1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AD5755, AD5755-1, AD5757, AD5735, AD5737 Digital to analog converters driver
4 *
5 * Copyright 2012 Analog Devices Inc.
6 */
7
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/spi/spi.h>
13 #include <linux/slab.h>
14 #include <linux/sysfs.h>
15 #include <linux/delay.h>
16 #include <linux/of.h>
17 #include <linux/iio/iio.h>
18 #include <linux/iio/sysfs.h>
19 #include <linux/platform_data/ad5755.h>
20
21 #define AD5755_NUM_CHANNELS 4
22
23 #define AD5755_ADDR(x) ((x) << 16)
24
25 #define AD5755_WRITE_REG_DATA(chan) (chan)
26 #define AD5755_WRITE_REG_GAIN(chan) (0x08 | (chan))
27 #define AD5755_WRITE_REG_OFFSET(chan) (0x10 | (chan))
28 #define AD5755_WRITE_REG_CTRL(chan) (0x1c | (chan))
29
30 #define AD5755_READ_REG_DATA(chan) (chan)
31 #define AD5755_READ_REG_CTRL(chan) (0x4 | (chan))
32 #define AD5755_READ_REG_GAIN(chan) (0x8 | (chan))
33 #define AD5755_READ_REG_OFFSET(chan) (0xc | (chan))
34 #define AD5755_READ_REG_CLEAR(chan) (0x10 | (chan))
35 #define AD5755_READ_REG_SLEW(chan) (0x14 | (chan))
36 #define AD5755_READ_REG_STATUS 0x18
37 #define AD5755_READ_REG_MAIN 0x19
38 #define AD5755_READ_REG_DC_DC 0x1a
39
40 #define AD5755_CTRL_REG_SLEW 0x0
41 #define AD5755_CTRL_REG_MAIN 0x1
42 #define AD5755_CTRL_REG_DAC 0x2
43 #define AD5755_CTRL_REG_DC_DC 0x3
44 #define AD5755_CTRL_REG_SW 0x4
45
46 #define AD5755_READ_FLAG 0x800000
47
48 #define AD5755_NOOP 0x1CE000
49
50 #define AD5755_DAC_INT_EN BIT(8)
51 #define AD5755_DAC_CLR_EN BIT(7)
52 #define AD5755_DAC_OUT_EN BIT(6)
53 #define AD5755_DAC_INT_CURRENT_SENSE_RESISTOR BIT(5)
54 #define AD5755_DAC_DC_DC_EN BIT(4)
55 #define AD5755_DAC_VOLTAGE_OVERRANGE_EN BIT(3)
56
57 #define AD5755_DC_DC_MAXV 0
58 #define AD5755_DC_DC_FREQ_SHIFT 2
59 #define AD5755_DC_DC_PHASE_SHIFT 4
60 #define AD5755_EXT_DC_DC_COMP_RES BIT(6)
61
62 #define AD5755_SLEW_STEP_SIZE_SHIFT 0
63 #define AD5755_SLEW_RATE_SHIFT 3
64 #define AD5755_SLEW_ENABLE BIT(12)
65
66 /**
67 * struct ad5755_chip_info - chip specific information
68 * @channel_template: channel specification
69 * @calib_shift: shift for the calibration data registers
70 * @has_voltage_out: whether the chip has voltage outputs
71 */
72 struct ad5755_chip_info {
73 const struct iio_chan_spec channel_template;
74 unsigned int calib_shift;
75 bool has_voltage_out;
76 };
77
78 /**
79 * struct ad5755_state - driver instance specific data
80 * @spi: spi device the driver is attached to
81 * @chip_info: chip model specific constants, available modes etc
82 * @pwr_down: bitmask which contains hether a channel is powered down or not
83 * @ctrl: software shadow of the channel ctrl registers
84 * @channels: iio channel spec for the device
85 * @lock: lock to protect the data buffer during SPI ops
86 * @data: spi transfer buffers
87 */
88 struct ad5755_state {
89 struct spi_device *spi;
90 const struct ad5755_chip_info *chip_info;
91 unsigned int pwr_down;
92 unsigned int ctrl[AD5755_NUM_CHANNELS];
93 struct iio_chan_spec channels[AD5755_NUM_CHANNELS];
94 struct mutex lock;
95
96 /*
97 * DMA (thus cache coherency maintenance) requires the
98 * transfer buffers to live in their own cache lines.
99 */
100
101 union {
102 __be32 d32;
103 u8 d8[4];
104 } data[2] ____cacheline_aligned;
105 };
106
107 enum ad5755_type {
108 ID_AD5755,
109 ID_AD5757,
110 ID_AD5735,
111 ID_AD5737,
112 };
113
114 #ifdef CONFIG_OF
115 static const int ad5755_dcdc_freq_table[][2] = {
116 { 250000, AD5755_DC_DC_FREQ_250kHZ },
117 { 410000, AD5755_DC_DC_FREQ_410kHZ },
118 { 650000, AD5755_DC_DC_FREQ_650kHZ }
119 };
120
121 static const int ad5755_dcdc_maxv_table[][2] = {
122 { 23000000, AD5755_DC_DC_MAXV_23V },
123 { 24500000, AD5755_DC_DC_MAXV_24V5 },
124 { 27000000, AD5755_DC_DC_MAXV_27V },
125 { 29500000, AD5755_DC_DC_MAXV_29V5 },
126 };
127
128 static const int ad5755_slew_rate_table[][2] = {
129 { 64000, AD5755_SLEW_RATE_64k },
130 { 32000, AD5755_SLEW_RATE_32k },
131 { 16000, AD5755_SLEW_RATE_16k },
132 { 8000, AD5755_SLEW_RATE_8k },
133 { 4000, AD5755_SLEW_RATE_4k },
134 { 2000, AD5755_SLEW_RATE_2k },
135 { 1000, AD5755_SLEW_RATE_1k },
136 { 500, AD5755_SLEW_RATE_500 },
137 { 250, AD5755_SLEW_RATE_250 },
138 { 125, AD5755_SLEW_RATE_125 },
139 { 64, AD5755_SLEW_RATE_64 },
140 { 32, AD5755_SLEW_RATE_32 },
141 { 16, AD5755_SLEW_RATE_16 },
142 { 8, AD5755_SLEW_RATE_8 },
143 { 4, AD5755_SLEW_RATE_4 },
144 { 0, AD5755_SLEW_RATE_0_5 },
145 };
146
147 static const int ad5755_slew_step_table[][2] = {
148 { 256, AD5755_SLEW_STEP_SIZE_256 },
149 { 128, AD5755_SLEW_STEP_SIZE_128 },
150 { 64, AD5755_SLEW_STEP_SIZE_64 },
151 { 32, AD5755_SLEW_STEP_SIZE_32 },
152 { 16, AD5755_SLEW_STEP_SIZE_16 },
153 { 4, AD5755_SLEW_STEP_SIZE_4 },
154 { 2, AD5755_SLEW_STEP_SIZE_2 },
155 { 1, AD5755_SLEW_STEP_SIZE_1 },
156 };
157 #endif
158
ad5755_write_unlocked(struct iio_dev * indio_dev,unsigned int reg,unsigned int val)159 static int ad5755_write_unlocked(struct iio_dev *indio_dev,
160 unsigned int reg, unsigned int val)
161 {
162 struct ad5755_state *st = iio_priv(indio_dev);
163
164 st->data[0].d32 = cpu_to_be32((reg << 16) | val);
165
166 return spi_write(st->spi, &st->data[0].d8[1], 3);
167 }
168
ad5755_write_ctrl_unlocked(struct iio_dev * indio_dev,unsigned int channel,unsigned int reg,unsigned int val)169 static int ad5755_write_ctrl_unlocked(struct iio_dev *indio_dev,
170 unsigned int channel, unsigned int reg, unsigned int val)
171 {
172 return ad5755_write_unlocked(indio_dev,
173 AD5755_WRITE_REG_CTRL(channel), (reg << 13) | val);
174 }
175
ad5755_write(struct iio_dev * indio_dev,unsigned int reg,unsigned int val)176 static int ad5755_write(struct iio_dev *indio_dev, unsigned int reg,
177 unsigned int val)
178 {
179 struct ad5755_state *st = iio_priv(indio_dev);
180 int ret;
181
182 mutex_lock(&st->lock);
183 ret = ad5755_write_unlocked(indio_dev, reg, val);
184 mutex_unlock(&st->lock);
185
186 return ret;
187 }
188
ad5755_write_ctrl(struct iio_dev * indio_dev,unsigned int channel,unsigned int reg,unsigned int val)189 static int ad5755_write_ctrl(struct iio_dev *indio_dev, unsigned int channel,
190 unsigned int reg, unsigned int val)
191 {
192 struct ad5755_state *st = iio_priv(indio_dev);
193 int ret;
194
195 mutex_lock(&st->lock);
196 ret = ad5755_write_ctrl_unlocked(indio_dev, channel, reg, val);
197 mutex_unlock(&st->lock);
198
199 return ret;
200 }
201
ad5755_read(struct iio_dev * indio_dev,unsigned int addr)202 static int ad5755_read(struct iio_dev *indio_dev, unsigned int addr)
203 {
204 struct ad5755_state *st = iio_priv(indio_dev);
205 int ret;
206 struct spi_transfer t[] = {
207 {
208 .tx_buf = &st->data[0].d8[1],
209 .len = 3,
210 .cs_change = 1,
211 }, {
212 .tx_buf = &st->data[1].d8[1],
213 .rx_buf = &st->data[1].d8[1],
214 .len = 3,
215 },
216 };
217
218 mutex_lock(&st->lock);
219
220 st->data[0].d32 = cpu_to_be32(AD5755_READ_FLAG | (addr << 16));
221 st->data[1].d32 = cpu_to_be32(AD5755_NOOP);
222
223 ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t));
224 if (ret >= 0)
225 ret = be32_to_cpu(st->data[1].d32) & 0xffff;
226
227 mutex_unlock(&st->lock);
228
229 return ret;
230 }
231
ad5755_update_dac_ctrl(struct iio_dev * indio_dev,unsigned int channel,unsigned int set,unsigned int clr)232 static int ad5755_update_dac_ctrl(struct iio_dev *indio_dev,
233 unsigned int channel, unsigned int set, unsigned int clr)
234 {
235 struct ad5755_state *st = iio_priv(indio_dev);
236 int ret;
237
238 st->ctrl[channel] |= set;
239 st->ctrl[channel] &= ~clr;
240
241 ret = ad5755_write_ctrl_unlocked(indio_dev, channel,
242 AD5755_CTRL_REG_DAC, st->ctrl[channel]);
243
244 return ret;
245 }
246
ad5755_set_channel_pwr_down(struct iio_dev * indio_dev,unsigned int channel,bool pwr_down)247 static int ad5755_set_channel_pwr_down(struct iio_dev *indio_dev,
248 unsigned int channel, bool pwr_down)
249 {
250 struct ad5755_state *st = iio_priv(indio_dev);
251 unsigned int mask = BIT(channel);
252
253 mutex_lock(&st->lock);
254
255 if ((bool)(st->pwr_down & mask) == pwr_down)
256 goto out_unlock;
257
258 if (!pwr_down) {
259 st->pwr_down &= ~mask;
260 ad5755_update_dac_ctrl(indio_dev, channel,
261 AD5755_DAC_INT_EN | AD5755_DAC_DC_DC_EN, 0);
262 udelay(200);
263 ad5755_update_dac_ctrl(indio_dev, channel,
264 AD5755_DAC_OUT_EN, 0);
265 } else {
266 st->pwr_down |= mask;
267 ad5755_update_dac_ctrl(indio_dev, channel,
268 0, AD5755_DAC_INT_EN | AD5755_DAC_OUT_EN |
269 AD5755_DAC_DC_DC_EN);
270 }
271
272 out_unlock:
273 mutex_unlock(&st->lock);
274
275 return 0;
276 }
277
278 static const int ad5755_min_max_table[][2] = {
279 [AD5755_MODE_VOLTAGE_0V_5V] = { 0, 5000 },
280 [AD5755_MODE_VOLTAGE_0V_10V] = { 0, 10000 },
281 [AD5755_MODE_VOLTAGE_PLUSMINUS_5V] = { -5000, 5000 },
282 [AD5755_MODE_VOLTAGE_PLUSMINUS_10V] = { -10000, 10000 },
283 [AD5755_MODE_CURRENT_4mA_20mA] = { 4, 20 },
284 [AD5755_MODE_CURRENT_0mA_20mA] = { 0, 20 },
285 [AD5755_MODE_CURRENT_0mA_24mA] = { 0, 24 },
286 };
287
ad5755_get_min_max(struct ad5755_state * st,struct iio_chan_spec const * chan,int * min,int * max)288 static void ad5755_get_min_max(struct ad5755_state *st,
289 struct iio_chan_spec const *chan, int *min, int *max)
290 {
291 enum ad5755_mode mode = st->ctrl[chan->channel] & 7;
292 *min = ad5755_min_max_table[mode][0];
293 *max = ad5755_min_max_table[mode][1];
294 }
295
ad5755_get_offset(struct ad5755_state * st,struct iio_chan_spec const * chan)296 static inline int ad5755_get_offset(struct ad5755_state *st,
297 struct iio_chan_spec const *chan)
298 {
299 int min, max;
300
301 ad5755_get_min_max(st, chan, &min, &max);
302 return (min * (1 << chan->scan_type.realbits)) / (max - min);
303 }
304
ad5755_chan_reg_info(struct ad5755_state * st,struct iio_chan_spec const * chan,long info,bool write,unsigned int * reg,unsigned int * shift,unsigned int * offset)305 static int ad5755_chan_reg_info(struct ad5755_state *st,
306 struct iio_chan_spec const *chan, long info, bool write,
307 unsigned int *reg, unsigned int *shift, unsigned int *offset)
308 {
309 switch (info) {
310 case IIO_CHAN_INFO_RAW:
311 if (write)
312 *reg = AD5755_WRITE_REG_DATA(chan->address);
313 else
314 *reg = AD5755_READ_REG_DATA(chan->address);
315 *shift = chan->scan_type.shift;
316 *offset = 0;
317 break;
318 case IIO_CHAN_INFO_CALIBBIAS:
319 if (write)
320 *reg = AD5755_WRITE_REG_OFFSET(chan->address);
321 else
322 *reg = AD5755_READ_REG_OFFSET(chan->address);
323 *shift = st->chip_info->calib_shift;
324 *offset = 32768;
325 break;
326 case IIO_CHAN_INFO_CALIBSCALE:
327 if (write)
328 *reg = AD5755_WRITE_REG_GAIN(chan->address);
329 else
330 *reg = AD5755_READ_REG_GAIN(chan->address);
331 *shift = st->chip_info->calib_shift;
332 *offset = 0;
333 break;
334 default:
335 return -EINVAL;
336 }
337
338 return 0;
339 }
340
ad5755_read_raw(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int * val,int * val2,long info)341 static int ad5755_read_raw(struct iio_dev *indio_dev,
342 const struct iio_chan_spec *chan, int *val, int *val2, long info)
343 {
344 struct ad5755_state *st = iio_priv(indio_dev);
345 unsigned int reg, shift, offset;
346 int min, max;
347 int ret;
348
349 switch (info) {
350 case IIO_CHAN_INFO_SCALE:
351 ad5755_get_min_max(st, chan, &min, &max);
352 *val = max - min;
353 *val2 = chan->scan_type.realbits;
354 return IIO_VAL_FRACTIONAL_LOG2;
355 case IIO_CHAN_INFO_OFFSET:
356 *val = ad5755_get_offset(st, chan);
357 return IIO_VAL_INT;
358 default:
359 ret = ad5755_chan_reg_info(st, chan, info, false,
360 ®, &shift, &offset);
361 if (ret)
362 return ret;
363
364 ret = ad5755_read(indio_dev, reg);
365 if (ret < 0)
366 return ret;
367
368 *val = (ret - offset) >> shift;
369
370 return IIO_VAL_INT;
371 }
372
373 return -EINVAL;
374 }
375
ad5755_write_raw(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int val,int val2,long info)376 static int ad5755_write_raw(struct iio_dev *indio_dev,
377 const struct iio_chan_spec *chan, int val, int val2, long info)
378 {
379 struct ad5755_state *st = iio_priv(indio_dev);
380 unsigned int shift, reg, offset;
381 int ret;
382
383 ret = ad5755_chan_reg_info(st, chan, info, true,
384 ®, &shift, &offset);
385 if (ret)
386 return ret;
387
388 val <<= shift;
389 val += offset;
390
391 if (val < 0 || val > 0xffff)
392 return -EINVAL;
393
394 return ad5755_write(indio_dev, reg, val);
395 }
396
ad5755_read_powerdown(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,char * buf)397 static ssize_t ad5755_read_powerdown(struct iio_dev *indio_dev, uintptr_t priv,
398 const struct iio_chan_spec *chan, char *buf)
399 {
400 struct ad5755_state *st = iio_priv(indio_dev);
401
402 return sprintf(buf, "%d\n",
403 (bool)(st->pwr_down & (1 << chan->channel)));
404 }
405
ad5755_write_powerdown(struct iio_dev * indio_dev,uintptr_t priv,struct iio_chan_spec const * chan,const char * buf,size_t len)406 static ssize_t ad5755_write_powerdown(struct iio_dev *indio_dev, uintptr_t priv,
407 struct iio_chan_spec const *chan, const char *buf, size_t len)
408 {
409 bool pwr_down;
410 int ret;
411
412 ret = strtobool(buf, &pwr_down);
413 if (ret)
414 return ret;
415
416 ret = ad5755_set_channel_pwr_down(indio_dev, chan->channel, pwr_down);
417 return ret ? ret : len;
418 }
419
420 static const struct iio_info ad5755_info = {
421 .read_raw = ad5755_read_raw,
422 .write_raw = ad5755_write_raw,
423 };
424
425 static const struct iio_chan_spec_ext_info ad5755_ext_info[] = {
426 {
427 .name = "powerdown",
428 .read = ad5755_read_powerdown,
429 .write = ad5755_write_powerdown,
430 .shared = IIO_SEPARATE,
431 },
432 { },
433 };
434
435 #define AD5755_CHANNEL(_bits) { \
436 .indexed = 1, \
437 .output = 1, \
438 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
439 BIT(IIO_CHAN_INFO_SCALE) | \
440 BIT(IIO_CHAN_INFO_OFFSET) | \
441 BIT(IIO_CHAN_INFO_CALIBSCALE) | \
442 BIT(IIO_CHAN_INFO_CALIBBIAS), \
443 .scan_type = { \
444 .sign = 'u', \
445 .realbits = (_bits), \
446 .storagebits = 16, \
447 .shift = 16 - (_bits), \
448 }, \
449 .ext_info = ad5755_ext_info, \
450 }
451
452 static const struct ad5755_chip_info ad5755_chip_info_tbl[] = {
453 [ID_AD5735] = {
454 .channel_template = AD5755_CHANNEL(14),
455 .has_voltage_out = true,
456 .calib_shift = 4,
457 },
458 [ID_AD5737] = {
459 .channel_template = AD5755_CHANNEL(14),
460 .has_voltage_out = false,
461 .calib_shift = 4,
462 },
463 [ID_AD5755] = {
464 .channel_template = AD5755_CHANNEL(16),
465 .has_voltage_out = true,
466 .calib_shift = 0,
467 },
468 [ID_AD5757] = {
469 .channel_template = AD5755_CHANNEL(16),
470 .has_voltage_out = false,
471 .calib_shift = 0,
472 },
473 };
474
ad5755_is_valid_mode(struct ad5755_state * st,enum ad5755_mode mode)475 static bool ad5755_is_valid_mode(struct ad5755_state *st, enum ad5755_mode mode)
476 {
477 switch (mode) {
478 case AD5755_MODE_VOLTAGE_0V_5V:
479 case AD5755_MODE_VOLTAGE_0V_10V:
480 case AD5755_MODE_VOLTAGE_PLUSMINUS_5V:
481 case AD5755_MODE_VOLTAGE_PLUSMINUS_10V:
482 return st->chip_info->has_voltage_out;
483 case AD5755_MODE_CURRENT_4mA_20mA:
484 case AD5755_MODE_CURRENT_0mA_20mA:
485 case AD5755_MODE_CURRENT_0mA_24mA:
486 return true;
487 default:
488 return false;
489 }
490 }
491
ad5755_setup_pdata(struct iio_dev * indio_dev,const struct ad5755_platform_data * pdata)492 static int ad5755_setup_pdata(struct iio_dev *indio_dev,
493 const struct ad5755_platform_data *pdata)
494 {
495 struct ad5755_state *st = iio_priv(indio_dev);
496 unsigned int val;
497 unsigned int i;
498 int ret;
499
500 if (pdata->dc_dc_phase > AD5755_DC_DC_PHASE_90_DEGREE ||
501 pdata->dc_dc_freq > AD5755_DC_DC_FREQ_650kHZ ||
502 pdata->dc_dc_maxv > AD5755_DC_DC_MAXV_29V5)
503 return -EINVAL;
504
505 val = pdata->dc_dc_maxv << AD5755_DC_DC_MAXV;
506 val |= pdata->dc_dc_freq << AD5755_DC_DC_FREQ_SHIFT;
507 val |= pdata->dc_dc_phase << AD5755_DC_DC_PHASE_SHIFT;
508 if (pdata->ext_dc_dc_compenstation_resistor)
509 val |= AD5755_EXT_DC_DC_COMP_RES;
510
511 ret = ad5755_write_ctrl(indio_dev, 0, AD5755_CTRL_REG_DC_DC, val);
512 if (ret < 0)
513 return ret;
514
515 for (i = 0; i < ARRAY_SIZE(pdata->dac); ++i) {
516 val = pdata->dac[i].slew.step_size <<
517 AD5755_SLEW_STEP_SIZE_SHIFT;
518 val |= pdata->dac[i].slew.rate <<
519 AD5755_SLEW_RATE_SHIFT;
520 if (pdata->dac[i].slew.enable)
521 val |= AD5755_SLEW_ENABLE;
522
523 ret = ad5755_write_ctrl(indio_dev, i,
524 AD5755_CTRL_REG_SLEW, val);
525 if (ret < 0)
526 return ret;
527 }
528
529 for (i = 0; i < ARRAY_SIZE(pdata->dac); ++i) {
530 if (!ad5755_is_valid_mode(st, pdata->dac[i].mode))
531 return -EINVAL;
532
533 val = 0;
534 if (!pdata->dac[i].ext_current_sense_resistor)
535 val |= AD5755_DAC_INT_CURRENT_SENSE_RESISTOR;
536 if (pdata->dac[i].enable_voltage_overrange)
537 val |= AD5755_DAC_VOLTAGE_OVERRANGE_EN;
538 val |= pdata->dac[i].mode;
539
540 ret = ad5755_update_dac_ctrl(indio_dev, i, val, 0);
541 if (ret < 0)
542 return ret;
543 }
544
545 return 0;
546 }
547
ad5755_is_voltage_mode(enum ad5755_mode mode)548 static bool ad5755_is_voltage_mode(enum ad5755_mode mode)
549 {
550 switch (mode) {
551 case AD5755_MODE_VOLTAGE_0V_5V:
552 case AD5755_MODE_VOLTAGE_0V_10V:
553 case AD5755_MODE_VOLTAGE_PLUSMINUS_5V:
554 case AD5755_MODE_VOLTAGE_PLUSMINUS_10V:
555 return true;
556 default:
557 return false;
558 }
559 }
560
ad5755_init_channels(struct iio_dev * indio_dev,const struct ad5755_platform_data * pdata)561 static int ad5755_init_channels(struct iio_dev *indio_dev,
562 const struct ad5755_platform_data *pdata)
563 {
564 struct ad5755_state *st = iio_priv(indio_dev);
565 struct iio_chan_spec *channels = st->channels;
566 unsigned int i;
567
568 for (i = 0; i < AD5755_NUM_CHANNELS; ++i) {
569 channels[i] = st->chip_info->channel_template;
570 channels[i].channel = i;
571 channels[i].address = i;
572 if (pdata && ad5755_is_voltage_mode(pdata->dac[i].mode))
573 channels[i].type = IIO_VOLTAGE;
574 else
575 channels[i].type = IIO_CURRENT;
576 }
577
578 indio_dev->channels = channels;
579
580 return 0;
581 }
582
583 #define AD5755_DEFAULT_DAC_PDATA { \
584 .mode = AD5755_MODE_CURRENT_4mA_20mA, \
585 .ext_current_sense_resistor = true, \
586 .enable_voltage_overrange = false, \
587 .slew = { \
588 .enable = false, \
589 .rate = AD5755_SLEW_RATE_64k, \
590 .step_size = AD5755_SLEW_STEP_SIZE_1, \
591 }, \
592 }
593
594 static const struct ad5755_platform_data ad5755_default_pdata = {
595 .ext_dc_dc_compenstation_resistor = false,
596 .dc_dc_phase = AD5755_DC_DC_PHASE_ALL_SAME_EDGE,
597 .dc_dc_freq = AD5755_DC_DC_FREQ_410kHZ,
598 .dc_dc_maxv = AD5755_DC_DC_MAXV_23V,
599 .dac = {
600 [0] = AD5755_DEFAULT_DAC_PDATA,
601 [1] = AD5755_DEFAULT_DAC_PDATA,
602 [2] = AD5755_DEFAULT_DAC_PDATA,
603 [3] = AD5755_DEFAULT_DAC_PDATA,
604 },
605 };
606
607 #ifdef CONFIG_OF
ad5755_parse_dt(struct device * dev)608 static struct ad5755_platform_data *ad5755_parse_dt(struct device *dev)
609 {
610 struct device_node *np = dev->of_node;
611 struct device_node *pp;
612 struct ad5755_platform_data *pdata;
613 unsigned int tmp;
614 unsigned int tmparray[3];
615 int devnr, i;
616
617 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
618 if (!pdata)
619 return NULL;
620
621 pdata->ext_dc_dc_compenstation_resistor =
622 of_property_read_bool(np, "adi,ext-dc-dc-compenstation-resistor");
623
624 if (!of_property_read_u32(np, "adi,dc-dc-phase", &tmp))
625 pdata->dc_dc_phase = tmp;
626 else
627 pdata->dc_dc_phase = AD5755_DC_DC_PHASE_ALL_SAME_EDGE;
628
629 pdata->dc_dc_freq = AD5755_DC_DC_FREQ_410kHZ;
630 if (!of_property_read_u32(np, "adi,dc-dc-freq-hz", &tmp)) {
631 for (i = 0; i < ARRAY_SIZE(ad5755_dcdc_freq_table); i++) {
632 if (tmp == ad5755_dcdc_freq_table[i][0]) {
633 pdata->dc_dc_freq = ad5755_dcdc_freq_table[i][1];
634 break;
635 }
636 }
637
638 if (i == ARRAY_SIZE(ad5755_dcdc_freq_table))
639 dev_err(dev,
640 "adi,dc-dc-freq out of range selecting 410kHz\n");
641 }
642
643 pdata->dc_dc_maxv = AD5755_DC_DC_MAXV_23V;
644 if (!of_property_read_u32(np, "adi,dc-dc-max-microvolt", &tmp)) {
645 for (i = 0; i < ARRAY_SIZE(ad5755_dcdc_maxv_table); i++) {
646 if (tmp == ad5755_dcdc_maxv_table[i][0]) {
647 pdata->dc_dc_maxv = ad5755_dcdc_maxv_table[i][1];
648 break;
649 }
650 }
651 if (i == ARRAY_SIZE(ad5755_dcdc_maxv_table))
652 dev_err(dev,
653 "adi,dc-dc-maxv out of range selecting 23V\n");
654 }
655
656 devnr = 0;
657 for_each_child_of_node(np, pp) {
658 if (devnr >= AD5755_NUM_CHANNELS) {
659 dev_err(dev,
660 "There are too many channels defined in DT\n");
661 goto error_out;
662 }
663
664 if (!of_property_read_u32(pp, "adi,mode", &tmp))
665 pdata->dac[devnr].mode = tmp;
666 else
667 pdata->dac[devnr].mode = AD5755_MODE_CURRENT_4mA_20mA;
668
669 pdata->dac[devnr].ext_current_sense_resistor =
670 of_property_read_bool(pp, "adi,ext-current-sense-resistor");
671
672 pdata->dac[devnr].enable_voltage_overrange =
673 of_property_read_bool(pp, "adi,enable-voltage-overrange");
674
675 if (!of_property_read_u32_array(pp, "adi,slew", tmparray, 3)) {
676 pdata->dac[devnr].slew.enable = tmparray[0];
677
678 pdata->dac[devnr].slew.rate = AD5755_SLEW_RATE_64k;
679 for (i = 0; i < ARRAY_SIZE(ad5755_slew_rate_table); i++) {
680 if (tmparray[1] == ad5755_slew_rate_table[i][0]) {
681 pdata->dac[devnr].slew.rate =
682 ad5755_slew_rate_table[i][1];
683 break;
684 }
685 }
686 if (i == ARRAY_SIZE(ad5755_slew_rate_table))
687 dev_err(dev,
688 "channel %d slew rate out of range selecting 64kHz\n",
689 devnr);
690
691 pdata->dac[devnr].slew.step_size = AD5755_SLEW_STEP_SIZE_1;
692 for (i = 0; i < ARRAY_SIZE(ad5755_slew_step_table); i++) {
693 if (tmparray[2] == ad5755_slew_step_table[i][0]) {
694 pdata->dac[devnr].slew.step_size =
695 ad5755_slew_step_table[i][1];
696 break;
697 }
698 }
699 if (i == ARRAY_SIZE(ad5755_slew_step_table))
700 dev_err(dev,
701 "channel %d slew step size out of range selecting 1 LSB\n",
702 devnr);
703 } else {
704 pdata->dac[devnr].slew.enable = false;
705 pdata->dac[devnr].slew.rate = AD5755_SLEW_RATE_64k;
706 pdata->dac[devnr].slew.step_size =
707 AD5755_SLEW_STEP_SIZE_1;
708 }
709 devnr++;
710 }
711
712 return pdata;
713
714 error_out:
715 devm_kfree(dev, pdata);
716 return NULL;
717 }
718 #else
719 static
ad5755_parse_dt(struct device * dev)720 struct ad5755_platform_data *ad5755_parse_dt(struct device *dev)
721 {
722 return NULL;
723 }
724 #endif
725
ad5755_probe(struct spi_device * spi)726 static int ad5755_probe(struct spi_device *spi)
727 {
728 enum ad5755_type type = spi_get_device_id(spi)->driver_data;
729 const struct ad5755_platform_data *pdata = dev_get_platdata(&spi->dev);
730 struct iio_dev *indio_dev;
731 struct ad5755_state *st;
732 int ret;
733
734 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
735 if (indio_dev == NULL) {
736 dev_err(&spi->dev, "Failed to allocate iio device\n");
737 return -ENOMEM;
738 }
739
740 st = iio_priv(indio_dev);
741 spi_set_drvdata(spi, indio_dev);
742
743 st->chip_info = &ad5755_chip_info_tbl[type];
744 st->spi = spi;
745 st->pwr_down = 0xf;
746
747 indio_dev->name = spi_get_device_id(spi)->name;
748 indio_dev->info = &ad5755_info;
749 indio_dev->modes = INDIO_DIRECT_MODE;
750 indio_dev->num_channels = AD5755_NUM_CHANNELS;
751
752 mutex_init(&st->lock);
753
754 if (spi->dev.of_node)
755 pdata = ad5755_parse_dt(&spi->dev);
756 else
757 pdata = spi->dev.platform_data;
758
759 if (!pdata) {
760 dev_warn(&spi->dev, "no platform data? using default\n");
761 pdata = &ad5755_default_pdata;
762 }
763
764 ret = ad5755_init_channels(indio_dev, pdata);
765 if (ret)
766 return ret;
767
768 ret = ad5755_setup_pdata(indio_dev, pdata);
769 if (ret)
770 return ret;
771
772 return devm_iio_device_register(&spi->dev, indio_dev);
773 }
774
775 static const struct spi_device_id ad5755_id[] = {
776 { "ad5755", ID_AD5755 },
777 { "ad5755-1", ID_AD5755 },
778 { "ad5757", ID_AD5757 },
779 { "ad5735", ID_AD5735 },
780 { "ad5737", ID_AD5737 },
781 {}
782 };
783 MODULE_DEVICE_TABLE(spi, ad5755_id);
784
785 static const struct of_device_id ad5755_of_match[] = {
786 { .compatible = "adi,ad5755" },
787 { .compatible = "adi,ad5755-1" },
788 { .compatible = "adi,ad5757" },
789 { .compatible = "adi,ad5735" },
790 { .compatible = "adi,ad5737" },
791 { }
792 };
793 MODULE_DEVICE_TABLE(of, ad5755_of_match);
794
795 static struct spi_driver ad5755_driver = {
796 .driver = {
797 .name = "ad5755",
798 },
799 .probe = ad5755_probe,
800 .id_table = ad5755_id,
801 };
802 module_spi_driver(ad5755_driver);
803
804 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
805 MODULE_DESCRIPTION("Analog Devices AD5755/55-1/57/35/37 DAC");
806 MODULE_LICENSE("GPL v2");
807