1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*------------------------------------------------------------------------
3 . smc91x.h - macros for SMSC's 91C9x/91C1xx single-chip Ethernet device.
4 .
5 . Copyright (C) 1996 by Erik Stahlman
6 . Copyright (C) 2001 Standard Microsystems Corporation
7 . Developed by Simple Network Magic Corporation
8 . Copyright (C) 2003 Monta Vista Software, Inc.
9 . Unified SMC91x driver by Nicolas Pitre
10 .
11 .
12 . Information contained in this file was obtained from the LAN91C111
13 . manual from SMC. To get a copy, if you really want one, you can find
14 . information under www.smsc.com.
15 .
16 . Authors
17 . Erik Stahlman <erik@vt.edu>
18 . Daris A Nevil <dnevil@snmc.com>
19 . Nicolas Pitre <nico@fluxnic.net>
20 .
21 ---------------------------------------------------------------------------*/
22 #ifndef _SMC91X_H_
23 #define _SMC91X_H_
24
25 #include <linux/dmaengine.h>
26 #include <linux/smc91x.h>
27
28 /*
29 * Any 16-bit access is performed with two 8-bit accesses if the hardware
30 * can't do it directly. Most registers are 16-bit so those are mandatory.
31 */
32 #define SMC_outw_b(x, a, r) \
33 do { \
34 unsigned int __val16 = (x); \
35 unsigned int __reg = (r); \
36 SMC_outb(__val16, a, __reg); \
37 SMC_outb(__val16 >> 8, a, __reg + (1 << SMC_IO_SHIFT)); \
38 } while (0)
39
40 #define SMC_inw_b(a, r) \
41 ({ \
42 unsigned int __val16; \
43 unsigned int __reg = r; \
44 __val16 = SMC_inb(a, __reg); \
45 __val16 |= SMC_inb(a, __reg + (1 << SMC_IO_SHIFT)) << 8; \
46 __val16; \
47 })
48
49 /*
50 * Define your architecture specific bus configuration parameters here.
51 */
52
53 #if defined(CONFIG_ARM)
54
55 #include <asm/mach-types.h>
56
57 /* Now the bus width is specified in the platform data
58 * pretend here to support all I/O access types
59 */
60 #define SMC_CAN_USE_8BIT 1
61 #define SMC_CAN_USE_16BIT 1
62 #define SMC_CAN_USE_32BIT 1
63 #define SMC_NOWAIT 1
64
65 #define SMC_IO_SHIFT (lp->io_shift)
66
67 #define SMC_inb(a, r) readb((a) + (r))
68 #define SMC_inw(a, r) \
69 ({ \
70 unsigned int __smc_r = r; \
71 SMC_16BIT(lp) ? readw((a) + __smc_r) : \
72 SMC_8BIT(lp) ? SMC_inw_b(a, __smc_r) : \
73 ({ BUG(); 0; }); \
74 })
75
76 #define SMC_inl(a, r) readl((a) + (r))
77 #define SMC_outb(v, a, r) writeb(v, (a) + (r))
78 #define SMC_outw(lp, v, a, r) \
79 do { \
80 unsigned int __v = v, __smc_r = r; \
81 if (SMC_16BIT(lp)) \
82 __SMC_outw(lp, __v, a, __smc_r); \
83 else if (SMC_8BIT(lp)) \
84 SMC_outw_b(__v, a, __smc_r); \
85 else \
86 BUG(); \
87 } while (0)
88
89 #define SMC_outl(v, a, r) writel(v, (a) + (r))
90 #define SMC_insb(a, r, p, l) readsb((a) + (r), p, l)
91 #define SMC_outsb(a, r, p, l) writesb((a) + (r), p, l)
92 #define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
93 #define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
94 #define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
95 #define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
96 #define SMC_IRQ_FLAGS (-1) /* from resource */
97
98 /* We actually can't write halfwords properly if not word aligned */
_SMC_outw_align4(u16 val,void __iomem * ioaddr,int reg,bool use_align4_workaround)99 static inline void _SMC_outw_align4(u16 val, void __iomem *ioaddr, int reg,
100 bool use_align4_workaround)
101 {
102 if (use_align4_workaround) {
103 unsigned int v = val << 16;
104 v |= readl(ioaddr + (reg & ~2)) & 0xffff;
105 writel(v, ioaddr + (reg & ~2));
106 } else {
107 writew(val, ioaddr + reg);
108 }
109 }
110
111 #define __SMC_outw(lp, v, a, r) \
112 _SMC_outw_align4((v), (a), (r), \
113 IS_BUILTIN(CONFIG_ARCH_PXA) && ((r) & 2) && \
114 (lp)->cfg.pxa_u16_align4)
115
116
117 #elif defined(CONFIG_SH_SH4202_MICRODEV)
118
119 #define SMC_CAN_USE_8BIT 0
120 #define SMC_CAN_USE_16BIT 1
121 #define SMC_CAN_USE_32BIT 0
122
123 #define SMC_inb(a, r) inb((a) + (r) - 0xa0000000)
124 #define SMC_inw(a, r) inw((a) + (r) - 0xa0000000)
125 #define SMC_inl(a, r) inl((a) + (r) - 0xa0000000)
126 #define SMC_outb(v, a, r) outb(v, (a) + (r) - 0xa0000000)
127 #define SMC_outw(lp, v, a, r) outw(v, (a) + (r) - 0xa0000000)
128 #define SMC_outl(v, a, r) outl(v, (a) + (r) - 0xa0000000)
129 #define SMC_insl(a, r, p, l) insl((a) + (r) - 0xa0000000, p, l)
130 #define SMC_outsl(a, r, p, l) outsl((a) + (r) - 0xa0000000, p, l)
131 #define SMC_insw(a, r, p, l) insw((a) + (r) - 0xa0000000, p, l)
132 #define SMC_outsw(a, r, p, l) outsw((a) + (r) - 0xa0000000, p, l)
133
134 #define SMC_IRQ_FLAGS (0)
135
136 #elif defined(CONFIG_ATARI)
137
138 #define SMC_CAN_USE_8BIT 1
139 #define SMC_CAN_USE_16BIT 1
140 #define SMC_CAN_USE_32BIT 1
141 #define SMC_NOWAIT 1
142
143 #define SMC_inb(a, r) readb((a) + (r))
144 #define SMC_inw(a, r) readw((a) + (r))
145 #define SMC_inl(a, r) readl((a) + (r))
146 #define SMC_outb(v, a, r) writeb(v, (a) + (r))
147 #define SMC_outw(lp, v, a, r) writew(v, (a) + (r))
148 #define SMC_outl(v, a, r) writel(v, (a) + (r))
149 #define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
150 #define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
151 #define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
152 #define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
153
154 #define RPC_LSA_DEFAULT RPC_LED_100_10
155 #define RPC_LSB_DEFAULT RPC_LED_TX_RX
156
157 #elif defined(CONFIG_COLDFIRE)
158
159 #define SMC_CAN_USE_8BIT 0
160 #define SMC_CAN_USE_16BIT 1
161 #define SMC_CAN_USE_32BIT 0
162 #define SMC_NOWAIT 1
163
mcf_insw(void * a,unsigned char * p,int l)164 static inline void mcf_insw(void *a, unsigned char *p, int l)
165 {
166 u16 *wp = (u16 *) p;
167 while (l-- > 0)
168 *wp++ = readw(a);
169 }
170
mcf_outsw(void * a,unsigned char * p,int l)171 static inline void mcf_outsw(void *a, unsigned char *p, int l)
172 {
173 u16 *wp = (u16 *) p;
174 while (l-- > 0)
175 writew(*wp++, a);
176 }
177
178 #define SMC_inw(a, r) _swapw(readw((a) + (r)))
179 #define SMC_outw(lp, v, a, r) writew(_swapw(v), (a) + (r))
180 #define SMC_insw(a, r, p, l) mcf_insw(a + r, p, l)
181 #define SMC_outsw(a, r, p, l) mcf_outsw(a + r, p, l)
182
183 #define SMC_IRQ_FLAGS 0
184
185 #elif defined(CONFIG_H8300)
186 #define SMC_CAN_USE_8BIT 1
187 #define SMC_CAN_USE_16BIT 0
188 #define SMC_CAN_USE_32BIT 0
189 #define SMC_NOWAIT 0
190
191 #define SMC_inb(a, r) ioread8((a) + (r))
192 #define SMC_outb(v, a, r) iowrite8(v, (a) + (r))
193 #define SMC_insb(a, r, p, l) ioread8_rep((a) + (r), p, l)
194 #define SMC_outsb(a, r, p, l) iowrite8_rep((a) + (r), p, l)
195
196 #else
197
198 /*
199 * Default configuration
200 */
201
202 #define SMC_CAN_USE_8BIT 1
203 #define SMC_CAN_USE_16BIT 1
204 #define SMC_CAN_USE_32BIT 1
205 #define SMC_NOWAIT 1
206
207 #define SMC_IO_SHIFT (lp->io_shift)
208
209 #define SMC_inb(a, r) ioread8((a) + (r))
210 #define SMC_inw(a, r) ioread16((a) + (r))
211 #define SMC_inl(a, r) ioread32((a) + (r))
212 #define SMC_outb(v, a, r) iowrite8(v, (a) + (r))
213 #define SMC_outw(lp, v, a, r) iowrite16(v, (a) + (r))
214 #define SMC_outl(v, a, r) iowrite32(v, (a) + (r))
215 #define SMC_insw(a, r, p, l) ioread16_rep((a) + (r), p, l)
216 #define SMC_outsw(a, r, p, l) iowrite16_rep((a) + (r), p, l)
217 #define SMC_insl(a, r, p, l) ioread32_rep((a) + (r), p, l)
218 #define SMC_outsl(a, r, p, l) iowrite32_rep((a) + (r), p, l)
219
220 #define RPC_LSA_DEFAULT RPC_LED_100_10
221 #define RPC_LSB_DEFAULT RPC_LED_TX_RX
222
223 #endif
224
225
226 /* store this information for the driver.. */
227 struct smc_local {
228 /*
229 * If I have to wait until memory is available to send a
230 * packet, I will store the skbuff here, until I get the
231 * desired memory. Then, I'll send it out and free it.
232 */
233 struct sk_buff *pending_tx_skb;
234 struct tasklet_struct tx_task;
235
236 struct gpio_desc *power_gpio;
237 struct gpio_desc *reset_gpio;
238
239 /* version/revision of the SMC91x chip */
240 int version;
241
242 /* Contains the current active transmission mode */
243 int tcr_cur_mode;
244
245 /* Contains the current active receive mode */
246 int rcr_cur_mode;
247
248 /* Contains the current active receive/phy mode */
249 int rpc_cur_mode;
250 int ctl_rfduplx;
251 int ctl_rspeed;
252
253 u32 msg_enable;
254 u32 phy_type;
255 struct mii_if_info mii;
256
257 /* work queue */
258 struct work_struct phy_configure;
259 struct net_device *dev;
260 int work_pending;
261
262 spinlock_t lock;
263
264 #ifdef CONFIG_ARCH_PXA
265 /* DMA needs the physical address of the chip */
266 u_long physaddr;
267 struct device *device;
268 #endif
269 struct dma_chan *dma_chan;
270 void __iomem *base;
271 void __iomem *datacs;
272
273 /* the low address lines on some platforms aren't connected... */
274 int io_shift;
275 /* on some platforms a u16 write must be 4-bytes aligned */
276 bool half_word_align4;
277
278 struct smc91x_platdata cfg;
279 };
280
281 #define SMC_8BIT(p) ((p)->cfg.flags & SMC91X_USE_8BIT)
282 #define SMC_16BIT(p) ((p)->cfg.flags & SMC91X_USE_16BIT)
283 #define SMC_32BIT(p) ((p)->cfg.flags & SMC91X_USE_32BIT)
284
285 #ifdef CONFIG_ARCH_PXA
286 /*
287 * Let's use the DMA engine on the XScale PXA2xx for RX packets. This is
288 * always happening in irq context so no need to worry about races. TX is
289 * different and probably not worth it for that reason, and not as critical
290 * as RX which can overrun memory and lose packets.
291 */
292 #include <linux/dma-mapping.h>
293
294 #ifdef SMC_insl
295 #undef SMC_insl
296 #define SMC_insl(a, r, p, l) \
297 smc_pxa_dma_insl(a, lp, r, dev->dma, p, l)
298 static inline void
smc_pxa_dma_inpump(struct smc_local * lp,u_char * buf,int len)299 smc_pxa_dma_inpump(struct smc_local *lp, u_char *buf, int len)
300 {
301 dma_addr_t dmabuf;
302 struct dma_async_tx_descriptor *tx;
303 dma_cookie_t cookie;
304 enum dma_status status;
305 struct dma_tx_state state;
306
307 dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE);
308 tx = dmaengine_prep_slave_single(lp->dma_chan, dmabuf, len,
309 DMA_DEV_TO_MEM, 0);
310 if (tx) {
311 cookie = dmaengine_submit(tx);
312 dma_async_issue_pending(lp->dma_chan);
313 do {
314 status = dmaengine_tx_status(lp->dma_chan, cookie,
315 &state);
316 cpu_relax();
317 } while (status != DMA_COMPLETE && status != DMA_ERROR &&
318 state.residue);
319 dmaengine_terminate_all(lp->dma_chan);
320 }
321 dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE);
322 }
323
324 static inline void
smc_pxa_dma_insl(void __iomem * ioaddr,struct smc_local * lp,int reg,int dma,u_char * buf,int len)325 smc_pxa_dma_insl(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
326 u_char *buf, int len)
327 {
328 struct dma_slave_config config;
329 int ret;
330
331 /* fallback if no DMA available */
332 if (!lp->dma_chan) {
333 readsl(ioaddr + reg, buf, len);
334 return;
335 }
336
337 /* 64 bit alignment is required for memory to memory DMA */
338 if ((long)buf & 4) {
339 *((u32 *)buf) = SMC_inl(ioaddr, reg);
340 buf += 4;
341 len--;
342 }
343
344 memset(&config, 0, sizeof(config));
345 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
346 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
347 config.src_addr = lp->physaddr + reg;
348 config.dst_addr = lp->physaddr + reg;
349 config.src_maxburst = 32;
350 config.dst_maxburst = 32;
351 ret = dmaengine_slave_config(lp->dma_chan, &config);
352 if (ret) {
353 dev_err(lp->device, "dma channel configuration failed: %d\n",
354 ret);
355 return;
356 }
357
358 len *= 4;
359 smc_pxa_dma_inpump(lp, buf, len);
360 }
361 #endif
362
363 #ifdef SMC_insw
364 #undef SMC_insw
365 #define SMC_insw(a, r, p, l) \
366 smc_pxa_dma_insw(a, lp, r, dev->dma, p, l)
367 static inline void
smc_pxa_dma_insw(void __iomem * ioaddr,struct smc_local * lp,int reg,int dma,u_char * buf,int len)368 smc_pxa_dma_insw(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
369 u_char *buf, int len)
370 {
371 struct dma_slave_config config;
372 int ret;
373
374 /* fallback if no DMA available */
375 if (!lp->dma_chan) {
376 readsw(ioaddr + reg, buf, len);
377 return;
378 }
379
380 /* 64 bit alignment is required for memory to memory DMA */
381 while ((long)buf & 6) {
382 *((u16 *)buf) = SMC_inw(ioaddr, reg);
383 buf += 2;
384 len--;
385 }
386
387 memset(&config, 0, sizeof(config));
388 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
389 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
390 config.src_addr = lp->physaddr + reg;
391 config.dst_addr = lp->physaddr + reg;
392 config.src_maxburst = 32;
393 config.dst_maxburst = 32;
394 ret = dmaengine_slave_config(lp->dma_chan, &config);
395 if (ret) {
396 dev_err(lp->device, "dma channel configuration failed: %d\n",
397 ret);
398 return;
399 }
400
401 len *= 2;
402 smc_pxa_dma_inpump(lp, buf, len);
403 }
404 #endif
405
406 #endif /* CONFIG_ARCH_PXA */
407
408
409 /*
410 * Everything a particular hardware setup needs should have been defined
411 * at this point. Add stubs for the undefined cases, mainly to avoid
412 * compilation warnings since they'll be optimized away, or to prevent buggy
413 * use of them.
414 */
415
416 #if ! SMC_CAN_USE_32BIT
417 #define SMC_inl(ioaddr, reg) ({ BUG(); 0; })
418 #define SMC_outl(x, ioaddr, reg) BUG()
419 #define SMC_insl(a, r, p, l) BUG()
420 #define SMC_outsl(a, r, p, l) BUG()
421 #endif
422
423 #if !defined(SMC_insl) || !defined(SMC_outsl)
424 #define SMC_insl(a, r, p, l) BUG()
425 #define SMC_outsl(a, r, p, l) BUG()
426 #endif
427
428 #if ! SMC_CAN_USE_16BIT
429
430 #define SMC_outw(lp, x, ioaddr, reg) SMC_outw_b(x, ioaddr, reg)
431 #define SMC_inw(ioaddr, reg) SMC_inw_b(ioaddr, reg)
432 #define SMC_insw(a, r, p, l) BUG()
433 #define SMC_outsw(a, r, p, l) BUG()
434
435 #endif
436
437 #if !defined(SMC_insw) || !defined(SMC_outsw)
438 #define SMC_insw(a, r, p, l) BUG()
439 #define SMC_outsw(a, r, p, l) BUG()
440 #endif
441
442 #if ! SMC_CAN_USE_8BIT
443 #undef SMC_inb
444 #define SMC_inb(ioaddr, reg) ({ BUG(); 0; })
445 #undef SMC_outb
446 #define SMC_outb(x, ioaddr, reg) BUG()
447 #define SMC_insb(a, r, p, l) BUG()
448 #define SMC_outsb(a, r, p, l) BUG()
449 #endif
450
451 #if !defined(SMC_insb) || !defined(SMC_outsb)
452 #define SMC_insb(a, r, p, l) BUG()
453 #define SMC_outsb(a, r, p, l) BUG()
454 #endif
455
456 #ifndef SMC_CAN_USE_DATACS
457 #define SMC_CAN_USE_DATACS 0
458 #endif
459
460 #ifndef SMC_IO_SHIFT
461 #define SMC_IO_SHIFT 0
462 #endif
463
464 #ifndef SMC_IRQ_FLAGS
465 #define SMC_IRQ_FLAGS IRQF_TRIGGER_RISING
466 #endif
467
468 #ifndef SMC_INTERRUPT_PREAMBLE
469 #define SMC_INTERRUPT_PREAMBLE
470 #endif
471
472
473 /* Because of bank switching, the LAN91x uses only 16 I/O ports */
474 #define SMC_IO_EXTENT (16 << SMC_IO_SHIFT)
475 #define SMC_DATA_EXTENT (4)
476
477 /*
478 . Bank Select Register:
479 .
480 . yyyy yyyy 0000 00xx
481 . xx = bank number
482 . yyyy yyyy = 0x33, for identification purposes.
483 */
484 #define BANK_SELECT (14 << SMC_IO_SHIFT)
485
486
487 // Transmit Control Register
488 /* BANK 0 */
489 #define TCR_REG(lp) SMC_REG(lp, 0x0000, 0)
490 #define TCR_ENABLE 0x0001 // When 1 we can transmit
491 #define TCR_LOOP 0x0002 // Controls output pin LBK
492 #define TCR_FORCOL 0x0004 // When 1 will force a collision
493 #define TCR_PAD_EN 0x0080 // When 1 will pad tx frames < 64 bytes w/0
494 #define TCR_NOCRC 0x0100 // When 1 will not append CRC to tx frames
495 #define TCR_MON_CSN 0x0400 // When 1 tx monitors carrier
496 #define TCR_FDUPLX 0x0800 // When 1 enables full duplex operation
497 #define TCR_STP_SQET 0x1000 // When 1 stops tx if Signal Quality Error
498 #define TCR_EPH_LOOP 0x2000 // When 1 enables EPH block loopback
499 #define TCR_SWFDUP 0x8000 // When 1 enables Switched Full Duplex mode
500
501 #define TCR_CLEAR 0 /* do NOTHING */
502 /* the default settings for the TCR register : */
503 #define TCR_DEFAULT (TCR_ENABLE | TCR_PAD_EN)
504
505
506 // EPH Status Register
507 /* BANK 0 */
508 #define EPH_STATUS_REG(lp) SMC_REG(lp, 0x0002, 0)
509 #define ES_TX_SUC 0x0001 // Last TX was successful
510 #define ES_SNGL_COL 0x0002 // Single collision detected for last tx
511 #define ES_MUL_COL 0x0004 // Multiple collisions detected for last tx
512 #define ES_LTX_MULT 0x0008 // Last tx was a multicast
513 #define ES_16COL 0x0010 // 16 Collisions Reached
514 #define ES_SQET 0x0020 // Signal Quality Error Test
515 #define ES_LTXBRD 0x0040 // Last tx was a broadcast
516 #define ES_TXDEFR 0x0080 // Transmit Deferred
517 #define ES_LATCOL 0x0200 // Late collision detected on last tx
518 #define ES_LOSTCARR 0x0400 // Lost Carrier Sense
519 #define ES_EXC_DEF 0x0800 // Excessive Deferral
520 #define ES_CTR_ROL 0x1000 // Counter Roll Over indication
521 #define ES_LINK_OK 0x4000 // Driven by inverted value of nLNK pin
522 #define ES_TXUNRN 0x8000 // Tx Underrun
523
524
525 // Receive Control Register
526 /* BANK 0 */
527 #define RCR_REG(lp) SMC_REG(lp, 0x0004, 0)
528 #define RCR_RX_ABORT 0x0001 // Set if a rx frame was aborted
529 #define RCR_PRMS 0x0002 // Enable promiscuous mode
530 #define RCR_ALMUL 0x0004 // When set accepts all multicast frames
531 #define RCR_RXEN 0x0100 // IFF this is set, we can receive packets
532 #define RCR_STRIP_CRC 0x0200 // When set strips CRC from rx packets
533 #define RCR_ABORT_ENB 0x0200 // When set will abort rx on collision
534 #define RCR_FILT_CAR 0x0400 // When set filters leading 12 bit s of carrier
535 #define RCR_SOFTRST 0x8000 // resets the chip
536
537 /* the normal settings for the RCR register : */
538 #define RCR_DEFAULT (RCR_STRIP_CRC | RCR_RXEN)
539 #define RCR_CLEAR 0x0 // set it to a base state
540
541
542 // Counter Register
543 /* BANK 0 */
544 #define COUNTER_REG(lp) SMC_REG(lp, 0x0006, 0)
545
546
547 // Memory Information Register
548 /* BANK 0 */
549 #define MIR_REG(lp) SMC_REG(lp, 0x0008, 0)
550
551
552 // Receive/Phy Control Register
553 /* BANK 0 */
554 #define RPC_REG(lp) SMC_REG(lp, 0x000A, 0)
555 #define RPC_SPEED 0x2000 // When 1 PHY is in 100Mbps mode.
556 #define RPC_DPLX 0x1000 // When 1 PHY is in Full-Duplex Mode
557 #define RPC_ANEG 0x0800 // When 1 PHY is in Auto-Negotiate Mode
558 #define RPC_LSXA_SHFT 5 // Bits to shift LS2A,LS1A,LS0A to lsb
559 #define RPC_LSXB_SHFT 2 // Bits to get LS2B,LS1B,LS0B to lsb
560
561 #ifndef RPC_LSA_DEFAULT
562 #define RPC_LSA_DEFAULT RPC_LED_100
563 #endif
564 #ifndef RPC_LSB_DEFAULT
565 #define RPC_LSB_DEFAULT RPC_LED_FD
566 #endif
567
568 #define RPC_DEFAULT (RPC_ANEG | RPC_SPEED | RPC_DPLX)
569
570
571 /* Bank 0 0x0C is reserved */
572
573 // Bank Select Register
574 /* All Banks */
575 #define BSR_REG 0x000E
576
577
578 // Configuration Reg
579 /* BANK 1 */
580 #define CONFIG_REG(lp) SMC_REG(lp, 0x0000, 1)
581 #define CONFIG_EXT_PHY 0x0200 // 1=external MII, 0=internal Phy
582 #define CONFIG_GPCNTRL 0x0400 // Inverse value drives pin nCNTRL
583 #define CONFIG_NO_WAIT 0x1000 // When 1 no extra wait states on ISA bus
584 #define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode.
585
586 // Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low
587 #define CONFIG_DEFAULT (CONFIG_EPH_POWER_EN)
588
589
590 // Base Address Register
591 /* BANK 1 */
592 #define BASE_REG(lp) SMC_REG(lp, 0x0002, 1)
593
594
595 // Individual Address Registers
596 /* BANK 1 */
597 #define ADDR0_REG(lp) SMC_REG(lp, 0x0004, 1)
598 #define ADDR1_REG(lp) SMC_REG(lp, 0x0006, 1)
599 #define ADDR2_REG(lp) SMC_REG(lp, 0x0008, 1)
600
601
602 // General Purpose Register
603 /* BANK 1 */
604 #define GP_REG(lp) SMC_REG(lp, 0x000A, 1)
605
606
607 // Control Register
608 /* BANK 1 */
609 #define CTL_REG(lp) SMC_REG(lp, 0x000C, 1)
610 #define CTL_RCV_BAD 0x4000 // When 1 bad CRC packets are received
611 #define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically
612 #define CTL_LE_ENABLE 0x0080 // When 1 enables Link Error interrupt
613 #define CTL_CR_ENABLE 0x0040 // When 1 enables Counter Rollover interrupt
614 #define CTL_TE_ENABLE 0x0020 // When 1 enables Transmit Error interrupt
615 #define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store
616 #define CTL_RELOAD 0x0002 // When set reads EEPROM into registers
617 #define CTL_STORE 0x0001 // When set stores registers into EEPROM
618
619
620 // MMU Command Register
621 /* BANK 2 */
622 #define MMU_CMD_REG(lp) SMC_REG(lp, 0x0000, 2)
623 #define MC_BUSY 1 // When 1 the last release has not completed
624 #define MC_NOP (0<<5) // No Op
625 #define MC_ALLOC (1<<5) // OR with number of 256 byte packets
626 #define MC_RESET (2<<5) // Reset MMU to initial state
627 #define MC_REMOVE (3<<5) // Remove the current rx packet
628 #define MC_RELEASE (4<<5) // Remove and release the current rx packet
629 #define MC_FREEPKT (5<<5) // Release packet in PNR register
630 #define MC_ENQUEUE (6<<5) // Enqueue the packet for transmit
631 #define MC_RSTTXFIFO (7<<5) // Reset the TX FIFOs
632
633
634 // Packet Number Register
635 /* BANK 2 */
636 #define PN_REG(lp) SMC_REG(lp, 0x0002, 2)
637
638
639 // Allocation Result Register
640 /* BANK 2 */
641 #define AR_REG(lp) SMC_REG(lp, 0x0003, 2)
642 #define AR_FAILED 0x80 // Alocation Failed
643
644
645 // TX FIFO Ports Register
646 /* BANK 2 */
647 #define TXFIFO_REG(lp) SMC_REG(lp, 0x0004, 2)
648 #define TXFIFO_TEMPTY 0x80 // TX FIFO Empty
649
650 // RX FIFO Ports Register
651 /* BANK 2 */
652 #define RXFIFO_REG(lp) SMC_REG(lp, 0x0005, 2)
653 #define RXFIFO_REMPTY 0x80 // RX FIFO Empty
654
655 #define FIFO_REG(lp) SMC_REG(lp, 0x0004, 2)
656
657 // Pointer Register
658 /* BANK 2 */
659 #define PTR_REG(lp) SMC_REG(lp, 0x0006, 2)
660 #define PTR_RCV 0x8000 // 1=Receive area, 0=Transmit area
661 #define PTR_AUTOINC 0x4000 // Auto increment the pointer on each access
662 #define PTR_READ 0x2000 // When 1 the operation is a read
663
664
665 // Data Register
666 /* BANK 2 */
667 #define DATA_REG(lp) SMC_REG(lp, 0x0008, 2)
668
669
670 // Interrupt Status/Acknowledge Register
671 /* BANK 2 */
672 #define INT_REG(lp) SMC_REG(lp, 0x000C, 2)
673
674
675 // Interrupt Mask Register
676 /* BANK 2 */
677 #define IM_REG(lp) SMC_REG(lp, 0x000D, 2)
678 #define IM_MDINT 0x80 // PHY MI Register 18 Interrupt
679 #define IM_ERCV_INT 0x40 // Early Receive Interrupt
680 #define IM_EPH_INT 0x20 // Set by Ethernet Protocol Handler section
681 #define IM_RX_OVRN_INT 0x10 // Set by Receiver Overruns
682 #define IM_ALLOC_INT 0x08 // Set when allocation request is completed
683 #define IM_TX_EMPTY_INT 0x04 // Set if the TX FIFO goes empty
684 #define IM_TX_INT 0x02 // Transmit Interrupt
685 #define IM_RCV_INT 0x01 // Receive Interrupt
686
687
688 // Multicast Table Registers
689 /* BANK 3 */
690 #define MCAST_REG1(lp) SMC_REG(lp, 0x0000, 3)
691 #define MCAST_REG2(lp) SMC_REG(lp, 0x0002, 3)
692 #define MCAST_REG3(lp) SMC_REG(lp, 0x0004, 3)
693 #define MCAST_REG4(lp) SMC_REG(lp, 0x0006, 3)
694
695
696 // Management Interface Register (MII)
697 /* BANK 3 */
698 #define MII_REG(lp) SMC_REG(lp, 0x0008, 3)
699 #define MII_MSK_CRS100 0x4000 // Disables CRS100 detection during tx half dup
700 #define MII_MDOE 0x0008 // MII Output Enable
701 #define MII_MCLK 0x0004 // MII Clock, pin MDCLK
702 #define MII_MDI 0x0002 // MII Input, pin MDI
703 #define MII_MDO 0x0001 // MII Output, pin MDO
704
705
706 // Revision Register
707 /* BANK 3 */
708 /* ( hi: chip id low: rev # ) */
709 #define REV_REG(lp) SMC_REG(lp, 0x000A, 3)
710
711
712 // Early RCV Register
713 /* BANK 3 */
714 /* this is NOT on SMC9192 */
715 #define ERCV_REG(lp) SMC_REG(lp, 0x000C, 3)
716 #define ERCV_RCV_DISCRD 0x0080 // When 1 discards a packet being received
717 #define ERCV_THRESHOLD 0x001F // ERCV Threshold Mask
718
719
720 // External Register
721 /* BANK 7 */
722 #define EXT_REG(lp) SMC_REG(lp, 0x0000, 7)
723
724
725 #define CHIP_9192 3
726 #define CHIP_9194 4
727 #define CHIP_9195 5
728 #define CHIP_9196 6
729 #define CHIP_91100 7
730 #define CHIP_91100FD 8
731 #define CHIP_91111FD 9
732
733 static const char * chip_ids[ 16 ] = {
734 NULL, NULL, NULL,
735 /* 3 */ "SMC91C90/91C92",
736 /* 4 */ "SMC91C94",
737 /* 5 */ "SMC91C95",
738 /* 6 */ "SMC91C96",
739 /* 7 */ "SMC91C100",
740 /* 8 */ "SMC91C100FD",
741 /* 9 */ "SMC91C11xFD",
742 NULL, NULL, NULL,
743 NULL, NULL, NULL};
744
745
746 /*
747 . Receive status bits
748 */
749 #define RS_ALGNERR 0x8000
750 #define RS_BRODCAST 0x4000
751 #define RS_BADCRC 0x2000
752 #define RS_ODDFRAME 0x1000
753 #define RS_TOOLONG 0x0800
754 #define RS_TOOSHORT 0x0400
755 #define RS_MULTICAST 0x0001
756 #define RS_ERRORS (RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)
757
758
759 /*
760 * PHY IDs
761 * LAN83C183 == LAN91C111 Internal PHY
762 */
763 #define PHY_LAN83C183 0x0016f840
764 #define PHY_LAN83C180 0x02821c50
765
766 /*
767 * PHY Register Addresses (LAN91C111 Internal PHY)
768 *
769 * Generic PHY registers can be found in <linux/mii.h>
770 *
771 * These phy registers are specific to our on-board phy.
772 */
773
774 // PHY Configuration Register 1
775 #define PHY_CFG1_REG 0x10
776 #define PHY_CFG1_LNKDIS 0x8000 // 1=Rx Link Detect Function disabled
777 #define PHY_CFG1_XMTDIS 0x4000 // 1=TP Transmitter Disabled
778 #define PHY_CFG1_XMTPDN 0x2000 // 1=TP Transmitter Powered Down
779 #define PHY_CFG1_BYPSCR 0x0400 // 1=Bypass scrambler/descrambler
780 #define PHY_CFG1_UNSCDS 0x0200 // 1=Unscramble Idle Reception Disable
781 #define PHY_CFG1_EQLZR 0x0100 // 1=Rx Equalizer Disabled
782 #define PHY_CFG1_CABLE 0x0080 // 1=STP(150ohm), 0=UTP(100ohm)
783 #define PHY_CFG1_RLVL0 0x0040 // 1=Rx Squelch level reduced by 4.5db
784 #define PHY_CFG1_TLVL_SHIFT 2 // Transmit Output Level Adjust
785 #define PHY_CFG1_TLVL_MASK 0x003C
786 #define PHY_CFG1_TRF_MASK 0x0003 // Transmitter Rise/Fall time
787
788
789 // PHY Configuration Register 2
790 #define PHY_CFG2_REG 0x11
791 #define PHY_CFG2_APOLDIS 0x0020 // 1=Auto Polarity Correction disabled
792 #define PHY_CFG2_JABDIS 0x0010 // 1=Jabber disabled
793 #define PHY_CFG2_MREG 0x0008 // 1=Multiple register access (MII mgt)
794 #define PHY_CFG2_INTMDIO 0x0004 // 1=Interrupt signaled with MDIO pulseo
795
796 // PHY Status Output (and Interrupt status) Register
797 #define PHY_INT_REG 0x12 // Status Output (Interrupt Status)
798 #define PHY_INT_INT 0x8000 // 1=bits have changed since last read
799 #define PHY_INT_LNKFAIL 0x4000 // 1=Link Not detected
800 #define PHY_INT_LOSSSYNC 0x2000 // 1=Descrambler has lost sync
801 #define PHY_INT_CWRD 0x1000 // 1=Invalid 4B5B code detected on rx
802 #define PHY_INT_SSD 0x0800 // 1=No Start Of Stream detected on rx
803 #define PHY_INT_ESD 0x0400 // 1=No End Of Stream detected on rx
804 #define PHY_INT_RPOL 0x0200 // 1=Reverse Polarity detected
805 #define PHY_INT_JAB 0x0100 // 1=Jabber detected
806 #define PHY_INT_SPDDET 0x0080 // 1=100Base-TX mode, 0=10Base-T mode
807 #define PHY_INT_DPLXDET 0x0040 // 1=Device in Full Duplex
808
809 // PHY Interrupt/Status Mask Register
810 #define PHY_MASK_REG 0x13 // Interrupt Mask
811 // Uses the same bit definitions as PHY_INT_REG
812
813
814 /*
815 * SMC91C96 ethernet config and status registers.
816 * These are in the "attribute" space.
817 */
818 #define ECOR 0x8000
819 #define ECOR_RESET 0x80
820 #define ECOR_LEVEL_IRQ 0x40
821 #define ECOR_WR_ATTRIB 0x04
822 #define ECOR_ENABLE 0x01
823
824 #define ECSR 0x8002
825 #define ECSR_IOIS8 0x20
826 #define ECSR_PWRDWN 0x04
827 #define ECSR_INT 0x02
828
829 #define ATTRIB_SIZE ((64*1024) << SMC_IO_SHIFT)
830
831
832 /*
833 * Macros to abstract register access according to the data bus
834 * capabilities. Please use those and not the in/out primitives.
835 * Note: the following macros do *not* select the bank -- this must
836 * be done separately as needed in the main code. The SMC_REG() macro
837 * only uses the bank argument for debugging purposes (when enabled).
838 *
839 * Note: despite inline functions being safer, everything leading to this
840 * should preferably be macros to let BUG() display the line number in
841 * the core source code since we're interested in the top call site
842 * not in any inline function location.
843 */
844
845 #if SMC_DEBUG > 0
846 #define SMC_REG(lp, reg, bank) \
847 ({ \
848 int __b = SMC_CURRENT_BANK(lp); \
849 if (unlikely((__b & ~0xf0) != (0x3300 | bank))) { \
850 pr_err("%s: bank reg screwed (0x%04x)\n", \
851 CARDNAME, __b); \
852 BUG(); \
853 } \
854 reg<<SMC_IO_SHIFT; \
855 })
856 #else
857 #define SMC_REG(lp, reg, bank) (reg<<SMC_IO_SHIFT)
858 #endif
859
860 /*
861 * Hack Alert: Some setups just can't write 8 or 16 bits reliably when not
862 * aligned to a 32 bit boundary. I tell you that does exist!
863 * Fortunately the affected register accesses can be easily worked around
864 * since we can write zeroes to the preceding 16 bits without adverse
865 * effects and use a 32-bit access.
866 *
867 * Enforce it on any 32-bit capable setup for now.
868 */
869 #define SMC_MUST_ALIGN_WRITE(lp) SMC_32BIT(lp)
870
871 #define SMC_GET_PN(lp) \
872 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, PN_REG(lp))) \
873 : (SMC_inw(ioaddr, PN_REG(lp)) & 0xFF))
874
875 #define SMC_SET_PN(lp, x) \
876 do { \
877 if (SMC_MUST_ALIGN_WRITE(lp)) \
878 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 0, 2)); \
879 else if (SMC_8BIT(lp)) \
880 SMC_outb(x, ioaddr, PN_REG(lp)); \
881 else \
882 SMC_outw(lp, x, ioaddr, PN_REG(lp)); \
883 } while (0)
884
885 #define SMC_GET_AR(lp) \
886 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, AR_REG(lp))) \
887 : (SMC_inw(ioaddr, PN_REG(lp)) >> 8))
888
889 #define SMC_GET_TXFIFO(lp) \
890 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, TXFIFO_REG(lp))) \
891 : (SMC_inw(ioaddr, TXFIFO_REG(lp)) & 0xFF))
892
893 #define SMC_GET_RXFIFO(lp) \
894 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, RXFIFO_REG(lp))) \
895 : (SMC_inw(ioaddr, TXFIFO_REG(lp)) >> 8))
896
897 #define SMC_GET_INT(lp) \
898 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, INT_REG(lp))) \
899 : (SMC_inw(ioaddr, INT_REG(lp)) & 0xFF))
900
901 #define SMC_ACK_INT(lp, x) \
902 do { \
903 if (SMC_8BIT(lp)) \
904 SMC_outb(x, ioaddr, INT_REG(lp)); \
905 else { \
906 unsigned long __flags; \
907 int __mask; \
908 local_irq_save(__flags); \
909 __mask = SMC_inw(ioaddr, INT_REG(lp)) & ~0xff; \
910 SMC_outw(lp, __mask | (x), ioaddr, INT_REG(lp)); \
911 local_irq_restore(__flags); \
912 } \
913 } while (0)
914
915 #define SMC_GET_INT_MASK(lp) \
916 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, IM_REG(lp))) \
917 : (SMC_inw(ioaddr, INT_REG(lp)) >> 8))
918
919 #define SMC_SET_INT_MASK(lp, x) \
920 do { \
921 if (SMC_8BIT(lp)) \
922 SMC_outb(x, ioaddr, IM_REG(lp)); \
923 else \
924 SMC_outw(lp, (x) << 8, ioaddr, INT_REG(lp)); \
925 } while (0)
926
927 #define SMC_CURRENT_BANK(lp) SMC_inw(ioaddr, BANK_SELECT)
928
929 #define SMC_SELECT_BANK(lp, x) \
930 do { \
931 if (SMC_MUST_ALIGN_WRITE(lp)) \
932 SMC_outl((x)<<16, ioaddr, 12<<SMC_IO_SHIFT); \
933 else \
934 SMC_outw(lp, x, ioaddr, BANK_SELECT); \
935 } while (0)
936
937 #define SMC_GET_BASE(lp) SMC_inw(ioaddr, BASE_REG(lp))
938
939 #define SMC_SET_BASE(lp, x) SMC_outw(lp, x, ioaddr, BASE_REG(lp))
940
941 #define SMC_GET_CONFIG(lp) SMC_inw(ioaddr, CONFIG_REG(lp))
942
943 #define SMC_SET_CONFIG(lp, x) SMC_outw(lp, x, ioaddr, CONFIG_REG(lp))
944
945 #define SMC_GET_COUNTER(lp) SMC_inw(ioaddr, COUNTER_REG(lp))
946
947 #define SMC_GET_CTL(lp) SMC_inw(ioaddr, CTL_REG(lp))
948
949 #define SMC_SET_CTL(lp, x) SMC_outw(lp, x, ioaddr, CTL_REG(lp))
950
951 #define SMC_GET_MII(lp) SMC_inw(ioaddr, MII_REG(lp))
952
953 #define SMC_GET_GP(lp) SMC_inw(ioaddr, GP_REG(lp))
954
955 #define SMC_SET_GP(lp, x) \
956 do { \
957 if (SMC_MUST_ALIGN_WRITE(lp)) \
958 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 1)); \
959 else \
960 SMC_outw(lp, x, ioaddr, GP_REG(lp)); \
961 } while (0)
962
963 #define SMC_SET_MII(lp, x) SMC_outw(lp, x, ioaddr, MII_REG(lp))
964
965 #define SMC_GET_MIR(lp) SMC_inw(ioaddr, MIR_REG(lp))
966
967 #define SMC_SET_MIR(lp, x) SMC_outw(lp, x, ioaddr, MIR_REG(lp))
968
969 #define SMC_GET_MMU_CMD(lp) SMC_inw(ioaddr, MMU_CMD_REG(lp))
970
971 #define SMC_SET_MMU_CMD(lp, x) SMC_outw(lp, x, ioaddr, MMU_CMD_REG(lp))
972
973 #define SMC_GET_FIFO(lp) SMC_inw(ioaddr, FIFO_REG(lp))
974
975 #define SMC_GET_PTR(lp) SMC_inw(ioaddr, PTR_REG(lp))
976
977 #define SMC_SET_PTR(lp, x) \
978 do { \
979 if (SMC_MUST_ALIGN_WRITE(lp)) \
980 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 4, 2)); \
981 else \
982 SMC_outw(lp, x, ioaddr, PTR_REG(lp)); \
983 } while (0)
984
985 #define SMC_GET_EPH_STATUS(lp) SMC_inw(ioaddr, EPH_STATUS_REG(lp))
986
987 #define SMC_GET_RCR(lp) SMC_inw(ioaddr, RCR_REG(lp))
988
989 #define SMC_SET_RCR(lp, x) SMC_outw(lp, x, ioaddr, RCR_REG(lp))
990
991 #define SMC_GET_REV(lp) SMC_inw(ioaddr, REV_REG(lp))
992
993 #define SMC_GET_RPC(lp) SMC_inw(ioaddr, RPC_REG(lp))
994
995 #define SMC_SET_RPC(lp, x) \
996 do { \
997 if (SMC_MUST_ALIGN_WRITE(lp)) \
998 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 0)); \
999 else \
1000 SMC_outw(lp, x, ioaddr, RPC_REG(lp)); \
1001 } while (0)
1002
1003 #define SMC_GET_TCR(lp) SMC_inw(ioaddr, TCR_REG(lp))
1004
1005 #define SMC_SET_TCR(lp, x) SMC_outw(lp, x, ioaddr, TCR_REG(lp))
1006
1007 #ifndef SMC_GET_MAC_ADDR
1008 #define SMC_GET_MAC_ADDR(lp, addr) \
1009 do { \
1010 unsigned int __v; \
1011 __v = SMC_inw(ioaddr, ADDR0_REG(lp)); \
1012 addr[0] = __v; addr[1] = __v >> 8; \
1013 __v = SMC_inw(ioaddr, ADDR1_REG(lp)); \
1014 addr[2] = __v; addr[3] = __v >> 8; \
1015 __v = SMC_inw(ioaddr, ADDR2_REG(lp)); \
1016 addr[4] = __v; addr[5] = __v >> 8; \
1017 } while (0)
1018 #endif
1019
1020 #define SMC_SET_MAC_ADDR(lp, addr) \
1021 do { \
1022 SMC_outw(lp, addr[0] | (addr[1] << 8), ioaddr, ADDR0_REG(lp)); \
1023 SMC_outw(lp, addr[2] | (addr[3] << 8), ioaddr, ADDR1_REG(lp)); \
1024 SMC_outw(lp, addr[4] | (addr[5] << 8), ioaddr, ADDR2_REG(lp)); \
1025 } while (0)
1026
1027 #define SMC_SET_MCAST(lp, x) \
1028 do { \
1029 const unsigned char *mt = (x); \
1030 SMC_outw(lp, mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1(lp)); \
1031 SMC_outw(lp, mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2(lp)); \
1032 SMC_outw(lp, mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3(lp)); \
1033 SMC_outw(lp, mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4(lp)); \
1034 } while (0)
1035
1036 #define SMC_PUT_PKT_HDR(lp, status, length) \
1037 do { \
1038 if (SMC_32BIT(lp)) \
1039 SMC_outl((status) | (length)<<16, ioaddr, \
1040 DATA_REG(lp)); \
1041 else { \
1042 SMC_outw(lp, status, ioaddr, DATA_REG(lp)); \
1043 SMC_outw(lp, length, ioaddr, DATA_REG(lp)); \
1044 } \
1045 } while (0)
1046
1047 #define SMC_GET_PKT_HDR(lp, status, length) \
1048 do { \
1049 if (SMC_32BIT(lp)) { \
1050 unsigned int __val = SMC_inl(ioaddr, DATA_REG(lp)); \
1051 (status) = __val & 0xffff; \
1052 (length) = __val >> 16; \
1053 } else { \
1054 (status) = SMC_inw(ioaddr, DATA_REG(lp)); \
1055 (length) = SMC_inw(ioaddr, DATA_REG(lp)); \
1056 } \
1057 } while (0)
1058
1059 #define SMC_PUSH_DATA(lp, p, l) \
1060 do { \
1061 if (SMC_32BIT(lp)) { \
1062 void *__ptr = (p); \
1063 int __len = (l); \
1064 void __iomem *__ioaddr = ioaddr; \
1065 if (__len >= 2 && (unsigned long)__ptr & 2) { \
1066 __len -= 2; \
1067 SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1068 __ptr += 2; \
1069 } \
1070 if (SMC_CAN_USE_DATACS && lp->datacs) \
1071 __ioaddr = lp->datacs; \
1072 SMC_outsl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1073 if (__len & 2) { \
1074 __ptr += (__len & ~3); \
1075 SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1076 } \
1077 } else if (SMC_16BIT(lp)) \
1078 SMC_outsw(ioaddr, DATA_REG(lp), p, (l) >> 1); \
1079 else if (SMC_8BIT(lp)) \
1080 SMC_outsb(ioaddr, DATA_REG(lp), p, l); \
1081 } while (0)
1082
1083 #define SMC_PULL_DATA(lp, p, l) \
1084 do { \
1085 if (SMC_32BIT(lp)) { \
1086 void *__ptr = (p); \
1087 int __len = (l); \
1088 void __iomem *__ioaddr = ioaddr; \
1089 if ((unsigned long)__ptr & 2) { \
1090 /* \
1091 * We want 32bit alignment here. \
1092 * Since some buses perform a full \
1093 * 32bit fetch even for 16bit data \
1094 * we can't use SMC_inw() here. \
1095 * Back both source (on-chip) and \
1096 * destination pointers of 2 bytes. \
1097 * This is possible since the call to \
1098 * SMC_GET_PKT_HDR() already advanced \
1099 * the source pointer of 4 bytes, and \
1100 * the skb_reserve(skb, 2) advanced \
1101 * the destination pointer of 2 bytes. \
1102 */ \
1103 __ptr -= 2; \
1104 __len += 2; \
1105 SMC_SET_PTR(lp, \
1106 2|PTR_READ|PTR_RCV|PTR_AUTOINC); \
1107 } \
1108 if (SMC_CAN_USE_DATACS && lp->datacs) \
1109 __ioaddr = lp->datacs; \
1110 __len += 2; \
1111 SMC_insl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1112 } else if (SMC_16BIT(lp)) \
1113 SMC_insw(ioaddr, DATA_REG(lp), p, (l) >> 1); \
1114 else if (SMC_8BIT(lp)) \
1115 SMC_insb(ioaddr, DATA_REG(lp), p, l); \
1116 } while (0)
1117
1118 #endif /* _SMC91X_H_ */
1119