• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Cryptographic API.
4  *
5  * Support for OMAP SHA1/MD5 HW acceleration.
6  *
7  * Copyright (c) 2010 Nokia Corporation
8  * Author: Dmitry Kasatkin <dmitry.kasatkin@nokia.com>
9  * Copyright (c) 2011 Texas Instruments Incorporated
10  *
11  * Some ideas are from old omap-sha1-md5.c driver.
12  */
13 
14 #define pr_fmt(fmt) "%s: " fmt, __func__
15 
16 #include <linux/err.h>
17 #include <linux/device.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/interrupt.h>
22 #include <linux/kernel.h>
23 #include <linux/irq.h>
24 #include <linux/io.h>
25 #include <linux/platform_device.h>
26 #include <linux/scatterlist.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dmaengine.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/of_address.h>
33 #include <linux/of_irq.h>
34 #include <linux/delay.h>
35 #include <linux/crypto.h>
36 #include <crypto/scatterwalk.h>
37 #include <crypto/algapi.h>
38 #include <crypto/sha.h>
39 #include <crypto/hash.h>
40 #include <crypto/hmac.h>
41 #include <crypto/internal/hash.h>
42 #include <crypto/engine.h>
43 
44 #define MD5_DIGEST_SIZE			16
45 
46 #define SHA_REG_IDIGEST(dd, x)		((dd)->pdata->idigest_ofs + ((x)*0x04))
47 #define SHA_REG_DIN(dd, x)		((dd)->pdata->din_ofs + ((x) * 0x04))
48 #define SHA_REG_DIGCNT(dd)		((dd)->pdata->digcnt_ofs)
49 
50 #define SHA_REG_ODIGEST(dd, x)		((dd)->pdata->odigest_ofs + (x * 0x04))
51 
52 #define SHA_REG_CTRL			0x18
53 #define SHA_REG_CTRL_LENGTH		(0xFFFFFFFF << 5)
54 #define SHA_REG_CTRL_CLOSE_HASH		(1 << 4)
55 #define SHA_REG_CTRL_ALGO_CONST		(1 << 3)
56 #define SHA_REG_CTRL_ALGO		(1 << 2)
57 #define SHA_REG_CTRL_INPUT_READY	(1 << 1)
58 #define SHA_REG_CTRL_OUTPUT_READY	(1 << 0)
59 
60 #define SHA_REG_REV(dd)			((dd)->pdata->rev_ofs)
61 
62 #define SHA_REG_MASK(dd)		((dd)->pdata->mask_ofs)
63 #define SHA_REG_MASK_DMA_EN		(1 << 3)
64 #define SHA_REG_MASK_IT_EN		(1 << 2)
65 #define SHA_REG_MASK_SOFTRESET		(1 << 1)
66 #define SHA_REG_AUTOIDLE		(1 << 0)
67 
68 #define SHA_REG_SYSSTATUS(dd)		((dd)->pdata->sysstatus_ofs)
69 #define SHA_REG_SYSSTATUS_RESETDONE	(1 << 0)
70 
71 #define SHA_REG_MODE(dd)		((dd)->pdata->mode_ofs)
72 #define SHA_REG_MODE_HMAC_OUTER_HASH	(1 << 7)
73 #define SHA_REG_MODE_HMAC_KEY_PROC	(1 << 5)
74 #define SHA_REG_MODE_CLOSE_HASH		(1 << 4)
75 #define SHA_REG_MODE_ALGO_CONSTANT	(1 << 3)
76 
77 #define SHA_REG_MODE_ALGO_MASK		(7 << 0)
78 #define SHA_REG_MODE_ALGO_MD5_128	(0 << 1)
79 #define SHA_REG_MODE_ALGO_SHA1_160	(1 << 1)
80 #define SHA_REG_MODE_ALGO_SHA2_224	(2 << 1)
81 #define SHA_REG_MODE_ALGO_SHA2_256	(3 << 1)
82 #define SHA_REG_MODE_ALGO_SHA2_384	(1 << 0)
83 #define SHA_REG_MODE_ALGO_SHA2_512	(3 << 0)
84 
85 #define SHA_REG_LENGTH(dd)		((dd)->pdata->length_ofs)
86 
87 #define SHA_REG_IRQSTATUS		0x118
88 #define SHA_REG_IRQSTATUS_CTX_RDY	(1 << 3)
89 #define SHA_REG_IRQSTATUS_PARTHASH_RDY (1 << 2)
90 #define SHA_REG_IRQSTATUS_INPUT_RDY	(1 << 1)
91 #define SHA_REG_IRQSTATUS_OUTPUT_RDY	(1 << 0)
92 
93 #define SHA_REG_IRQENA			0x11C
94 #define SHA_REG_IRQENA_CTX_RDY		(1 << 3)
95 #define SHA_REG_IRQENA_PARTHASH_RDY	(1 << 2)
96 #define SHA_REG_IRQENA_INPUT_RDY	(1 << 1)
97 #define SHA_REG_IRQENA_OUTPUT_RDY	(1 << 0)
98 
99 #define DEFAULT_TIMEOUT_INTERVAL	HZ
100 
101 #define DEFAULT_AUTOSUSPEND_DELAY	1000
102 
103 /* mostly device flags */
104 #define FLAGS_FINAL		1
105 #define FLAGS_DMA_ACTIVE	2
106 #define FLAGS_OUTPUT_READY	3
107 #define FLAGS_INIT		4
108 #define FLAGS_CPU		5
109 #define FLAGS_DMA_READY		6
110 #define FLAGS_AUTO_XOR		7
111 #define FLAGS_BE32_SHA1		8
112 #define FLAGS_SGS_COPIED	9
113 #define FLAGS_SGS_ALLOCED	10
114 #define FLAGS_HUGE		11
115 
116 /* context flags */
117 #define FLAGS_FINUP		16
118 
119 #define FLAGS_MODE_SHIFT	18
120 #define FLAGS_MODE_MASK		(SHA_REG_MODE_ALGO_MASK	<< FLAGS_MODE_SHIFT)
121 #define FLAGS_MODE_MD5		(SHA_REG_MODE_ALGO_MD5_128 << FLAGS_MODE_SHIFT)
122 #define FLAGS_MODE_SHA1		(SHA_REG_MODE_ALGO_SHA1_160 << FLAGS_MODE_SHIFT)
123 #define FLAGS_MODE_SHA224	(SHA_REG_MODE_ALGO_SHA2_224 << FLAGS_MODE_SHIFT)
124 #define FLAGS_MODE_SHA256	(SHA_REG_MODE_ALGO_SHA2_256 << FLAGS_MODE_SHIFT)
125 #define FLAGS_MODE_SHA384	(SHA_REG_MODE_ALGO_SHA2_384 << FLAGS_MODE_SHIFT)
126 #define FLAGS_MODE_SHA512	(SHA_REG_MODE_ALGO_SHA2_512 << FLAGS_MODE_SHIFT)
127 
128 #define FLAGS_HMAC		21
129 #define FLAGS_ERROR		22
130 
131 #define OP_UPDATE		1
132 #define OP_FINAL		2
133 
134 #define OMAP_ALIGN_MASK		(sizeof(u32)-1)
135 #define OMAP_ALIGNED		__attribute__((aligned(sizeof(u32))))
136 
137 #define BUFLEN			SHA512_BLOCK_SIZE
138 #define OMAP_SHA_DMA_THRESHOLD	256
139 
140 #define OMAP_SHA_MAX_DMA_LEN	(1024 * 2048)
141 
142 struct omap_sham_dev;
143 
144 struct omap_sham_reqctx {
145 	struct omap_sham_dev	*dd;
146 	unsigned long		flags;
147 	u8			op;
148 
149 	u8			digest[SHA512_DIGEST_SIZE] OMAP_ALIGNED;
150 	size_t			digcnt;
151 	size_t			bufcnt;
152 	size_t			buflen;
153 
154 	/* walk state */
155 	struct scatterlist	*sg;
156 	struct scatterlist	sgl[2];
157 	int			offset;	/* offset in current sg */
158 	int			sg_len;
159 	unsigned int		total;	/* total request */
160 
161 	u8			buffer[] OMAP_ALIGNED;
162 };
163 
164 struct omap_sham_hmac_ctx {
165 	struct crypto_shash	*shash;
166 	u8			ipad[SHA512_BLOCK_SIZE] OMAP_ALIGNED;
167 	u8			opad[SHA512_BLOCK_SIZE] OMAP_ALIGNED;
168 };
169 
170 struct omap_sham_ctx {
171 	struct crypto_engine_ctx	enginectx;
172 	unsigned long		flags;
173 
174 	/* fallback stuff */
175 	struct crypto_shash	*fallback;
176 
177 	struct omap_sham_hmac_ctx base[];
178 };
179 
180 #define OMAP_SHAM_QUEUE_LENGTH	10
181 
182 struct omap_sham_algs_info {
183 	struct ahash_alg	*algs_list;
184 	unsigned int		size;
185 	unsigned int		registered;
186 };
187 
188 struct omap_sham_pdata {
189 	struct omap_sham_algs_info	*algs_info;
190 	unsigned int	algs_info_size;
191 	unsigned long	flags;
192 	int		digest_size;
193 
194 	void		(*copy_hash)(struct ahash_request *req, int out);
195 	void		(*write_ctrl)(struct omap_sham_dev *dd, size_t length,
196 				      int final, int dma);
197 	void		(*trigger)(struct omap_sham_dev *dd, size_t length);
198 	int		(*poll_irq)(struct omap_sham_dev *dd);
199 	irqreturn_t	(*intr_hdlr)(int irq, void *dev_id);
200 
201 	u32		odigest_ofs;
202 	u32		idigest_ofs;
203 	u32		din_ofs;
204 	u32		digcnt_ofs;
205 	u32		rev_ofs;
206 	u32		mask_ofs;
207 	u32		sysstatus_ofs;
208 	u32		mode_ofs;
209 	u32		length_ofs;
210 
211 	u32		major_mask;
212 	u32		major_shift;
213 	u32		minor_mask;
214 	u32		minor_shift;
215 };
216 
217 struct omap_sham_dev {
218 	struct list_head	list;
219 	unsigned long		phys_base;
220 	struct device		*dev;
221 	void __iomem		*io_base;
222 	int			irq;
223 	int			err;
224 	struct dma_chan		*dma_lch;
225 	struct tasklet_struct	done_task;
226 	u8			polling_mode;
227 	u8			xmit_buf[BUFLEN] OMAP_ALIGNED;
228 
229 	unsigned long		flags;
230 	int			fallback_sz;
231 	struct crypto_queue	queue;
232 	struct ahash_request	*req;
233 	struct crypto_engine	*engine;
234 
235 	const struct omap_sham_pdata	*pdata;
236 };
237 
238 struct omap_sham_drv {
239 	struct list_head	dev_list;
240 	spinlock_t		lock;
241 	unsigned long		flags;
242 };
243 
244 static struct omap_sham_drv sham = {
245 	.dev_list = LIST_HEAD_INIT(sham.dev_list),
246 	.lock = __SPIN_LOCK_UNLOCKED(sham.lock),
247 };
248 
249 static int omap_sham_enqueue(struct ahash_request *req, unsigned int op);
250 static void omap_sham_finish_req(struct ahash_request *req, int err);
251 
omap_sham_read(struct omap_sham_dev * dd,u32 offset)252 static inline u32 omap_sham_read(struct omap_sham_dev *dd, u32 offset)
253 {
254 	return __raw_readl(dd->io_base + offset);
255 }
256 
omap_sham_write(struct omap_sham_dev * dd,u32 offset,u32 value)257 static inline void omap_sham_write(struct omap_sham_dev *dd,
258 					u32 offset, u32 value)
259 {
260 	__raw_writel(value, dd->io_base + offset);
261 }
262 
omap_sham_write_mask(struct omap_sham_dev * dd,u32 address,u32 value,u32 mask)263 static inline void omap_sham_write_mask(struct omap_sham_dev *dd, u32 address,
264 					u32 value, u32 mask)
265 {
266 	u32 val;
267 
268 	val = omap_sham_read(dd, address);
269 	val &= ~mask;
270 	val |= value;
271 	omap_sham_write(dd, address, val);
272 }
273 
omap_sham_wait(struct omap_sham_dev * dd,u32 offset,u32 bit)274 static inline int omap_sham_wait(struct omap_sham_dev *dd, u32 offset, u32 bit)
275 {
276 	unsigned long timeout = jiffies + DEFAULT_TIMEOUT_INTERVAL;
277 
278 	while (!(omap_sham_read(dd, offset) & bit)) {
279 		if (time_is_before_jiffies(timeout))
280 			return -ETIMEDOUT;
281 	}
282 
283 	return 0;
284 }
285 
omap_sham_copy_hash_omap2(struct ahash_request * req,int out)286 static void omap_sham_copy_hash_omap2(struct ahash_request *req, int out)
287 {
288 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
289 	struct omap_sham_dev *dd = ctx->dd;
290 	u32 *hash = (u32 *)ctx->digest;
291 	int i;
292 
293 	for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) {
294 		if (out)
295 			hash[i] = omap_sham_read(dd, SHA_REG_IDIGEST(dd, i));
296 		else
297 			omap_sham_write(dd, SHA_REG_IDIGEST(dd, i), hash[i]);
298 	}
299 }
300 
omap_sham_copy_hash_omap4(struct ahash_request * req,int out)301 static void omap_sham_copy_hash_omap4(struct ahash_request *req, int out)
302 {
303 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
304 	struct omap_sham_dev *dd = ctx->dd;
305 	int i;
306 
307 	if (ctx->flags & BIT(FLAGS_HMAC)) {
308 		struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req);
309 		struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
310 		struct omap_sham_hmac_ctx *bctx = tctx->base;
311 		u32 *opad = (u32 *)bctx->opad;
312 
313 		for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) {
314 			if (out)
315 				opad[i] = omap_sham_read(dd,
316 						SHA_REG_ODIGEST(dd, i));
317 			else
318 				omap_sham_write(dd, SHA_REG_ODIGEST(dd, i),
319 						opad[i]);
320 		}
321 	}
322 
323 	omap_sham_copy_hash_omap2(req, out);
324 }
325 
omap_sham_copy_ready_hash(struct ahash_request * req)326 static void omap_sham_copy_ready_hash(struct ahash_request *req)
327 {
328 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
329 	u32 *in = (u32 *)ctx->digest;
330 	u32 *hash = (u32 *)req->result;
331 	int i, d, big_endian = 0;
332 
333 	if (!hash)
334 		return;
335 
336 	switch (ctx->flags & FLAGS_MODE_MASK) {
337 	case FLAGS_MODE_MD5:
338 		d = MD5_DIGEST_SIZE / sizeof(u32);
339 		break;
340 	case FLAGS_MODE_SHA1:
341 		/* OMAP2 SHA1 is big endian */
342 		if (test_bit(FLAGS_BE32_SHA1, &ctx->dd->flags))
343 			big_endian = 1;
344 		d = SHA1_DIGEST_SIZE / sizeof(u32);
345 		break;
346 	case FLAGS_MODE_SHA224:
347 		d = SHA224_DIGEST_SIZE / sizeof(u32);
348 		break;
349 	case FLAGS_MODE_SHA256:
350 		d = SHA256_DIGEST_SIZE / sizeof(u32);
351 		break;
352 	case FLAGS_MODE_SHA384:
353 		d = SHA384_DIGEST_SIZE / sizeof(u32);
354 		break;
355 	case FLAGS_MODE_SHA512:
356 		d = SHA512_DIGEST_SIZE / sizeof(u32);
357 		break;
358 	default:
359 		d = 0;
360 	}
361 
362 	if (big_endian)
363 		for (i = 0; i < d; i++)
364 			hash[i] = be32_to_cpup((__be32 *)in + i);
365 	else
366 		for (i = 0; i < d; i++)
367 			hash[i] = le32_to_cpup((__le32 *)in + i);
368 }
369 
omap_sham_hw_init(struct omap_sham_dev * dd)370 static int omap_sham_hw_init(struct omap_sham_dev *dd)
371 {
372 	int err;
373 
374 	err = pm_runtime_resume_and_get(dd->dev);
375 	if (err < 0) {
376 		dev_err(dd->dev, "failed to get sync: %d\n", err);
377 		return err;
378 	}
379 
380 	if (!test_bit(FLAGS_INIT, &dd->flags)) {
381 		set_bit(FLAGS_INIT, &dd->flags);
382 		dd->err = 0;
383 	}
384 
385 	return 0;
386 }
387 
omap_sham_write_ctrl_omap2(struct omap_sham_dev * dd,size_t length,int final,int dma)388 static void omap_sham_write_ctrl_omap2(struct omap_sham_dev *dd, size_t length,
389 				 int final, int dma)
390 {
391 	struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
392 	u32 val = length << 5, mask;
393 
394 	if (likely(ctx->digcnt))
395 		omap_sham_write(dd, SHA_REG_DIGCNT(dd), ctx->digcnt);
396 
397 	omap_sham_write_mask(dd, SHA_REG_MASK(dd),
398 		SHA_REG_MASK_IT_EN | (dma ? SHA_REG_MASK_DMA_EN : 0),
399 		SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN);
400 	/*
401 	 * Setting ALGO_CONST only for the first iteration
402 	 * and CLOSE_HASH only for the last one.
403 	 */
404 	if ((ctx->flags & FLAGS_MODE_MASK) == FLAGS_MODE_SHA1)
405 		val |= SHA_REG_CTRL_ALGO;
406 	if (!ctx->digcnt)
407 		val |= SHA_REG_CTRL_ALGO_CONST;
408 	if (final)
409 		val |= SHA_REG_CTRL_CLOSE_HASH;
410 
411 	mask = SHA_REG_CTRL_ALGO_CONST | SHA_REG_CTRL_CLOSE_HASH |
412 			SHA_REG_CTRL_ALGO | SHA_REG_CTRL_LENGTH;
413 
414 	omap_sham_write_mask(dd, SHA_REG_CTRL, val, mask);
415 }
416 
omap_sham_trigger_omap2(struct omap_sham_dev * dd,size_t length)417 static void omap_sham_trigger_omap2(struct omap_sham_dev *dd, size_t length)
418 {
419 }
420 
omap_sham_poll_irq_omap2(struct omap_sham_dev * dd)421 static int omap_sham_poll_irq_omap2(struct omap_sham_dev *dd)
422 {
423 	return omap_sham_wait(dd, SHA_REG_CTRL, SHA_REG_CTRL_INPUT_READY);
424 }
425 
get_block_size(struct omap_sham_reqctx * ctx)426 static int get_block_size(struct omap_sham_reqctx *ctx)
427 {
428 	int d;
429 
430 	switch (ctx->flags & FLAGS_MODE_MASK) {
431 	case FLAGS_MODE_MD5:
432 	case FLAGS_MODE_SHA1:
433 		d = SHA1_BLOCK_SIZE;
434 		break;
435 	case FLAGS_MODE_SHA224:
436 	case FLAGS_MODE_SHA256:
437 		d = SHA256_BLOCK_SIZE;
438 		break;
439 	case FLAGS_MODE_SHA384:
440 	case FLAGS_MODE_SHA512:
441 		d = SHA512_BLOCK_SIZE;
442 		break;
443 	default:
444 		d = 0;
445 	}
446 
447 	return d;
448 }
449 
omap_sham_write_n(struct omap_sham_dev * dd,u32 offset,u32 * value,int count)450 static void omap_sham_write_n(struct omap_sham_dev *dd, u32 offset,
451 				    u32 *value, int count)
452 {
453 	for (; count--; value++, offset += 4)
454 		omap_sham_write(dd, offset, *value);
455 }
456 
omap_sham_write_ctrl_omap4(struct omap_sham_dev * dd,size_t length,int final,int dma)457 static void omap_sham_write_ctrl_omap4(struct omap_sham_dev *dd, size_t length,
458 				 int final, int dma)
459 {
460 	struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
461 	u32 val, mask;
462 
463 	if (likely(ctx->digcnt))
464 		omap_sham_write(dd, SHA_REG_DIGCNT(dd), ctx->digcnt);
465 
466 	/*
467 	 * Setting ALGO_CONST only for the first iteration and
468 	 * CLOSE_HASH only for the last one. Note that flags mode bits
469 	 * correspond to algorithm encoding in mode register.
470 	 */
471 	val = (ctx->flags & FLAGS_MODE_MASK) >> (FLAGS_MODE_SHIFT);
472 	if (!ctx->digcnt) {
473 		struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req);
474 		struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
475 		struct omap_sham_hmac_ctx *bctx = tctx->base;
476 		int bs, nr_dr;
477 
478 		val |= SHA_REG_MODE_ALGO_CONSTANT;
479 
480 		if (ctx->flags & BIT(FLAGS_HMAC)) {
481 			bs = get_block_size(ctx);
482 			nr_dr = bs / (2 * sizeof(u32));
483 			val |= SHA_REG_MODE_HMAC_KEY_PROC;
484 			omap_sham_write_n(dd, SHA_REG_ODIGEST(dd, 0),
485 					  (u32 *)bctx->ipad, nr_dr);
486 			omap_sham_write_n(dd, SHA_REG_IDIGEST(dd, 0),
487 					  (u32 *)bctx->ipad + nr_dr, nr_dr);
488 			ctx->digcnt += bs;
489 		}
490 	}
491 
492 	if (final) {
493 		val |= SHA_REG_MODE_CLOSE_HASH;
494 
495 		if (ctx->flags & BIT(FLAGS_HMAC))
496 			val |= SHA_REG_MODE_HMAC_OUTER_HASH;
497 	}
498 
499 	mask = SHA_REG_MODE_ALGO_CONSTANT | SHA_REG_MODE_CLOSE_HASH |
500 	       SHA_REG_MODE_ALGO_MASK | SHA_REG_MODE_HMAC_OUTER_HASH |
501 	       SHA_REG_MODE_HMAC_KEY_PROC;
502 
503 	dev_dbg(dd->dev, "ctrl: %08x, flags: %08lx\n", val, ctx->flags);
504 	omap_sham_write_mask(dd, SHA_REG_MODE(dd), val, mask);
505 	omap_sham_write(dd, SHA_REG_IRQENA, SHA_REG_IRQENA_OUTPUT_RDY);
506 	omap_sham_write_mask(dd, SHA_REG_MASK(dd),
507 			     SHA_REG_MASK_IT_EN |
508 				     (dma ? SHA_REG_MASK_DMA_EN : 0),
509 			     SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN);
510 }
511 
omap_sham_trigger_omap4(struct omap_sham_dev * dd,size_t length)512 static void omap_sham_trigger_omap4(struct omap_sham_dev *dd, size_t length)
513 {
514 	omap_sham_write(dd, SHA_REG_LENGTH(dd), length);
515 }
516 
omap_sham_poll_irq_omap4(struct omap_sham_dev * dd)517 static int omap_sham_poll_irq_omap4(struct omap_sham_dev *dd)
518 {
519 	return omap_sham_wait(dd, SHA_REG_IRQSTATUS,
520 			      SHA_REG_IRQSTATUS_INPUT_RDY);
521 }
522 
omap_sham_xmit_cpu(struct omap_sham_dev * dd,size_t length,int final)523 static int omap_sham_xmit_cpu(struct omap_sham_dev *dd, size_t length,
524 			      int final)
525 {
526 	struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
527 	int count, len32, bs32, offset = 0;
528 	const u32 *buffer;
529 	int mlen;
530 	struct sg_mapping_iter mi;
531 
532 	dev_dbg(dd->dev, "xmit_cpu: digcnt: %zd, length: %zd, final: %d\n",
533 						ctx->digcnt, length, final);
534 
535 	dd->pdata->write_ctrl(dd, length, final, 0);
536 	dd->pdata->trigger(dd, length);
537 
538 	/* should be non-zero before next lines to disable clocks later */
539 	ctx->digcnt += length;
540 	ctx->total -= length;
541 
542 	if (final)
543 		set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */
544 
545 	set_bit(FLAGS_CPU, &dd->flags);
546 
547 	len32 = DIV_ROUND_UP(length, sizeof(u32));
548 	bs32 = get_block_size(ctx) / sizeof(u32);
549 
550 	sg_miter_start(&mi, ctx->sg, ctx->sg_len,
551 		       SG_MITER_FROM_SG | SG_MITER_ATOMIC);
552 
553 	mlen = 0;
554 
555 	while (len32) {
556 		if (dd->pdata->poll_irq(dd))
557 			return -ETIMEDOUT;
558 
559 		for (count = 0; count < min(len32, bs32); count++, offset++) {
560 			if (!mlen) {
561 				sg_miter_next(&mi);
562 				mlen = mi.length;
563 				if (!mlen) {
564 					pr_err("sg miter failure.\n");
565 					return -EINVAL;
566 				}
567 				offset = 0;
568 				buffer = mi.addr;
569 			}
570 			omap_sham_write(dd, SHA_REG_DIN(dd, count),
571 					buffer[offset]);
572 			mlen -= 4;
573 		}
574 		len32 -= min(len32, bs32);
575 	}
576 
577 	sg_miter_stop(&mi);
578 
579 	return -EINPROGRESS;
580 }
581 
omap_sham_dma_callback(void * param)582 static void omap_sham_dma_callback(void *param)
583 {
584 	struct omap_sham_dev *dd = param;
585 
586 	set_bit(FLAGS_DMA_READY, &dd->flags);
587 	tasklet_schedule(&dd->done_task);
588 }
589 
omap_sham_xmit_dma(struct omap_sham_dev * dd,size_t length,int final)590 static int omap_sham_xmit_dma(struct omap_sham_dev *dd, size_t length,
591 			      int final)
592 {
593 	struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
594 	struct dma_async_tx_descriptor *tx;
595 	struct dma_slave_config cfg;
596 	int ret;
597 
598 	dev_dbg(dd->dev, "xmit_dma: digcnt: %zd, length: %zd, final: %d\n",
599 						ctx->digcnt, length, final);
600 
601 	if (!dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE)) {
602 		dev_err(dd->dev, "dma_map_sg error\n");
603 		return -EINVAL;
604 	}
605 
606 	memset(&cfg, 0, sizeof(cfg));
607 
608 	cfg.dst_addr = dd->phys_base + SHA_REG_DIN(dd, 0);
609 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
610 	cfg.dst_maxburst = get_block_size(ctx) / DMA_SLAVE_BUSWIDTH_4_BYTES;
611 
612 	ret = dmaengine_slave_config(dd->dma_lch, &cfg);
613 	if (ret) {
614 		pr_err("omap-sham: can't configure dmaengine slave: %d\n", ret);
615 		return ret;
616 	}
617 
618 	tx = dmaengine_prep_slave_sg(dd->dma_lch, ctx->sg, ctx->sg_len,
619 				     DMA_MEM_TO_DEV,
620 				     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
621 
622 	if (!tx) {
623 		dev_err(dd->dev, "prep_slave_sg failed\n");
624 		return -EINVAL;
625 	}
626 
627 	tx->callback = omap_sham_dma_callback;
628 	tx->callback_param = dd;
629 
630 	dd->pdata->write_ctrl(dd, length, final, 1);
631 
632 	ctx->digcnt += length;
633 	ctx->total -= length;
634 
635 	if (final)
636 		set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */
637 
638 	set_bit(FLAGS_DMA_ACTIVE, &dd->flags);
639 
640 	dmaengine_submit(tx);
641 	dma_async_issue_pending(dd->dma_lch);
642 
643 	dd->pdata->trigger(dd, length);
644 
645 	return -EINPROGRESS;
646 }
647 
omap_sham_copy_sg_lists(struct omap_sham_reqctx * ctx,struct scatterlist * sg,int bs,int new_len)648 static int omap_sham_copy_sg_lists(struct omap_sham_reqctx *ctx,
649 				   struct scatterlist *sg, int bs, int new_len)
650 {
651 	int n = sg_nents(sg);
652 	struct scatterlist *tmp;
653 	int offset = ctx->offset;
654 
655 	ctx->total = new_len;
656 
657 	if (ctx->bufcnt)
658 		n++;
659 
660 	ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
661 	if (!ctx->sg)
662 		return -ENOMEM;
663 
664 	sg_init_table(ctx->sg, n);
665 
666 	tmp = ctx->sg;
667 
668 	ctx->sg_len = 0;
669 
670 	if (ctx->bufcnt) {
671 		sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
672 		tmp = sg_next(tmp);
673 		ctx->sg_len++;
674 		new_len -= ctx->bufcnt;
675 	}
676 
677 	while (sg && new_len) {
678 		int len = sg->length - offset;
679 
680 		if (len <= 0) {
681 			offset -= sg->length;
682 			sg = sg_next(sg);
683 			continue;
684 		}
685 
686 		if (new_len < len)
687 			len = new_len;
688 
689 		if (len > 0) {
690 			new_len -= len;
691 			sg_set_page(tmp, sg_page(sg), len, sg->offset + offset);
692 			offset = 0;
693 			ctx->offset = 0;
694 			ctx->sg_len++;
695 			if (new_len <= 0)
696 				break;
697 			tmp = sg_next(tmp);
698 		}
699 
700 		sg = sg_next(sg);
701 	}
702 
703 	if (tmp)
704 		sg_mark_end(tmp);
705 
706 	set_bit(FLAGS_SGS_ALLOCED, &ctx->dd->flags);
707 
708 	ctx->offset += new_len - ctx->bufcnt;
709 	ctx->bufcnt = 0;
710 
711 	return 0;
712 }
713 
omap_sham_copy_sgs(struct omap_sham_reqctx * ctx,struct scatterlist * sg,int bs,unsigned int new_len)714 static int omap_sham_copy_sgs(struct omap_sham_reqctx *ctx,
715 			      struct scatterlist *sg, int bs,
716 			      unsigned int new_len)
717 {
718 	int pages;
719 	void *buf;
720 
721 	pages = get_order(new_len);
722 
723 	buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
724 	if (!buf) {
725 		pr_err("Couldn't allocate pages for unaligned cases.\n");
726 		return -ENOMEM;
727 	}
728 
729 	if (ctx->bufcnt)
730 		memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
731 
732 	scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->offset,
733 				 min(new_len, ctx->total) - ctx->bufcnt, 0);
734 	sg_init_table(ctx->sgl, 1);
735 	sg_set_buf(ctx->sgl, buf, new_len);
736 	ctx->sg = ctx->sgl;
737 	set_bit(FLAGS_SGS_COPIED, &ctx->dd->flags);
738 	ctx->sg_len = 1;
739 	ctx->offset += new_len - ctx->bufcnt;
740 	ctx->bufcnt = 0;
741 	ctx->total = new_len;
742 
743 	return 0;
744 }
745 
omap_sham_align_sgs(struct scatterlist * sg,int nbytes,int bs,bool final,struct omap_sham_reqctx * rctx)746 static int omap_sham_align_sgs(struct scatterlist *sg,
747 			       int nbytes, int bs, bool final,
748 			       struct omap_sham_reqctx *rctx)
749 {
750 	int n = 0;
751 	bool aligned = true;
752 	bool list_ok = true;
753 	struct scatterlist *sg_tmp = sg;
754 	int new_len;
755 	int offset = rctx->offset;
756 	int bufcnt = rctx->bufcnt;
757 
758 	if (!sg || !sg->length || !nbytes) {
759 		if (bufcnt) {
760 			bufcnt = DIV_ROUND_UP(bufcnt, bs) * bs;
761 			sg_init_table(rctx->sgl, 1);
762 			sg_set_buf(rctx->sgl, rctx->dd->xmit_buf, bufcnt);
763 			rctx->sg = rctx->sgl;
764 			rctx->sg_len = 1;
765 		}
766 
767 		return 0;
768 	}
769 
770 	new_len = nbytes;
771 
772 	if (offset)
773 		list_ok = false;
774 
775 	if (final)
776 		new_len = DIV_ROUND_UP(new_len, bs) * bs;
777 	else
778 		new_len = (new_len - 1) / bs * bs;
779 
780 	if (!new_len)
781 		return 0;
782 
783 	if (nbytes != new_len)
784 		list_ok = false;
785 
786 	while (nbytes > 0 && sg_tmp) {
787 		n++;
788 
789 		if (bufcnt) {
790 			if (!IS_ALIGNED(bufcnt, bs)) {
791 				aligned = false;
792 				break;
793 			}
794 			nbytes -= bufcnt;
795 			bufcnt = 0;
796 			if (!nbytes)
797 				list_ok = false;
798 
799 			continue;
800 		}
801 
802 #ifdef CONFIG_ZONE_DMA
803 		if (page_zonenum(sg_page(sg_tmp)) != ZONE_DMA) {
804 			aligned = false;
805 			break;
806 		}
807 #endif
808 
809 		if (offset < sg_tmp->length) {
810 			if (!IS_ALIGNED(offset + sg_tmp->offset, 4)) {
811 				aligned = false;
812 				break;
813 			}
814 
815 			if (!IS_ALIGNED(sg_tmp->length - offset, bs)) {
816 				aligned = false;
817 				break;
818 			}
819 		}
820 
821 		if (offset) {
822 			offset -= sg_tmp->length;
823 			if (offset < 0) {
824 				nbytes += offset;
825 				offset = 0;
826 			}
827 		} else {
828 			nbytes -= sg_tmp->length;
829 		}
830 
831 		sg_tmp = sg_next(sg_tmp);
832 
833 		if (nbytes < 0) {
834 			list_ok = false;
835 			break;
836 		}
837 	}
838 
839 	if (new_len > OMAP_SHA_MAX_DMA_LEN) {
840 		new_len = OMAP_SHA_MAX_DMA_LEN;
841 		aligned = false;
842 	}
843 
844 	if (!aligned)
845 		return omap_sham_copy_sgs(rctx, sg, bs, new_len);
846 	else if (!list_ok)
847 		return omap_sham_copy_sg_lists(rctx, sg, bs, new_len);
848 
849 	rctx->total = new_len;
850 	rctx->offset += new_len;
851 	rctx->sg_len = n;
852 	if (rctx->bufcnt) {
853 		sg_init_table(rctx->sgl, 2);
854 		sg_set_buf(rctx->sgl, rctx->dd->xmit_buf, rctx->bufcnt);
855 		sg_chain(rctx->sgl, 2, sg);
856 		rctx->sg = rctx->sgl;
857 	} else {
858 		rctx->sg = sg;
859 	}
860 
861 	return 0;
862 }
863 
omap_sham_prepare_request(struct crypto_engine * engine,void * areq)864 static int omap_sham_prepare_request(struct crypto_engine *engine, void *areq)
865 {
866 	struct ahash_request *req = container_of(areq, struct ahash_request,
867 						 base);
868 	struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
869 	int bs;
870 	int ret;
871 	unsigned int nbytes;
872 	bool final = rctx->flags & BIT(FLAGS_FINUP);
873 	bool update = rctx->op == OP_UPDATE;
874 	int hash_later;
875 
876 	bs = get_block_size(rctx);
877 
878 	nbytes = rctx->bufcnt;
879 
880 	if (update)
881 		nbytes += req->nbytes - rctx->offset;
882 
883 	dev_dbg(rctx->dd->dev,
884 		"%s: nbytes=%d, bs=%d, total=%d, offset=%d, bufcnt=%zd\n",
885 		__func__, nbytes, bs, rctx->total, rctx->offset,
886 		rctx->bufcnt);
887 
888 	if (!nbytes)
889 		return 0;
890 
891 	rctx->total = nbytes;
892 
893 	if (update && req->nbytes && (!IS_ALIGNED(rctx->bufcnt, bs))) {
894 		int len = bs - rctx->bufcnt % bs;
895 
896 		if (len > req->nbytes)
897 			len = req->nbytes;
898 		scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, req->src,
899 					 0, len, 0);
900 		rctx->bufcnt += len;
901 		rctx->offset = len;
902 	}
903 
904 	if (rctx->bufcnt)
905 		memcpy(rctx->dd->xmit_buf, rctx->buffer, rctx->bufcnt);
906 
907 	ret = omap_sham_align_sgs(req->src, nbytes, bs, final, rctx);
908 	if (ret)
909 		return ret;
910 
911 	hash_later = nbytes - rctx->total;
912 	if (hash_later < 0)
913 		hash_later = 0;
914 
915 	if (hash_later && hash_later <= rctx->buflen) {
916 		scatterwalk_map_and_copy(rctx->buffer,
917 					 req->src,
918 					 req->nbytes - hash_later,
919 					 hash_later, 0);
920 
921 		rctx->bufcnt = hash_later;
922 	} else {
923 		rctx->bufcnt = 0;
924 	}
925 
926 	if (hash_later > rctx->buflen)
927 		set_bit(FLAGS_HUGE, &rctx->dd->flags);
928 
929 	rctx->total = min(nbytes, rctx->total);
930 
931 	return 0;
932 }
933 
omap_sham_update_dma_stop(struct omap_sham_dev * dd)934 static int omap_sham_update_dma_stop(struct omap_sham_dev *dd)
935 {
936 	struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
937 
938 	dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
939 
940 	clear_bit(FLAGS_DMA_ACTIVE, &dd->flags);
941 
942 	return 0;
943 }
944 
omap_sham_find_dev(struct omap_sham_reqctx * ctx)945 static struct omap_sham_dev *omap_sham_find_dev(struct omap_sham_reqctx *ctx)
946 {
947 	struct omap_sham_dev *dd;
948 
949 	if (ctx->dd)
950 		return ctx->dd;
951 
952 	spin_lock_bh(&sham.lock);
953 	dd = list_first_entry(&sham.dev_list, struct omap_sham_dev, list);
954 	list_move_tail(&dd->list, &sham.dev_list);
955 	ctx->dd = dd;
956 	spin_unlock_bh(&sham.lock);
957 
958 	return dd;
959 }
960 
omap_sham_init(struct ahash_request * req)961 static int omap_sham_init(struct ahash_request *req)
962 {
963 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
964 	struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
965 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
966 	struct omap_sham_dev *dd;
967 	int bs = 0;
968 
969 	ctx->dd = NULL;
970 
971 	dd = omap_sham_find_dev(ctx);
972 	if (!dd)
973 		return -ENODEV;
974 
975 	ctx->flags = 0;
976 
977 	dev_dbg(dd->dev, "init: digest size: %d\n",
978 		crypto_ahash_digestsize(tfm));
979 
980 	switch (crypto_ahash_digestsize(tfm)) {
981 	case MD5_DIGEST_SIZE:
982 		ctx->flags |= FLAGS_MODE_MD5;
983 		bs = SHA1_BLOCK_SIZE;
984 		break;
985 	case SHA1_DIGEST_SIZE:
986 		ctx->flags |= FLAGS_MODE_SHA1;
987 		bs = SHA1_BLOCK_SIZE;
988 		break;
989 	case SHA224_DIGEST_SIZE:
990 		ctx->flags |= FLAGS_MODE_SHA224;
991 		bs = SHA224_BLOCK_SIZE;
992 		break;
993 	case SHA256_DIGEST_SIZE:
994 		ctx->flags |= FLAGS_MODE_SHA256;
995 		bs = SHA256_BLOCK_SIZE;
996 		break;
997 	case SHA384_DIGEST_SIZE:
998 		ctx->flags |= FLAGS_MODE_SHA384;
999 		bs = SHA384_BLOCK_SIZE;
1000 		break;
1001 	case SHA512_DIGEST_SIZE:
1002 		ctx->flags |= FLAGS_MODE_SHA512;
1003 		bs = SHA512_BLOCK_SIZE;
1004 		break;
1005 	}
1006 
1007 	ctx->bufcnt = 0;
1008 	ctx->digcnt = 0;
1009 	ctx->total = 0;
1010 	ctx->offset = 0;
1011 	ctx->buflen = BUFLEN;
1012 
1013 	if (tctx->flags & BIT(FLAGS_HMAC)) {
1014 		if (!test_bit(FLAGS_AUTO_XOR, &dd->flags)) {
1015 			struct omap_sham_hmac_ctx *bctx = tctx->base;
1016 
1017 			memcpy(ctx->buffer, bctx->ipad, bs);
1018 			ctx->bufcnt = bs;
1019 		}
1020 
1021 		ctx->flags |= BIT(FLAGS_HMAC);
1022 	}
1023 
1024 	return 0;
1025 
1026 }
1027 
omap_sham_update_req(struct omap_sham_dev * dd)1028 static int omap_sham_update_req(struct omap_sham_dev *dd)
1029 {
1030 	struct ahash_request *req = dd->req;
1031 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1032 	int err;
1033 	bool final = (ctx->flags & BIT(FLAGS_FINUP)) &&
1034 		!(dd->flags & BIT(FLAGS_HUGE));
1035 
1036 	dev_dbg(dd->dev, "update_req: total: %u, digcnt: %zd, final: %d",
1037 		ctx->total, ctx->digcnt, final);
1038 
1039 	if (ctx->total < get_block_size(ctx) ||
1040 	    ctx->total < dd->fallback_sz)
1041 		ctx->flags |= BIT(FLAGS_CPU);
1042 
1043 	if (ctx->flags & BIT(FLAGS_CPU))
1044 		err = omap_sham_xmit_cpu(dd, ctx->total, final);
1045 	else
1046 		err = omap_sham_xmit_dma(dd, ctx->total, final);
1047 
1048 	/* wait for dma completion before can take more data */
1049 	dev_dbg(dd->dev, "update: err: %d, digcnt: %zd\n", err, ctx->digcnt);
1050 
1051 	return err;
1052 }
1053 
omap_sham_final_req(struct omap_sham_dev * dd)1054 static int omap_sham_final_req(struct omap_sham_dev *dd)
1055 {
1056 	struct ahash_request *req = dd->req;
1057 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1058 	int err = 0, use_dma = 1;
1059 
1060 	if (dd->flags & BIT(FLAGS_HUGE))
1061 		return 0;
1062 
1063 	if ((ctx->total <= get_block_size(ctx)) || dd->polling_mode)
1064 		/*
1065 		 * faster to handle last block with cpu or
1066 		 * use cpu when dma is not present.
1067 		 */
1068 		use_dma = 0;
1069 
1070 	if (use_dma)
1071 		err = omap_sham_xmit_dma(dd, ctx->total, 1);
1072 	else
1073 		err = omap_sham_xmit_cpu(dd, ctx->total, 1);
1074 
1075 	ctx->bufcnt = 0;
1076 
1077 	dev_dbg(dd->dev, "final_req: err: %d\n", err);
1078 
1079 	return err;
1080 }
1081 
omap_sham_hash_one_req(struct crypto_engine * engine,void * areq)1082 static int omap_sham_hash_one_req(struct crypto_engine *engine, void *areq)
1083 {
1084 	struct ahash_request *req = container_of(areq, struct ahash_request,
1085 						 base);
1086 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1087 	struct omap_sham_dev *dd = ctx->dd;
1088 	int err;
1089 	bool final = (ctx->flags & BIT(FLAGS_FINUP)) &&
1090 			!(dd->flags & BIT(FLAGS_HUGE));
1091 
1092 	dev_dbg(dd->dev, "hash-one: op: %u, total: %u, digcnt: %zd, final: %d",
1093 		ctx->op, ctx->total, ctx->digcnt, final);
1094 
1095 	dd->req = req;
1096 
1097 	err = omap_sham_hw_init(dd);
1098 	if (err)
1099 		return err;
1100 
1101 	if (ctx->digcnt)
1102 		dd->pdata->copy_hash(req, 0);
1103 
1104 	if (ctx->op == OP_UPDATE)
1105 		err = omap_sham_update_req(dd);
1106 	else if (ctx->op == OP_FINAL)
1107 		err = omap_sham_final_req(dd);
1108 
1109 	if (err != -EINPROGRESS)
1110 		omap_sham_finish_req(req, err);
1111 
1112 	return 0;
1113 }
1114 
omap_sham_finish_hmac(struct ahash_request * req)1115 static int omap_sham_finish_hmac(struct ahash_request *req)
1116 {
1117 	struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1118 	struct omap_sham_hmac_ctx *bctx = tctx->base;
1119 	int bs = crypto_shash_blocksize(bctx->shash);
1120 	int ds = crypto_shash_digestsize(bctx->shash);
1121 	SHASH_DESC_ON_STACK(shash, bctx->shash);
1122 
1123 	shash->tfm = bctx->shash;
1124 
1125 	return crypto_shash_init(shash) ?:
1126 	       crypto_shash_update(shash, bctx->opad, bs) ?:
1127 	       crypto_shash_finup(shash, req->result, ds, req->result);
1128 }
1129 
omap_sham_finish(struct ahash_request * req)1130 static int omap_sham_finish(struct ahash_request *req)
1131 {
1132 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1133 	struct omap_sham_dev *dd = ctx->dd;
1134 	int err = 0;
1135 
1136 	if (ctx->digcnt) {
1137 		omap_sham_copy_ready_hash(req);
1138 		if ((ctx->flags & BIT(FLAGS_HMAC)) &&
1139 				!test_bit(FLAGS_AUTO_XOR, &dd->flags))
1140 			err = omap_sham_finish_hmac(req);
1141 	}
1142 
1143 	dev_dbg(dd->dev, "digcnt: %zd, bufcnt: %zd\n", ctx->digcnt, ctx->bufcnt);
1144 
1145 	return err;
1146 }
1147 
omap_sham_finish_req(struct ahash_request * req,int err)1148 static void omap_sham_finish_req(struct ahash_request *req, int err)
1149 {
1150 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1151 	struct omap_sham_dev *dd = ctx->dd;
1152 
1153 	if (test_bit(FLAGS_SGS_COPIED, &dd->flags))
1154 		free_pages((unsigned long)sg_virt(ctx->sg),
1155 			   get_order(ctx->sg->length));
1156 
1157 	if (test_bit(FLAGS_SGS_ALLOCED, &dd->flags))
1158 		kfree(ctx->sg);
1159 
1160 	ctx->sg = NULL;
1161 
1162 	dd->flags &= ~(BIT(FLAGS_SGS_ALLOCED) | BIT(FLAGS_SGS_COPIED) |
1163 		       BIT(FLAGS_CPU) | BIT(FLAGS_DMA_READY) |
1164 		       BIT(FLAGS_OUTPUT_READY));
1165 
1166 	if (!err)
1167 		dd->pdata->copy_hash(req, 1);
1168 
1169 	if (dd->flags & BIT(FLAGS_HUGE)) {
1170 		/* Re-enqueue the request */
1171 		omap_sham_enqueue(req, ctx->op);
1172 		return;
1173 	}
1174 
1175 	if (!err) {
1176 		if (test_bit(FLAGS_FINAL, &dd->flags))
1177 			err = omap_sham_finish(req);
1178 	} else {
1179 		ctx->flags |= BIT(FLAGS_ERROR);
1180 	}
1181 
1182 	/* atomic operation is not needed here */
1183 	dd->flags &= ~(BIT(FLAGS_FINAL) | BIT(FLAGS_CPU) |
1184 			BIT(FLAGS_DMA_READY) | BIT(FLAGS_OUTPUT_READY));
1185 
1186 	pm_runtime_mark_last_busy(dd->dev);
1187 	pm_runtime_put_autosuspend(dd->dev);
1188 
1189 	ctx->offset = 0;
1190 
1191 	crypto_finalize_hash_request(dd->engine, req, err);
1192 }
1193 
omap_sham_handle_queue(struct omap_sham_dev * dd,struct ahash_request * req)1194 static int omap_sham_handle_queue(struct omap_sham_dev *dd,
1195 				  struct ahash_request *req)
1196 {
1197 	return crypto_transfer_hash_request_to_engine(dd->engine, req);
1198 }
1199 
omap_sham_enqueue(struct ahash_request * req,unsigned int op)1200 static int omap_sham_enqueue(struct ahash_request *req, unsigned int op)
1201 {
1202 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1203 	struct omap_sham_dev *dd = ctx->dd;
1204 
1205 	ctx->op = op;
1206 
1207 	return omap_sham_handle_queue(dd, req);
1208 }
1209 
omap_sham_update(struct ahash_request * req)1210 static int omap_sham_update(struct ahash_request *req)
1211 {
1212 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1213 	struct omap_sham_dev *dd = omap_sham_find_dev(ctx);
1214 
1215 	if (!req->nbytes)
1216 		return 0;
1217 
1218 	if (ctx->bufcnt + req->nbytes <= ctx->buflen) {
1219 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1220 					 0, req->nbytes, 0);
1221 		ctx->bufcnt += req->nbytes;
1222 		return 0;
1223 	}
1224 
1225 	if (dd->polling_mode)
1226 		ctx->flags |= BIT(FLAGS_CPU);
1227 
1228 	return omap_sham_enqueue(req, OP_UPDATE);
1229 }
1230 
omap_sham_final_shash(struct ahash_request * req)1231 static int omap_sham_final_shash(struct ahash_request *req)
1232 {
1233 	struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1234 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1235 	int offset = 0;
1236 
1237 	/*
1238 	 * If we are running HMAC on limited hardware support, skip
1239 	 * the ipad in the beginning of the buffer if we are going for
1240 	 * software fallback algorithm.
1241 	 */
1242 	if (test_bit(FLAGS_HMAC, &ctx->flags) &&
1243 	    !test_bit(FLAGS_AUTO_XOR, &ctx->dd->flags))
1244 		offset = get_block_size(ctx);
1245 
1246 	return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer + offset,
1247 				       ctx->bufcnt - offset, req->result);
1248 }
1249 
omap_sham_final(struct ahash_request * req)1250 static int omap_sham_final(struct ahash_request *req)
1251 {
1252 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1253 
1254 	ctx->flags |= BIT(FLAGS_FINUP);
1255 
1256 	if (ctx->flags & BIT(FLAGS_ERROR))
1257 		return 0; /* uncompleted hash is not needed */
1258 
1259 	/*
1260 	 * OMAP HW accel works only with buffers >= 9.
1261 	 * HMAC is always >= 9 because ipad == block size.
1262 	 * If buffersize is less than fallback_sz, we use fallback
1263 	 * SW encoding, as using DMA + HW in this case doesn't provide
1264 	 * any benefit.
1265 	 */
1266 	if (!ctx->digcnt && ctx->bufcnt < ctx->dd->fallback_sz)
1267 		return omap_sham_final_shash(req);
1268 	else if (ctx->bufcnt)
1269 		return omap_sham_enqueue(req, OP_FINAL);
1270 
1271 	/* copy ready hash (+ finalize hmac) */
1272 	return omap_sham_finish(req);
1273 }
1274 
omap_sham_finup(struct ahash_request * req)1275 static int omap_sham_finup(struct ahash_request *req)
1276 {
1277 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1278 	int err1, err2;
1279 
1280 	ctx->flags |= BIT(FLAGS_FINUP);
1281 
1282 	err1 = omap_sham_update(req);
1283 	if (err1 == -EINPROGRESS || err1 == -EBUSY)
1284 		return err1;
1285 	/*
1286 	 * final() has to be always called to cleanup resources
1287 	 * even if udpate() failed, except EINPROGRESS
1288 	 */
1289 	err2 = omap_sham_final(req);
1290 
1291 	return err1 ?: err2;
1292 }
1293 
omap_sham_digest(struct ahash_request * req)1294 static int omap_sham_digest(struct ahash_request *req)
1295 {
1296 	return omap_sham_init(req) ?: omap_sham_finup(req);
1297 }
1298 
omap_sham_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1299 static int omap_sham_setkey(struct crypto_ahash *tfm, const u8 *key,
1300 		      unsigned int keylen)
1301 {
1302 	struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
1303 	struct omap_sham_hmac_ctx *bctx = tctx->base;
1304 	int bs = crypto_shash_blocksize(bctx->shash);
1305 	int ds = crypto_shash_digestsize(bctx->shash);
1306 	int err, i;
1307 
1308 	err = crypto_shash_setkey(tctx->fallback, key, keylen);
1309 	if (err)
1310 		return err;
1311 
1312 	if (keylen > bs) {
1313 		err = crypto_shash_tfm_digest(bctx->shash, key, keylen,
1314 					      bctx->ipad);
1315 		if (err)
1316 			return err;
1317 		keylen = ds;
1318 	} else {
1319 		memcpy(bctx->ipad, key, keylen);
1320 	}
1321 
1322 	memset(bctx->ipad + keylen, 0, bs - keylen);
1323 
1324 	if (!test_bit(FLAGS_AUTO_XOR, &sham.flags)) {
1325 		memcpy(bctx->opad, bctx->ipad, bs);
1326 
1327 		for (i = 0; i < bs; i++) {
1328 			bctx->ipad[i] ^= HMAC_IPAD_VALUE;
1329 			bctx->opad[i] ^= HMAC_OPAD_VALUE;
1330 		}
1331 	}
1332 
1333 	return err;
1334 }
1335 
omap_sham_cra_init_alg(struct crypto_tfm * tfm,const char * alg_base)1336 static int omap_sham_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
1337 {
1338 	struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm);
1339 	const char *alg_name = crypto_tfm_alg_name(tfm);
1340 
1341 	/* Allocate a fallback and abort if it failed. */
1342 	tctx->fallback = crypto_alloc_shash(alg_name, 0,
1343 					    CRYPTO_ALG_NEED_FALLBACK);
1344 	if (IS_ERR(tctx->fallback)) {
1345 		pr_err("omap-sham: fallback driver '%s' "
1346 				"could not be loaded.\n", alg_name);
1347 		return PTR_ERR(tctx->fallback);
1348 	}
1349 
1350 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1351 				 sizeof(struct omap_sham_reqctx) + BUFLEN);
1352 
1353 	if (alg_base) {
1354 		struct omap_sham_hmac_ctx *bctx = tctx->base;
1355 		tctx->flags |= BIT(FLAGS_HMAC);
1356 		bctx->shash = crypto_alloc_shash(alg_base, 0,
1357 						CRYPTO_ALG_NEED_FALLBACK);
1358 		if (IS_ERR(bctx->shash)) {
1359 			pr_err("omap-sham: base driver '%s' "
1360 					"could not be loaded.\n", alg_base);
1361 			crypto_free_shash(tctx->fallback);
1362 			return PTR_ERR(bctx->shash);
1363 		}
1364 
1365 	}
1366 
1367 	tctx->enginectx.op.do_one_request = omap_sham_hash_one_req;
1368 	tctx->enginectx.op.prepare_request = omap_sham_prepare_request;
1369 	tctx->enginectx.op.unprepare_request = NULL;
1370 
1371 	return 0;
1372 }
1373 
omap_sham_cra_init(struct crypto_tfm * tfm)1374 static int omap_sham_cra_init(struct crypto_tfm *tfm)
1375 {
1376 	return omap_sham_cra_init_alg(tfm, NULL);
1377 }
1378 
omap_sham_cra_sha1_init(struct crypto_tfm * tfm)1379 static int omap_sham_cra_sha1_init(struct crypto_tfm *tfm)
1380 {
1381 	return omap_sham_cra_init_alg(tfm, "sha1");
1382 }
1383 
omap_sham_cra_sha224_init(struct crypto_tfm * tfm)1384 static int omap_sham_cra_sha224_init(struct crypto_tfm *tfm)
1385 {
1386 	return omap_sham_cra_init_alg(tfm, "sha224");
1387 }
1388 
omap_sham_cra_sha256_init(struct crypto_tfm * tfm)1389 static int omap_sham_cra_sha256_init(struct crypto_tfm *tfm)
1390 {
1391 	return omap_sham_cra_init_alg(tfm, "sha256");
1392 }
1393 
omap_sham_cra_md5_init(struct crypto_tfm * tfm)1394 static int omap_sham_cra_md5_init(struct crypto_tfm *tfm)
1395 {
1396 	return omap_sham_cra_init_alg(tfm, "md5");
1397 }
1398 
omap_sham_cra_sha384_init(struct crypto_tfm * tfm)1399 static int omap_sham_cra_sha384_init(struct crypto_tfm *tfm)
1400 {
1401 	return omap_sham_cra_init_alg(tfm, "sha384");
1402 }
1403 
omap_sham_cra_sha512_init(struct crypto_tfm * tfm)1404 static int omap_sham_cra_sha512_init(struct crypto_tfm *tfm)
1405 {
1406 	return omap_sham_cra_init_alg(tfm, "sha512");
1407 }
1408 
omap_sham_cra_exit(struct crypto_tfm * tfm)1409 static void omap_sham_cra_exit(struct crypto_tfm *tfm)
1410 {
1411 	struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm);
1412 
1413 	crypto_free_shash(tctx->fallback);
1414 	tctx->fallback = NULL;
1415 
1416 	if (tctx->flags & BIT(FLAGS_HMAC)) {
1417 		struct omap_sham_hmac_ctx *bctx = tctx->base;
1418 		crypto_free_shash(bctx->shash);
1419 	}
1420 }
1421 
omap_sham_export(struct ahash_request * req,void * out)1422 static int omap_sham_export(struct ahash_request *req, void *out)
1423 {
1424 	struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
1425 
1426 	memcpy(out, rctx, sizeof(*rctx) + rctx->bufcnt);
1427 
1428 	return 0;
1429 }
1430 
omap_sham_import(struct ahash_request * req,const void * in)1431 static int omap_sham_import(struct ahash_request *req, const void *in)
1432 {
1433 	struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
1434 	const struct omap_sham_reqctx *ctx_in = in;
1435 
1436 	memcpy(rctx, in, sizeof(*rctx) + ctx_in->bufcnt);
1437 
1438 	return 0;
1439 }
1440 
1441 static struct ahash_alg algs_sha1_md5[] = {
1442 {
1443 	.init		= omap_sham_init,
1444 	.update		= omap_sham_update,
1445 	.final		= omap_sham_final,
1446 	.finup		= omap_sham_finup,
1447 	.digest		= omap_sham_digest,
1448 	.halg.digestsize	= SHA1_DIGEST_SIZE,
1449 	.halg.base	= {
1450 		.cra_name		= "sha1",
1451 		.cra_driver_name	= "omap-sha1",
1452 		.cra_priority		= 400,
1453 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1454 						CRYPTO_ALG_ASYNC |
1455 						CRYPTO_ALG_NEED_FALLBACK,
1456 		.cra_blocksize		= SHA1_BLOCK_SIZE,
1457 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1458 		.cra_alignmask		= OMAP_ALIGN_MASK,
1459 		.cra_module		= THIS_MODULE,
1460 		.cra_init		= omap_sham_cra_init,
1461 		.cra_exit		= omap_sham_cra_exit,
1462 	}
1463 },
1464 {
1465 	.init		= omap_sham_init,
1466 	.update		= omap_sham_update,
1467 	.final		= omap_sham_final,
1468 	.finup		= omap_sham_finup,
1469 	.digest		= omap_sham_digest,
1470 	.halg.digestsize	= MD5_DIGEST_SIZE,
1471 	.halg.base	= {
1472 		.cra_name		= "md5",
1473 		.cra_driver_name	= "omap-md5",
1474 		.cra_priority		= 400,
1475 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1476 						CRYPTO_ALG_ASYNC |
1477 						CRYPTO_ALG_NEED_FALLBACK,
1478 		.cra_blocksize		= SHA1_BLOCK_SIZE,
1479 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1480 		.cra_alignmask		= OMAP_ALIGN_MASK,
1481 		.cra_module		= THIS_MODULE,
1482 		.cra_init		= omap_sham_cra_init,
1483 		.cra_exit		= omap_sham_cra_exit,
1484 	}
1485 },
1486 {
1487 	.init		= omap_sham_init,
1488 	.update		= omap_sham_update,
1489 	.final		= omap_sham_final,
1490 	.finup		= omap_sham_finup,
1491 	.digest		= omap_sham_digest,
1492 	.setkey		= omap_sham_setkey,
1493 	.halg.digestsize	= SHA1_DIGEST_SIZE,
1494 	.halg.base	= {
1495 		.cra_name		= "hmac(sha1)",
1496 		.cra_driver_name	= "omap-hmac-sha1",
1497 		.cra_priority		= 400,
1498 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1499 						CRYPTO_ALG_ASYNC |
1500 						CRYPTO_ALG_NEED_FALLBACK,
1501 		.cra_blocksize		= SHA1_BLOCK_SIZE,
1502 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1503 					sizeof(struct omap_sham_hmac_ctx),
1504 		.cra_alignmask		= OMAP_ALIGN_MASK,
1505 		.cra_module		= THIS_MODULE,
1506 		.cra_init		= omap_sham_cra_sha1_init,
1507 		.cra_exit		= omap_sham_cra_exit,
1508 	}
1509 },
1510 {
1511 	.init		= omap_sham_init,
1512 	.update		= omap_sham_update,
1513 	.final		= omap_sham_final,
1514 	.finup		= omap_sham_finup,
1515 	.digest		= omap_sham_digest,
1516 	.setkey		= omap_sham_setkey,
1517 	.halg.digestsize	= MD5_DIGEST_SIZE,
1518 	.halg.base	= {
1519 		.cra_name		= "hmac(md5)",
1520 		.cra_driver_name	= "omap-hmac-md5",
1521 		.cra_priority		= 400,
1522 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1523 						CRYPTO_ALG_ASYNC |
1524 						CRYPTO_ALG_NEED_FALLBACK,
1525 		.cra_blocksize		= SHA1_BLOCK_SIZE,
1526 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1527 					sizeof(struct omap_sham_hmac_ctx),
1528 		.cra_alignmask		= OMAP_ALIGN_MASK,
1529 		.cra_module		= THIS_MODULE,
1530 		.cra_init		= omap_sham_cra_md5_init,
1531 		.cra_exit		= omap_sham_cra_exit,
1532 	}
1533 }
1534 };
1535 
1536 /* OMAP4 has some algs in addition to what OMAP2 has */
1537 static struct ahash_alg algs_sha224_sha256[] = {
1538 {
1539 	.init		= omap_sham_init,
1540 	.update		= omap_sham_update,
1541 	.final		= omap_sham_final,
1542 	.finup		= omap_sham_finup,
1543 	.digest		= omap_sham_digest,
1544 	.halg.digestsize	= SHA224_DIGEST_SIZE,
1545 	.halg.base	= {
1546 		.cra_name		= "sha224",
1547 		.cra_driver_name	= "omap-sha224",
1548 		.cra_priority		= 400,
1549 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1550 						CRYPTO_ALG_ASYNC |
1551 						CRYPTO_ALG_NEED_FALLBACK,
1552 		.cra_blocksize		= SHA224_BLOCK_SIZE,
1553 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1554 		.cra_alignmask		= OMAP_ALIGN_MASK,
1555 		.cra_module		= THIS_MODULE,
1556 		.cra_init		= omap_sham_cra_init,
1557 		.cra_exit		= omap_sham_cra_exit,
1558 	}
1559 },
1560 {
1561 	.init		= omap_sham_init,
1562 	.update		= omap_sham_update,
1563 	.final		= omap_sham_final,
1564 	.finup		= omap_sham_finup,
1565 	.digest		= omap_sham_digest,
1566 	.halg.digestsize	= SHA256_DIGEST_SIZE,
1567 	.halg.base	= {
1568 		.cra_name		= "sha256",
1569 		.cra_driver_name	= "omap-sha256",
1570 		.cra_priority		= 400,
1571 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1572 						CRYPTO_ALG_ASYNC |
1573 						CRYPTO_ALG_NEED_FALLBACK,
1574 		.cra_blocksize		= SHA256_BLOCK_SIZE,
1575 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1576 		.cra_alignmask		= OMAP_ALIGN_MASK,
1577 		.cra_module		= THIS_MODULE,
1578 		.cra_init		= omap_sham_cra_init,
1579 		.cra_exit		= omap_sham_cra_exit,
1580 	}
1581 },
1582 {
1583 	.init		= omap_sham_init,
1584 	.update		= omap_sham_update,
1585 	.final		= omap_sham_final,
1586 	.finup		= omap_sham_finup,
1587 	.digest		= omap_sham_digest,
1588 	.setkey		= omap_sham_setkey,
1589 	.halg.digestsize	= SHA224_DIGEST_SIZE,
1590 	.halg.base	= {
1591 		.cra_name		= "hmac(sha224)",
1592 		.cra_driver_name	= "omap-hmac-sha224",
1593 		.cra_priority		= 400,
1594 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1595 						CRYPTO_ALG_ASYNC |
1596 						CRYPTO_ALG_NEED_FALLBACK,
1597 		.cra_blocksize		= SHA224_BLOCK_SIZE,
1598 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1599 					sizeof(struct omap_sham_hmac_ctx),
1600 		.cra_alignmask		= OMAP_ALIGN_MASK,
1601 		.cra_module		= THIS_MODULE,
1602 		.cra_init		= omap_sham_cra_sha224_init,
1603 		.cra_exit		= omap_sham_cra_exit,
1604 	}
1605 },
1606 {
1607 	.init		= omap_sham_init,
1608 	.update		= omap_sham_update,
1609 	.final		= omap_sham_final,
1610 	.finup		= omap_sham_finup,
1611 	.digest		= omap_sham_digest,
1612 	.setkey		= omap_sham_setkey,
1613 	.halg.digestsize	= SHA256_DIGEST_SIZE,
1614 	.halg.base	= {
1615 		.cra_name		= "hmac(sha256)",
1616 		.cra_driver_name	= "omap-hmac-sha256",
1617 		.cra_priority		= 400,
1618 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1619 						CRYPTO_ALG_ASYNC |
1620 						CRYPTO_ALG_NEED_FALLBACK,
1621 		.cra_blocksize		= SHA256_BLOCK_SIZE,
1622 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1623 					sizeof(struct omap_sham_hmac_ctx),
1624 		.cra_alignmask		= OMAP_ALIGN_MASK,
1625 		.cra_module		= THIS_MODULE,
1626 		.cra_init		= omap_sham_cra_sha256_init,
1627 		.cra_exit		= omap_sham_cra_exit,
1628 	}
1629 },
1630 };
1631 
1632 static struct ahash_alg algs_sha384_sha512[] = {
1633 {
1634 	.init		= omap_sham_init,
1635 	.update		= omap_sham_update,
1636 	.final		= omap_sham_final,
1637 	.finup		= omap_sham_finup,
1638 	.digest		= omap_sham_digest,
1639 	.halg.digestsize	= SHA384_DIGEST_SIZE,
1640 	.halg.base	= {
1641 		.cra_name		= "sha384",
1642 		.cra_driver_name	= "omap-sha384",
1643 		.cra_priority		= 400,
1644 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1645 						CRYPTO_ALG_ASYNC |
1646 						CRYPTO_ALG_NEED_FALLBACK,
1647 		.cra_blocksize		= SHA384_BLOCK_SIZE,
1648 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1649 		.cra_alignmask		= OMAP_ALIGN_MASK,
1650 		.cra_module		= THIS_MODULE,
1651 		.cra_init		= omap_sham_cra_init,
1652 		.cra_exit		= omap_sham_cra_exit,
1653 	}
1654 },
1655 {
1656 	.init		= omap_sham_init,
1657 	.update		= omap_sham_update,
1658 	.final		= omap_sham_final,
1659 	.finup		= omap_sham_finup,
1660 	.digest		= omap_sham_digest,
1661 	.halg.digestsize	= SHA512_DIGEST_SIZE,
1662 	.halg.base	= {
1663 		.cra_name		= "sha512",
1664 		.cra_driver_name	= "omap-sha512",
1665 		.cra_priority		= 400,
1666 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1667 						CRYPTO_ALG_ASYNC |
1668 						CRYPTO_ALG_NEED_FALLBACK,
1669 		.cra_blocksize		= SHA512_BLOCK_SIZE,
1670 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1671 		.cra_alignmask		= OMAP_ALIGN_MASK,
1672 		.cra_module		= THIS_MODULE,
1673 		.cra_init		= omap_sham_cra_init,
1674 		.cra_exit		= omap_sham_cra_exit,
1675 	}
1676 },
1677 {
1678 	.init		= omap_sham_init,
1679 	.update		= omap_sham_update,
1680 	.final		= omap_sham_final,
1681 	.finup		= omap_sham_finup,
1682 	.digest		= omap_sham_digest,
1683 	.setkey		= omap_sham_setkey,
1684 	.halg.digestsize	= SHA384_DIGEST_SIZE,
1685 	.halg.base	= {
1686 		.cra_name		= "hmac(sha384)",
1687 		.cra_driver_name	= "omap-hmac-sha384",
1688 		.cra_priority		= 400,
1689 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1690 						CRYPTO_ALG_ASYNC |
1691 						CRYPTO_ALG_NEED_FALLBACK,
1692 		.cra_blocksize		= SHA384_BLOCK_SIZE,
1693 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1694 					sizeof(struct omap_sham_hmac_ctx),
1695 		.cra_alignmask		= OMAP_ALIGN_MASK,
1696 		.cra_module		= THIS_MODULE,
1697 		.cra_init		= omap_sham_cra_sha384_init,
1698 		.cra_exit		= omap_sham_cra_exit,
1699 	}
1700 },
1701 {
1702 	.init		= omap_sham_init,
1703 	.update		= omap_sham_update,
1704 	.final		= omap_sham_final,
1705 	.finup		= omap_sham_finup,
1706 	.digest		= omap_sham_digest,
1707 	.setkey		= omap_sham_setkey,
1708 	.halg.digestsize	= SHA512_DIGEST_SIZE,
1709 	.halg.base	= {
1710 		.cra_name		= "hmac(sha512)",
1711 		.cra_driver_name	= "omap-hmac-sha512",
1712 		.cra_priority		= 400,
1713 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1714 						CRYPTO_ALG_ASYNC |
1715 						CRYPTO_ALG_NEED_FALLBACK,
1716 		.cra_blocksize		= SHA512_BLOCK_SIZE,
1717 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1718 					sizeof(struct omap_sham_hmac_ctx),
1719 		.cra_alignmask		= OMAP_ALIGN_MASK,
1720 		.cra_module		= THIS_MODULE,
1721 		.cra_init		= omap_sham_cra_sha512_init,
1722 		.cra_exit		= omap_sham_cra_exit,
1723 	}
1724 },
1725 };
1726 
omap_sham_done_task(unsigned long data)1727 static void omap_sham_done_task(unsigned long data)
1728 {
1729 	struct omap_sham_dev *dd = (struct omap_sham_dev *)data;
1730 	int err = 0;
1731 
1732 	dev_dbg(dd->dev, "%s: flags=%lx\n", __func__, dd->flags);
1733 
1734 	if (test_bit(FLAGS_CPU, &dd->flags)) {
1735 		if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags))
1736 			goto finish;
1737 	} else if (test_bit(FLAGS_DMA_READY, &dd->flags)) {
1738 		if (test_bit(FLAGS_DMA_ACTIVE, &dd->flags)) {
1739 			omap_sham_update_dma_stop(dd);
1740 			if (dd->err) {
1741 				err = dd->err;
1742 				goto finish;
1743 			}
1744 		}
1745 		if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags)) {
1746 			/* hash or semi-hash ready */
1747 			clear_bit(FLAGS_DMA_READY, &dd->flags);
1748 			goto finish;
1749 		}
1750 	}
1751 
1752 	return;
1753 
1754 finish:
1755 	dev_dbg(dd->dev, "update done: err: %d\n", err);
1756 	/* finish curent request */
1757 	omap_sham_finish_req(dd->req, err);
1758 }
1759 
omap_sham_irq_common(struct omap_sham_dev * dd)1760 static irqreturn_t omap_sham_irq_common(struct omap_sham_dev *dd)
1761 {
1762 	set_bit(FLAGS_OUTPUT_READY, &dd->flags);
1763 	tasklet_schedule(&dd->done_task);
1764 
1765 	return IRQ_HANDLED;
1766 }
1767 
omap_sham_irq_omap2(int irq,void * dev_id)1768 static irqreturn_t omap_sham_irq_omap2(int irq, void *dev_id)
1769 {
1770 	struct omap_sham_dev *dd = dev_id;
1771 
1772 	if (unlikely(test_bit(FLAGS_FINAL, &dd->flags)))
1773 		/* final -> allow device to go to power-saving mode */
1774 		omap_sham_write_mask(dd, SHA_REG_CTRL, 0, SHA_REG_CTRL_LENGTH);
1775 
1776 	omap_sham_write_mask(dd, SHA_REG_CTRL, SHA_REG_CTRL_OUTPUT_READY,
1777 				 SHA_REG_CTRL_OUTPUT_READY);
1778 	omap_sham_read(dd, SHA_REG_CTRL);
1779 
1780 	return omap_sham_irq_common(dd);
1781 }
1782 
omap_sham_irq_omap4(int irq,void * dev_id)1783 static irqreturn_t omap_sham_irq_omap4(int irq, void *dev_id)
1784 {
1785 	struct omap_sham_dev *dd = dev_id;
1786 
1787 	omap_sham_write_mask(dd, SHA_REG_MASK(dd), 0, SHA_REG_MASK_IT_EN);
1788 
1789 	return omap_sham_irq_common(dd);
1790 }
1791 
1792 static struct omap_sham_algs_info omap_sham_algs_info_omap2[] = {
1793 	{
1794 		.algs_list	= algs_sha1_md5,
1795 		.size		= ARRAY_SIZE(algs_sha1_md5),
1796 	},
1797 };
1798 
1799 static const struct omap_sham_pdata omap_sham_pdata_omap2 = {
1800 	.algs_info	= omap_sham_algs_info_omap2,
1801 	.algs_info_size	= ARRAY_SIZE(omap_sham_algs_info_omap2),
1802 	.flags		= BIT(FLAGS_BE32_SHA1),
1803 	.digest_size	= SHA1_DIGEST_SIZE,
1804 	.copy_hash	= omap_sham_copy_hash_omap2,
1805 	.write_ctrl	= omap_sham_write_ctrl_omap2,
1806 	.trigger	= omap_sham_trigger_omap2,
1807 	.poll_irq	= omap_sham_poll_irq_omap2,
1808 	.intr_hdlr	= omap_sham_irq_omap2,
1809 	.idigest_ofs	= 0x00,
1810 	.din_ofs	= 0x1c,
1811 	.digcnt_ofs	= 0x14,
1812 	.rev_ofs	= 0x5c,
1813 	.mask_ofs	= 0x60,
1814 	.sysstatus_ofs	= 0x64,
1815 	.major_mask	= 0xf0,
1816 	.major_shift	= 4,
1817 	.minor_mask	= 0x0f,
1818 	.minor_shift	= 0,
1819 };
1820 
1821 #ifdef CONFIG_OF
1822 static struct omap_sham_algs_info omap_sham_algs_info_omap4[] = {
1823 	{
1824 		.algs_list	= algs_sha1_md5,
1825 		.size		= ARRAY_SIZE(algs_sha1_md5),
1826 	},
1827 	{
1828 		.algs_list	= algs_sha224_sha256,
1829 		.size		= ARRAY_SIZE(algs_sha224_sha256),
1830 	},
1831 };
1832 
1833 static const struct omap_sham_pdata omap_sham_pdata_omap4 = {
1834 	.algs_info	= omap_sham_algs_info_omap4,
1835 	.algs_info_size	= ARRAY_SIZE(omap_sham_algs_info_omap4),
1836 	.flags		= BIT(FLAGS_AUTO_XOR),
1837 	.digest_size	= SHA256_DIGEST_SIZE,
1838 	.copy_hash	= omap_sham_copy_hash_omap4,
1839 	.write_ctrl	= omap_sham_write_ctrl_omap4,
1840 	.trigger	= omap_sham_trigger_omap4,
1841 	.poll_irq	= omap_sham_poll_irq_omap4,
1842 	.intr_hdlr	= omap_sham_irq_omap4,
1843 	.idigest_ofs	= 0x020,
1844 	.odigest_ofs	= 0x0,
1845 	.din_ofs	= 0x080,
1846 	.digcnt_ofs	= 0x040,
1847 	.rev_ofs	= 0x100,
1848 	.mask_ofs	= 0x110,
1849 	.sysstatus_ofs	= 0x114,
1850 	.mode_ofs	= 0x44,
1851 	.length_ofs	= 0x48,
1852 	.major_mask	= 0x0700,
1853 	.major_shift	= 8,
1854 	.minor_mask	= 0x003f,
1855 	.minor_shift	= 0,
1856 };
1857 
1858 static struct omap_sham_algs_info omap_sham_algs_info_omap5[] = {
1859 	{
1860 		.algs_list	= algs_sha1_md5,
1861 		.size		= ARRAY_SIZE(algs_sha1_md5),
1862 	},
1863 	{
1864 		.algs_list	= algs_sha224_sha256,
1865 		.size		= ARRAY_SIZE(algs_sha224_sha256),
1866 	},
1867 	{
1868 		.algs_list	= algs_sha384_sha512,
1869 		.size		= ARRAY_SIZE(algs_sha384_sha512),
1870 	},
1871 };
1872 
1873 static const struct omap_sham_pdata omap_sham_pdata_omap5 = {
1874 	.algs_info	= omap_sham_algs_info_omap5,
1875 	.algs_info_size	= ARRAY_SIZE(omap_sham_algs_info_omap5),
1876 	.flags		= BIT(FLAGS_AUTO_XOR),
1877 	.digest_size	= SHA512_DIGEST_SIZE,
1878 	.copy_hash	= omap_sham_copy_hash_omap4,
1879 	.write_ctrl	= omap_sham_write_ctrl_omap4,
1880 	.trigger	= omap_sham_trigger_omap4,
1881 	.poll_irq	= omap_sham_poll_irq_omap4,
1882 	.intr_hdlr	= omap_sham_irq_omap4,
1883 	.idigest_ofs	= 0x240,
1884 	.odigest_ofs	= 0x200,
1885 	.din_ofs	= 0x080,
1886 	.digcnt_ofs	= 0x280,
1887 	.rev_ofs	= 0x100,
1888 	.mask_ofs	= 0x110,
1889 	.sysstatus_ofs	= 0x114,
1890 	.mode_ofs	= 0x284,
1891 	.length_ofs	= 0x288,
1892 	.major_mask	= 0x0700,
1893 	.major_shift	= 8,
1894 	.minor_mask	= 0x003f,
1895 	.minor_shift	= 0,
1896 };
1897 
1898 static const struct of_device_id omap_sham_of_match[] = {
1899 	{
1900 		.compatible	= "ti,omap2-sham",
1901 		.data		= &omap_sham_pdata_omap2,
1902 	},
1903 	{
1904 		.compatible	= "ti,omap3-sham",
1905 		.data		= &omap_sham_pdata_omap2,
1906 	},
1907 	{
1908 		.compatible	= "ti,omap4-sham",
1909 		.data		= &omap_sham_pdata_omap4,
1910 	},
1911 	{
1912 		.compatible	= "ti,omap5-sham",
1913 		.data		= &omap_sham_pdata_omap5,
1914 	},
1915 	{},
1916 };
1917 MODULE_DEVICE_TABLE(of, omap_sham_of_match);
1918 
omap_sham_get_res_of(struct omap_sham_dev * dd,struct device * dev,struct resource * res)1919 static int omap_sham_get_res_of(struct omap_sham_dev *dd,
1920 		struct device *dev, struct resource *res)
1921 {
1922 	struct device_node *node = dev->of_node;
1923 	int err = 0;
1924 
1925 	dd->pdata = of_device_get_match_data(dev);
1926 	if (!dd->pdata) {
1927 		dev_err(dev, "no compatible OF match\n");
1928 		err = -EINVAL;
1929 		goto err;
1930 	}
1931 
1932 	err = of_address_to_resource(node, 0, res);
1933 	if (err < 0) {
1934 		dev_err(dev, "can't translate OF node address\n");
1935 		err = -EINVAL;
1936 		goto err;
1937 	}
1938 
1939 	dd->irq = irq_of_parse_and_map(node, 0);
1940 	if (!dd->irq) {
1941 		dev_err(dev, "can't translate OF irq value\n");
1942 		err = -EINVAL;
1943 		goto err;
1944 	}
1945 
1946 err:
1947 	return err;
1948 }
1949 #else
1950 static const struct of_device_id omap_sham_of_match[] = {
1951 	{},
1952 };
1953 
omap_sham_get_res_of(struct omap_sham_dev * dd,struct device * dev,struct resource * res)1954 static int omap_sham_get_res_of(struct omap_sham_dev *dd,
1955 		struct device *dev, struct resource *res)
1956 {
1957 	return -EINVAL;
1958 }
1959 #endif
1960 
omap_sham_get_res_pdev(struct omap_sham_dev * dd,struct platform_device * pdev,struct resource * res)1961 static int omap_sham_get_res_pdev(struct omap_sham_dev *dd,
1962 		struct platform_device *pdev, struct resource *res)
1963 {
1964 	struct device *dev = &pdev->dev;
1965 	struct resource *r;
1966 	int err = 0;
1967 
1968 	/* Get the base address */
1969 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1970 	if (!r) {
1971 		dev_err(dev, "no MEM resource info\n");
1972 		err = -ENODEV;
1973 		goto err;
1974 	}
1975 	memcpy(res, r, sizeof(*res));
1976 
1977 	/* Get the IRQ */
1978 	dd->irq = platform_get_irq(pdev, 0);
1979 	if (dd->irq < 0) {
1980 		err = dd->irq;
1981 		goto err;
1982 	}
1983 
1984 	/* Only OMAP2/3 can be non-DT */
1985 	dd->pdata = &omap_sham_pdata_omap2;
1986 
1987 err:
1988 	return err;
1989 }
1990 
fallback_show(struct device * dev,struct device_attribute * attr,char * buf)1991 static ssize_t fallback_show(struct device *dev, struct device_attribute *attr,
1992 			     char *buf)
1993 {
1994 	struct omap_sham_dev *dd = dev_get_drvdata(dev);
1995 
1996 	return sprintf(buf, "%d\n", dd->fallback_sz);
1997 }
1998 
fallback_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1999 static ssize_t fallback_store(struct device *dev, struct device_attribute *attr,
2000 			      const char *buf, size_t size)
2001 {
2002 	struct omap_sham_dev *dd = dev_get_drvdata(dev);
2003 	ssize_t status;
2004 	long value;
2005 
2006 	status = kstrtol(buf, 0, &value);
2007 	if (status)
2008 		return status;
2009 
2010 	/* HW accelerator only works with buffers > 9 */
2011 	if (value < 9) {
2012 		dev_err(dev, "minimum fallback size 9\n");
2013 		return -EINVAL;
2014 	}
2015 
2016 	dd->fallback_sz = value;
2017 
2018 	return size;
2019 }
2020 
queue_len_show(struct device * dev,struct device_attribute * attr,char * buf)2021 static ssize_t queue_len_show(struct device *dev, struct device_attribute *attr,
2022 			      char *buf)
2023 {
2024 	struct omap_sham_dev *dd = dev_get_drvdata(dev);
2025 
2026 	return sprintf(buf, "%d\n", dd->queue.max_qlen);
2027 }
2028 
queue_len_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2029 static ssize_t queue_len_store(struct device *dev,
2030 			       struct device_attribute *attr, const char *buf,
2031 			       size_t size)
2032 {
2033 	struct omap_sham_dev *dd = dev_get_drvdata(dev);
2034 	ssize_t status;
2035 	long value;
2036 
2037 	status = kstrtol(buf, 0, &value);
2038 	if (status)
2039 		return status;
2040 
2041 	if (value < 1)
2042 		return -EINVAL;
2043 
2044 	/*
2045 	 * Changing the queue size in fly is safe, if size becomes smaller
2046 	 * than current size, it will just not accept new entries until
2047 	 * it has shrank enough.
2048 	 */
2049 	dd->queue.max_qlen = value;
2050 
2051 	return size;
2052 }
2053 
2054 static DEVICE_ATTR_RW(queue_len);
2055 static DEVICE_ATTR_RW(fallback);
2056 
2057 static struct attribute *omap_sham_attrs[] = {
2058 	&dev_attr_queue_len.attr,
2059 	&dev_attr_fallback.attr,
2060 	NULL,
2061 };
2062 
2063 static struct attribute_group omap_sham_attr_group = {
2064 	.attrs = omap_sham_attrs,
2065 };
2066 
omap_sham_probe(struct platform_device * pdev)2067 static int omap_sham_probe(struct platform_device *pdev)
2068 {
2069 	struct omap_sham_dev *dd;
2070 	struct device *dev = &pdev->dev;
2071 	struct resource res;
2072 	dma_cap_mask_t mask;
2073 	int err, i, j;
2074 	u32 rev;
2075 
2076 	dd = devm_kzalloc(dev, sizeof(struct omap_sham_dev), GFP_KERNEL);
2077 	if (dd == NULL) {
2078 		dev_err(dev, "unable to alloc data struct.\n");
2079 		err = -ENOMEM;
2080 		goto data_err;
2081 	}
2082 	dd->dev = dev;
2083 	platform_set_drvdata(pdev, dd);
2084 
2085 	INIT_LIST_HEAD(&dd->list);
2086 	tasklet_init(&dd->done_task, omap_sham_done_task, (unsigned long)dd);
2087 	crypto_init_queue(&dd->queue, OMAP_SHAM_QUEUE_LENGTH);
2088 
2089 	err = (dev->of_node) ? omap_sham_get_res_of(dd, dev, &res) :
2090 			       omap_sham_get_res_pdev(dd, pdev, &res);
2091 	if (err)
2092 		goto data_err;
2093 
2094 	dd->io_base = devm_ioremap_resource(dev, &res);
2095 	if (IS_ERR(dd->io_base)) {
2096 		err = PTR_ERR(dd->io_base);
2097 		goto data_err;
2098 	}
2099 	dd->phys_base = res.start;
2100 
2101 	err = devm_request_irq(dev, dd->irq, dd->pdata->intr_hdlr,
2102 			       IRQF_TRIGGER_NONE, dev_name(dev), dd);
2103 	if (err) {
2104 		dev_err(dev, "unable to request irq %d, err = %d\n",
2105 			dd->irq, err);
2106 		goto data_err;
2107 	}
2108 
2109 	dma_cap_zero(mask);
2110 	dma_cap_set(DMA_SLAVE, mask);
2111 
2112 	dd->dma_lch = dma_request_chan(dev, "rx");
2113 	if (IS_ERR(dd->dma_lch)) {
2114 		err = PTR_ERR(dd->dma_lch);
2115 		if (err == -EPROBE_DEFER)
2116 			goto data_err;
2117 
2118 		dd->polling_mode = 1;
2119 		dev_dbg(dev, "using polling mode instead of dma\n");
2120 	}
2121 
2122 	dd->flags |= dd->pdata->flags;
2123 	sham.flags |= dd->pdata->flags;
2124 
2125 	pm_runtime_use_autosuspend(dev);
2126 	pm_runtime_set_autosuspend_delay(dev, DEFAULT_AUTOSUSPEND_DELAY);
2127 
2128 	dd->fallback_sz = OMAP_SHA_DMA_THRESHOLD;
2129 
2130 	pm_runtime_enable(dev);
2131 	pm_runtime_irq_safe(dev);
2132 
2133 	err = pm_runtime_resume_and_get(dev);
2134 	if (err < 0) {
2135 		dev_err(dev, "failed to get sync: %d\n", err);
2136 		goto err_pm;
2137 	}
2138 
2139 	rev = omap_sham_read(dd, SHA_REG_REV(dd));
2140 	pm_runtime_put_sync(&pdev->dev);
2141 
2142 	dev_info(dev, "hw accel on OMAP rev %u.%u\n",
2143 		(rev & dd->pdata->major_mask) >> dd->pdata->major_shift,
2144 		(rev & dd->pdata->minor_mask) >> dd->pdata->minor_shift);
2145 
2146 	spin_lock_bh(&sham.lock);
2147 	list_add_tail(&dd->list, &sham.dev_list);
2148 	spin_unlock_bh(&sham.lock);
2149 
2150 	dd->engine = crypto_engine_alloc_init(dev, 1);
2151 	if (!dd->engine) {
2152 		err = -ENOMEM;
2153 		goto err_engine;
2154 	}
2155 
2156 	err = crypto_engine_start(dd->engine);
2157 	if (err)
2158 		goto err_engine_start;
2159 
2160 	for (i = 0; i < dd->pdata->algs_info_size; i++) {
2161 		if (dd->pdata->algs_info[i].registered)
2162 			break;
2163 
2164 		for (j = 0; j < dd->pdata->algs_info[i].size; j++) {
2165 			struct ahash_alg *alg;
2166 
2167 			alg = &dd->pdata->algs_info[i].algs_list[j];
2168 			alg->export = omap_sham_export;
2169 			alg->import = omap_sham_import;
2170 			alg->halg.statesize = sizeof(struct omap_sham_reqctx) +
2171 					      BUFLEN;
2172 			err = crypto_register_ahash(alg);
2173 			if (err)
2174 				goto err_algs;
2175 
2176 			dd->pdata->algs_info[i].registered++;
2177 		}
2178 	}
2179 
2180 	err = sysfs_create_group(&dev->kobj, &omap_sham_attr_group);
2181 	if (err) {
2182 		dev_err(dev, "could not create sysfs device attrs\n");
2183 		goto err_algs;
2184 	}
2185 
2186 	return 0;
2187 
2188 err_algs:
2189 	for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
2190 		for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
2191 			crypto_unregister_ahash(
2192 					&dd->pdata->algs_info[i].algs_list[j]);
2193 err_engine_start:
2194 	crypto_engine_exit(dd->engine);
2195 err_engine:
2196 	spin_lock_bh(&sham.lock);
2197 	list_del(&dd->list);
2198 	spin_unlock_bh(&sham.lock);
2199 err_pm:
2200 	pm_runtime_disable(dev);
2201 	if (!dd->polling_mode)
2202 		dma_release_channel(dd->dma_lch);
2203 data_err:
2204 	dev_err(dev, "initialization failed.\n");
2205 
2206 	return err;
2207 }
2208 
omap_sham_remove(struct platform_device * pdev)2209 static int omap_sham_remove(struct platform_device *pdev)
2210 {
2211 	struct omap_sham_dev *dd;
2212 	int i, j;
2213 
2214 	dd = platform_get_drvdata(pdev);
2215 	if (!dd)
2216 		return -ENODEV;
2217 	spin_lock_bh(&sham.lock);
2218 	list_del(&dd->list);
2219 	spin_unlock_bh(&sham.lock);
2220 	for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
2221 		for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--) {
2222 			crypto_unregister_ahash(
2223 					&dd->pdata->algs_info[i].algs_list[j]);
2224 			dd->pdata->algs_info[i].registered--;
2225 		}
2226 	tasklet_kill(&dd->done_task);
2227 	pm_runtime_disable(&pdev->dev);
2228 
2229 	if (!dd->polling_mode)
2230 		dma_release_channel(dd->dma_lch);
2231 
2232 	sysfs_remove_group(&dd->dev->kobj, &omap_sham_attr_group);
2233 
2234 	return 0;
2235 }
2236 
2237 #ifdef CONFIG_PM_SLEEP
omap_sham_suspend(struct device * dev)2238 static int omap_sham_suspend(struct device *dev)
2239 {
2240 	pm_runtime_put_sync(dev);
2241 	return 0;
2242 }
2243 
omap_sham_resume(struct device * dev)2244 static int omap_sham_resume(struct device *dev)
2245 {
2246 	int err = pm_runtime_resume_and_get(dev);
2247 	if (err < 0) {
2248 		dev_err(dev, "failed to get sync: %d\n", err);
2249 		return err;
2250 	}
2251 	return 0;
2252 }
2253 #endif
2254 
2255 static SIMPLE_DEV_PM_OPS(omap_sham_pm_ops, omap_sham_suspend, omap_sham_resume);
2256 
2257 static struct platform_driver omap_sham_driver = {
2258 	.probe	= omap_sham_probe,
2259 	.remove	= omap_sham_remove,
2260 	.driver	= {
2261 		.name	= "omap-sham",
2262 		.pm	= &omap_sham_pm_ops,
2263 		.of_match_table	= omap_sham_of_match,
2264 	},
2265 };
2266 
2267 module_platform_driver(omap_sham_driver);
2268 
2269 MODULE_DESCRIPTION("OMAP SHA1/MD5 hw acceleration support.");
2270 MODULE_LICENSE("GPL v2");
2271 MODULE_AUTHOR("Dmitry Kasatkin");
2272 MODULE_ALIAS("platform:omap-sham");
2273