx_error(dev, skb);
517 return NET_XMIT_DROP;
518 }
519 #endif
520
521 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
vrf_ip_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)522 static int vrf_ip_local_out(struct net *net, struct sock *sk,
523 struct sk_buff *skb)
524 {
525 int err;
526
527 vrf_nf_reset_ct(skb);
528
529 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
530 skb, NULL, skb_dst(skb)->dev, dst_output);
531 if (likely(err == 1))
532 err = dst_output(net, sk, skb);
533
534 return err;
535 }
536
vrf_process_v4_outbound(struct sk_buff * skb,struct net_device * vrf_dev)537 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
538 struct net_device *vrf_dev)
539 {
540 struct iphdr *ip4h;
541 int ret = NET_XMIT_DROP;
542 struct flowi4 fl4;
543 struct net *net = dev_net(vrf_dev);
544 struct rtable *rt;
545
546 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
547 goto err;
548
549 ip4h = ip_hdr(skb);
550
551 memset(&fl4, 0, sizeof(fl4));
552 /* needed to match OIF rule */
553 fl4.flowi4_oif = vrf_dev->ifindex;
554 fl4.flowi4_iif = LOOPBACK_IFINDEX;
555 fl4.flowi4_tos = RT_TOS(ip4h->tos);
556 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
557 fl4.flowi4_proto = ip4h->protocol;
558 fl4.daddr = ip4h->daddr;
559 fl4.saddr = ip4h->saddr;
560
561 rt = ip_route_output_flow(net, &fl4, NULL);
562 if (IS_ERR(rt))
563 goto err;
564
565 skb_dst_drop(skb);
566
567 /* if dst.dev is loopback or the VRF device again this is locally
568 * originated traffic destined to a local address. Short circuit
569 * to Rx path
570 */
571 if (rt->dst.dev == vrf_dev)
572 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
573
574 skb_dst_set(skb, &rt->dst);
575
576 /* strip the ethernet header added for pass through VRF device */
577 __skb_pull(skb, skb_network_offset(skb));
578
579 if (!ip4h->saddr) {
580 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
581 RT_SCOPE_LINK);
582 }
583
584 memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
585 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
586 if (unlikely(net_xmit_eval(ret)))
587 vrf_dev->stats.tx_errors++;
588 else
589 ret = NET_XMIT_SUCCESS;
590
591 out:
592 return ret;
593 err:
594 vrf_tx_error(vrf_dev, skb);
595 goto out;
596 }
597
is_ip_tx_frame(struct sk_buff * skb,struct net_device * dev)598 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
599 {
600 switch (skb->protocol) {
601 case htons(ETH_P_IP):
602 return vrf_process_v4_outbound(skb, dev);
603 case htons(ETH_P_IPV6):
604 return vrf_process_v6_outbound(skb, dev);
605 default:
606 vrf_tx_error(dev, skb);
607 return NET_XMIT_DROP;
608 }
609 }
610
vrf_xmit(struct sk_buff * skb,struct net_device * dev)611 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
612 {
613 int len = skb->len;
614 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
615
616 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
617 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
618
619 u64_stats_update_begin(&dstats->syncp);
620 dstats->tx_pkts++;
621 dstats->tx_bytes += len;
622 u64_stats_update_end(&dstats->syncp);
623 } else {
624 this_cpu_inc(dev->dstats->tx_drps);
625 }
626
627 return ret;
628 }
629
vrf_finish_direct(struct sk_buff * skb)630 static void vrf_finish_direct(struct sk_buff *skb)
631 {
632 struct net_device *vrf_dev = skb->dev;
633
634 if (!list_empty(&vrf_dev->ptype_all) &&
635 likely(skb_headroom(skb) >= ETH_HLEN)) {
636 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
637
638 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
639 eth_zero_addr(eth->h_dest);
640 eth->h_proto = skb->protocol;
641
642 rcu_read_lock_bh();
643 dev_queue_xmit_nit(skb, vrf_dev);
644 rcu_read_unlock_bh();
645
646 skb_pull(skb, ETH_HLEN);
647 }
648
649 vrf_nf_reset_ct(skb);
650 }
651
652 #if IS_ENABLED(CONFIG_IPV6)
653 /* modelled after ip6_finish_output2 */
vrf_finish_output6(struct net * net,struct sock * sk,struct sk_buff * skb)654 static int vrf_finish_output6(struct net *net, struct sock *sk,
655 struct sk_buff *skb)
656 {
657 struct dst_entry *dst = skb_dst(skb);
658 struct net_device *dev = dst->dev;
659 const struct in6_addr *nexthop;
660 struct neighbour *neigh;
661 int ret;
662
663 vrf_nf_reset_ct(skb);
664
665 skb->protocol = htons(ETH_P_IPV6);
666 skb->dev = dev;
667
668 rcu_read_lock_bh();
669 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
670 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
671 if (unlikely(!neigh))
672 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
673 if (!IS_ERR(neigh)) {
674 sock_confirm_neigh(skb, neigh);
675 ret = neigh_output(neigh, skb, false);
676 rcu_read_unlock_bh();
677 return ret;
678 }
679 rcu_read_unlock_bh();
680
681 IP6_INC_STATS(dev_net(dst->dev),
682 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
683 kfree_skb(skb);
684 return -EINVAL;
685 }
686
687 /* modelled after ip6_output */
vrf_output6(struct net * net,struct sock * sk,struct sk_buff * skb)688 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
689 {
690 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
691 net, sk, skb, NULL, skb_dst(skb)->dev,
692 vrf_finish_output6,
693 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
694 }
695
696 /* set dst on skb to send packet to us via dev_xmit path. Allows
697 * packet to go through device based features such as qdisc, netfilter
698 * hooks and packet sockets with skb->dev set to vrf device.
699 */
vrf_ip6_out_redirect(struct net_device * vrf_dev,struct sk_buff * skb)700 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
701 struct sk_buff *skb)
702 {
703 struct net_vrf *vrf = netdev_priv(vrf_dev);
704 struct dst_entry *dst = NULL;
705 struct rt6_info *rt6;
706
707 rcu_read_lock();
708
709 rt6 = rcu_dereference(vrf->rt6);
710 if (likely(rt6)) {
711 dst = &rt6->dst;
712 dst_hold(dst);
713 }
714
715 rcu_read_unlock();
716
717 if (unlikely(!dst)) {
718 vrf_tx_error(vrf_dev, skb);
719 return NULL;
720 }
721
722 skb_dst_drop(skb);
723 skb_dst_set(skb, dst);
724
725 return skb;
726 }
727
vrf_output6_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)728 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
729 struct sk_buff *skb)
730 {
731 vrf_finish_direct(skb);
732
733 return vrf_ip6_local_out(net, sk, skb);
734 }
735
vrf_output6_direct(struct net * net,struct sock * sk,struct sk_buff * skb)736 static int vrf_output6_direct(struct net *net, struct sock *sk,
737 struct sk_buff *skb)
738 {
739 int err = 1;
740
741 skb->protocol = htons(ETH_P_IPV6);
742
743 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
744 err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
745 NULL, skb->dev, vrf_output6_direct_finish);
746
747 if (likely(err == 1))
748 vrf_finish_direct(skb);
749
750 return err;
751 }
752
vrf_ip6_out_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)753 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
754 struct sk_buff *skb)
755 {
756 int err;
757
758 err = vrf_output6_direct(net, sk, skb);
759 if (likely(err == 1))
760 err = vrf_ip6_local_out(net, sk, skb);
761
762 return err;
763 }
764
vrf_ip6_out_direct(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)765 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
766 struct sock *sk,
767 struct sk_buff *skb)
768 {
769 struct net *net = dev_net(vrf_dev);
770 int err;
771
772 skb->dev = vrf_dev;
773
774 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
775 skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
776
777 if (likely(err == 1))
778 err = vrf_output6_direct(net, sk, skb);
779
780 if (likely(err == 1))
781 return skb;
782
783 return NULL;
784 }
785
vrf_ip6_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)786 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
787 struct sock *sk,
788 struct sk_buff *skb)
789 {
790 /* don't divert link scope packets */
791 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
792 return skb;
793
794 vrf_nf_set_untracked(skb);
795
796 if (qdisc_tx_is_default(vrf_dev) ||
797 IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
798 return vrf_ip6_out_direct(vrf_dev, sk, skb);
799
800 return vrf_ip6_out_redirect(vrf_dev, skb);
801 }
802
803 /* holding rtnl */
vrf_rt6_release(struct net_device * dev,struct net_vrf * vrf)804 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
805 {
806 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
807 struct net *net = dev_net(dev);
808 struct dst_entry *dst;
809
810 RCU_INIT_POINTER(vrf->rt6, NULL);
811 synchronize_rcu();
812
813 /* move dev in dst's to loopback so this VRF device can be deleted
814 * - based on dst_ifdown
815 */
816 if (rt6) {
817 dst = &rt6->dst;
818 dev_put(dst->dev);
819 dst->dev = net->loopback_dev;
820 dev_hold(dst->dev);
821 dst_release(dst);
822 }
823 }
824
vrf_rt6_create(struct net_device * dev)825 static int vrf_rt6_create(struct net_device *dev)
826 {
827 int flags = DST_NOPOLICY | DST_NOXFRM;
828 struct net_vrf *vrf = netdev_priv(dev);
829 struct net *net = dev_net(dev);
830 struct rt6_info *rt6;
831 int rc = -ENOMEM;
832
833 /* IPv6 can be CONFIG enabled and then disabled runtime */
834 if (!ipv6_mod_enabled())
835 return 0;
836
837 vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
838 if (!vrf->fib6_table)
839 goto out;
840
841 /* create a dst for routing packets out a VRF device */
842 rt6 = ip6_dst_alloc(net, dev, flags);
843 if (!rt6)
844 goto out;
845
846 rt6->dst.output = vrf_output6;
847
848 rcu_assign_pointer(vrf->rt6, rt6);
849
850 rc = 0;
851 out:
852 return rc;
853 }
854 #else
vrf_ip6_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)855 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
856 struct sock *sk,
857 struct sk_buff *skb)
858 {
859 return skb;
860 }
861
vrf_rt6_release(struct net_device * dev,struct net_vrf * vrf)862 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
863 {
864 }
865
vrf_rt6_create(struct net_device * dev)866 static int vrf_rt6_create(struct net_device *dev)
867 {
868 return 0;
869 }
870 #endif
871
872 /* modelled after ip_finish_output2 */
vrf_finish_output(struct net * net,struct sock * sk,struct sk_buff * skb)873 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
874 {
875 struct dst_entry *dst = skb_dst(skb);
876 struct rtable *rt = (struct rtable *)dst;
877 struct net_device *dev = dst->dev;
878 unsigned int hh_len = LL_RESERVED_SPACE(dev);
879 struct neighbour *neigh;
880 bool is_v6gw = false;
881 int ret = -EINVAL;
882
883 vrf_nf_reset_ct(skb);
884
885 /* Be paranoid, rather than too clever. */
886 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
887 struct sk_buff *skb2;
888
889 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
890 if (!skb2) {
891 ret = -ENOMEM;
892 goto err;
893 }
894 if (skb->sk)
895 skb_set_owner_w(skb2, skb->sk);
896
897 consume_skb(skb);
898 skb = skb2;
899 }
900
901 rcu_read_lock_bh();
902
903 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
904 if (!IS_ERR(neigh)) {
905 sock_confirm_neigh(skb, neigh);
906 /* if crossing protocols, can not use the cached header */
907 ret = neigh_output(neigh, skb, is_v6gw);
908 rcu_read_unlock_bh();
909 return ret;
910 }
911
912 rcu_read_unlock_bh();
913 err:
914 vrf_tx_error(skb->dev, skb);
915 return ret;
916 }
917
vrf_output(struct net * net,struct sock * sk,struct sk_buff * skb)918 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
919 {
920 struct net_device *dev = skb_dst(skb)->dev;
921
922 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
923
924 skb->dev = dev;
925 skb->protocol = htons(ETH_P_IP);
926
927 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
928 net, sk, skb, NULL, dev,
929 vrf_finish_output,
930 !(IPCB(skb)->flags & IPSKB_REROUTED));
931 }
932
933 /* set dst on skb to send packet to us via dev_xmit path. Allows
934 * packet to go through device based features such as qdisc, netfilter
935 * hooks and packet sockets with skb->dev set to vrf device.
936 */
vrf_ip_out_redirect(struct net_device * vrf_dev,struct sk_buff * skb)937 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
938 struct sk_buff *skb)
939 {
940 struct net_vrf *vrf = netdev_priv(vrf_dev);
941 struct dst_entry *dst = NULL;
942 struct rtable *rth;
943
944 rcu_read_lock();
945
946 rth = rcu_dereference(vrf->rth);
947 if (likely(rth)) {
948 dst = &rth->dst;
949 dst_hold(dst);
950 }
951
952 rcu_read_unlock();
953
954 if (unlikely(!dst)) {
955 vrf_tx_error(vrf_dev, skb);
956 return NULL;
957 }
958
959 skb_dst_drop(skb);
960 skb_dst_set(skb, dst);
961
962 return skb;
963 }
964
vrf_output_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)965 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
966 struct sk_buff *skb)
967 {
968 vrf_finish_direct(skb);
969
970 return vrf_ip_local_out(net, sk, skb);
971 }
972
vrf_output_direct(struct net * net,struct sock * sk,struct sk_buff * skb)973 static int vrf_output_direct(struct net *net, struct sock *sk,
974 struct sk_buff *skb)
975 {
976 int err = 1;
977
978 skb->protocol = htons(ETH_P_IP);
979
980 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
981 err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
982 NULL, skb->dev, vrf_output_direct_finish);
983
984 if (likely(err == 1))
985 vrf_finish_direct(skb);
986
987 return err;
988 }
989
vrf_ip_out_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)990 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
991 struct sk_buff *skb)
992 {
993 int err;
994
995 err = vrf_output_direct(net, sk, skb);
996 if (likely(err == 1))
997 err = vrf_ip_local_out(net, sk, skb);
998
999 return err;
1000 }
1001
vrf_ip_out_direct(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)1002 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
1003 struct sock *sk,
1004 struct sk_buff *skb)
1005 {
1006 struct net *net = dev_net(vrf_dev);
1007 int err;
1008
1009 skb->dev = vrf_dev;
1010
1011 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
1012 skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
1013
1014 if (likely(err == 1))
1015 err = vrf_output_direct(net, sk, skb);
1016
1017 if (likely(err == 1))
1018 return skb;
1019
1020 return NULL;
1021 }
1022
vrf_ip_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)1023 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1024 struct sock *sk,
1025 struct sk_buff *skb)
1026 {
1027 /* don't divert multicast or local broadcast */
1028 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1029 ipv4_is_lbcast(ip_hdr(skb)->daddr))
1030 return skb;
1031
1032 vrf_nf_set_untracked(skb);
1033
1034 if (qdisc_tx_is_default(vrf_dev) ||
1035 IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1036 return vrf_ip_out_direct(vrf_dev, sk, skb);
1037
1038 return vrf_ip_out_redirect(vrf_dev, skb);
1039 }
1040
1041 /* called with rcu lock held */
vrf_l3_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb,u16 proto)1042 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1043 struct sock *sk,
1044 struct sk_buff *skb,
1045 u16 proto)
1046 {
1047 switch (proto) {
1048 case AF_INET:
1049 return vrf_ip_out(vrf_dev, sk, skb);
1050 case AF_INET6:
1051 return vrf_ip6_out(vrf_dev, sk, skb);
1052 }
1053
1054 return skb;
1055 }
1056
1057 /* holding rtnl */
vrf_rtable_release(struct net_device * dev,struct net_vrf * vrf)1058 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1059 {
1060 struct rtable *rth = rtnl_dereference(vrf->rth);
1061 struct net *net = dev_net(dev);
1062 struct dst_entry *dst;
1063
1064 RCU_INIT_POINTER(vrf->rth, NULL);
1065 synchronize_rcu();
1066
1067 /* move dev in dst's to loopback so this VRF device can be deleted
1068 * - based on dst_ifdown
1069 */
1070 if (rth) {
1071 dst = &rth->dst;
1072 dev_put(dst->dev);
1073 dst->dev = net->loopback_dev;
1074 dev_hold(dst->dev);
1075 dst_release(dst);
1076 }
1077 }
1078
vrf_rtable_create(struct net_device * dev)1079 static int vrf_rtable_create(struct net_device *dev)
1080 {
1081 struct net_vrf *vrf = netdev_priv(dev);
1082 struct rtable *rth;
1083
1084 if (!fib_new_table(dev_net(dev), vrf->tb_id))
1085 return -ENOMEM;
1086
1087 /* create a dst for routing packets out through a VRF device */
1088 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
1089 if (!rth)
1090 return -ENOMEM;
1091
1092 rth->dst.output = vrf_output;
1093
1094 rcu_assign_pointer(vrf->rth, rth);
1095
1096 return 0;
1097 }
1098
1099 /**************************** device handling ********************/
1100
1101 /* cycle interface to flush neighbor cache and move routes across tables */
cycle_netdev(struct net_device * dev,struct netlink_ext_ack * extack)1102 static void cycle_netdev(struct net_device *dev,
1103 struct netlink_ext_ack *extack)
1104 {
1105 unsigned int flags = dev->flags;
1106 int ret;
1107
1108 if (!netif_running(dev))
1109 return;
1110
1111 ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1112 if (ret >= 0)
1113 ret = dev_change_flags(dev, flags, extack);
1114
1115 if (ret < 0) {
1116 netdev_err(dev,
1117 "Failed to cycle device %s; route tables might be wrong!\n",
1118 dev->name);
1119 }
1120 }
1121
do_vrf_add_slave(struct net_device * dev,struct net_device * port_dev,struct netlink_ext_ack * extack)1122 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1123 struct netlink_ext_ack *extack)
1124 {
1125 int ret;
1126
1127 /* do not allow loopback device to be enslaved to a VRF.
1128 * The vrf device acts as the loopback for the vrf.
1129 */
1130 if (port_dev == dev_net(dev)->loopback_dev) {
1131 NL_SET_ERR_MSG(extack,
1132 "Can not enslave loopback device to a VRF");
1133 return -EOPNOTSUPP;
1134 }
1135
1136 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1137 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1138 if (ret < 0)
1139 goto err;
1140
1141 cycle_netdev(port_dev, extack);
1142
1143 return 0;
1144
1145 err:
1146 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1147 return ret;
1148 }
1149
vrf_add_slave(struct net_device * dev,struct net_device * port_dev,struct netlink_ext_ack * extack)1150 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1151 struct netlink_ext_ack *extack)
1152 {
1153 if (netif_is_l3_master(port_dev)) {
1154 NL_SET_ERR_MSG(extack,
1155 "Can not enslave an L3 master device to a VRF");
1156 return -EINVAL;
1157 }
1158
1159 if (netif_is_l3_slave(port_dev))
1160 return -EINVAL;
1161
1162 return do_vrf_add_slave(dev, port_dev, extack);
1163 }
1164
1165 /* inverse of do_vrf_add_slave */
do_vrf_del_slave(struct net_device * dev,struct net_device * port_dev)1166 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1167 {
1168 netdev_upper_dev_unlink(port_dev, dev);
1169 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1170
1171 cycle_netdev(port_dev, NULL);
1172
1173 return 0;
1174 }
1175
vrf_del_slave(struct net_device * dev,struct net_device * port_dev)1176 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1177 {
1178 return do_vrf_del_slave(dev, port_dev);
1179 }
1180
vrf_dev_uninit(struct net_device * dev)1181 static void vrf_dev_uninit(struct net_device *dev)
1182 {
1183 struct net_vrf *vrf = netdev_priv(dev);
1184
1185 vrf_rtable_release(dev, vrf);
1186 vrf_rt6_release(dev, vrf);
1187
1188 free_percpu(dev->dstats);
1189 dev->dstats = NULL;
1190 }
1191
vrf_dev_init(struct net_device * dev)1192 static int vrf_dev_init(struct net_device *dev)
1193 {
1194 struct net_vrf *vrf = netdev_priv(dev);
1195
1196 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1197 if (!dev->dstats)
1198 goto out_nomem;
1199
1200 /* create the default dst which points back to us */
1201 if (vrf_rtable_create(dev) != 0)
1202 goto out_stats;
1203
1204 if (vrf_rt6_create(dev) != 0)
1205 goto out_rth;
1206
1207 dev->flags = IFF_MASTER | IFF_NOARP;
1208
1209 /* similarly, oper state is irrelevant; set to up to avoid confusion */
1210 dev->operstate = IF_OPER_UP;
1211 netdev_lockdep_set_classes(dev);
1212 return 0;
1213
1214 out_rth:
1215 vrf_rtable_release(dev, vrf);
1216 out_stats:
1217 free_percpu(dev->dstats);
1218 dev->dstats = NULL;
1219 out_nomem:
1220 return -ENOMEM;
1221 }
1222
1223 static const struct net_device_ops vrf_netdev_ops = {
1224 .ndo_init = vrf_dev_init,
1225 .ndo_uninit = vrf_dev_uninit,
1226 .ndo_start_xmit = vrf_xmit,
1227 .ndo_set_mac_address = eth_mac_addr,
1228 .ndo_get_stats64 = vrf_get_stats64,
1229 .ndo_add_slave = vrf_add_slave,
1230 .ndo_del_slave = vrf_del_slave,
1231 };
1232
vrf_fib_table(const struct net_device * dev)1233 static u32 vrf_fib_table(const struct net_device *dev)
1234 {
1235 struct net_vrf *vrf = netdev_priv(dev);
1236
1237 return vrf->tb_id;
1238 }
1239
vrf_rcv_finish(struct net * net,struct sock * sk,struct sk_buff * skb)1240 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1241 {
1242 kfree_skb(skb);
1243 return 0;
1244 }
1245
vrf_rcv_nfhook(u8 pf,unsigned int hook,struct sk_buff * skb,struct net_device * dev)1246 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1247 struct sk_buff *skb,
1248 struct net_device *dev)
1249 {
1250 struct net *net = dev_net(dev);
1251
1252 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1253 skb = NULL; /* kfree_skb(skb) handled by nf code */
1254
1255 return skb;
1256 }
1257
1258 #if IS_ENABLED(CONFIG_IPV6)
1259 /* neighbor handling is done with actual device; do not want
1260 * to flip skb->dev for those ndisc packets. This really fails
1261 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1262 * a start.
1263 */
ipv6_ndisc_frame(const struct sk_buff * skb)1264 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1265 {
1266 const struct ipv6hdr *iph = ipv6_hdr(skb);
1267 bool rc = false;
1268
1269 if (iph->nexthdr == NEXTHDR_ICMP) {
1270 const struct icmp6hdr *icmph;
1271 struct icmp6hdr _icmph;
1272
1273 icmph = skb_header_pointer(skb, sizeof(*iph),
1274 sizeof(_icmph), &_icmph);
1275 if (!icmph)
1276 goto out;
1277
1278 switch (icmph->icmp6_type) {
1279 case NDISC_ROUTER_SOLICITATION:
1280 case NDISC_ROUTER_ADVERTISEMENT:
1281 case NDISC_NEIGHBOUR_SOLICITATION:
1282 case NDISC_NEIGHBOUR_ADVERTISEMENT:
1283 case NDISC_REDIRECT:
1284 rc = true;
1285 break;
1286 }
1287 }
1288
1289 out:
1290 return rc;
1291 }
1292
vrf_ip6_route_lookup(struct net * net,const struct net_device * dev,struct flowi6 * fl6,int ifindex,const struct sk_buff * skb,int flags)1293 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1294 const struct net_device *dev,
1295 struct flowi6 *fl6,
1296 int ifindex,
1297 const struct sk_buff *skb,
1298 int flags)
1299 {
1300 struct net_vrf *vrf = netdev_priv(dev);
1301
1302 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1303 }
1304
vrf_ip6_input_dst(struct sk_buff * skb,struct net_device * vrf_dev,int ifindex)1305 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1306 int ifindex)
1307 {
1308 const struct ipv6hdr *iph = ipv6_hdr(skb);
1309 struct flowi6 fl6 = {
1310 .flowi6_iif = ifindex,
1311 .flowi6_mark = skb->mark,
1312 .flowi6_proto = iph->nexthdr,
1313 .daddr = iph->daddr,
1314 .saddr = iph->saddr,
1315 .flowlabel = ip6_flowinfo(iph),
1316 };
1317 struct net *net = dev_net(vrf_dev);
1318 struct rt6_info *rt6;
1319
1320 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1321 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1322 if (unlikely(!rt6))
1323 return;
1324
1325 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1326 return;
1327
1328 skb_dst_set(skb, &rt6->dst);
1329 }
1330
vrf_ip6_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1331 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1332 struct sk_buff *skb)
1333 {
1334 int orig_iif = skb->skb_iif;
1335 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1336 bool is_ndisc = ipv6_ndisc_frame(skb);
1337
1338 /* loopback, multicast & non-ND link-local traffic; do not push through
1339 * packet taps again. Reset pkt_type for upper layers to process skb.
1340 * For strict packets with a source LLA, determine the dst using the
1341 * original ifindex.
1342 */
1343 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1344 skb->dev = vrf_dev;
1345 skb->skb_iif = vrf_dev->ifindex;
1346 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1347
1348 if (skb->pkt_type == PACKET_LOOPBACK)
1349 skb->pkt_type = PACKET_HOST;
1350 else if (ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)
1351 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1352
1353 goto out;
1354 }
1355
1356 /* if packet is NDISC then keep the ingress interface */
1357 if (!is_ndisc) {
1358 vrf_rx_stats(vrf_dev, skb->len);
1359 skb->dev = vrf_dev;
1360 skb->skb_iif = vrf_dev->ifindex;
1361
1362 if (!list_empty(&vrf_dev->ptype_all)) {
1363 skb_push(skb, skb->mac_len);
1364 dev_queue_xmit_nit(skb, vrf_dev);
1365 skb_pull(skb, skb->mac_len);
1366 }
1367
1368 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1369 }
1370
1371 if (need_strict)
1372 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1373
1374 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1375 out:
1376 return skb;
1377 }
1378
1379 #else
vrf_ip6_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1380 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1381 struct sk_buff *skb)
1382 {
1383 return skb;
1384 }
1385 #endif
1386
vrf_ip_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1387 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1388 struct sk_buff *skb)
1389 {
1390 skb->dev = vrf_dev;
1391 skb->skb_iif = vrf_dev->ifindex;
1392 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1393
1394 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1395 goto out;
1396
1397 /* loopback traffic; do not push through packet taps again.
1398 * Reset pkt_type for upper layers to process skb
1399 */
1400 if (skb->pkt_type == PACKET_LOOPBACK) {
1401 skb->pkt_type = PACKET_HOST;
1402 goto out;
1403 }
1404
1405 vrf_rx_stats(vrf_dev, skb->len);
1406
1407 if (!list_empty(&vrf_dev->ptype_all)) {
1408 skb_push(skb, skb->mac_len);
1409 dev_queue_xmit_nit(skb, vrf_dev);
1410 skb_pull(skb, skb->mac_len);
1411 }
1412
1413 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1414 out:
1415 return skb;
1416 }
1417
1418 /* called with rcu lock held */
vrf_l3_rcv(struct net_device * vrf_dev,struct sk_buff * skb,u16 proto)1419 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1420 struct sk_buff *skb,
1421 u16 proto)
1422 {
1423 switch (proto) {
1424 case AF_INET:
1425 return vrf_ip_rcv(vrf_dev, skb);
1426 case AF_INET6:
1427 return vrf_ip6_rcv(vrf_dev, skb);
1428 }
1429
1430 return skb;
1431 }
1432
1433 #if IS_ENABLED(CONFIG_IPV6)
1434 /* send to link-local or multicast address via interface enslaved to
1435 * VRF device. Force lookup to VRF table without changing flow struct
1436 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1437 * is taken on the dst by this function.
1438 */
vrf_link_scope_lookup(const struct net_device * dev,struct flowi6 * fl6)1439 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1440 struct flowi6 *fl6)
1441 {
1442 struct net *net = dev_net(dev);
1443 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1444 struct dst_entry *dst = NULL;
1445 struct rt6_info *rt;
1446
1447 /* VRF device does not have a link-local address and
1448 * sending packets to link-local or mcast addresses over
1449 * a VRF device does not make sense
1450 */
1451 if (fl6->flowi6_oif == dev->ifindex) {
1452 dst = &net->ipv6.ip6_null_entry->dst;
1453 return dst;
1454 }
1455
1456 if (!ipv6_addr_any(&fl6->saddr))
1457 flags |= RT6_LOOKUP_F_HAS_SADDR;
1458
1459 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1460 if (rt)
1461 dst = &rt->dst;
1462
1463 return dst;
1464 }
1465 #endif
1466
1467 static const struct l3mdev_ops vrf_l3mdev_ops = {
1468 .l3mdev_fib_table = vrf_fib_table,
1469 .l3mdev_l3_rcv = vrf_l3_rcv,
1470 .l3mdev_l3_out = vrf_l3_out,
1471 #if IS_ENABLED(CONFIG_IPV6)
1472 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1473 #endif
1474 };
1475
vrf_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1476 static void vrf_get_drvinfo(struct net_device *dev,
1477 struct ethtool_drvinfo *info)
1478 {
1479 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1480 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1481 }
1482
1483 static const struct ethtool_ops vrf_ethtool_ops = {
1484 .get_drvinfo = vrf_get_drvinfo,
1485 };
1486
vrf_fib_rule_nl_size(void)1487 static inline size_t vrf_fib_rule_nl_size(void)
1488 {
1489 size_t sz;
1490
1491 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1492 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1493 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1494 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
1495
1496 return sz;
1497 }
1498
vrf_fib_rule(const struct net_device * dev,__u8 family,bool add_it)1499 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1500 {
1501 struct fib_rule_hdr *frh;
1502 struct nlmsghdr *nlh;
1503 struct sk_buff *skb;
1504 int err;
1505
1506 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1507 !ipv6_mod_enabled())
1508 return 0;
1509
1510 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1511 if (!skb)
1512 return -ENOMEM;
1513
1514 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1515 if (!nlh)
1516 goto nla_put_failure;
1517
1518 /* rule only needs to appear once */
1519 nlh->nlmsg_flags |= NLM_F_EXCL;
1520
1521 frh = nlmsg_data(nlh);
1522 memset(frh, 0, sizeof(*frh));
1523 frh->family = family;
1524 frh->action = FR_ACT_TO_TBL;
1525
1526 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1527 goto nla_put_failure;
1528
1529 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1530 goto nla_put_failure;
1531
1532 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1533 goto nla_put_failure;
1534
1535 nlmsg_end(skb, nlh);
1536
1537 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1538 skb->sk = dev_net(dev)->rtnl;
1539 if (add_it) {
1540 err = fib_nl_newrule(skb, nlh, NULL);
1541 if (err == -EEXIST)
1542 err = 0;
1543 } else {
1544 err = fib_nl_delrule(skb, nlh, NULL);
1545 if (err == -ENOENT)
1546 err = 0;
1547 }
1548 nlmsg_free(skb);
1549
1550 return err;
1551
1552 nla_put_failure:
1553 nlmsg_free(skb);
1554
1555 return -EMSGSIZE;
1556 }
1557
vrf_add_fib_rules(const struct net_device * dev)1558 static int vrf_add_fib_rules(const struct net_device *dev)
1559 {
1560 int err;
1561
1562 err = vrf_fib_rule(dev, AF_INET, true);
1563 if (err < 0)
1564 goto out_err;
1565
1566 err = vrf_fib_rule(dev, AF_INET6, true);
1567 if (err < 0)
1568 goto ipv6_err;
1569
1570 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1571 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1572 if (err < 0)
1573 goto ipmr_err;
1574 #endif
1575
1576 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1577 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1578 if (err < 0)
1579 goto ip6mr_err;
1580 #endif
1581
1582 return 0;
1583
1584 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1585 ip6mr_err:
1586 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false);
1587 #endif
1588
1589 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1590 ipmr_err:
1591 vrf_fib_rule(dev, AF_INET6, false);
1592 #endif
1593
1594 ipv6_err:
1595 vrf_fib_rule(dev, AF_INET, false);
1596
1597 out_err:
1598 netdev_err(dev, "Failed to add FIB rules.\n");
1599 return err;
1600 }
1601
vrf_setup(struct net_device * dev)1602 static void vrf_setup(struct net_device *dev)
1603 {
1604 ether_setup(dev);
1605
1606 /* Initialize the device structure. */
1607 dev->netdev_ops = &vrf_netdev_ops;
1608 dev->l3mdev_ops = &vrf_l3mdev_ops;
1609 dev->ethtool_ops = &vrf_ethtool_ops;
1610 dev->needs_free_netdev = true;
1611
1612 /* Fill in device structure with ethernet-generic values. */
1613 eth_hw_addr_random(dev);
1614
1615 /* don't acquire vrf device's netif_tx_lock when transmitting */
1616 dev->features |= NETIF_F_LLTX;
1617
1618 /* don't allow vrf devices to change network namespaces. */
1619 dev->features |= NETIF_F_NETNS_LOCAL;
1620
1621 /* does not make sense for a VLAN to be added to a vrf device */
1622 dev->features |= NETIF_F_VLAN_CHALLENGED;
1623
1624 /* enable offload features */
1625 dev->features |= NETIF_F_GSO_SOFTWARE;
1626 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1627 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1628
1629 dev->hw_features = dev->features;
1630 dev->hw_enc_features = dev->features;
1631
1632 /* default to no qdisc; user can add if desired */
1633 dev->priv_flags |= IFF_NO_QUEUE;
1634 dev->priv_flags |= IFF_NO_RX_HANDLER;
1635 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1636
1637 /* VRF devices do not care about MTU, but if the MTU is set
1638 * too low then the ipv4 and ipv6 protocols are disabled
1639 * which breaks networking.
1640 */
1641 dev->min_mtu = IPV6_MIN_MTU;
1642 dev->max_mtu = IP6_MAX_MTU;
1643 dev->mtu = dev->max_mtu;
1644 }
1645
vrf_validate(struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1646 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1647 struct netlink_ext_ack *extack)
1648 {
1649 if (tb[IFLA_ADDRESS]) {
1650 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1651 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1652 return -EINVAL;
1653 }
1654 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1655 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1656 return -EADDRNOTAVAIL;
1657 }
1658 }
1659 return 0;
1660 }
1661
vrf_dellink(struct net_device * dev,struct list_head * head)1662 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1663 {
1664 struct net_device *port_dev;
1665 struct list_head *iter;
1666
1667 netdev_for_each_lower_dev(dev, port_dev, iter)
1668 vrf_del_slave(dev, port_dev);
1669
1670 vrf_map_unregister_dev(dev);
1671
1672 unregister_netdevice_queue(dev, head);
1673 }
1674
vrf_newlink(struct net * src_net,struct net_device * dev,struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1675 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1676 struct nlattr *tb[], struct nlattr *data[],
1677 struct netlink_ext_ack *extack)
1678 {
1679 struct net_vrf *vrf = netdev_priv(dev);
1680 struct netns_vrf *nn_vrf;
1681 bool *add_fib_rules;
1682 struct net *net;
1683 int err;
1684
1685 if (!data || !data[IFLA_VRF_TABLE]) {
1686 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1687 return -EINVAL;
1688 }
1689
1690 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1691 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1692 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1693 "Invalid VRF table id");
1694 return -EINVAL;
1695 }
1696
1697 dev->priv_flags |= IFF_L3MDEV_MASTER;
1698
1699 err = register_netdevice(dev);
1700 if (err)
1701 goto out;
1702
1703 /* mapping between table_id and vrf;
1704 * note: such binding could not be done in the dev init function
1705 * because dev->ifindex id is not available yet.
1706 */
1707 vrf->ifindex = dev->ifindex;
1708
1709 err = vrf_map_register_dev(dev, extack);
1710 if (err) {
1711 unregister_netdevice(dev);
1712 goto out;
1713 }
1714
1715 net = dev_net(dev);
1716 nn_vrf = net_generic(net, vrf_net_id);
1717
1718 add_fib_rules = &nn_vrf->add_fib_rules;
1719 if (*add_fib_rules) {
1720 err = vrf_add_fib_rules(dev);
1721 if (err) {
1722 vrf_map_unregister_dev(dev);
1723 unregister_netdevice(dev);
1724 goto out;
1725 }
1726 *add_fib_rules = false;
1727 }
1728
1729 out:
1730 return err;
1731 }
1732
vrf_nl_getsize(const struct net_device * dev)1733 static size_t vrf_nl_getsize(const struct net_device *dev)
1734 {
1735 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1736 }
1737
vrf_fillinfo(struct sk_buff * skb,const struct net_device * dev)1738 static int vrf_fillinfo(struct sk_buff *skb,
1739 const struct net_device *dev)
1740 {
1741 struct net_vrf *vrf = netdev_priv(dev);
1742
1743 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1744 }
1745
vrf_get_slave_size(const struct net_device * bond_dev,const struct net_device * slave_dev)1746 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1747 const struct net_device *slave_dev)
1748 {
1749 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1750 }
1751
vrf_fill_slave_info(struct sk_buff * skb,const struct net_device * vrf_dev,const struct net_device * slave_dev)1752 static int vrf_fill_slave_info(struct sk_buff *skb,
1753 const struct net_device *vrf_dev,
1754 const struct net_device *slave_dev)
1755 {
1756 struct net_vrf *vrf = netdev_priv(vrf_dev);
1757
1758 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1759 return -EMSGSIZE;
1760
1761 return 0;
1762 }
1763
1764 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1765 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1766 };
1767
1768 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1769 .kind = DRV_NAME,
1770 .priv_size = sizeof(struct net_vrf),
1771
1772 .get_size = vrf_nl_getsize,
1773 .policy = vrf_nl_policy,
1774 .validate = vrf_validate,
1775 .fill_info = vrf_fillinfo,
1776
1777 .get_slave_size = vrf_get_slave_size,
1778 .fill_slave_info = vrf_fill_slave_info,
1779
1780 .newlink = vrf_newlink,
1781 .dellink = vrf_dellink,
1782 .setup = vrf_setup,
1783 .maxtype = IFLA_VRF_MAX,
1784 };
1785
vrf_device_event(struct notifier_block * unused,unsigned long event,void * ptr)1786 static int vrf_device_event(struct notifier_block *unused,
1787 unsigned long event, void *ptr)
1788 {
1789 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1790
1791 /* only care about unregister events to drop slave references */
1792 if (event == NETDEV_UNREGISTER) {
1793 struct net_device *vrf_dev;
1794
1795 if (!netif_is_l3_slave(dev))
1796 goto out;
1797
1798 vrf_dev = netdev_master_upper_dev_get(dev);
1799 vrf_del_slave(vrf_dev, dev);
1800 }
1801 out:
1802 return NOTIFY_DONE;
1803 }
1804
1805 static struct notifier_block vrf_notifier_block __read_mostly = {
1806 .notifier_call = vrf_device_event,
1807 };
1808
vrf_map_init(struct vrf_map * vmap)1809 static int vrf_map_init(struct vrf_map *vmap)
1810 {
1811 spin_lock_init(&vmap->vmap_lock);
1812 hash_init(vmap->ht);
1813
1814 vmap->strict_mode = false;
1815
1816 return 0;
1817 }
1818
1819 #ifdef CONFIG_SYSCTL
vrf_strict_mode(struct vrf_map * vmap)1820 static bool vrf_strict_mode(struct vrf_map *vmap)
1821 {
1822 bool strict_mode;
1823
1824 vrf_map_lock(vmap);
1825 strict_mode = vmap->strict_mode;
1826 vrf_map_unlock(vmap);
1827
1828 return strict_mode;
1829 }
1830
vrf_strict_mode_change(struct vrf_map * vmap,bool new_mode)1831 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1832 {
1833 bool *cur_mode;
1834 int res = 0;
1835
1836 vrf_map_lock(vmap);
1837
1838 cur_mode = &vmap->strict_mode;
1839 if (*cur_mode == new_mode)
1840 goto unlock;
1841
1842 if (*cur_mode) {
1843 /* disable strict mode */
1844 *cur_mode = false;
1845 } else {
1846 if (vmap->shared_tables) {
1847 /* we cannot allow strict_mode because there are some
1848 * vrfs that share one or more tables.
1849 */
1850 res = -EBUSY;
1851 goto unlock;
1852 }
1853
1854 /* no tables are shared among vrfs, so we can go back
1855 * to 1:1 association between a vrf with its table.
1856 */
1857 *cur_mode = true;
1858 }
1859
1860 unlock:
1861 vrf_map_unlock(vmap);
1862
1863 return res;
1864 }
1865
vrf_shared_table_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1866 static int vrf_shared_table_handler(struct ctl_table *table, int write,
1867 void *buffer, size_t *lenp, loff_t *ppos)
1868 {
1869 struct net *net = (struct net *)table->extra1;
1870 struct vrf_map *vmap = netns_vrf_map(net);
1871 int proc_strict_mode = 0;
1872 struct ctl_table tmp = {
1873 .procname = table->procname,
1874 .data = &proc_strict_mode,
1875 .maxlen = sizeof(int),
1876 .mode = table->mode,
1877 .extra1 = SYSCTL_ZERO,
1878 .extra2 = SYSCTL_ONE,
1879 };
1880 int ret;
1881
1882 if (!write)
1883 proc_strict_mode = vrf_strict_mode(vmap);
1884
1885 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1886
1887 if (write && ret == 0)
1888 ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1889
1890 return ret;
1891 }
1892
1893 static const struct ctl_table vrf_table[] = {
1894 {
1895 .procname = "strict_mode",
1896 .data = NULL,
1897 .maxlen = sizeof(int),
1898 .mode = 0644,
1899 .proc_handler = vrf_shared_table_handler,
1900 /* set by the vrf_netns_init */
1901 .extra1 = NULL,
1902 },
1903 { },
1904 };
1905
vrf_netns_init_sysctl(struct net * net,struct netns_vrf * nn_vrf)1906 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1907 {
1908 struct ctl_table *table;
1909
1910 table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1911 if (!table)
1912 return -ENOMEM;
1913
1914 /* init the extra1 parameter with the reference to current netns */
1915 table[0].extra1 = net;
1916
1917 nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
1918 if (!nn_vrf->ctl_hdr) {
1919 kfree(table);
1920 return -ENOMEM;
1921 }
1922
1923 return 0;
1924 }
1925
vrf_netns_exit_sysctl(struct net * net)1926 static void vrf_netns_exit_sysctl(struct net *net)
1927 {
1928 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1929 struct ctl_table *table;
1930
1931 table = nn_vrf->ctl_hdr->ctl_table_arg;
1932 unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1933 kfree(table);
1934 }
1935 #else
vrf_netns_init_sysctl(struct net * net,struct netns_vrf * nn_vrf)1936 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1937 {
1938 return 0;
1939 }
1940
vrf_netns_exit_sysctl(struct net * net)1941 static void vrf_netns_exit_sysctl(struct net *net)
1942 {
1943 }
1944 #endif
1945
1946 /* Initialize per network namespace state */
vrf_netns_init(struct net * net)1947 static int __net_init vrf_netns_init(struct net *net)
1948 {
1949 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1950
1951 nn_vrf->add_fib_rules = true;
1952 vrf_map_init(&nn_vrf->vmap);
1953
1954 return vrf_netns_init_sysctl(net, nn_vrf);
1955 }
1956
vrf_netns_exit(struct net * net)1957 static void __net_exit vrf_netns_exit(struct net *net)
1958 {
1959 vrf_netns_exit_sysctl(net);
1960 }
1961
1962 static struct pernet_operations vrf_net_ops __net_initdata = {
1963 .init = vrf_netns_init,
1964 .exit = vrf_netns_exit,
1965 .id = &vrf_net_id,
1966 .size = sizeof(struct netns_vrf),
1967 };
1968
vrf_init_module(void)1969 static int __init vrf_init_module(void)
1970 {
1971 int rc;
1972
1973 register_netdevice_notifier(&vrf_notifier_block);
1974
1975 rc = register_pernet_subsys(&vrf_net_ops);
1976 if (rc < 0)
1977 goto error;
1978
1979 rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
1980 vrf_ifindex_lookup_by_table_id);
1981 if (rc < 0)
1982 goto unreg_pernet;
1983
1984 rc = rtnl_link_register(&vrf_link_ops);
1985 if (rc < 0)
1986 goto table_lookup_unreg;
1987
1988 return 0;
1989
1990 table_lookup_unreg:
1991 l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
1992 vrf_ifindex_lookup_by_table_id);
1993
1994 unreg_pernet:
1995 unregister_pernet_subsys(&vrf_net_ops);
1996
1997 error:
1998 unregister_netdevice_notifier(&vrf_notifier_block);
1999 return rc;
2000 }
2001
2002 module_init(vrf_init_module);
2003 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2004 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2005 MODULE_LICENSE("GPL");
2006 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2007 MODULE_VERSION(DRV_VERSION);
2008