1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2011-2013 Solarflare Communications Inc.
5 */
6
7 /* Theory of operation:
8 *
9 * PTP support is assisted by firmware running on the MC, which provides
10 * the hardware timestamping capabilities. Both transmitted and received
11 * PTP event packets are queued onto internal queues for subsequent processing;
12 * this is because the MC operations are relatively long and would block
13 * block NAPI/interrupt operation.
14 *
15 * Receive event processing:
16 * The event contains the packet's UUID and sequence number, together
17 * with the hardware timestamp. The PTP receive packet queue is searched
18 * for this UUID/sequence number and, if found, put on a pending queue.
19 * Packets not matching are delivered without timestamps (MCDI events will
20 * always arrive after the actual packet).
21 * It is important for the operation of the PTP protocol that the ordering
22 * of packets between the event and general port is maintained.
23 *
24 * Work queue processing:
25 * If work waiting, synchronise host/hardware time
26 *
27 * Transmit: send packet through MC, which returns the transmission time
28 * that is converted to an appropriate timestamp.
29 *
30 * Receive: the packet's reception time is converted to an appropriate
31 * timestamp.
32 */
33 #include <linux/ip.h>
34 #include <linux/udp.h>
35 #include <linux/time.h>
36 #include <linux/ktime.h>
37 #include <linux/module.h>
38 #include <linux/pps_kernel.h>
39 #include <linux/ptp_clock_kernel.h>
40 #include "net_driver.h"
41 #include "efx.h"
42 #include "mcdi.h"
43 #include "mcdi_pcol.h"
44 #include "io.h"
45 #include "farch_regs.h"
46 #include "tx.h"
47 #include "nic.h" /* indirectly includes ptp.h */
48 #include "efx_channels.h"
49
50 /* Maximum number of events expected to make up a PTP event */
51 #define MAX_EVENT_FRAGS 3
52
53 /* Maximum delay, ms, to begin synchronisation */
54 #define MAX_SYNCHRONISE_WAIT_MS 2
55
56 /* How long, at most, to spend synchronising */
57 #define SYNCHRONISE_PERIOD_NS 250000
58
59 /* How often to update the shared memory time */
60 #define SYNCHRONISATION_GRANULARITY_NS 200
61
62 /* Minimum permitted length of a (corrected) synchronisation time */
63 #define DEFAULT_MIN_SYNCHRONISATION_NS 120
64
65 /* Maximum permitted length of a (corrected) synchronisation time */
66 #define MAX_SYNCHRONISATION_NS 1000
67
68 /* How many (MC) receive events that can be queued */
69 #define MAX_RECEIVE_EVENTS 8
70
71 /* Length of (modified) moving average. */
72 #define AVERAGE_LENGTH 16
73
74 /* How long an unmatched event or packet can be held */
75 #define PKT_EVENT_LIFETIME_MS 10
76
77 /* Offsets into PTP packet for identification. These offsets are from the
78 * start of the IP header, not the MAC header. Note that neither PTP V1 nor
79 * PTP V2 permit the use of IPV4 options.
80 */
81 #define PTP_DPORT_OFFSET 22
82
83 #define PTP_V1_VERSION_LENGTH 2
84 #define PTP_V1_VERSION_OFFSET 28
85
86 #define PTP_V1_UUID_LENGTH 6
87 #define PTP_V1_UUID_OFFSET 50
88
89 #define PTP_V1_SEQUENCE_LENGTH 2
90 #define PTP_V1_SEQUENCE_OFFSET 58
91
92 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
93 * includes IP header.
94 */
95 #define PTP_V1_MIN_LENGTH 64
96
97 #define PTP_V2_VERSION_LENGTH 1
98 #define PTP_V2_VERSION_OFFSET 29
99
100 #define PTP_V2_UUID_LENGTH 8
101 #define PTP_V2_UUID_OFFSET 48
102
103 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
104 * the MC only captures the last six bytes of the clock identity. These values
105 * reflect those, not the ones used in the standard. The standard permits
106 * mapping of V1 UUIDs to V2 UUIDs with these same values.
107 */
108 #define PTP_V2_MC_UUID_LENGTH 6
109 #define PTP_V2_MC_UUID_OFFSET 50
110
111 #define PTP_V2_SEQUENCE_LENGTH 2
112 #define PTP_V2_SEQUENCE_OFFSET 58
113
114 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
115 * includes IP header.
116 */
117 #define PTP_V2_MIN_LENGTH 63
118
119 #define PTP_MIN_LENGTH 63
120
121 #define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */
122 #define PTP_EVENT_PORT 319
123 #define PTP_GENERAL_PORT 320
124
125 /* Annoyingly the format of the version numbers are different between
126 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
127 */
128 #define PTP_VERSION_V1 1
129
130 #define PTP_VERSION_V2 2
131 #define PTP_VERSION_V2_MASK 0x0f
132
133 enum ptp_packet_state {
134 PTP_PACKET_STATE_UNMATCHED = 0,
135 PTP_PACKET_STATE_MATCHED,
136 PTP_PACKET_STATE_TIMED_OUT,
137 PTP_PACKET_STATE_MATCH_UNWANTED
138 };
139
140 /* NIC synchronised with single word of time only comprising
141 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
142 */
143 #define MC_NANOSECOND_BITS 30
144 #define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1)
145 #define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
146
147 /* Maximum parts-per-billion adjustment that is acceptable */
148 #define MAX_PPB 1000000
149
150 /* Precalculate scale word to avoid long long division at runtime */
151 /* This is equivalent to 2^66 / 10^9. */
152 #define PPB_SCALE_WORD ((1LL << (57)) / 1953125LL)
153
154 /* How much to shift down after scaling to convert to FP40 */
155 #define PPB_SHIFT_FP40 26
156 /* ... and FP44. */
157 #define PPB_SHIFT_FP44 22
158
159 #define PTP_SYNC_ATTEMPTS 4
160
161 /**
162 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
163 * @words: UUID and (partial) sequence number
164 * @expiry: Time after which the packet should be delivered irrespective of
165 * event arrival.
166 * @state: The state of the packet - whether it is ready for processing or
167 * whether that is of no interest.
168 */
169 struct efx_ptp_match {
170 u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
171 unsigned long expiry;
172 enum ptp_packet_state state;
173 };
174
175 /**
176 * struct efx_ptp_event_rx - A PTP receive event (from MC)
177 * @link: list of events
178 * @seq0: First part of (PTP) UUID
179 * @seq1: Second part of (PTP) UUID and sequence number
180 * @hwtimestamp: Event timestamp
181 * @expiry: Time which the packet arrived
182 */
183 struct efx_ptp_event_rx {
184 struct list_head link;
185 u32 seq0;
186 u32 seq1;
187 ktime_t hwtimestamp;
188 unsigned long expiry;
189 };
190
191 /**
192 * struct efx_ptp_timeset - Synchronisation between host and MC
193 * @host_start: Host time immediately before hardware timestamp taken
194 * @major: Hardware timestamp, major
195 * @minor: Hardware timestamp, minor
196 * @host_end: Host time immediately after hardware timestamp taken
197 * @wait: Number of NIC clock ticks between hardware timestamp being read and
198 * host end time being seen
199 * @window: Difference of host_end and host_start
200 * @valid: Whether this timeset is valid
201 */
202 struct efx_ptp_timeset {
203 u32 host_start;
204 u32 major;
205 u32 minor;
206 u32 host_end;
207 u32 wait;
208 u32 window; /* Derived: end - start, allowing for wrap */
209 };
210
211 /**
212 * struct efx_ptp_data - Precision Time Protocol (PTP) state
213 * @efx: The NIC context
214 * @channel: The PTP channel (Siena only)
215 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
216 * separate events)
217 * @rxq: Receive SKB queue (awaiting timestamps)
218 * @txq: Transmit SKB queue
219 * @evt_list: List of MC receive events awaiting packets
220 * @evt_free_list: List of free events
221 * @evt_lock: Lock for manipulating evt_list and evt_free_list
222 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
223 * @workwq: Work queue for processing pending PTP operations
224 * @work: Work task
225 * @reset_required: A serious error has occurred and the PTP task needs to be
226 * reset (disable, enable).
227 * @rxfilter_event: Receive filter when operating
228 * @rxfilter_general: Receive filter when operating
229 * @rxfilter_installed: Receive filter installed
230 * @config: Current timestamp configuration
231 * @enabled: PTP operation enabled
232 * @mode: Mode in which PTP operating (PTP version)
233 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
234 * @nic_to_kernel_time: Function to convert from NIC to kernel time
235 * @nic_time: contains time details
236 * @nic_time.minor_max: Wrap point for NIC minor times
237 * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
238 * in packet prefix and last MCDI time sync event i.e. how much earlier than
239 * the last sync event time a packet timestamp can be.
240 * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
241 * in packet prefix and last MCDI time sync event i.e. how much later than
242 * the last sync event time a packet timestamp can be.
243 * @nic_time.sync_event_minor_shift: Shift required to make minor time from
244 * field in MCDI time sync event.
245 * @min_synchronisation_ns: Minimum acceptable corrected sync window
246 * @capabilities: Capabilities flags from the NIC
247 * @ts_corrections: contains corrections details
248 * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
249 * timestamps
250 * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
251 * timestamps
252 * @ts_corrections.pps_out: PPS output error (information only)
253 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
254 * @ts_corrections.general_tx: Required driver correction of general packet
255 * transmit timestamps
256 * @ts_corrections.general_rx: Required driver correction of general packet
257 * receive timestamps
258 * @evt_frags: Partly assembled PTP events
259 * @evt_frag_idx: Current fragment number
260 * @evt_code: Last event code
261 * @start: Address at which MC indicates ready for synchronisation
262 * @host_time_pps: Host time at last PPS
263 * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
264 * frequency adjustment into a fixed point fractional nanosecond format.
265 * @current_adjfreq: Current ppb adjustment.
266 * @phc_clock: Pointer to registered phc device (if primary function)
267 * @phc_clock_info: Registration structure for phc device
268 * @pps_work: pps work task for handling pps events
269 * @pps_workwq: pps work queue
270 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
271 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
272 * allocations in main data path).
273 * @good_syncs: Number of successful synchronisations.
274 * @fast_syncs: Number of synchronisations requiring short delay
275 * @bad_syncs: Number of failed synchronisations.
276 * @sync_timeouts: Number of synchronisation timeouts
277 * @no_time_syncs: Number of synchronisations with no good times.
278 * @invalid_sync_windows: Number of sync windows with bad durations.
279 * @undersize_sync_windows: Number of corrected sync windows that are too small
280 * @oversize_sync_windows: Number of corrected sync windows that are too large
281 * @rx_no_timestamp: Number of packets received without a timestamp.
282 * @timeset: Last set of synchronisation statistics.
283 * @xmit_skb: Transmit SKB function.
284 */
285 struct efx_ptp_data {
286 struct efx_nic *efx;
287 struct efx_channel *channel;
288 bool rx_ts_inline;
289 struct sk_buff_head rxq;
290 struct sk_buff_head txq;
291 struct list_head evt_list;
292 struct list_head evt_free_list;
293 spinlock_t evt_lock;
294 struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
295 struct workqueue_struct *workwq;
296 struct work_struct work;
297 bool reset_required;
298 u32 rxfilter_event;
299 u32 rxfilter_general;
300 bool rxfilter_installed;
301 struct hwtstamp_config config;
302 bool enabled;
303 unsigned int mode;
304 void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
305 ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
306 s32 correction);
307 struct {
308 u32 minor_max;
309 u32 sync_event_diff_min;
310 u32 sync_event_diff_max;
311 unsigned int sync_event_minor_shift;
312 } nic_time;
313 unsigned int min_synchronisation_ns;
314 unsigned int capabilities;
315 struct {
316 s32 ptp_tx;
317 s32 ptp_rx;
318 s32 pps_out;
319 s32 pps_in;
320 s32 general_tx;
321 s32 general_rx;
322 } ts_corrections;
323 efx_qword_t evt_frags[MAX_EVENT_FRAGS];
324 int evt_frag_idx;
325 int evt_code;
326 struct efx_buffer start;
327 struct pps_event_time host_time_pps;
328 unsigned int adjfreq_ppb_shift;
329 s64 current_adjfreq;
330 struct ptp_clock *phc_clock;
331 struct ptp_clock_info phc_clock_info;
332 struct work_struct pps_work;
333 struct workqueue_struct *pps_workwq;
334 bool nic_ts_enabled;
335 efx_dword_t txbuf[MCDI_TX_BUF_LEN(MC_CMD_PTP_IN_TRANSMIT_LENMAX)];
336
337 unsigned int good_syncs;
338 unsigned int fast_syncs;
339 unsigned int bad_syncs;
340 unsigned int sync_timeouts;
341 unsigned int no_time_syncs;
342 unsigned int invalid_sync_windows;
343 unsigned int undersize_sync_windows;
344 unsigned int oversize_sync_windows;
345 unsigned int rx_no_timestamp;
346 struct efx_ptp_timeset
347 timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
348 void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb);
349 };
350
351 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
352 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
353 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
354 static int efx_phc_settime(struct ptp_clock_info *ptp,
355 const struct timespec64 *e_ts);
356 static int efx_phc_enable(struct ptp_clock_info *ptp,
357 struct ptp_clock_request *request, int on);
358
efx_ptp_use_mac_tx_timestamps(struct efx_nic * efx)359 bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx)
360 {
361 return efx_has_cap(efx, TX_MAC_TIMESTAMPING);
362 }
363
364 /* PTP 'extra' channel is still a traffic channel, but we only create TX queues
365 * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
366 */
efx_ptp_want_txqs(struct efx_channel * channel)367 static bool efx_ptp_want_txqs(struct efx_channel *channel)
368 {
369 return efx_ptp_use_mac_tx_timestamps(channel->efx);
370 }
371
372 #define PTP_SW_STAT(ext_name, field_name) \
373 { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
374 #define PTP_MC_STAT(ext_name, mcdi_name) \
375 { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
376 static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
377 PTP_SW_STAT(ptp_good_syncs, good_syncs),
378 PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
379 PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
380 PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
381 PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
382 PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
383 PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
384 PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
385 PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
386 PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
387 PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
388 PTP_MC_STAT(ptp_timestamp_packets, TS),
389 PTP_MC_STAT(ptp_filter_matches, FM),
390 PTP_MC_STAT(ptp_non_filter_matches, NFM),
391 };
392 #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
393 static const unsigned long efx_ptp_stat_mask[] = {
394 [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
395 };
396
efx_ptp_describe_stats(struct efx_nic * efx,u8 * strings)397 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
398 {
399 if (!efx->ptp_data)
400 return 0;
401
402 return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
403 efx_ptp_stat_mask, strings);
404 }
405
efx_ptp_update_stats(struct efx_nic * efx,u64 * stats)406 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
407 {
408 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
409 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
410 size_t i;
411 int rc;
412
413 if (!efx->ptp_data)
414 return 0;
415
416 /* Copy software statistics */
417 for (i = 0; i < PTP_STAT_COUNT; i++) {
418 if (efx_ptp_stat_desc[i].dma_width)
419 continue;
420 stats[i] = *(unsigned int *)((char *)efx->ptp_data +
421 efx_ptp_stat_desc[i].offset);
422 }
423
424 /* Fetch MC statistics. We *must* fill in all statistics or
425 * risk leaking kernel memory to userland, so if the MCDI
426 * request fails we pretend we got zeroes.
427 */
428 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
429 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
430 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
431 outbuf, sizeof(outbuf), NULL);
432 if (rc)
433 memset(outbuf, 0, sizeof(outbuf));
434 efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
435 efx_ptp_stat_mask,
436 stats, _MCDI_PTR(outbuf, 0), false);
437
438 return PTP_STAT_COUNT;
439 }
440
441 /* For Siena platforms NIC time is s and ns */
efx_ptp_ns_to_s_ns(s64 ns,u32 * nic_major,u32 * nic_minor)442 static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
443 {
444 struct timespec64 ts = ns_to_timespec64(ns);
445 *nic_major = (u32)ts.tv_sec;
446 *nic_minor = ts.tv_nsec;
447 }
448
efx_ptp_s_ns_to_ktime_correction(u32 nic_major,u32 nic_minor,s32 correction)449 static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
450 s32 correction)
451 {
452 ktime_t kt = ktime_set(nic_major, nic_minor);
453 if (correction >= 0)
454 kt = ktime_add_ns(kt, (u64)correction);
455 else
456 kt = ktime_sub_ns(kt, (u64)-correction);
457 return kt;
458 }
459
460 /* To convert from s27 format to ns we multiply then divide by a power of 2.
461 * For the conversion from ns to s27, the operation is also converted to a
462 * multiply and shift.
463 */
464 #define S27_TO_NS_SHIFT (27)
465 #define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
466 #define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT)
467 #define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT)
468
469 /* For Huntington platforms NIC time is in seconds and fractions of a second
470 * where the minor register only uses 27 bits in units of 2^-27s.
471 */
efx_ptp_ns_to_s27(s64 ns,u32 * nic_major,u32 * nic_minor)472 static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
473 {
474 struct timespec64 ts = ns_to_timespec64(ns);
475 u32 maj = (u32)ts.tv_sec;
476 u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
477 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
478
479 /* The conversion can result in the minor value exceeding the maximum.
480 * In this case, round up to the next second.
481 */
482 if (min >= S27_MINOR_MAX) {
483 min -= S27_MINOR_MAX;
484 maj++;
485 }
486
487 *nic_major = maj;
488 *nic_minor = min;
489 }
490
efx_ptp_s27_to_ktime(u32 nic_major,u32 nic_minor)491 static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
492 {
493 u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
494 (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
495 return ktime_set(nic_major, ns);
496 }
497
efx_ptp_s27_to_ktime_correction(u32 nic_major,u32 nic_minor,s32 correction)498 static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
499 s32 correction)
500 {
501 /* Apply the correction and deal with carry */
502 nic_minor += correction;
503 if ((s32)nic_minor < 0) {
504 nic_minor += S27_MINOR_MAX;
505 nic_major--;
506 } else if (nic_minor >= S27_MINOR_MAX) {
507 nic_minor -= S27_MINOR_MAX;
508 nic_major++;
509 }
510
511 return efx_ptp_s27_to_ktime(nic_major, nic_minor);
512 }
513
514 /* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
efx_ptp_ns_to_s_qns(s64 ns,u32 * nic_major,u32 * nic_minor)515 static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor)
516 {
517 struct timespec64 ts = ns_to_timespec64(ns);
518
519 *nic_major = (u32)ts.tv_sec;
520 *nic_minor = ts.tv_nsec * 4;
521 }
522
efx_ptp_s_qns_to_ktime_correction(u32 nic_major,u32 nic_minor,s32 correction)523 static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor,
524 s32 correction)
525 {
526 ktime_t kt;
527
528 nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4);
529 correction = DIV_ROUND_CLOSEST(correction, 4);
530
531 kt = ktime_set(nic_major, nic_minor);
532
533 if (correction >= 0)
534 kt = ktime_add_ns(kt, (u64)correction);
535 else
536 kt = ktime_sub_ns(kt, (u64)-correction);
537 return kt;
538 }
539
efx_ptp_channel(struct efx_nic * efx)540 struct efx_channel *efx_ptp_channel(struct efx_nic *efx)
541 {
542 return efx->ptp_data ? efx->ptp_data->channel : NULL;
543 }
544
efx_ptp_update_channel(struct efx_nic * efx,struct efx_channel * channel)545 void efx_ptp_update_channel(struct efx_nic *efx, struct efx_channel *channel)
546 {
547 if (efx->ptp_data)
548 efx->ptp_data->channel = channel;
549 }
550
last_sync_timestamp_major(struct efx_nic * efx)551 static u32 last_sync_timestamp_major(struct efx_nic *efx)
552 {
553 struct efx_channel *channel = efx_ptp_channel(efx);
554 u32 major = 0;
555
556 if (channel)
557 major = channel->sync_timestamp_major;
558 return major;
559 }
560
561 /* The 8000 series and later can provide the time from the MAC, which is only
562 * 48 bits long and provides meta-information in the top 2 bits.
563 */
564 static ktime_t
efx_ptp_mac_nic_to_ktime_correction(struct efx_nic * efx,struct efx_ptp_data * ptp,u32 nic_major,u32 nic_minor,s32 correction)565 efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx,
566 struct efx_ptp_data *ptp,
567 u32 nic_major, u32 nic_minor,
568 s32 correction)
569 {
570 u32 sync_timestamp;
571 ktime_t kt = { 0 };
572 s16 delta;
573
574 if (!(nic_major & 0x80000000)) {
575 WARN_ON_ONCE(nic_major >> 16);
576
577 /* Medford provides 48 bits of timestamp, so we must get the top
578 * 16 bits from the timesync event state.
579 *
580 * We only have the lower 16 bits of the time now, but we do
581 * have a full resolution timestamp at some point in past. As
582 * long as the difference between the (real) now and the sync
583 * is less than 2^15, then we can reconstruct the difference
584 * between those two numbers using only the lower 16 bits of
585 * each.
586 *
587 * Put another way
588 *
589 * a - b = ((a mod k) - b) mod k
590 *
591 * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know
592 * (a mod k) and b, so can calculate the delta, a - b.
593 *
594 */
595 sync_timestamp = last_sync_timestamp_major(efx);
596
597 /* Because delta is s16 this does an implicit mask down to
598 * 16 bits which is what we need, assuming
599 * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that
600 * we can deal with the (unlikely) case of sync timestamps
601 * arriving from the future.
602 */
603 delta = nic_major - sync_timestamp;
604
605 /* Recover the fully specified time now, by applying the offset
606 * to the (fully specified) sync time.
607 */
608 nic_major = sync_timestamp + delta;
609
610 kt = ptp->nic_to_kernel_time(nic_major, nic_minor,
611 correction);
612 }
613 return kt;
614 }
615
efx_ptp_nic_to_kernel_time(struct efx_tx_queue * tx_queue)616 ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue)
617 {
618 struct efx_nic *efx = tx_queue->efx;
619 struct efx_ptp_data *ptp = efx->ptp_data;
620 ktime_t kt;
621
622 if (efx_ptp_use_mac_tx_timestamps(efx))
623 kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp,
624 tx_queue->completed_timestamp_major,
625 tx_queue->completed_timestamp_minor,
626 ptp->ts_corrections.general_tx);
627 else
628 kt = ptp->nic_to_kernel_time(
629 tx_queue->completed_timestamp_major,
630 tx_queue->completed_timestamp_minor,
631 ptp->ts_corrections.general_tx);
632 return kt;
633 }
634
635 /* Get PTP attributes and set up time conversions */
efx_ptp_get_attributes(struct efx_nic * efx)636 static int efx_ptp_get_attributes(struct efx_nic *efx)
637 {
638 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
639 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
640 struct efx_ptp_data *ptp = efx->ptp_data;
641 int rc;
642 u32 fmt;
643 size_t out_len;
644
645 /* Get the PTP attributes. If the NIC doesn't support the operation we
646 * use the default format for compatibility with older NICs i.e.
647 * seconds and nanoseconds.
648 */
649 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
650 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
651 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
652 outbuf, sizeof(outbuf), &out_len);
653 if (rc == 0) {
654 fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
655 } else if (rc == -EINVAL) {
656 fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
657 } else if (rc == -EPERM) {
658 pci_info(efx->pci_dev, "no PTP support\n");
659 return rc;
660 } else {
661 efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
662 outbuf, sizeof(outbuf), rc);
663 return rc;
664 }
665
666 switch (fmt) {
667 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION:
668 ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
669 ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
670 ptp->nic_time.minor_max = 1 << 27;
671 ptp->nic_time.sync_event_minor_shift = 19;
672 break;
673 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS:
674 ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
675 ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
676 ptp->nic_time.minor_max = 1000000000;
677 ptp->nic_time.sync_event_minor_shift = 22;
678 break;
679 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS:
680 ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns;
681 ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction;
682 ptp->nic_time.minor_max = 4000000000UL;
683 ptp->nic_time.sync_event_minor_shift = 24;
684 break;
685 default:
686 return -ERANGE;
687 }
688
689 /* Precalculate acceptable difference between the minor time in the
690 * packet prefix and the last MCDI time sync event. We expect the
691 * packet prefix timestamp to be after of sync event by up to one
692 * sync event interval (0.25s) but we allow it to exceed this by a
693 * fuzz factor of (0.1s)
694 */
695 ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max
696 - (ptp->nic_time.minor_max / 10);
697 ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4)
698 + (ptp->nic_time.minor_max / 10);
699
700 /* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
701 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
702 * a value to use for the minimum acceptable corrected synchronization
703 * window and may return further capabilities.
704 * If we have the extra information store it. For older firmware that
705 * does not implement the extended command use the default value.
706 */
707 if (rc == 0 &&
708 out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST)
709 ptp->min_synchronisation_ns =
710 MCDI_DWORD(outbuf,
711 PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
712 else
713 ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
714
715 if (rc == 0 &&
716 out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
717 ptp->capabilities = MCDI_DWORD(outbuf,
718 PTP_OUT_GET_ATTRIBUTES_CAPABILITIES);
719 else
720 ptp->capabilities = 0;
721
722 /* Set up the shift for conversion between frequency
723 * adjustments in parts-per-billion and the fixed-point
724 * fractional ns format that the adapter uses.
725 */
726 if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN))
727 ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44;
728 else
729 ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40;
730
731 return 0;
732 }
733
734 /* Get PTP timestamp corrections */
efx_ptp_get_timestamp_corrections(struct efx_nic * efx)735 static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
736 {
737 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
738 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN);
739 int rc;
740 size_t out_len;
741
742 /* Get the timestamp corrections from the NIC. If this operation is
743 * not supported (older NICs) then no correction is required.
744 */
745 MCDI_SET_DWORD(inbuf, PTP_IN_OP,
746 MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
747 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
748
749 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
750 outbuf, sizeof(outbuf), &out_len);
751 if (rc == 0) {
752 efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf,
753 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
754 efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf,
755 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
756 efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
757 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
758 efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
759 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
760
761 if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) {
762 efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD(
763 outbuf,
764 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX);
765 efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD(
766 outbuf,
767 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX);
768 } else {
769 efx->ptp_data->ts_corrections.general_tx =
770 efx->ptp_data->ts_corrections.ptp_tx;
771 efx->ptp_data->ts_corrections.general_rx =
772 efx->ptp_data->ts_corrections.ptp_rx;
773 }
774 } else if (rc == -EINVAL) {
775 efx->ptp_data->ts_corrections.ptp_tx = 0;
776 efx->ptp_data->ts_corrections.ptp_rx = 0;
777 efx->ptp_data->ts_corrections.pps_out = 0;
778 efx->ptp_data->ts_corrections.pps_in = 0;
779 efx->ptp_data->ts_corrections.general_tx = 0;
780 efx->ptp_data->ts_corrections.general_rx = 0;
781 } else {
782 efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
783 sizeof(outbuf), rc);
784 return rc;
785 }
786
787 return 0;
788 }
789
790 /* Enable MCDI PTP support. */
efx_ptp_enable(struct efx_nic * efx)791 static int efx_ptp_enable(struct efx_nic *efx)
792 {
793 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
794 MCDI_DECLARE_BUF_ERR(outbuf);
795 int rc;
796
797 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
798 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
799 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
800 efx->ptp_data->channel ?
801 efx->ptp_data->channel->channel : 0);
802 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
803
804 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
805 outbuf, sizeof(outbuf), NULL);
806 rc = (rc == -EALREADY) ? 0 : rc;
807 if (rc)
808 efx_mcdi_display_error(efx, MC_CMD_PTP,
809 MC_CMD_PTP_IN_ENABLE_LEN,
810 outbuf, sizeof(outbuf), rc);
811 return rc;
812 }
813
814 /* Disable MCDI PTP support.
815 *
816 * Note that this function should never rely on the presence of ptp_data -
817 * may be called before that exists.
818 */
efx_ptp_disable(struct efx_nic * efx)819 static int efx_ptp_disable(struct efx_nic *efx)
820 {
821 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
822 MCDI_DECLARE_BUF_ERR(outbuf);
823 int rc;
824
825 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
826 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
827 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
828 outbuf, sizeof(outbuf), NULL);
829 rc = (rc == -EALREADY) ? 0 : rc;
830 /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
831 * should only have been called during probe.
832 */
833 if (rc == -ENOSYS || rc == -EPERM)
834 pci_info(efx->pci_dev, "no PTP support\n");
835 else if (rc)
836 efx_mcdi_display_error(efx, MC_CMD_PTP,
837 MC_CMD_PTP_IN_DISABLE_LEN,
838 outbuf, sizeof(outbuf), rc);
839 return rc;
840 }
841
efx_ptp_deliver_rx_queue(struct sk_buff_head * q)842 static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
843 {
844 struct sk_buff *skb;
845
846 while ((skb = skb_dequeue(q))) {
847 local_bh_disable();
848 netif_receive_skb(skb);
849 local_bh_enable();
850 }
851 }
852
efx_ptp_handle_no_channel(struct efx_nic * efx)853 static void efx_ptp_handle_no_channel(struct efx_nic *efx)
854 {
855 netif_err(efx, drv, efx->net_dev,
856 "ERROR: PTP requires MSI-X and 1 additional interrupt"
857 "vector. PTP disabled\n");
858 }
859
860 /* Repeatedly send the host time to the MC which will capture the hardware
861 * time.
862 */
efx_ptp_send_times(struct efx_nic * efx,struct pps_event_time * last_time)863 static void efx_ptp_send_times(struct efx_nic *efx,
864 struct pps_event_time *last_time)
865 {
866 struct pps_event_time now;
867 struct timespec64 limit;
868 struct efx_ptp_data *ptp = efx->ptp_data;
869 int *mc_running = ptp->start.addr;
870
871 pps_get_ts(&now);
872 limit = now.ts_real;
873 timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
874
875 /* Write host time for specified period or until MC is done */
876 while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
877 READ_ONCE(*mc_running)) {
878 struct timespec64 update_time;
879 unsigned int host_time;
880
881 /* Don't update continuously to avoid saturating the PCIe bus */
882 update_time = now.ts_real;
883 timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
884 do {
885 pps_get_ts(&now);
886 } while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
887 READ_ONCE(*mc_running));
888
889 /* Synchronise NIC with single word of time only */
890 host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
891 now.ts_real.tv_nsec);
892 /* Update host time in NIC memory */
893 efx->type->ptp_write_host_time(efx, host_time);
894 }
895 *last_time = now;
896 }
897
898 /* Read a timeset from the MC's results and partial process. */
efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR (data),struct efx_ptp_timeset * timeset)899 static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
900 struct efx_ptp_timeset *timeset)
901 {
902 unsigned start_ns, end_ns;
903
904 timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
905 timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
906 timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
907 timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
908 timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
909
910 /* Ignore seconds */
911 start_ns = timeset->host_start & MC_NANOSECOND_MASK;
912 end_ns = timeset->host_end & MC_NANOSECOND_MASK;
913 /* Allow for rollover */
914 if (end_ns < start_ns)
915 end_ns += NSEC_PER_SEC;
916 /* Determine duration of operation */
917 timeset->window = end_ns - start_ns;
918 }
919
920 /* Process times received from MC.
921 *
922 * Extract times from returned results, and establish the minimum value
923 * seen. The minimum value represents the "best" possible time and events
924 * too much greater than this are rejected - the machine is, perhaps, too
925 * busy. A number of readings are taken so that, hopefully, at least one good
926 * synchronisation will be seen in the results.
927 */
928 static int
efx_ptp_process_times(struct efx_nic * efx,MCDI_DECLARE_STRUCT_PTR (synch_buf),size_t response_length,const struct pps_event_time * last_time)929 efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
930 size_t response_length,
931 const struct pps_event_time *last_time)
932 {
933 unsigned number_readings =
934 MCDI_VAR_ARRAY_LEN(response_length,
935 PTP_OUT_SYNCHRONIZE_TIMESET);
936 unsigned i;
937 unsigned ngood = 0;
938 unsigned last_good = 0;
939 struct efx_ptp_data *ptp = efx->ptp_data;
940 u32 last_sec;
941 u32 start_sec;
942 struct timespec64 delta;
943 ktime_t mc_time;
944
945 if (number_readings == 0)
946 return -EAGAIN;
947
948 /* Read the set of results and find the last good host-MC
949 * synchronization result. The MC times when it finishes reading the
950 * host time so the corrected window time should be fairly constant
951 * for a given platform. Increment stats for any results that appear
952 * to be erroneous.
953 */
954 for (i = 0; i < number_readings; i++) {
955 s32 window, corrected;
956 struct timespec64 wait;
957
958 efx_ptp_read_timeset(
959 MCDI_ARRAY_STRUCT_PTR(synch_buf,
960 PTP_OUT_SYNCHRONIZE_TIMESET, i),
961 &ptp->timeset[i]);
962
963 wait = ktime_to_timespec64(
964 ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
965 window = ptp->timeset[i].window;
966 corrected = window - wait.tv_nsec;
967
968 /* We expect the uncorrected synchronization window to be at
969 * least as large as the interval between host start and end
970 * times. If it is smaller than this then this is mostly likely
971 * to be a consequence of the host's time being adjusted.
972 * Check that the corrected sync window is in a reasonable
973 * range. If it is out of range it is likely to be because an
974 * interrupt or other delay occurred between reading the system
975 * time and writing it to MC memory.
976 */
977 if (window < SYNCHRONISATION_GRANULARITY_NS) {
978 ++ptp->invalid_sync_windows;
979 } else if (corrected >= MAX_SYNCHRONISATION_NS) {
980 ++ptp->oversize_sync_windows;
981 } else if (corrected < ptp->min_synchronisation_ns) {
982 ++ptp->undersize_sync_windows;
983 } else {
984 ngood++;
985 last_good = i;
986 }
987 }
988
989 if (ngood == 0) {
990 netif_warn(efx, drv, efx->net_dev,
991 "PTP no suitable synchronisations\n");
992 return -EAGAIN;
993 }
994
995 /* Calculate delay from last good sync (host time) to last_time.
996 * It is possible that the seconds rolled over between taking
997 * the start reading and the last value written by the host. The
998 * timescales are such that a gap of more than one second is never
999 * expected. delta is *not* normalised.
1000 */
1001 start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
1002 last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
1003 if (start_sec != last_sec &&
1004 ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
1005 netif_warn(efx, hw, efx->net_dev,
1006 "PTP bad synchronisation seconds\n");
1007 return -EAGAIN;
1008 }
1009 delta.tv_sec = (last_sec - start_sec) & 1;
1010 delta.tv_nsec =
1011 last_time->ts_real.tv_nsec -
1012 (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
1013
1014 /* Convert the NIC time at last good sync into kernel time.
1015 * No correction is required - this time is the output of a
1016 * firmware process.
1017 */
1018 mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
1019 ptp->timeset[last_good].minor, 0);
1020
1021 /* Calculate delay from NIC top of second to last_time */
1022 delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
1023
1024 /* Set PPS timestamp to match NIC top of second */
1025 ptp->host_time_pps = *last_time;
1026 pps_sub_ts(&ptp->host_time_pps, delta);
1027
1028 return 0;
1029 }
1030
1031 /* Synchronize times between the host and the MC */
efx_ptp_synchronize(struct efx_nic * efx,unsigned int num_readings)1032 static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
1033 {
1034 struct efx_ptp_data *ptp = efx->ptp_data;
1035 MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
1036 size_t response_length;
1037 int rc;
1038 unsigned long timeout;
1039 struct pps_event_time last_time = {};
1040 unsigned int loops = 0;
1041 int *start = ptp->start.addr;
1042
1043 MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
1044 MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
1045 MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
1046 num_readings);
1047 MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
1048 ptp->start.dma_addr);
1049
1050 /* Clear flag that signals MC ready */
1051 WRITE_ONCE(*start, 0);
1052 rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
1053 MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
1054 EFX_WARN_ON_ONCE_PARANOID(rc);
1055
1056 /* Wait for start from MCDI (or timeout) */
1057 timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
1058 while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) {
1059 udelay(20); /* Usually start MCDI execution quickly */
1060 loops++;
1061 }
1062
1063 if (loops <= 1)
1064 ++ptp->fast_syncs;
1065 if (!time_before(jiffies, timeout))
1066 ++ptp->sync_timeouts;
1067
1068 if (READ_ONCE(*start))
1069 efx_ptp_send_times(efx, &last_time);
1070
1071 /* Collect results */
1072 rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
1073 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
1074 synch_buf, sizeof(synch_buf),
1075 &response_length);
1076 if (rc == 0) {
1077 rc = efx_ptp_process_times(efx, synch_buf, response_length,
1078 &last_time);
1079 if (rc == 0)
1080 ++ptp->good_syncs;
1081 else
1082 ++ptp->no_time_syncs;
1083 }
1084
1085 /* Increment the bad syncs counter if the synchronize fails, whatever
1086 * the reason.
1087 */
1088 if (rc != 0)
1089 ++ptp->bad_syncs;
1090
1091 return rc;
1092 }
1093
1094 /* Transmit a PTP packet via the dedicated hardware timestamped queue. */
efx_ptp_xmit_skb_queue(struct efx_nic * efx,struct sk_buff * skb)1095 static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb)
1096 {
1097 struct efx_ptp_data *ptp_data = efx->ptp_data;
1098 u8 type = efx_tx_csum_type_skb(skb);
1099 struct efx_tx_queue *tx_queue;
1100
1101 tx_queue = efx_channel_get_tx_queue(ptp_data->channel, type);
1102 if (tx_queue && tx_queue->timestamping) {
1103 /* This code invokes normal driver TX code which is always
1104 * protected from softirqs when called from generic TX code,
1105 * which in turn disables preemption. Look at __dev_queue_xmit
1106 * which uses rcu_read_lock_bh disabling preemption for RCU
1107 * plus disabling softirqs. We do not need RCU reader
1108 * protection here.
1109 *
1110 * Although it is theoretically safe for current PTP TX/RX code
1111 * running without disabling softirqs, there are three good
1112 * reasond for doing so:
1113 *
1114 * 1) The code invoked is mainly implemented for non-PTP
1115 * packets and it is always executed with softirqs
1116 * disabled.
1117 * 2) This being a single PTP packet, better to not
1118 * interrupt its processing by softirqs which can lead
1119 * to high latencies.
1120 * 3) netdev_xmit_more checks preemption is disabled and
1121 * triggers a BUG_ON if not.
1122 */
1123 local_bh_disable();
1124 efx_enqueue_skb(tx_queue, skb);
1125 local_bh_enable();
1126 } else {
1127 WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
1128 dev_kfree_skb_any(skb);
1129 }
1130 }
1131
1132 /* Transmit a PTP packet, via the MCDI interface, to the wire. */
efx_ptp_xmit_skb_mc(struct efx_nic * efx,struct sk_buff * skb)1133 static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb)
1134 {
1135 struct efx_ptp_data *ptp_data = efx->ptp_data;
1136 struct skb_shared_hwtstamps timestamps;
1137 int rc = -EIO;
1138 MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
1139 size_t len;
1140
1141 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
1142 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
1143 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
1144 if (skb_shinfo(skb)->nr_frags != 0) {
1145 rc = skb_linearize(skb);
1146 if (rc != 0)
1147 goto fail;
1148 }
1149
1150 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1151 rc = skb_checksum_help(skb);
1152 if (rc != 0)
1153 goto fail;
1154 }
1155 skb_copy_from_linear_data(skb,
1156 MCDI_PTR(ptp_data->txbuf,
1157 PTP_IN_TRANSMIT_PACKET),
1158 skb->len);
1159 rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
1160 ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
1161 txtime, sizeof(txtime), &len);
1162 if (rc != 0)
1163 goto fail;
1164
1165 memset(×tamps, 0, sizeof(timestamps));
1166 timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
1167 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
1168 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
1169 ptp_data->ts_corrections.ptp_tx);
1170
1171 skb_tstamp_tx(skb, ×tamps);
1172
1173 rc = 0;
1174
1175 fail:
1176 dev_kfree_skb_any(skb);
1177
1178 return;
1179 }
1180
efx_ptp_drop_time_expired_events(struct efx_nic * efx)1181 static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
1182 {
1183 struct efx_ptp_data *ptp = efx->ptp_data;
1184 struct list_head *cursor;
1185 struct list_head *next;
1186
1187 if (ptp->rx_ts_inline)
1188 return;
1189
1190 /* Drop time-expired events */
1191 spin_lock_bh(&ptp->evt_lock);
1192 list_for_each_safe(cursor, next, &ptp->evt_list) {
1193 struct efx_ptp_event_rx *evt;
1194
1195 evt = list_entry(cursor, struct efx_ptp_event_rx,
1196 link);
1197 if (time_after(jiffies, evt->expiry)) {
1198 list_move(&evt->link, &ptp->evt_free_list);
1199 netif_warn(efx, hw, efx->net_dev,
1200 "PTP rx event dropped\n");
1201 }
1202 }
1203 spin_unlock_bh(&ptp->evt_lock);
1204 }
1205
efx_ptp_match_rx(struct efx_nic * efx,struct sk_buff * skb)1206 static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
1207 struct sk_buff *skb)
1208 {
1209 struct efx_ptp_data *ptp = efx->ptp_data;
1210 bool evts_waiting;
1211 struct list_head *cursor;
1212 struct list_head *next;
1213 struct efx_ptp_match *match;
1214 enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
1215
1216 WARN_ON_ONCE(ptp->rx_ts_inline);
1217
1218 spin_lock_bh(&ptp->evt_lock);
1219 evts_waiting = !list_empty(&ptp->evt_list);
1220 spin_unlock_bh(&ptp->evt_lock);
1221
1222 if (!evts_waiting)
1223 return PTP_PACKET_STATE_UNMATCHED;
1224
1225 match = (struct efx_ptp_match *)skb->cb;
1226 /* Look for a matching timestamp in the event queue */
1227 spin_lock_bh(&ptp->evt_lock);
1228 list_for_each_safe(cursor, next, &ptp->evt_list) {
1229 struct efx_ptp_event_rx *evt;
1230
1231 evt = list_entry(cursor, struct efx_ptp_event_rx, link);
1232 if ((evt->seq0 == match->words[0]) &&
1233 (evt->seq1 == match->words[1])) {
1234 struct skb_shared_hwtstamps *timestamps;
1235
1236 /* Match - add in hardware timestamp */
1237 timestamps = skb_hwtstamps(skb);
1238 timestamps->hwtstamp = evt->hwtimestamp;
1239
1240 match->state = PTP_PACKET_STATE_MATCHED;
1241 rc = PTP_PACKET_STATE_MATCHED;
1242 list_move(&evt->link, &ptp->evt_free_list);
1243 break;
1244 }
1245 }
1246 spin_unlock_bh(&ptp->evt_lock);
1247
1248 return rc;
1249 }
1250
1251 /* Process any queued receive events and corresponding packets
1252 *
1253 * q is returned with all the packets that are ready for delivery.
1254 */
efx_ptp_process_events(struct efx_nic * efx,struct sk_buff_head * q)1255 static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
1256 {
1257 struct efx_ptp_data *ptp = efx->ptp_data;
1258 struct sk_buff *skb;
1259
1260 while ((skb = skb_dequeue(&ptp->rxq))) {
1261 struct efx_ptp_match *match;
1262
1263 match = (struct efx_ptp_match *)skb->cb;
1264 if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
1265 __skb_queue_tail(q, skb);
1266 } else if (efx_ptp_match_rx(efx, skb) ==
1267 PTP_PACKET_STATE_MATCHED) {
1268 __skb_queue_tail(q, skb);
1269 } else if (time_after(jiffies, match->expiry)) {
1270 match->state = PTP_PACKET_STATE_TIMED_OUT;
1271 ++ptp->rx_no_timestamp;
1272 __skb_queue_tail(q, skb);
1273 } else {
1274 /* Replace unprocessed entry and stop */
1275 skb_queue_head(&ptp->rxq, skb);
1276 break;
1277 }
1278 }
1279 }
1280
1281 /* Complete processing of a received packet */
efx_ptp_process_rx(struct efx_nic * efx,struct sk_buff * skb)1282 static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
1283 {
1284 local_bh_disable();
1285 netif_receive_skb(skb);
1286 local_bh_enable();
1287 }
1288
efx_ptp_remove_multicast_filters(struct efx_nic * efx)1289 static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
1290 {
1291 struct efx_ptp_data *ptp = efx->ptp_data;
1292
1293 if (ptp->rxfilter_installed) {
1294 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1295 ptp->rxfilter_general);
1296 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1297 ptp->rxfilter_event);
1298 ptp->rxfilter_installed = false;
1299 }
1300 }
1301
efx_ptp_insert_multicast_filters(struct efx_nic * efx)1302 static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
1303 {
1304 struct efx_ptp_data *ptp = efx->ptp_data;
1305 struct efx_filter_spec rxfilter;
1306 int rc;
1307
1308 if (!ptp->channel || ptp->rxfilter_installed)
1309 return 0;
1310
1311 /* Must filter on both event and general ports to ensure
1312 * that there is no packet re-ordering.
1313 */
1314 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1315 efx_rx_queue_index(
1316 efx_channel_get_rx_queue(ptp->channel)));
1317 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1318 htonl(PTP_ADDRESS),
1319 htons(PTP_EVENT_PORT));
1320 if (rc != 0)
1321 return rc;
1322
1323 rc = efx_filter_insert_filter(efx, &rxfilter, true);
1324 if (rc < 0)
1325 return rc;
1326 ptp->rxfilter_event = rc;
1327
1328 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1329 efx_rx_queue_index(
1330 efx_channel_get_rx_queue(ptp->channel)));
1331 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1332 htonl(PTP_ADDRESS),
1333 htons(PTP_GENERAL_PORT));
1334 if (rc != 0)
1335 goto fail;
1336
1337 rc = efx_filter_insert_filter(efx, &rxfilter, true);
1338 if (rc < 0)
1339 goto fail;
1340 ptp->rxfilter_general = rc;
1341
1342 ptp->rxfilter_installed = true;
1343 return 0;
1344
1345 fail:
1346 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1347 ptp->rxfilter_event);
1348 return rc;
1349 }
1350
efx_ptp_start(struct efx_nic * efx)1351 static int efx_ptp_start(struct efx_nic *efx)
1352 {
1353 struct efx_ptp_data *ptp = efx->ptp_data;
1354 int rc;
1355
1356 ptp->reset_required = false;
1357
1358 rc = efx_ptp_insert_multicast_filters(efx);
1359 if (rc)
1360 return rc;
1361
1362 rc = efx_ptp_enable(efx);
1363 if (rc != 0)
1364 goto fail;
1365
1366 ptp->evt_frag_idx = 0;
1367 ptp->current_adjfreq = 0;
1368
1369 return 0;
1370
1371 fail:
1372 efx_ptp_remove_multicast_filters(efx);
1373 return rc;
1374 }
1375
efx_ptp_stop(struct efx_nic * efx)1376 static int efx_ptp_stop(struct efx_nic *efx)
1377 {
1378 struct efx_ptp_data *ptp = efx->ptp_data;
1379 struct list_head *cursor;
1380 struct list_head *next;
1381 int rc;
1382
1383 if (ptp == NULL)
1384 return 0;
1385
1386 rc = efx_ptp_disable(efx);
1387
1388 efx_ptp_remove_multicast_filters(efx);
1389
1390 /* Make sure RX packets are really delivered */
1391 efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
1392 skb_queue_purge(&efx->ptp_data->txq);
1393
1394 /* Drop any pending receive events */
1395 spin_lock_bh(&efx->ptp_data->evt_lock);
1396 list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
1397 list_move(cursor, &efx->ptp_data->evt_free_list);
1398 }
1399 spin_unlock_bh(&efx->ptp_data->evt_lock);
1400
1401 return rc;
1402 }
1403
efx_ptp_restart(struct efx_nic * efx)1404 static int efx_ptp_restart(struct efx_nic *efx)
1405 {
1406 if (efx->ptp_data && efx->ptp_data->enabled)
1407 return efx_ptp_start(efx);
1408 return 0;
1409 }
1410
efx_ptp_pps_worker(struct work_struct * work)1411 static void efx_ptp_pps_worker(struct work_struct *work)
1412 {
1413 struct efx_ptp_data *ptp =
1414 container_of(work, struct efx_ptp_data, pps_work);
1415 struct efx_nic *efx = ptp->efx;
1416 struct ptp_clock_event ptp_evt;
1417
1418 if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
1419 return;
1420
1421 ptp_evt.type = PTP_CLOCK_PPSUSR;
1422 ptp_evt.pps_times = ptp->host_time_pps;
1423 ptp_clock_event(ptp->phc_clock, &ptp_evt);
1424 }
1425
efx_ptp_worker(struct work_struct * work)1426 static void efx_ptp_worker(struct work_struct *work)
1427 {
1428 struct efx_ptp_data *ptp_data =
1429 container_of(work, struct efx_ptp_data, work);
1430 struct efx_nic *efx = ptp_data->efx;
1431 struct sk_buff *skb;
1432 struct sk_buff_head tempq;
1433
1434 if (ptp_data->reset_required) {
1435 efx_ptp_stop(efx);
1436 efx_ptp_start(efx);
1437 return;
1438 }
1439
1440 efx_ptp_drop_time_expired_events(efx);
1441
1442 __skb_queue_head_init(&tempq);
1443 efx_ptp_process_events(efx, &tempq);
1444
1445 while ((skb = skb_dequeue(&ptp_data->txq)))
1446 ptp_data->xmit_skb(efx, skb);
1447
1448 while ((skb = __skb_dequeue(&tempq)))
1449 efx_ptp_process_rx(efx, skb);
1450 }
1451
1452 static const struct ptp_clock_info efx_phc_clock_info = {
1453 .owner = THIS_MODULE,
1454 .name = "sfc",
1455 .max_adj = MAX_PPB,
1456 .n_alarm = 0,
1457 .n_ext_ts = 0,
1458 .n_per_out = 0,
1459 .n_pins = 0,
1460 .pps = 1,
1461 .adjfreq = efx_phc_adjfreq,
1462 .adjtime = efx_phc_adjtime,
1463 .gettime64 = efx_phc_gettime,
1464 .settime64 = efx_phc_settime,
1465 .enable = efx_phc_enable,
1466 };
1467
1468 /* Initialise PTP state. */
efx_ptp_probe(struct efx_nic * efx,struct efx_channel * channel)1469 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
1470 {
1471 struct efx_ptp_data *ptp;
1472 int rc = 0;
1473 unsigned int pos;
1474
1475 if (efx->ptp_data) {
1476 efx->ptp_data->channel = channel;
1477 return 0;
1478 }
1479
1480 ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
1481 efx->ptp_data = ptp;
1482 if (!efx->ptp_data)
1483 return -ENOMEM;
1484
1485 ptp->efx = efx;
1486 ptp->channel = channel;
1487 ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1488
1489 rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
1490 if (rc != 0)
1491 goto fail1;
1492
1493 skb_queue_head_init(&ptp->rxq);
1494 skb_queue_head_init(&ptp->txq);
1495 ptp->workwq = create_singlethread_workqueue("sfc_ptp");
1496 if (!ptp->workwq) {
1497 rc = -ENOMEM;
1498 goto fail2;
1499 }
1500
1501 if (efx_ptp_use_mac_tx_timestamps(efx)) {
1502 ptp->xmit_skb = efx_ptp_xmit_skb_queue;
1503 /* Request sync events on this channel. */
1504 channel->sync_events_state = SYNC_EVENTS_QUIESCENT;
1505 } else {
1506 ptp->xmit_skb = efx_ptp_xmit_skb_mc;
1507 }
1508
1509 INIT_WORK(&ptp->work, efx_ptp_worker);
1510 ptp->config.flags = 0;
1511 ptp->config.tx_type = HWTSTAMP_TX_OFF;
1512 ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
1513 INIT_LIST_HEAD(&ptp->evt_list);
1514 INIT_LIST_HEAD(&ptp->evt_free_list);
1515 spin_lock_init(&ptp->evt_lock);
1516 for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
1517 list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
1518
1519 /* Get the NIC PTP attributes and set up time conversions */
1520 rc = efx_ptp_get_attributes(efx);
1521 if (rc < 0)
1522 goto fail3;
1523
1524 /* Get the timestamp corrections */
1525 rc = efx_ptp_get_timestamp_corrections(efx);
1526 if (rc < 0)
1527 goto fail3;
1528
1529 if (efx->mcdi->fn_flags &
1530 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
1531 ptp->phc_clock_info = efx_phc_clock_info;
1532 ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
1533 &efx->pci_dev->dev);
1534 if (IS_ERR(ptp->phc_clock)) {
1535 rc = PTR_ERR(ptp->phc_clock);
1536 goto fail3;
1537 } else if (ptp->phc_clock) {
1538 INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
1539 ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
1540 if (!ptp->pps_workwq) {
1541 rc = -ENOMEM;
1542 goto fail4;
1543 }
1544 }
1545 }
1546 ptp->nic_ts_enabled = false;
1547
1548 return 0;
1549 fail4:
1550 ptp_clock_unregister(efx->ptp_data->phc_clock);
1551
1552 fail3:
1553 destroy_workqueue(efx->ptp_data->workwq);
1554
1555 fail2:
1556 efx_nic_free_buffer(efx, &ptp->start);
1557
1558 fail1:
1559 kfree(efx->ptp_data);
1560 efx->ptp_data = NULL;
1561
1562 return rc;
1563 }
1564
1565 /* Initialise PTP channel.
1566 *
1567 * Setting core_index to zero causes the queue to be initialised and doesn't
1568 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1569 */
efx_ptp_probe_channel(struct efx_channel * channel)1570 static int efx_ptp_probe_channel(struct efx_channel *channel)
1571 {
1572 struct efx_nic *efx = channel->efx;
1573 int rc;
1574
1575 channel->irq_moderation_us = 0;
1576 channel->rx_queue.core_index = 0;
1577
1578 rc = efx_ptp_probe(efx, channel);
1579 /* Failure to probe PTP is not fatal; this channel will just not be
1580 * used for anything.
1581 * In the case of EPERM, efx_ptp_probe will print its own message (in
1582 * efx_ptp_get_attributes()), so we don't need to.
1583 */
1584 if (rc && rc != -EPERM)
1585 netif_warn(efx, drv, efx->net_dev,
1586 "Failed to probe PTP, rc=%d\n", rc);
1587 return 0;
1588 }
1589
efx_ptp_remove(struct efx_nic * efx)1590 void efx_ptp_remove(struct efx_nic *efx)
1591 {
1592 if (!efx->ptp_data)
1593 return;
1594
1595 (void)efx_ptp_disable(efx);
1596
1597 cancel_work_sync(&efx->ptp_data->work);
1598 if (efx->ptp_data->pps_workwq)
1599 cancel_work_sync(&efx->ptp_data->pps_work);
1600
1601 skb_queue_purge(&efx->ptp_data->rxq);
1602 skb_queue_purge(&efx->ptp_data->txq);
1603
1604 if (efx->ptp_data->phc_clock) {
1605 destroy_workqueue(efx->ptp_data->pps_workwq);
1606 ptp_clock_unregister(efx->ptp_data->phc_clock);
1607 }
1608
1609 destroy_workqueue(efx->ptp_data->workwq);
1610
1611 efx_nic_free_buffer(efx, &efx->ptp_data->start);
1612 kfree(efx->ptp_data);
1613 efx->ptp_data = NULL;
1614 }
1615
efx_ptp_remove_channel(struct efx_channel * channel)1616 static void efx_ptp_remove_channel(struct efx_channel *channel)
1617 {
1618 efx_ptp_remove(channel->efx);
1619 }
1620
efx_ptp_get_channel_name(struct efx_channel * channel,char * buf,size_t len)1621 static void efx_ptp_get_channel_name(struct efx_channel *channel,
1622 char *buf, size_t len)
1623 {
1624 snprintf(buf, len, "%s-ptp", channel->efx->name);
1625 }
1626
1627 /* Determine whether this packet should be processed by the PTP module
1628 * or transmitted conventionally.
1629 */
efx_ptp_is_ptp_tx(struct efx_nic * efx,struct sk_buff * skb)1630 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1631 {
1632 return efx->ptp_data &&
1633 efx->ptp_data->enabled &&
1634 skb->len >= PTP_MIN_LENGTH &&
1635 skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1636 likely(skb->protocol == htons(ETH_P_IP)) &&
1637 skb_transport_header_was_set(skb) &&
1638 skb_network_header_len(skb) >= sizeof(struct iphdr) &&
1639 ip_hdr(skb)->protocol == IPPROTO_UDP &&
1640 skb_headlen(skb) >=
1641 skb_transport_offset(skb) + sizeof(struct udphdr) &&
1642 udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1643 }
1644
1645 /* Receive a PTP packet. Packets are queued until the arrival of
1646 * the receive timestamp from the MC - this will probably occur after the
1647 * packet arrival because of the processing in the MC.
1648 */
efx_ptp_rx(struct efx_channel * channel,struct sk_buff * skb)1649 static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1650 {
1651 struct efx_nic *efx = channel->efx;
1652 struct efx_ptp_data *ptp = efx->ptp_data;
1653 struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1654 u8 *match_data_012, *match_data_345;
1655 unsigned int version;
1656 u8 *data;
1657
1658 match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1659
1660 /* Correct version? */
1661 if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1662 if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1663 return false;
1664 }
1665 data = skb->data;
1666 version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
1667 if (version != PTP_VERSION_V1) {
1668 return false;
1669 }
1670
1671 /* PTP V1 uses all six bytes of the UUID to match the packet
1672 * to the timestamp
1673 */
1674 match_data_012 = data + PTP_V1_UUID_OFFSET;
1675 match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
1676 } else {
1677 if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1678 return false;
1679 }
1680 data = skb->data;
1681 version = data[PTP_V2_VERSION_OFFSET];
1682 if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1683 return false;
1684 }
1685
1686 /* The original V2 implementation uses bytes 2-7 of
1687 * the UUID to match the packet to the timestamp. This
1688 * discards two of the bytes of the MAC address used
1689 * to create the UUID (SF bug 33070). The PTP V2
1690 * enhanced mode fixes this issue and uses bytes 0-2
1691 * and byte 5-7 of the UUID.
1692 */
1693 match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
1694 if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1695 match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
1696 } else {
1697 match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
1698 BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1699 }
1700 }
1701
1702 /* Does this packet require timestamping? */
1703 if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1704 match->state = PTP_PACKET_STATE_UNMATCHED;
1705
1706 /* We expect the sequence number to be in the same position in
1707 * the packet for PTP V1 and V2
1708 */
1709 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1710 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1711
1712 /* Extract UUID/Sequence information */
1713 match->words[0] = (match_data_012[0] |
1714 (match_data_012[1] << 8) |
1715 (match_data_012[2] << 16) |
1716 (match_data_345[0] << 24));
1717 match->words[1] = (match_data_345[1] |
1718 (match_data_345[2] << 8) |
1719 (data[PTP_V1_SEQUENCE_OFFSET +
1720 PTP_V1_SEQUENCE_LENGTH - 1] <<
1721 16));
1722 } else {
1723 match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1724 }
1725
1726 skb_queue_tail(&ptp->rxq, skb);
1727 queue_work(ptp->workwq, &ptp->work);
1728
1729 return true;
1730 }
1731
1732 /* Transmit a PTP packet. This has to be transmitted by the MC
1733 * itself, through an MCDI call. MCDI calls aren't permitted
1734 * in the transmit path so defer the actual transmission to a suitable worker.
1735 */
efx_ptp_tx(struct efx_nic * efx,struct sk_buff * skb)1736 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1737 {
1738 struct efx_ptp_data *ptp = efx->ptp_data;
1739
1740 skb_queue_tail(&ptp->txq, skb);
1741
1742 if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1743 (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1744 efx_xmit_hwtstamp_pending(skb);
1745 queue_work(ptp->workwq, &ptp->work);
1746
1747 return NETDEV_TX_OK;
1748 }
1749
efx_ptp_get_mode(struct efx_nic * efx)1750 int efx_ptp_get_mode(struct efx_nic *efx)
1751 {
1752 return efx->ptp_data->mode;
1753 }
1754
efx_ptp_change_mode(struct efx_nic * efx,bool enable_wanted,unsigned int new_mode)1755 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1756 unsigned int new_mode)
1757 {
1758 if ((enable_wanted != efx->ptp_data->enabled) ||
1759 (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1760 int rc = 0;
1761
1762 if (enable_wanted) {
1763 /* Change of mode requires disable */
1764 if (efx->ptp_data->enabled &&
1765 (efx->ptp_data->mode != new_mode)) {
1766 efx->ptp_data->enabled = false;
1767 rc = efx_ptp_stop(efx);
1768 if (rc != 0)
1769 return rc;
1770 }
1771
1772 /* Set new operating mode and establish
1773 * baseline synchronisation, which must
1774 * succeed.
1775 */
1776 efx->ptp_data->mode = new_mode;
1777 if (netif_running(efx->net_dev))
1778 rc = efx_ptp_start(efx);
1779 if (rc == 0) {
1780 rc = efx_ptp_synchronize(efx,
1781 PTP_SYNC_ATTEMPTS * 2);
1782 if (rc != 0)
1783 efx_ptp_stop(efx);
1784 }
1785 } else {
1786 rc = efx_ptp_stop(efx);
1787 }
1788
1789 if (rc != 0)
1790 return rc;
1791
1792 efx->ptp_data->enabled = enable_wanted;
1793 }
1794
1795 return 0;
1796 }
1797
efx_ptp_ts_init(struct efx_nic * efx,struct hwtstamp_config * init)1798 static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1799 {
1800 int rc;
1801
1802 if (init->flags)
1803 return -EINVAL;
1804
1805 if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1806 (init->tx_type != HWTSTAMP_TX_ON))
1807 return -ERANGE;
1808
1809 rc = efx->type->ptp_set_ts_config(efx, init);
1810 if (rc)
1811 return rc;
1812
1813 efx->ptp_data->config = *init;
1814 return 0;
1815 }
1816
efx_ptp_get_ts_info(struct efx_nic * efx,struct ethtool_ts_info * ts_info)1817 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
1818 {
1819 struct efx_ptp_data *ptp = efx->ptp_data;
1820 struct efx_nic *primary = efx->primary;
1821
1822 ASSERT_RTNL();
1823
1824 if (!ptp)
1825 return;
1826
1827 ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1828 SOF_TIMESTAMPING_RX_HARDWARE |
1829 SOF_TIMESTAMPING_RAW_HARDWARE);
1830 /* Check licensed features. If we don't have the license for TX
1831 * timestamps, the NIC will not support them.
1832 */
1833 if (efx_ptp_use_mac_tx_timestamps(efx)) {
1834 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1835
1836 if (!(nic_data->licensed_features &
1837 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN)))
1838 ts_info->so_timestamping &=
1839 ~SOF_TIMESTAMPING_TX_HARDWARE;
1840 }
1841 if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
1842 ts_info->phc_index =
1843 ptp_clock_index(primary->ptp_data->phc_clock);
1844 ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1845 ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
1846 }
1847
efx_ptp_set_ts_config(struct efx_nic * efx,struct ifreq * ifr)1848 int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1849 {
1850 struct hwtstamp_config config;
1851 int rc;
1852
1853 /* Not a PTP enabled port */
1854 if (!efx->ptp_data)
1855 return -EOPNOTSUPP;
1856
1857 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1858 return -EFAULT;
1859
1860 rc = efx_ptp_ts_init(efx, &config);
1861 if (rc != 0)
1862 return rc;
1863
1864 return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1865 ? -EFAULT : 0;
1866 }
1867
efx_ptp_get_ts_config(struct efx_nic * efx,struct ifreq * ifr)1868 int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1869 {
1870 if (!efx->ptp_data)
1871 return -EOPNOTSUPP;
1872
1873 return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
1874 sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
1875 }
1876
ptp_event_failure(struct efx_nic * efx,int expected_frag_len)1877 static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1878 {
1879 struct efx_ptp_data *ptp = efx->ptp_data;
1880
1881 netif_err(efx, hw, efx->net_dev,
1882 "PTP unexpected event length: got %d expected %d\n",
1883 ptp->evt_frag_idx, expected_frag_len);
1884 ptp->reset_required = true;
1885 queue_work(ptp->workwq, &ptp->work);
1886 }
1887
1888 /* Process a completed receive event. Put it on the event queue and
1889 * start worker thread. This is required because event and their
1890 * correspoding packets may come in either order.
1891 */
ptp_event_rx(struct efx_nic * efx,struct efx_ptp_data * ptp)1892 static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1893 {
1894 struct efx_ptp_event_rx *evt = NULL;
1895
1896 if (WARN_ON_ONCE(ptp->rx_ts_inline))
1897 return;
1898
1899 if (ptp->evt_frag_idx != 3) {
1900 ptp_event_failure(efx, 3);
1901 return;
1902 }
1903
1904 spin_lock_bh(&ptp->evt_lock);
1905 if (!list_empty(&ptp->evt_free_list)) {
1906 evt = list_first_entry(&ptp->evt_free_list,
1907 struct efx_ptp_event_rx, link);
1908 list_del(&evt->link);
1909
1910 evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1911 evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1912 MCDI_EVENT_SRC) |
1913 (EFX_QWORD_FIELD(ptp->evt_frags[1],
1914 MCDI_EVENT_SRC) << 8) |
1915 (EFX_QWORD_FIELD(ptp->evt_frags[0],
1916 MCDI_EVENT_SRC) << 16));
1917 evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
1918 EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1919 EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
1920 ptp->ts_corrections.ptp_rx);
1921 evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1922 list_add_tail(&evt->link, &ptp->evt_list);
1923
1924 queue_work(ptp->workwq, &ptp->work);
1925 } else if (net_ratelimit()) {
1926 /* Log a rate-limited warning message. */
1927 netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
1928 }
1929 spin_unlock_bh(&ptp->evt_lock);
1930 }
1931
ptp_event_fault(struct efx_nic * efx,struct efx_ptp_data * ptp)1932 static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1933 {
1934 int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1935 if (ptp->evt_frag_idx != 1) {
1936 ptp_event_failure(efx, 1);
1937 return;
1938 }
1939
1940 netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1941 }
1942
ptp_event_pps(struct efx_nic * efx,struct efx_ptp_data * ptp)1943 static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1944 {
1945 if (ptp->nic_ts_enabled)
1946 queue_work(ptp->pps_workwq, &ptp->pps_work);
1947 }
1948
efx_ptp_event(struct efx_nic * efx,efx_qword_t * ev)1949 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1950 {
1951 struct efx_ptp_data *ptp = efx->ptp_data;
1952 int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1953
1954 if (!ptp) {
1955 if (!efx->ptp_warned) {
1956 netif_warn(efx, drv, efx->net_dev,
1957 "Received PTP event but PTP not set up\n");
1958 efx->ptp_warned = true;
1959 }
1960 return;
1961 }
1962
1963 if (!ptp->enabled)
1964 return;
1965
1966 if (ptp->evt_frag_idx == 0) {
1967 ptp->evt_code = code;
1968 } else if (ptp->evt_code != code) {
1969 netif_err(efx, hw, efx->net_dev,
1970 "PTP out of sequence event %d\n", code);
1971 ptp->evt_frag_idx = 0;
1972 }
1973
1974 ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1975 if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1976 /* Process resulting event */
1977 switch (code) {
1978 case MCDI_EVENT_CODE_PTP_RX:
1979 ptp_event_rx(efx, ptp);
1980 break;
1981 case MCDI_EVENT_CODE_PTP_FAULT:
1982 ptp_event_fault(efx, ptp);
1983 break;
1984 case MCDI_EVENT_CODE_PTP_PPS:
1985 ptp_event_pps(efx, ptp);
1986 break;
1987 default:
1988 netif_err(efx, hw, efx->net_dev,
1989 "PTP unknown event %d\n", code);
1990 break;
1991 }
1992 ptp->evt_frag_idx = 0;
1993 } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1994 netif_err(efx, hw, efx->net_dev,
1995 "PTP too many event fragments\n");
1996 ptp->evt_frag_idx = 0;
1997 }
1998 }
1999
efx_time_sync_event(struct efx_channel * channel,efx_qword_t * ev)2000 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
2001 {
2002 struct efx_nic *efx = channel->efx;
2003 struct efx_ptp_data *ptp = efx->ptp_data;
2004
2005 /* When extracting the sync timestamp minor value, we should discard
2006 * the least significant two bits. These are not required in order
2007 * to reconstruct full-range timestamps and they are optionally used
2008 * to report status depending on the options supplied when subscribing
2009 * for sync events.
2010 */
2011 channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
2012 channel->sync_timestamp_minor =
2013 (MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC)
2014 << ptp->nic_time.sync_event_minor_shift;
2015
2016 /* if sync events have been disabled then we want to silently ignore
2017 * this event, so throw away result.
2018 */
2019 (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
2020 SYNC_EVENTS_VALID);
2021 }
2022
efx_rx_buf_timestamp_minor(struct efx_nic * efx,const u8 * eh)2023 static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
2024 {
2025 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
2026 return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
2027 #else
2028 const u8 *data = eh + efx->rx_packet_ts_offset;
2029 return (u32)data[0] |
2030 (u32)data[1] << 8 |
2031 (u32)data[2] << 16 |
2032 (u32)data[3] << 24;
2033 #endif
2034 }
2035
__efx_rx_skb_attach_timestamp(struct efx_channel * channel,struct sk_buff * skb)2036 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
2037 struct sk_buff *skb)
2038 {
2039 struct efx_nic *efx = channel->efx;
2040 struct efx_ptp_data *ptp = efx->ptp_data;
2041 u32 pkt_timestamp_major, pkt_timestamp_minor;
2042 u32 diff, carry;
2043 struct skb_shared_hwtstamps *timestamps;
2044
2045 if (channel->sync_events_state != SYNC_EVENTS_VALID)
2046 return;
2047
2048 pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb));
2049
2050 /* get the difference between the packet and sync timestamps,
2051 * modulo one second
2052 */
2053 diff = pkt_timestamp_minor - channel->sync_timestamp_minor;
2054 if (pkt_timestamp_minor < channel->sync_timestamp_minor)
2055 diff += ptp->nic_time.minor_max;
2056
2057 /* do we roll over a second boundary and need to carry the one? */
2058 carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ?
2059 1 : 0;
2060
2061 if (diff <= ptp->nic_time.sync_event_diff_max) {
2062 /* packet is ahead of the sync event by a quarter of a second or
2063 * less (allowing for fuzz)
2064 */
2065 pkt_timestamp_major = channel->sync_timestamp_major + carry;
2066 } else if (diff >= ptp->nic_time.sync_event_diff_min) {
2067 /* packet is behind the sync event but within the fuzz factor.
2068 * This means the RX packet and sync event crossed as they were
2069 * placed on the event queue, which can sometimes happen.
2070 */
2071 pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
2072 } else {
2073 /* it's outside tolerance in both directions. this might be
2074 * indicative of us missing sync events for some reason, so
2075 * we'll call it an error rather than risk giving a bogus
2076 * timestamp.
2077 */
2078 netif_vdbg(efx, drv, efx->net_dev,
2079 "packet timestamp %x too far from sync event %x:%x\n",
2080 pkt_timestamp_minor, channel->sync_timestamp_major,
2081 channel->sync_timestamp_minor);
2082 return;
2083 }
2084
2085 /* attach the timestamps to the skb */
2086 timestamps = skb_hwtstamps(skb);
2087 timestamps->hwtstamp =
2088 ptp->nic_to_kernel_time(pkt_timestamp_major,
2089 pkt_timestamp_minor,
2090 ptp->ts_corrections.general_rx);
2091 }
2092
efx_phc_adjfreq(struct ptp_clock_info * ptp,s32 delta)2093 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
2094 {
2095 struct efx_ptp_data *ptp_data = container_of(ptp,
2096 struct efx_ptp_data,
2097 phc_clock_info);
2098 struct efx_nic *efx = ptp_data->efx;
2099 MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
2100 s64 adjustment_ns;
2101 int rc;
2102
2103 if (delta > MAX_PPB)
2104 delta = MAX_PPB;
2105 else if (delta < -MAX_PPB)
2106 delta = -MAX_PPB;
2107
2108 /* Convert ppb to fixed point ns taking care to round correctly. */
2109 adjustment_ns = ((s64)delta * PPB_SCALE_WORD +
2110 (1 << (ptp_data->adjfreq_ppb_shift - 1))) >>
2111 ptp_data->adjfreq_ppb_shift;
2112
2113 MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2114 MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
2115 MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
2116 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
2117 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
2118 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
2119 NULL, 0, NULL);
2120 if (rc != 0)
2121 return rc;
2122
2123 ptp_data->current_adjfreq = adjustment_ns;
2124 return 0;
2125 }
2126
efx_phc_adjtime(struct ptp_clock_info * ptp,s64 delta)2127 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
2128 {
2129 u32 nic_major, nic_minor;
2130 struct efx_ptp_data *ptp_data = container_of(ptp,
2131 struct efx_ptp_data,
2132 phc_clock_info);
2133 struct efx_nic *efx = ptp_data->efx;
2134 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
2135
2136 efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
2137
2138 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2139 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2140 MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
2141 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
2142 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
2143 return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2144 NULL, 0, NULL);
2145 }
2146
efx_phc_gettime(struct ptp_clock_info * ptp,struct timespec64 * ts)2147 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
2148 {
2149 struct efx_ptp_data *ptp_data = container_of(ptp,
2150 struct efx_ptp_data,
2151 phc_clock_info);
2152 struct efx_nic *efx = ptp_data->efx;
2153 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
2154 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
2155 int rc;
2156 ktime_t kt;
2157
2158 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
2159 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2160
2161 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2162 outbuf, sizeof(outbuf), NULL);
2163 if (rc != 0)
2164 return rc;
2165
2166 kt = ptp_data->nic_to_kernel_time(
2167 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
2168 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
2169 *ts = ktime_to_timespec64(kt);
2170 return 0;
2171 }
2172
efx_phc_settime(struct ptp_clock_info * ptp,const struct timespec64 * e_ts)2173 static int efx_phc_settime(struct ptp_clock_info *ptp,
2174 const struct timespec64 *e_ts)
2175 {
2176 /* Get the current NIC time, efx_phc_gettime.
2177 * Subtract from the desired time to get the offset
2178 * call efx_phc_adjtime with the offset
2179 */
2180 int rc;
2181 struct timespec64 time_now;
2182 struct timespec64 delta;
2183
2184 rc = efx_phc_gettime(ptp, &time_now);
2185 if (rc != 0)
2186 return rc;
2187
2188 delta = timespec64_sub(*e_ts, time_now);
2189
2190 rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
2191 if (rc != 0)
2192 return rc;
2193
2194 return 0;
2195 }
2196
efx_phc_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * request,int enable)2197 static int efx_phc_enable(struct ptp_clock_info *ptp,
2198 struct ptp_clock_request *request,
2199 int enable)
2200 {
2201 struct efx_ptp_data *ptp_data = container_of(ptp,
2202 struct efx_ptp_data,
2203 phc_clock_info);
2204 if (request->type != PTP_CLK_REQ_PPS)
2205 return -EOPNOTSUPP;
2206
2207 ptp_data->nic_ts_enabled = !!enable;
2208 return 0;
2209 }
2210
2211 static const struct efx_channel_type efx_ptp_channel_type = {
2212 .handle_no_channel = efx_ptp_handle_no_channel,
2213 .pre_probe = efx_ptp_probe_channel,
2214 .post_remove = efx_ptp_remove_channel,
2215 .get_name = efx_ptp_get_channel_name,
2216 .copy = efx_copy_channel,
2217 .receive_skb = efx_ptp_rx,
2218 .want_txqs = efx_ptp_want_txqs,
2219 .keep_eventq = false,
2220 };
2221
efx_ptp_defer_probe_with_channel(struct efx_nic * efx)2222 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
2223 {
2224 /* Check whether PTP is implemented on this NIC. The DISABLE
2225 * operation will succeed if and only if it is implemented.
2226 */
2227 if (efx_ptp_disable(efx) == 0)
2228 efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
2229 &efx_ptp_channel_type;
2230 }
2231
efx_ptp_start_datapath(struct efx_nic * efx)2232 void efx_ptp_start_datapath(struct efx_nic *efx)
2233 {
2234 if (efx_ptp_restart(efx))
2235 netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
2236 /* re-enable timestamping if it was previously enabled */
2237 if (efx->type->ptp_set_ts_sync_events)
2238 efx->type->ptp_set_ts_sync_events(efx, true, true);
2239 }
2240
efx_ptp_stop_datapath(struct efx_nic * efx)2241 void efx_ptp_stop_datapath(struct efx_nic *efx)
2242 {
2243 /* temporarily disable timestamping */
2244 if (efx->type->ptp_set_ts_sync_events)
2245 efx->type->ptp_set_ts_sync_events(efx, false, true);
2246 efx_ptp_stop(efx);
2247 }
2248