1 /*
2 * Copyright © 2015-2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Robert Bragg <robert@sixbynine.org>
25 */
26
27
28 /**
29 * DOC: i915 Perf Overview
30 *
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
33 * GPU.
34 *
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
38 *
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41 *
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46 * sysctl option.
47 *
48 */
49
50 /**
51 * DOC: i915 Perf History and Comparison with Core Perf
52 *
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
55 *
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
67 *
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
71 *
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
80 *
81 *
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84 *
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
89 *
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
93 *
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
100 *
101 *
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
104 * hit:
105 *
106 * - The perf based OA PMU driver broke some significant design assumptions:
107 *
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
113 *
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
116 *
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
120 *
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
126 *
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
141 *
142 * - As a side note on perf's grouping feature; there was also some concern
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
147 *
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
150 *
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
154 *
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
165 * command streamer.
166 *
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
177 *
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
180 *
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
192 */
193
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
197
198 #include "gem/i915_gem_context.h"
199 #include "gt/intel_engine_pm.h"
200 #include "gt/intel_engine_user.h"
201 #include "gt/intel_gt.h"
202 #include "gt/intel_lrc_reg.h"
203 #include "gt/intel_ring.h"
204
205 #include "i915_drv.h"
206 #include "i915_perf.h"
207
208 /* HW requires this to be a power of two, between 128k and 16M, though driver
209 * is currently generally designed assuming the largest 16M size is used such
210 * that the overflow cases are unlikely in normal operation.
211 */
212 #define OA_BUFFER_SIZE SZ_16M
213
214 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
215
216 /**
217 * DOC: OA Tail Pointer Race
218 *
219 * There's a HW race condition between OA unit tail pointer register updates and
220 * writes to memory whereby the tail pointer can sometimes get ahead of what's
221 * been written out to the OA buffer so far (in terms of what's visible to the
222 * CPU).
223 *
224 * Although this can be observed explicitly while copying reports to userspace
225 * by checking for a zeroed report-id field in tail reports, we want to account
226 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
227 * redundant read() attempts.
228 *
229 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
230 * in the OA buffer, starting from the tail reported by the HW until we find a
231 * report with its first 2 dwords not 0 meaning its previous report is
232 * completely in memory and ready to be read. Those dwords are also set to 0
233 * once read and the whole buffer is cleared upon OA buffer initialization. The
234 * first dword is the reason for this report while the second is the timestamp,
235 * making the chances of having those 2 fields at 0 fairly unlikely. A more
236 * detailed explanation is available in oa_buffer_check_unlocked().
237 *
238 * Most of the implementation details for this workaround are in
239 * oa_buffer_check_unlocked() and _append_oa_reports()
240 *
241 * Note for posterity: previously the driver used to define an effective tail
242 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
243 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
244 * This was flawed considering that the OA unit may also automatically generate
245 * non-periodic reports (such as on context switch) or the OA unit may be
246 * enabled without any periodic sampling.
247 */
248 #define OA_TAIL_MARGIN_NSEC 100000ULL
249 #define INVALID_TAIL_PTR 0xffffffff
250
251 /* The default frequency for checking whether the OA unit has written new
252 * reports to the circular OA buffer...
253 */
254 #define DEFAULT_POLL_FREQUENCY_HZ 200
255 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
256
257 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
258 static u32 i915_perf_stream_paranoid = true;
259
260 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
261 * of the 64bit timestamp bits to trigger reports from) but there's currently
262 * no known use case for sampling as infrequently as once per 47 thousand years.
263 *
264 * Since the timestamps included in OA reports are only 32bits it seems
265 * reasonable to limit the OA exponent where it's still possible to account for
266 * overflow in OA report timestamps.
267 */
268 #define OA_EXPONENT_MAX 31
269
270 #define INVALID_CTX_ID 0xffffffff
271
272 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
273 #define OAREPORT_REASON_MASK 0x3f
274 #define OAREPORT_REASON_MASK_EXTENDED 0x7f
275 #define OAREPORT_REASON_SHIFT 19
276 #define OAREPORT_REASON_TIMER (1<<0)
277 #define OAREPORT_REASON_CTX_SWITCH (1<<3)
278 #define OAREPORT_REASON_CLK_RATIO (1<<5)
279
280
281 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
282 *
283 * The highest sampling frequency we can theoretically program the OA unit
284 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
285 *
286 * Initialized just before we register the sysctl parameter.
287 */
288 static int oa_sample_rate_hard_limit;
289
290 /* Theoretically we can program the OA unit to sample every 160ns but don't
291 * allow that by default unless root...
292 *
293 * The default threshold of 100000Hz is based on perf's similar
294 * kernel.perf_event_max_sample_rate sysctl parameter.
295 */
296 static u32 i915_oa_max_sample_rate = 100000;
297
298 /* XXX: beware if future OA HW adds new report formats that the current
299 * code assumes all reports have a power-of-two size and ~(size - 1) can
300 * be used as a mask to align the OA tail pointer.
301 */
302 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
303 [I915_OA_FORMAT_A13] = { 0, 64 },
304 [I915_OA_FORMAT_A29] = { 1, 128 },
305 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
306 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
307 [I915_OA_FORMAT_B4_C8] = { 4, 64 },
308 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
309 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
310 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
311 };
312
313 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
314 [I915_OA_FORMAT_A12] = { 0, 64 },
315 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 },
316 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
317 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
318 };
319
320 static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = {
321 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
322 };
323
324 #define SAMPLE_OA_REPORT (1<<0)
325
326 /**
327 * struct perf_open_properties - for validated properties given to open a stream
328 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
329 * @single_context: Whether a single or all gpu contexts should be monitored
330 * @hold_preemption: Whether the preemption is disabled for the filtered
331 * context
332 * @ctx_handle: A gem ctx handle for use with @single_context
333 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
334 * @oa_format: An OA unit HW report format
335 * @oa_periodic: Whether to enable periodic OA unit sampling
336 * @oa_period_exponent: The OA unit sampling period is derived from this
337 * @engine: The engine (typically rcs0) being monitored by the OA unit
338 * @has_sseu: Whether @sseu was specified by userspace
339 * @sseu: internal SSEU configuration computed either from the userspace
340 * specified configuration in the opening parameters or a default value
341 * (see get_default_sseu_config())
342 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
343 * data availability
344 *
345 * As read_properties_unlocked() enumerates and validates the properties given
346 * to open a stream of metrics the configuration is built up in the structure
347 * which starts out zero initialized.
348 */
349 struct perf_open_properties {
350 u32 sample_flags;
351
352 u64 single_context:1;
353 u64 hold_preemption:1;
354 u64 ctx_handle;
355
356 /* OA sampling state */
357 int metrics_set;
358 int oa_format;
359 bool oa_periodic;
360 int oa_period_exponent;
361
362 struct intel_engine_cs *engine;
363
364 bool has_sseu;
365 struct intel_sseu sseu;
366
367 u64 poll_oa_period;
368 };
369
370 struct i915_oa_config_bo {
371 struct llist_node node;
372
373 struct i915_oa_config *oa_config;
374 struct i915_vma *vma;
375 };
376
377 static struct ctl_table_header *sysctl_header;
378
379 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
380
i915_oa_config_release(struct kref * ref)381 void i915_oa_config_release(struct kref *ref)
382 {
383 struct i915_oa_config *oa_config =
384 container_of(ref, typeof(*oa_config), ref);
385
386 kfree(oa_config->flex_regs);
387 kfree(oa_config->b_counter_regs);
388 kfree(oa_config->mux_regs);
389
390 kfree_rcu(oa_config, rcu);
391 }
392
393 struct i915_oa_config *
i915_perf_get_oa_config(struct i915_perf * perf,int metrics_set)394 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
395 {
396 struct i915_oa_config *oa_config;
397
398 rcu_read_lock();
399 oa_config = idr_find(&perf->metrics_idr, metrics_set);
400 if (oa_config)
401 oa_config = i915_oa_config_get(oa_config);
402 rcu_read_unlock();
403
404 return oa_config;
405 }
406
free_oa_config_bo(struct i915_oa_config_bo * oa_bo)407 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
408 {
409 i915_oa_config_put(oa_bo->oa_config);
410 i915_vma_put(oa_bo->vma);
411 kfree(oa_bo);
412 }
413
gen12_oa_hw_tail_read(struct i915_perf_stream * stream)414 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
415 {
416 struct intel_uncore *uncore = stream->uncore;
417
418 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
419 GEN12_OAG_OATAILPTR_MASK;
420 }
421
gen8_oa_hw_tail_read(struct i915_perf_stream * stream)422 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
423 {
424 struct intel_uncore *uncore = stream->uncore;
425
426 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
427 }
428
gen7_oa_hw_tail_read(struct i915_perf_stream * stream)429 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
430 {
431 struct intel_uncore *uncore = stream->uncore;
432 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
433
434 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
435 }
436
437 /**
438 * oa_buffer_check_unlocked - check for data and update tail ptr state
439 * @stream: i915 stream instance
440 *
441 * This is either called via fops (for blocking reads in user ctx) or the poll
442 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
443 * if there is data available for userspace to read.
444 *
445 * This function is central to providing a workaround for the OA unit tail
446 * pointer having a race with respect to what data is visible to the CPU.
447 * It is responsible for reading tail pointers from the hardware and giving
448 * the pointers time to 'age' before they are made available for reading.
449 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
450 *
451 * Besides returning true when there is data available to read() this function
452 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
453 * object.
454 *
455 * Note: It's safe to read OA config state here unlocked, assuming that this is
456 * only called while the stream is enabled, while the global OA configuration
457 * can't be modified.
458 *
459 * Returns: %true if the OA buffer contains data, else %false
460 */
oa_buffer_check_unlocked(struct i915_perf_stream * stream)461 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
462 {
463 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
464 int report_size = stream->oa_buffer.format_size;
465 unsigned long flags;
466 bool pollin;
467 u32 hw_tail;
468 u64 now;
469
470 /* We have to consider the (unlikely) possibility that read() errors
471 * could result in an OA buffer reset which might reset the head and
472 * tail state.
473 */
474 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
475
476 hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
477
478 /* The tail pointer increases in 64 byte increments,
479 * not in report_size steps...
480 */
481 hw_tail &= ~(report_size - 1);
482
483 now = ktime_get_mono_fast_ns();
484
485 if (hw_tail == stream->oa_buffer.aging_tail &&
486 (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
487 /* If the HW tail hasn't move since the last check and the HW
488 * tail has been aging for long enough, declare it the new
489 * tail.
490 */
491 stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
492 } else {
493 u32 head, tail, aged_tail;
494
495 /* NB: The head we observe here might effectively be a little
496 * out of date. If a read() is in progress, the head could be
497 * anywhere between this head and stream->oa_buffer.tail.
498 */
499 head = stream->oa_buffer.head - gtt_offset;
500 aged_tail = stream->oa_buffer.tail - gtt_offset;
501
502 hw_tail -= gtt_offset;
503 tail = hw_tail;
504
505 /* Walk the stream backward until we find a report with dword 0
506 * & 1 not at 0. Since the circular buffer pointers progress by
507 * increments of 64 bytes and that reports can be up to 256
508 * bytes long, we can't tell whether a report has fully landed
509 * in memory before the first 2 dwords of the following report
510 * have effectively landed.
511 *
512 * This is assuming that the writes of the OA unit land in
513 * memory in the order they were written to.
514 * If not : (╯°□°)╯︵ ┻━┻
515 */
516 while (OA_TAKEN(tail, aged_tail) >= report_size) {
517 u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail);
518
519 if (report32[0] != 0 || report32[1] != 0)
520 break;
521
522 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
523 }
524
525 if (OA_TAKEN(hw_tail, tail) > report_size &&
526 __ratelimit(&stream->perf->tail_pointer_race))
527 DRM_NOTE("unlanded report(s) head=0x%x "
528 "tail=0x%x hw_tail=0x%x\n",
529 head, tail, hw_tail);
530
531 stream->oa_buffer.tail = gtt_offset + tail;
532 stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
533 stream->oa_buffer.aging_timestamp = now;
534 }
535
536 pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
537 stream->oa_buffer.head - gtt_offset) >= report_size;
538
539 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
540
541 return pollin;
542 }
543
544 /**
545 * append_oa_status - Appends a status record to a userspace read() buffer.
546 * @stream: An i915-perf stream opened for OA metrics
547 * @buf: destination buffer given by userspace
548 * @count: the number of bytes userspace wants to read
549 * @offset: (inout): the current position for writing into @buf
550 * @type: The kind of status to report to userspace
551 *
552 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
553 * into the userspace read() buffer.
554 *
555 * The @buf @offset will only be updated on success.
556 *
557 * Returns: 0 on success, negative error code on failure.
558 */
append_oa_status(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset,enum drm_i915_perf_record_type type)559 static int append_oa_status(struct i915_perf_stream *stream,
560 char __user *buf,
561 size_t count,
562 size_t *offset,
563 enum drm_i915_perf_record_type type)
564 {
565 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
566
567 if ((count - *offset) < header.size)
568 return -ENOSPC;
569
570 if (copy_to_user(buf + *offset, &header, sizeof(header)))
571 return -EFAULT;
572
573 (*offset) += header.size;
574
575 return 0;
576 }
577
578 /**
579 * append_oa_sample - Copies single OA report into userspace read() buffer.
580 * @stream: An i915-perf stream opened for OA metrics
581 * @buf: destination buffer given by userspace
582 * @count: the number of bytes userspace wants to read
583 * @offset: (inout): the current position for writing into @buf
584 * @report: A single OA report to (optionally) include as part of the sample
585 *
586 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
587 * properties when opening a stream, tracked as `stream->sample_flags`. This
588 * function copies the requested components of a single sample to the given
589 * read() @buf.
590 *
591 * The @buf @offset will only be updated on success.
592 *
593 * Returns: 0 on success, negative error code on failure.
594 */
append_oa_sample(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset,const u8 * report)595 static int append_oa_sample(struct i915_perf_stream *stream,
596 char __user *buf,
597 size_t count,
598 size_t *offset,
599 const u8 *report)
600 {
601 int report_size = stream->oa_buffer.format_size;
602 struct drm_i915_perf_record_header header;
603
604 header.type = DRM_I915_PERF_RECORD_SAMPLE;
605 header.pad = 0;
606 header.size = stream->sample_size;
607
608 if ((count - *offset) < header.size)
609 return -ENOSPC;
610
611 buf += *offset;
612 if (copy_to_user(buf, &header, sizeof(header)))
613 return -EFAULT;
614 buf += sizeof(header);
615
616 if (copy_to_user(buf, report, report_size))
617 return -EFAULT;
618
619 (*offset) += header.size;
620
621 return 0;
622 }
623
624 /**
625 * Copies all buffered OA reports into userspace read() buffer.
626 * @stream: An i915-perf stream opened for OA metrics
627 * @buf: destination buffer given by userspace
628 * @count: the number of bytes userspace wants to read
629 * @offset: (inout): the current position for writing into @buf
630 *
631 * Notably any error condition resulting in a short read (-%ENOSPC or
632 * -%EFAULT) will be returned even though one or more records may
633 * have been successfully copied. In this case it's up to the caller
634 * to decide if the error should be squashed before returning to
635 * userspace.
636 *
637 * Note: reports are consumed from the head, and appended to the
638 * tail, so the tail chases the head?... If you think that's mad
639 * and back-to-front you're not alone, but this follows the
640 * Gen PRM naming convention.
641 *
642 * Returns: 0 on success, negative error code on failure.
643 */
gen8_append_oa_reports(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset)644 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
645 char __user *buf,
646 size_t count,
647 size_t *offset)
648 {
649 struct intel_uncore *uncore = stream->uncore;
650 int report_size = stream->oa_buffer.format_size;
651 u8 *oa_buf_base = stream->oa_buffer.vaddr;
652 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
653 u32 mask = (OA_BUFFER_SIZE - 1);
654 size_t start_offset = *offset;
655 unsigned long flags;
656 u32 head, tail;
657 u32 taken;
658 int ret = 0;
659
660 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
661 return -EIO;
662
663 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
664
665 head = stream->oa_buffer.head;
666 tail = stream->oa_buffer.tail;
667
668 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
669
670 /*
671 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
672 * while indexing relative to oa_buf_base.
673 */
674 head -= gtt_offset;
675 tail -= gtt_offset;
676
677 /*
678 * An out of bounds or misaligned head or tail pointer implies a driver
679 * bug since we validate + align the tail pointers we read from the
680 * hardware and we are in full control of the head pointer which should
681 * only be incremented by multiples of the report size (notably also
682 * all a power of two).
683 */
684 if (drm_WARN_ONCE(&uncore->i915->drm,
685 head > OA_BUFFER_SIZE || head % report_size ||
686 tail > OA_BUFFER_SIZE || tail % report_size,
687 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
688 head, tail))
689 return -EIO;
690
691
692 for (/* none */;
693 (taken = OA_TAKEN(tail, head));
694 head = (head + report_size) & mask) {
695 u8 *report = oa_buf_base + head;
696 u32 *report32 = (void *)report;
697 u32 ctx_id;
698 u32 reason;
699
700 /*
701 * All the report sizes factor neatly into the buffer
702 * size so we never expect to see a report split
703 * between the beginning and end of the buffer.
704 *
705 * Given the initial alignment check a misalignment
706 * here would imply a driver bug that would result
707 * in an overrun.
708 */
709 if (drm_WARN_ON(&uncore->i915->drm,
710 (OA_BUFFER_SIZE - head) < report_size)) {
711 drm_err(&uncore->i915->drm,
712 "Spurious OA head ptr: non-integral report offset\n");
713 break;
714 }
715
716 /*
717 * The reason field includes flags identifying what
718 * triggered this specific report (mostly timer
719 * triggered or e.g. due to a context switch).
720 *
721 * This field is never expected to be zero so we can
722 * check that the report isn't invalid before copying
723 * it to userspace...
724 */
725 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
726 (IS_GEN(stream->perf->i915, 12) ?
727 OAREPORT_REASON_MASK_EXTENDED :
728 OAREPORT_REASON_MASK));
729 if (reason == 0) {
730 if (__ratelimit(&stream->perf->spurious_report_rs))
731 DRM_NOTE("Skipping spurious, invalid OA report\n");
732 continue;
733 }
734
735 ctx_id = report32[2] & stream->specific_ctx_id_mask;
736
737 /*
738 * Squash whatever is in the CTX_ID field if it's marked as
739 * invalid to be sure we avoid false-positive, single-context
740 * filtering below...
741 *
742 * Note: that we don't clear the valid_ctx_bit so userspace can
743 * understand that the ID has been squashed by the kernel.
744 */
745 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
746 INTEL_GEN(stream->perf->i915) <= 11)
747 ctx_id = report32[2] = INVALID_CTX_ID;
748
749 /*
750 * NB: For Gen 8 the OA unit no longer supports clock gating
751 * off for a specific context and the kernel can't securely
752 * stop the counters from updating as system-wide / global
753 * values.
754 *
755 * Automatic reports now include a context ID so reports can be
756 * filtered on the cpu but it's not worth trying to
757 * automatically subtract/hide counter progress for other
758 * contexts while filtering since we can't stop userspace
759 * issuing MI_REPORT_PERF_COUNT commands which would still
760 * provide a side-band view of the real values.
761 *
762 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
763 * to normalize counters for a single filtered context then it
764 * needs be forwarded bookend context-switch reports so that it
765 * can track switches in between MI_REPORT_PERF_COUNT commands
766 * and can itself subtract/ignore the progress of counters
767 * associated with other contexts. Note that the hardware
768 * automatically triggers reports when switching to a new
769 * context which are tagged with the ID of the newly active
770 * context. To avoid the complexity (and likely fragility) of
771 * reading ahead while parsing reports to try and minimize
772 * forwarding redundant context switch reports (i.e. between
773 * other, unrelated contexts) we simply elect to forward them
774 * all.
775 *
776 * We don't rely solely on the reason field to identify context
777 * switches since it's not-uncommon for periodic samples to
778 * identify a switch before any 'context switch' report.
779 */
780 if (!stream->perf->exclusive_stream->ctx ||
781 stream->specific_ctx_id == ctx_id ||
782 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
783 reason & OAREPORT_REASON_CTX_SWITCH) {
784
785 /*
786 * While filtering for a single context we avoid
787 * leaking the IDs of other contexts.
788 */
789 if (stream->perf->exclusive_stream->ctx &&
790 stream->specific_ctx_id != ctx_id) {
791 report32[2] = INVALID_CTX_ID;
792 }
793
794 ret = append_oa_sample(stream, buf, count, offset,
795 report);
796 if (ret)
797 break;
798
799 stream->oa_buffer.last_ctx_id = ctx_id;
800 }
801
802 /*
803 * Clear out the first 2 dword as a mean to detect unlanded
804 * reports.
805 */
806 report32[0] = 0;
807 report32[1] = 0;
808 }
809
810 if (start_offset != *offset) {
811 i915_reg_t oaheadptr;
812
813 oaheadptr = IS_GEN(stream->perf->i915, 12) ?
814 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
815
816 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
817
818 /*
819 * We removed the gtt_offset for the copy loop above, indexing
820 * relative to oa_buf_base so put back here...
821 */
822 head += gtt_offset;
823 intel_uncore_write(uncore, oaheadptr,
824 head & GEN12_OAG_OAHEADPTR_MASK);
825 stream->oa_buffer.head = head;
826
827 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
828 }
829
830 return ret;
831 }
832
833 /**
834 * gen8_oa_read - copy status records then buffered OA reports
835 * @stream: An i915-perf stream opened for OA metrics
836 * @buf: destination buffer given by userspace
837 * @count: the number of bytes userspace wants to read
838 * @offset: (inout): the current position for writing into @buf
839 *
840 * Checks OA unit status registers and if necessary appends corresponding
841 * status records for userspace (such as for a buffer full condition) and then
842 * initiate appending any buffered OA reports.
843 *
844 * Updates @offset according to the number of bytes successfully copied into
845 * the userspace buffer.
846 *
847 * NB: some data may be successfully copied to the userspace buffer
848 * even if an error is returned, and this is reflected in the
849 * updated @offset.
850 *
851 * Returns: zero on success or a negative error code
852 */
gen8_oa_read(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset)853 static int gen8_oa_read(struct i915_perf_stream *stream,
854 char __user *buf,
855 size_t count,
856 size_t *offset)
857 {
858 struct intel_uncore *uncore = stream->uncore;
859 u32 oastatus;
860 i915_reg_t oastatus_reg;
861 int ret;
862
863 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
864 return -EIO;
865
866 oastatus_reg = IS_GEN(stream->perf->i915, 12) ?
867 GEN12_OAG_OASTATUS : GEN8_OASTATUS;
868
869 oastatus = intel_uncore_read(uncore, oastatus_reg);
870
871 /*
872 * We treat OABUFFER_OVERFLOW as a significant error:
873 *
874 * Although theoretically we could handle this more gracefully
875 * sometimes, some Gens don't correctly suppress certain
876 * automatically triggered reports in this condition and so we
877 * have to assume that old reports are now being trampled
878 * over.
879 *
880 * Considering how we don't currently give userspace control
881 * over the OA buffer size and always configure a large 16MB
882 * buffer, then a buffer overflow does anyway likely indicate
883 * that something has gone quite badly wrong.
884 */
885 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
886 ret = append_oa_status(stream, buf, count, offset,
887 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
888 if (ret)
889 return ret;
890
891 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
892 stream->period_exponent);
893
894 stream->perf->ops.oa_disable(stream);
895 stream->perf->ops.oa_enable(stream);
896
897 /*
898 * Note: .oa_enable() is expected to re-init the oabuffer and
899 * reset GEN8_OASTATUS for us
900 */
901 oastatus = intel_uncore_read(uncore, oastatus_reg);
902 }
903
904 if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
905 ret = append_oa_status(stream, buf, count, offset,
906 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
907 if (ret)
908 return ret;
909
910 intel_uncore_rmw(uncore, oastatus_reg,
911 GEN8_OASTATUS_COUNTER_OVERFLOW |
912 GEN8_OASTATUS_REPORT_LOST,
913 IS_GEN_RANGE(uncore->i915, 8, 10) ?
914 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
915 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
916 }
917
918 return gen8_append_oa_reports(stream, buf, count, offset);
919 }
920
921 /**
922 * Copies all buffered OA reports into userspace read() buffer.
923 * @stream: An i915-perf stream opened for OA metrics
924 * @buf: destination buffer given by userspace
925 * @count: the number of bytes userspace wants to read
926 * @offset: (inout): the current position for writing into @buf
927 *
928 * Notably any error condition resulting in a short read (-%ENOSPC or
929 * -%EFAULT) will be returned even though one or more records may
930 * have been successfully copied. In this case it's up to the caller
931 * to decide if the error should be squashed before returning to
932 * userspace.
933 *
934 * Note: reports are consumed from the head, and appended to the
935 * tail, so the tail chases the head?... If you think that's mad
936 * and back-to-front you're not alone, but this follows the
937 * Gen PRM naming convention.
938 *
939 * Returns: 0 on success, negative error code on failure.
940 */
gen7_append_oa_reports(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset)941 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
942 char __user *buf,
943 size_t count,
944 size_t *offset)
945 {
946 struct intel_uncore *uncore = stream->uncore;
947 int report_size = stream->oa_buffer.format_size;
948 u8 *oa_buf_base = stream->oa_buffer.vaddr;
949 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
950 u32 mask = (OA_BUFFER_SIZE - 1);
951 size_t start_offset = *offset;
952 unsigned long flags;
953 u32 head, tail;
954 u32 taken;
955 int ret = 0;
956
957 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
958 return -EIO;
959
960 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
961
962 head = stream->oa_buffer.head;
963 tail = stream->oa_buffer.tail;
964
965 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
966
967 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
968 * while indexing relative to oa_buf_base.
969 */
970 head -= gtt_offset;
971 tail -= gtt_offset;
972
973 /* An out of bounds or misaligned head or tail pointer implies a driver
974 * bug since we validate + align the tail pointers we read from the
975 * hardware and we are in full control of the head pointer which should
976 * only be incremented by multiples of the report size (notably also
977 * all a power of two).
978 */
979 if (drm_WARN_ONCE(&uncore->i915->drm,
980 head > OA_BUFFER_SIZE || head % report_size ||
981 tail > OA_BUFFER_SIZE || tail % report_size,
982 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
983 head, tail))
984 return -EIO;
985
986
987 for (/* none */;
988 (taken = OA_TAKEN(tail, head));
989 head = (head + report_size) & mask) {
990 u8 *report = oa_buf_base + head;
991 u32 *report32 = (void *)report;
992
993 /* All the report sizes factor neatly into the buffer
994 * size so we never expect to see a report split
995 * between the beginning and end of the buffer.
996 *
997 * Given the initial alignment check a misalignment
998 * here would imply a driver bug that would result
999 * in an overrun.
1000 */
1001 if (drm_WARN_ON(&uncore->i915->drm,
1002 (OA_BUFFER_SIZE - head) < report_size)) {
1003 drm_err(&uncore->i915->drm,
1004 "Spurious OA head ptr: non-integral report offset\n");
1005 break;
1006 }
1007
1008 /* The report-ID field for periodic samples includes
1009 * some undocumented flags related to what triggered
1010 * the report and is never expected to be zero so we
1011 * can check that the report isn't invalid before
1012 * copying it to userspace...
1013 */
1014 if (report32[0] == 0) {
1015 if (__ratelimit(&stream->perf->spurious_report_rs))
1016 DRM_NOTE("Skipping spurious, invalid OA report\n");
1017 continue;
1018 }
1019
1020 ret = append_oa_sample(stream, buf, count, offset, report);
1021 if (ret)
1022 break;
1023
1024 /* Clear out the first 2 dwords as a mean to detect unlanded
1025 * reports.
1026 */
1027 report32[0] = 0;
1028 report32[1] = 0;
1029 }
1030
1031 if (start_offset != *offset) {
1032 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1033
1034 /* We removed the gtt_offset for the copy loop above, indexing
1035 * relative to oa_buf_base so put back here...
1036 */
1037 head += gtt_offset;
1038
1039 intel_uncore_write(uncore, GEN7_OASTATUS2,
1040 (head & GEN7_OASTATUS2_HEAD_MASK) |
1041 GEN7_OASTATUS2_MEM_SELECT_GGTT);
1042 stream->oa_buffer.head = head;
1043
1044 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1045 }
1046
1047 return ret;
1048 }
1049
1050 /**
1051 * gen7_oa_read - copy status records then buffered OA reports
1052 * @stream: An i915-perf stream opened for OA metrics
1053 * @buf: destination buffer given by userspace
1054 * @count: the number of bytes userspace wants to read
1055 * @offset: (inout): the current position for writing into @buf
1056 *
1057 * Checks Gen 7 specific OA unit status registers and if necessary appends
1058 * corresponding status records for userspace (such as for a buffer full
1059 * condition) and then initiate appending any buffered OA reports.
1060 *
1061 * Updates @offset according to the number of bytes successfully copied into
1062 * the userspace buffer.
1063 *
1064 * Returns: zero on success or a negative error code
1065 */
gen7_oa_read(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset)1066 static int gen7_oa_read(struct i915_perf_stream *stream,
1067 char __user *buf,
1068 size_t count,
1069 size_t *offset)
1070 {
1071 struct intel_uncore *uncore = stream->uncore;
1072 u32 oastatus1;
1073 int ret;
1074
1075 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1076 return -EIO;
1077
1078 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1079
1080 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1081 * bits while the OA unit is enabled (while the tail pointer
1082 * may be updated asynchronously) so we ignore status bits
1083 * that have already been reported to userspace.
1084 */
1085 oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1086
1087 /* We treat OABUFFER_OVERFLOW as a significant error:
1088 *
1089 * - The status can be interpreted to mean that the buffer is
1090 * currently full (with a higher precedence than OA_TAKEN()
1091 * which will start to report a near-empty buffer after an
1092 * overflow) but it's awkward that we can't clear the status
1093 * on Haswell, so without a reset we won't be able to catch
1094 * the state again.
1095 *
1096 * - Since it also implies the HW has started overwriting old
1097 * reports it may also affect our sanity checks for invalid
1098 * reports when copying to userspace that assume new reports
1099 * are being written to cleared memory.
1100 *
1101 * - In the future we may want to introduce a flight recorder
1102 * mode where the driver will automatically maintain a safe
1103 * guard band between head/tail, avoiding this overflow
1104 * condition, but we avoid the added driver complexity for
1105 * now.
1106 */
1107 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1108 ret = append_oa_status(stream, buf, count, offset,
1109 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1110 if (ret)
1111 return ret;
1112
1113 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1114 stream->period_exponent);
1115
1116 stream->perf->ops.oa_disable(stream);
1117 stream->perf->ops.oa_enable(stream);
1118
1119 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1120 }
1121
1122 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1123 ret = append_oa_status(stream, buf, count, offset,
1124 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1125 if (ret)
1126 return ret;
1127 stream->perf->gen7_latched_oastatus1 |=
1128 GEN7_OASTATUS1_REPORT_LOST;
1129 }
1130
1131 return gen7_append_oa_reports(stream, buf, count, offset);
1132 }
1133
1134 /**
1135 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1136 * @stream: An i915-perf stream opened for OA metrics
1137 *
1138 * Called when userspace tries to read() from a blocking stream FD opened
1139 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1140 * OA buffer and wakes us.
1141 *
1142 * Note: it's acceptable to have this return with some false positives
1143 * since any subsequent read handling will return -EAGAIN if there isn't
1144 * really data ready for userspace yet.
1145 *
1146 * Returns: zero on success or a negative error code
1147 */
i915_oa_wait_unlocked(struct i915_perf_stream * stream)1148 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1149 {
1150 /* We would wait indefinitely if periodic sampling is not enabled */
1151 if (!stream->periodic)
1152 return -EIO;
1153
1154 return wait_event_interruptible(stream->poll_wq,
1155 oa_buffer_check_unlocked(stream));
1156 }
1157
1158 /**
1159 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1160 * @stream: An i915-perf stream opened for OA metrics
1161 * @file: An i915 perf stream file
1162 * @wait: poll() state table
1163 *
1164 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1165 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1166 * when it sees data ready to read in the circular OA buffer.
1167 */
i915_oa_poll_wait(struct i915_perf_stream * stream,struct file * file,poll_table * wait)1168 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1169 struct file *file,
1170 poll_table *wait)
1171 {
1172 poll_wait(file, &stream->poll_wq, wait);
1173 }
1174
1175 /**
1176 * i915_oa_read - just calls through to &i915_oa_ops->read
1177 * @stream: An i915-perf stream opened for OA metrics
1178 * @buf: destination buffer given by userspace
1179 * @count: the number of bytes userspace wants to read
1180 * @offset: (inout): the current position for writing into @buf
1181 *
1182 * Updates @offset according to the number of bytes successfully copied into
1183 * the userspace buffer.
1184 *
1185 * Returns: zero on success or a negative error code
1186 */
i915_oa_read(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset)1187 static int i915_oa_read(struct i915_perf_stream *stream,
1188 char __user *buf,
1189 size_t count,
1190 size_t *offset)
1191 {
1192 return stream->perf->ops.read(stream, buf, count, offset);
1193 }
1194
oa_pin_context(struct i915_perf_stream * stream)1195 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1196 {
1197 struct i915_gem_engines_iter it;
1198 struct i915_gem_context *ctx = stream->ctx;
1199 struct intel_context *ce;
1200 struct i915_gem_ww_ctx ww;
1201 int err = -ENODEV;
1202
1203 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1204 if (ce->engine != stream->engine) /* first match! */
1205 continue;
1206
1207 err = 0;
1208 break;
1209 }
1210 i915_gem_context_unlock_engines(ctx);
1211
1212 if (err)
1213 return ERR_PTR(err);
1214
1215 i915_gem_ww_ctx_init(&ww, true);
1216 retry:
1217 /*
1218 * As the ID is the gtt offset of the context's vma we
1219 * pin the vma to ensure the ID remains fixed.
1220 */
1221 err = intel_context_pin_ww(ce, &ww);
1222 if (err == -EDEADLK) {
1223 err = i915_gem_ww_ctx_backoff(&ww);
1224 if (!err)
1225 goto retry;
1226 }
1227 i915_gem_ww_ctx_fini(&ww);
1228
1229 if (err)
1230 return ERR_PTR(err);
1231
1232 stream->pinned_ctx = ce;
1233 return stream->pinned_ctx;
1234 }
1235
1236 /**
1237 * oa_get_render_ctx_id - determine and hold ctx hw id
1238 * @stream: An i915-perf stream opened for OA metrics
1239 *
1240 * Determine the render context hw id, and ensure it remains fixed for the
1241 * lifetime of the stream. This ensures that we don't have to worry about
1242 * updating the context ID in OACONTROL on the fly.
1243 *
1244 * Returns: zero on success or a negative error code
1245 */
oa_get_render_ctx_id(struct i915_perf_stream * stream)1246 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1247 {
1248 struct intel_context *ce;
1249
1250 ce = oa_pin_context(stream);
1251 if (IS_ERR(ce))
1252 return PTR_ERR(ce);
1253
1254 switch (INTEL_GEN(ce->engine->i915)) {
1255 case 7: {
1256 /*
1257 * On Haswell we don't do any post processing of the reports
1258 * and don't need to use the mask.
1259 */
1260 stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1261 stream->specific_ctx_id_mask = 0;
1262 break;
1263 }
1264
1265 case 8:
1266 case 9:
1267 case 10:
1268 if (intel_engine_in_execlists_submission_mode(ce->engine)) {
1269 stream->specific_ctx_id_mask =
1270 (1U << GEN8_CTX_ID_WIDTH) - 1;
1271 stream->specific_ctx_id = stream->specific_ctx_id_mask;
1272 } else {
1273 /*
1274 * When using GuC, the context descriptor we write in
1275 * i915 is read by GuC and rewritten before it's
1276 * actually written into the hardware. The LRCA is
1277 * what is put into the context id field of the
1278 * context descriptor by GuC. Because it's aligned to
1279 * a page, the lower 12bits are always at 0 and
1280 * dropped by GuC. They won't be part of the context
1281 * ID in the OA reports, so squash those lower bits.
1282 */
1283 stream->specific_ctx_id = ce->lrc.lrca >> 12;
1284
1285 /*
1286 * GuC uses the top bit to signal proxy submission, so
1287 * ignore that bit.
1288 */
1289 stream->specific_ctx_id_mask =
1290 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1291 }
1292 break;
1293
1294 case 11:
1295 case 12: {
1296 stream->specific_ctx_id_mask =
1297 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1298 /*
1299 * Pick an unused context id
1300 * 0 - BITS_PER_LONG are used by other contexts
1301 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context
1302 */
1303 stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1304 break;
1305 }
1306
1307 default:
1308 MISSING_CASE(INTEL_GEN(ce->engine->i915));
1309 }
1310
1311 ce->tag = stream->specific_ctx_id;
1312
1313 drm_dbg(&stream->perf->i915->drm,
1314 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1315 stream->specific_ctx_id,
1316 stream->specific_ctx_id_mask);
1317
1318 return 0;
1319 }
1320
1321 /**
1322 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1323 * @stream: An i915-perf stream opened for OA metrics
1324 *
1325 * In case anything needed doing to ensure the context HW ID would remain valid
1326 * for the lifetime of the stream, then that can be undone here.
1327 */
oa_put_render_ctx_id(struct i915_perf_stream * stream)1328 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1329 {
1330 struct intel_context *ce;
1331
1332 ce = fetch_and_zero(&stream->pinned_ctx);
1333 if (ce) {
1334 ce->tag = 0; /* recomputed on next submission after parking */
1335 intel_context_unpin(ce);
1336 }
1337
1338 stream->specific_ctx_id = INVALID_CTX_ID;
1339 stream->specific_ctx_id_mask = 0;
1340 }
1341
1342 static void
free_oa_buffer(struct i915_perf_stream * stream)1343 free_oa_buffer(struct i915_perf_stream *stream)
1344 {
1345 i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1346 I915_VMA_RELEASE_MAP);
1347
1348 stream->oa_buffer.vaddr = NULL;
1349 }
1350
1351 static void
free_oa_configs(struct i915_perf_stream * stream)1352 free_oa_configs(struct i915_perf_stream *stream)
1353 {
1354 struct i915_oa_config_bo *oa_bo, *tmp;
1355
1356 i915_oa_config_put(stream->oa_config);
1357 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1358 free_oa_config_bo(oa_bo);
1359 }
1360
1361 static void
free_noa_wait(struct i915_perf_stream * stream)1362 free_noa_wait(struct i915_perf_stream *stream)
1363 {
1364 i915_vma_unpin_and_release(&stream->noa_wait, 0);
1365 }
1366
i915_oa_stream_destroy(struct i915_perf_stream * stream)1367 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1368 {
1369 struct i915_perf *perf = stream->perf;
1370
1371 BUG_ON(stream != perf->exclusive_stream);
1372
1373 /*
1374 * Unset exclusive_stream first, it will be checked while disabling
1375 * the metric set on gen8+.
1376 *
1377 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1378 */
1379 WRITE_ONCE(perf->exclusive_stream, NULL);
1380 perf->ops.disable_metric_set(stream);
1381
1382 free_oa_buffer(stream);
1383
1384 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1385 intel_engine_pm_put(stream->engine);
1386
1387 if (stream->ctx)
1388 oa_put_render_ctx_id(stream);
1389
1390 free_oa_configs(stream);
1391 free_noa_wait(stream);
1392
1393 if (perf->spurious_report_rs.missed) {
1394 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1395 perf->spurious_report_rs.missed);
1396 }
1397 }
1398
gen7_init_oa_buffer(struct i915_perf_stream * stream)1399 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1400 {
1401 struct intel_uncore *uncore = stream->uncore;
1402 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1403 unsigned long flags;
1404
1405 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1406
1407 /* Pre-DevBDW: OABUFFER must be set with counters off,
1408 * before OASTATUS1, but after OASTATUS2
1409 */
1410 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1411 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1412 stream->oa_buffer.head = gtt_offset;
1413
1414 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1415
1416 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1417 gtt_offset | OABUFFER_SIZE_16M);
1418
1419 /* Mark that we need updated tail pointers to read from... */
1420 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1421 stream->oa_buffer.tail = gtt_offset;
1422
1423 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1424
1425 /* On Haswell we have to track which OASTATUS1 flags we've
1426 * already seen since they can't be cleared while periodic
1427 * sampling is enabled.
1428 */
1429 stream->perf->gen7_latched_oastatus1 = 0;
1430
1431 /* NB: although the OA buffer will initially be allocated
1432 * zeroed via shmfs (and so this memset is redundant when
1433 * first allocating), we may re-init the OA buffer, either
1434 * when re-enabling a stream or in error/reset paths.
1435 *
1436 * The reason we clear the buffer for each re-init is for the
1437 * sanity check in gen7_append_oa_reports() that looks at the
1438 * report-id field to make sure it's non-zero which relies on
1439 * the assumption that new reports are being written to zeroed
1440 * memory...
1441 */
1442 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1443 }
1444
gen8_init_oa_buffer(struct i915_perf_stream * stream)1445 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1446 {
1447 struct intel_uncore *uncore = stream->uncore;
1448 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1449 unsigned long flags;
1450
1451 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1452
1453 intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1454 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1455 stream->oa_buffer.head = gtt_offset;
1456
1457 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1458
1459 /*
1460 * PRM says:
1461 *
1462 * "This MMIO must be set before the OATAILPTR
1463 * register and after the OAHEADPTR register. This is
1464 * to enable proper functionality of the overflow
1465 * bit."
1466 */
1467 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1468 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1469 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1470
1471 /* Mark that we need updated tail pointers to read from... */
1472 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1473 stream->oa_buffer.tail = gtt_offset;
1474
1475 /*
1476 * Reset state used to recognise context switches, affecting which
1477 * reports we will forward to userspace while filtering for a single
1478 * context.
1479 */
1480 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1481
1482 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1483
1484 /*
1485 * NB: although the OA buffer will initially be allocated
1486 * zeroed via shmfs (and so this memset is redundant when
1487 * first allocating), we may re-init the OA buffer, either
1488 * when re-enabling a stream or in error/reset paths.
1489 *
1490 * The reason we clear the buffer for each re-init is for the
1491 * sanity check in gen8_append_oa_reports() that looks at the
1492 * reason field to make sure it's non-zero which relies on
1493 * the assumption that new reports are being written to zeroed
1494 * memory...
1495 */
1496 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1497 }
1498
gen12_init_oa_buffer(struct i915_perf_stream * stream)1499 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1500 {
1501 struct intel_uncore *uncore = stream->uncore;
1502 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1503 unsigned long flags;
1504
1505 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1506
1507 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1508 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1509 gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1510 stream->oa_buffer.head = gtt_offset;
1511
1512 /*
1513 * PRM says:
1514 *
1515 * "This MMIO must be set before the OATAILPTR
1516 * register and after the OAHEADPTR register. This is
1517 * to enable proper functionality of the overflow
1518 * bit."
1519 */
1520 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1521 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1522 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1523 gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1524
1525 /* Mark that we need updated tail pointers to read from... */
1526 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1527 stream->oa_buffer.tail = gtt_offset;
1528
1529 /*
1530 * Reset state used to recognise context switches, affecting which
1531 * reports we will forward to userspace while filtering for a single
1532 * context.
1533 */
1534 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1535
1536 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1537
1538 /*
1539 * NB: although the OA buffer will initially be allocated
1540 * zeroed via shmfs (and so this memset is redundant when
1541 * first allocating), we may re-init the OA buffer, either
1542 * when re-enabling a stream or in error/reset paths.
1543 *
1544 * The reason we clear the buffer for each re-init is for the
1545 * sanity check in gen8_append_oa_reports() that looks at the
1546 * reason field to make sure it's non-zero which relies on
1547 * the assumption that new reports are being written to zeroed
1548 * memory...
1549 */
1550 memset(stream->oa_buffer.vaddr, 0,
1551 stream->oa_buffer.vma->size);
1552 }
1553
alloc_oa_buffer(struct i915_perf_stream * stream)1554 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1555 {
1556 struct drm_i915_private *i915 = stream->perf->i915;
1557 struct drm_i915_gem_object *bo;
1558 struct i915_vma *vma;
1559 int ret;
1560
1561 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1562 return -ENODEV;
1563
1564 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1565 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1566
1567 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1568 if (IS_ERR(bo)) {
1569 drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1570 return PTR_ERR(bo);
1571 }
1572
1573 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1574
1575 /* PreHSW required 512K alignment, HSW requires 16M */
1576 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1577 if (IS_ERR(vma)) {
1578 ret = PTR_ERR(vma);
1579 goto err_unref;
1580 }
1581 stream->oa_buffer.vma = vma;
1582
1583 stream->oa_buffer.vaddr =
1584 i915_gem_object_pin_map(bo, I915_MAP_WB);
1585 if (IS_ERR(stream->oa_buffer.vaddr)) {
1586 ret = PTR_ERR(stream->oa_buffer.vaddr);
1587 goto err_unpin;
1588 }
1589
1590 return 0;
1591
1592 err_unpin:
1593 __i915_vma_unpin(vma);
1594
1595 err_unref:
1596 i915_gem_object_put(bo);
1597
1598 stream->oa_buffer.vaddr = NULL;
1599 stream->oa_buffer.vma = NULL;
1600
1601 return ret;
1602 }
1603
save_restore_register(struct i915_perf_stream * stream,u32 * cs,bool save,i915_reg_t reg,u32 offset,u32 dword_count)1604 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1605 bool save, i915_reg_t reg, u32 offset,
1606 u32 dword_count)
1607 {
1608 u32 cmd;
1609 u32 d;
1610
1611 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1612 cmd |= MI_SRM_LRM_GLOBAL_GTT;
1613 if (INTEL_GEN(stream->perf->i915) >= 8)
1614 cmd++;
1615
1616 for (d = 0; d < dword_count; d++) {
1617 *cs++ = cmd;
1618 *cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1619 *cs++ = intel_gt_scratch_offset(stream->engine->gt,
1620 offset) + 4 * d;
1621 *cs++ = 0;
1622 }
1623
1624 return cs;
1625 }
1626
alloc_noa_wait(struct i915_perf_stream * stream)1627 static int alloc_noa_wait(struct i915_perf_stream *stream)
1628 {
1629 struct drm_i915_private *i915 = stream->perf->i915;
1630 struct drm_i915_gem_object *bo;
1631 struct i915_vma *vma;
1632 const u64 delay_ticks = 0xffffffffffffffff -
1633 i915_cs_timestamp_ns_to_ticks(i915, atomic64_read(&stream->perf->noa_programming_delay));
1634 const u32 base = stream->engine->mmio_base;
1635 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1636 u32 *batch, *ts0, *cs, *jump;
1637 int ret, i;
1638 enum {
1639 START_TS,
1640 NOW_TS,
1641 DELTA_TS,
1642 JUMP_PREDICATE,
1643 DELTA_TARGET,
1644 N_CS_GPR
1645 };
1646
1647 bo = i915_gem_object_create_internal(i915, 4096);
1648 if (IS_ERR(bo)) {
1649 drm_err(&i915->drm,
1650 "Failed to allocate NOA wait batchbuffer\n");
1651 return PTR_ERR(bo);
1652 }
1653
1654 /*
1655 * We pin in GGTT because we jump into this buffer now because
1656 * multiple OA config BOs will have a jump to this address and it
1657 * needs to be fixed during the lifetime of the i915/perf stream.
1658 */
1659 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH);
1660 if (IS_ERR(vma)) {
1661 ret = PTR_ERR(vma);
1662 goto err_unref;
1663 }
1664
1665 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1666 if (IS_ERR(batch)) {
1667 ret = PTR_ERR(batch);
1668 goto err_unpin;
1669 }
1670
1671 /* Save registers. */
1672 for (i = 0; i < N_CS_GPR; i++)
1673 cs = save_restore_register(
1674 stream, cs, true /* save */, CS_GPR(i),
1675 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1676 cs = save_restore_register(
1677 stream, cs, true /* save */, MI_PREDICATE_RESULT_1,
1678 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1679
1680 /* First timestamp snapshot location. */
1681 ts0 = cs;
1682
1683 /*
1684 * Initial snapshot of the timestamp register to implement the wait.
1685 * We work with 32b values, so clear out the top 32b bits of the
1686 * register because the ALU works 64bits.
1687 */
1688 *cs++ = MI_LOAD_REGISTER_IMM(1);
1689 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1690 *cs++ = 0;
1691 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1692 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1693 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1694
1695 /*
1696 * This is the location we're going to jump back into until the
1697 * required amount of time has passed.
1698 */
1699 jump = cs;
1700
1701 /*
1702 * Take another snapshot of the timestamp register. Take care to clear
1703 * up the top 32bits of CS_GPR(1) as we're using it for other
1704 * operations below.
1705 */
1706 *cs++ = MI_LOAD_REGISTER_IMM(1);
1707 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1708 *cs++ = 0;
1709 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1710 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1711 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1712
1713 /*
1714 * Do a diff between the 2 timestamps and store the result back into
1715 * CS_GPR(1).
1716 */
1717 *cs++ = MI_MATH(5);
1718 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1719 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1720 *cs++ = MI_MATH_SUB;
1721 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1722 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1723
1724 /*
1725 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1726 * timestamp have rolled over the 32bits) into the predicate register
1727 * to be used for the predicated jump.
1728 */
1729 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1730 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1731 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1732
1733 /* Restart from the beginning if we had timestamps roll over. */
1734 *cs++ = (INTEL_GEN(i915) < 8 ?
1735 MI_BATCH_BUFFER_START :
1736 MI_BATCH_BUFFER_START_GEN8) |
1737 MI_BATCH_PREDICATE;
1738 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1739 *cs++ = 0;
1740
1741 /*
1742 * Now add the diff between to previous timestamps and add it to :
1743 * (((1 * << 64) - 1) - delay_ns)
1744 *
1745 * When the Carry Flag contains 1 this means the elapsed time is
1746 * longer than the expected delay, and we can exit the wait loop.
1747 */
1748 *cs++ = MI_LOAD_REGISTER_IMM(2);
1749 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1750 *cs++ = lower_32_bits(delay_ticks);
1751 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1752 *cs++ = upper_32_bits(delay_ticks);
1753
1754 *cs++ = MI_MATH(4);
1755 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
1756 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
1757 *cs++ = MI_MATH_ADD;
1758 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1759
1760 *cs++ = MI_ARB_CHECK;
1761
1762 /*
1763 * Transfer the result into the predicate register to be used for the
1764 * predicated jump.
1765 */
1766 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1767 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1768 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1769
1770 /* Predicate the jump. */
1771 *cs++ = (INTEL_GEN(i915) < 8 ?
1772 MI_BATCH_BUFFER_START :
1773 MI_BATCH_BUFFER_START_GEN8) |
1774 MI_BATCH_PREDICATE;
1775 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
1776 *cs++ = 0;
1777
1778 /* Restore registers. */
1779 for (i = 0; i < N_CS_GPR; i++)
1780 cs = save_restore_register(
1781 stream, cs, false /* restore */, CS_GPR(i),
1782 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1783 cs = save_restore_register(
1784 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1,
1785 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1786
1787 /* And return to the ring. */
1788 *cs++ = MI_BATCH_BUFFER_END;
1789
1790 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
1791
1792 i915_gem_object_flush_map(bo);
1793 __i915_gem_object_release_map(bo);
1794
1795 stream->noa_wait = vma;
1796 return 0;
1797
1798 err_unpin:
1799 i915_vma_unpin_and_release(&vma, 0);
1800 err_unref:
1801 i915_gem_object_put(bo);
1802 return ret;
1803 }
1804
write_cs_mi_lri(u32 * cs,const struct i915_oa_reg * reg_data,u32 n_regs)1805 static u32 *write_cs_mi_lri(u32 *cs,
1806 const struct i915_oa_reg *reg_data,
1807 u32 n_regs)
1808 {
1809 u32 i;
1810
1811 for (i = 0; i < n_regs; i++) {
1812 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
1813 u32 n_lri = min_t(u32,
1814 n_regs - i,
1815 MI_LOAD_REGISTER_IMM_MAX_REGS);
1816
1817 *cs++ = MI_LOAD_REGISTER_IMM(n_lri);
1818 }
1819 *cs++ = i915_mmio_reg_offset(reg_data[i].addr);
1820 *cs++ = reg_data[i].value;
1821 }
1822
1823 return cs;
1824 }
1825
num_lri_dwords(int num_regs)1826 static int num_lri_dwords(int num_regs)
1827 {
1828 int count = 0;
1829
1830 if (num_regs > 0) {
1831 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
1832 count += num_regs * 2;
1833 }
1834
1835 return count;
1836 }
1837
1838 static struct i915_oa_config_bo *
alloc_oa_config_buffer(struct i915_perf_stream * stream,struct i915_oa_config * oa_config)1839 alloc_oa_config_buffer(struct i915_perf_stream *stream,
1840 struct i915_oa_config *oa_config)
1841 {
1842 struct drm_i915_gem_object *obj;
1843 struct i915_oa_config_bo *oa_bo;
1844 size_t config_length = 0;
1845 u32 *cs;
1846 int err;
1847
1848 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
1849 if (!oa_bo)
1850 return ERR_PTR(-ENOMEM);
1851
1852 config_length += num_lri_dwords(oa_config->mux_regs_len);
1853 config_length += num_lri_dwords(oa_config->b_counter_regs_len);
1854 config_length += num_lri_dwords(oa_config->flex_regs_len);
1855 config_length += 3; /* MI_BATCH_BUFFER_START */
1856 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
1857
1858 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
1859 if (IS_ERR(obj)) {
1860 err = PTR_ERR(obj);
1861 goto err_free;
1862 }
1863
1864 cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
1865 if (IS_ERR(cs)) {
1866 err = PTR_ERR(cs);
1867 goto err_oa_bo;
1868 }
1869
1870 cs = write_cs_mi_lri(cs,
1871 oa_config->mux_regs,
1872 oa_config->mux_regs_len);
1873 cs = write_cs_mi_lri(cs,
1874 oa_config->b_counter_regs,
1875 oa_config->b_counter_regs_len);
1876 cs = write_cs_mi_lri(cs,
1877 oa_config->flex_regs,
1878 oa_config->flex_regs_len);
1879
1880 /* Jump into the active wait. */
1881 *cs++ = (INTEL_GEN(stream->perf->i915) < 8 ?
1882 MI_BATCH_BUFFER_START :
1883 MI_BATCH_BUFFER_START_GEN8);
1884 *cs++ = i915_ggtt_offset(stream->noa_wait);
1885 *cs++ = 0;
1886
1887 i915_gem_object_flush_map(obj);
1888 __i915_gem_object_release_map(obj);
1889
1890 oa_bo->vma = i915_vma_instance(obj,
1891 &stream->engine->gt->ggtt->vm,
1892 NULL);
1893 if (IS_ERR(oa_bo->vma)) {
1894 err = PTR_ERR(oa_bo->vma);
1895 goto err_oa_bo;
1896 }
1897
1898 oa_bo->oa_config = i915_oa_config_get(oa_config);
1899 llist_add(&oa_bo->node, &stream->oa_config_bos);
1900
1901 return oa_bo;
1902
1903 err_oa_bo:
1904 i915_gem_object_put(obj);
1905 err_free:
1906 kfree(oa_bo);
1907 return ERR_PTR(err);
1908 }
1909
1910 static struct i915_vma *
get_oa_vma(struct i915_perf_stream * stream,struct i915_oa_config * oa_config)1911 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
1912 {
1913 struct i915_oa_config_bo *oa_bo;
1914
1915 /*
1916 * Look for the buffer in the already allocated BOs attached
1917 * to the stream.
1918 */
1919 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
1920 if (oa_bo->oa_config == oa_config &&
1921 memcmp(oa_bo->oa_config->uuid,
1922 oa_config->uuid,
1923 sizeof(oa_config->uuid)) == 0)
1924 goto out;
1925 }
1926
1927 oa_bo = alloc_oa_config_buffer(stream, oa_config);
1928 if (IS_ERR(oa_bo))
1929 return ERR_CAST(oa_bo);
1930
1931 out:
1932 return i915_vma_get(oa_bo->vma);
1933 }
1934
1935 static int
emit_oa_config(struct i915_perf_stream * stream,struct i915_oa_config * oa_config,struct intel_context * ce,struct i915_active * active)1936 emit_oa_config(struct i915_perf_stream *stream,
1937 struct i915_oa_config *oa_config,
1938 struct intel_context *ce,
1939 struct i915_active *active)
1940 {
1941 struct i915_request *rq;
1942 struct i915_vma *vma;
1943 struct i915_gem_ww_ctx ww;
1944 int err;
1945
1946 vma = get_oa_vma(stream, oa_config);
1947 if (IS_ERR(vma))
1948 return PTR_ERR(vma);
1949
1950 i915_gem_ww_ctx_init(&ww, true);
1951 retry:
1952 err = i915_gem_object_lock(vma->obj, &ww);
1953 if (err)
1954 goto err;
1955
1956 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1957 if (err)
1958 goto err;
1959
1960 intel_engine_pm_get(ce->engine);
1961 rq = i915_request_create(ce);
1962 intel_engine_pm_put(ce->engine);
1963 if (IS_ERR(rq)) {
1964 err = PTR_ERR(rq);
1965 goto err_vma_unpin;
1966 }
1967
1968 if (!IS_ERR_OR_NULL(active)) {
1969 /* After all individual context modifications */
1970 err = i915_request_await_active(rq, active,
1971 I915_ACTIVE_AWAIT_ACTIVE);
1972 if (err)
1973 goto err_add_request;
1974
1975 err = i915_active_add_request(active, rq);
1976 if (err)
1977 goto err_add_request;
1978 }
1979
1980 err = i915_request_await_object(rq, vma->obj, 0);
1981 if (!err)
1982 err = i915_vma_move_to_active(vma, rq, 0);
1983 if (err)
1984 goto err_add_request;
1985
1986 err = rq->engine->emit_bb_start(rq,
1987 vma->node.start, 0,
1988 I915_DISPATCH_SECURE);
1989 if (err)
1990 goto err_add_request;
1991
1992 err_add_request:
1993 i915_request_add(rq);
1994 err_vma_unpin:
1995 i915_vma_unpin(vma);
1996 err:
1997 if (err == -EDEADLK) {
1998 err = i915_gem_ww_ctx_backoff(&ww);
1999 if (!err)
2000 goto retry;
2001 }
2002
2003 i915_gem_ww_ctx_fini(&ww);
2004 i915_vma_put(vma);
2005 return err;
2006 }
2007
oa_context(struct i915_perf_stream * stream)2008 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2009 {
2010 return stream->pinned_ctx ?: stream->engine->kernel_context;
2011 }
2012
2013 static int
hsw_enable_metric_set(struct i915_perf_stream * stream,struct i915_active * active)2014 hsw_enable_metric_set(struct i915_perf_stream *stream,
2015 struct i915_active *active)
2016 {
2017 struct intel_uncore *uncore = stream->uncore;
2018
2019 /*
2020 * PRM:
2021 *
2022 * OA unit is using “crclk” for its functionality. When trunk
2023 * level clock gating takes place, OA clock would be gated,
2024 * unable to count the events from non-render clock domain.
2025 * Render clock gating must be disabled when OA is enabled to
2026 * count the events from non-render domain. Unit level clock
2027 * gating for RCS should also be disabled.
2028 */
2029 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2030 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2031 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2032 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2033
2034 return emit_oa_config(stream,
2035 stream->oa_config, oa_context(stream),
2036 active);
2037 }
2038
hsw_disable_metric_set(struct i915_perf_stream * stream)2039 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2040 {
2041 struct intel_uncore *uncore = stream->uncore;
2042
2043 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2044 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2045 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2046 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2047
2048 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2049 }
2050
oa_config_flex_reg(const struct i915_oa_config * oa_config,i915_reg_t reg)2051 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2052 i915_reg_t reg)
2053 {
2054 u32 mmio = i915_mmio_reg_offset(reg);
2055 int i;
2056
2057 /*
2058 * This arbitrary default will select the 'EU FPU0 Pipeline
2059 * Active' event. In the future it's anticipated that there
2060 * will be an explicit 'No Event' we can select, but not yet...
2061 */
2062 if (!oa_config)
2063 return 0;
2064
2065 for (i = 0; i < oa_config->flex_regs_len; i++) {
2066 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2067 return oa_config->flex_regs[i].value;
2068 }
2069
2070 return 0;
2071 }
2072 /*
2073 * NB: It must always remain pointer safe to run this even if the OA unit
2074 * has been disabled.
2075 *
2076 * It's fine to put out-of-date values into these per-context registers
2077 * in the case that the OA unit has been disabled.
2078 */
2079 static void
gen8_update_reg_state_unlocked(const struct intel_context * ce,const struct i915_perf_stream * stream)2080 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2081 const struct i915_perf_stream *stream)
2082 {
2083 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2084 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2085 /* The MMIO offsets for Flex EU registers aren't contiguous */
2086 i915_reg_t flex_regs[] = {
2087 EU_PERF_CNTL0,
2088 EU_PERF_CNTL1,
2089 EU_PERF_CNTL2,
2090 EU_PERF_CNTL3,
2091 EU_PERF_CNTL4,
2092 EU_PERF_CNTL5,
2093 EU_PERF_CNTL6,
2094 };
2095 u32 *reg_state = ce->lrc_reg_state;
2096 int i;
2097
2098 reg_state[ctx_oactxctrl + 1] =
2099 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2100 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2101 GEN8_OA_COUNTER_RESUME;
2102
2103 for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2104 reg_state[ctx_flexeu0 + i * 2 + 1] =
2105 oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2106 }
2107
2108 struct flex {
2109 i915_reg_t reg;
2110 u32 offset;
2111 u32 value;
2112 };
2113
2114 static int
gen8_store_flex(struct i915_request * rq,struct intel_context * ce,const struct flex * flex,unsigned int count)2115 gen8_store_flex(struct i915_request *rq,
2116 struct intel_context *ce,
2117 const struct flex *flex, unsigned int count)
2118 {
2119 u32 offset;
2120 u32 *cs;
2121
2122 cs = intel_ring_begin(rq, 4 * count);
2123 if (IS_ERR(cs))
2124 return PTR_ERR(cs);
2125
2126 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2127 do {
2128 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2129 *cs++ = offset + flex->offset * sizeof(u32);
2130 *cs++ = 0;
2131 *cs++ = flex->value;
2132 } while (flex++, --count);
2133
2134 intel_ring_advance(rq, cs);
2135
2136 return 0;
2137 }
2138
2139 static int
gen8_load_flex(struct i915_request * rq,struct intel_context * ce,const struct flex * flex,unsigned int count)2140 gen8_load_flex(struct i915_request *rq,
2141 struct intel_context *ce,
2142 const struct flex *flex, unsigned int count)
2143 {
2144 u32 *cs;
2145
2146 GEM_BUG_ON(!count || count > 63);
2147
2148 cs = intel_ring_begin(rq, 2 * count + 2);
2149 if (IS_ERR(cs))
2150 return PTR_ERR(cs);
2151
2152 *cs++ = MI_LOAD_REGISTER_IMM(count);
2153 do {
2154 *cs++ = i915_mmio_reg_offset(flex->reg);
2155 *cs++ = flex->value;
2156 } while (flex++, --count);
2157 *cs++ = MI_NOOP;
2158
2159 intel_ring_advance(rq, cs);
2160
2161 return 0;
2162 }
2163
gen8_modify_context(struct intel_context * ce,const struct flex * flex,unsigned int count)2164 static int gen8_modify_context(struct intel_context *ce,
2165 const struct flex *flex, unsigned int count)
2166 {
2167 struct i915_request *rq;
2168 int err;
2169
2170 rq = intel_engine_create_kernel_request(ce->engine);
2171 if (IS_ERR(rq))
2172 return PTR_ERR(rq);
2173
2174 /* Serialise with the remote context */
2175 err = intel_context_prepare_remote_request(ce, rq);
2176 if (err == 0)
2177 err = gen8_store_flex(rq, ce, flex, count);
2178
2179 i915_request_add(rq);
2180 return err;
2181 }
2182
2183 static int
gen8_modify_self(struct intel_context * ce,const struct flex * flex,unsigned int count,struct i915_active * active)2184 gen8_modify_self(struct intel_context *ce,
2185 const struct flex *flex, unsigned int count,
2186 struct i915_active *active)
2187 {
2188 struct i915_request *rq;
2189 int err;
2190
2191 intel_engine_pm_get(ce->engine);
2192 rq = i915_request_create(ce);
2193 intel_engine_pm_put(ce->engine);
2194 if (IS_ERR(rq))
2195 return PTR_ERR(rq);
2196
2197 if (!IS_ERR_OR_NULL(active)) {
2198 err = i915_active_add_request(active, rq);
2199 if (err)
2200 goto err_add_request;
2201 }
2202
2203 err = gen8_load_flex(rq, ce, flex, count);
2204 if (err)
2205 goto err_add_request;
2206
2207 err_add_request:
2208 i915_request_add(rq);
2209 return err;
2210 }
2211
gen8_configure_context(struct i915_gem_context * ctx,struct flex * flex,unsigned int count)2212 static int gen8_configure_context(struct i915_gem_context *ctx,
2213 struct flex *flex, unsigned int count)
2214 {
2215 struct i915_gem_engines_iter it;
2216 struct intel_context *ce;
2217 int err = 0;
2218
2219 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2220 GEM_BUG_ON(ce == ce->engine->kernel_context);
2221
2222 if (ce->engine->class != RENDER_CLASS)
2223 continue;
2224
2225 /* Otherwise OA settings will be set upon first use */
2226 if (!intel_context_pin_if_active(ce))
2227 continue;
2228
2229 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2230 err = gen8_modify_context(ce, flex, count);
2231
2232 intel_context_unpin(ce);
2233 if (err)
2234 break;
2235 }
2236 i915_gem_context_unlock_engines(ctx);
2237
2238 return err;
2239 }
2240
gen12_configure_oar_context(struct i915_perf_stream * stream,struct i915_active * active)2241 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2242 struct i915_active *active)
2243 {
2244 int err;
2245 struct intel_context *ce = stream->pinned_ctx;
2246 u32 format = stream->oa_buffer.format;
2247 struct flex regs_context[] = {
2248 {
2249 GEN8_OACTXCONTROL,
2250 stream->perf->ctx_oactxctrl_offset + 1,
2251 active ? GEN8_OA_COUNTER_RESUME : 0,
2252 },
2253 };
2254 /* Offsets in regs_lri are not used since this configuration is only
2255 * applied using LRI. Initialize the correct offsets for posterity.
2256 */
2257 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2258 struct flex regs_lri[] = {
2259 {
2260 GEN12_OAR_OACONTROL,
2261 GEN12_OAR_OACONTROL_OFFSET + 1,
2262 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2263 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2264 },
2265 {
2266 RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2267 CTX_CONTEXT_CONTROL,
2268 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2269 active ?
2270 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2271 0)
2272 },
2273 };
2274
2275 /* Modify the context image of pinned context with regs_context*/
2276 err = intel_context_lock_pinned(ce);
2277 if (err)
2278 return err;
2279
2280 err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
2281 intel_context_unlock_pinned(ce);
2282 if (err)
2283 return err;
2284
2285 /* Apply regs_lri using LRI with pinned context */
2286 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2287 }
2288
2289 /*
2290 * Manages updating the per-context aspects of the OA stream
2291 * configuration across all contexts.
2292 *
2293 * The awkward consideration here is that OACTXCONTROL controls the
2294 * exponent for periodic sampling which is primarily used for system
2295 * wide profiling where we'd like a consistent sampling period even in
2296 * the face of context switches.
2297 *
2298 * Our approach of updating the register state context (as opposed to
2299 * say using a workaround batch buffer) ensures that the hardware
2300 * won't automatically reload an out-of-date timer exponent even
2301 * transiently before a WA BB could be parsed.
2302 *
2303 * This function needs to:
2304 * - Ensure the currently running context's per-context OA state is
2305 * updated
2306 * - Ensure that all existing contexts will have the correct per-context
2307 * OA state if they are scheduled for use.
2308 * - Ensure any new contexts will be initialized with the correct
2309 * per-context OA state.
2310 *
2311 * Note: it's only the RCS/Render context that has any OA state.
2312 * Note: the first flex register passed must always be R_PWR_CLK_STATE
2313 */
2314 static int
oa_configure_all_contexts(struct i915_perf_stream * stream,struct flex * regs,size_t num_regs,struct i915_active * active)2315 oa_configure_all_contexts(struct i915_perf_stream *stream,
2316 struct flex *regs,
2317 size_t num_regs,
2318 struct i915_active *active)
2319 {
2320 struct drm_i915_private *i915 = stream->perf->i915;
2321 struct intel_engine_cs *engine;
2322 struct i915_gem_context *ctx, *cn;
2323 int err;
2324
2325 lockdep_assert_held(&stream->perf->lock);
2326
2327 /*
2328 * The OA register config is setup through the context image. This image
2329 * might be written to by the GPU on context switch (in particular on
2330 * lite-restore). This means we can't safely update a context's image,
2331 * if this context is scheduled/submitted to run on the GPU.
2332 *
2333 * We could emit the OA register config through the batch buffer but
2334 * this might leave small interval of time where the OA unit is
2335 * configured at an invalid sampling period.
2336 *
2337 * Note that since we emit all requests from a single ring, there
2338 * is still an implicit global barrier here that may cause a high
2339 * priority context to wait for an otherwise independent low priority
2340 * context. Contexts idle at the time of reconfiguration are not
2341 * trapped behind the barrier.
2342 */
2343 spin_lock(&i915->gem.contexts.lock);
2344 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2345 if (!kref_get_unless_zero(&ctx->ref))
2346 continue;
2347
2348 spin_unlock(&i915->gem.contexts.lock);
2349
2350 err = gen8_configure_context(ctx, regs, num_regs);
2351 if (err) {
2352 i915_gem_context_put(ctx);
2353 return err;
2354 }
2355
2356 spin_lock(&i915->gem.contexts.lock);
2357 list_safe_reset_next(ctx, cn, link);
2358 i915_gem_context_put(ctx);
2359 }
2360 spin_unlock(&i915->gem.contexts.lock);
2361
2362 /*
2363 * After updating all other contexts, we need to modify ourselves.
2364 * If we don't modify the kernel_context, we do not get events while
2365 * idle.
2366 */
2367 for_each_uabi_engine(engine, i915) {
2368 struct intel_context *ce = engine->kernel_context;
2369
2370 if (engine->class != RENDER_CLASS)
2371 continue;
2372
2373 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2374
2375 err = gen8_modify_self(ce, regs, num_regs, active);
2376 if (err)
2377 return err;
2378 }
2379
2380 return 0;
2381 }
2382
2383 static int
gen12_configure_all_contexts(struct i915_perf_stream * stream,const struct i915_oa_config * oa_config,struct i915_active * active)2384 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2385 const struct i915_oa_config *oa_config,
2386 struct i915_active *active)
2387 {
2388 struct flex regs[] = {
2389 {
2390 GEN8_R_PWR_CLK_STATE,
2391 CTX_R_PWR_CLK_STATE,
2392 },
2393 };
2394
2395 return oa_configure_all_contexts(stream,
2396 regs, ARRAY_SIZE(regs),
2397 active);
2398 }
2399
2400 static int
lrc_configure_all_contexts(struct i915_perf_stream * stream,const struct i915_oa_config * oa_config,struct i915_active * active)2401 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2402 const struct i915_oa_config *oa_config,
2403 struct i915_active *active)
2404 {
2405 /* The MMIO offsets for Flex EU registers aren't contiguous */
2406 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2407 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2408 struct flex regs[] = {
2409 {
2410 GEN8_R_PWR_CLK_STATE,
2411 CTX_R_PWR_CLK_STATE,
2412 },
2413 {
2414 GEN8_OACTXCONTROL,
2415 stream->perf->ctx_oactxctrl_offset + 1,
2416 },
2417 { EU_PERF_CNTL0, ctx_flexeuN(0) },
2418 { EU_PERF_CNTL1, ctx_flexeuN(1) },
2419 { EU_PERF_CNTL2, ctx_flexeuN(2) },
2420 { EU_PERF_CNTL3, ctx_flexeuN(3) },
2421 { EU_PERF_CNTL4, ctx_flexeuN(4) },
2422 { EU_PERF_CNTL5, ctx_flexeuN(5) },
2423 { EU_PERF_CNTL6, ctx_flexeuN(6) },
2424 };
2425 #undef ctx_flexeuN
2426 int i;
2427
2428 regs[1].value =
2429 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2430 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2431 GEN8_OA_COUNTER_RESUME;
2432
2433 for (i = 2; i < ARRAY_SIZE(regs); i++)
2434 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2435
2436 return oa_configure_all_contexts(stream,
2437 regs, ARRAY_SIZE(regs),
2438 active);
2439 }
2440
2441 static int
gen8_enable_metric_set(struct i915_perf_stream * stream,struct i915_active * active)2442 gen8_enable_metric_set(struct i915_perf_stream *stream,
2443 struct i915_active *active)
2444 {
2445 struct intel_uncore *uncore = stream->uncore;
2446 struct i915_oa_config *oa_config = stream->oa_config;
2447 int ret;
2448
2449 /*
2450 * We disable slice/unslice clock ratio change reports on SKL since
2451 * they are too noisy. The HW generates a lot of redundant reports
2452 * where the ratio hasn't really changed causing a lot of redundant
2453 * work to processes and increasing the chances we'll hit buffer
2454 * overruns.
2455 *
2456 * Although we don't currently use the 'disable overrun' OABUFFER
2457 * feature it's worth noting that clock ratio reports have to be
2458 * disabled before considering to use that feature since the HW doesn't
2459 * correctly block these reports.
2460 *
2461 * Currently none of the high-level metrics we have depend on knowing
2462 * this ratio to normalize.
2463 *
2464 * Note: This register is not power context saved and restored, but
2465 * that's OK considering that we disable RC6 while the OA unit is
2466 * enabled.
2467 *
2468 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2469 * be read back from automatically triggered reports, as part of the
2470 * RPT_ID field.
2471 */
2472 if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) {
2473 intel_uncore_write(uncore, GEN8_OA_DEBUG,
2474 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2475 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2476 }
2477
2478 /*
2479 * Update all contexts prior writing the mux configurations as we need
2480 * to make sure all slices/subslices are ON before writing to NOA
2481 * registers.
2482 */
2483 ret = lrc_configure_all_contexts(stream, oa_config, active);
2484 if (ret)
2485 return ret;
2486
2487 return emit_oa_config(stream,
2488 stream->oa_config, oa_context(stream),
2489 active);
2490 }
2491
oag_report_ctx_switches(const struct i915_perf_stream * stream)2492 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2493 {
2494 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2495 (stream->sample_flags & SAMPLE_OA_REPORT) ?
2496 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2497 }
2498
2499 static int
gen12_enable_metric_set(struct i915_perf_stream * stream,struct i915_active * active)2500 gen12_enable_metric_set(struct i915_perf_stream *stream,
2501 struct i915_active *active)
2502 {
2503 struct intel_uncore *uncore = stream->uncore;
2504 struct i915_oa_config *oa_config = stream->oa_config;
2505 bool periodic = stream->periodic;
2506 u32 period_exponent = stream->period_exponent;
2507 int ret;
2508
2509 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2510 /* Disable clk ratio reports, like previous Gens. */
2511 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2512 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2513 /*
2514 * If the user didn't require OA reports, instruct
2515 * the hardware not to emit ctx switch reports.
2516 */
2517 oag_report_ctx_switches(stream));
2518
2519 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2520 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2521 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2522 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2523 : 0);
2524
2525 /*
2526 * Update all contexts prior writing the mux configurations as we need
2527 * to make sure all slices/subslices are ON before writing to NOA
2528 * registers.
2529 */
2530 ret = gen12_configure_all_contexts(stream, oa_config, active);
2531 if (ret)
2532 return ret;
2533
2534 /*
2535 * For Gen12, performance counters are context
2536 * saved/restored. Only enable it for the context that
2537 * requested this.
2538 */
2539 if (stream->ctx) {
2540 ret = gen12_configure_oar_context(stream, active);
2541 if (ret)
2542 return ret;
2543 }
2544
2545 return emit_oa_config(stream,
2546 stream->oa_config, oa_context(stream),
2547 active);
2548 }
2549
gen8_disable_metric_set(struct i915_perf_stream * stream)2550 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2551 {
2552 struct intel_uncore *uncore = stream->uncore;
2553
2554 /* Reset all contexts' slices/subslices configurations. */
2555 lrc_configure_all_contexts(stream, NULL, NULL);
2556
2557 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2558 }
2559
gen10_disable_metric_set(struct i915_perf_stream * stream)2560 static void gen10_disable_metric_set(struct i915_perf_stream *stream)
2561 {
2562 struct intel_uncore *uncore = stream->uncore;
2563
2564 /* Reset all contexts' slices/subslices configurations. */
2565 lrc_configure_all_contexts(stream, NULL, NULL);
2566
2567 /* Make sure we disable noa to save power. */
2568 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2569 }
2570
gen12_disable_metric_set(struct i915_perf_stream * stream)2571 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2572 {
2573 struct intel_uncore *uncore = stream->uncore;
2574
2575 /* Reset all contexts' slices/subslices configurations. */
2576 gen12_configure_all_contexts(stream, NULL, NULL);
2577
2578 /* disable the context save/restore or OAR counters */
2579 if (stream->ctx)
2580 gen12_configure_oar_context(stream, NULL);
2581
2582 /* Make sure we disable noa to save power. */
2583 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2584 }
2585
gen7_oa_enable(struct i915_perf_stream * stream)2586 static void gen7_oa_enable(struct i915_perf_stream *stream)
2587 {
2588 struct intel_uncore *uncore = stream->uncore;
2589 struct i915_gem_context *ctx = stream->ctx;
2590 u32 ctx_id = stream->specific_ctx_id;
2591 bool periodic = stream->periodic;
2592 u32 period_exponent = stream->period_exponent;
2593 u32 report_format = stream->oa_buffer.format;
2594
2595 /*
2596 * Reset buf pointers so we don't forward reports from before now.
2597 *
2598 * Think carefully if considering trying to avoid this, since it
2599 * also ensures status flags and the buffer itself are cleared
2600 * in error paths, and we have checks for invalid reports based
2601 * on the assumption that certain fields are written to zeroed
2602 * memory which this helps maintains.
2603 */
2604 gen7_init_oa_buffer(stream);
2605
2606 intel_uncore_write(uncore, GEN7_OACONTROL,
2607 (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2608 (period_exponent <<
2609 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2610 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2611 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2612 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2613 GEN7_OACONTROL_ENABLE);
2614 }
2615
gen8_oa_enable(struct i915_perf_stream * stream)2616 static void gen8_oa_enable(struct i915_perf_stream *stream)
2617 {
2618 struct intel_uncore *uncore = stream->uncore;
2619 u32 report_format = stream->oa_buffer.format;
2620
2621 /*
2622 * Reset buf pointers so we don't forward reports from before now.
2623 *
2624 * Think carefully if considering trying to avoid this, since it
2625 * also ensures status flags and the buffer itself are cleared
2626 * in error paths, and we have checks for invalid reports based
2627 * on the assumption that certain fields are written to zeroed
2628 * memory which this helps maintains.
2629 */
2630 gen8_init_oa_buffer(stream);
2631
2632 /*
2633 * Note: we don't rely on the hardware to perform single context
2634 * filtering and instead filter on the cpu based on the context-id
2635 * field of reports
2636 */
2637 intel_uncore_write(uncore, GEN8_OACONTROL,
2638 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2639 GEN8_OA_COUNTER_ENABLE);
2640 }
2641
gen12_oa_enable(struct i915_perf_stream * stream)2642 static void gen12_oa_enable(struct i915_perf_stream *stream)
2643 {
2644 struct intel_uncore *uncore = stream->uncore;
2645 u32 report_format = stream->oa_buffer.format;
2646
2647 /*
2648 * If we don't want OA reports from the OA buffer, then we don't even
2649 * need to program the OAG unit.
2650 */
2651 if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2652 return;
2653
2654 gen12_init_oa_buffer(stream);
2655
2656 intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2657 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2658 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2659 }
2660
2661 /**
2662 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2663 * @stream: An i915 perf stream opened for OA metrics
2664 *
2665 * [Re]enables hardware periodic sampling according to the period configured
2666 * when opening the stream. This also starts a hrtimer that will periodically
2667 * check for data in the circular OA buffer for notifying userspace (e.g.
2668 * during a read() or poll()).
2669 */
i915_oa_stream_enable(struct i915_perf_stream * stream)2670 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2671 {
2672 stream->pollin = false;
2673
2674 stream->perf->ops.oa_enable(stream);
2675
2676 if (stream->sample_flags & SAMPLE_OA_REPORT)
2677 hrtimer_start(&stream->poll_check_timer,
2678 ns_to_ktime(stream->poll_oa_period),
2679 HRTIMER_MODE_REL_PINNED);
2680 }
2681
gen7_oa_disable(struct i915_perf_stream * stream)2682 static void gen7_oa_disable(struct i915_perf_stream *stream)
2683 {
2684 struct intel_uncore *uncore = stream->uncore;
2685
2686 intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2687 if (intel_wait_for_register(uncore,
2688 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2689 50))
2690 drm_err(&stream->perf->i915->drm,
2691 "wait for OA to be disabled timed out\n");
2692 }
2693
gen8_oa_disable(struct i915_perf_stream * stream)2694 static void gen8_oa_disable(struct i915_perf_stream *stream)
2695 {
2696 struct intel_uncore *uncore = stream->uncore;
2697
2698 intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2699 if (intel_wait_for_register(uncore,
2700 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2701 50))
2702 drm_err(&stream->perf->i915->drm,
2703 "wait for OA to be disabled timed out\n");
2704 }
2705
gen12_oa_disable(struct i915_perf_stream * stream)2706 static void gen12_oa_disable(struct i915_perf_stream *stream)
2707 {
2708 struct intel_uncore *uncore = stream->uncore;
2709
2710 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
2711 if (intel_wait_for_register(uncore,
2712 GEN12_OAG_OACONTROL,
2713 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
2714 50))
2715 drm_err(&stream->perf->i915->drm,
2716 "wait for OA to be disabled timed out\n");
2717
2718 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
2719 if (intel_wait_for_register(uncore,
2720 GEN12_OA_TLB_INV_CR,
2721 1, 0,
2722 50))
2723 drm_err(&stream->perf->i915->drm,
2724 "wait for OA tlb invalidate timed out\n");
2725 }
2726
2727 /**
2728 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2729 * @stream: An i915 perf stream opened for OA metrics
2730 *
2731 * Stops the OA unit from periodically writing counter reports into the
2732 * circular OA buffer. This also stops the hrtimer that periodically checks for
2733 * data in the circular OA buffer, for notifying userspace.
2734 */
i915_oa_stream_disable(struct i915_perf_stream * stream)2735 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2736 {
2737 stream->perf->ops.oa_disable(stream);
2738
2739 if (stream->sample_flags & SAMPLE_OA_REPORT)
2740 hrtimer_cancel(&stream->poll_check_timer);
2741 }
2742
2743 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2744 .destroy = i915_oa_stream_destroy,
2745 .enable = i915_oa_stream_enable,
2746 .disable = i915_oa_stream_disable,
2747 .wait_unlocked = i915_oa_wait_unlocked,
2748 .poll_wait = i915_oa_poll_wait,
2749 .read = i915_oa_read,
2750 };
2751
i915_perf_stream_enable_sync(struct i915_perf_stream * stream)2752 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
2753 {
2754 struct i915_active *active;
2755 int err;
2756
2757 active = i915_active_create();
2758 if (!active)
2759 return -ENOMEM;
2760
2761 err = stream->perf->ops.enable_metric_set(stream, active);
2762 if (err == 0)
2763 __i915_active_wait(active, TASK_UNINTERRUPTIBLE);
2764
2765 i915_active_put(active);
2766 return err;
2767 }
2768
2769 static void
get_default_sseu_config(struct intel_sseu * out_sseu,struct intel_engine_cs * engine)2770 get_default_sseu_config(struct intel_sseu *out_sseu,
2771 struct intel_engine_cs *engine)
2772 {
2773 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
2774
2775 *out_sseu = intel_sseu_from_device_info(devinfo_sseu);
2776
2777 if (IS_GEN(engine->i915, 11)) {
2778 /*
2779 * We only need subslice count so it doesn't matter which ones
2780 * we select - just turn off low bits in the amount of half of
2781 * all available subslices per slice.
2782 */
2783 out_sseu->subslice_mask =
2784 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
2785 out_sseu->slice_mask = 0x1;
2786 }
2787 }
2788
2789 static int
get_sseu_config(struct intel_sseu * out_sseu,struct intel_engine_cs * engine,const struct drm_i915_gem_context_param_sseu * drm_sseu)2790 get_sseu_config(struct intel_sseu *out_sseu,
2791 struct intel_engine_cs *engine,
2792 const struct drm_i915_gem_context_param_sseu *drm_sseu)
2793 {
2794 if (drm_sseu->engine.engine_class != engine->uabi_class ||
2795 drm_sseu->engine.engine_instance != engine->uabi_instance)
2796 return -EINVAL;
2797
2798 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
2799 }
2800
2801 /**
2802 * i915_oa_stream_init - validate combined props for OA stream and init
2803 * @stream: An i915 perf stream
2804 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2805 * @props: The property state that configures stream (individually validated)
2806 *
2807 * While read_properties_unlocked() validates properties in isolation it
2808 * doesn't ensure that the combination necessarily makes sense.
2809 *
2810 * At this point it has been determined that userspace wants a stream of
2811 * OA metrics, but still we need to further validate the combined
2812 * properties are OK.
2813 *
2814 * If the configuration makes sense then we can allocate memory for
2815 * a circular OA buffer and apply the requested metric set configuration.
2816 *
2817 * Returns: zero on success or a negative error code.
2818 */
i915_oa_stream_init(struct i915_perf_stream * stream,struct drm_i915_perf_open_param * param,struct perf_open_properties * props)2819 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2820 struct drm_i915_perf_open_param *param,
2821 struct perf_open_properties *props)
2822 {
2823 struct drm_i915_private *i915 = stream->perf->i915;
2824 struct i915_perf *perf = stream->perf;
2825 int format_size;
2826 int ret;
2827
2828 if (!props->engine) {
2829 DRM_DEBUG("OA engine not specified\n");
2830 return -EINVAL;
2831 }
2832
2833 /*
2834 * If the sysfs metrics/ directory wasn't registered for some
2835 * reason then don't let userspace try their luck with config
2836 * IDs
2837 */
2838 if (!perf->metrics_kobj) {
2839 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2840 return -EINVAL;
2841 }
2842
2843 if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
2844 (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) {
2845 DRM_DEBUG("Only OA report sampling supported\n");
2846 return -EINVAL;
2847 }
2848
2849 if (!perf->ops.enable_metric_set) {
2850 DRM_DEBUG("OA unit not supported\n");
2851 return -ENODEV;
2852 }
2853
2854 /*
2855 * To avoid the complexity of having to accurately filter
2856 * counter reports and marshal to the appropriate client
2857 * we currently only allow exclusive access
2858 */
2859 if (perf->exclusive_stream) {
2860 DRM_DEBUG("OA unit already in use\n");
2861 return -EBUSY;
2862 }
2863
2864 if (!props->oa_format) {
2865 DRM_DEBUG("OA report format not specified\n");
2866 return -EINVAL;
2867 }
2868
2869 stream->engine = props->engine;
2870 stream->uncore = stream->engine->gt->uncore;
2871
2872 stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2873
2874 format_size = perf->oa_formats[props->oa_format].size;
2875
2876 stream->sample_flags = props->sample_flags;
2877 stream->sample_size += format_size;
2878
2879 stream->oa_buffer.format_size = format_size;
2880 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0))
2881 return -EINVAL;
2882
2883 stream->hold_preemption = props->hold_preemption;
2884
2885 stream->oa_buffer.format =
2886 perf->oa_formats[props->oa_format].format;
2887
2888 stream->periodic = props->oa_periodic;
2889 if (stream->periodic)
2890 stream->period_exponent = props->oa_period_exponent;
2891
2892 if (stream->ctx) {
2893 ret = oa_get_render_ctx_id(stream);
2894 if (ret) {
2895 DRM_DEBUG("Invalid context id to filter with\n");
2896 return ret;
2897 }
2898 }
2899
2900 ret = alloc_noa_wait(stream);
2901 if (ret) {
2902 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
2903 goto err_noa_wait_alloc;
2904 }
2905
2906 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
2907 if (!stream->oa_config) {
2908 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2909 ret = -EINVAL;
2910 goto err_config;
2911 }
2912
2913 /* PRM - observability performance counters:
2914 *
2915 * OACONTROL, performance counter enable, note:
2916 *
2917 * "When this bit is set, in order to have coherent counts,
2918 * RC6 power state and trunk clock gating must be disabled.
2919 * This can be achieved by programming MMIO registers as
2920 * 0xA094=0 and 0xA090[31]=1"
2921 *
2922 * In our case we are expecting that taking pm + FORCEWAKE
2923 * references will effectively disable RC6.
2924 */
2925 intel_engine_pm_get(stream->engine);
2926 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2927
2928 ret = alloc_oa_buffer(stream);
2929 if (ret)
2930 goto err_oa_buf_alloc;
2931
2932 stream->ops = &i915_oa_stream_ops;
2933
2934 perf->sseu = props->sseu;
2935 WRITE_ONCE(perf->exclusive_stream, stream);
2936
2937 ret = i915_perf_stream_enable_sync(stream);
2938 if (ret) {
2939 DRM_DEBUG("Unable to enable metric set\n");
2940 goto err_enable;
2941 }
2942
2943 DRM_DEBUG("opening stream oa config uuid=%s\n",
2944 stream->oa_config->uuid);
2945
2946 hrtimer_init(&stream->poll_check_timer,
2947 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2948 stream->poll_check_timer.function = oa_poll_check_timer_cb;
2949 init_waitqueue_head(&stream->poll_wq);
2950 spin_lock_init(&stream->oa_buffer.ptr_lock);
2951
2952 return 0;
2953
2954 err_enable:
2955 WRITE_ONCE(perf->exclusive_stream, NULL);
2956 perf->ops.disable_metric_set(stream);
2957
2958 free_oa_buffer(stream);
2959
2960 err_oa_buf_alloc:
2961 free_oa_configs(stream);
2962
2963 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
2964 intel_engine_pm_put(stream->engine);
2965
2966 err_config:
2967 free_noa_wait(stream);
2968
2969 err_noa_wait_alloc:
2970 if (stream->ctx)
2971 oa_put_render_ctx_id(stream);
2972
2973 return ret;
2974 }
2975
i915_oa_init_reg_state(const struct intel_context * ce,const struct intel_engine_cs * engine)2976 void i915_oa_init_reg_state(const struct intel_context *ce,
2977 const struct intel_engine_cs *engine)
2978 {
2979 struct i915_perf_stream *stream;
2980
2981 if (engine->class != RENDER_CLASS)
2982 return;
2983
2984 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
2985 stream = READ_ONCE(engine->i915->perf.exclusive_stream);
2986 if (stream && INTEL_GEN(stream->perf->i915) < 12)
2987 gen8_update_reg_state_unlocked(ce, stream);
2988 }
2989
2990 /**
2991 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2992 * @file: An i915 perf stream file
2993 * @buf: destination buffer given by userspace
2994 * @count: the number of bytes userspace wants to read
2995 * @ppos: (inout) file seek position (unused)
2996 *
2997 * The entry point for handling a read() on a stream file descriptor from
2998 * userspace. Most of the work is left to the i915_perf_read_locked() and
2999 * &i915_perf_stream_ops->read but to save having stream implementations (of
3000 * which we might have multiple later) we handle blocking read here.
3001 *
3002 * We can also consistently treat trying to read from a disabled stream
3003 * as an IO error so implementations can assume the stream is enabled
3004 * while reading.
3005 *
3006 * Returns: The number of bytes copied or a negative error code on failure.
3007 */
i915_perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)3008 static ssize_t i915_perf_read(struct file *file,
3009 char __user *buf,
3010 size_t count,
3011 loff_t *ppos)
3012 {
3013 struct i915_perf_stream *stream = file->private_data;
3014 struct i915_perf *perf = stream->perf;
3015 size_t offset = 0;
3016 int ret;
3017
3018 /* To ensure it's handled consistently we simply treat all reads of a
3019 * disabled stream as an error. In particular it might otherwise lead
3020 * to a deadlock for blocking file descriptors...
3021 */
3022 if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT))
3023 return -EIO;
3024
3025 if (!(file->f_flags & O_NONBLOCK)) {
3026 /* There's the small chance of false positives from
3027 * stream->ops->wait_unlocked.
3028 *
3029 * E.g. with single context filtering since we only wait until
3030 * oabuffer has >= 1 report we don't immediately know whether
3031 * any reports really belong to the current context
3032 */
3033 do {
3034 ret = stream->ops->wait_unlocked(stream);
3035 if (ret)
3036 return ret;
3037
3038 mutex_lock(&perf->lock);
3039 ret = stream->ops->read(stream, buf, count, &offset);
3040 mutex_unlock(&perf->lock);
3041 } while (!offset && !ret);
3042 } else {
3043 mutex_lock(&perf->lock);
3044 ret = stream->ops->read(stream, buf, count, &offset);
3045 mutex_unlock(&perf->lock);
3046 }
3047
3048 /* We allow the poll checking to sometimes report false positive EPOLLIN
3049 * events where we might actually report EAGAIN on read() if there's
3050 * not really any data available. In this situation though we don't
3051 * want to enter a busy loop between poll() reporting a EPOLLIN event
3052 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3053 * effectively ensures we back off until the next hrtimer callback
3054 * before reporting another EPOLLIN event.
3055 * The exception to this is if ops->read() returned -ENOSPC which means
3056 * that more OA data is available than could fit in the user provided
3057 * buffer. In this case we want the next poll() call to not block.
3058 */
3059 if (ret != -ENOSPC)
3060 stream->pollin = false;
3061
3062 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3063 return offset ?: (ret ?: -EAGAIN);
3064 }
3065
oa_poll_check_timer_cb(struct hrtimer * hrtimer)3066 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3067 {
3068 struct i915_perf_stream *stream =
3069 container_of(hrtimer, typeof(*stream), poll_check_timer);
3070
3071 if (oa_buffer_check_unlocked(stream)) {
3072 stream->pollin = true;
3073 wake_up(&stream->poll_wq);
3074 }
3075
3076 hrtimer_forward_now(hrtimer,
3077 ns_to_ktime(stream->poll_oa_period));
3078
3079 return HRTIMER_RESTART;
3080 }
3081
3082 /**
3083 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3084 * @stream: An i915 perf stream
3085 * @file: An i915 perf stream file
3086 * @wait: poll() state table
3087 *
3088 * For handling userspace polling on an i915 perf stream, this calls through to
3089 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3090 * will be woken for new stream data.
3091 *
3092 * Note: The &perf->lock mutex has been taken to serialize
3093 * with any non-file-operation driver hooks.
3094 *
3095 * Returns: any poll events that are ready without sleeping
3096 */
i915_perf_poll_locked(struct i915_perf_stream * stream,struct file * file,poll_table * wait)3097 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3098 struct file *file,
3099 poll_table *wait)
3100 {
3101 __poll_t events = 0;
3102
3103 stream->ops->poll_wait(stream, file, wait);
3104
3105 /* Note: we don't explicitly check whether there's something to read
3106 * here since this path may be very hot depending on what else
3107 * userspace is polling, or on the timeout in use. We rely solely on
3108 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3109 * samples to read.
3110 */
3111 if (stream->pollin)
3112 events |= EPOLLIN;
3113
3114 return events;
3115 }
3116
3117 /**
3118 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3119 * @file: An i915 perf stream file
3120 * @wait: poll() state table
3121 *
3122 * For handling userspace polling on an i915 perf stream, this ensures
3123 * poll_wait() gets called with a wait queue that will be woken for new stream
3124 * data.
3125 *
3126 * Note: Implementation deferred to i915_perf_poll_locked()
3127 *
3128 * Returns: any poll events that are ready without sleeping
3129 */
i915_perf_poll(struct file * file,poll_table * wait)3130 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3131 {
3132 struct i915_perf_stream *stream = file->private_data;
3133 struct i915_perf *perf = stream->perf;
3134 __poll_t ret;
3135
3136 mutex_lock(&perf->lock);
3137 ret = i915_perf_poll_locked(stream, file, wait);
3138 mutex_unlock(&perf->lock);
3139
3140 return ret;
3141 }
3142
3143 /**
3144 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3145 * @stream: A disabled i915 perf stream
3146 *
3147 * [Re]enables the associated capture of data for this stream.
3148 *
3149 * If a stream was previously enabled then there's currently no intention
3150 * to provide userspace any guarantee about the preservation of previously
3151 * buffered data.
3152 */
i915_perf_enable_locked(struct i915_perf_stream * stream)3153 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3154 {
3155 if (stream->enabled)
3156 return;
3157
3158 /* Allow stream->ops->enable() to refer to this */
3159 stream->enabled = true;
3160
3161 if (stream->ops->enable)
3162 stream->ops->enable(stream);
3163
3164 if (stream->hold_preemption)
3165 intel_context_set_nopreempt(stream->pinned_ctx);
3166 }
3167
3168 /**
3169 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3170 * @stream: An enabled i915 perf stream
3171 *
3172 * Disables the associated capture of data for this stream.
3173 *
3174 * The intention is that disabling an re-enabling a stream will ideally be
3175 * cheaper than destroying and re-opening a stream with the same configuration,
3176 * though there are no formal guarantees about what state or buffered data
3177 * must be retained between disabling and re-enabling a stream.
3178 *
3179 * Note: while a stream is disabled it's considered an error for userspace
3180 * to attempt to read from the stream (-EIO).
3181 */
i915_perf_disable_locked(struct i915_perf_stream * stream)3182 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3183 {
3184 if (!stream->enabled)
3185 return;
3186
3187 /* Allow stream->ops->disable() to refer to this */
3188 stream->enabled = false;
3189
3190 if (stream->hold_preemption)
3191 intel_context_clear_nopreempt(stream->pinned_ctx);
3192
3193 if (stream->ops->disable)
3194 stream->ops->disable(stream);
3195 }
3196
i915_perf_config_locked(struct i915_perf_stream * stream,unsigned long metrics_set)3197 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3198 unsigned long metrics_set)
3199 {
3200 struct i915_oa_config *config;
3201 long ret = stream->oa_config->id;
3202
3203 config = i915_perf_get_oa_config(stream->perf, metrics_set);
3204 if (!config)
3205 return -EINVAL;
3206
3207 if (config != stream->oa_config) {
3208 int err;
3209
3210 /*
3211 * If OA is bound to a specific context, emit the
3212 * reconfiguration inline from that context. The update
3213 * will then be ordered with respect to submission on that
3214 * context.
3215 *
3216 * When set globally, we use a low priority kernel context,
3217 * so it will effectively take effect when idle.
3218 */
3219 err = emit_oa_config(stream, config, oa_context(stream), NULL);
3220 if (!err)
3221 config = xchg(&stream->oa_config, config);
3222 else
3223 ret = err;
3224 }
3225
3226 i915_oa_config_put(config);
3227
3228 return ret;
3229 }
3230
3231 /**
3232 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3233 * @stream: An i915 perf stream
3234 * @cmd: the ioctl request
3235 * @arg: the ioctl data
3236 *
3237 * Note: The &perf->lock mutex has been taken to serialize
3238 * with any non-file-operation driver hooks.
3239 *
3240 * Returns: zero on success or a negative error code. Returns -EINVAL for
3241 * an unknown ioctl request.
3242 */
i915_perf_ioctl_locked(struct i915_perf_stream * stream,unsigned int cmd,unsigned long arg)3243 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3244 unsigned int cmd,
3245 unsigned long arg)
3246 {
3247 switch (cmd) {
3248 case I915_PERF_IOCTL_ENABLE:
3249 i915_perf_enable_locked(stream);
3250 return 0;
3251 case I915_PERF_IOCTL_DISABLE:
3252 i915_perf_disable_locked(stream);
3253 return 0;
3254 case I915_PERF_IOCTL_CONFIG:
3255 return i915_perf_config_locked(stream, arg);
3256 }
3257
3258 return -EINVAL;
3259 }
3260
3261 /**
3262 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3263 * @file: An i915 perf stream file
3264 * @cmd: the ioctl request
3265 * @arg: the ioctl data
3266 *
3267 * Implementation deferred to i915_perf_ioctl_locked().
3268 *
3269 * Returns: zero on success or a negative error code. Returns -EINVAL for
3270 * an unknown ioctl request.
3271 */
i915_perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3272 static long i915_perf_ioctl(struct file *file,
3273 unsigned int cmd,
3274 unsigned long arg)
3275 {
3276 struct i915_perf_stream *stream = file->private_data;
3277 struct i915_perf *perf = stream->perf;
3278 long ret;
3279
3280 mutex_lock(&perf->lock);
3281 ret = i915_perf_ioctl_locked(stream, cmd, arg);
3282 mutex_unlock(&perf->lock);
3283
3284 return ret;
3285 }
3286
3287 /**
3288 * i915_perf_destroy_locked - destroy an i915 perf stream
3289 * @stream: An i915 perf stream
3290 *
3291 * Frees all resources associated with the given i915 perf @stream, disabling
3292 * any associated data capture in the process.
3293 *
3294 * Note: The &perf->lock mutex has been taken to serialize
3295 * with any non-file-operation driver hooks.
3296 */
i915_perf_destroy_locked(struct i915_perf_stream * stream)3297 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3298 {
3299 if (stream->enabled)
3300 i915_perf_disable_locked(stream);
3301
3302 if (stream->ops->destroy)
3303 stream->ops->destroy(stream);
3304
3305 if (stream->ctx)
3306 i915_gem_context_put(stream->ctx);
3307
3308 kfree(stream);
3309 }
3310
3311 /**
3312 * i915_perf_release - handles userspace close() of a stream file
3313 * @inode: anonymous inode associated with file
3314 * @file: An i915 perf stream file
3315 *
3316 * Cleans up any resources associated with an open i915 perf stream file.
3317 *
3318 * NB: close() can't really fail from the userspace point of view.
3319 *
3320 * Returns: zero on success or a negative error code.
3321 */
i915_perf_release(struct inode * inode,struct file * file)3322 static int i915_perf_release(struct inode *inode, struct file *file)
3323 {
3324 struct i915_perf_stream *stream = file->private_data;
3325 struct i915_perf *perf = stream->perf;
3326
3327 mutex_lock(&perf->lock);
3328 i915_perf_destroy_locked(stream);
3329 mutex_unlock(&perf->lock);
3330
3331 /* Release the reference the perf stream kept on the driver. */
3332 drm_dev_put(&perf->i915->drm);
3333
3334 return 0;
3335 }
3336
3337
3338 static const struct file_operations fops = {
3339 .owner = THIS_MODULE,
3340 .llseek = no_llseek,
3341 .release = i915_perf_release,
3342 .poll = i915_perf_poll,
3343 .read = i915_perf_read,
3344 .unlocked_ioctl = i915_perf_ioctl,
3345 /* Our ioctl have no arguments, so it's safe to use the same function
3346 * to handle 32bits compatibility.
3347 */
3348 .compat_ioctl = i915_perf_ioctl,
3349 };
3350
3351
3352 /**
3353 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3354 * @perf: i915 perf instance
3355 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3356 * @props: individually validated u64 property value pairs
3357 * @file: drm file
3358 *
3359 * See i915_perf_ioctl_open() for interface details.
3360 *
3361 * Implements further stream config validation and stream initialization on
3362 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3363 * taken to serialize with any non-file-operation driver hooks.
3364 *
3365 * Note: at this point the @props have only been validated in isolation and
3366 * it's still necessary to validate that the combination of properties makes
3367 * sense.
3368 *
3369 * In the case where userspace is interested in OA unit metrics then further
3370 * config validation and stream initialization details will be handled by
3371 * i915_oa_stream_init(). The code here should only validate config state that
3372 * will be relevant to all stream types / backends.
3373 *
3374 * Returns: zero on success or a negative error code.
3375 */
3376 static int
i915_perf_open_ioctl_locked(struct i915_perf * perf,struct drm_i915_perf_open_param * param,struct perf_open_properties * props,struct drm_file * file)3377 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3378 struct drm_i915_perf_open_param *param,
3379 struct perf_open_properties *props,
3380 struct drm_file *file)
3381 {
3382 struct i915_gem_context *specific_ctx = NULL;
3383 struct i915_perf_stream *stream = NULL;
3384 unsigned long f_flags = 0;
3385 bool privileged_op = true;
3386 int stream_fd;
3387 int ret;
3388
3389 if (props->single_context) {
3390 u32 ctx_handle = props->ctx_handle;
3391 struct drm_i915_file_private *file_priv = file->driver_priv;
3392
3393 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3394 if (!specific_ctx) {
3395 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
3396 ctx_handle);
3397 ret = -ENOENT;
3398 goto err;
3399 }
3400 }
3401
3402 /*
3403 * On Haswell the OA unit supports clock gating off for a specific
3404 * context and in this mode there's no visibility of metrics for the
3405 * rest of the system, which we consider acceptable for a
3406 * non-privileged client.
3407 *
3408 * For Gen8->11 the OA unit no longer supports clock gating off for a
3409 * specific context and the kernel can't securely stop the counters
3410 * from updating as system-wide / global values. Even though we can
3411 * filter reports based on the included context ID we can't block
3412 * clients from seeing the raw / global counter values via
3413 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3414 * enable the OA unit by default.
3415 *
3416 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3417 * per context basis. So we can relax requirements there if the user
3418 * doesn't request global stream access (i.e. query based sampling
3419 * using MI_RECORD_PERF_COUNT.
3420 */
3421 if (IS_HASWELL(perf->i915) && specific_ctx)
3422 privileged_op = false;
3423 else if (IS_GEN(perf->i915, 12) && specific_ctx &&
3424 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3425 privileged_op = false;
3426
3427 if (props->hold_preemption) {
3428 if (!props->single_context) {
3429 DRM_DEBUG("preemption disable with no context\n");
3430 ret = -EINVAL;
3431 goto err;
3432 }
3433 privileged_op = true;
3434 }
3435
3436 /*
3437 * Asking for SSEU configuration is a priviliged operation.
3438 */
3439 if (props->has_sseu)
3440 privileged_op = true;
3441 else
3442 get_default_sseu_config(&props->sseu, props->engine);
3443
3444 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3445 * we check a dev.i915.perf_stream_paranoid sysctl option
3446 * to determine if it's ok to access system wide OA counters
3447 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3448 */
3449 if (privileged_op &&
3450 i915_perf_stream_paranoid && !perfmon_capable()) {
3451 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
3452 ret = -EACCES;
3453 goto err_ctx;
3454 }
3455
3456 stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3457 if (!stream) {
3458 ret = -ENOMEM;
3459 goto err_ctx;
3460 }
3461
3462 stream->perf = perf;
3463 stream->ctx = specific_ctx;
3464 stream->poll_oa_period = props->poll_oa_period;
3465
3466 ret = i915_oa_stream_init(stream, param, props);
3467 if (ret)
3468 goto err_alloc;
3469
3470 /* we avoid simply assigning stream->sample_flags = props->sample_flags
3471 * to have _stream_init check the combination of sample flags more
3472 * thoroughly, but still this is the expected result at this point.
3473 */
3474 if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3475 ret = -ENODEV;
3476 goto err_flags;
3477 }
3478
3479 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3480 f_flags |= O_CLOEXEC;
3481 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3482 f_flags |= O_NONBLOCK;
3483
3484 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3485 if (stream_fd < 0) {
3486 ret = stream_fd;
3487 goto err_flags;
3488 }
3489
3490 if (!(param->flags & I915_PERF_FLAG_DISABLED))
3491 i915_perf_enable_locked(stream);
3492
3493 /* Take a reference on the driver that will be kept with stream_fd
3494 * until its release.
3495 */
3496 drm_dev_get(&perf->i915->drm);
3497
3498 return stream_fd;
3499
3500 err_flags:
3501 if (stream->ops->destroy)
3502 stream->ops->destroy(stream);
3503 err_alloc:
3504 kfree(stream);
3505 err_ctx:
3506 if (specific_ctx)
3507 i915_gem_context_put(specific_ctx);
3508 err:
3509 return ret;
3510 }
3511
oa_exponent_to_ns(struct i915_perf * perf,int exponent)3512 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3513 {
3514 return i915_cs_timestamp_ticks_to_ns(perf->i915, 2ULL << exponent);
3515 }
3516
3517 /**
3518 * read_properties_unlocked - validate + copy userspace stream open properties
3519 * @perf: i915 perf instance
3520 * @uprops: The array of u64 key value pairs given by userspace
3521 * @n_props: The number of key value pairs expected in @uprops
3522 * @props: The stream configuration built up while validating properties
3523 *
3524 * Note this function only validates properties in isolation it doesn't
3525 * validate that the combination of properties makes sense or that all
3526 * properties necessary for a particular kind of stream have been set.
3527 *
3528 * Note that there currently aren't any ordering requirements for properties so
3529 * we shouldn't validate or assume anything about ordering here. This doesn't
3530 * rule out defining new properties with ordering requirements in the future.
3531 */
read_properties_unlocked(struct i915_perf * perf,u64 __user * uprops,u32 n_props,struct perf_open_properties * props)3532 static int read_properties_unlocked(struct i915_perf *perf,
3533 u64 __user *uprops,
3534 u32 n_props,
3535 struct perf_open_properties *props)
3536 {
3537 u64 __user *uprop = uprops;
3538 u32 i;
3539 int ret;
3540
3541 memset(props, 0, sizeof(struct perf_open_properties));
3542 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3543
3544 if (!n_props) {
3545 DRM_DEBUG("No i915 perf properties given\n");
3546 return -EINVAL;
3547 }
3548
3549 /* At the moment we only support using i915-perf on the RCS. */
3550 props->engine = intel_engine_lookup_user(perf->i915,
3551 I915_ENGINE_CLASS_RENDER,
3552 0);
3553 if (!props->engine) {
3554 DRM_DEBUG("No RENDER-capable engines\n");
3555 return -EINVAL;
3556 }
3557
3558 /* Considering that ID = 0 is reserved and assuming that we don't
3559 * (currently) expect any configurations to ever specify duplicate
3560 * values for a particular property ID then the last _PROP_MAX value is
3561 * one greater than the maximum number of properties we expect to get
3562 * from userspace.
3563 */
3564 if (n_props >= DRM_I915_PERF_PROP_MAX) {
3565 DRM_DEBUG("More i915 perf properties specified than exist\n");
3566 return -EINVAL;
3567 }
3568
3569 for (i = 0; i < n_props; i++) {
3570 u64 oa_period, oa_freq_hz;
3571 u64 id, value;
3572
3573 ret = get_user(id, uprop);
3574 if (ret)
3575 return ret;
3576
3577 ret = get_user(value, uprop + 1);
3578 if (ret)
3579 return ret;
3580
3581 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3582 DRM_DEBUG("Unknown i915 perf property ID\n");
3583 return -EINVAL;
3584 }
3585
3586 switch ((enum drm_i915_perf_property_id)id) {
3587 case DRM_I915_PERF_PROP_CTX_HANDLE:
3588 props->single_context = 1;
3589 props->ctx_handle = value;
3590 break;
3591 case DRM_I915_PERF_PROP_SAMPLE_OA:
3592 if (value)
3593 props->sample_flags |= SAMPLE_OA_REPORT;
3594 break;
3595 case DRM_I915_PERF_PROP_OA_METRICS_SET:
3596 if (value == 0) {
3597 DRM_DEBUG("Unknown OA metric set ID\n");
3598 return -EINVAL;
3599 }
3600 props->metrics_set = value;
3601 break;
3602 case DRM_I915_PERF_PROP_OA_FORMAT:
3603 if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3604 DRM_DEBUG("Out-of-range OA report format %llu\n",
3605 value);
3606 return -EINVAL;
3607 }
3608 if (!perf->oa_formats[value].size) {
3609 DRM_DEBUG("Unsupported OA report format %llu\n",
3610 value);
3611 return -EINVAL;
3612 }
3613 props->oa_format = value;
3614 break;
3615 case DRM_I915_PERF_PROP_OA_EXPONENT:
3616 if (value > OA_EXPONENT_MAX) {
3617 DRM_DEBUG("OA timer exponent too high (> %u)\n",
3618 OA_EXPONENT_MAX);
3619 return -EINVAL;
3620 }
3621
3622 /* Theoretically we can program the OA unit to sample
3623 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3624 * for BXT. We don't allow such high sampling
3625 * frequencies by default unless root.
3626 */
3627
3628 BUILD_BUG_ON(sizeof(oa_period) != 8);
3629 oa_period = oa_exponent_to_ns(perf, value);
3630
3631 /* This check is primarily to ensure that oa_period <=
3632 * UINT32_MAX (before passing to do_div which only
3633 * accepts a u32 denominator), but we can also skip
3634 * checking anything < 1Hz which implicitly can't be
3635 * limited via an integer oa_max_sample_rate.
3636 */
3637 if (oa_period <= NSEC_PER_SEC) {
3638 u64 tmp = NSEC_PER_SEC;
3639 do_div(tmp, oa_period);
3640 oa_freq_hz = tmp;
3641 } else
3642 oa_freq_hz = 0;
3643
3644 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
3645 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
3646 i915_oa_max_sample_rate);
3647 return -EACCES;
3648 }
3649
3650 props->oa_periodic = true;
3651 props->oa_period_exponent = value;
3652 break;
3653 case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
3654 props->hold_preemption = !!value;
3655 break;
3656 case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
3657 struct drm_i915_gem_context_param_sseu user_sseu;
3658
3659 if (copy_from_user(&user_sseu,
3660 u64_to_user_ptr(value),
3661 sizeof(user_sseu))) {
3662 DRM_DEBUG("Unable to copy global sseu parameter\n");
3663 return -EFAULT;
3664 }
3665
3666 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
3667 if (ret) {
3668 DRM_DEBUG("Invalid SSEU configuration\n");
3669 return ret;
3670 }
3671 props->has_sseu = true;
3672 break;
3673 }
3674 case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
3675 if (value < 100000 /* 100us */) {
3676 DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n",
3677 value);
3678 return -EINVAL;
3679 }
3680 props->poll_oa_period = value;
3681 break;
3682 case DRM_I915_PERF_PROP_MAX:
3683 MISSING_CASE(id);
3684 return -EINVAL;
3685 }
3686
3687 uprop += 2;
3688 }
3689
3690 return 0;
3691 }
3692
3693 /**
3694 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3695 * @dev: drm device
3696 * @data: ioctl data copied from userspace (unvalidated)
3697 * @file: drm file
3698 *
3699 * Validates the stream open parameters given by userspace including flags
3700 * and an array of u64 key, value pair properties.
3701 *
3702 * Very little is assumed up front about the nature of the stream being
3703 * opened (for instance we don't assume it's for periodic OA unit metrics). An
3704 * i915-perf stream is expected to be a suitable interface for other forms of
3705 * buffered data written by the GPU besides periodic OA metrics.
3706 *
3707 * Note we copy the properties from userspace outside of the i915 perf
3708 * mutex to avoid an awkward lockdep with mmap_lock.
3709 *
3710 * Most of the implementation details are handled by
3711 * i915_perf_open_ioctl_locked() after taking the &perf->lock
3712 * mutex for serializing with any non-file-operation driver hooks.
3713 *
3714 * Return: A newly opened i915 Perf stream file descriptor or negative
3715 * error code on failure.
3716 */
i915_perf_open_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3717 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3718 struct drm_file *file)
3719 {
3720 struct i915_perf *perf = &to_i915(dev)->perf;
3721 struct drm_i915_perf_open_param *param = data;
3722 struct perf_open_properties props;
3723 u32 known_open_flags;
3724 int ret;
3725
3726 if (!perf->i915) {
3727 DRM_DEBUG("i915 perf interface not available for this system\n");
3728 return -ENOTSUPP;
3729 }
3730
3731 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3732 I915_PERF_FLAG_FD_NONBLOCK |
3733 I915_PERF_FLAG_DISABLED;
3734 if (param->flags & ~known_open_flags) {
3735 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3736 return -EINVAL;
3737 }
3738
3739 ret = read_properties_unlocked(perf,
3740 u64_to_user_ptr(param->properties_ptr),
3741 param->num_properties,
3742 &props);
3743 if (ret)
3744 return ret;
3745
3746 mutex_lock(&perf->lock);
3747 ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
3748 mutex_unlock(&perf->lock);
3749
3750 return ret;
3751 }
3752
3753 /**
3754 * i915_perf_register - exposes i915-perf to userspace
3755 * @i915: i915 device instance
3756 *
3757 * In particular OA metric sets are advertised under a sysfs metrics/
3758 * directory allowing userspace to enumerate valid IDs that can be
3759 * used to open an i915-perf stream.
3760 */
i915_perf_register(struct drm_i915_private * i915)3761 void i915_perf_register(struct drm_i915_private *i915)
3762 {
3763 struct i915_perf *perf = &i915->perf;
3764
3765 if (!perf->i915)
3766 return;
3767
3768 /* To be sure we're synchronized with an attempted
3769 * i915_perf_open_ioctl(); considering that we register after
3770 * being exposed to userspace.
3771 */
3772 mutex_lock(&perf->lock);
3773
3774 perf->metrics_kobj =
3775 kobject_create_and_add("metrics",
3776 &i915->drm.primary->kdev->kobj);
3777
3778 mutex_unlock(&perf->lock);
3779 }
3780
3781 /**
3782 * i915_perf_unregister - hide i915-perf from userspace
3783 * @i915: i915 device instance
3784 *
3785 * i915-perf state cleanup is split up into an 'unregister' and
3786 * 'deinit' phase where the interface is first hidden from
3787 * userspace by i915_perf_unregister() before cleaning up
3788 * remaining state in i915_perf_fini().
3789 */
i915_perf_unregister(struct drm_i915_private * i915)3790 void i915_perf_unregister(struct drm_i915_private *i915)
3791 {
3792 struct i915_perf *perf = &i915->perf;
3793
3794 if (!perf->metrics_kobj)
3795 return;
3796
3797 kobject_put(perf->metrics_kobj);
3798 perf->metrics_kobj = NULL;
3799 }
3800
gen8_is_valid_flex_addr(struct i915_perf * perf,u32 addr)3801 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3802 {
3803 static const i915_reg_t flex_eu_regs[] = {
3804 EU_PERF_CNTL0,
3805 EU_PERF_CNTL1,
3806 EU_PERF_CNTL2,
3807 EU_PERF_CNTL3,
3808 EU_PERF_CNTL4,
3809 EU_PERF_CNTL5,
3810 EU_PERF_CNTL6,
3811 };
3812 int i;
3813
3814 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3815 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3816 return true;
3817 }
3818 return false;
3819 }
3820
3821 #define ADDR_IN_RANGE(addr, start, end) \
3822 ((addr) >= (start) && \
3823 (addr) <= (end))
3824
3825 #define REG_IN_RANGE(addr, start, end) \
3826 ((addr) >= i915_mmio_reg_offset(start) && \
3827 (addr) <= i915_mmio_reg_offset(end))
3828
3829 #define REG_EQUAL(addr, mmio) \
3830 ((addr) == i915_mmio_reg_offset(mmio))
3831
gen7_is_valid_b_counter_addr(struct i915_perf * perf,u32 addr)3832 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3833 {
3834 return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) ||
3835 REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) ||
3836 REG_IN_RANGE(addr, OACEC0_0, OACEC7_1);
3837 }
3838
gen7_is_valid_mux_addr(struct i915_perf * perf,u32 addr)3839 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3840 {
3841 return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) ||
3842 REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) ||
3843 REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) ||
3844 REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI);
3845 }
3846
gen8_is_valid_mux_addr(struct i915_perf * perf,u32 addr)3847 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3848 {
3849 return gen7_is_valid_mux_addr(perf, addr) ||
3850 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3851 REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8));
3852 }
3853
gen10_is_valid_mux_addr(struct i915_perf * perf,u32 addr)3854 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3855 {
3856 return gen8_is_valid_mux_addr(perf, addr) ||
3857 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3858 REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI);
3859 }
3860
hsw_is_valid_mux_addr(struct i915_perf * perf,u32 addr)3861 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3862 {
3863 return gen7_is_valid_mux_addr(perf, addr) ||
3864 ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) ||
3865 REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) ||
3866 REG_EQUAL(addr, HSW_MBVID2_MISR0);
3867 }
3868
chv_is_valid_mux_addr(struct i915_perf * perf,u32 addr)3869 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3870 {
3871 return gen7_is_valid_mux_addr(perf, addr) ||
3872 ADDR_IN_RANGE(addr, 0x182300, 0x1823A4);
3873 }
3874
gen12_is_valid_b_counter_addr(struct i915_perf * perf,u32 addr)3875 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3876 {
3877 return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) ||
3878 REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) ||
3879 REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) ||
3880 REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) ||
3881 REG_EQUAL(addr, GEN12_OAA_DBG_REG) ||
3882 REG_EQUAL(addr, GEN12_OAG_OA_PESS) ||
3883 REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF);
3884 }
3885
gen12_is_valid_mux_addr(struct i915_perf * perf,u32 addr)3886 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3887 {
3888 return REG_EQUAL(addr, NOA_WRITE) ||
3889 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3890 REG_EQUAL(addr, GDT_CHICKEN_BITS) ||
3891 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3892 REG_EQUAL(addr, RPM_CONFIG0) ||
3893 REG_EQUAL(addr, RPM_CONFIG1) ||
3894 REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8));
3895 }
3896
mask_reg_value(u32 reg,u32 val)3897 static u32 mask_reg_value(u32 reg, u32 val)
3898 {
3899 /* HALF_SLICE_CHICKEN2 is programmed with a the
3900 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3901 * programmed by userspace doesn't change this.
3902 */
3903 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
3904 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3905
3906 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3907 * indicated by its name and a bunch of selection fields used by OA
3908 * configs.
3909 */
3910 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
3911 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3912
3913 return val;
3914 }
3915
alloc_oa_regs(struct i915_perf * perf,bool (* is_valid)(struct i915_perf * perf,u32 addr),u32 __user * regs,u32 n_regs)3916 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
3917 bool (*is_valid)(struct i915_perf *perf, u32 addr),
3918 u32 __user *regs,
3919 u32 n_regs)
3920 {
3921 struct i915_oa_reg *oa_regs;
3922 int err;
3923 u32 i;
3924
3925 if (!n_regs)
3926 return NULL;
3927
3928 /* No is_valid function means we're not allowing any register to be programmed. */
3929 GEM_BUG_ON(!is_valid);
3930 if (!is_valid)
3931 return ERR_PTR(-EINVAL);
3932
3933 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3934 if (!oa_regs)
3935 return ERR_PTR(-ENOMEM);
3936
3937 for (i = 0; i < n_regs; i++) {
3938 u32 addr, value;
3939
3940 err = get_user(addr, regs);
3941 if (err)
3942 goto addr_err;
3943
3944 if (!is_valid(perf, addr)) {
3945 DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3946 err = -EINVAL;
3947 goto addr_err;
3948 }
3949
3950 err = get_user(value, regs + 1);
3951 if (err)
3952 goto addr_err;
3953
3954 oa_regs[i].addr = _MMIO(addr);
3955 oa_regs[i].value = mask_reg_value(addr, value);
3956
3957 regs += 2;
3958 }
3959
3960 return oa_regs;
3961
3962 addr_err:
3963 kfree(oa_regs);
3964 return ERR_PTR(err);
3965 }
3966
show_dynamic_id(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3967 static ssize_t show_dynamic_id(struct kobject *kobj,
3968 struct kobj_attribute *attr,
3969 char *buf)
3970 {
3971 struct i915_oa_config *oa_config =
3972 container_of(attr, typeof(*oa_config), sysfs_metric_id);
3973
3974 return sprintf(buf, "%d\n", oa_config->id);
3975 }
3976
create_dynamic_oa_sysfs_entry(struct i915_perf * perf,struct i915_oa_config * oa_config)3977 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
3978 struct i915_oa_config *oa_config)
3979 {
3980 sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3981 oa_config->sysfs_metric_id.attr.name = "id";
3982 oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3983 oa_config->sysfs_metric_id.show = show_dynamic_id;
3984 oa_config->sysfs_metric_id.store = NULL;
3985
3986 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3987 oa_config->attrs[1] = NULL;
3988
3989 oa_config->sysfs_metric.name = oa_config->uuid;
3990 oa_config->sysfs_metric.attrs = oa_config->attrs;
3991
3992 return sysfs_create_group(perf->metrics_kobj,
3993 &oa_config->sysfs_metric);
3994 }
3995
3996 /**
3997 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3998 * @dev: drm device
3999 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4000 * userspace (unvalidated)
4001 * @file: drm file
4002 *
4003 * Validates the submitted OA register to be saved into a new OA config that
4004 * can then be used for programming the OA unit and its NOA network.
4005 *
4006 * Returns: A new allocated config number to be used with the perf open ioctl
4007 * or a negative error code on failure.
4008 */
i915_perf_add_config_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4009 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4010 struct drm_file *file)
4011 {
4012 struct i915_perf *perf = &to_i915(dev)->perf;
4013 struct drm_i915_perf_oa_config *args = data;
4014 struct i915_oa_config *oa_config, *tmp;
4015 struct i915_oa_reg *regs;
4016 int err, id;
4017
4018 if (!perf->i915) {
4019 DRM_DEBUG("i915 perf interface not available for this system\n");
4020 return -ENOTSUPP;
4021 }
4022
4023 if (!perf->metrics_kobj) {
4024 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
4025 return -EINVAL;
4026 }
4027
4028 if (i915_perf_stream_paranoid && !perfmon_capable()) {
4029 DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
4030 return -EACCES;
4031 }
4032
4033 if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4034 (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4035 (!args->flex_regs_ptr || !args->n_flex_regs)) {
4036 DRM_DEBUG("No OA registers given\n");
4037 return -EINVAL;
4038 }
4039
4040 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4041 if (!oa_config) {
4042 DRM_DEBUG("Failed to allocate memory for the OA config\n");
4043 return -ENOMEM;
4044 }
4045
4046 oa_config->perf = perf;
4047 kref_init(&oa_config->ref);
4048
4049 if (!uuid_is_valid(args->uuid)) {
4050 DRM_DEBUG("Invalid uuid format for OA config\n");
4051 err = -EINVAL;
4052 goto reg_err;
4053 }
4054
4055 /* Last character in oa_config->uuid will be 0 because oa_config is
4056 * kzalloc.
4057 */
4058 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4059
4060 oa_config->mux_regs_len = args->n_mux_regs;
4061 regs = alloc_oa_regs(perf,
4062 perf->ops.is_valid_mux_reg,
4063 u64_to_user_ptr(args->mux_regs_ptr),
4064 args->n_mux_regs);
4065
4066 if (IS_ERR(regs)) {
4067 DRM_DEBUG("Failed to create OA config for mux_regs\n");
4068 err = PTR_ERR(regs);
4069 goto reg_err;
4070 }
4071 oa_config->mux_regs = regs;
4072
4073 oa_config->b_counter_regs_len = args->n_boolean_regs;
4074 regs = alloc_oa_regs(perf,
4075 perf->ops.is_valid_b_counter_reg,
4076 u64_to_user_ptr(args->boolean_regs_ptr),
4077 args->n_boolean_regs);
4078
4079 if (IS_ERR(regs)) {
4080 DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
4081 err = PTR_ERR(regs);
4082 goto reg_err;
4083 }
4084 oa_config->b_counter_regs = regs;
4085
4086 if (INTEL_GEN(perf->i915) < 8) {
4087 if (args->n_flex_regs != 0) {
4088 err = -EINVAL;
4089 goto reg_err;
4090 }
4091 } else {
4092 oa_config->flex_regs_len = args->n_flex_regs;
4093 regs = alloc_oa_regs(perf,
4094 perf->ops.is_valid_flex_reg,
4095 u64_to_user_ptr(args->flex_regs_ptr),
4096 args->n_flex_regs);
4097
4098 if (IS_ERR(regs)) {
4099 DRM_DEBUG("Failed to create OA config for flex_regs\n");
4100 err = PTR_ERR(regs);
4101 goto reg_err;
4102 }
4103 oa_config->flex_regs = regs;
4104 }
4105
4106 err = mutex_lock_interruptible(&perf->metrics_lock);
4107 if (err)
4108 goto reg_err;
4109
4110 /* We shouldn't have too many configs, so this iteration shouldn't be
4111 * too costly.
4112 */
4113 idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4114 if (!strcmp(tmp->uuid, oa_config->uuid)) {
4115 DRM_DEBUG("OA config already exists with this uuid\n");
4116 err = -EADDRINUSE;
4117 goto sysfs_err;
4118 }
4119 }
4120
4121 err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4122 if (err) {
4123 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4124 goto sysfs_err;
4125 }
4126
4127 /* Config id 0 is invalid, id 1 for kernel stored test config. */
4128 oa_config->id = idr_alloc(&perf->metrics_idr,
4129 oa_config, 2,
4130 0, GFP_KERNEL);
4131 if (oa_config->id < 0) {
4132 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4133 err = oa_config->id;
4134 goto sysfs_err;
4135 }
4136
4137 mutex_unlock(&perf->metrics_lock);
4138
4139 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4140
4141 return oa_config->id;
4142
4143 sysfs_err:
4144 mutex_unlock(&perf->metrics_lock);
4145 reg_err:
4146 i915_oa_config_put(oa_config);
4147 DRM_DEBUG("Failed to add new OA config\n");
4148 return err;
4149 }
4150
4151 /**
4152 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4153 * @dev: drm device
4154 * @data: ioctl data (pointer to u64 integer) copied from userspace
4155 * @file: drm file
4156 *
4157 * Configs can be removed while being used, the will stop appearing in sysfs
4158 * and their content will be freed when the stream using the config is closed.
4159 *
4160 * Returns: 0 on success or a negative error code on failure.
4161 */
i915_perf_remove_config_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4162 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4163 struct drm_file *file)
4164 {
4165 struct i915_perf *perf = &to_i915(dev)->perf;
4166 u64 *arg = data;
4167 struct i915_oa_config *oa_config;
4168 int ret;
4169
4170 if (!perf->i915) {
4171 DRM_DEBUG("i915 perf interface not available for this system\n");
4172 return -ENOTSUPP;
4173 }
4174
4175 if (i915_perf_stream_paranoid && !perfmon_capable()) {
4176 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
4177 return -EACCES;
4178 }
4179
4180 ret = mutex_lock_interruptible(&perf->metrics_lock);
4181 if (ret)
4182 return ret;
4183
4184 oa_config = idr_find(&perf->metrics_idr, *arg);
4185 if (!oa_config) {
4186 DRM_DEBUG("Failed to remove unknown OA config\n");
4187 ret = -ENOENT;
4188 goto err_unlock;
4189 }
4190
4191 GEM_BUG_ON(*arg != oa_config->id);
4192
4193 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4194
4195 idr_remove(&perf->metrics_idr, *arg);
4196
4197 mutex_unlock(&perf->metrics_lock);
4198
4199 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4200
4201 i915_oa_config_put(oa_config);
4202
4203 return 0;
4204
4205 err_unlock:
4206 mutex_unlock(&perf->metrics_lock);
4207 return ret;
4208 }
4209
4210 static struct ctl_table oa_table[] = {
4211 {
4212 .procname = "perf_stream_paranoid",
4213 .data = &i915_perf_stream_paranoid,
4214 .maxlen = sizeof(i915_perf_stream_paranoid),
4215 .mode = 0644,
4216 .proc_handler = proc_dointvec_minmax,
4217 .extra1 = SYSCTL_ZERO,
4218 .extra2 = SYSCTL_ONE,
4219 },
4220 {
4221 .procname = "oa_max_sample_rate",
4222 .data = &i915_oa_max_sample_rate,
4223 .maxlen = sizeof(i915_oa_max_sample_rate),
4224 .mode = 0644,
4225 .proc_handler = proc_dointvec_minmax,
4226 .extra1 = SYSCTL_ZERO,
4227 .extra2 = &oa_sample_rate_hard_limit,
4228 },
4229 {}
4230 };
4231
4232 static struct ctl_table i915_root[] = {
4233 {
4234 .procname = "i915",
4235 .maxlen = 0,
4236 .mode = 0555,
4237 .child = oa_table,
4238 },
4239 {}
4240 };
4241
4242 static struct ctl_table dev_root[] = {
4243 {
4244 .procname = "dev",
4245 .maxlen = 0,
4246 .mode = 0555,
4247 .child = i915_root,
4248 },
4249 {}
4250 };
4251
4252 /**
4253 * i915_perf_init - initialize i915-perf state on module bind
4254 * @i915: i915 device instance
4255 *
4256 * Initializes i915-perf state without exposing anything to userspace.
4257 *
4258 * Note: i915-perf initialization is split into an 'init' and 'register'
4259 * phase with the i915_perf_register() exposing state to userspace.
4260 */
i915_perf_init(struct drm_i915_private * i915)4261 void i915_perf_init(struct drm_i915_private *i915)
4262 {
4263 struct i915_perf *perf = &i915->perf;
4264
4265 /* XXX const struct i915_perf_ops! */
4266
4267 if (IS_HASWELL(i915)) {
4268 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4269 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4270 perf->ops.is_valid_flex_reg = NULL;
4271 perf->ops.enable_metric_set = hsw_enable_metric_set;
4272 perf->ops.disable_metric_set = hsw_disable_metric_set;
4273 perf->ops.oa_enable = gen7_oa_enable;
4274 perf->ops.oa_disable = gen7_oa_disable;
4275 perf->ops.read = gen7_oa_read;
4276 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4277
4278 perf->oa_formats = hsw_oa_formats;
4279 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4280 /* Note: that although we could theoretically also support the
4281 * legacy ringbuffer mode on BDW (and earlier iterations of
4282 * this driver, before upstreaming did this) it didn't seem
4283 * worth the complexity to maintain now that BDW+ enable
4284 * execlist mode by default.
4285 */
4286 perf->ops.read = gen8_oa_read;
4287
4288 if (IS_GEN_RANGE(i915, 8, 9)) {
4289 perf->oa_formats = gen8_plus_oa_formats;
4290
4291 perf->ops.is_valid_b_counter_reg =
4292 gen7_is_valid_b_counter_addr;
4293 perf->ops.is_valid_mux_reg =
4294 gen8_is_valid_mux_addr;
4295 perf->ops.is_valid_flex_reg =
4296 gen8_is_valid_flex_addr;
4297
4298 if (IS_CHERRYVIEW(i915)) {
4299 perf->ops.is_valid_mux_reg =
4300 chv_is_valid_mux_addr;
4301 }
4302
4303 perf->ops.oa_enable = gen8_oa_enable;
4304 perf->ops.oa_disable = gen8_oa_disable;
4305 perf->ops.enable_metric_set = gen8_enable_metric_set;
4306 perf->ops.disable_metric_set = gen8_disable_metric_set;
4307 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4308
4309 if (IS_GEN(i915, 8)) {
4310 perf->ctx_oactxctrl_offset = 0x120;
4311 perf->ctx_flexeu0_offset = 0x2ce;
4312
4313 perf->gen8_valid_ctx_bit = BIT(25);
4314 } else {
4315 perf->ctx_oactxctrl_offset = 0x128;
4316 perf->ctx_flexeu0_offset = 0x3de;
4317
4318 perf->gen8_valid_ctx_bit = BIT(16);
4319 }
4320 } else if (IS_GEN_RANGE(i915, 10, 11)) {
4321 perf->oa_formats = gen8_plus_oa_formats;
4322
4323 perf->ops.is_valid_b_counter_reg =
4324 gen7_is_valid_b_counter_addr;
4325 perf->ops.is_valid_mux_reg =
4326 gen10_is_valid_mux_addr;
4327 perf->ops.is_valid_flex_reg =
4328 gen8_is_valid_flex_addr;
4329
4330 perf->ops.oa_enable = gen8_oa_enable;
4331 perf->ops.oa_disable = gen8_oa_disable;
4332 perf->ops.enable_metric_set = gen8_enable_metric_set;
4333 perf->ops.disable_metric_set = gen10_disable_metric_set;
4334 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4335
4336 if (IS_GEN(i915, 10)) {
4337 perf->ctx_oactxctrl_offset = 0x128;
4338 perf->ctx_flexeu0_offset = 0x3de;
4339 } else {
4340 perf->ctx_oactxctrl_offset = 0x124;
4341 perf->ctx_flexeu0_offset = 0x78e;
4342 }
4343 perf->gen8_valid_ctx_bit = BIT(16);
4344 } else if (IS_GEN(i915, 12)) {
4345 perf->oa_formats = gen12_oa_formats;
4346
4347 perf->ops.is_valid_b_counter_reg =
4348 gen12_is_valid_b_counter_addr;
4349 perf->ops.is_valid_mux_reg =
4350 gen12_is_valid_mux_addr;
4351 perf->ops.is_valid_flex_reg =
4352 gen8_is_valid_flex_addr;
4353
4354 perf->ops.oa_enable = gen12_oa_enable;
4355 perf->ops.oa_disable = gen12_oa_disable;
4356 perf->ops.enable_metric_set = gen12_enable_metric_set;
4357 perf->ops.disable_metric_set = gen12_disable_metric_set;
4358 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4359
4360 perf->ctx_flexeu0_offset = 0;
4361 perf->ctx_oactxctrl_offset = 0x144;
4362 }
4363 }
4364
4365 if (perf->ops.enable_metric_set) {
4366 mutex_init(&perf->lock);
4367
4368 oa_sample_rate_hard_limit =
4369 RUNTIME_INFO(i915)->cs_timestamp_frequency_hz / 2;
4370
4371 mutex_init(&perf->metrics_lock);
4372 idr_init(&perf->metrics_idr);
4373
4374 /* We set up some ratelimit state to potentially throttle any
4375 * _NOTES about spurious, invalid OA reports which we don't
4376 * forward to userspace.
4377 *
4378 * We print a _NOTE about any throttling when closing the
4379 * stream instead of waiting until driver _fini which no one
4380 * would ever see.
4381 *
4382 * Using the same limiting factors as printk_ratelimit()
4383 */
4384 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4385 /* Since we use a DRM_NOTE for spurious reports it would be
4386 * inconsistent to let __ratelimit() automatically print a
4387 * warning for throttling.
4388 */
4389 ratelimit_set_flags(&perf->spurious_report_rs,
4390 RATELIMIT_MSG_ON_RELEASE);
4391
4392 ratelimit_state_init(&perf->tail_pointer_race,
4393 5 * HZ, 10);
4394 ratelimit_set_flags(&perf->tail_pointer_race,
4395 RATELIMIT_MSG_ON_RELEASE);
4396
4397 atomic64_set(&perf->noa_programming_delay,
4398 500 * 1000 /* 500us */);
4399
4400 perf->i915 = i915;
4401 }
4402 }
4403
destroy_config(int id,void * p,void * data)4404 static int destroy_config(int id, void *p, void *data)
4405 {
4406 i915_oa_config_put(p);
4407 return 0;
4408 }
4409
i915_perf_sysctl_register(void)4410 void i915_perf_sysctl_register(void)
4411 {
4412 sysctl_header = register_sysctl_table(dev_root);
4413 }
4414
i915_perf_sysctl_unregister(void)4415 void i915_perf_sysctl_unregister(void)
4416 {
4417 unregister_sysctl_table(sysctl_header);
4418 }
4419
4420 /**
4421 * i915_perf_fini - Counter part to i915_perf_init()
4422 * @i915: i915 device instance
4423 */
i915_perf_fini(struct drm_i915_private * i915)4424 void i915_perf_fini(struct drm_i915_private *i915)
4425 {
4426 struct i915_perf *perf = &i915->perf;
4427
4428 if (!perf->i915)
4429 return;
4430
4431 idr_for_each(&perf->metrics_idr, destroy_config, perf);
4432 idr_destroy(&perf->metrics_idr);
4433
4434 memset(&perf->ops, 0, sizeof(perf->ops));
4435 perf->i915 = NULL;
4436 }
4437
4438 /**
4439 * i915_perf_ioctl_version - Version of the i915-perf subsystem
4440 *
4441 * This version number is used by userspace to detect available features.
4442 */
i915_perf_ioctl_version(void)4443 int i915_perf_ioctl_version(void)
4444 {
4445 /*
4446 * 1: Initial version
4447 * I915_PERF_IOCTL_ENABLE
4448 * I915_PERF_IOCTL_DISABLE
4449 *
4450 * 2: Added runtime modification of OA config.
4451 * I915_PERF_IOCTL_CONFIG
4452 *
4453 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4454 * preemption on a particular context so that performance data is
4455 * accessible from a delta of MI_RPC reports without looking at the
4456 * OA buffer.
4457 *
4458 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
4459 * be run for the duration of the performance recording based on
4460 * their SSEU configuration.
4461 *
4462 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
4463 * interval for the hrtimer used to check for OA data.
4464 */
4465 return 5;
4466 }
4467
4468 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4469 #include "selftests/i915_perf.c"
4470 #endif
4471