1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2013 Red Hat
5 * Author: Rob Clark <robdclark@gmail.com>
6 */
7
8 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
9 #include <linux/debugfs.h>
10 #include <linux/kthread.h>
11 #include <linux/seq_file.h>
12
13 #include <drm/drm_crtc.h>
14 #include <drm/drm_file.h>
15 #include <drm/drm_probe_helper.h>
16
17 #include "msm_drv.h"
18 #include "dpu_kms.h"
19 #include "dpu_hwio.h"
20 #include "dpu_hw_catalog.h"
21 #include "dpu_hw_intf.h"
22 #include "dpu_hw_ctl.h"
23 #include "dpu_hw_dspp.h"
24 #include "dpu_formats.h"
25 #include "dpu_encoder_phys.h"
26 #include "dpu_crtc.h"
27 #include "dpu_trace.h"
28 #include "dpu_core_irq.h"
29
30 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\
31 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
32
33 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
34 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
35
36 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\
37 (p) ? (p)->parent->base.id : -1, \
38 (p) ? (p)->intf_idx - INTF_0 : -1, \
39 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
40 ##__VA_ARGS__)
41
42 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\
43 (p) ? (p)->parent->base.id : -1, \
44 (p) ? (p)->intf_idx - INTF_0 : -1, \
45 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
46 ##__VA_ARGS__)
47
48 #define DPU_ERROR_ENC_RATELIMITED(e, fmt, ...) DPU_ERROR_RATELIMITED("enc%d " fmt,\
49 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
50
51 /*
52 * Two to anticipate panels that can do cmd/vid dynamic switching
53 * plan is to create all possible physical encoder types, and switch between
54 * them at runtime
55 */
56 #define NUM_PHYS_ENCODER_TYPES 2
57
58 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
59 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
60
61 #define MAX_CHANNELS_PER_ENC 2
62
63 #define IDLE_SHORT_TIMEOUT 1
64
65 #define MAX_HDISPLAY_SPLIT 1080
66
67 /* timeout in frames waiting for frame done */
68 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
69
70 /**
71 * enum dpu_enc_rc_events - events for resource control state machine
72 * @DPU_ENC_RC_EVENT_KICKOFF:
73 * This event happens at NORMAL priority.
74 * Event that signals the start of the transfer. When this event is
75 * received, enable MDP/DSI core clocks. Regardless of the previous
76 * state, the resource should be in ON state at the end of this event.
77 * @DPU_ENC_RC_EVENT_FRAME_DONE:
78 * This event happens at INTERRUPT level.
79 * Event signals the end of the data transfer after the PP FRAME_DONE
80 * event. At the end of this event, a delayed work is scheduled to go to
81 * IDLE_PC state after IDLE_TIMEOUT time.
82 * @DPU_ENC_RC_EVENT_PRE_STOP:
83 * This event happens at NORMAL priority.
84 * This event, when received during the ON state, leave the RC STATE
85 * in the PRE_OFF state. It should be followed by the STOP event as
86 * part of encoder disable.
87 * If received during IDLE or OFF states, it will do nothing.
88 * @DPU_ENC_RC_EVENT_STOP:
89 * This event happens at NORMAL priority.
90 * When this event is received, disable all the MDP/DSI core clocks, and
91 * disable IRQs. It should be called from the PRE_OFF or IDLE states.
92 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
93 * PRE_OFF is expected when PRE_STOP was executed during the ON state.
94 * Resource state should be in OFF at the end of the event.
95 * @DPU_ENC_RC_EVENT_ENTER_IDLE:
96 * This event happens at NORMAL priority from a work item.
97 * Event signals that there were no frame updates for IDLE_TIMEOUT time.
98 * This would disable MDP/DSI core clocks and change the resource state
99 * to IDLE.
100 */
101 enum dpu_enc_rc_events {
102 DPU_ENC_RC_EVENT_KICKOFF = 1,
103 DPU_ENC_RC_EVENT_FRAME_DONE,
104 DPU_ENC_RC_EVENT_PRE_STOP,
105 DPU_ENC_RC_EVENT_STOP,
106 DPU_ENC_RC_EVENT_ENTER_IDLE
107 };
108
109 /*
110 * enum dpu_enc_rc_states - states that the resource control maintains
111 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
112 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
113 * @DPU_ENC_RC_STATE_ON: Resource is in ON state
114 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
115 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
116 */
117 enum dpu_enc_rc_states {
118 DPU_ENC_RC_STATE_OFF,
119 DPU_ENC_RC_STATE_PRE_OFF,
120 DPU_ENC_RC_STATE_ON,
121 DPU_ENC_RC_STATE_IDLE
122 };
123
124 /**
125 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
126 * encoders. Virtual encoder manages one "logical" display. Physical
127 * encoders manage one intf block, tied to a specific panel/sub-panel.
128 * Virtual encoder defers as much as possible to the physical encoders.
129 * Virtual encoder registers itself with the DRM Framework as the encoder.
130 * @base: drm_encoder base class for registration with DRM
131 * @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes
132 * @bus_scaling_client: Client handle to the bus scaling interface
133 * @enabled: True if the encoder is active, protected by enc_lock
134 * @num_phys_encs: Actual number of physical encoders contained.
135 * @phys_encs: Container of physical encoders managed.
136 * @cur_master: Pointer to the current master in this mode. Optimization
137 * Only valid after enable. Cleared as disable.
138 * @hw_pp Handle to the pingpong blocks used for the display. No.
139 * pingpong blocks can be different than num_phys_encs.
140 * @intfs_swapped Whether or not the phys_enc interfaces have been swapped
141 * for partial update right-only cases, such as pingpong
142 * split where virtual pingpong does not generate IRQs
143 * @crtc: Pointer to the currently assigned crtc. Normally you
144 * would use crtc->state->encoder_mask to determine the
145 * link between encoder/crtc. However in this case we need
146 * to track crtc in the disable() hook which is called
147 * _after_ encoder_mask is cleared.
148 * @crtc_kickoff_cb: Callback into CRTC that will flush & start
149 * all CTL paths
150 * @crtc_kickoff_cb_data: Opaque user data given to crtc_kickoff_cb
151 * @debugfs_root: Debug file system root file node
152 * @enc_lock: Lock around physical encoder
153 * create/destroy/enable/disable
154 * @frame_busy_mask: Bitmask tracking which phys_enc we are still
155 * busy processing current command.
156 * Bit0 = phys_encs[0] etc.
157 * @crtc_frame_event_cb: callback handler for frame event
158 * @crtc_frame_event_cb_data: callback handler private data
159 * @frame_done_timeout_ms: frame done timeout in ms
160 * @frame_done_timer: watchdog timer for frame done event
161 * @vsync_event_timer: vsync timer
162 * @disp_info: local copy of msm_display_info struct
163 * @idle_pc_supported: indicate if idle power collaps is supported
164 * @rc_lock: resource control mutex lock to protect
165 * virt encoder over various state changes
166 * @rc_state: resource controller state
167 * @delayed_off_work: delayed worker to schedule disabling of
168 * clks and resources after IDLE_TIMEOUT time.
169 * @vsync_event_work: worker to handle vsync event for autorefresh
170 * @topology: topology of the display
171 * @idle_timeout: idle timeout duration in milliseconds
172 */
173 struct dpu_encoder_virt {
174 struct drm_encoder base;
175 spinlock_t enc_spinlock;
176 uint32_t bus_scaling_client;
177
178 bool enabled;
179
180 unsigned int num_phys_encs;
181 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
182 struct dpu_encoder_phys *cur_master;
183 struct dpu_encoder_phys *cur_slave;
184 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
185
186 bool intfs_swapped;
187
188 struct drm_crtc *crtc;
189
190 struct dentry *debugfs_root;
191 struct mutex enc_lock;
192 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
193 void (*crtc_frame_event_cb)(void *, u32 event);
194 void *crtc_frame_event_cb_data;
195
196 atomic_t frame_done_timeout_ms;
197 struct timer_list frame_done_timer;
198 struct timer_list vsync_event_timer;
199
200 struct msm_display_info disp_info;
201
202 bool idle_pc_supported;
203 struct mutex rc_lock;
204 enum dpu_enc_rc_states rc_state;
205 struct delayed_work delayed_off_work;
206 struct kthread_work vsync_event_work;
207 struct msm_display_topology topology;
208
209 u32 idle_timeout;
210 };
211
212 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
213
214 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
215 15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
216 };
217
_dpu_encoder_setup_dither(struct dpu_hw_pingpong * hw_pp,unsigned bpc)218 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
219 {
220 struct dpu_hw_dither_cfg dither_cfg = { 0 };
221
222 if (!hw_pp->ops.setup_dither)
223 return;
224
225 switch (bpc) {
226 case 6:
227 dither_cfg.c0_bitdepth = 6;
228 dither_cfg.c1_bitdepth = 6;
229 dither_cfg.c2_bitdepth = 6;
230 dither_cfg.c3_bitdepth = 6;
231 dither_cfg.temporal_en = 0;
232 break;
233 default:
234 hw_pp->ops.setup_dither(hw_pp, NULL);
235 return;
236 }
237
238 memcpy(&dither_cfg.matrix, dither_matrix,
239 sizeof(u32) * DITHER_MATRIX_SZ);
240
241 hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
242 }
243
dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx)244 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
245 enum dpu_intr_idx intr_idx)
246 {
247 DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n",
248 DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0,
249 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
250
251 if (phys_enc->parent_ops->handle_frame_done)
252 phys_enc->parent_ops->handle_frame_done(
253 phys_enc->parent, phys_enc,
254 DPU_ENCODER_FRAME_EVENT_ERROR);
255 }
256
257 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
258 int32_t hw_id, struct dpu_encoder_wait_info *info);
259
dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx,struct dpu_encoder_wait_info * wait_info)260 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
261 enum dpu_intr_idx intr_idx,
262 struct dpu_encoder_wait_info *wait_info)
263 {
264 struct dpu_encoder_irq *irq;
265 u32 irq_status;
266 int ret;
267
268 if (!wait_info || intr_idx >= INTR_IDX_MAX) {
269 DPU_ERROR("invalid params\n");
270 return -EINVAL;
271 }
272 irq = &phys_enc->irq[intr_idx];
273
274 /* note: do master / slave checking outside */
275
276 /* return EWOULDBLOCK since we know the wait isn't necessary */
277 if (phys_enc->enable_state == DPU_ENC_DISABLED) {
278 DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d",
279 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
280 irq->irq_idx);
281 return -EWOULDBLOCK;
282 }
283
284 if (irq->irq_idx < 0) {
285 DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s",
286 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
287 irq->name);
288 return 0;
289 }
290
291 DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d",
292 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
293 irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
294 atomic_read(wait_info->atomic_cnt));
295
296 ret = dpu_encoder_helper_wait_event_timeout(
297 DRMID(phys_enc->parent),
298 irq->hw_idx,
299 wait_info);
300
301 if (ret <= 0) {
302 irq_status = dpu_core_irq_read(phys_enc->dpu_kms,
303 irq->irq_idx, true);
304 if (irq_status) {
305 unsigned long flags;
306
307 DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, "
308 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
309 DRMID(phys_enc->parent), intr_idx,
310 irq->hw_idx, irq->irq_idx,
311 phys_enc->hw_pp->idx - PINGPONG_0,
312 atomic_read(wait_info->atomic_cnt));
313 local_irq_save(flags);
314 irq->cb.func(phys_enc, irq->irq_idx);
315 local_irq_restore(flags);
316 ret = 0;
317 } else {
318 ret = -ETIMEDOUT;
319 DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, "
320 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
321 DRMID(phys_enc->parent), intr_idx,
322 irq->hw_idx, irq->irq_idx,
323 phys_enc->hw_pp->idx - PINGPONG_0,
324 atomic_read(wait_info->atomic_cnt));
325 }
326 } else {
327 ret = 0;
328 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
329 intr_idx, irq->hw_idx, irq->irq_idx,
330 phys_enc->hw_pp->idx - PINGPONG_0,
331 atomic_read(wait_info->atomic_cnt));
332 }
333
334 return ret;
335 }
336
dpu_encoder_helper_register_irq(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx)337 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc,
338 enum dpu_intr_idx intr_idx)
339 {
340 struct dpu_encoder_irq *irq;
341 int ret = 0;
342
343 if (intr_idx >= INTR_IDX_MAX) {
344 DPU_ERROR("invalid params\n");
345 return -EINVAL;
346 }
347 irq = &phys_enc->irq[intr_idx];
348
349 if (irq->irq_idx >= 0) {
350 DPU_DEBUG_PHYS(phys_enc,
351 "skipping already registered irq %s type %d\n",
352 irq->name, irq->intr_type);
353 return 0;
354 }
355
356 irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms,
357 irq->intr_type, irq->hw_idx);
358 if (irq->irq_idx < 0) {
359 DPU_ERROR_PHYS(phys_enc,
360 "failed to lookup IRQ index for %s type:%d\n",
361 irq->name, irq->intr_type);
362 return -EINVAL;
363 }
364
365 ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx,
366 &irq->cb);
367 if (ret) {
368 DPU_ERROR_PHYS(phys_enc,
369 "failed to register IRQ callback for %s\n",
370 irq->name);
371 irq->irq_idx = -EINVAL;
372 return ret;
373 }
374
375 ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1);
376 if (ret) {
377 DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d",
378 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
379 irq->irq_idx);
380 dpu_core_irq_unregister_callback(phys_enc->dpu_kms,
381 irq->irq_idx, &irq->cb);
382 irq->irq_idx = -EINVAL;
383 return ret;
384 }
385
386 trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx,
387 irq->hw_idx, irq->irq_idx);
388
389 return ret;
390 }
391
dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx)392 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc,
393 enum dpu_intr_idx intr_idx)
394 {
395 struct dpu_encoder_irq *irq;
396 int ret;
397
398 irq = &phys_enc->irq[intr_idx];
399
400 /* silently skip irqs that weren't registered */
401 if (irq->irq_idx < 0) {
402 DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d",
403 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
404 irq->irq_idx);
405 return 0;
406 }
407
408 ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1);
409 if (ret) {
410 DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d",
411 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
412 irq->irq_idx, ret);
413 }
414
415 ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx,
416 &irq->cb);
417 if (ret) {
418 DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d",
419 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
420 irq->irq_idx, ret);
421 }
422
423 trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx,
424 irq->hw_idx, irq->irq_idx);
425
426 irq->irq_idx = -EINVAL;
427
428 return 0;
429 }
430
dpu_encoder_get_hw_resources(struct drm_encoder * drm_enc,struct dpu_encoder_hw_resources * hw_res)431 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc,
432 struct dpu_encoder_hw_resources *hw_res)
433 {
434 struct dpu_encoder_virt *dpu_enc = NULL;
435 int i = 0;
436
437 dpu_enc = to_dpu_encoder_virt(drm_enc);
438 DPU_DEBUG_ENC(dpu_enc, "\n");
439
440 /* Query resources used by phys encs, expected to be without overlap */
441 memset(hw_res, 0, sizeof(*hw_res));
442
443 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
444 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
445
446 if (phys->ops.get_hw_resources)
447 phys->ops.get_hw_resources(phys, hw_res);
448 }
449 }
450
dpu_encoder_destroy(struct drm_encoder * drm_enc)451 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
452 {
453 struct dpu_encoder_virt *dpu_enc = NULL;
454 int i = 0;
455
456 if (!drm_enc) {
457 DPU_ERROR("invalid encoder\n");
458 return;
459 }
460
461 dpu_enc = to_dpu_encoder_virt(drm_enc);
462 DPU_DEBUG_ENC(dpu_enc, "\n");
463
464 mutex_lock(&dpu_enc->enc_lock);
465
466 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
467 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
468
469 if (phys->ops.destroy) {
470 phys->ops.destroy(phys);
471 --dpu_enc->num_phys_encs;
472 dpu_enc->phys_encs[i] = NULL;
473 }
474 }
475
476 if (dpu_enc->num_phys_encs)
477 DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
478 dpu_enc->num_phys_encs);
479 dpu_enc->num_phys_encs = 0;
480 mutex_unlock(&dpu_enc->enc_lock);
481
482 drm_encoder_cleanup(drm_enc);
483 mutex_destroy(&dpu_enc->enc_lock);
484 }
485
dpu_encoder_helper_split_config(struct dpu_encoder_phys * phys_enc,enum dpu_intf interface)486 void dpu_encoder_helper_split_config(
487 struct dpu_encoder_phys *phys_enc,
488 enum dpu_intf interface)
489 {
490 struct dpu_encoder_virt *dpu_enc;
491 struct split_pipe_cfg cfg = { 0 };
492 struct dpu_hw_mdp *hw_mdptop;
493 struct msm_display_info *disp_info;
494
495 if (!phys_enc->hw_mdptop || !phys_enc->parent) {
496 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
497 return;
498 }
499
500 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
501 hw_mdptop = phys_enc->hw_mdptop;
502 disp_info = &dpu_enc->disp_info;
503
504 if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
505 return;
506
507 /**
508 * disable split modes since encoder will be operating in as the only
509 * encoder, either for the entire use case in the case of, for example,
510 * single DSI, or for this frame in the case of left/right only partial
511 * update.
512 */
513 if (phys_enc->split_role == ENC_ROLE_SOLO) {
514 if (hw_mdptop->ops.setup_split_pipe)
515 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
516 return;
517 }
518
519 cfg.en = true;
520 cfg.mode = phys_enc->intf_mode;
521 cfg.intf = interface;
522
523 if (cfg.en && phys_enc->ops.needs_single_flush &&
524 phys_enc->ops.needs_single_flush(phys_enc))
525 cfg.split_flush_en = true;
526
527 if (phys_enc->split_role == ENC_ROLE_MASTER) {
528 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
529
530 if (hw_mdptop->ops.setup_split_pipe)
531 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
532 }
533 }
534
dpu_encoder_get_topology(struct dpu_encoder_virt * dpu_enc,struct dpu_kms * dpu_kms,struct drm_display_mode * mode)535 static struct msm_display_topology dpu_encoder_get_topology(
536 struct dpu_encoder_virt *dpu_enc,
537 struct dpu_kms *dpu_kms,
538 struct drm_display_mode *mode)
539 {
540 struct msm_display_topology topology = {0};
541 int i, intf_count = 0;
542
543 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
544 if (dpu_enc->phys_encs[i])
545 intf_count++;
546
547 /* Datapath topology selection
548 *
549 * Dual display
550 * 2 LM, 2 INTF ( Split display using 2 interfaces)
551 *
552 * Single display
553 * 1 LM, 1 INTF
554 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
555 *
556 * Adding color blocks only to primary interface if available in
557 * sufficient number
558 */
559 if (intf_count == 2)
560 topology.num_lm = 2;
561 else if (!dpu_kms->catalog->caps->has_3d_merge)
562 topology.num_lm = 1;
563 else
564 topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
565
566 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI) {
567 if (dpu_kms->catalog->dspp &&
568 (dpu_kms->catalog->dspp_count >= topology.num_lm))
569 topology.num_dspp = topology.num_lm;
570 }
571
572 topology.num_enc = 0;
573 topology.num_intf = intf_count;
574
575 return topology;
576 }
dpu_encoder_virt_atomic_check(struct drm_encoder * drm_enc,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)577 static int dpu_encoder_virt_atomic_check(
578 struct drm_encoder *drm_enc,
579 struct drm_crtc_state *crtc_state,
580 struct drm_connector_state *conn_state)
581 {
582 struct dpu_encoder_virt *dpu_enc;
583 struct msm_drm_private *priv;
584 struct dpu_kms *dpu_kms;
585 const struct drm_display_mode *mode;
586 struct drm_display_mode *adj_mode;
587 struct msm_display_topology topology;
588 struct dpu_global_state *global_state;
589 int i = 0;
590 int ret = 0;
591
592 if (!drm_enc || !crtc_state || !conn_state) {
593 DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
594 drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
595 return -EINVAL;
596 }
597
598 dpu_enc = to_dpu_encoder_virt(drm_enc);
599 DPU_DEBUG_ENC(dpu_enc, "\n");
600
601 priv = drm_enc->dev->dev_private;
602 dpu_kms = to_dpu_kms(priv->kms);
603 mode = &crtc_state->mode;
604 adj_mode = &crtc_state->adjusted_mode;
605 global_state = dpu_kms_get_global_state(crtc_state->state);
606 if (IS_ERR(global_state))
607 return PTR_ERR(global_state);
608
609 trace_dpu_enc_atomic_check(DRMID(drm_enc));
610
611 /* perform atomic check on the first physical encoder (master) */
612 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
613 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
614
615 if (phys->ops.atomic_check)
616 ret = phys->ops.atomic_check(phys, crtc_state,
617 conn_state);
618 else if (phys->ops.mode_fixup)
619 if (!phys->ops.mode_fixup(phys, mode, adj_mode))
620 ret = -EINVAL;
621
622 if (ret) {
623 DPU_ERROR_ENC(dpu_enc,
624 "mode unsupported, phys idx %d\n", i);
625 break;
626 }
627 }
628
629 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
630
631 /* Reserve dynamic resources now. */
632 if (!ret) {
633 /*
634 * Release and Allocate resources on every modeset
635 * Dont allocate when active is false.
636 */
637 if (drm_atomic_crtc_needs_modeset(crtc_state)) {
638 dpu_rm_release(global_state, drm_enc);
639
640 if (!crtc_state->active_changed || crtc_state->enable)
641 ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
642 drm_enc, crtc_state, topology);
643 }
644 }
645
646 trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
647
648 return ret;
649 }
650
_dpu_encoder_update_vsync_source(struct dpu_encoder_virt * dpu_enc,struct msm_display_info * disp_info)651 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
652 struct msm_display_info *disp_info)
653 {
654 struct dpu_vsync_source_cfg vsync_cfg = { 0 };
655 struct msm_drm_private *priv;
656 struct dpu_kms *dpu_kms;
657 struct dpu_hw_mdp *hw_mdptop;
658 struct drm_encoder *drm_enc;
659 int i;
660
661 if (!dpu_enc || !disp_info) {
662 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
663 dpu_enc != NULL, disp_info != NULL);
664 return;
665 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
666 DPU_ERROR("invalid num phys enc %d/%d\n",
667 dpu_enc->num_phys_encs,
668 (int) ARRAY_SIZE(dpu_enc->hw_pp));
669 return;
670 }
671
672 drm_enc = &dpu_enc->base;
673 /* this pointers are checked in virt_enable_helper */
674 priv = drm_enc->dev->dev_private;
675
676 dpu_kms = to_dpu_kms(priv->kms);
677 hw_mdptop = dpu_kms->hw_mdp;
678 if (!hw_mdptop) {
679 DPU_ERROR("invalid mdptop\n");
680 return;
681 }
682
683 if (hw_mdptop->ops.setup_vsync_source &&
684 disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
685 for (i = 0; i < dpu_enc->num_phys_encs; i++)
686 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
687
688 vsync_cfg.pp_count = dpu_enc->num_phys_encs;
689 if (disp_info->is_te_using_watchdog_timer)
690 vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
691 else
692 vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
693
694 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
695 }
696 }
697
_dpu_encoder_irq_control(struct drm_encoder * drm_enc,bool enable)698 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
699 {
700 struct dpu_encoder_virt *dpu_enc;
701 int i;
702
703 if (!drm_enc) {
704 DPU_ERROR("invalid encoder\n");
705 return;
706 }
707
708 dpu_enc = to_dpu_encoder_virt(drm_enc);
709
710 DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
711 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
712 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
713
714 if (phys->ops.irq_control)
715 phys->ops.irq_control(phys, enable);
716 }
717
718 }
719
_dpu_encoder_resource_control_helper(struct drm_encoder * drm_enc,bool enable)720 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
721 bool enable)
722 {
723 struct msm_drm_private *priv;
724 struct dpu_kms *dpu_kms;
725 struct dpu_encoder_virt *dpu_enc;
726
727 dpu_enc = to_dpu_encoder_virt(drm_enc);
728 priv = drm_enc->dev->dev_private;
729 dpu_kms = to_dpu_kms(priv->kms);
730
731 trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
732
733 if (!dpu_enc->cur_master) {
734 DPU_ERROR("encoder master not set\n");
735 return;
736 }
737
738 if (enable) {
739 /* enable DPU core clks */
740 pm_runtime_get_sync(&dpu_kms->pdev->dev);
741
742 /* enable all the irq */
743 _dpu_encoder_irq_control(drm_enc, true);
744
745 } else {
746 /* disable all the irq */
747 _dpu_encoder_irq_control(drm_enc, false);
748
749 /* disable DPU core clks */
750 pm_runtime_put_sync(&dpu_kms->pdev->dev);
751 }
752
753 }
754
dpu_encoder_resource_control(struct drm_encoder * drm_enc,u32 sw_event)755 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
756 u32 sw_event)
757 {
758 struct dpu_encoder_virt *dpu_enc;
759 struct msm_drm_private *priv;
760 bool is_vid_mode = false;
761
762 if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
763 DPU_ERROR("invalid parameters\n");
764 return -EINVAL;
765 }
766 dpu_enc = to_dpu_encoder_virt(drm_enc);
767 priv = drm_enc->dev->dev_private;
768 is_vid_mode = dpu_enc->disp_info.capabilities &
769 MSM_DISPLAY_CAP_VID_MODE;
770
771 /*
772 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
773 * events and return early for other events (ie wb display).
774 */
775 if (!dpu_enc->idle_pc_supported &&
776 (sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
777 sw_event != DPU_ENC_RC_EVENT_STOP &&
778 sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
779 return 0;
780
781 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
782 dpu_enc->rc_state, "begin");
783
784 switch (sw_event) {
785 case DPU_ENC_RC_EVENT_KICKOFF:
786 /* cancel delayed off work, if any */
787 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
788 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
789 sw_event);
790
791 mutex_lock(&dpu_enc->rc_lock);
792
793 /* return if the resource control is already in ON state */
794 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
795 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n",
796 DRMID(drm_enc), sw_event);
797 mutex_unlock(&dpu_enc->rc_lock);
798 return 0;
799 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
800 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
801 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n",
802 DRMID(drm_enc), sw_event,
803 dpu_enc->rc_state);
804 mutex_unlock(&dpu_enc->rc_lock);
805 return -EINVAL;
806 }
807
808 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
809 _dpu_encoder_irq_control(drm_enc, true);
810 else
811 _dpu_encoder_resource_control_helper(drm_enc, true);
812
813 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
814
815 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
816 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
817 "kickoff");
818
819 mutex_unlock(&dpu_enc->rc_lock);
820 break;
821
822 case DPU_ENC_RC_EVENT_FRAME_DONE:
823 /*
824 * mutex lock is not used as this event happens at interrupt
825 * context. And locking is not required as, the other events
826 * like KICKOFF and STOP does a wait-for-idle before executing
827 * the resource_control
828 */
829 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
830 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
831 DRMID(drm_enc), sw_event,
832 dpu_enc->rc_state);
833 return -EINVAL;
834 }
835
836 /*
837 * schedule off work item only when there are no
838 * frames pending
839 */
840 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
841 DRM_DEBUG_KMS("id:%d skip schedule work\n",
842 DRMID(drm_enc));
843 return 0;
844 }
845
846 queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
847 msecs_to_jiffies(dpu_enc->idle_timeout));
848
849 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
850 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
851 "frame done");
852 break;
853
854 case DPU_ENC_RC_EVENT_PRE_STOP:
855 /* cancel delayed off work, if any */
856 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
857 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
858 sw_event);
859
860 mutex_lock(&dpu_enc->rc_lock);
861
862 if (is_vid_mode &&
863 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
864 _dpu_encoder_irq_control(drm_enc, true);
865 }
866 /* skip if is already OFF or IDLE, resources are off already */
867 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
868 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
869 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
870 DRMID(drm_enc), sw_event,
871 dpu_enc->rc_state);
872 mutex_unlock(&dpu_enc->rc_lock);
873 return 0;
874 }
875
876 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
877
878 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
879 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
880 "pre stop");
881
882 mutex_unlock(&dpu_enc->rc_lock);
883 break;
884
885 case DPU_ENC_RC_EVENT_STOP:
886 mutex_lock(&dpu_enc->rc_lock);
887
888 /* return if the resource control is already in OFF state */
889 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
890 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
891 DRMID(drm_enc), sw_event);
892 mutex_unlock(&dpu_enc->rc_lock);
893 return 0;
894 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
895 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
896 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
897 mutex_unlock(&dpu_enc->rc_lock);
898 return -EINVAL;
899 }
900
901 /**
902 * expect to arrive here only if in either idle state or pre-off
903 * and in IDLE state the resources are already disabled
904 */
905 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
906 _dpu_encoder_resource_control_helper(drm_enc, false);
907
908 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
909
910 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
911 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
912 "stop");
913
914 mutex_unlock(&dpu_enc->rc_lock);
915 break;
916
917 case DPU_ENC_RC_EVENT_ENTER_IDLE:
918 mutex_lock(&dpu_enc->rc_lock);
919
920 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
921 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
922 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
923 mutex_unlock(&dpu_enc->rc_lock);
924 return 0;
925 }
926
927 /*
928 * if we are in ON but a frame was just kicked off,
929 * ignore the IDLE event, it's probably a stale timer event
930 */
931 if (dpu_enc->frame_busy_mask[0]) {
932 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
933 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
934 mutex_unlock(&dpu_enc->rc_lock);
935 return 0;
936 }
937
938 if (is_vid_mode)
939 _dpu_encoder_irq_control(drm_enc, false);
940 else
941 _dpu_encoder_resource_control_helper(drm_enc, false);
942
943 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
944
945 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
946 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
947 "idle");
948
949 mutex_unlock(&dpu_enc->rc_lock);
950 break;
951
952 default:
953 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
954 sw_event);
955 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
956 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
957 "error");
958 break;
959 }
960
961 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
962 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
963 "end");
964 return 0;
965 }
966
dpu_encoder_virt_mode_set(struct drm_encoder * drm_enc,struct drm_display_mode * mode,struct drm_display_mode * adj_mode)967 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc,
968 struct drm_display_mode *mode,
969 struct drm_display_mode *adj_mode)
970 {
971 struct dpu_encoder_virt *dpu_enc;
972 struct msm_drm_private *priv;
973 struct dpu_kms *dpu_kms;
974 struct list_head *connector_list;
975 struct drm_connector *conn = NULL, *conn_iter;
976 struct drm_crtc *drm_crtc;
977 struct dpu_crtc_state *cstate;
978 struct dpu_global_state *global_state;
979 struct msm_display_topology topology;
980 struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
981 struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
982 struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
983 struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
984 int num_lm, num_ctl, num_pp, num_dspp;
985 int i, j;
986
987 if (!drm_enc) {
988 DPU_ERROR("invalid encoder\n");
989 return;
990 }
991
992 dpu_enc = to_dpu_encoder_virt(drm_enc);
993 DPU_DEBUG_ENC(dpu_enc, "\n");
994
995 priv = drm_enc->dev->dev_private;
996 dpu_kms = to_dpu_kms(priv->kms);
997 connector_list = &dpu_kms->dev->mode_config.connector_list;
998
999 global_state = dpu_kms_get_existing_global_state(dpu_kms);
1000 if (IS_ERR_OR_NULL(global_state)) {
1001 DPU_ERROR("Failed to get global state");
1002 return;
1003 }
1004
1005 trace_dpu_enc_mode_set(DRMID(drm_enc));
1006
1007 if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp)
1008 msm_dp_display_mode_set(priv->dp, drm_enc, mode, adj_mode);
1009
1010 list_for_each_entry(conn_iter, connector_list, head)
1011 if (conn_iter->encoder == drm_enc)
1012 conn = conn_iter;
1013
1014 if (!conn) {
1015 DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n");
1016 return;
1017 } else if (!conn->state) {
1018 DPU_ERROR_ENC(dpu_enc, "invalid connector state\n");
1019 return;
1020 }
1021
1022 drm_for_each_crtc(drm_crtc, drm_enc->dev)
1023 if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc))
1024 break;
1025
1026 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
1027
1028 /* Query resource that have been reserved in atomic check step. */
1029 num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1030 drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1031 ARRAY_SIZE(hw_pp));
1032 num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1033 drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1034 num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1035 drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1036 num_dspp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1037 drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
1038 ARRAY_SIZE(hw_dspp));
1039
1040 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1041 dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1042 : NULL;
1043
1044 cstate = to_dpu_crtc_state(drm_crtc->state);
1045
1046 for (i = 0; i < num_lm; i++) {
1047 int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1048
1049 cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1050 cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1051 cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1052 }
1053
1054 cstate->num_mixers = num_lm;
1055
1056 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1057 int num_blk;
1058 struct dpu_hw_blk *hw_blk[MAX_CHANNELS_PER_ENC];
1059 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1060
1061 if (!dpu_enc->hw_pp[i]) {
1062 DPU_ERROR_ENC(dpu_enc,
1063 "no pp block assigned at idx: %d\n", i);
1064 return;
1065 }
1066
1067 if (!hw_ctl[i]) {
1068 DPU_ERROR_ENC(dpu_enc,
1069 "no ctl block assigned at idx: %d\n", i);
1070 return;
1071 }
1072
1073 phys->hw_pp = dpu_enc->hw_pp[i];
1074 phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
1075
1076 num_blk = dpu_rm_get_assigned_resources(&dpu_kms->rm,
1077 global_state, drm_enc->base.id, DPU_HW_BLK_INTF,
1078 hw_blk, ARRAY_SIZE(hw_blk));
1079 for (j = 0; j < num_blk; j++) {
1080 struct dpu_hw_intf *hw_intf;
1081
1082 hw_intf = to_dpu_hw_intf(hw_blk[i]);
1083 if (hw_intf->idx == phys->intf_idx)
1084 phys->hw_intf = hw_intf;
1085 }
1086
1087 if (!phys->hw_intf) {
1088 DPU_ERROR_ENC(dpu_enc,
1089 "no intf block assigned at idx: %d\n", i);
1090 return;
1091 }
1092
1093 phys->connector = conn->state->connector;
1094 if (phys->ops.mode_set)
1095 phys->ops.mode_set(phys, mode, adj_mode);
1096 }
1097 }
1098
_dpu_encoder_virt_enable_helper(struct drm_encoder * drm_enc)1099 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1100 {
1101 struct dpu_encoder_virt *dpu_enc = NULL;
1102 struct msm_drm_private *priv;
1103 int i;
1104
1105 if (!drm_enc || !drm_enc->dev) {
1106 DPU_ERROR("invalid parameters\n");
1107 return;
1108 }
1109
1110 priv = drm_enc->dev->dev_private;
1111
1112 dpu_enc = to_dpu_encoder_virt(drm_enc);
1113 if (!dpu_enc || !dpu_enc->cur_master) {
1114 DPU_ERROR("invalid dpu encoder/master\n");
1115 return;
1116 }
1117
1118
1119 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_TMDS &&
1120 dpu_enc->cur_master->hw_mdptop &&
1121 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1122 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1123 dpu_enc->cur_master->hw_mdptop);
1124
1125 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1126
1127 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1128 !WARN_ON(dpu_enc->num_phys_encs == 0)) {
1129 unsigned bpc = dpu_enc->phys_encs[0]->connector->display_info.bpc;
1130 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1131 if (!dpu_enc->hw_pp[i])
1132 continue;
1133 _dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1134 }
1135 }
1136 }
1137
dpu_encoder_virt_runtime_resume(struct drm_encoder * drm_enc)1138 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1139 {
1140 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1141
1142 mutex_lock(&dpu_enc->enc_lock);
1143
1144 if (!dpu_enc->enabled)
1145 goto out;
1146
1147 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1148 dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1149 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1150 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1151
1152 _dpu_encoder_virt_enable_helper(drm_enc);
1153
1154 out:
1155 mutex_unlock(&dpu_enc->enc_lock);
1156 }
1157
dpu_encoder_virt_enable(struct drm_encoder * drm_enc)1158 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
1159 {
1160 struct dpu_encoder_virt *dpu_enc = NULL;
1161 int ret = 0;
1162 struct msm_drm_private *priv;
1163 struct drm_display_mode *cur_mode = NULL;
1164
1165 if (!drm_enc) {
1166 DPU_ERROR("invalid encoder\n");
1167 return;
1168 }
1169 dpu_enc = to_dpu_encoder_virt(drm_enc);
1170
1171 mutex_lock(&dpu_enc->enc_lock);
1172 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1173 priv = drm_enc->dev->dev_private;
1174
1175 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1176 cur_mode->vdisplay);
1177
1178 /* always enable slave encoder before master */
1179 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1180 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1181
1182 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1183 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1184
1185 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1186 if (ret) {
1187 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1188 ret);
1189 goto out;
1190 }
1191
1192 _dpu_encoder_virt_enable_helper(drm_enc);
1193
1194 if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp) {
1195 ret = msm_dp_display_enable(priv->dp,
1196 drm_enc);
1197 if (ret) {
1198 DPU_ERROR_ENC(dpu_enc, "dp display enable failed: %d\n",
1199 ret);
1200 goto out;
1201 }
1202 }
1203 dpu_enc->enabled = true;
1204
1205 out:
1206 mutex_unlock(&dpu_enc->enc_lock);
1207 }
1208
dpu_encoder_virt_disable(struct drm_encoder * drm_enc)1209 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
1210 {
1211 struct dpu_encoder_virt *dpu_enc = NULL;
1212 struct msm_drm_private *priv;
1213 struct dpu_kms *dpu_kms;
1214 int i = 0;
1215
1216 if (!drm_enc) {
1217 DPU_ERROR("invalid encoder\n");
1218 return;
1219 } else if (!drm_enc->dev) {
1220 DPU_ERROR("invalid dev\n");
1221 return;
1222 }
1223
1224 dpu_enc = to_dpu_encoder_virt(drm_enc);
1225 DPU_DEBUG_ENC(dpu_enc, "\n");
1226
1227 mutex_lock(&dpu_enc->enc_lock);
1228 dpu_enc->enabled = false;
1229
1230 priv = drm_enc->dev->dev_private;
1231 dpu_kms = to_dpu_kms(priv->kms);
1232
1233 trace_dpu_enc_disable(DRMID(drm_enc));
1234
1235 /* wait for idle */
1236 dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1237
1238 if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp) {
1239 if (msm_dp_display_pre_disable(priv->dp, drm_enc))
1240 DPU_ERROR_ENC(dpu_enc, "dp display push idle failed\n");
1241 }
1242
1243 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1244
1245 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1246 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1247
1248 if (phys->ops.disable)
1249 phys->ops.disable(phys);
1250 }
1251
1252
1253 /* after phys waits for frame-done, should be no more frames pending */
1254 if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1255 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1256 del_timer_sync(&dpu_enc->frame_done_timer);
1257 }
1258
1259 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1260
1261 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1262 dpu_enc->phys_encs[i]->connector = NULL;
1263 }
1264
1265 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1266
1267 if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp) {
1268 if (msm_dp_display_disable(priv->dp, drm_enc))
1269 DPU_ERROR_ENC(dpu_enc, "dp display disable failed\n");
1270 }
1271
1272 mutex_unlock(&dpu_enc->enc_lock);
1273 }
1274
dpu_encoder_get_intf(struct dpu_mdss_cfg * catalog,enum dpu_intf_type type,u32 controller_id)1275 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog,
1276 enum dpu_intf_type type, u32 controller_id)
1277 {
1278 int i = 0;
1279
1280 for (i = 0; i < catalog->intf_count; i++) {
1281 if (catalog->intf[i].type == type
1282 && catalog->intf[i].controller_id == controller_id) {
1283 return catalog->intf[i].id;
1284 }
1285 }
1286
1287 return INTF_MAX;
1288 }
1289
dpu_encoder_vblank_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1290 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1291 struct dpu_encoder_phys *phy_enc)
1292 {
1293 struct dpu_encoder_virt *dpu_enc = NULL;
1294 unsigned long lock_flags;
1295
1296 if (!drm_enc || !phy_enc)
1297 return;
1298
1299 DPU_ATRACE_BEGIN("encoder_vblank_callback");
1300 dpu_enc = to_dpu_encoder_virt(drm_enc);
1301
1302 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1303 if (dpu_enc->crtc)
1304 dpu_crtc_vblank_callback(dpu_enc->crtc);
1305 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1306
1307 atomic_inc(&phy_enc->vsync_cnt);
1308 DPU_ATRACE_END("encoder_vblank_callback");
1309 }
1310
dpu_encoder_underrun_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1311 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1312 struct dpu_encoder_phys *phy_enc)
1313 {
1314 if (!phy_enc)
1315 return;
1316
1317 DPU_ATRACE_BEGIN("encoder_underrun_callback");
1318 atomic_inc(&phy_enc->underrun_cnt);
1319 trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1320 atomic_read(&phy_enc->underrun_cnt));
1321 DPU_ATRACE_END("encoder_underrun_callback");
1322 }
1323
dpu_encoder_assign_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc)1324 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1325 {
1326 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1327 unsigned long lock_flags;
1328
1329 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1330 /* crtc should always be cleared before re-assigning */
1331 WARN_ON(crtc && dpu_enc->crtc);
1332 dpu_enc->crtc = crtc;
1333 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1334 }
1335
dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc,bool enable)1336 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1337 struct drm_crtc *crtc, bool enable)
1338 {
1339 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1340 unsigned long lock_flags;
1341 int i;
1342
1343 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1344
1345 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1346 if (dpu_enc->crtc != crtc) {
1347 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1348 return;
1349 }
1350 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1351
1352 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1353 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1354
1355 if (phys->ops.control_vblank_irq)
1356 phys->ops.control_vblank_irq(phys, enable);
1357 }
1358 }
1359
dpu_encoder_register_frame_event_callback(struct drm_encoder * drm_enc,void (* frame_event_cb)(void *,u32 event),void * frame_event_cb_data)1360 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1361 void (*frame_event_cb)(void *, u32 event),
1362 void *frame_event_cb_data)
1363 {
1364 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1365 unsigned long lock_flags;
1366 bool enable;
1367
1368 enable = frame_event_cb ? true : false;
1369
1370 if (!drm_enc) {
1371 DPU_ERROR("invalid encoder\n");
1372 return;
1373 }
1374 trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1375
1376 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1377 dpu_enc->crtc_frame_event_cb = frame_event_cb;
1378 dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1379 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1380 }
1381
dpu_encoder_frame_done_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * ready_phys,u32 event)1382 static void dpu_encoder_frame_done_callback(
1383 struct drm_encoder *drm_enc,
1384 struct dpu_encoder_phys *ready_phys, u32 event)
1385 {
1386 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1387 unsigned int i;
1388
1389 if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1390 | DPU_ENCODER_FRAME_EVENT_ERROR
1391 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1392
1393 if (!dpu_enc->frame_busy_mask[0]) {
1394 /**
1395 * suppress frame_done without waiter,
1396 * likely autorefresh
1397 */
1398 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc),
1399 event, ready_phys->intf_idx);
1400 return;
1401 }
1402
1403 /* One of the physical encoders has become idle */
1404 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1405 if (dpu_enc->phys_encs[i] == ready_phys) {
1406 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1407 dpu_enc->frame_busy_mask[0]);
1408 clear_bit(i, dpu_enc->frame_busy_mask);
1409 }
1410 }
1411
1412 if (!dpu_enc->frame_busy_mask[0]) {
1413 atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1414 del_timer(&dpu_enc->frame_done_timer);
1415
1416 dpu_encoder_resource_control(drm_enc,
1417 DPU_ENC_RC_EVENT_FRAME_DONE);
1418
1419 if (dpu_enc->crtc_frame_event_cb)
1420 dpu_enc->crtc_frame_event_cb(
1421 dpu_enc->crtc_frame_event_cb_data,
1422 event);
1423 }
1424 } else {
1425 if (dpu_enc->crtc_frame_event_cb)
1426 dpu_enc->crtc_frame_event_cb(
1427 dpu_enc->crtc_frame_event_cb_data, event);
1428 }
1429 }
1430
dpu_encoder_off_work(struct work_struct * work)1431 static void dpu_encoder_off_work(struct work_struct *work)
1432 {
1433 struct dpu_encoder_virt *dpu_enc = container_of(work,
1434 struct dpu_encoder_virt, delayed_off_work.work);
1435
1436 if (!dpu_enc) {
1437 DPU_ERROR("invalid dpu encoder\n");
1438 return;
1439 }
1440
1441 dpu_encoder_resource_control(&dpu_enc->base,
1442 DPU_ENC_RC_EVENT_ENTER_IDLE);
1443
1444 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1445 DPU_ENCODER_FRAME_EVENT_IDLE);
1446 }
1447
1448 /**
1449 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1450 * drm_enc: Pointer to drm encoder structure
1451 * phys: Pointer to physical encoder structure
1452 * extra_flush_bits: Additional bit mask to include in flush trigger
1453 */
_dpu_encoder_trigger_flush(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phys,uint32_t extra_flush_bits)1454 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1455 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1456 {
1457 struct dpu_hw_ctl *ctl;
1458 int pending_kickoff_cnt;
1459 u32 ret = UINT_MAX;
1460
1461 if (!phys->hw_pp) {
1462 DPU_ERROR("invalid pingpong hw\n");
1463 return;
1464 }
1465
1466 ctl = phys->hw_ctl;
1467 if (!ctl->ops.trigger_flush) {
1468 DPU_ERROR("missing trigger cb\n");
1469 return;
1470 }
1471
1472 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1473
1474 if (extra_flush_bits && ctl->ops.update_pending_flush)
1475 ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1476
1477 ctl->ops.trigger_flush(ctl);
1478
1479 if (ctl->ops.get_pending_flush)
1480 ret = ctl->ops.get_pending_flush(ctl);
1481
1482 trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx,
1483 pending_kickoff_cnt, ctl->idx,
1484 extra_flush_bits, ret);
1485 }
1486
1487 /**
1488 * _dpu_encoder_trigger_start - trigger start for a physical encoder
1489 * phys: Pointer to physical encoder structure
1490 */
_dpu_encoder_trigger_start(struct dpu_encoder_phys * phys)1491 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1492 {
1493 if (!phys) {
1494 DPU_ERROR("invalid argument(s)\n");
1495 return;
1496 }
1497
1498 if (!phys->hw_pp) {
1499 DPU_ERROR("invalid pingpong hw\n");
1500 return;
1501 }
1502
1503 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1504 phys->ops.trigger_start(phys);
1505 }
1506
dpu_encoder_helper_trigger_start(struct dpu_encoder_phys * phys_enc)1507 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1508 {
1509 struct dpu_hw_ctl *ctl;
1510
1511 ctl = phys_enc->hw_ctl;
1512 if (ctl->ops.trigger_start) {
1513 ctl->ops.trigger_start(ctl);
1514 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1515 }
1516 }
1517
dpu_encoder_helper_wait_event_timeout(int32_t drm_id,int32_t hw_id,struct dpu_encoder_wait_info * info)1518 static int dpu_encoder_helper_wait_event_timeout(
1519 int32_t drm_id,
1520 int32_t hw_id,
1521 struct dpu_encoder_wait_info *info)
1522 {
1523 int rc = 0;
1524 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1525 s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1526 s64 time;
1527
1528 do {
1529 rc = wait_event_timeout(*(info->wq),
1530 atomic_read(info->atomic_cnt) == 0, jiffies);
1531 time = ktime_to_ms(ktime_get());
1532
1533 trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time,
1534 expected_time,
1535 atomic_read(info->atomic_cnt));
1536 /* If we timed out, counter is valid and time is less, wait again */
1537 } while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1538 (time < expected_time));
1539
1540 return rc;
1541 }
1542
dpu_encoder_helper_hw_reset(struct dpu_encoder_phys * phys_enc)1543 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1544 {
1545 struct dpu_encoder_virt *dpu_enc;
1546 struct dpu_hw_ctl *ctl;
1547 int rc;
1548
1549 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1550 ctl = phys_enc->hw_ctl;
1551
1552 if (!ctl->ops.reset)
1553 return;
1554
1555 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent),
1556 ctl->idx);
1557
1558 rc = ctl->ops.reset(ctl);
1559 if (rc)
1560 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx);
1561
1562 phys_enc->enable_state = DPU_ENC_ENABLED;
1563 }
1564
1565 /**
1566 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1567 * Iterate through the physical encoders and perform consolidated flush
1568 * and/or control start triggering as needed. This is done in the virtual
1569 * encoder rather than the individual physical ones in order to handle
1570 * use cases that require visibility into multiple physical encoders at
1571 * a time.
1572 * dpu_enc: Pointer to virtual encoder structure
1573 */
_dpu_encoder_kickoff_phys(struct dpu_encoder_virt * dpu_enc)1574 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1575 {
1576 struct dpu_hw_ctl *ctl;
1577 uint32_t i, pending_flush;
1578 unsigned long lock_flags;
1579
1580 pending_flush = 0x0;
1581
1582 /* update pending counts and trigger kickoff ctl flush atomically */
1583 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1584
1585 /* don't perform flush/start operations for slave encoders */
1586 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1587 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1588
1589 if (phys->enable_state == DPU_ENC_DISABLED)
1590 continue;
1591
1592 ctl = phys->hw_ctl;
1593
1594 /*
1595 * This is cleared in frame_done worker, which isn't invoked
1596 * for async commits. So don't set this for async, since it'll
1597 * roll over to the next commit.
1598 */
1599 if (phys->split_role != ENC_ROLE_SLAVE)
1600 set_bit(i, dpu_enc->frame_busy_mask);
1601
1602 if (!phys->ops.needs_single_flush ||
1603 !phys->ops.needs_single_flush(phys))
1604 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1605 else if (ctl->ops.get_pending_flush)
1606 pending_flush |= ctl->ops.get_pending_flush(ctl);
1607 }
1608
1609 /* for split flush, combine pending flush masks and send to master */
1610 if (pending_flush && dpu_enc->cur_master) {
1611 _dpu_encoder_trigger_flush(
1612 &dpu_enc->base,
1613 dpu_enc->cur_master,
1614 pending_flush);
1615 }
1616
1617 _dpu_encoder_trigger_start(dpu_enc->cur_master);
1618
1619 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1620 }
1621
dpu_encoder_trigger_kickoff_pending(struct drm_encoder * drm_enc)1622 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1623 {
1624 struct dpu_encoder_virt *dpu_enc;
1625 struct dpu_encoder_phys *phys;
1626 unsigned int i;
1627 struct dpu_hw_ctl *ctl;
1628 struct msm_display_info *disp_info;
1629
1630 if (!drm_enc) {
1631 DPU_ERROR("invalid encoder\n");
1632 return;
1633 }
1634 dpu_enc = to_dpu_encoder_virt(drm_enc);
1635 disp_info = &dpu_enc->disp_info;
1636
1637 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1638 phys = dpu_enc->phys_encs[i];
1639
1640 ctl = phys->hw_ctl;
1641 if (ctl->ops.clear_pending_flush)
1642 ctl->ops.clear_pending_flush(ctl);
1643
1644 /* update only for command mode primary ctl */
1645 if ((phys == dpu_enc->cur_master) &&
1646 (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
1647 && ctl->ops.trigger_pending)
1648 ctl->ops.trigger_pending(ctl);
1649 }
1650 }
1651
_dpu_encoder_calculate_linetime(struct dpu_encoder_virt * dpu_enc,struct drm_display_mode * mode)1652 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1653 struct drm_display_mode *mode)
1654 {
1655 u64 pclk_rate;
1656 u32 pclk_period;
1657 u32 line_time;
1658
1659 /*
1660 * For linetime calculation, only operate on master encoder.
1661 */
1662 if (!dpu_enc->cur_master)
1663 return 0;
1664
1665 if (!dpu_enc->cur_master->ops.get_line_count) {
1666 DPU_ERROR("get_line_count function not defined\n");
1667 return 0;
1668 }
1669
1670 pclk_rate = mode->clock; /* pixel clock in kHz */
1671 if (pclk_rate == 0) {
1672 DPU_ERROR("pclk is 0, cannot calculate line time\n");
1673 return 0;
1674 }
1675
1676 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1677 if (pclk_period == 0) {
1678 DPU_ERROR("pclk period is 0\n");
1679 return 0;
1680 }
1681
1682 /*
1683 * Line time calculation based on Pixel clock and HTOTAL.
1684 * Final unit is in ns.
1685 */
1686 line_time = (pclk_period * mode->htotal) / 1000;
1687 if (line_time == 0) {
1688 DPU_ERROR("line time calculation is 0\n");
1689 return 0;
1690 }
1691
1692 DPU_DEBUG_ENC(dpu_enc,
1693 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1694 pclk_rate, pclk_period, line_time);
1695
1696 return line_time;
1697 }
1698
dpu_encoder_vsync_time(struct drm_encoder * drm_enc,ktime_t * wakeup_time)1699 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1700 {
1701 struct drm_display_mode *mode;
1702 struct dpu_encoder_virt *dpu_enc;
1703 u32 cur_line;
1704 u32 line_time;
1705 u32 vtotal, time_to_vsync;
1706 ktime_t cur_time;
1707
1708 dpu_enc = to_dpu_encoder_virt(drm_enc);
1709
1710 if (!drm_enc->crtc || !drm_enc->crtc->state) {
1711 DPU_ERROR("crtc/crtc state object is NULL\n");
1712 return -EINVAL;
1713 }
1714 mode = &drm_enc->crtc->state->adjusted_mode;
1715
1716 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1717 if (!line_time)
1718 return -EINVAL;
1719
1720 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1721
1722 vtotal = mode->vtotal;
1723 if (cur_line >= vtotal)
1724 time_to_vsync = line_time * vtotal;
1725 else
1726 time_to_vsync = line_time * (vtotal - cur_line);
1727
1728 if (time_to_vsync == 0) {
1729 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1730 vtotal);
1731 return -EINVAL;
1732 }
1733
1734 cur_time = ktime_get();
1735 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1736
1737 DPU_DEBUG_ENC(dpu_enc,
1738 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1739 cur_line, vtotal, time_to_vsync,
1740 ktime_to_ms(cur_time),
1741 ktime_to_ms(*wakeup_time));
1742 return 0;
1743 }
1744
dpu_encoder_vsync_event_handler(struct timer_list * t)1745 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1746 {
1747 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1748 vsync_event_timer);
1749 struct drm_encoder *drm_enc = &dpu_enc->base;
1750 struct msm_drm_private *priv;
1751 struct msm_drm_thread *event_thread;
1752
1753 if (!drm_enc->dev || !drm_enc->crtc) {
1754 DPU_ERROR("invalid parameters\n");
1755 return;
1756 }
1757
1758 priv = drm_enc->dev->dev_private;
1759
1760 if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1761 DPU_ERROR("invalid crtc index\n");
1762 return;
1763 }
1764 event_thread = &priv->event_thread[drm_enc->crtc->index];
1765 if (!event_thread) {
1766 DPU_ERROR("event_thread not found for crtc:%d\n",
1767 drm_enc->crtc->index);
1768 return;
1769 }
1770
1771 del_timer(&dpu_enc->vsync_event_timer);
1772 }
1773
dpu_encoder_vsync_event_work_handler(struct kthread_work * work)1774 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1775 {
1776 struct dpu_encoder_virt *dpu_enc = container_of(work,
1777 struct dpu_encoder_virt, vsync_event_work);
1778 ktime_t wakeup_time;
1779
1780 if (!dpu_enc) {
1781 DPU_ERROR("invalid dpu encoder\n");
1782 return;
1783 }
1784
1785 if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time))
1786 return;
1787
1788 trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1789 mod_timer(&dpu_enc->vsync_event_timer,
1790 nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1791 }
1792
dpu_encoder_prepare_for_kickoff(struct drm_encoder * drm_enc)1793 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1794 {
1795 struct dpu_encoder_virt *dpu_enc;
1796 struct dpu_encoder_phys *phys;
1797 bool needs_hw_reset = false;
1798 unsigned int i;
1799
1800 dpu_enc = to_dpu_encoder_virt(drm_enc);
1801
1802 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1803
1804 /* prepare for next kickoff, may include waiting on previous kickoff */
1805 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1806 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1807 phys = dpu_enc->phys_encs[i];
1808 if (phys->ops.prepare_for_kickoff)
1809 phys->ops.prepare_for_kickoff(phys);
1810 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1811 needs_hw_reset = true;
1812 }
1813 DPU_ATRACE_END("enc_prepare_for_kickoff");
1814
1815 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1816
1817 /* if any phys needs reset, reset all phys, in-order */
1818 if (needs_hw_reset) {
1819 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1820 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1821 dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1822 }
1823 }
1824 }
1825
dpu_encoder_kickoff(struct drm_encoder * drm_enc)1826 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1827 {
1828 struct dpu_encoder_virt *dpu_enc;
1829 struct dpu_encoder_phys *phys;
1830 ktime_t wakeup_time;
1831 unsigned long timeout_ms;
1832 unsigned int i;
1833
1834 DPU_ATRACE_BEGIN("encoder_kickoff");
1835 dpu_enc = to_dpu_encoder_virt(drm_enc);
1836
1837 trace_dpu_enc_kickoff(DRMID(drm_enc));
1838
1839 timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1840 drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1841
1842 atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1843 mod_timer(&dpu_enc->frame_done_timer,
1844 jiffies + msecs_to_jiffies(timeout_ms));
1845
1846 /* All phys encs are ready to go, trigger the kickoff */
1847 _dpu_encoder_kickoff_phys(dpu_enc);
1848
1849 /* allow phys encs to handle any post-kickoff business */
1850 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1851 phys = dpu_enc->phys_encs[i];
1852 if (phys->ops.handle_post_kickoff)
1853 phys->ops.handle_post_kickoff(phys);
1854 }
1855
1856 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1857 !dpu_encoder_vsync_time(drm_enc, &wakeup_time)) {
1858 trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1859 ktime_to_ms(wakeup_time));
1860 mod_timer(&dpu_enc->vsync_event_timer,
1861 nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1862 }
1863
1864 DPU_ATRACE_END("encoder_kickoff");
1865 }
1866
dpu_encoder_prepare_commit(struct drm_encoder * drm_enc)1867 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
1868 {
1869 struct dpu_encoder_virt *dpu_enc;
1870 struct dpu_encoder_phys *phys;
1871 int i;
1872
1873 if (!drm_enc) {
1874 DPU_ERROR("invalid encoder\n");
1875 return;
1876 }
1877 dpu_enc = to_dpu_encoder_virt(drm_enc);
1878
1879 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1880 phys = dpu_enc->phys_encs[i];
1881 if (phys->ops.prepare_commit)
1882 phys->ops.prepare_commit(phys);
1883 }
1884 }
1885
1886 #ifdef CONFIG_DEBUG_FS
_dpu_encoder_status_show(struct seq_file * s,void * data)1887 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
1888 {
1889 struct dpu_encoder_virt *dpu_enc = s->private;
1890 int i;
1891
1892 mutex_lock(&dpu_enc->enc_lock);
1893 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1894 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1895
1896 seq_printf(s, "intf:%d vsync:%8d underrun:%8d ",
1897 phys->intf_idx - INTF_0,
1898 atomic_read(&phys->vsync_cnt),
1899 atomic_read(&phys->underrun_cnt));
1900
1901 switch (phys->intf_mode) {
1902 case INTF_MODE_VIDEO:
1903 seq_puts(s, "mode: video\n");
1904 break;
1905 case INTF_MODE_CMD:
1906 seq_puts(s, "mode: command\n");
1907 break;
1908 default:
1909 seq_puts(s, "mode: ???\n");
1910 break;
1911 }
1912 }
1913 mutex_unlock(&dpu_enc->enc_lock);
1914
1915 return 0;
1916 }
1917
1918 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
1919
_dpu_encoder_init_debugfs(struct drm_encoder * drm_enc)1920 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1921 {
1922 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1923 int i;
1924
1925 char name[DPU_NAME_SIZE];
1926
1927 if (!drm_enc->dev) {
1928 DPU_ERROR("invalid encoder or kms\n");
1929 return -EINVAL;
1930 }
1931
1932 snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
1933
1934 /* create overall sub-directory for the encoder */
1935 dpu_enc->debugfs_root = debugfs_create_dir(name,
1936 drm_enc->dev->primary->debugfs_root);
1937
1938 /* don't error check these */
1939 debugfs_create_file("status", 0600,
1940 dpu_enc->debugfs_root, dpu_enc, &_dpu_encoder_status_fops);
1941
1942 for (i = 0; i < dpu_enc->num_phys_encs; i++)
1943 if (dpu_enc->phys_encs[i]->ops.late_register)
1944 dpu_enc->phys_encs[i]->ops.late_register(
1945 dpu_enc->phys_encs[i],
1946 dpu_enc->debugfs_root);
1947
1948 return 0;
1949 }
1950 #else
_dpu_encoder_init_debugfs(struct drm_encoder * drm_enc)1951 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1952 {
1953 return 0;
1954 }
1955 #endif
1956
dpu_encoder_late_register(struct drm_encoder * encoder)1957 static int dpu_encoder_late_register(struct drm_encoder *encoder)
1958 {
1959 return _dpu_encoder_init_debugfs(encoder);
1960 }
1961
dpu_encoder_early_unregister(struct drm_encoder * encoder)1962 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
1963 {
1964 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
1965
1966 debugfs_remove_recursive(dpu_enc->debugfs_root);
1967 }
1968
dpu_encoder_virt_add_phys_encs(u32 display_caps,struct dpu_encoder_virt * dpu_enc,struct dpu_enc_phys_init_params * params)1969 static int dpu_encoder_virt_add_phys_encs(
1970 u32 display_caps,
1971 struct dpu_encoder_virt *dpu_enc,
1972 struct dpu_enc_phys_init_params *params)
1973 {
1974 struct dpu_encoder_phys *enc = NULL;
1975
1976 DPU_DEBUG_ENC(dpu_enc, "\n");
1977
1978 /*
1979 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
1980 * in this function, check up-front.
1981 */
1982 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
1983 ARRAY_SIZE(dpu_enc->phys_encs)) {
1984 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
1985 dpu_enc->num_phys_encs);
1986 return -EINVAL;
1987 }
1988
1989 if (display_caps & MSM_DISPLAY_CAP_VID_MODE) {
1990 enc = dpu_encoder_phys_vid_init(params);
1991
1992 if (IS_ERR_OR_NULL(enc)) {
1993 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
1994 PTR_ERR(enc));
1995 return enc == NULL ? -EINVAL : PTR_ERR(enc);
1996 }
1997
1998 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
1999 ++dpu_enc->num_phys_encs;
2000 }
2001
2002 if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) {
2003 enc = dpu_encoder_phys_cmd_init(params);
2004
2005 if (IS_ERR_OR_NULL(enc)) {
2006 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2007 PTR_ERR(enc));
2008 return enc == NULL ? -EINVAL : PTR_ERR(enc);
2009 }
2010
2011 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2012 ++dpu_enc->num_phys_encs;
2013 }
2014
2015 if (params->split_role == ENC_ROLE_SLAVE)
2016 dpu_enc->cur_slave = enc;
2017 else
2018 dpu_enc->cur_master = enc;
2019
2020 return 0;
2021 }
2022
2023 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
2024 .handle_vblank_virt = dpu_encoder_vblank_callback,
2025 .handle_underrun_virt = dpu_encoder_underrun_callback,
2026 .handle_frame_done = dpu_encoder_frame_done_callback,
2027 };
2028
dpu_encoder_setup_display(struct dpu_encoder_virt * dpu_enc,struct dpu_kms * dpu_kms,struct msm_display_info * disp_info)2029 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2030 struct dpu_kms *dpu_kms,
2031 struct msm_display_info *disp_info)
2032 {
2033 int ret = 0;
2034 int i = 0;
2035 enum dpu_intf_type intf_type = INTF_NONE;
2036 struct dpu_enc_phys_init_params phys_params;
2037
2038 if (!dpu_enc) {
2039 DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2040 return -EINVAL;
2041 }
2042
2043 dpu_enc->cur_master = NULL;
2044
2045 memset(&phys_params, 0, sizeof(phys_params));
2046 phys_params.dpu_kms = dpu_kms;
2047 phys_params.parent = &dpu_enc->base;
2048 phys_params.parent_ops = &dpu_encoder_parent_ops;
2049 phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2050
2051 DPU_DEBUG("\n");
2052
2053 switch (disp_info->intf_type) {
2054 case DRM_MODE_ENCODER_DSI:
2055 intf_type = INTF_DSI;
2056 break;
2057 case DRM_MODE_ENCODER_TMDS:
2058 intf_type = INTF_DP;
2059 break;
2060 }
2061
2062 WARN_ON(disp_info->num_of_h_tiles < 1);
2063
2064 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2065
2066 if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
2067 (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
2068 dpu_enc->idle_pc_supported =
2069 dpu_kms->catalog->caps->has_idle_pc;
2070
2071 mutex_lock(&dpu_enc->enc_lock);
2072 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2073 /*
2074 * Left-most tile is at index 0, content is controller id
2075 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2076 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2077 */
2078 u32 controller_id = disp_info->h_tile_instance[i];
2079
2080 if (disp_info->num_of_h_tiles > 1) {
2081 if (i == 0)
2082 phys_params.split_role = ENC_ROLE_MASTER;
2083 else
2084 phys_params.split_role = ENC_ROLE_SLAVE;
2085 } else {
2086 phys_params.split_role = ENC_ROLE_SOLO;
2087 }
2088
2089 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2090 i, controller_id, phys_params.split_role);
2091
2092 phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
2093 intf_type,
2094 controller_id);
2095 if (phys_params.intf_idx == INTF_MAX) {
2096 DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n",
2097 intf_type, controller_id);
2098 ret = -EINVAL;
2099 }
2100
2101 if (!ret) {
2102 ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities,
2103 dpu_enc,
2104 &phys_params);
2105 if (ret)
2106 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2107 }
2108 }
2109
2110 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2111 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2112 atomic_set(&phys->vsync_cnt, 0);
2113 atomic_set(&phys->underrun_cnt, 0);
2114 }
2115 mutex_unlock(&dpu_enc->enc_lock);
2116
2117 return ret;
2118 }
2119
dpu_encoder_frame_done_timeout(struct timer_list * t)2120 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2121 {
2122 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2123 frame_done_timer);
2124 struct drm_encoder *drm_enc = &dpu_enc->base;
2125 u32 event;
2126
2127 if (!drm_enc->dev) {
2128 DPU_ERROR("invalid parameters\n");
2129 return;
2130 }
2131
2132 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2133 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2134 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2135 return;
2136 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2137 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2138 return;
2139 }
2140
2141 DPU_ERROR_ENC_RATELIMITED(dpu_enc, "frame done timeout\n");
2142
2143 event = DPU_ENCODER_FRAME_EVENT_ERROR;
2144 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2145 dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2146 }
2147
2148 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2149 .mode_set = dpu_encoder_virt_mode_set,
2150 .disable = dpu_encoder_virt_disable,
2151 .enable = dpu_kms_encoder_enable,
2152 .atomic_check = dpu_encoder_virt_atomic_check,
2153
2154 /* This is called by dpu_kms_encoder_enable */
2155 .commit = dpu_encoder_virt_enable,
2156 };
2157
2158 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2159 .destroy = dpu_encoder_destroy,
2160 .late_register = dpu_encoder_late_register,
2161 .early_unregister = dpu_encoder_early_unregister,
2162 };
2163
dpu_encoder_setup(struct drm_device * dev,struct drm_encoder * enc,struct msm_display_info * disp_info)2164 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2165 struct msm_display_info *disp_info)
2166 {
2167 struct msm_drm_private *priv = dev->dev_private;
2168 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2169 struct drm_encoder *drm_enc = NULL;
2170 struct dpu_encoder_virt *dpu_enc = NULL;
2171 int ret = 0;
2172
2173 dpu_enc = to_dpu_encoder_virt(enc);
2174
2175 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2176 if (ret)
2177 goto fail;
2178
2179 atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2180 timer_setup(&dpu_enc->frame_done_timer,
2181 dpu_encoder_frame_done_timeout, 0);
2182
2183 if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2184 timer_setup(&dpu_enc->vsync_event_timer,
2185 dpu_encoder_vsync_event_handler,
2186 0);
2187
2188
2189 INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2190 dpu_encoder_off_work);
2191 dpu_enc->idle_timeout = IDLE_TIMEOUT;
2192
2193 kthread_init_work(&dpu_enc->vsync_event_work,
2194 dpu_encoder_vsync_event_work_handler);
2195
2196 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2197
2198 DPU_DEBUG_ENC(dpu_enc, "created\n");
2199
2200 return ret;
2201
2202 fail:
2203 DPU_ERROR("failed to create encoder\n");
2204 if (drm_enc)
2205 dpu_encoder_destroy(drm_enc);
2206
2207 return ret;
2208
2209
2210 }
2211
dpu_encoder_init(struct drm_device * dev,int drm_enc_mode)2212 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2213 int drm_enc_mode)
2214 {
2215 struct dpu_encoder_virt *dpu_enc = NULL;
2216 int rc = 0;
2217
2218 dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2219 if (!dpu_enc)
2220 return ERR_PTR(-ENOMEM);
2221
2222 rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2223 drm_enc_mode, NULL);
2224 if (rc) {
2225 devm_kfree(dev->dev, dpu_enc);
2226 return ERR_PTR(rc);
2227 }
2228
2229 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2230
2231 spin_lock_init(&dpu_enc->enc_spinlock);
2232 dpu_enc->enabled = false;
2233 mutex_init(&dpu_enc->enc_lock);
2234 mutex_init(&dpu_enc->rc_lock);
2235
2236 return &dpu_enc->base;
2237 }
2238
dpu_encoder_wait_for_event(struct drm_encoder * drm_enc,enum msm_event_wait event)2239 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2240 enum msm_event_wait event)
2241 {
2242 int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2243 struct dpu_encoder_virt *dpu_enc = NULL;
2244 int i, ret = 0;
2245
2246 if (!drm_enc) {
2247 DPU_ERROR("invalid encoder\n");
2248 return -EINVAL;
2249 }
2250 dpu_enc = to_dpu_encoder_virt(drm_enc);
2251 DPU_DEBUG_ENC(dpu_enc, "\n");
2252
2253 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2254 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2255
2256 switch (event) {
2257 case MSM_ENC_COMMIT_DONE:
2258 fn_wait = phys->ops.wait_for_commit_done;
2259 break;
2260 case MSM_ENC_TX_COMPLETE:
2261 fn_wait = phys->ops.wait_for_tx_complete;
2262 break;
2263 case MSM_ENC_VBLANK:
2264 fn_wait = phys->ops.wait_for_vblank;
2265 break;
2266 default:
2267 DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2268 event);
2269 return -EINVAL;
2270 }
2271
2272 if (fn_wait) {
2273 DPU_ATRACE_BEGIN("wait_for_completion_event");
2274 ret = fn_wait(phys);
2275 DPU_ATRACE_END("wait_for_completion_event");
2276 if (ret)
2277 return ret;
2278 }
2279 }
2280
2281 return ret;
2282 }
2283
dpu_encoder_get_intf_mode(struct drm_encoder * encoder)2284 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2285 {
2286 struct dpu_encoder_virt *dpu_enc = NULL;
2287
2288 if (!encoder) {
2289 DPU_ERROR("invalid encoder\n");
2290 return INTF_MODE_NONE;
2291 }
2292 dpu_enc = to_dpu_encoder_virt(encoder);
2293
2294 if (dpu_enc->cur_master)
2295 return dpu_enc->cur_master->intf_mode;
2296
2297 if (dpu_enc->num_phys_encs)
2298 return dpu_enc->phys_encs[0]->intf_mode;
2299
2300 return INTF_MODE_NONE;
2301 }
2302