• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Nuvoton NPCM7xx I2C Controller driver
4  *
5  * Copyright (C) 2020 Nuvoton Technologies tali.perry@nuvoton.com
6  */
7 #include <linux/bitfield.h>
8 #include <linux/clk.h>
9 #include <linux/debugfs.h>
10 #include <linux/errno.h>
11 #include <linux/i2c.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/jiffies.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/regmap.h>
22 
23 enum i2c_mode {
24 	I2C_MASTER,
25 	I2C_SLAVE,
26 };
27 
28 /*
29  * External I2C Interface driver xfer indication values, which indicate status
30  * of the bus.
31  */
32 enum i2c_state_ind {
33 	I2C_NO_STATUS_IND = 0,
34 	I2C_SLAVE_RCV_IND,
35 	I2C_SLAVE_XMIT_IND,
36 	I2C_SLAVE_XMIT_MISSING_DATA_IND,
37 	I2C_SLAVE_RESTART_IND,
38 	I2C_SLAVE_DONE_IND,
39 	I2C_MASTER_DONE_IND,
40 	I2C_NACK_IND,
41 	I2C_BUS_ERR_IND,
42 	I2C_WAKE_UP_IND,
43 	I2C_BLOCK_BYTES_ERR_IND,
44 	I2C_SLAVE_RCV_MISSING_DATA_IND,
45 };
46 
47 /*
48  * Operation type values (used to define the operation currently running)
49  * module is interrupt driven, on each interrupt the current operation is
50  * checked to see if the module is currently reading or writing.
51  */
52 enum i2c_oper {
53 	I2C_NO_OPER = 0,
54 	I2C_WRITE_OPER,
55 	I2C_READ_OPER,
56 };
57 
58 /* I2C Bank (module had 2 banks of registers) */
59 enum i2c_bank {
60 	I2C_BANK_0 = 0,
61 	I2C_BANK_1,
62 };
63 
64 /* Internal I2C states values (for the I2C module state machine). */
65 enum i2c_state {
66 	I2C_DISABLE = 0,
67 	I2C_IDLE,
68 	I2C_MASTER_START,
69 	I2C_SLAVE_MATCH,
70 	I2C_OPER_STARTED,
71 	I2C_STOP_PENDING,
72 };
73 
74 #if IS_ENABLED(CONFIG_I2C_SLAVE)
75 /* Module supports setting multiple own slave addresses */
76 enum i2c_addr {
77 	I2C_SLAVE_ADDR1 = 0,
78 	I2C_SLAVE_ADDR2,
79 	I2C_SLAVE_ADDR3,
80 	I2C_SLAVE_ADDR4,
81 	I2C_SLAVE_ADDR5,
82 	I2C_SLAVE_ADDR6,
83 	I2C_SLAVE_ADDR7,
84 	I2C_SLAVE_ADDR8,
85 	I2C_SLAVE_ADDR9,
86 	I2C_SLAVE_ADDR10,
87 	I2C_GC_ADDR,
88 	I2C_ARP_ADDR,
89 };
90 #endif
91 
92 /* init register and default value required to enable module */
93 #define NPCM_I2CSEGCTL			0xE4
94 #define NPCM_I2CSEGCTL_INIT_VAL		0x0333F000
95 
96 /* Common regs */
97 #define NPCM_I2CSDA			0x00
98 #define NPCM_I2CST			0x02
99 #define NPCM_I2CCST			0x04
100 #define NPCM_I2CCTL1			0x06
101 #define NPCM_I2CADDR1			0x08
102 #define NPCM_I2CCTL2			0x0A
103 #define NPCM_I2CADDR2			0x0C
104 #define NPCM_I2CCTL3			0x0E
105 #define NPCM_I2CCST2			0x18
106 #define NPCM_I2CCST3			0x19
107 #define I2C_VER				0x1F
108 
109 /*BANK0 regs*/
110 #define NPCM_I2CADDR3			0x10
111 #define NPCM_I2CADDR7			0x11
112 #define NPCM_I2CADDR4			0x12
113 #define NPCM_I2CADDR8			0x13
114 #define NPCM_I2CADDR5			0x14
115 #define NPCM_I2CADDR9			0x15
116 #define NPCM_I2CADDR6			0x16
117 #define NPCM_I2CADDR10			0x17
118 
119 #if IS_ENABLED(CONFIG_I2C_SLAVE)
120 /*
121  * npcm_i2caddr array:
122  * The module supports having multiple own slave addresses.
123  * Since the addr regs are sprinkled all over the address space,
124  * use this array to get the address or each register.
125  */
126 #define I2C_NUM_OWN_ADDR 2
127 #define I2C_NUM_OWN_ADDR_SUPPORTED 2
128 
129 static const int npcm_i2caddr[I2C_NUM_OWN_ADDR] = {
130 	NPCM_I2CADDR1, NPCM_I2CADDR2,
131 };
132 #endif
133 
134 #define NPCM_I2CCTL4			0x1A
135 #define NPCM_I2CCTL5			0x1B
136 #define NPCM_I2CSCLLT			0x1C /* SCL Low Time */
137 #define NPCM_I2CFIF_CTL			0x1D /* FIFO Control */
138 #define NPCM_I2CSCLHT			0x1E /* SCL High Time */
139 
140 /* BANK 1 regs */
141 #define NPCM_I2CFIF_CTS			0x10 /* Both FIFOs Control and Status */
142 #define NPCM_I2CTXF_CTL			0x12 /* Tx-FIFO Control */
143 #define NPCM_I2CT_OUT			0x14 /* Bus T.O. */
144 #define NPCM_I2CPEC			0x16 /* PEC Data */
145 #define NPCM_I2CTXF_STS			0x1A /* Tx-FIFO Status */
146 #define NPCM_I2CRXF_STS			0x1C /* Rx-FIFO Status */
147 #define NPCM_I2CRXF_CTL			0x1E /* Rx-FIFO Control */
148 
149 /* NPCM_I2CST reg fields */
150 #define NPCM_I2CST_XMIT			BIT(0)
151 #define NPCM_I2CST_MASTER		BIT(1)
152 #define NPCM_I2CST_NMATCH		BIT(2)
153 #define NPCM_I2CST_STASTR		BIT(3)
154 #define NPCM_I2CST_NEGACK		BIT(4)
155 #define NPCM_I2CST_BER			BIT(5)
156 #define NPCM_I2CST_SDAST		BIT(6)
157 #define NPCM_I2CST_SLVSTP		BIT(7)
158 
159 /* NPCM_I2CCST reg fields */
160 #define NPCM_I2CCST_BUSY		BIT(0)
161 #define NPCM_I2CCST_BB			BIT(1)
162 #define NPCM_I2CCST_MATCH		BIT(2)
163 #define NPCM_I2CCST_GCMATCH		BIT(3)
164 #define NPCM_I2CCST_TSDA		BIT(4)
165 #define NPCM_I2CCST_TGSCL		BIT(5)
166 #define NPCM_I2CCST_MATCHAF		BIT(6)
167 #define NPCM_I2CCST_ARPMATCH		BIT(7)
168 
169 /* NPCM_I2CCTL1 reg fields */
170 #define NPCM_I2CCTL1_START		BIT(0)
171 #define NPCM_I2CCTL1_STOP		BIT(1)
172 #define NPCM_I2CCTL1_INTEN		BIT(2)
173 #define NPCM_I2CCTL1_EOBINTE		BIT(3)
174 #define NPCM_I2CCTL1_ACK		BIT(4)
175 #define NPCM_I2CCTL1_GCMEN		BIT(5)
176 #define NPCM_I2CCTL1_NMINTE		BIT(6)
177 #define NPCM_I2CCTL1_STASTRE		BIT(7)
178 
179 /* RW1S fields (inside a RW reg): */
180 #define NPCM_I2CCTL1_RWS   \
181 	(NPCM_I2CCTL1_START | NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK)
182 
183 /* npcm_i2caddr reg fields */
184 #define NPCM_I2CADDR_A			GENMASK(6, 0)
185 #define NPCM_I2CADDR_SAEN		BIT(7)
186 
187 /* NPCM_I2CCTL2 reg fields */
188 #define I2CCTL2_ENABLE			BIT(0)
189 #define I2CCTL2_SCLFRQ6_0		GENMASK(7, 1)
190 
191 /* NPCM_I2CCTL3 reg fields */
192 #define I2CCTL3_SCLFRQ8_7		GENMASK(1, 0)
193 #define I2CCTL3_ARPMEN			BIT(2)
194 #define I2CCTL3_IDL_START		BIT(3)
195 #define I2CCTL3_400K_MODE		BIT(4)
196 #define I2CCTL3_BNK_SEL			BIT(5)
197 #define I2CCTL3_SDA_LVL			BIT(6)
198 #define I2CCTL3_SCL_LVL			BIT(7)
199 
200 /* NPCM_I2CCST2 reg fields */
201 #define NPCM_I2CCST2_MATCHA1F		BIT(0)
202 #define NPCM_I2CCST2_MATCHA2F		BIT(1)
203 #define NPCM_I2CCST2_MATCHA3F		BIT(2)
204 #define NPCM_I2CCST2_MATCHA4F		BIT(3)
205 #define NPCM_I2CCST2_MATCHA5F		BIT(4)
206 #define NPCM_I2CCST2_MATCHA6F		BIT(5)
207 #define NPCM_I2CCST2_MATCHA7F		BIT(5)
208 #define NPCM_I2CCST2_INTSTS		BIT(7)
209 
210 /* NPCM_I2CCST3 reg fields */
211 #define NPCM_I2CCST3_MATCHA8F		BIT(0)
212 #define NPCM_I2CCST3_MATCHA9F		BIT(1)
213 #define NPCM_I2CCST3_MATCHA10F		BIT(2)
214 #define NPCM_I2CCST3_EO_BUSY		BIT(7)
215 
216 /* NPCM_I2CCTL4 reg fields */
217 #define I2CCTL4_HLDT			GENMASK(5, 0)
218 #define I2CCTL4_LVL_WE			BIT(7)
219 
220 /* NPCM_I2CCTL5 reg fields */
221 #define I2CCTL5_DBNCT			GENMASK(3, 0)
222 
223 /* NPCM_I2CFIF_CTS reg fields */
224 #define NPCM_I2CFIF_CTS_RXF_TXE		BIT(1)
225 #define NPCM_I2CFIF_CTS_RFTE_IE		BIT(3)
226 #define NPCM_I2CFIF_CTS_CLR_FIFO	BIT(6)
227 #define NPCM_I2CFIF_CTS_SLVRSTR		BIT(7)
228 
229 /* NPCM_I2CTXF_CTL reg fields */
230 #define NPCM_I2CTXF_CTL_TX_THR		GENMASK(4, 0)
231 #define NPCM_I2CTXF_CTL_THR_TXIE	BIT(6)
232 
233 /* NPCM_I2CT_OUT reg fields */
234 #define NPCM_I2CT_OUT_TO_CKDIV		GENMASK(5, 0)
235 #define NPCM_I2CT_OUT_T_OUTIE		BIT(6)
236 #define NPCM_I2CT_OUT_T_OUTST		BIT(7)
237 
238 /* NPCM_I2CTXF_STS reg fields */
239 #define NPCM_I2CTXF_STS_TX_BYTES	GENMASK(4, 0)
240 #define NPCM_I2CTXF_STS_TX_THST		BIT(6)
241 
242 /* NPCM_I2CRXF_STS reg fields */
243 #define NPCM_I2CRXF_STS_RX_BYTES	GENMASK(4, 0)
244 #define NPCM_I2CRXF_STS_RX_THST		BIT(6)
245 
246 /* NPCM_I2CFIF_CTL reg fields */
247 #define NPCM_I2CFIF_CTL_FIFO_EN		BIT(4)
248 
249 /* NPCM_I2CRXF_CTL reg fields */
250 #define NPCM_I2CRXF_CTL_RX_THR		GENMASK(4, 0)
251 #define NPCM_I2CRXF_CTL_LAST_PEC	BIT(5)
252 #define NPCM_I2CRXF_CTL_THR_RXIE	BIT(6)
253 
254 #define I2C_HW_FIFO_SIZE		16
255 
256 /* I2C_VER reg fields */
257 #define I2C_VER_VERSION			GENMASK(6, 0)
258 #define I2C_VER_FIFO_EN			BIT(7)
259 
260 /* stall/stuck timeout in us */
261 #define DEFAULT_STALL_COUNT		25
262 
263 /* SCLFRQ field position */
264 #define SCLFRQ_0_TO_6			GENMASK(6, 0)
265 #define SCLFRQ_7_TO_8			GENMASK(8, 7)
266 
267 /* supported clk settings. values in Hz. */
268 #define I2C_FREQ_MIN_HZ			10000
269 #define I2C_FREQ_MAX_HZ			I2C_MAX_FAST_MODE_PLUS_FREQ
270 
271 /* Status of one I2C module */
272 struct npcm_i2c {
273 	struct i2c_adapter adap;
274 	struct device *dev;
275 	unsigned char __iomem *reg;
276 	spinlock_t lock;   /* IRQ synchronization */
277 	struct completion cmd_complete;
278 	int cmd_err;
279 	struct i2c_msg *msgs;
280 	int msgs_num;
281 	int num;
282 	u32 apb_clk;
283 	struct i2c_bus_recovery_info rinfo;
284 	enum i2c_state state;
285 	enum i2c_oper operation;
286 	enum i2c_mode master_or_slave;
287 	enum i2c_state_ind stop_ind;
288 	u8 dest_addr;
289 	u8 *rd_buf;
290 	u16 rd_size;
291 	u16 rd_ind;
292 	u8 *wr_buf;
293 	u16 wr_size;
294 	u16 wr_ind;
295 	bool fifo_use;
296 	u16 PEC_mask; /* PEC bit mask per slave address */
297 	bool PEC_use;
298 	bool read_block_use;
299 	unsigned long int_time_stamp;
300 	unsigned long bus_freq; /* in Hz */
301 #if IS_ENABLED(CONFIG_I2C_SLAVE)
302 	u8 own_slave_addr;
303 	struct i2c_client *slave;
304 	int slv_rd_size;
305 	int slv_rd_ind;
306 	int slv_wr_size;
307 	int slv_wr_ind;
308 	u8 slv_rd_buf[I2C_HW_FIFO_SIZE];
309 	u8 slv_wr_buf[I2C_HW_FIFO_SIZE];
310 #endif
311 	struct dentry *debugfs; /* debugfs device directory */
312 	u64 ber_cnt;
313 	u64 rec_succ_cnt;
314 	u64 rec_fail_cnt;
315 	u64 nack_cnt;
316 	u64 timeout_cnt;
317 };
318 
npcm_i2c_select_bank(struct npcm_i2c * bus,enum i2c_bank bank)319 static inline void npcm_i2c_select_bank(struct npcm_i2c *bus,
320 					enum i2c_bank bank)
321 {
322 	u8 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
323 
324 	if (bank == I2C_BANK_0)
325 		i2cctl3 = i2cctl3 & ~I2CCTL3_BNK_SEL;
326 	else
327 		i2cctl3 = i2cctl3 | I2CCTL3_BNK_SEL;
328 	iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
329 }
330 
npcm_i2c_init_params(struct npcm_i2c * bus)331 static void npcm_i2c_init_params(struct npcm_i2c *bus)
332 {
333 	bus->stop_ind = I2C_NO_STATUS_IND;
334 	bus->rd_size = 0;
335 	bus->wr_size = 0;
336 	bus->rd_ind = 0;
337 	bus->wr_ind = 0;
338 	bus->read_block_use = false;
339 	bus->int_time_stamp = 0;
340 	bus->PEC_use = false;
341 	bus->PEC_mask = 0;
342 #if IS_ENABLED(CONFIG_I2C_SLAVE)
343 	if (bus->slave)
344 		bus->master_or_slave = I2C_SLAVE;
345 #endif
346 }
347 
npcm_i2c_wr_byte(struct npcm_i2c * bus,u8 data)348 static inline void npcm_i2c_wr_byte(struct npcm_i2c *bus, u8 data)
349 {
350 	iowrite8(data, bus->reg + NPCM_I2CSDA);
351 }
352 
npcm_i2c_rd_byte(struct npcm_i2c * bus)353 static inline u8 npcm_i2c_rd_byte(struct npcm_i2c *bus)
354 {
355 	return ioread8(bus->reg + NPCM_I2CSDA);
356 }
357 
npcm_i2c_get_SCL(struct i2c_adapter * _adap)358 static int npcm_i2c_get_SCL(struct i2c_adapter *_adap)
359 {
360 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
361 
362 	return !!(I2CCTL3_SCL_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
363 }
364 
npcm_i2c_get_SDA(struct i2c_adapter * _adap)365 static int npcm_i2c_get_SDA(struct i2c_adapter *_adap)
366 {
367 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
368 
369 	return !!(I2CCTL3_SDA_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
370 }
371 
npcm_i2c_get_index(struct npcm_i2c * bus)372 static inline u16 npcm_i2c_get_index(struct npcm_i2c *bus)
373 {
374 	if (bus->operation == I2C_READ_OPER)
375 		return bus->rd_ind;
376 	if (bus->operation == I2C_WRITE_OPER)
377 		return bus->wr_ind;
378 	return 0;
379 }
380 
381 /* quick protocol (just address) */
npcm_i2c_is_quick(struct npcm_i2c * bus)382 static inline bool npcm_i2c_is_quick(struct npcm_i2c *bus)
383 {
384 	return bus->wr_size == 0 && bus->rd_size == 0;
385 }
386 
npcm_i2c_disable(struct npcm_i2c * bus)387 static void npcm_i2c_disable(struct npcm_i2c *bus)
388 {
389 	u8 i2cctl2;
390 
391 #if IS_ENABLED(CONFIG_I2C_SLAVE)
392 	int i;
393 
394 	/* Slave addresses removal */
395 	for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++)
396 		iowrite8(0, bus->reg + npcm_i2caddr[i]);
397 
398 #endif
399 	/* Disable module */
400 	i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
401 	i2cctl2 = i2cctl2 & ~I2CCTL2_ENABLE;
402 	iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
403 
404 	bus->state = I2C_DISABLE;
405 }
406 
npcm_i2c_enable(struct npcm_i2c * bus)407 static void npcm_i2c_enable(struct npcm_i2c *bus)
408 {
409 	u8 i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
410 
411 	i2cctl2 = i2cctl2 | I2CCTL2_ENABLE;
412 	iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
413 	bus->state = I2C_IDLE;
414 }
415 
416 /* enable\disable end of busy (EOB) interrupts */
npcm_i2c_eob_int(struct npcm_i2c * bus,bool enable)417 static inline void npcm_i2c_eob_int(struct npcm_i2c *bus, bool enable)
418 {
419 	u8 val;
420 
421 	/* Clear EO_BUSY pending bit: */
422 	val = ioread8(bus->reg + NPCM_I2CCST3);
423 	val = val | NPCM_I2CCST3_EO_BUSY;
424 	iowrite8(val, bus->reg + NPCM_I2CCST3);
425 
426 	val = ioread8(bus->reg + NPCM_I2CCTL1);
427 	val &= ~NPCM_I2CCTL1_RWS;
428 	if (enable)
429 		val |= NPCM_I2CCTL1_EOBINTE;
430 	else
431 		val &= ~NPCM_I2CCTL1_EOBINTE;
432 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
433 }
434 
npcm_i2c_tx_fifo_empty(struct npcm_i2c * bus)435 static inline bool npcm_i2c_tx_fifo_empty(struct npcm_i2c *bus)
436 {
437 	u8 tx_fifo_sts;
438 
439 	tx_fifo_sts = ioread8(bus->reg + NPCM_I2CTXF_STS);
440 	/* check if TX FIFO is not empty */
441 	if ((tx_fifo_sts & NPCM_I2CTXF_STS_TX_BYTES) == 0)
442 		return false;
443 
444 	/* check if TX FIFO status bit is set: */
445 	return !!FIELD_GET(NPCM_I2CTXF_STS_TX_THST, tx_fifo_sts);
446 }
447 
npcm_i2c_rx_fifo_full(struct npcm_i2c * bus)448 static inline bool npcm_i2c_rx_fifo_full(struct npcm_i2c *bus)
449 {
450 	u8 rx_fifo_sts;
451 
452 	rx_fifo_sts = ioread8(bus->reg + NPCM_I2CRXF_STS);
453 	/* check if RX FIFO is not empty: */
454 	if ((rx_fifo_sts & NPCM_I2CRXF_STS_RX_BYTES) == 0)
455 		return false;
456 
457 	/* check if rx fifo full status is set: */
458 	return !!FIELD_GET(NPCM_I2CRXF_STS_RX_THST, rx_fifo_sts);
459 }
460 
npcm_i2c_clear_fifo_int(struct npcm_i2c * bus)461 static inline void npcm_i2c_clear_fifo_int(struct npcm_i2c *bus)
462 {
463 	u8 val;
464 
465 	val = ioread8(bus->reg + NPCM_I2CFIF_CTS);
466 	val = (val & NPCM_I2CFIF_CTS_SLVRSTR) | NPCM_I2CFIF_CTS_RXF_TXE;
467 	iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
468 }
469 
npcm_i2c_clear_tx_fifo(struct npcm_i2c * bus)470 static inline void npcm_i2c_clear_tx_fifo(struct npcm_i2c *bus)
471 {
472 	u8 val;
473 
474 	val = ioread8(bus->reg + NPCM_I2CTXF_STS);
475 	val = val | NPCM_I2CTXF_STS_TX_THST;
476 	iowrite8(val, bus->reg + NPCM_I2CTXF_STS);
477 }
478 
npcm_i2c_clear_rx_fifo(struct npcm_i2c * bus)479 static inline void npcm_i2c_clear_rx_fifo(struct npcm_i2c *bus)
480 {
481 	u8 val;
482 
483 	val = ioread8(bus->reg + NPCM_I2CRXF_STS);
484 	val = val | NPCM_I2CRXF_STS_RX_THST;
485 	iowrite8(val, bus->reg + NPCM_I2CRXF_STS);
486 }
487 
npcm_i2c_int_enable(struct npcm_i2c * bus,bool enable)488 static void npcm_i2c_int_enable(struct npcm_i2c *bus, bool enable)
489 {
490 	u8 val;
491 
492 	val = ioread8(bus->reg + NPCM_I2CCTL1);
493 	val &= ~NPCM_I2CCTL1_RWS;
494 	if (enable)
495 		val |= NPCM_I2CCTL1_INTEN;
496 	else
497 		val &= ~NPCM_I2CCTL1_INTEN;
498 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
499 }
500 
npcm_i2c_master_start(struct npcm_i2c * bus)501 static inline void npcm_i2c_master_start(struct npcm_i2c *bus)
502 {
503 	u8 val;
504 
505 	val = ioread8(bus->reg + NPCM_I2CCTL1);
506 	val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK);
507 	val |= NPCM_I2CCTL1_START;
508 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
509 }
510 
npcm_i2c_master_stop(struct npcm_i2c * bus)511 static inline void npcm_i2c_master_stop(struct npcm_i2c *bus)
512 {
513 	u8 val;
514 
515 	/*
516 	 * override HW issue: I2C may fail to supply stop condition in Master
517 	 * Write operation.
518 	 * Need to delay at least 5 us from the last int, before issueing a stop
519 	 */
520 	udelay(10); /* function called from interrupt, can't sleep */
521 	val = ioread8(bus->reg + NPCM_I2CCTL1);
522 	val &= ~(NPCM_I2CCTL1_START | NPCM_I2CCTL1_ACK);
523 	val |= NPCM_I2CCTL1_STOP;
524 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
525 
526 	if (!bus->fifo_use)
527 		return;
528 
529 	npcm_i2c_select_bank(bus, I2C_BANK_1);
530 
531 	if (bus->operation == I2C_READ_OPER)
532 		npcm_i2c_clear_rx_fifo(bus);
533 	else
534 		npcm_i2c_clear_tx_fifo(bus);
535 	npcm_i2c_clear_fifo_int(bus);
536 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
537 }
538 
npcm_i2c_stall_after_start(struct npcm_i2c * bus,bool stall)539 static inline void npcm_i2c_stall_after_start(struct npcm_i2c *bus, bool stall)
540 {
541 	u8 val;
542 
543 	val = ioread8(bus->reg + NPCM_I2CCTL1);
544 	val &= ~NPCM_I2CCTL1_RWS;
545 	if (stall)
546 		val |= NPCM_I2CCTL1_STASTRE;
547 	else
548 		val &= ~NPCM_I2CCTL1_STASTRE;
549 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
550 }
551 
npcm_i2c_nack(struct npcm_i2c * bus)552 static inline void npcm_i2c_nack(struct npcm_i2c *bus)
553 {
554 	u8 val;
555 
556 	val = ioread8(bus->reg + NPCM_I2CCTL1);
557 	val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_START);
558 	val |= NPCM_I2CCTL1_ACK;
559 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
560 }
561 
npcm_i2c_clear_master_status(struct npcm_i2c * bus)562 static inline void npcm_i2c_clear_master_status(struct npcm_i2c *bus)
563 {
564 	u8 val;
565 
566 	/* Clear NEGACK, STASTR and BER bits */
567 	val = NPCM_I2CST_BER | NPCM_I2CST_NEGACK | NPCM_I2CST_STASTR;
568 	iowrite8(val, bus->reg + NPCM_I2CST);
569 }
570 
571 #if IS_ENABLED(CONFIG_I2C_SLAVE)
npcm_i2c_slave_int_enable(struct npcm_i2c * bus,bool enable)572 static void npcm_i2c_slave_int_enable(struct npcm_i2c *bus, bool enable)
573 {
574 	u8 i2cctl1;
575 
576 	/* enable interrupt on slave match: */
577 	i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
578 	i2cctl1 &= ~NPCM_I2CCTL1_RWS;
579 	if (enable)
580 		i2cctl1 |= NPCM_I2CCTL1_NMINTE;
581 	else
582 		i2cctl1 &= ~NPCM_I2CCTL1_NMINTE;
583 	iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
584 }
585 
npcm_i2c_slave_enable(struct npcm_i2c * bus,enum i2c_addr addr_type,u8 addr,bool enable)586 static int npcm_i2c_slave_enable(struct npcm_i2c *bus, enum i2c_addr addr_type,
587 				 u8 addr, bool enable)
588 {
589 	u8 i2cctl1;
590 	u8 i2cctl3;
591 	u8 sa_reg;
592 
593 	sa_reg = (addr & 0x7F) | FIELD_PREP(NPCM_I2CADDR_SAEN, enable);
594 	if (addr_type == I2C_GC_ADDR) {
595 		i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
596 		if (enable)
597 			i2cctl1 |= NPCM_I2CCTL1_GCMEN;
598 		else
599 			i2cctl1 &= ~NPCM_I2CCTL1_GCMEN;
600 		iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
601 		return 0;
602 	} else if (addr_type == I2C_ARP_ADDR) {
603 		i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
604 		if (enable)
605 			i2cctl3 |= I2CCTL3_ARPMEN;
606 		else
607 			i2cctl3 &= ~I2CCTL3_ARPMEN;
608 		iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
609 		return 0;
610 	}
611 	if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
612 		dev_err(bus->dev, "try to enable more than 2 SA not supported\n");
613 
614 	if (addr_type >= I2C_ARP_ADDR)
615 		return -EFAULT;
616 
617 	/* Set and enable the address */
618 	iowrite8(sa_reg, bus->reg + npcm_i2caddr[addr_type]);
619 	npcm_i2c_slave_int_enable(bus, enable);
620 
621 	return 0;
622 }
623 #endif
624 
npcm_i2c_reset(struct npcm_i2c * bus)625 static void npcm_i2c_reset(struct npcm_i2c *bus)
626 {
627 	/*
628 	 * Save I2CCTL1 relevant bits. It is being cleared when the module
629 	 *  is disabled.
630 	 */
631 	u8 i2cctl1;
632 #if IS_ENABLED(CONFIG_I2C_SLAVE)
633 	u8 addr;
634 #endif
635 
636 	i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
637 
638 	npcm_i2c_disable(bus);
639 	npcm_i2c_enable(bus);
640 
641 	/* Restore NPCM_I2CCTL1 Status */
642 	i2cctl1 &= ~NPCM_I2CCTL1_RWS;
643 	iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
644 
645 	/* Clear BB (BUS BUSY) bit */
646 	iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
647 	iowrite8(0xFF, bus->reg + NPCM_I2CST);
648 
649 	/* Clear and disable EOB */
650 	npcm_i2c_eob_int(bus, false);
651 
652 	/* Clear all fifo bits: */
653 	iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
654 
655 #if IS_ENABLED(CONFIG_I2C_SLAVE)
656 	if (bus->slave) {
657 		addr = bus->slave->addr;
658 		npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, addr, true);
659 	}
660 #endif
661 
662 	/* clear status bits for spurious interrupts */
663 	npcm_i2c_clear_master_status(bus);
664 
665 	bus->state = I2C_IDLE;
666 }
667 
npcm_i2c_is_master(struct npcm_i2c * bus)668 static inline bool npcm_i2c_is_master(struct npcm_i2c *bus)
669 {
670 	return !!FIELD_GET(NPCM_I2CST_MASTER, ioread8(bus->reg + NPCM_I2CST));
671 }
672 
npcm_i2c_callback(struct npcm_i2c * bus,enum i2c_state_ind op_status,u16 info)673 static void npcm_i2c_callback(struct npcm_i2c *bus,
674 			      enum i2c_state_ind op_status, u16 info)
675 {
676 	struct i2c_msg *msgs;
677 	int msgs_num;
678 	bool do_complete = false;
679 
680 	msgs = bus->msgs;
681 	msgs_num = bus->msgs_num;
682 	/*
683 	 * check that transaction was not timed-out, and msgs still
684 	 * holds a valid value.
685 	 */
686 	if (!msgs)
687 		return;
688 
689 	if (completion_done(&bus->cmd_complete))
690 		return;
691 
692 	switch (op_status) {
693 	case I2C_MASTER_DONE_IND:
694 		bus->cmd_err = bus->msgs_num;
695 		fallthrough;
696 	case I2C_BLOCK_BYTES_ERR_IND:
697 		/* Master tx finished and all transmit bytes were sent */
698 		if (bus->msgs) {
699 			if (msgs[0].flags & I2C_M_RD)
700 				msgs[0].len = info;
701 			else if (msgs_num == 2 &&
702 				 msgs[1].flags & I2C_M_RD)
703 				msgs[1].len = info;
704 		}
705 		do_complete = true;
706 		break;
707 	case I2C_NACK_IND:
708 		/* MASTER transmit got a NACK before tx all bytes */
709 		bus->cmd_err = -ENXIO;
710 		do_complete = true;
711 		break;
712 	case I2C_BUS_ERR_IND:
713 		/* Bus error */
714 		bus->cmd_err = -EAGAIN;
715 		do_complete = true;
716 		break;
717 	case I2C_WAKE_UP_IND:
718 		/* I2C wake up */
719 		break;
720 	default:
721 		break;
722 	}
723 
724 	bus->operation = I2C_NO_OPER;
725 #if IS_ENABLED(CONFIG_I2C_SLAVE)
726 	if (bus->slave)
727 		bus->master_or_slave = I2C_SLAVE;
728 #endif
729 	if (do_complete)
730 		complete(&bus->cmd_complete);
731 }
732 
npcm_i2c_fifo_usage(struct npcm_i2c * bus)733 static u8 npcm_i2c_fifo_usage(struct npcm_i2c *bus)
734 {
735 	if (bus->operation == I2C_WRITE_OPER)
736 		return FIELD_GET(NPCM_I2CTXF_STS_TX_BYTES,
737 				 ioread8(bus->reg + NPCM_I2CTXF_STS));
738 	if (bus->operation == I2C_READ_OPER)
739 		return FIELD_GET(NPCM_I2CRXF_STS_RX_BYTES,
740 				 ioread8(bus->reg + NPCM_I2CRXF_STS));
741 	return 0;
742 }
743 
npcm_i2c_write_to_fifo_master(struct npcm_i2c * bus,u16 max_bytes)744 static void npcm_i2c_write_to_fifo_master(struct npcm_i2c *bus, u16 max_bytes)
745 {
746 	u8 size_free_fifo;
747 
748 	/*
749 	 * Fill the FIFO, while the FIFO is not full and there are more bytes
750 	 * to write
751 	 */
752 	size_free_fifo = I2C_HW_FIFO_SIZE - npcm_i2c_fifo_usage(bus);
753 	while (max_bytes-- && size_free_fifo) {
754 		if (bus->wr_ind < bus->wr_size)
755 			npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
756 		else
757 			npcm_i2c_wr_byte(bus, 0xFF);
758 		size_free_fifo = I2C_HW_FIFO_SIZE - npcm_i2c_fifo_usage(bus);
759 	}
760 }
761 
762 /*
763  * npcm_i2c_set_fifo:
764  * configure the FIFO before using it. If nread is -1 RX FIFO will not be
765  * configured. same for nwrite
766  */
npcm_i2c_set_fifo(struct npcm_i2c * bus,int nread,int nwrite)767 static void npcm_i2c_set_fifo(struct npcm_i2c *bus, int nread, int nwrite)
768 {
769 	u8 rxf_ctl = 0;
770 
771 	if (!bus->fifo_use)
772 		return;
773 	npcm_i2c_select_bank(bus, I2C_BANK_1);
774 	npcm_i2c_clear_tx_fifo(bus);
775 	npcm_i2c_clear_rx_fifo(bus);
776 
777 	/* configure RX FIFO */
778 	if (nread > 0) {
779 		rxf_ctl = min_t(int, nread, I2C_HW_FIFO_SIZE);
780 
781 		/* set LAST bit. if LAST is set next FIFO packet is nacked */
782 		if (nread <= I2C_HW_FIFO_SIZE)
783 			rxf_ctl |= NPCM_I2CRXF_CTL_LAST_PEC;
784 
785 		/*
786 		 * if we are about to read the first byte in blk rd mode,
787 		 * don't NACK it. If slave returns zero size HW can't NACK
788 		 * it immidiattly, it will read extra byte and then NACK.
789 		 */
790 		if (bus->rd_ind == 0 && bus->read_block_use) {
791 			/* set fifo to read one byte, no last: */
792 			rxf_ctl = 1;
793 		}
794 
795 		/* set fifo size: */
796 		iowrite8(rxf_ctl, bus->reg + NPCM_I2CRXF_CTL);
797 	}
798 
799 	/* configure TX FIFO */
800 	if (nwrite > 0) {
801 		if (nwrite > I2C_HW_FIFO_SIZE)
802 			/* data to send is more then FIFO size. */
803 			iowrite8(I2C_HW_FIFO_SIZE, bus->reg + NPCM_I2CTXF_CTL);
804 		else
805 			iowrite8(nwrite, bus->reg + NPCM_I2CTXF_CTL);
806 
807 		npcm_i2c_clear_tx_fifo(bus);
808 	}
809 }
810 
npcm_i2c_read_fifo(struct npcm_i2c * bus,u8 bytes_in_fifo)811 static void npcm_i2c_read_fifo(struct npcm_i2c *bus, u8 bytes_in_fifo)
812 {
813 	u8 data;
814 
815 	while (bytes_in_fifo--) {
816 		data = npcm_i2c_rd_byte(bus);
817 		if (bus->rd_ind < bus->rd_size)
818 			bus->rd_buf[bus->rd_ind++] = data;
819 	}
820 }
821 
npcm_i2c_master_abort(struct npcm_i2c * bus)822 static void npcm_i2c_master_abort(struct npcm_i2c *bus)
823 {
824 	/* Only current master is allowed to issue a stop condition */
825 	if (!npcm_i2c_is_master(bus))
826 		return;
827 
828 	npcm_i2c_eob_int(bus, true);
829 	npcm_i2c_master_stop(bus);
830 	npcm_i2c_clear_master_status(bus);
831 }
832 
833 #if IS_ENABLED(CONFIG_I2C_SLAVE)
npcm_i2c_get_slave_addr(struct npcm_i2c * bus,enum i2c_addr addr_type)834 static u8 npcm_i2c_get_slave_addr(struct npcm_i2c *bus, enum i2c_addr addr_type)
835 {
836 	u8 slave_add;
837 
838 	if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
839 		dev_err(bus->dev, "get slave: try to use more than 2 SA not supported\n");
840 
841 	slave_add = ioread8(bus->reg + npcm_i2caddr[(int)addr_type]);
842 
843 	return slave_add;
844 }
845 
npcm_i2c_remove_slave_addr(struct npcm_i2c * bus,u8 slave_add)846 static int npcm_i2c_remove_slave_addr(struct npcm_i2c *bus, u8 slave_add)
847 {
848 	int i;
849 
850 	/* Set the enable bit */
851 	slave_add |= 0x80;
852 
853 	for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++) {
854 		if (ioread8(bus->reg + npcm_i2caddr[i]) == slave_add)
855 			iowrite8(0, bus->reg + npcm_i2caddr[i]);
856 	}
857 
858 	return 0;
859 }
860 
npcm_i2c_write_fifo_slave(struct npcm_i2c * bus,u16 max_bytes)861 static void npcm_i2c_write_fifo_slave(struct npcm_i2c *bus, u16 max_bytes)
862 {
863 	/*
864 	 * Fill the FIFO, while the FIFO is not full and there are more bytes
865 	 * to write
866 	 */
867 	npcm_i2c_clear_fifo_int(bus);
868 	npcm_i2c_clear_tx_fifo(bus);
869 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
870 	while (max_bytes-- && I2C_HW_FIFO_SIZE != npcm_i2c_fifo_usage(bus)) {
871 		if (bus->slv_wr_size <= 0)
872 			break;
873 		bus->slv_wr_ind = bus->slv_wr_ind % I2C_HW_FIFO_SIZE;
874 		npcm_i2c_wr_byte(bus, bus->slv_wr_buf[bus->slv_wr_ind]);
875 		bus->slv_wr_ind++;
876 		bus->slv_wr_ind = bus->slv_wr_ind % I2C_HW_FIFO_SIZE;
877 		bus->slv_wr_size--;
878 	}
879 }
880 
npcm_i2c_read_fifo_slave(struct npcm_i2c * bus,u8 bytes_in_fifo)881 static void npcm_i2c_read_fifo_slave(struct npcm_i2c *bus, u8 bytes_in_fifo)
882 {
883 	u8 data;
884 
885 	if (!bus->slave)
886 		return;
887 
888 	while (bytes_in_fifo--) {
889 		data = npcm_i2c_rd_byte(bus);
890 
891 		bus->slv_rd_ind = bus->slv_rd_ind % I2C_HW_FIFO_SIZE;
892 		bus->slv_rd_buf[bus->slv_rd_ind] = data;
893 		bus->slv_rd_ind++;
894 
895 		/* 1st byte is length in block protocol: */
896 		if (bus->slv_rd_ind == 1 && bus->read_block_use)
897 			bus->slv_rd_size = data + bus->PEC_use + 1;
898 	}
899 }
900 
npcm_i2c_slave_get_wr_buf(struct npcm_i2c * bus)901 static int npcm_i2c_slave_get_wr_buf(struct npcm_i2c *bus)
902 {
903 	int i;
904 	u8 value;
905 	int ind;
906 	int ret = bus->slv_wr_ind;
907 
908 	/* fill a cyclic buffer */
909 	for (i = 0; i < I2C_HW_FIFO_SIZE; i++) {
910 		if (bus->slv_wr_size >= I2C_HW_FIFO_SIZE)
911 			break;
912 		if (bus->state == I2C_SLAVE_MATCH) {
913 			i2c_slave_event(bus->slave, I2C_SLAVE_READ_REQUESTED, &value);
914 			bus->state = I2C_OPER_STARTED;
915 		} else {
916 			i2c_slave_event(bus->slave, I2C_SLAVE_READ_PROCESSED, &value);
917 		}
918 		ind = (bus->slv_wr_ind + bus->slv_wr_size) % I2C_HW_FIFO_SIZE;
919 		bus->slv_wr_buf[ind] = value;
920 		bus->slv_wr_size++;
921 	}
922 	return I2C_HW_FIFO_SIZE - ret;
923 }
924 
npcm_i2c_slave_send_rd_buf(struct npcm_i2c * bus)925 static void npcm_i2c_slave_send_rd_buf(struct npcm_i2c *bus)
926 {
927 	int i;
928 
929 	for (i = 0; i < bus->slv_rd_ind; i++)
930 		i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_RECEIVED,
931 				&bus->slv_rd_buf[i]);
932 	/*
933 	 * once we send bytes up, need to reset the counter of the wr buf
934 	 * got data from master (new offset in device), ignore wr fifo:
935 	 */
936 	if (bus->slv_rd_ind) {
937 		bus->slv_wr_size = 0;
938 		bus->slv_wr_ind = 0;
939 	}
940 
941 	bus->slv_rd_ind = 0;
942 	bus->slv_rd_size = bus->adap.quirks->max_read_len;
943 
944 	npcm_i2c_clear_fifo_int(bus);
945 	npcm_i2c_clear_rx_fifo(bus);
946 }
947 
npcm_i2c_slave_receive(struct npcm_i2c * bus,u16 nread,u8 * read_data)948 static void npcm_i2c_slave_receive(struct npcm_i2c *bus, u16 nread,
949 				   u8 *read_data)
950 {
951 	bus->state = I2C_OPER_STARTED;
952 	bus->operation = I2C_READ_OPER;
953 	bus->slv_rd_size = nread;
954 	bus->slv_rd_ind = 0;
955 
956 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
957 	iowrite8(I2C_HW_FIFO_SIZE, bus->reg + NPCM_I2CRXF_CTL);
958 	npcm_i2c_clear_tx_fifo(bus);
959 	npcm_i2c_clear_rx_fifo(bus);
960 }
961 
npcm_i2c_slave_xmit(struct npcm_i2c * bus,u16 nwrite,u8 * write_data)962 static void npcm_i2c_slave_xmit(struct npcm_i2c *bus, u16 nwrite,
963 				u8 *write_data)
964 {
965 	if (nwrite == 0)
966 		return;
967 
968 	bus->operation = I2C_WRITE_OPER;
969 
970 	/* get the next buffer */
971 	npcm_i2c_slave_get_wr_buf(bus);
972 	npcm_i2c_write_fifo_slave(bus, nwrite);
973 }
974 
975 /*
976  * npcm_i2c_slave_wr_buf_sync:
977  * currently slave IF only supports single byte operations.
978  * in order to utilyze the npcm HW FIFO, the driver will ask for 16 bytes
979  * at a time, pack them in buffer, and then transmit them all together
980  * to the FIFO and onward to the bus.
981  * NACK on read will be once reached to bus->adap->quirks->max_read_len.
982  * sending a NACK wherever the backend requests for it is not supported.
983  * the next two functions allow reading to local buffer before writing it all
984  * to the HW FIFO.
985  */
npcm_i2c_slave_wr_buf_sync(struct npcm_i2c * bus)986 static void npcm_i2c_slave_wr_buf_sync(struct npcm_i2c *bus)
987 {
988 	int left_in_fifo;
989 
990 	left_in_fifo = FIELD_GET(NPCM_I2CTXF_STS_TX_BYTES,
991 				 ioread8(bus->reg + NPCM_I2CTXF_STS));
992 
993 	/* fifo already full: */
994 	if (left_in_fifo >= I2C_HW_FIFO_SIZE ||
995 	    bus->slv_wr_size >= I2C_HW_FIFO_SIZE)
996 		return;
997 
998 	/* update the wr fifo index back to the untransmitted bytes: */
999 	bus->slv_wr_ind = bus->slv_wr_ind - left_in_fifo;
1000 	bus->slv_wr_size = bus->slv_wr_size + left_in_fifo;
1001 
1002 	if (bus->slv_wr_ind < 0)
1003 		bus->slv_wr_ind += I2C_HW_FIFO_SIZE;
1004 }
1005 
npcm_i2c_slave_rd_wr(struct npcm_i2c * bus)1006 static void npcm_i2c_slave_rd_wr(struct npcm_i2c *bus)
1007 {
1008 	if (NPCM_I2CST_XMIT & ioread8(bus->reg + NPCM_I2CST)) {
1009 		/*
1010 		 * Slave got an address match with direction bit 1 so it should
1011 		 * transmit data. Write till the master will NACK
1012 		 */
1013 		bus->operation = I2C_WRITE_OPER;
1014 		npcm_i2c_slave_xmit(bus, bus->adap.quirks->max_write_len,
1015 				    bus->slv_wr_buf);
1016 	} else {
1017 		/*
1018 		 * Slave got an address match with direction bit 0 so it should
1019 		 * receive data.
1020 		 * this module does not support saying no to bytes.
1021 		 * it will always ACK.
1022 		 */
1023 		bus->operation = I2C_READ_OPER;
1024 		npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1025 		bus->stop_ind = I2C_SLAVE_RCV_IND;
1026 		npcm_i2c_slave_send_rd_buf(bus);
1027 		npcm_i2c_slave_receive(bus, bus->adap.quirks->max_read_len,
1028 				       bus->slv_rd_buf);
1029 	}
1030 }
1031 
npcm_i2c_int_slave_handler(struct npcm_i2c * bus)1032 static irqreturn_t npcm_i2c_int_slave_handler(struct npcm_i2c *bus)
1033 {
1034 	u8 val;
1035 	irqreturn_t ret = IRQ_NONE;
1036 	u8 i2cst = ioread8(bus->reg + NPCM_I2CST);
1037 
1038 	/* Slave: A NACK has occurred */
1039 	if (NPCM_I2CST_NEGACK & i2cst) {
1040 		bus->stop_ind = I2C_NACK_IND;
1041 		npcm_i2c_slave_wr_buf_sync(bus);
1042 		if (bus->fifo_use)
1043 			/* clear the FIFO */
1044 			iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1045 				 bus->reg + NPCM_I2CFIF_CTS);
1046 
1047 		/* In slave write, NACK is OK, otherwise it is a problem */
1048 		bus->stop_ind = I2C_NO_STATUS_IND;
1049 		bus->operation = I2C_NO_OPER;
1050 		bus->own_slave_addr = 0xFF;
1051 
1052 		/*
1053 		 * Slave has to wait for STOP to decide this is the end
1054 		 * of the transaction. tx is not yet considered as done
1055 		 */
1056 		iowrite8(NPCM_I2CST_NEGACK, bus->reg + NPCM_I2CST);
1057 
1058 		ret = IRQ_HANDLED;
1059 	}
1060 
1061 	/* Slave mode: a Bus Error (BER) has been identified */
1062 	if (NPCM_I2CST_BER & i2cst) {
1063 		/*
1064 		 * Check whether bus arbitration or Start or Stop during data
1065 		 * xfer bus arbitration problem should not result in recovery
1066 		 */
1067 		bus->stop_ind = I2C_BUS_ERR_IND;
1068 
1069 		/* wait for bus busy before clear fifo */
1070 		iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1071 
1072 		bus->state = I2C_IDLE;
1073 
1074 		/*
1075 		 * in BER case we might get 2 interrupts: one for slave one for
1076 		 * master ( for a channel which is master\slave switching)
1077 		 */
1078 		if (completion_done(&bus->cmd_complete) == false) {
1079 			bus->cmd_err = -EIO;
1080 			complete(&bus->cmd_complete);
1081 		}
1082 		bus->own_slave_addr = 0xFF;
1083 		iowrite8(NPCM_I2CST_BER, bus->reg + NPCM_I2CST);
1084 		ret = IRQ_HANDLED;
1085 	}
1086 
1087 	/* A Slave Stop Condition has been identified */
1088 	if (NPCM_I2CST_SLVSTP & i2cst) {
1089 		u8 bytes_in_fifo = npcm_i2c_fifo_usage(bus);
1090 
1091 		bus->stop_ind = I2C_SLAVE_DONE_IND;
1092 
1093 		if (bus->operation == I2C_READ_OPER)
1094 			npcm_i2c_read_fifo_slave(bus, bytes_in_fifo);
1095 
1096 		/* if the buffer is empty nothing will be sent */
1097 		npcm_i2c_slave_send_rd_buf(bus);
1098 
1099 		/* Slave done transmitting or receiving */
1100 		bus->stop_ind = I2C_NO_STATUS_IND;
1101 
1102 		/*
1103 		 * Note, just because we got here, it doesn't mean we through
1104 		 * away the wr buffer.
1105 		 * we keep it until the next received offset.
1106 		 */
1107 		bus->operation = I2C_NO_OPER;
1108 		bus->own_slave_addr = 0xFF;
1109 		i2c_slave_event(bus->slave, I2C_SLAVE_STOP, 0);
1110 		iowrite8(NPCM_I2CST_SLVSTP, bus->reg + NPCM_I2CST);
1111 		if (bus->fifo_use) {
1112 			npcm_i2c_clear_fifo_int(bus);
1113 			npcm_i2c_clear_rx_fifo(bus);
1114 			npcm_i2c_clear_tx_fifo(bus);
1115 
1116 			iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1117 				 bus->reg + NPCM_I2CFIF_CTS);
1118 		}
1119 		bus->state = I2C_IDLE;
1120 		ret = IRQ_HANDLED;
1121 	}
1122 
1123 	/* restart condition occurred and Rx-FIFO was not empty */
1124 	if (bus->fifo_use && FIELD_GET(NPCM_I2CFIF_CTS_SLVRSTR,
1125 				       ioread8(bus->reg + NPCM_I2CFIF_CTS))) {
1126 		bus->stop_ind = I2C_SLAVE_RESTART_IND;
1127 		bus->master_or_slave = I2C_SLAVE;
1128 		if (bus->operation == I2C_READ_OPER)
1129 			npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1130 		bus->operation = I2C_WRITE_OPER;
1131 		iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1132 		val = NPCM_I2CFIF_CTS_CLR_FIFO | NPCM_I2CFIF_CTS_SLVRSTR |
1133 		      NPCM_I2CFIF_CTS_RXF_TXE;
1134 		iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
1135 		npcm_i2c_slave_rd_wr(bus);
1136 		ret = IRQ_HANDLED;
1137 	}
1138 
1139 	/* A Slave Address Match has been identified */
1140 	if (NPCM_I2CST_NMATCH & i2cst) {
1141 		u8 info = 0;
1142 
1143 		/* Address match automatically implies slave mode */
1144 		bus->master_or_slave = I2C_SLAVE;
1145 		npcm_i2c_clear_fifo_int(bus);
1146 		npcm_i2c_clear_rx_fifo(bus);
1147 		npcm_i2c_clear_tx_fifo(bus);
1148 		iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1149 		iowrite8(I2C_HW_FIFO_SIZE, bus->reg + NPCM_I2CRXF_CTL);
1150 		if (NPCM_I2CST_XMIT & i2cst) {
1151 			bus->operation = I2C_WRITE_OPER;
1152 		} else {
1153 			i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_REQUESTED,
1154 					&info);
1155 			bus->operation = I2C_READ_OPER;
1156 		}
1157 		if (bus->own_slave_addr == 0xFF) {
1158 			/* Check which type of address match */
1159 			val = ioread8(bus->reg + NPCM_I2CCST);
1160 			if (NPCM_I2CCST_MATCH & val) {
1161 				u16 addr;
1162 				enum i2c_addr eaddr;
1163 				u8 i2ccst2;
1164 				u8 i2ccst3;
1165 
1166 				i2ccst3 = ioread8(bus->reg + NPCM_I2CCST3);
1167 				i2ccst2 = ioread8(bus->reg + NPCM_I2CCST2);
1168 
1169 				/*
1170 				 * the i2c module can response to 10 own SA.
1171 				 * check which one was addressed by the master.
1172 				 * repond to the first one.
1173 				 */
1174 				addr = ((i2ccst3 & 0x07) << 7) |
1175 					(i2ccst2 & 0x7F);
1176 				info = ffs(addr);
1177 				eaddr = (enum i2c_addr)info;
1178 				addr = npcm_i2c_get_slave_addr(bus, eaddr);
1179 				addr &= 0x7F;
1180 				bus->own_slave_addr = addr;
1181 				if (bus->PEC_mask & BIT(info))
1182 					bus->PEC_use = true;
1183 				else
1184 					bus->PEC_use = false;
1185 			} else {
1186 				if (NPCM_I2CCST_GCMATCH & val)
1187 					bus->own_slave_addr = 0;
1188 				if (NPCM_I2CCST_ARPMATCH & val)
1189 					bus->own_slave_addr = 0x61;
1190 			}
1191 		} else {
1192 			/*
1193 			 *  Slave match can happen in two options:
1194 			 *  1. Start, SA, read (slave read without further ado)
1195 			 *  2. Start, SA, read, data, restart, SA, read,  ...
1196 			 *     (slave read in fragmented mode)
1197 			 *  3. Start, SA, write, data, restart, SA, read, ..
1198 			 *     (regular write-read mode)
1199 			 */
1200 			if ((bus->state == I2C_OPER_STARTED &&
1201 			     bus->operation == I2C_READ_OPER &&
1202 			     bus->stop_ind == I2C_SLAVE_XMIT_IND) ||
1203 			     bus->stop_ind == I2C_SLAVE_RCV_IND) {
1204 				/* slave tx after slave rx w/o STOP */
1205 				bus->stop_ind = I2C_SLAVE_RESTART_IND;
1206 			}
1207 		}
1208 
1209 		if (NPCM_I2CST_XMIT & i2cst)
1210 			bus->stop_ind = I2C_SLAVE_XMIT_IND;
1211 		else
1212 			bus->stop_ind = I2C_SLAVE_RCV_IND;
1213 		bus->state = I2C_SLAVE_MATCH;
1214 		npcm_i2c_slave_rd_wr(bus);
1215 		iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1216 		ret = IRQ_HANDLED;
1217 	}
1218 
1219 	/* Slave SDA status is set - tx or rx */
1220 	if ((NPCM_I2CST_SDAST & i2cst) ||
1221 	    (bus->fifo_use &&
1222 	    (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1223 		npcm_i2c_slave_rd_wr(bus);
1224 		iowrite8(NPCM_I2CST_SDAST, bus->reg + NPCM_I2CST);
1225 		ret = IRQ_HANDLED;
1226 	} /* SDAST */
1227 
1228 	/*
1229 	 * if irq is not one of the above, make sure EOB is disabled and all
1230 	 * status bits are cleared.
1231 	 */
1232 	if (ret == IRQ_NONE) {
1233 		npcm_i2c_eob_int(bus, false);
1234 		npcm_i2c_clear_master_status(bus);
1235 	}
1236 
1237 	return IRQ_HANDLED;
1238 }
1239 
npcm_i2c_reg_slave(struct i2c_client * client)1240 static int npcm_i2c_reg_slave(struct i2c_client *client)
1241 {
1242 	unsigned long lock_flags;
1243 	struct npcm_i2c *bus = i2c_get_adapdata(client->adapter);
1244 
1245 	bus->slave = client;
1246 
1247 	if (!bus->slave)
1248 		return -EINVAL;
1249 
1250 	if (client->flags & I2C_CLIENT_TEN)
1251 		return -EAFNOSUPPORT;
1252 
1253 	spin_lock_irqsave(&bus->lock, lock_flags);
1254 
1255 	npcm_i2c_init_params(bus);
1256 	bus->slv_rd_size = 0;
1257 	bus->slv_wr_size = 0;
1258 	bus->slv_rd_ind = 0;
1259 	bus->slv_wr_ind = 0;
1260 	if (client->flags & I2C_CLIENT_PEC)
1261 		bus->PEC_use = true;
1262 
1263 	dev_info(bus->dev, "i2c%d register slave SA=0x%x, PEC=%d\n", bus->num,
1264 		 client->addr, bus->PEC_use);
1265 
1266 	npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, client->addr, true);
1267 	npcm_i2c_clear_fifo_int(bus);
1268 	npcm_i2c_clear_rx_fifo(bus);
1269 	npcm_i2c_clear_tx_fifo(bus);
1270 	npcm_i2c_slave_int_enable(bus, true);
1271 
1272 	spin_unlock_irqrestore(&bus->lock, lock_flags);
1273 	return 0;
1274 }
1275 
npcm_i2c_unreg_slave(struct i2c_client * client)1276 static int npcm_i2c_unreg_slave(struct i2c_client *client)
1277 {
1278 	struct npcm_i2c *bus = client->adapter->algo_data;
1279 	unsigned long lock_flags;
1280 
1281 	spin_lock_irqsave(&bus->lock, lock_flags);
1282 	if (!bus->slave) {
1283 		spin_unlock_irqrestore(&bus->lock, lock_flags);
1284 		return -EINVAL;
1285 	}
1286 	npcm_i2c_slave_int_enable(bus, false);
1287 	npcm_i2c_remove_slave_addr(bus, client->addr);
1288 	bus->slave = NULL;
1289 	spin_unlock_irqrestore(&bus->lock, lock_flags);
1290 	return 0;
1291 }
1292 #endif /* CONFIG_I2C_SLAVE */
1293 
npcm_i2c_master_fifo_read(struct npcm_i2c * bus)1294 static void npcm_i2c_master_fifo_read(struct npcm_i2c *bus)
1295 {
1296 	int rcount;
1297 	int fifo_bytes;
1298 	enum i2c_state_ind ind = I2C_MASTER_DONE_IND;
1299 
1300 	fifo_bytes = npcm_i2c_fifo_usage(bus);
1301 	rcount = bus->rd_size - bus->rd_ind;
1302 
1303 	/*
1304 	 * In order not to change the RX_TRH during transaction (we found that
1305 	 * this might be problematic if it takes too much time to read the FIFO)
1306 	 * we read the data in the following way. If the number of bytes to
1307 	 * read == FIFO Size + C (where C < FIFO Size)then first read C bytes
1308 	 * and in the next int we read rest of the data.
1309 	 */
1310 	if (rcount < (2 * I2C_HW_FIFO_SIZE) && rcount > I2C_HW_FIFO_SIZE)
1311 		fifo_bytes = rcount - I2C_HW_FIFO_SIZE;
1312 
1313 	if (rcount <= fifo_bytes) {
1314 		/* last bytes are about to be read - end of tx */
1315 		bus->state = I2C_STOP_PENDING;
1316 		bus->stop_ind = ind;
1317 		npcm_i2c_eob_int(bus, true);
1318 		/* Stop should be set before reading last byte. */
1319 		npcm_i2c_master_stop(bus);
1320 		npcm_i2c_read_fifo(bus, fifo_bytes);
1321 	} else {
1322 		npcm_i2c_read_fifo(bus, fifo_bytes);
1323 		rcount = bus->rd_size - bus->rd_ind;
1324 		npcm_i2c_set_fifo(bus, rcount, -1);
1325 	}
1326 }
1327 
npcm_i2c_irq_master_handler_write(struct npcm_i2c * bus)1328 static void npcm_i2c_irq_master_handler_write(struct npcm_i2c *bus)
1329 {
1330 	u16 wcount;
1331 
1332 	if (bus->fifo_use)
1333 		npcm_i2c_clear_tx_fifo(bus); /* clear the TX fifo status bit */
1334 
1335 	/* Master write operation - last byte handling */
1336 	if (bus->wr_ind == bus->wr_size) {
1337 		if (bus->fifo_use && npcm_i2c_fifo_usage(bus) > 0)
1338 			/*
1339 			 * No more bytes to send (to add to the FIFO),
1340 			 * however the FIFO is not empty yet. It is
1341 			 * still in the middle of tx. Currently there's nothing
1342 			 * to do except for waiting to the end of the tx
1343 			 * We will get an int when the FIFO will get empty.
1344 			 */
1345 			return;
1346 
1347 		if (bus->rd_size == 0) {
1348 			/* all bytes have been written, in wr only operation */
1349 			npcm_i2c_eob_int(bus, true);
1350 			bus->state = I2C_STOP_PENDING;
1351 			bus->stop_ind = I2C_MASTER_DONE_IND;
1352 			npcm_i2c_master_stop(bus);
1353 			/* Clear SDA Status bit (by writing dummy byte) */
1354 			npcm_i2c_wr_byte(bus, 0xFF);
1355 
1356 		} else {
1357 			/* last write-byte written on previous int - restart */
1358 			npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1359 			/* Generate repeated start upon next write to SDA */
1360 			npcm_i2c_master_start(bus);
1361 
1362 			/*
1363 			 * Receiving one byte only - stall after successful
1364 			 * completion of send address byte. If we NACK here, and
1365 			 * slave doesn't ACK the address, we might
1366 			 * unintentionally NACK the next multi-byte read.
1367 			 */
1368 			if (bus->rd_size == 1)
1369 				npcm_i2c_stall_after_start(bus, true);
1370 
1371 			/* Next int will occur on read */
1372 			bus->operation = I2C_READ_OPER;
1373 			/* send the slave address in read direction */
1374 			npcm_i2c_wr_byte(bus, bus->dest_addr | 0x1);
1375 		}
1376 	} else {
1377 		/* write next byte not last byte and not slave address */
1378 		if (!bus->fifo_use || bus->wr_size == 1) {
1379 			npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
1380 		} else {
1381 			wcount = bus->wr_size - bus->wr_ind;
1382 			npcm_i2c_set_fifo(bus, -1, wcount);
1383 			if (wcount)
1384 				npcm_i2c_write_to_fifo_master(bus, wcount);
1385 		}
1386 	}
1387 }
1388 
npcm_i2c_irq_master_handler_read(struct npcm_i2c * bus)1389 static void npcm_i2c_irq_master_handler_read(struct npcm_i2c *bus)
1390 {
1391 	u16 block_extra_bytes_size;
1392 	u8 data;
1393 
1394 	/* added bytes to the packet: */
1395 	block_extra_bytes_size = bus->read_block_use + bus->PEC_use;
1396 
1397 	/*
1398 	 * Perform master read, distinguishing between last byte and the rest of
1399 	 * the bytes. The last byte should be read when the clock is stopped
1400 	 */
1401 	if (bus->rd_ind == 0) { /* first byte handling: */
1402 		if (bus->read_block_use) {
1403 			/* first byte in block protocol is the size: */
1404 			data = npcm_i2c_rd_byte(bus);
1405 			data = clamp_val(data, 1, I2C_SMBUS_BLOCK_MAX);
1406 			bus->rd_size = data + block_extra_bytes_size;
1407 			bus->rd_buf[bus->rd_ind++] = data;
1408 
1409 			/* clear RX FIFO interrupt status: */
1410 			if (bus->fifo_use) {
1411 				data = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1412 				data = data | NPCM_I2CFIF_CTS_RXF_TXE;
1413 				iowrite8(data, bus->reg + NPCM_I2CFIF_CTS);
1414 			}
1415 
1416 			npcm_i2c_set_fifo(bus, bus->rd_size - 1, -1);
1417 			npcm_i2c_stall_after_start(bus, false);
1418 		} else {
1419 			npcm_i2c_clear_tx_fifo(bus);
1420 			npcm_i2c_master_fifo_read(bus);
1421 		}
1422 	} else {
1423 		if (bus->rd_size == block_extra_bytes_size &&
1424 		    bus->read_block_use) {
1425 			bus->state = I2C_STOP_PENDING;
1426 			bus->stop_ind = I2C_BLOCK_BYTES_ERR_IND;
1427 			bus->cmd_err = -EIO;
1428 			npcm_i2c_eob_int(bus, true);
1429 			npcm_i2c_master_stop(bus);
1430 			npcm_i2c_read_fifo(bus, npcm_i2c_fifo_usage(bus));
1431 		} else {
1432 			npcm_i2c_master_fifo_read(bus);
1433 		}
1434 	}
1435 }
1436 
npcm_i2c_irq_handle_nmatch(struct npcm_i2c * bus)1437 static void npcm_i2c_irq_handle_nmatch(struct npcm_i2c *bus)
1438 {
1439 	iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1440 	npcm_i2c_nack(bus);
1441 	bus->stop_ind = I2C_BUS_ERR_IND;
1442 	npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1443 }
1444 
1445 /* A NACK has occurred */
npcm_i2c_irq_handle_nack(struct npcm_i2c * bus)1446 static void npcm_i2c_irq_handle_nack(struct npcm_i2c *bus)
1447 {
1448 	u8 val;
1449 
1450 	if (bus->nack_cnt < ULLONG_MAX)
1451 		bus->nack_cnt++;
1452 
1453 	if (bus->fifo_use) {
1454 		/*
1455 		 * if there are still untransmitted bytes in TX FIFO
1456 		 * reduce them from wr_ind
1457 		 */
1458 		if (bus->operation == I2C_WRITE_OPER)
1459 			bus->wr_ind -= npcm_i2c_fifo_usage(bus);
1460 
1461 		/* clear the FIFO */
1462 		iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1463 	}
1464 
1465 	/* In master write operation, got unexpected NACK */
1466 	bus->stop_ind = I2C_NACK_IND;
1467 	/* Only current master is allowed to issue Stop Condition */
1468 	if (npcm_i2c_is_master(bus)) {
1469 		/* stopping in the middle */
1470 		npcm_i2c_eob_int(bus, false);
1471 		npcm_i2c_master_stop(bus);
1472 
1473 		/* Clear SDA Status bit (by reading dummy byte) */
1474 		npcm_i2c_rd_byte(bus);
1475 
1476 		/*
1477 		 * The bus is released from stall only after the SW clears
1478 		 * NEGACK bit. Then a Stop condition is sent.
1479 		 */
1480 		npcm_i2c_clear_master_status(bus);
1481 		readx_poll_timeout_atomic(ioread8, bus->reg + NPCM_I2CCST, val,
1482 					  !(val & NPCM_I2CCST_BUSY), 10, 200);
1483 		/* verify no status bits are still set after bus is released */
1484 		npcm_i2c_clear_master_status(bus);
1485 	}
1486 	bus->state = I2C_IDLE;
1487 
1488 	/*
1489 	 * In Master mode, NACK should be cleared only after STOP.
1490 	 * In such case, the bus is released from stall only after the
1491 	 * software clears NACK bit. Then a Stop condition is sent.
1492 	 */
1493 	npcm_i2c_callback(bus, bus->stop_ind, bus->wr_ind);
1494 }
1495 
1496 	/* Master mode: a Bus Error has been identified */
npcm_i2c_irq_handle_ber(struct npcm_i2c * bus)1497 static void npcm_i2c_irq_handle_ber(struct npcm_i2c *bus)
1498 {
1499 	if (bus->ber_cnt < ULLONG_MAX)
1500 		bus->ber_cnt++;
1501 	bus->stop_ind = I2C_BUS_ERR_IND;
1502 	if (npcm_i2c_is_master(bus)) {
1503 		npcm_i2c_master_abort(bus);
1504 	} else {
1505 		npcm_i2c_clear_master_status(bus);
1506 
1507 		/* Clear BB (BUS BUSY) bit */
1508 		iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1509 
1510 		bus->cmd_err = -EAGAIN;
1511 		npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1512 	}
1513 	bus->state = I2C_IDLE;
1514 }
1515 
1516 	/* EOB: a master End Of Busy (meaning STOP completed) */
npcm_i2c_irq_handle_eob(struct npcm_i2c * bus)1517 static void npcm_i2c_irq_handle_eob(struct npcm_i2c *bus)
1518 {
1519 	npcm_i2c_eob_int(bus, false);
1520 	bus->state = I2C_IDLE;
1521 	npcm_i2c_callback(bus, bus->stop_ind, bus->rd_ind);
1522 }
1523 
1524 /* Address sent and requested stall occurred (Master mode) */
npcm_i2c_irq_handle_stall_after_start(struct npcm_i2c * bus)1525 static void npcm_i2c_irq_handle_stall_after_start(struct npcm_i2c *bus)
1526 {
1527 	if (npcm_i2c_is_quick(bus)) {
1528 		bus->state = I2C_STOP_PENDING;
1529 		bus->stop_ind = I2C_MASTER_DONE_IND;
1530 		npcm_i2c_eob_int(bus, true);
1531 		npcm_i2c_master_stop(bus);
1532 	} else if ((bus->rd_size == 1) && !bus->read_block_use) {
1533 		/*
1534 		 * Receiving one byte only - set NACK after ensuring
1535 		 * slave ACKed the address byte.
1536 		 */
1537 		npcm_i2c_nack(bus);
1538 	}
1539 
1540 	/* Reset stall-after-address-byte */
1541 	npcm_i2c_stall_after_start(bus, false);
1542 
1543 	/* Clear stall only after setting STOP */
1544 	iowrite8(NPCM_I2CST_STASTR, bus->reg + NPCM_I2CST);
1545 }
1546 
1547 /* SDA status is set - TX or RX, master */
npcm_i2c_irq_handle_sda(struct npcm_i2c * bus,u8 i2cst)1548 static void npcm_i2c_irq_handle_sda(struct npcm_i2c *bus, u8 i2cst)
1549 {
1550 	u8 fif_cts;
1551 
1552 	if (!npcm_i2c_is_master(bus))
1553 		return;
1554 
1555 	if (bus->state == I2C_IDLE) {
1556 		bus->stop_ind = I2C_WAKE_UP_IND;
1557 
1558 		if (npcm_i2c_is_quick(bus) || bus->read_block_use)
1559 			/*
1560 			 * Need to stall after successful
1561 			 * completion of sending address byte
1562 			 */
1563 			npcm_i2c_stall_after_start(bus, true);
1564 		else
1565 			npcm_i2c_stall_after_start(bus, false);
1566 
1567 		/*
1568 		 * Receiving one byte only - stall after successful completion
1569 		 * of sending address byte If we NACK here, and slave doesn't
1570 		 * ACK the address, we might unintentionally NACK the next
1571 		 * multi-byte read
1572 		 */
1573 		if (bus->wr_size == 0 && bus->rd_size == 1)
1574 			npcm_i2c_stall_after_start(bus, true);
1575 
1576 		/* Initiate I2C master tx */
1577 
1578 		/* select bank 1 for FIFO regs */
1579 		npcm_i2c_select_bank(bus, I2C_BANK_1);
1580 
1581 		fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1582 		fif_cts = fif_cts & ~NPCM_I2CFIF_CTS_SLVRSTR;
1583 
1584 		/* clear FIFO and relevant status bits. */
1585 		fif_cts = fif_cts | NPCM_I2CFIF_CTS_CLR_FIFO;
1586 		iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1587 
1588 		/* re-enable */
1589 		fif_cts = fif_cts | NPCM_I2CFIF_CTS_RXF_TXE;
1590 		iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1591 
1592 		/*
1593 		 * Configure the FIFO threshold:
1594 		 * according to the needed # of bytes to read.
1595 		 * Note: due to HW limitation can't config the rx fifo before it
1596 		 * got and ACK on the restart. LAST bit will not be reset unless
1597 		 * RX completed. It will stay set on the next tx.
1598 		 */
1599 		if (bus->wr_size)
1600 			npcm_i2c_set_fifo(bus, -1, bus->wr_size);
1601 		else
1602 			npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1603 
1604 		bus->state = I2C_OPER_STARTED;
1605 
1606 		if (npcm_i2c_is_quick(bus) || bus->wr_size)
1607 			npcm_i2c_wr_byte(bus, bus->dest_addr);
1608 		else
1609 			npcm_i2c_wr_byte(bus, bus->dest_addr | BIT(0));
1610 	/* SDA interrupt, after start\restart */
1611 	} else {
1612 		if (NPCM_I2CST_XMIT & i2cst) {
1613 			bus->operation = I2C_WRITE_OPER;
1614 			npcm_i2c_irq_master_handler_write(bus);
1615 		} else {
1616 			bus->operation = I2C_READ_OPER;
1617 			npcm_i2c_irq_master_handler_read(bus);
1618 		}
1619 	}
1620 }
1621 
npcm_i2c_int_master_handler(struct npcm_i2c * bus)1622 static int npcm_i2c_int_master_handler(struct npcm_i2c *bus)
1623 {
1624 	u8 i2cst;
1625 	int ret = -EIO;
1626 
1627 	i2cst = ioread8(bus->reg + NPCM_I2CST);
1628 
1629 	if (FIELD_GET(NPCM_I2CST_NMATCH, i2cst)) {
1630 		npcm_i2c_irq_handle_nmatch(bus);
1631 		return 0;
1632 	}
1633 	/* A NACK has occurred */
1634 	if (FIELD_GET(NPCM_I2CST_NEGACK, i2cst)) {
1635 		npcm_i2c_irq_handle_nack(bus);
1636 		return 0;
1637 	}
1638 
1639 	/* Master mode: a Bus Error has been identified */
1640 	if (FIELD_GET(NPCM_I2CST_BER, i2cst)) {
1641 		npcm_i2c_irq_handle_ber(bus);
1642 		return 0;
1643 	}
1644 
1645 	/* EOB: a master End Of Busy (meaning STOP completed) */
1646 	if ((FIELD_GET(NPCM_I2CCTL1_EOBINTE,
1647 		       ioread8(bus->reg + NPCM_I2CCTL1)) == 1) &&
1648 	    (FIELD_GET(NPCM_I2CCST3_EO_BUSY,
1649 		       ioread8(bus->reg + NPCM_I2CCST3)))) {
1650 		npcm_i2c_irq_handle_eob(bus);
1651 		return 0;
1652 	}
1653 
1654 	/* Address sent and requested stall occurred (Master mode) */
1655 	if (FIELD_GET(NPCM_I2CST_STASTR, i2cst)) {
1656 		npcm_i2c_irq_handle_stall_after_start(bus);
1657 		ret = 0;
1658 	}
1659 
1660 	/* SDA status is set - TX or RX, master */
1661 	if (FIELD_GET(NPCM_I2CST_SDAST, i2cst) ||
1662 	    (bus->fifo_use &&
1663 	    (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1664 		npcm_i2c_irq_handle_sda(bus, i2cst);
1665 		ret = 0;
1666 	}
1667 
1668 	return ret;
1669 }
1670 
1671 /* recovery using TGCLK functionality of the module */
npcm_i2c_recovery_tgclk(struct i2c_adapter * _adap)1672 static int npcm_i2c_recovery_tgclk(struct i2c_adapter *_adap)
1673 {
1674 	u8               val;
1675 	u8               fif_cts;
1676 	bool             done = false;
1677 	int              status = -ENOTRECOVERABLE;
1678 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1679 	/* Allow 3 bytes (27 toggles) to be read from the slave: */
1680 	int              iter = 27;
1681 
1682 	if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1)) {
1683 		dev_dbg(bus->dev, "bus%d-0x%x recovery skipped, bus not stuck",
1684 			bus->num, bus->dest_addr);
1685 		npcm_i2c_reset(bus);
1686 		return 0;
1687 	}
1688 
1689 	npcm_i2c_int_enable(bus, false);
1690 	npcm_i2c_disable(bus);
1691 	npcm_i2c_enable(bus);
1692 	iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1693 	npcm_i2c_clear_tx_fifo(bus);
1694 	npcm_i2c_clear_rx_fifo(bus);
1695 	iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1696 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1697 	npcm_i2c_stall_after_start(bus, false);
1698 
1699 	/* select bank 1 for FIFO regs */
1700 	npcm_i2c_select_bank(bus, I2C_BANK_1);
1701 
1702 	/* clear FIFO and relevant status bits. */
1703 	fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1704 	fif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
1705 	fif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
1706 	iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1707 	npcm_i2c_set_fifo(bus, -1, 0);
1708 
1709 	/* Repeat the following sequence until SDA is released */
1710 	do {
1711 		/* Issue a single SCL toggle */
1712 		iowrite8(NPCM_I2CCST_TGSCL, bus->reg + NPCM_I2CCST);
1713 		usleep_range(20, 30);
1714 		/* If SDA line is inactive (high), stop */
1715 		if (npcm_i2c_get_SDA(_adap)) {
1716 			done = true;
1717 			status = 0;
1718 		}
1719 	} while (!done && iter--);
1720 
1721 	/* If SDA line is released: send start-addr-stop, to re-sync. */
1722 	if (npcm_i2c_get_SDA(_adap)) {
1723 		/* Send an address byte in write direction: */
1724 		npcm_i2c_wr_byte(bus, bus->dest_addr);
1725 		npcm_i2c_master_start(bus);
1726 		/* Wait until START condition is sent */
1727 		status = readx_poll_timeout(npcm_i2c_get_SCL, _adap, val, !val,
1728 					    20, 200);
1729 		/* If START condition was sent */
1730 		if (npcm_i2c_is_master(bus) > 0) {
1731 			usleep_range(20, 30);
1732 			npcm_i2c_master_stop(bus);
1733 			usleep_range(200, 500);
1734 		}
1735 	}
1736 	npcm_i2c_reset(bus);
1737 	npcm_i2c_int_enable(bus, true);
1738 
1739 	if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1))
1740 		status = 0;
1741 	else
1742 		status = -ENOTRECOVERABLE;
1743 	if (status) {
1744 		if (bus->rec_fail_cnt < ULLONG_MAX)
1745 			bus->rec_fail_cnt++;
1746 	} else {
1747 		if (bus->rec_succ_cnt < ULLONG_MAX)
1748 			bus->rec_succ_cnt++;
1749 	}
1750 	return status;
1751 }
1752 
1753 /* recovery using bit banging functionality of the module */
npcm_i2c_recovery_init(struct i2c_adapter * _adap)1754 static void npcm_i2c_recovery_init(struct i2c_adapter *_adap)
1755 {
1756 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1757 	struct i2c_bus_recovery_info *rinfo = &bus->rinfo;
1758 
1759 	rinfo->recover_bus = npcm_i2c_recovery_tgclk;
1760 
1761 	/*
1762 	 * npcm i2c HW allows direct reading of SCL and SDA.
1763 	 * However, it does not support setting SCL and SDA directly.
1764 	 * The recovery function can togle SCL when SDA is low (but not set)
1765 	 * Getter functions used internally, and can be used externaly.
1766 	 */
1767 	rinfo->get_scl = npcm_i2c_get_SCL;
1768 	rinfo->get_sda = npcm_i2c_get_SDA;
1769 	_adap->bus_recovery_info = rinfo;
1770 }
1771 
1772 /* SCLFRQ min/max field values */
1773 #define SCLFRQ_MIN  10
1774 #define SCLFRQ_MAX  511
1775 #define clk_coef(freq, mul)	DIV_ROUND_UP((freq) * (mul), 1000000)
1776 
1777 /*
1778  * npcm_i2c_init_clk: init HW timing parameters.
1779  * NPCM7XX i2c module timing parameters are depenent on module core clk (APB)
1780  * and bus frequency.
1781  * 100kHz bus requires tSCL = 4 * SCLFRQ * tCLK. LT and HT are simetric.
1782  * 400kHz bus requires assymetric HT and LT. A different equation is recomended
1783  * by the HW designer, given core clock range (equations in comments below).
1784  *
1785  */
npcm_i2c_init_clk(struct npcm_i2c * bus,u32 bus_freq_hz)1786 static int npcm_i2c_init_clk(struct npcm_i2c *bus, u32 bus_freq_hz)
1787 {
1788 	u32  k1 = 0;
1789 	u32  k2 = 0;
1790 	u8   dbnct = 0;
1791 	u32  sclfrq = 0;
1792 	u8   hldt = 7;
1793 	u8   fast_mode = 0;
1794 	u32  src_clk_khz;
1795 	u32  bus_freq_khz;
1796 
1797 	src_clk_khz = bus->apb_clk / 1000;
1798 	bus_freq_khz = bus_freq_hz / 1000;
1799 	bus->bus_freq = bus_freq_hz;
1800 
1801 	/* 100KHz and below: */
1802 	if (bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ) {
1803 		sclfrq = src_clk_khz / (bus_freq_khz * 4);
1804 
1805 		if (sclfrq < SCLFRQ_MIN || sclfrq > SCLFRQ_MAX)
1806 			return -EDOM;
1807 
1808 		if (src_clk_khz >= 40000)
1809 			hldt = 17;
1810 		else if (src_clk_khz >= 12500)
1811 			hldt = 15;
1812 		else
1813 			hldt = 7;
1814 	}
1815 
1816 	/* 400KHz: */
1817 	else if (bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ) {
1818 		sclfrq = 0;
1819 		fast_mode = I2CCTL3_400K_MODE;
1820 
1821 		if (src_clk_khz < 7500)
1822 			/* 400KHZ cannot be supported for core clock < 7.5MHz */
1823 			return -EDOM;
1824 
1825 		else if (src_clk_khz >= 50000) {
1826 			k1 = 80;
1827 			k2 = 48;
1828 			hldt = 12;
1829 			dbnct = 7;
1830 		}
1831 
1832 		/* Master or Slave with frequency > 25MHz */
1833 		else if (src_clk_khz > 25000) {
1834 			hldt = clk_coef(src_clk_khz, 300) + 7;
1835 			k1 = clk_coef(src_clk_khz, 1600);
1836 			k2 = clk_coef(src_clk_khz, 900);
1837 		}
1838 	}
1839 
1840 	/* 1MHz: */
1841 	else if (bus_freq_hz <= I2C_MAX_FAST_MODE_PLUS_FREQ) {
1842 		sclfrq = 0;
1843 		fast_mode = I2CCTL3_400K_MODE;
1844 
1845 		/* 1MHZ cannot be supported for core clock < 24 MHz */
1846 		if (src_clk_khz < 24000)
1847 			return -EDOM;
1848 
1849 		k1 = clk_coef(src_clk_khz, 620);
1850 		k2 = clk_coef(src_clk_khz, 380);
1851 
1852 		/* Core clk > 40 MHz */
1853 		if (src_clk_khz > 40000) {
1854 			/*
1855 			 * Set HLDT:
1856 			 * SDA hold time:  (HLDT-7) * T(CLK) >= 120
1857 			 * HLDT = 120/T(CLK) + 7 = 120 * FREQ(CLK) + 7
1858 			 */
1859 			hldt = clk_coef(src_clk_khz, 120) + 7;
1860 		} else {
1861 			hldt = 7;
1862 			dbnct = 2;
1863 		}
1864 	}
1865 
1866 	/* Frequency larger than 1 MHz is not supported */
1867 	else
1868 		return -EINVAL;
1869 
1870 	if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1871 		k1 = round_up(k1, 2);
1872 		k2 = round_up(k2 + 1, 2);
1873 		if (k1 < SCLFRQ_MIN || k1 > SCLFRQ_MAX ||
1874 		    k2 < SCLFRQ_MIN || k2 > SCLFRQ_MAX)
1875 			return -EDOM;
1876 	}
1877 
1878 	/* write sclfrq value. bits [6:0] are in I2CCTL2 reg */
1879 	iowrite8(FIELD_PREP(I2CCTL2_SCLFRQ6_0, sclfrq & 0x7F),
1880 		 bus->reg + NPCM_I2CCTL2);
1881 
1882 	/* bits [8:7] are in I2CCTL3 reg */
1883 	iowrite8(fast_mode | FIELD_PREP(I2CCTL3_SCLFRQ8_7, (sclfrq >> 7) & 0x3),
1884 		 bus->reg + NPCM_I2CCTL3);
1885 
1886 	/* Select Bank 0 to access NPCM_I2CCTL4/NPCM_I2CCTL5 */
1887 	npcm_i2c_select_bank(bus, I2C_BANK_0);
1888 
1889 	if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1890 		/*
1891 		 * Set SCL Low/High Time:
1892 		 * k1 = 2 * SCLLT7-0 -> Low Time  = k1 / 2
1893 		 * k2 = 2 * SCLLT7-0 -> High Time = k2 / 2
1894 		 */
1895 		iowrite8(k1 / 2, bus->reg + NPCM_I2CSCLLT);
1896 		iowrite8(k2 / 2, bus->reg + NPCM_I2CSCLHT);
1897 
1898 		iowrite8(dbnct, bus->reg + NPCM_I2CCTL5);
1899 	}
1900 
1901 	iowrite8(hldt, bus->reg + NPCM_I2CCTL4);
1902 
1903 	/* Return to Bank 1, and stay there by default: */
1904 	npcm_i2c_select_bank(bus, I2C_BANK_1);
1905 
1906 	return 0;
1907 }
1908 
npcm_i2c_init_module(struct npcm_i2c * bus,enum i2c_mode mode,u32 bus_freq_hz)1909 static int npcm_i2c_init_module(struct npcm_i2c *bus, enum i2c_mode mode,
1910 				u32 bus_freq_hz)
1911 {
1912 	u8 val;
1913 	int ret;
1914 
1915 	/* Check whether module already enabled or frequency is out of bounds */
1916 	if ((bus->state != I2C_DISABLE && bus->state != I2C_IDLE) ||
1917 	    bus_freq_hz < I2C_FREQ_MIN_HZ || bus_freq_hz > I2C_FREQ_MAX_HZ)
1918 		return -EINVAL;
1919 
1920 	npcm_i2c_int_enable(bus, false);
1921 	npcm_i2c_disable(bus);
1922 
1923 	/* Configure FIFO mode : */
1924 	if (FIELD_GET(I2C_VER_FIFO_EN, ioread8(bus->reg + I2C_VER))) {
1925 		bus->fifo_use = true;
1926 		npcm_i2c_select_bank(bus, I2C_BANK_0);
1927 		val = ioread8(bus->reg + NPCM_I2CFIF_CTL);
1928 		val |= NPCM_I2CFIF_CTL_FIFO_EN;
1929 		iowrite8(val, bus->reg + NPCM_I2CFIF_CTL);
1930 		npcm_i2c_select_bank(bus, I2C_BANK_1);
1931 	} else {
1932 		bus->fifo_use = false;
1933 	}
1934 
1935 	/* Configure I2C module clock frequency */
1936 	ret = npcm_i2c_init_clk(bus, bus_freq_hz);
1937 	if (ret) {
1938 		dev_err(bus->dev, "npcm_i2c_init_clk failed\n");
1939 		return ret;
1940 	}
1941 
1942 	/* Enable module (before configuring CTL1) */
1943 	npcm_i2c_enable(bus);
1944 	bus->state = I2C_IDLE;
1945 	val = ioread8(bus->reg + NPCM_I2CCTL1);
1946 	val = (val | NPCM_I2CCTL1_NMINTE) & ~NPCM_I2CCTL1_RWS;
1947 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
1948 
1949 	npcm_i2c_reset(bus);
1950 
1951 	/* check HW is OK: SDA and SCL should be high at this point. */
1952 	if ((npcm_i2c_get_SDA(&bus->adap) == 0) || (npcm_i2c_get_SCL(&bus->adap) == 0)) {
1953 		dev_err(bus->dev, "I2C%d init fail: lines are low\n", bus->num);
1954 		dev_err(bus->dev, "SDA=%d SCL=%d\n", npcm_i2c_get_SDA(&bus->adap),
1955 			npcm_i2c_get_SCL(&bus->adap));
1956 		return -ENXIO;
1957 	}
1958 
1959 	npcm_i2c_int_enable(bus, true);
1960 	return 0;
1961 }
1962 
__npcm_i2c_init(struct npcm_i2c * bus,struct platform_device * pdev)1963 static int __npcm_i2c_init(struct npcm_i2c *bus, struct platform_device *pdev)
1964 {
1965 	u32 clk_freq_hz;
1966 	int ret;
1967 
1968 	/* Initialize the internal data structures */
1969 	bus->state = I2C_DISABLE;
1970 	bus->master_or_slave = I2C_SLAVE;
1971 	bus->int_time_stamp = 0;
1972 #if IS_ENABLED(CONFIG_I2C_SLAVE)
1973 	bus->slave = NULL;
1974 #endif
1975 
1976 	ret = device_property_read_u32(&pdev->dev, "clock-frequency",
1977 				       &clk_freq_hz);
1978 	if (ret) {
1979 		dev_info(&pdev->dev, "Could not read clock-frequency property");
1980 		clk_freq_hz = I2C_MAX_STANDARD_MODE_FREQ;
1981 	}
1982 
1983 	ret = npcm_i2c_init_module(bus, I2C_MASTER, clk_freq_hz);
1984 	if (ret) {
1985 		dev_err(&pdev->dev, "npcm_i2c_init_module failed\n");
1986 		return ret;
1987 	}
1988 
1989 	return 0;
1990 }
1991 
npcm_i2c_bus_irq(int irq,void * dev_id)1992 static irqreturn_t npcm_i2c_bus_irq(int irq, void *dev_id)
1993 {
1994 	struct npcm_i2c *bus = dev_id;
1995 
1996 	if (npcm_i2c_is_master(bus))
1997 		bus->master_or_slave = I2C_MASTER;
1998 
1999 	if (bus->master_or_slave == I2C_MASTER) {
2000 		bus->int_time_stamp = jiffies;
2001 		if (!npcm_i2c_int_master_handler(bus))
2002 			return IRQ_HANDLED;
2003 	}
2004 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2005 	if (bus->slave) {
2006 		bus->master_or_slave = I2C_SLAVE;
2007 		if (npcm_i2c_int_slave_handler(bus))
2008 			return IRQ_HANDLED;
2009 	}
2010 #endif
2011 	/* clear status bits for spurious interrupts */
2012 	npcm_i2c_clear_master_status(bus);
2013 
2014 	return IRQ_HANDLED;
2015 }
2016 
npcm_i2c_master_start_xmit(struct npcm_i2c * bus,u8 slave_addr,u16 nwrite,u16 nread,u8 * write_data,u8 * read_data,bool use_PEC,bool use_read_block)2017 static bool npcm_i2c_master_start_xmit(struct npcm_i2c *bus,
2018 				       u8 slave_addr, u16 nwrite, u16 nread,
2019 				       u8 *write_data, u8 *read_data,
2020 				       bool use_PEC, bool use_read_block)
2021 {
2022 	if (bus->state != I2C_IDLE) {
2023 		bus->cmd_err = -EBUSY;
2024 		return false;
2025 	}
2026 	bus->dest_addr = slave_addr << 1;
2027 	bus->wr_buf = write_data;
2028 	bus->wr_size = nwrite;
2029 	bus->wr_ind = 0;
2030 	bus->rd_buf = read_data;
2031 	bus->rd_size = nread;
2032 	bus->rd_ind = 0;
2033 	bus->PEC_use = 0;
2034 
2035 	/* for tx PEC is appended to buffer from i2c IF. PEC flag is ignored */
2036 	if (nread)
2037 		bus->PEC_use = use_PEC;
2038 
2039 	bus->read_block_use = use_read_block;
2040 	if (nread && !nwrite)
2041 		bus->operation = I2C_READ_OPER;
2042 	else
2043 		bus->operation = I2C_WRITE_OPER;
2044 	if (bus->fifo_use) {
2045 		u8 i2cfif_cts;
2046 
2047 		npcm_i2c_select_bank(bus, I2C_BANK_1);
2048 		/* clear FIFO and relevant status bits. */
2049 		i2cfif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
2050 		i2cfif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
2051 		i2cfif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
2052 		iowrite8(i2cfif_cts, bus->reg + NPCM_I2CFIF_CTS);
2053 	}
2054 
2055 	bus->state = I2C_IDLE;
2056 	npcm_i2c_stall_after_start(bus, true);
2057 	npcm_i2c_master_start(bus);
2058 	return true;
2059 }
2060 
npcm_i2c_master_xfer(struct i2c_adapter * adap,struct i2c_msg * msgs,int num)2061 static int npcm_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
2062 				int num)
2063 {
2064 	struct npcm_i2c *bus = container_of(adap, struct npcm_i2c, adap);
2065 	struct i2c_msg *msg0, *msg1;
2066 	unsigned long time_left, flags;
2067 	u16 nwrite, nread;
2068 	u8 *write_data, *read_data;
2069 	u8 slave_addr;
2070 	unsigned long timeout;
2071 	bool read_block = false;
2072 	bool read_PEC = false;
2073 	u8 bus_busy;
2074 	unsigned long timeout_usec;
2075 
2076 	if (bus->state == I2C_DISABLE) {
2077 		dev_err(bus->dev, "I2C%d module is disabled", bus->num);
2078 		return -EINVAL;
2079 	}
2080 
2081 	msg0 = &msgs[0];
2082 	slave_addr = msg0->addr;
2083 	if (msg0->flags & I2C_M_RD) { /* read */
2084 		nwrite = 0;
2085 		write_data = NULL;
2086 		read_data = msg0->buf;
2087 		if (msg0->flags & I2C_M_RECV_LEN) {
2088 			nread = 1;
2089 			read_block = true;
2090 			if (msg0->flags & I2C_CLIENT_PEC)
2091 				read_PEC = true;
2092 		} else {
2093 			nread = msg0->len;
2094 		}
2095 	} else { /* write */
2096 		nwrite = msg0->len;
2097 		write_data = msg0->buf;
2098 		nread = 0;
2099 		read_data = NULL;
2100 		if (num == 2) {
2101 			msg1 = &msgs[1];
2102 			read_data = msg1->buf;
2103 			if (msg1->flags & I2C_M_RECV_LEN) {
2104 				nread = 1;
2105 				read_block = true;
2106 				if (msg1->flags & I2C_CLIENT_PEC)
2107 					read_PEC = true;
2108 			} else {
2109 				nread = msg1->len;
2110 				read_block = false;
2111 			}
2112 		}
2113 	}
2114 
2115 	/*
2116 	 * Adaptive TimeOut: estimated time in usec + 100% margin:
2117 	 * 2: double the timeout for clock stretching case
2118 	 * 9: bits per transaction (including the ack/nack)
2119 	 */
2120 	timeout_usec = (2 * 9 * USEC_PER_SEC / bus->bus_freq) * (2 + nread + nwrite);
2121 	timeout = max_t(unsigned long, bus->adap.timeout, usecs_to_jiffies(timeout_usec));
2122 	if (nwrite >= 32 * 1024 || nread >= 32 * 1024) {
2123 		dev_err(bus->dev, "i2c%d buffer too big\n", bus->num);
2124 		return -EINVAL;
2125 	}
2126 
2127 	time_left = jiffies + timeout + 1;
2128 	do {
2129 		/*
2130 		 * we must clear slave address immediately when the bus is not
2131 		 * busy, so we spinlock it, but we don't keep the lock for the
2132 		 * entire while since it is too long.
2133 		 */
2134 		spin_lock_irqsave(&bus->lock, flags);
2135 		bus_busy = ioread8(bus->reg + NPCM_I2CCST) & NPCM_I2CCST_BB;
2136 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2137 		if (!bus_busy && bus->slave)
2138 			iowrite8((bus->slave->addr & 0x7F),
2139 				 bus->reg + NPCM_I2CADDR1);
2140 #endif
2141 		spin_unlock_irqrestore(&bus->lock, flags);
2142 
2143 	} while (time_is_after_jiffies(time_left) && bus_busy);
2144 
2145 	if (bus_busy) {
2146 		iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
2147 		npcm_i2c_reset(bus);
2148 		i2c_recover_bus(adap);
2149 		return -EAGAIN;
2150 	}
2151 
2152 	npcm_i2c_init_params(bus);
2153 	bus->dest_addr = slave_addr;
2154 	bus->msgs = msgs;
2155 	bus->msgs_num = num;
2156 	bus->cmd_err = 0;
2157 	bus->read_block_use = read_block;
2158 
2159 	reinit_completion(&bus->cmd_complete);
2160 
2161 	npcm_i2c_int_enable(bus, true);
2162 
2163 	if (npcm_i2c_master_start_xmit(bus, slave_addr, nwrite, nread,
2164 				       write_data, read_data, read_PEC,
2165 				       read_block)) {
2166 		time_left = wait_for_completion_timeout(&bus->cmd_complete,
2167 							timeout);
2168 
2169 		if (time_left == 0) {
2170 			if (bus->timeout_cnt < ULLONG_MAX)
2171 				bus->timeout_cnt++;
2172 			if (bus->master_or_slave == I2C_MASTER) {
2173 				i2c_recover_bus(adap);
2174 				bus->cmd_err = -EIO;
2175 				bus->state = I2C_IDLE;
2176 			}
2177 		}
2178 	}
2179 
2180 	/* if there was BER, check if need to recover the bus: */
2181 	if (bus->cmd_err == -EAGAIN)
2182 		bus->cmd_err = i2c_recover_bus(adap);
2183 
2184 	/*
2185 	 * After any type of error, check if LAST bit is still set,
2186 	 * due to a HW issue.
2187 	 * It cannot be cleared without resetting the module.
2188 	 */
2189 	else if (bus->cmd_err &&
2190 		 (NPCM_I2CRXF_CTL_LAST_PEC & ioread8(bus->reg + NPCM_I2CRXF_CTL)))
2191 		npcm_i2c_reset(bus);
2192 
2193 	/* after any xfer, successful or not, stall and EOB must be disabled */
2194 	npcm_i2c_stall_after_start(bus, false);
2195 	npcm_i2c_eob_int(bus, false);
2196 
2197 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2198 	/* reenable slave if it was enabled */
2199 	if (bus->slave)
2200 		iowrite8((bus->slave->addr & 0x7F) | NPCM_I2CADDR_SAEN,
2201 			 bus->reg + NPCM_I2CADDR1);
2202 #else
2203 	npcm_i2c_int_enable(bus, false);
2204 #endif
2205 	return bus->cmd_err;
2206 }
2207 
npcm_i2c_functionality(struct i2c_adapter * adap)2208 static u32 npcm_i2c_functionality(struct i2c_adapter *adap)
2209 {
2210 	return I2C_FUNC_I2C |
2211 	       I2C_FUNC_SMBUS_EMUL |
2212 	       I2C_FUNC_SMBUS_BLOCK_DATA |
2213 	       I2C_FUNC_SMBUS_PEC |
2214 	       I2C_FUNC_SLAVE;
2215 }
2216 
2217 static const struct i2c_adapter_quirks npcm_i2c_quirks = {
2218 	.max_read_len = 32768,
2219 	.max_write_len = 32768,
2220 	.flags = I2C_AQ_COMB_WRITE_THEN_READ,
2221 };
2222 
2223 static const struct i2c_algorithm npcm_i2c_algo = {
2224 	.master_xfer = npcm_i2c_master_xfer,
2225 	.functionality = npcm_i2c_functionality,
2226 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2227 	.reg_slave	= npcm_i2c_reg_slave,
2228 	.unreg_slave	= npcm_i2c_unreg_slave,
2229 #endif
2230 };
2231 
2232 /* i2c debugfs directory: used to keep health monitor of i2c devices */
2233 static struct dentry *npcm_i2c_debugfs_dir;
2234 
npcm_i2c_init_debugfs(struct platform_device * pdev,struct npcm_i2c * bus)2235 static void npcm_i2c_init_debugfs(struct platform_device *pdev,
2236 				  struct npcm_i2c *bus)
2237 {
2238 	struct dentry *d;
2239 
2240 	if (!npcm_i2c_debugfs_dir)
2241 		return;
2242 	d = debugfs_create_dir(dev_name(&pdev->dev), npcm_i2c_debugfs_dir);
2243 	if (IS_ERR_OR_NULL(d))
2244 		return;
2245 	debugfs_create_u64("ber_cnt", 0444, d, &bus->ber_cnt);
2246 	debugfs_create_u64("nack_cnt", 0444, d, &bus->nack_cnt);
2247 	debugfs_create_u64("rec_succ_cnt", 0444, d, &bus->rec_succ_cnt);
2248 	debugfs_create_u64("rec_fail_cnt", 0444, d, &bus->rec_fail_cnt);
2249 	debugfs_create_u64("timeout_cnt", 0444, d, &bus->timeout_cnt);
2250 
2251 	bus->debugfs = d;
2252 }
2253 
npcm_i2c_probe_bus(struct platform_device * pdev)2254 static int npcm_i2c_probe_bus(struct platform_device *pdev)
2255 {
2256 	struct npcm_i2c *bus;
2257 	struct i2c_adapter *adap;
2258 	struct clk *i2c_clk;
2259 	static struct regmap *gcr_regmap;
2260 	static struct regmap *clk_regmap;
2261 	int irq;
2262 	int ret;
2263 
2264 	bus = devm_kzalloc(&pdev->dev, sizeof(*bus), GFP_KERNEL);
2265 	if (!bus)
2266 		return -ENOMEM;
2267 
2268 	bus->dev = &pdev->dev;
2269 
2270 	bus->num = of_alias_get_id(pdev->dev.of_node, "i2c");
2271 	/* core clk must be acquired to calculate module timing settings */
2272 	i2c_clk = devm_clk_get(&pdev->dev, NULL);
2273 	if (IS_ERR(i2c_clk))
2274 		return PTR_ERR(i2c_clk);
2275 	bus->apb_clk = clk_get_rate(i2c_clk);
2276 
2277 	gcr_regmap = syscon_regmap_lookup_by_compatible("nuvoton,npcm750-gcr");
2278 	if (IS_ERR(gcr_regmap))
2279 		return PTR_ERR(gcr_regmap);
2280 	regmap_write(gcr_regmap, NPCM_I2CSEGCTL, NPCM_I2CSEGCTL_INIT_VAL);
2281 
2282 	clk_regmap = syscon_regmap_lookup_by_compatible("nuvoton,npcm750-clk");
2283 	if (IS_ERR(clk_regmap))
2284 		return PTR_ERR(clk_regmap);
2285 
2286 	bus->reg = devm_platform_ioremap_resource(pdev, 0);
2287 	if (IS_ERR(bus->reg))
2288 		return PTR_ERR(bus->reg);
2289 
2290 	spin_lock_init(&bus->lock);
2291 	init_completion(&bus->cmd_complete);
2292 
2293 	adap = &bus->adap;
2294 	adap->owner = THIS_MODULE;
2295 	adap->retries = 3;
2296 	adap->timeout = msecs_to_jiffies(35);
2297 	adap->algo = &npcm_i2c_algo;
2298 	adap->quirks = &npcm_i2c_quirks;
2299 	adap->algo_data = bus;
2300 	adap->dev.parent = &pdev->dev;
2301 	adap->dev.of_node = pdev->dev.of_node;
2302 	adap->nr = pdev->id;
2303 
2304 	irq = platform_get_irq(pdev, 0);
2305 	if (irq < 0)
2306 		return irq;
2307 
2308 	ret = devm_request_irq(bus->dev, irq, npcm_i2c_bus_irq, 0,
2309 			       dev_name(bus->dev), bus);
2310 	if (ret)
2311 		return ret;
2312 
2313 	ret = __npcm_i2c_init(bus, pdev);
2314 	if (ret)
2315 		return ret;
2316 
2317 	npcm_i2c_recovery_init(adap);
2318 
2319 	i2c_set_adapdata(adap, bus);
2320 
2321 	snprintf(bus->adap.name, sizeof(bus->adap.name), "npcm_i2c_%d",
2322 		 bus->num);
2323 	ret = i2c_add_numbered_adapter(&bus->adap);
2324 	if (ret)
2325 		return ret;
2326 
2327 	platform_set_drvdata(pdev, bus);
2328 	npcm_i2c_init_debugfs(pdev, bus);
2329 	return 0;
2330 }
2331 
npcm_i2c_remove_bus(struct platform_device * pdev)2332 static int npcm_i2c_remove_bus(struct platform_device *pdev)
2333 {
2334 	unsigned long lock_flags;
2335 	struct npcm_i2c *bus = platform_get_drvdata(pdev);
2336 
2337 	debugfs_remove_recursive(bus->debugfs);
2338 	spin_lock_irqsave(&bus->lock, lock_flags);
2339 	npcm_i2c_disable(bus);
2340 	spin_unlock_irqrestore(&bus->lock, lock_flags);
2341 	i2c_del_adapter(&bus->adap);
2342 	return 0;
2343 }
2344 
2345 static const struct of_device_id npcm_i2c_bus_of_table[] = {
2346 	{ .compatible = "nuvoton,npcm750-i2c", },
2347 	{}
2348 };
2349 MODULE_DEVICE_TABLE(of, npcm_i2c_bus_of_table);
2350 
2351 static struct platform_driver npcm_i2c_bus_driver = {
2352 	.probe = npcm_i2c_probe_bus,
2353 	.remove = npcm_i2c_remove_bus,
2354 	.driver = {
2355 		.name = "nuvoton-i2c",
2356 		.of_match_table = npcm_i2c_bus_of_table,
2357 	}
2358 };
2359 
npcm_i2c_init(void)2360 static int __init npcm_i2c_init(void)
2361 {
2362 	int ret;
2363 
2364 	npcm_i2c_debugfs_dir = debugfs_create_dir("npcm_i2c", NULL);
2365 
2366 	ret = platform_driver_register(&npcm_i2c_bus_driver);
2367 	if (ret) {
2368 		debugfs_remove_recursive(npcm_i2c_debugfs_dir);
2369 		return ret;
2370 	}
2371 
2372 	return 0;
2373 }
2374 module_init(npcm_i2c_init);
2375 
npcm_i2c_exit(void)2376 static void __exit npcm_i2c_exit(void)
2377 {
2378 	platform_driver_unregister(&npcm_i2c_bus_driver);
2379 	debugfs_remove_recursive(npcm_i2c_debugfs_dir);
2380 }
2381 module_exit(npcm_i2c_exit);
2382 
2383 MODULE_AUTHOR("Avi Fishman <avi.fishman@gmail.com>");
2384 MODULE_AUTHOR("Tali Perry <tali.perry@nuvoton.com>");
2385 MODULE_AUTHOR("Tyrone Ting <kfting@nuvoton.com>");
2386 MODULE_DESCRIPTION("Nuvoton I2C Bus Driver");
2387 MODULE_LICENSE("GPL v2");
2388