1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Nuvoton NPCM7xx I2C Controller driver
4 *
5 * Copyright (C) 2020 Nuvoton Technologies tali.perry@nuvoton.com
6 */
7 #include <linux/bitfield.h>
8 #include <linux/clk.h>
9 #include <linux/debugfs.h>
10 #include <linux/errno.h>
11 #include <linux/i2c.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/jiffies.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/regmap.h>
22
23 enum i2c_mode {
24 I2C_MASTER,
25 I2C_SLAVE,
26 };
27
28 /*
29 * External I2C Interface driver xfer indication values, which indicate status
30 * of the bus.
31 */
32 enum i2c_state_ind {
33 I2C_NO_STATUS_IND = 0,
34 I2C_SLAVE_RCV_IND,
35 I2C_SLAVE_XMIT_IND,
36 I2C_SLAVE_XMIT_MISSING_DATA_IND,
37 I2C_SLAVE_RESTART_IND,
38 I2C_SLAVE_DONE_IND,
39 I2C_MASTER_DONE_IND,
40 I2C_NACK_IND,
41 I2C_BUS_ERR_IND,
42 I2C_WAKE_UP_IND,
43 I2C_BLOCK_BYTES_ERR_IND,
44 I2C_SLAVE_RCV_MISSING_DATA_IND,
45 };
46
47 /*
48 * Operation type values (used to define the operation currently running)
49 * module is interrupt driven, on each interrupt the current operation is
50 * checked to see if the module is currently reading or writing.
51 */
52 enum i2c_oper {
53 I2C_NO_OPER = 0,
54 I2C_WRITE_OPER,
55 I2C_READ_OPER,
56 };
57
58 /* I2C Bank (module had 2 banks of registers) */
59 enum i2c_bank {
60 I2C_BANK_0 = 0,
61 I2C_BANK_1,
62 };
63
64 /* Internal I2C states values (for the I2C module state machine). */
65 enum i2c_state {
66 I2C_DISABLE = 0,
67 I2C_IDLE,
68 I2C_MASTER_START,
69 I2C_SLAVE_MATCH,
70 I2C_OPER_STARTED,
71 I2C_STOP_PENDING,
72 };
73
74 #if IS_ENABLED(CONFIG_I2C_SLAVE)
75 /* Module supports setting multiple own slave addresses */
76 enum i2c_addr {
77 I2C_SLAVE_ADDR1 = 0,
78 I2C_SLAVE_ADDR2,
79 I2C_SLAVE_ADDR3,
80 I2C_SLAVE_ADDR4,
81 I2C_SLAVE_ADDR5,
82 I2C_SLAVE_ADDR6,
83 I2C_SLAVE_ADDR7,
84 I2C_SLAVE_ADDR8,
85 I2C_SLAVE_ADDR9,
86 I2C_SLAVE_ADDR10,
87 I2C_GC_ADDR,
88 I2C_ARP_ADDR,
89 };
90 #endif
91
92 /* init register and default value required to enable module */
93 #define NPCM_I2CSEGCTL 0xE4
94 #define NPCM_I2CSEGCTL_INIT_VAL 0x0333F000
95
96 /* Common regs */
97 #define NPCM_I2CSDA 0x00
98 #define NPCM_I2CST 0x02
99 #define NPCM_I2CCST 0x04
100 #define NPCM_I2CCTL1 0x06
101 #define NPCM_I2CADDR1 0x08
102 #define NPCM_I2CCTL2 0x0A
103 #define NPCM_I2CADDR2 0x0C
104 #define NPCM_I2CCTL3 0x0E
105 #define NPCM_I2CCST2 0x18
106 #define NPCM_I2CCST3 0x19
107 #define I2C_VER 0x1F
108
109 /*BANK0 regs*/
110 #define NPCM_I2CADDR3 0x10
111 #define NPCM_I2CADDR7 0x11
112 #define NPCM_I2CADDR4 0x12
113 #define NPCM_I2CADDR8 0x13
114 #define NPCM_I2CADDR5 0x14
115 #define NPCM_I2CADDR9 0x15
116 #define NPCM_I2CADDR6 0x16
117 #define NPCM_I2CADDR10 0x17
118
119 #if IS_ENABLED(CONFIG_I2C_SLAVE)
120 /*
121 * npcm_i2caddr array:
122 * The module supports having multiple own slave addresses.
123 * Since the addr regs are sprinkled all over the address space,
124 * use this array to get the address or each register.
125 */
126 #define I2C_NUM_OWN_ADDR 2
127 #define I2C_NUM_OWN_ADDR_SUPPORTED 2
128
129 static const int npcm_i2caddr[I2C_NUM_OWN_ADDR] = {
130 NPCM_I2CADDR1, NPCM_I2CADDR2,
131 };
132 #endif
133
134 #define NPCM_I2CCTL4 0x1A
135 #define NPCM_I2CCTL5 0x1B
136 #define NPCM_I2CSCLLT 0x1C /* SCL Low Time */
137 #define NPCM_I2CFIF_CTL 0x1D /* FIFO Control */
138 #define NPCM_I2CSCLHT 0x1E /* SCL High Time */
139
140 /* BANK 1 regs */
141 #define NPCM_I2CFIF_CTS 0x10 /* Both FIFOs Control and Status */
142 #define NPCM_I2CTXF_CTL 0x12 /* Tx-FIFO Control */
143 #define NPCM_I2CT_OUT 0x14 /* Bus T.O. */
144 #define NPCM_I2CPEC 0x16 /* PEC Data */
145 #define NPCM_I2CTXF_STS 0x1A /* Tx-FIFO Status */
146 #define NPCM_I2CRXF_STS 0x1C /* Rx-FIFO Status */
147 #define NPCM_I2CRXF_CTL 0x1E /* Rx-FIFO Control */
148
149 /* NPCM_I2CST reg fields */
150 #define NPCM_I2CST_XMIT BIT(0)
151 #define NPCM_I2CST_MASTER BIT(1)
152 #define NPCM_I2CST_NMATCH BIT(2)
153 #define NPCM_I2CST_STASTR BIT(3)
154 #define NPCM_I2CST_NEGACK BIT(4)
155 #define NPCM_I2CST_BER BIT(5)
156 #define NPCM_I2CST_SDAST BIT(6)
157 #define NPCM_I2CST_SLVSTP BIT(7)
158
159 /* NPCM_I2CCST reg fields */
160 #define NPCM_I2CCST_BUSY BIT(0)
161 #define NPCM_I2CCST_BB BIT(1)
162 #define NPCM_I2CCST_MATCH BIT(2)
163 #define NPCM_I2CCST_GCMATCH BIT(3)
164 #define NPCM_I2CCST_TSDA BIT(4)
165 #define NPCM_I2CCST_TGSCL BIT(5)
166 #define NPCM_I2CCST_MATCHAF BIT(6)
167 #define NPCM_I2CCST_ARPMATCH BIT(7)
168
169 /* NPCM_I2CCTL1 reg fields */
170 #define NPCM_I2CCTL1_START BIT(0)
171 #define NPCM_I2CCTL1_STOP BIT(1)
172 #define NPCM_I2CCTL1_INTEN BIT(2)
173 #define NPCM_I2CCTL1_EOBINTE BIT(3)
174 #define NPCM_I2CCTL1_ACK BIT(4)
175 #define NPCM_I2CCTL1_GCMEN BIT(5)
176 #define NPCM_I2CCTL1_NMINTE BIT(6)
177 #define NPCM_I2CCTL1_STASTRE BIT(7)
178
179 /* RW1S fields (inside a RW reg): */
180 #define NPCM_I2CCTL1_RWS \
181 (NPCM_I2CCTL1_START | NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK)
182
183 /* npcm_i2caddr reg fields */
184 #define NPCM_I2CADDR_A GENMASK(6, 0)
185 #define NPCM_I2CADDR_SAEN BIT(7)
186
187 /* NPCM_I2CCTL2 reg fields */
188 #define I2CCTL2_ENABLE BIT(0)
189 #define I2CCTL2_SCLFRQ6_0 GENMASK(7, 1)
190
191 /* NPCM_I2CCTL3 reg fields */
192 #define I2CCTL3_SCLFRQ8_7 GENMASK(1, 0)
193 #define I2CCTL3_ARPMEN BIT(2)
194 #define I2CCTL3_IDL_START BIT(3)
195 #define I2CCTL3_400K_MODE BIT(4)
196 #define I2CCTL3_BNK_SEL BIT(5)
197 #define I2CCTL3_SDA_LVL BIT(6)
198 #define I2CCTL3_SCL_LVL BIT(7)
199
200 /* NPCM_I2CCST2 reg fields */
201 #define NPCM_I2CCST2_MATCHA1F BIT(0)
202 #define NPCM_I2CCST2_MATCHA2F BIT(1)
203 #define NPCM_I2CCST2_MATCHA3F BIT(2)
204 #define NPCM_I2CCST2_MATCHA4F BIT(3)
205 #define NPCM_I2CCST2_MATCHA5F BIT(4)
206 #define NPCM_I2CCST2_MATCHA6F BIT(5)
207 #define NPCM_I2CCST2_MATCHA7F BIT(5)
208 #define NPCM_I2CCST2_INTSTS BIT(7)
209
210 /* NPCM_I2CCST3 reg fields */
211 #define NPCM_I2CCST3_MATCHA8F BIT(0)
212 #define NPCM_I2CCST3_MATCHA9F BIT(1)
213 #define NPCM_I2CCST3_MATCHA10F BIT(2)
214 #define NPCM_I2CCST3_EO_BUSY BIT(7)
215
216 /* NPCM_I2CCTL4 reg fields */
217 #define I2CCTL4_HLDT GENMASK(5, 0)
218 #define I2CCTL4_LVL_WE BIT(7)
219
220 /* NPCM_I2CCTL5 reg fields */
221 #define I2CCTL5_DBNCT GENMASK(3, 0)
222
223 /* NPCM_I2CFIF_CTS reg fields */
224 #define NPCM_I2CFIF_CTS_RXF_TXE BIT(1)
225 #define NPCM_I2CFIF_CTS_RFTE_IE BIT(3)
226 #define NPCM_I2CFIF_CTS_CLR_FIFO BIT(6)
227 #define NPCM_I2CFIF_CTS_SLVRSTR BIT(7)
228
229 /* NPCM_I2CTXF_CTL reg fields */
230 #define NPCM_I2CTXF_CTL_TX_THR GENMASK(4, 0)
231 #define NPCM_I2CTXF_CTL_THR_TXIE BIT(6)
232
233 /* NPCM_I2CT_OUT reg fields */
234 #define NPCM_I2CT_OUT_TO_CKDIV GENMASK(5, 0)
235 #define NPCM_I2CT_OUT_T_OUTIE BIT(6)
236 #define NPCM_I2CT_OUT_T_OUTST BIT(7)
237
238 /* NPCM_I2CTXF_STS reg fields */
239 #define NPCM_I2CTXF_STS_TX_BYTES GENMASK(4, 0)
240 #define NPCM_I2CTXF_STS_TX_THST BIT(6)
241
242 /* NPCM_I2CRXF_STS reg fields */
243 #define NPCM_I2CRXF_STS_RX_BYTES GENMASK(4, 0)
244 #define NPCM_I2CRXF_STS_RX_THST BIT(6)
245
246 /* NPCM_I2CFIF_CTL reg fields */
247 #define NPCM_I2CFIF_CTL_FIFO_EN BIT(4)
248
249 /* NPCM_I2CRXF_CTL reg fields */
250 #define NPCM_I2CRXF_CTL_RX_THR GENMASK(4, 0)
251 #define NPCM_I2CRXF_CTL_LAST_PEC BIT(5)
252 #define NPCM_I2CRXF_CTL_THR_RXIE BIT(6)
253
254 #define I2C_HW_FIFO_SIZE 16
255
256 /* I2C_VER reg fields */
257 #define I2C_VER_VERSION GENMASK(6, 0)
258 #define I2C_VER_FIFO_EN BIT(7)
259
260 /* stall/stuck timeout in us */
261 #define DEFAULT_STALL_COUNT 25
262
263 /* SCLFRQ field position */
264 #define SCLFRQ_0_TO_6 GENMASK(6, 0)
265 #define SCLFRQ_7_TO_8 GENMASK(8, 7)
266
267 /* supported clk settings. values in Hz. */
268 #define I2C_FREQ_MIN_HZ 10000
269 #define I2C_FREQ_MAX_HZ I2C_MAX_FAST_MODE_PLUS_FREQ
270
271 /* Status of one I2C module */
272 struct npcm_i2c {
273 struct i2c_adapter adap;
274 struct device *dev;
275 unsigned char __iomem *reg;
276 spinlock_t lock; /* IRQ synchronization */
277 struct completion cmd_complete;
278 int cmd_err;
279 struct i2c_msg *msgs;
280 int msgs_num;
281 int num;
282 u32 apb_clk;
283 struct i2c_bus_recovery_info rinfo;
284 enum i2c_state state;
285 enum i2c_oper operation;
286 enum i2c_mode master_or_slave;
287 enum i2c_state_ind stop_ind;
288 u8 dest_addr;
289 u8 *rd_buf;
290 u16 rd_size;
291 u16 rd_ind;
292 u8 *wr_buf;
293 u16 wr_size;
294 u16 wr_ind;
295 bool fifo_use;
296 u16 PEC_mask; /* PEC bit mask per slave address */
297 bool PEC_use;
298 bool read_block_use;
299 unsigned long int_time_stamp;
300 unsigned long bus_freq; /* in Hz */
301 #if IS_ENABLED(CONFIG_I2C_SLAVE)
302 u8 own_slave_addr;
303 struct i2c_client *slave;
304 int slv_rd_size;
305 int slv_rd_ind;
306 int slv_wr_size;
307 int slv_wr_ind;
308 u8 slv_rd_buf[I2C_HW_FIFO_SIZE];
309 u8 slv_wr_buf[I2C_HW_FIFO_SIZE];
310 #endif
311 struct dentry *debugfs; /* debugfs device directory */
312 u64 ber_cnt;
313 u64 rec_succ_cnt;
314 u64 rec_fail_cnt;
315 u64 nack_cnt;
316 u64 timeout_cnt;
317 };
318
npcm_i2c_select_bank(struct npcm_i2c * bus,enum i2c_bank bank)319 static inline void npcm_i2c_select_bank(struct npcm_i2c *bus,
320 enum i2c_bank bank)
321 {
322 u8 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
323
324 if (bank == I2C_BANK_0)
325 i2cctl3 = i2cctl3 & ~I2CCTL3_BNK_SEL;
326 else
327 i2cctl3 = i2cctl3 | I2CCTL3_BNK_SEL;
328 iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
329 }
330
npcm_i2c_init_params(struct npcm_i2c * bus)331 static void npcm_i2c_init_params(struct npcm_i2c *bus)
332 {
333 bus->stop_ind = I2C_NO_STATUS_IND;
334 bus->rd_size = 0;
335 bus->wr_size = 0;
336 bus->rd_ind = 0;
337 bus->wr_ind = 0;
338 bus->read_block_use = false;
339 bus->int_time_stamp = 0;
340 bus->PEC_use = false;
341 bus->PEC_mask = 0;
342 #if IS_ENABLED(CONFIG_I2C_SLAVE)
343 if (bus->slave)
344 bus->master_or_slave = I2C_SLAVE;
345 #endif
346 }
347
npcm_i2c_wr_byte(struct npcm_i2c * bus,u8 data)348 static inline void npcm_i2c_wr_byte(struct npcm_i2c *bus, u8 data)
349 {
350 iowrite8(data, bus->reg + NPCM_I2CSDA);
351 }
352
npcm_i2c_rd_byte(struct npcm_i2c * bus)353 static inline u8 npcm_i2c_rd_byte(struct npcm_i2c *bus)
354 {
355 return ioread8(bus->reg + NPCM_I2CSDA);
356 }
357
npcm_i2c_get_SCL(struct i2c_adapter * _adap)358 static int npcm_i2c_get_SCL(struct i2c_adapter *_adap)
359 {
360 struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
361
362 return !!(I2CCTL3_SCL_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
363 }
364
npcm_i2c_get_SDA(struct i2c_adapter * _adap)365 static int npcm_i2c_get_SDA(struct i2c_adapter *_adap)
366 {
367 struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
368
369 return !!(I2CCTL3_SDA_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
370 }
371
npcm_i2c_get_index(struct npcm_i2c * bus)372 static inline u16 npcm_i2c_get_index(struct npcm_i2c *bus)
373 {
374 if (bus->operation == I2C_READ_OPER)
375 return bus->rd_ind;
376 if (bus->operation == I2C_WRITE_OPER)
377 return bus->wr_ind;
378 return 0;
379 }
380
381 /* quick protocol (just address) */
npcm_i2c_is_quick(struct npcm_i2c * bus)382 static inline bool npcm_i2c_is_quick(struct npcm_i2c *bus)
383 {
384 return bus->wr_size == 0 && bus->rd_size == 0;
385 }
386
npcm_i2c_disable(struct npcm_i2c * bus)387 static void npcm_i2c_disable(struct npcm_i2c *bus)
388 {
389 u8 i2cctl2;
390
391 #if IS_ENABLED(CONFIG_I2C_SLAVE)
392 int i;
393
394 /* Slave addresses removal */
395 for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++)
396 iowrite8(0, bus->reg + npcm_i2caddr[i]);
397
398 #endif
399 /* Disable module */
400 i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
401 i2cctl2 = i2cctl2 & ~I2CCTL2_ENABLE;
402 iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
403
404 bus->state = I2C_DISABLE;
405 }
406
npcm_i2c_enable(struct npcm_i2c * bus)407 static void npcm_i2c_enable(struct npcm_i2c *bus)
408 {
409 u8 i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
410
411 i2cctl2 = i2cctl2 | I2CCTL2_ENABLE;
412 iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
413 bus->state = I2C_IDLE;
414 }
415
416 /* enable\disable end of busy (EOB) interrupts */
npcm_i2c_eob_int(struct npcm_i2c * bus,bool enable)417 static inline void npcm_i2c_eob_int(struct npcm_i2c *bus, bool enable)
418 {
419 u8 val;
420
421 /* Clear EO_BUSY pending bit: */
422 val = ioread8(bus->reg + NPCM_I2CCST3);
423 val = val | NPCM_I2CCST3_EO_BUSY;
424 iowrite8(val, bus->reg + NPCM_I2CCST3);
425
426 val = ioread8(bus->reg + NPCM_I2CCTL1);
427 val &= ~NPCM_I2CCTL1_RWS;
428 if (enable)
429 val |= NPCM_I2CCTL1_EOBINTE;
430 else
431 val &= ~NPCM_I2CCTL1_EOBINTE;
432 iowrite8(val, bus->reg + NPCM_I2CCTL1);
433 }
434
npcm_i2c_tx_fifo_empty(struct npcm_i2c * bus)435 static inline bool npcm_i2c_tx_fifo_empty(struct npcm_i2c *bus)
436 {
437 u8 tx_fifo_sts;
438
439 tx_fifo_sts = ioread8(bus->reg + NPCM_I2CTXF_STS);
440 /* check if TX FIFO is not empty */
441 if ((tx_fifo_sts & NPCM_I2CTXF_STS_TX_BYTES) == 0)
442 return false;
443
444 /* check if TX FIFO status bit is set: */
445 return !!FIELD_GET(NPCM_I2CTXF_STS_TX_THST, tx_fifo_sts);
446 }
447
npcm_i2c_rx_fifo_full(struct npcm_i2c * bus)448 static inline bool npcm_i2c_rx_fifo_full(struct npcm_i2c *bus)
449 {
450 u8 rx_fifo_sts;
451
452 rx_fifo_sts = ioread8(bus->reg + NPCM_I2CRXF_STS);
453 /* check if RX FIFO is not empty: */
454 if ((rx_fifo_sts & NPCM_I2CRXF_STS_RX_BYTES) == 0)
455 return false;
456
457 /* check if rx fifo full status is set: */
458 return !!FIELD_GET(NPCM_I2CRXF_STS_RX_THST, rx_fifo_sts);
459 }
460
npcm_i2c_clear_fifo_int(struct npcm_i2c * bus)461 static inline void npcm_i2c_clear_fifo_int(struct npcm_i2c *bus)
462 {
463 u8 val;
464
465 val = ioread8(bus->reg + NPCM_I2CFIF_CTS);
466 val = (val & NPCM_I2CFIF_CTS_SLVRSTR) | NPCM_I2CFIF_CTS_RXF_TXE;
467 iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
468 }
469
npcm_i2c_clear_tx_fifo(struct npcm_i2c * bus)470 static inline void npcm_i2c_clear_tx_fifo(struct npcm_i2c *bus)
471 {
472 u8 val;
473
474 val = ioread8(bus->reg + NPCM_I2CTXF_STS);
475 val = val | NPCM_I2CTXF_STS_TX_THST;
476 iowrite8(val, bus->reg + NPCM_I2CTXF_STS);
477 }
478
npcm_i2c_clear_rx_fifo(struct npcm_i2c * bus)479 static inline void npcm_i2c_clear_rx_fifo(struct npcm_i2c *bus)
480 {
481 u8 val;
482
483 val = ioread8(bus->reg + NPCM_I2CRXF_STS);
484 val = val | NPCM_I2CRXF_STS_RX_THST;
485 iowrite8(val, bus->reg + NPCM_I2CRXF_STS);
486 }
487
npcm_i2c_int_enable(struct npcm_i2c * bus,bool enable)488 static void npcm_i2c_int_enable(struct npcm_i2c *bus, bool enable)
489 {
490 u8 val;
491
492 val = ioread8(bus->reg + NPCM_I2CCTL1);
493 val &= ~NPCM_I2CCTL1_RWS;
494 if (enable)
495 val |= NPCM_I2CCTL1_INTEN;
496 else
497 val &= ~NPCM_I2CCTL1_INTEN;
498 iowrite8(val, bus->reg + NPCM_I2CCTL1);
499 }
500
npcm_i2c_master_start(struct npcm_i2c * bus)501 static inline void npcm_i2c_master_start(struct npcm_i2c *bus)
502 {
503 u8 val;
504
505 val = ioread8(bus->reg + NPCM_I2CCTL1);
506 val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK);
507 val |= NPCM_I2CCTL1_START;
508 iowrite8(val, bus->reg + NPCM_I2CCTL1);
509 }
510
npcm_i2c_master_stop(struct npcm_i2c * bus)511 static inline void npcm_i2c_master_stop(struct npcm_i2c *bus)
512 {
513 u8 val;
514
515 /*
516 * override HW issue: I2C may fail to supply stop condition in Master
517 * Write operation.
518 * Need to delay at least 5 us from the last int, before issueing a stop
519 */
520 udelay(10); /* function called from interrupt, can't sleep */
521 val = ioread8(bus->reg + NPCM_I2CCTL1);
522 val &= ~(NPCM_I2CCTL1_START | NPCM_I2CCTL1_ACK);
523 val |= NPCM_I2CCTL1_STOP;
524 iowrite8(val, bus->reg + NPCM_I2CCTL1);
525
526 if (!bus->fifo_use)
527 return;
528
529 npcm_i2c_select_bank(bus, I2C_BANK_1);
530
531 if (bus->operation == I2C_READ_OPER)
532 npcm_i2c_clear_rx_fifo(bus);
533 else
534 npcm_i2c_clear_tx_fifo(bus);
535 npcm_i2c_clear_fifo_int(bus);
536 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
537 }
538
npcm_i2c_stall_after_start(struct npcm_i2c * bus,bool stall)539 static inline void npcm_i2c_stall_after_start(struct npcm_i2c *bus, bool stall)
540 {
541 u8 val;
542
543 val = ioread8(bus->reg + NPCM_I2CCTL1);
544 val &= ~NPCM_I2CCTL1_RWS;
545 if (stall)
546 val |= NPCM_I2CCTL1_STASTRE;
547 else
548 val &= ~NPCM_I2CCTL1_STASTRE;
549 iowrite8(val, bus->reg + NPCM_I2CCTL1);
550 }
551
npcm_i2c_nack(struct npcm_i2c * bus)552 static inline void npcm_i2c_nack(struct npcm_i2c *bus)
553 {
554 u8 val;
555
556 val = ioread8(bus->reg + NPCM_I2CCTL1);
557 val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_START);
558 val |= NPCM_I2CCTL1_ACK;
559 iowrite8(val, bus->reg + NPCM_I2CCTL1);
560 }
561
npcm_i2c_clear_master_status(struct npcm_i2c * bus)562 static inline void npcm_i2c_clear_master_status(struct npcm_i2c *bus)
563 {
564 u8 val;
565
566 /* Clear NEGACK, STASTR and BER bits */
567 val = NPCM_I2CST_BER | NPCM_I2CST_NEGACK | NPCM_I2CST_STASTR;
568 iowrite8(val, bus->reg + NPCM_I2CST);
569 }
570
571 #if IS_ENABLED(CONFIG_I2C_SLAVE)
npcm_i2c_slave_int_enable(struct npcm_i2c * bus,bool enable)572 static void npcm_i2c_slave_int_enable(struct npcm_i2c *bus, bool enable)
573 {
574 u8 i2cctl1;
575
576 /* enable interrupt on slave match: */
577 i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
578 i2cctl1 &= ~NPCM_I2CCTL1_RWS;
579 if (enable)
580 i2cctl1 |= NPCM_I2CCTL1_NMINTE;
581 else
582 i2cctl1 &= ~NPCM_I2CCTL1_NMINTE;
583 iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
584 }
585
npcm_i2c_slave_enable(struct npcm_i2c * bus,enum i2c_addr addr_type,u8 addr,bool enable)586 static int npcm_i2c_slave_enable(struct npcm_i2c *bus, enum i2c_addr addr_type,
587 u8 addr, bool enable)
588 {
589 u8 i2cctl1;
590 u8 i2cctl3;
591 u8 sa_reg;
592
593 sa_reg = (addr & 0x7F) | FIELD_PREP(NPCM_I2CADDR_SAEN, enable);
594 if (addr_type == I2C_GC_ADDR) {
595 i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
596 if (enable)
597 i2cctl1 |= NPCM_I2CCTL1_GCMEN;
598 else
599 i2cctl1 &= ~NPCM_I2CCTL1_GCMEN;
600 iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
601 return 0;
602 } else if (addr_type == I2C_ARP_ADDR) {
603 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
604 if (enable)
605 i2cctl3 |= I2CCTL3_ARPMEN;
606 else
607 i2cctl3 &= ~I2CCTL3_ARPMEN;
608 iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
609 return 0;
610 }
611 if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
612 dev_err(bus->dev, "try to enable more than 2 SA not supported\n");
613
614 if (addr_type >= I2C_ARP_ADDR)
615 return -EFAULT;
616
617 /* Set and enable the address */
618 iowrite8(sa_reg, bus->reg + npcm_i2caddr[addr_type]);
619 npcm_i2c_slave_int_enable(bus, enable);
620
621 return 0;
622 }
623 #endif
624
npcm_i2c_reset(struct npcm_i2c * bus)625 static void npcm_i2c_reset(struct npcm_i2c *bus)
626 {
627 /*
628 * Save I2CCTL1 relevant bits. It is being cleared when the module
629 * is disabled.
630 */
631 u8 i2cctl1;
632 #if IS_ENABLED(CONFIG_I2C_SLAVE)
633 u8 addr;
634 #endif
635
636 i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
637
638 npcm_i2c_disable(bus);
639 npcm_i2c_enable(bus);
640
641 /* Restore NPCM_I2CCTL1 Status */
642 i2cctl1 &= ~NPCM_I2CCTL1_RWS;
643 iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
644
645 /* Clear BB (BUS BUSY) bit */
646 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
647 iowrite8(0xFF, bus->reg + NPCM_I2CST);
648
649 /* Clear and disable EOB */
650 npcm_i2c_eob_int(bus, false);
651
652 /* Clear all fifo bits: */
653 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
654
655 #if IS_ENABLED(CONFIG_I2C_SLAVE)
656 if (bus->slave) {
657 addr = bus->slave->addr;
658 npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, addr, true);
659 }
660 #endif
661
662 /* clear status bits for spurious interrupts */
663 npcm_i2c_clear_master_status(bus);
664
665 bus->state = I2C_IDLE;
666 }
667
npcm_i2c_is_master(struct npcm_i2c * bus)668 static inline bool npcm_i2c_is_master(struct npcm_i2c *bus)
669 {
670 return !!FIELD_GET(NPCM_I2CST_MASTER, ioread8(bus->reg + NPCM_I2CST));
671 }
672
npcm_i2c_callback(struct npcm_i2c * bus,enum i2c_state_ind op_status,u16 info)673 static void npcm_i2c_callback(struct npcm_i2c *bus,
674 enum i2c_state_ind op_status, u16 info)
675 {
676 struct i2c_msg *msgs;
677 int msgs_num;
678 bool do_complete = false;
679
680 msgs = bus->msgs;
681 msgs_num = bus->msgs_num;
682 /*
683 * check that transaction was not timed-out, and msgs still
684 * holds a valid value.
685 */
686 if (!msgs)
687 return;
688
689 if (completion_done(&bus->cmd_complete))
690 return;
691
692 switch (op_status) {
693 case I2C_MASTER_DONE_IND:
694 bus->cmd_err = bus->msgs_num;
695 fallthrough;
696 case I2C_BLOCK_BYTES_ERR_IND:
697 /* Master tx finished and all transmit bytes were sent */
698 if (bus->msgs) {
699 if (msgs[0].flags & I2C_M_RD)
700 msgs[0].len = info;
701 else if (msgs_num == 2 &&
702 msgs[1].flags & I2C_M_RD)
703 msgs[1].len = info;
704 }
705 do_complete = true;
706 break;
707 case I2C_NACK_IND:
708 /* MASTER transmit got a NACK before tx all bytes */
709 bus->cmd_err = -ENXIO;
710 do_complete = true;
711 break;
712 case I2C_BUS_ERR_IND:
713 /* Bus error */
714 bus->cmd_err = -EAGAIN;
715 do_complete = true;
716 break;
717 case I2C_WAKE_UP_IND:
718 /* I2C wake up */
719 break;
720 default:
721 break;
722 }
723
724 bus->operation = I2C_NO_OPER;
725 #if IS_ENABLED(CONFIG_I2C_SLAVE)
726 if (bus->slave)
727 bus->master_or_slave = I2C_SLAVE;
728 #endif
729 if (do_complete)
730 complete(&bus->cmd_complete);
731 }
732
npcm_i2c_fifo_usage(struct npcm_i2c * bus)733 static u8 npcm_i2c_fifo_usage(struct npcm_i2c *bus)
734 {
735 if (bus->operation == I2C_WRITE_OPER)
736 return FIELD_GET(NPCM_I2CTXF_STS_TX_BYTES,
737 ioread8(bus->reg + NPCM_I2CTXF_STS));
738 if (bus->operation == I2C_READ_OPER)
739 return FIELD_GET(NPCM_I2CRXF_STS_RX_BYTES,
740 ioread8(bus->reg + NPCM_I2CRXF_STS));
741 return 0;
742 }
743
npcm_i2c_write_to_fifo_master(struct npcm_i2c * bus,u16 max_bytes)744 static void npcm_i2c_write_to_fifo_master(struct npcm_i2c *bus, u16 max_bytes)
745 {
746 u8 size_free_fifo;
747
748 /*
749 * Fill the FIFO, while the FIFO is not full and there are more bytes
750 * to write
751 */
752 size_free_fifo = I2C_HW_FIFO_SIZE - npcm_i2c_fifo_usage(bus);
753 while (max_bytes-- && size_free_fifo) {
754 if (bus->wr_ind < bus->wr_size)
755 npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
756 else
757 npcm_i2c_wr_byte(bus, 0xFF);
758 size_free_fifo = I2C_HW_FIFO_SIZE - npcm_i2c_fifo_usage(bus);
759 }
760 }
761
762 /*
763 * npcm_i2c_set_fifo:
764 * configure the FIFO before using it. If nread is -1 RX FIFO will not be
765 * configured. same for nwrite
766 */
npcm_i2c_set_fifo(struct npcm_i2c * bus,int nread,int nwrite)767 static void npcm_i2c_set_fifo(struct npcm_i2c *bus, int nread, int nwrite)
768 {
769 u8 rxf_ctl = 0;
770
771 if (!bus->fifo_use)
772 return;
773 npcm_i2c_select_bank(bus, I2C_BANK_1);
774 npcm_i2c_clear_tx_fifo(bus);
775 npcm_i2c_clear_rx_fifo(bus);
776
777 /* configure RX FIFO */
778 if (nread > 0) {
779 rxf_ctl = min_t(int, nread, I2C_HW_FIFO_SIZE);
780
781 /* set LAST bit. if LAST is set next FIFO packet is nacked */
782 if (nread <= I2C_HW_FIFO_SIZE)
783 rxf_ctl |= NPCM_I2CRXF_CTL_LAST_PEC;
784
785 /*
786 * if we are about to read the first byte in blk rd mode,
787 * don't NACK it. If slave returns zero size HW can't NACK
788 * it immidiattly, it will read extra byte and then NACK.
789 */
790 if (bus->rd_ind == 0 && bus->read_block_use) {
791 /* set fifo to read one byte, no last: */
792 rxf_ctl = 1;
793 }
794
795 /* set fifo size: */
796 iowrite8(rxf_ctl, bus->reg + NPCM_I2CRXF_CTL);
797 }
798
799 /* configure TX FIFO */
800 if (nwrite > 0) {
801 if (nwrite > I2C_HW_FIFO_SIZE)
802 /* data to send is more then FIFO size. */
803 iowrite8(I2C_HW_FIFO_SIZE, bus->reg + NPCM_I2CTXF_CTL);
804 else
805 iowrite8(nwrite, bus->reg + NPCM_I2CTXF_CTL);
806
807 npcm_i2c_clear_tx_fifo(bus);
808 }
809 }
810
npcm_i2c_read_fifo(struct npcm_i2c * bus,u8 bytes_in_fifo)811 static void npcm_i2c_read_fifo(struct npcm_i2c *bus, u8 bytes_in_fifo)
812 {
813 u8 data;
814
815 while (bytes_in_fifo--) {
816 data = npcm_i2c_rd_byte(bus);
817 if (bus->rd_ind < bus->rd_size)
818 bus->rd_buf[bus->rd_ind++] = data;
819 }
820 }
821
npcm_i2c_master_abort(struct npcm_i2c * bus)822 static void npcm_i2c_master_abort(struct npcm_i2c *bus)
823 {
824 /* Only current master is allowed to issue a stop condition */
825 if (!npcm_i2c_is_master(bus))
826 return;
827
828 npcm_i2c_eob_int(bus, true);
829 npcm_i2c_master_stop(bus);
830 npcm_i2c_clear_master_status(bus);
831 }
832
833 #if IS_ENABLED(CONFIG_I2C_SLAVE)
npcm_i2c_get_slave_addr(struct npcm_i2c * bus,enum i2c_addr addr_type)834 static u8 npcm_i2c_get_slave_addr(struct npcm_i2c *bus, enum i2c_addr addr_type)
835 {
836 u8 slave_add;
837
838 if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
839 dev_err(bus->dev, "get slave: try to use more than 2 SA not supported\n");
840
841 slave_add = ioread8(bus->reg + npcm_i2caddr[(int)addr_type]);
842
843 return slave_add;
844 }
845
npcm_i2c_remove_slave_addr(struct npcm_i2c * bus,u8 slave_add)846 static int npcm_i2c_remove_slave_addr(struct npcm_i2c *bus, u8 slave_add)
847 {
848 int i;
849
850 /* Set the enable bit */
851 slave_add |= 0x80;
852
853 for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++) {
854 if (ioread8(bus->reg + npcm_i2caddr[i]) == slave_add)
855 iowrite8(0, bus->reg + npcm_i2caddr[i]);
856 }
857
858 return 0;
859 }
860
npcm_i2c_write_fifo_slave(struct npcm_i2c * bus,u16 max_bytes)861 static void npcm_i2c_write_fifo_slave(struct npcm_i2c *bus, u16 max_bytes)
862 {
863 /*
864 * Fill the FIFO, while the FIFO is not full and there are more bytes
865 * to write
866 */
867 npcm_i2c_clear_fifo_int(bus);
868 npcm_i2c_clear_tx_fifo(bus);
869 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
870 while (max_bytes-- && I2C_HW_FIFO_SIZE != npcm_i2c_fifo_usage(bus)) {
871 if (bus->slv_wr_size <= 0)
872 break;
873 bus->slv_wr_ind = bus->slv_wr_ind % I2C_HW_FIFO_SIZE;
874 npcm_i2c_wr_byte(bus, bus->slv_wr_buf[bus->slv_wr_ind]);
875 bus->slv_wr_ind++;
876 bus->slv_wr_ind = bus->slv_wr_ind % I2C_HW_FIFO_SIZE;
877 bus->slv_wr_size--;
878 }
879 }
880
npcm_i2c_read_fifo_slave(struct npcm_i2c * bus,u8 bytes_in_fifo)881 static void npcm_i2c_read_fifo_slave(struct npcm_i2c *bus, u8 bytes_in_fifo)
882 {
883 u8 data;
884
885 if (!bus->slave)
886 return;
887
888 while (bytes_in_fifo--) {
889 data = npcm_i2c_rd_byte(bus);
890
891 bus->slv_rd_ind = bus->slv_rd_ind % I2C_HW_FIFO_SIZE;
892 bus->slv_rd_buf[bus->slv_rd_ind] = data;
893 bus->slv_rd_ind++;
894
895 /* 1st byte is length in block protocol: */
896 if (bus->slv_rd_ind == 1 && bus->read_block_use)
897 bus->slv_rd_size = data + bus->PEC_use + 1;
898 }
899 }
900
npcm_i2c_slave_get_wr_buf(struct npcm_i2c * bus)901 static int npcm_i2c_slave_get_wr_buf(struct npcm_i2c *bus)
902 {
903 int i;
904 u8 value;
905 int ind;
906 int ret = bus->slv_wr_ind;
907
908 /* fill a cyclic buffer */
909 for (i = 0; i < I2C_HW_FIFO_SIZE; i++) {
910 if (bus->slv_wr_size >= I2C_HW_FIFO_SIZE)
911 break;
912 if (bus->state == I2C_SLAVE_MATCH) {
913 i2c_slave_event(bus->slave, I2C_SLAVE_READ_REQUESTED, &value);
914 bus->state = I2C_OPER_STARTED;
915 } else {
916 i2c_slave_event(bus->slave, I2C_SLAVE_READ_PROCESSED, &value);
917 }
918 ind = (bus->slv_wr_ind + bus->slv_wr_size) % I2C_HW_FIFO_SIZE;
919 bus->slv_wr_buf[ind] = value;
920 bus->slv_wr_size++;
921 }
922 return I2C_HW_FIFO_SIZE - ret;
923 }
924
npcm_i2c_slave_send_rd_buf(struct npcm_i2c * bus)925 static void npcm_i2c_slave_send_rd_buf(struct npcm_i2c *bus)
926 {
927 int i;
928
929 for (i = 0; i < bus->slv_rd_ind; i++)
930 i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_RECEIVED,
931 &bus->slv_rd_buf[i]);
932 /*
933 * once we send bytes up, need to reset the counter of the wr buf
934 * got data from master (new offset in device), ignore wr fifo:
935 */
936 if (bus->slv_rd_ind) {
937 bus->slv_wr_size = 0;
938 bus->slv_wr_ind = 0;
939 }
940
941 bus->slv_rd_ind = 0;
942 bus->slv_rd_size = bus->adap.quirks->max_read_len;
943
944 npcm_i2c_clear_fifo_int(bus);
945 npcm_i2c_clear_rx_fifo(bus);
946 }
947
npcm_i2c_slave_receive(struct npcm_i2c * bus,u16 nread,u8 * read_data)948 static void npcm_i2c_slave_receive(struct npcm_i2c *bus, u16 nread,
949 u8 *read_data)
950 {
951 bus->state = I2C_OPER_STARTED;
952 bus->operation = I2C_READ_OPER;
953 bus->slv_rd_size = nread;
954 bus->slv_rd_ind = 0;
955
956 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
957 iowrite8(I2C_HW_FIFO_SIZE, bus->reg + NPCM_I2CRXF_CTL);
958 npcm_i2c_clear_tx_fifo(bus);
959 npcm_i2c_clear_rx_fifo(bus);
960 }
961
npcm_i2c_slave_xmit(struct npcm_i2c * bus,u16 nwrite,u8 * write_data)962 static void npcm_i2c_slave_xmit(struct npcm_i2c *bus, u16 nwrite,
963 u8 *write_data)
964 {
965 if (nwrite == 0)
966 return;
967
968 bus->operation = I2C_WRITE_OPER;
969
970 /* get the next buffer */
971 npcm_i2c_slave_get_wr_buf(bus);
972 npcm_i2c_write_fifo_slave(bus, nwrite);
973 }
974
975 /*
976 * npcm_i2c_slave_wr_buf_sync:
977 * currently slave IF only supports single byte operations.
978 * in order to utilyze the npcm HW FIFO, the driver will ask for 16 bytes
979 * at a time, pack them in buffer, and then transmit them all together
980 * to the FIFO and onward to the bus.
981 * NACK on read will be once reached to bus->adap->quirks->max_read_len.
982 * sending a NACK wherever the backend requests for it is not supported.
983 * the next two functions allow reading to local buffer before writing it all
984 * to the HW FIFO.
985 */
npcm_i2c_slave_wr_buf_sync(struct npcm_i2c * bus)986 static void npcm_i2c_slave_wr_buf_sync(struct npcm_i2c *bus)
987 {
988 int left_in_fifo;
989
990 left_in_fifo = FIELD_GET(NPCM_I2CTXF_STS_TX_BYTES,
991 ioread8(bus->reg + NPCM_I2CTXF_STS));
992
993 /* fifo already full: */
994 if (left_in_fifo >= I2C_HW_FIFO_SIZE ||
995 bus->slv_wr_size >= I2C_HW_FIFO_SIZE)
996 return;
997
998 /* update the wr fifo index back to the untransmitted bytes: */
999 bus->slv_wr_ind = bus->slv_wr_ind - left_in_fifo;
1000 bus->slv_wr_size = bus->slv_wr_size + left_in_fifo;
1001
1002 if (bus->slv_wr_ind < 0)
1003 bus->slv_wr_ind += I2C_HW_FIFO_SIZE;
1004 }
1005
npcm_i2c_slave_rd_wr(struct npcm_i2c * bus)1006 static void npcm_i2c_slave_rd_wr(struct npcm_i2c *bus)
1007 {
1008 if (NPCM_I2CST_XMIT & ioread8(bus->reg + NPCM_I2CST)) {
1009 /*
1010 * Slave got an address match with direction bit 1 so it should
1011 * transmit data. Write till the master will NACK
1012 */
1013 bus->operation = I2C_WRITE_OPER;
1014 npcm_i2c_slave_xmit(bus, bus->adap.quirks->max_write_len,
1015 bus->slv_wr_buf);
1016 } else {
1017 /*
1018 * Slave got an address match with direction bit 0 so it should
1019 * receive data.
1020 * this module does not support saying no to bytes.
1021 * it will always ACK.
1022 */
1023 bus->operation = I2C_READ_OPER;
1024 npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1025 bus->stop_ind = I2C_SLAVE_RCV_IND;
1026 npcm_i2c_slave_send_rd_buf(bus);
1027 npcm_i2c_slave_receive(bus, bus->adap.quirks->max_read_len,
1028 bus->slv_rd_buf);
1029 }
1030 }
1031
npcm_i2c_int_slave_handler(struct npcm_i2c * bus)1032 static irqreturn_t npcm_i2c_int_slave_handler(struct npcm_i2c *bus)
1033 {
1034 u8 val;
1035 irqreturn_t ret = IRQ_NONE;
1036 u8 i2cst = ioread8(bus->reg + NPCM_I2CST);
1037
1038 /* Slave: A NACK has occurred */
1039 if (NPCM_I2CST_NEGACK & i2cst) {
1040 bus->stop_ind = I2C_NACK_IND;
1041 npcm_i2c_slave_wr_buf_sync(bus);
1042 if (bus->fifo_use)
1043 /* clear the FIFO */
1044 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1045 bus->reg + NPCM_I2CFIF_CTS);
1046
1047 /* In slave write, NACK is OK, otherwise it is a problem */
1048 bus->stop_ind = I2C_NO_STATUS_IND;
1049 bus->operation = I2C_NO_OPER;
1050 bus->own_slave_addr = 0xFF;
1051
1052 /*
1053 * Slave has to wait for STOP to decide this is the end
1054 * of the transaction. tx is not yet considered as done
1055 */
1056 iowrite8(NPCM_I2CST_NEGACK, bus->reg + NPCM_I2CST);
1057
1058 ret = IRQ_HANDLED;
1059 }
1060
1061 /* Slave mode: a Bus Error (BER) has been identified */
1062 if (NPCM_I2CST_BER & i2cst) {
1063 /*
1064 * Check whether bus arbitration or Start or Stop during data
1065 * xfer bus arbitration problem should not result in recovery
1066 */
1067 bus->stop_ind = I2C_BUS_ERR_IND;
1068
1069 /* wait for bus busy before clear fifo */
1070 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1071
1072 bus->state = I2C_IDLE;
1073
1074 /*
1075 * in BER case we might get 2 interrupts: one for slave one for
1076 * master ( for a channel which is master\slave switching)
1077 */
1078 if (completion_done(&bus->cmd_complete) == false) {
1079 bus->cmd_err = -EIO;
1080 complete(&bus->cmd_complete);
1081 }
1082 bus->own_slave_addr = 0xFF;
1083 iowrite8(NPCM_I2CST_BER, bus->reg + NPCM_I2CST);
1084 ret = IRQ_HANDLED;
1085 }
1086
1087 /* A Slave Stop Condition has been identified */
1088 if (NPCM_I2CST_SLVSTP & i2cst) {
1089 u8 bytes_in_fifo = npcm_i2c_fifo_usage(bus);
1090
1091 bus->stop_ind = I2C_SLAVE_DONE_IND;
1092
1093 if (bus->operation == I2C_READ_OPER)
1094 npcm_i2c_read_fifo_slave(bus, bytes_in_fifo);
1095
1096 /* if the buffer is empty nothing will be sent */
1097 npcm_i2c_slave_send_rd_buf(bus);
1098
1099 /* Slave done transmitting or receiving */
1100 bus->stop_ind = I2C_NO_STATUS_IND;
1101
1102 /*
1103 * Note, just because we got here, it doesn't mean we through
1104 * away the wr buffer.
1105 * we keep it until the next received offset.
1106 */
1107 bus->operation = I2C_NO_OPER;
1108 bus->own_slave_addr = 0xFF;
1109 i2c_slave_event(bus->slave, I2C_SLAVE_STOP, 0);
1110 iowrite8(NPCM_I2CST_SLVSTP, bus->reg + NPCM_I2CST);
1111 if (bus->fifo_use) {
1112 npcm_i2c_clear_fifo_int(bus);
1113 npcm_i2c_clear_rx_fifo(bus);
1114 npcm_i2c_clear_tx_fifo(bus);
1115
1116 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1117 bus->reg + NPCM_I2CFIF_CTS);
1118 }
1119 bus->state = I2C_IDLE;
1120 ret = IRQ_HANDLED;
1121 }
1122
1123 /* restart condition occurred and Rx-FIFO was not empty */
1124 if (bus->fifo_use && FIELD_GET(NPCM_I2CFIF_CTS_SLVRSTR,
1125 ioread8(bus->reg + NPCM_I2CFIF_CTS))) {
1126 bus->stop_ind = I2C_SLAVE_RESTART_IND;
1127 bus->master_or_slave = I2C_SLAVE;
1128 if (bus->operation == I2C_READ_OPER)
1129 npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1130 bus->operation = I2C_WRITE_OPER;
1131 iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1132 val = NPCM_I2CFIF_CTS_CLR_FIFO | NPCM_I2CFIF_CTS_SLVRSTR |
1133 NPCM_I2CFIF_CTS_RXF_TXE;
1134 iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
1135 npcm_i2c_slave_rd_wr(bus);
1136 ret = IRQ_HANDLED;
1137 }
1138
1139 /* A Slave Address Match has been identified */
1140 if (NPCM_I2CST_NMATCH & i2cst) {
1141 u8 info = 0;
1142
1143 /* Address match automatically implies slave mode */
1144 bus->master_or_slave = I2C_SLAVE;
1145 npcm_i2c_clear_fifo_int(bus);
1146 npcm_i2c_clear_rx_fifo(bus);
1147 npcm_i2c_clear_tx_fifo(bus);
1148 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1149 iowrite8(I2C_HW_FIFO_SIZE, bus->reg + NPCM_I2CRXF_CTL);
1150 if (NPCM_I2CST_XMIT & i2cst) {
1151 bus->operation = I2C_WRITE_OPER;
1152 } else {
1153 i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_REQUESTED,
1154 &info);
1155 bus->operation = I2C_READ_OPER;
1156 }
1157 if (bus->own_slave_addr == 0xFF) {
1158 /* Check which type of address match */
1159 val = ioread8(bus->reg + NPCM_I2CCST);
1160 if (NPCM_I2CCST_MATCH & val) {
1161 u16 addr;
1162 enum i2c_addr eaddr;
1163 u8 i2ccst2;
1164 u8 i2ccst3;
1165
1166 i2ccst3 = ioread8(bus->reg + NPCM_I2CCST3);
1167 i2ccst2 = ioread8(bus->reg + NPCM_I2CCST2);
1168
1169 /*
1170 * the i2c module can response to 10 own SA.
1171 * check which one was addressed by the master.
1172 * repond to the first one.
1173 */
1174 addr = ((i2ccst3 & 0x07) << 7) |
1175 (i2ccst2 & 0x7F);
1176 info = ffs(addr);
1177 eaddr = (enum i2c_addr)info;
1178 addr = npcm_i2c_get_slave_addr(bus, eaddr);
1179 addr &= 0x7F;
1180 bus->own_slave_addr = addr;
1181 if (bus->PEC_mask & BIT(info))
1182 bus->PEC_use = true;
1183 else
1184 bus->PEC_use = false;
1185 } else {
1186 if (NPCM_I2CCST_GCMATCH & val)
1187 bus->own_slave_addr = 0;
1188 if (NPCM_I2CCST_ARPMATCH & val)
1189 bus->own_slave_addr = 0x61;
1190 }
1191 } else {
1192 /*
1193 * Slave match can happen in two options:
1194 * 1. Start, SA, read (slave read without further ado)
1195 * 2. Start, SA, read, data, restart, SA, read, ...
1196 * (slave read in fragmented mode)
1197 * 3. Start, SA, write, data, restart, SA, read, ..
1198 * (regular write-read mode)
1199 */
1200 if ((bus->state == I2C_OPER_STARTED &&
1201 bus->operation == I2C_READ_OPER &&
1202 bus->stop_ind == I2C_SLAVE_XMIT_IND) ||
1203 bus->stop_ind == I2C_SLAVE_RCV_IND) {
1204 /* slave tx after slave rx w/o STOP */
1205 bus->stop_ind = I2C_SLAVE_RESTART_IND;
1206 }
1207 }
1208
1209 if (NPCM_I2CST_XMIT & i2cst)
1210 bus->stop_ind = I2C_SLAVE_XMIT_IND;
1211 else
1212 bus->stop_ind = I2C_SLAVE_RCV_IND;
1213 bus->state = I2C_SLAVE_MATCH;
1214 npcm_i2c_slave_rd_wr(bus);
1215 iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1216 ret = IRQ_HANDLED;
1217 }
1218
1219 /* Slave SDA status is set - tx or rx */
1220 if ((NPCM_I2CST_SDAST & i2cst) ||
1221 (bus->fifo_use &&
1222 (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1223 npcm_i2c_slave_rd_wr(bus);
1224 iowrite8(NPCM_I2CST_SDAST, bus->reg + NPCM_I2CST);
1225 ret = IRQ_HANDLED;
1226 } /* SDAST */
1227
1228 /*
1229 * if irq is not one of the above, make sure EOB is disabled and all
1230 * status bits are cleared.
1231 */
1232 if (ret == IRQ_NONE) {
1233 npcm_i2c_eob_int(bus, false);
1234 npcm_i2c_clear_master_status(bus);
1235 }
1236
1237 return IRQ_HANDLED;
1238 }
1239
npcm_i2c_reg_slave(struct i2c_client * client)1240 static int npcm_i2c_reg_slave(struct i2c_client *client)
1241 {
1242 unsigned long lock_flags;
1243 struct npcm_i2c *bus = i2c_get_adapdata(client->adapter);
1244
1245 bus->slave = client;
1246
1247 if (!bus->slave)
1248 return -EINVAL;
1249
1250 if (client->flags & I2C_CLIENT_TEN)
1251 return -EAFNOSUPPORT;
1252
1253 spin_lock_irqsave(&bus->lock, lock_flags);
1254
1255 npcm_i2c_init_params(bus);
1256 bus->slv_rd_size = 0;
1257 bus->slv_wr_size = 0;
1258 bus->slv_rd_ind = 0;
1259 bus->slv_wr_ind = 0;
1260 if (client->flags & I2C_CLIENT_PEC)
1261 bus->PEC_use = true;
1262
1263 dev_info(bus->dev, "i2c%d register slave SA=0x%x, PEC=%d\n", bus->num,
1264 client->addr, bus->PEC_use);
1265
1266 npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, client->addr, true);
1267 npcm_i2c_clear_fifo_int(bus);
1268 npcm_i2c_clear_rx_fifo(bus);
1269 npcm_i2c_clear_tx_fifo(bus);
1270 npcm_i2c_slave_int_enable(bus, true);
1271
1272 spin_unlock_irqrestore(&bus->lock, lock_flags);
1273 return 0;
1274 }
1275
npcm_i2c_unreg_slave(struct i2c_client * client)1276 static int npcm_i2c_unreg_slave(struct i2c_client *client)
1277 {
1278 struct npcm_i2c *bus = client->adapter->algo_data;
1279 unsigned long lock_flags;
1280
1281 spin_lock_irqsave(&bus->lock, lock_flags);
1282 if (!bus->slave) {
1283 spin_unlock_irqrestore(&bus->lock, lock_flags);
1284 return -EINVAL;
1285 }
1286 npcm_i2c_slave_int_enable(bus, false);
1287 npcm_i2c_remove_slave_addr(bus, client->addr);
1288 bus->slave = NULL;
1289 spin_unlock_irqrestore(&bus->lock, lock_flags);
1290 return 0;
1291 }
1292 #endif /* CONFIG_I2C_SLAVE */
1293
npcm_i2c_master_fifo_read(struct npcm_i2c * bus)1294 static void npcm_i2c_master_fifo_read(struct npcm_i2c *bus)
1295 {
1296 int rcount;
1297 int fifo_bytes;
1298 enum i2c_state_ind ind = I2C_MASTER_DONE_IND;
1299
1300 fifo_bytes = npcm_i2c_fifo_usage(bus);
1301 rcount = bus->rd_size - bus->rd_ind;
1302
1303 /*
1304 * In order not to change the RX_TRH during transaction (we found that
1305 * this might be problematic if it takes too much time to read the FIFO)
1306 * we read the data in the following way. If the number of bytes to
1307 * read == FIFO Size + C (where C < FIFO Size)then first read C bytes
1308 * and in the next int we read rest of the data.
1309 */
1310 if (rcount < (2 * I2C_HW_FIFO_SIZE) && rcount > I2C_HW_FIFO_SIZE)
1311 fifo_bytes = rcount - I2C_HW_FIFO_SIZE;
1312
1313 if (rcount <= fifo_bytes) {
1314 /* last bytes are about to be read - end of tx */
1315 bus->state = I2C_STOP_PENDING;
1316 bus->stop_ind = ind;
1317 npcm_i2c_eob_int(bus, true);
1318 /* Stop should be set before reading last byte. */
1319 npcm_i2c_master_stop(bus);
1320 npcm_i2c_read_fifo(bus, fifo_bytes);
1321 } else {
1322 npcm_i2c_read_fifo(bus, fifo_bytes);
1323 rcount = bus->rd_size - bus->rd_ind;
1324 npcm_i2c_set_fifo(bus, rcount, -1);
1325 }
1326 }
1327
npcm_i2c_irq_master_handler_write(struct npcm_i2c * bus)1328 static void npcm_i2c_irq_master_handler_write(struct npcm_i2c *bus)
1329 {
1330 u16 wcount;
1331
1332 if (bus->fifo_use)
1333 npcm_i2c_clear_tx_fifo(bus); /* clear the TX fifo status bit */
1334
1335 /* Master write operation - last byte handling */
1336 if (bus->wr_ind == bus->wr_size) {
1337 if (bus->fifo_use && npcm_i2c_fifo_usage(bus) > 0)
1338 /*
1339 * No more bytes to send (to add to the FIFO),
1340 * however the FIFO is not empty yet. It is
1341 * still in the middle of tx. Currently there's nothing
1342 * to do except for waiting to the end of the tx
1343 * We will get an int when the FIFO will get empty.
1344 */
1345 return;
1346
1347 if (bus->rd_size == 0) {
1348 /* all bytes have been written, in wr only operation */
1349 npcm_i2c_eob_int(bus, true);
1350 bus->state = I2C_STOP_PENDING;
1351 bus->stop_ind = I2C_MASTER_DONE_IND;
1352 npcm_i2c_master_stop(bus);
1353 /* Clear SDA Status bit (by writing dummy byte) */
1354 npcm_i2c_wr_byte(bus, 0xFF);
1355
1356 } else {
1357 /* last write-byte written on previous int - restart */
1358 npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1359 /* Generate repeated start upon next write to SDA */
1360 npcm_i2c_master_start(bus);
1361
1362 /*
1363 * Receiving one byte only - stall after successful
1364 * completion of send address byte. If we NACK here, and
1365 * slave doesn't ACK the address, we might
1366 * unintentionally NACK the next multi-byte read.
1367 */
1368 if (bus->rd_size == 1)
1369 npcm_i2c_stall_after_start(bus, true);
1370
1371 /* Next int will occur on read */
1372 bus->operation = I2C_READ_OPER;
1373 /* send the slave address in read direction */
1374 npcm_i2c_wr_byte(bus, bus->dest_addr | 0x1);
1375 }
1376 } else {
1377 /* write next byte not last byte and not slave address */
1378 if (!bus->fifo_use || bus->wr_size == 1) {
1379 npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
1380 } else {
1381 wcount = bus->wr_size - bus->wr_ind;
1382 npcm_i2c_set_fifo(bus, -1, wcount);
1383 if (wcount)
1384 npcm_i2c_write_to_fifo_master(bus, wcount);
1385 }
1386 }
1387 }
1388
npcm_i2c_irq_master_handler_read(struct npcm_i2c * bus)1389 static void npcm_i2c_irq_master_handler_read(struct npcm_i2c *bus)
1390 {
1391 u16 block_extra_bytes_size;
1392 u8 data;
1393
1394 /* added bytes to the packet: */
1395 block_extra_bytes_size = bus->read_block_use + bus->PEC_use;
1396
1397 /*
1398 * Perform master read, distinguishing between last byte and the rest of
1399 * the bytes. The last byte should be read when the clock is stopped
1400 */
1401 if (bus->rd_ind == 0) { /* first byte handling: */
1402 if (bus->read_block_use) {
1403 /* first byte in block protocol is the size: */
1404 data = npcm_i2c_rd_byte(bus);
1405 data = clamp_val(data, 1, I2C_SMBUS_BLOCK_MAX);
1406 bus->rd_size = data + block_extra_bytes_size;
1407 bus->rd_buf[bus->rd_ind++] = data;
1408
1409 /* clear RX FIFO interrupt status: */
1410 if (bus->fifo_use) {
1411 data = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1412 data = data | NPCM_I2CFIF_CTS_RXF_TXE;
1413 iowrite8(data, bus->reg + NPCM_I2CFIF_CTS);
1414 }
1415
1416 npcm_i2c_set_fifo(bus, bus->rd_size - 1, -1);
1417 npcm_i2c_stall_after_start(bus, false);
1418 } else {
1419 npcm_i2c_clear_tx_fifo(bus);
1420 npcm_i2c_master_fifo_read(bus);
1421 }
1422 } else {
1423 if (bus->rd_size == block_extra_bytes_size &&
1424 bus->read_block_use) {
1425 bus->state = I2C_STOP_PENDING;
1426 bus->stop_ind = I2C_BLOCK_BYTES_ERR_IND;
1427 bus->cmd_err = -EIO;
1428 npcm_i2c_eob_int(bus, true);
1429 npcm_i2c_master_stop(bus);
1430 npcm_i2c_read_fifo(bus, npcm_i2c_fifo_usage(bus));
1431 } else {
1432 npcm_i2c_master_fifo_read(bus);
1433 }
1434 }
1435 }
1436
npcm_i2c_irq_handle_nmatch(struct npcm_i2c * bus)1437 static void npcm_i2c_irq_handle_nmatch(struct npcm_i2c *bus)
1438 {
1439 iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1440 npcm_i2c_nack(bus);
1441 bus->stop_ind = I2C_BUS_ERR_IND;
1442 npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1443 }
1444
1445 /* A NACK has occurred */
npcm_i2c_irq_handle_nack(struct npcm_i2c * bus)1446 static void npcm_i2c_irq_handle_nack(struct npcm_i2c *bus)
1447 {
1448 u8 val;
1449
1450 if (bus->nack_cnt < ULLONG_MAX)
1451 bus->nack_cnt++;
1452
1453 if (bus->fifo_use) {
1454 /*
1455 * if there are still untransmitted bytes in TX FIFO
1456 * reduce them from wr_ind
1457 */
1458 if (bus->operation == I2C_WRITE_OPER)
1459 bus->wr_ind -= npcm_i2c_fifo_usage(bus);
1460
1461 /* clear the FIFO */
1462 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1463 }
1464
1465 /* In master write operation, got unexpected NACK */
1466 bus->stop_ind = I2C_NACK_IND;
1467 /* Only current master is allowed to issue Stop Condition */
1468 if (npcm_i2c_is_master(bus)) {
1469 /* stopping in the middle */
1470 npcm_i2c_eob_int(bus, false);
1471 npcm_i2c_master_stop(bus);
1472
1473 /* Clear SDA Status bit (by reading dummy byte) */
1474 npcm_i2c_rd_byte(bus);
1475
1476 /*
1477 * The bus is released from stall only after the SW clears
1478 * NEGACK bit. Then a Stop condition is sent.
1479 */
1480 npcm_i2c_clear_master_status(bus);
1481 readx_poll_timeout_atomic(ioread8, bus->reg + NPCM_I2CCST, val,
1482 !(val & NPCM_I2CCST_BUSY), 10, 200);
1483 /* verify no status bits are still set after bus is released */
1484 npcm_i2c_clear_master_status(bus);
1485 }
1486 bus->state = I2C_IDLE;
1487
1488 /*
1489 * In Master mode, NACK should be cleared only after STOP.
1490 * In such case, the bus is released from stall only after the
1491 * software clears NACK bit. Then a Stop condition is sent.
1492 */
1493 npcm_i2c_callback(bus, bus->stop_ind, bus->wr_ind);
1494 }
1495
1496 /* Master mode: a Bus Error has been identified */
npcm_i2c_irq_handle_ber(struct npcm_i2c * bus)1497 static void npcm_i2c_irq_handle_ber(struct npcm_i2c *bus)
1498 {
1499 if (bus->ber_cnt < ULLONG_MAX)
1500 bus->ber_cnt++;
1501 bus->stop_ind = I2C_BUS_ERR_IND;
1502 if (npcm_i2c_is_master(bus)) {
1503 npcm_i2c_master_abort(bus);
1504 } else {
1505 npcm_i2c_clear_master_status(bus);
1506
1507 /* Clear BB (BUS BUSY) bit */
1508 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1509
1510 bus->cmd_err = -EAGAIN;
1511 npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1512 }
1513 bus->state = I2C_IDLE;
1514 }
1515
1516 /* EOB: a master End Of Busy (meaning STOP completed) */
npcm_i2c_irq_handle_eob(struct npcm_i2c * bus)1517 static void npcm_i2c_irq_handle_eob(struct npcm_i2c *bus)
1518 {
1519 npcm_i2c_eob_int(bus, false);
1520 bus->state = I2C_IDLE;
1521 npcm_i2c_callback(bus, bus->stop_ind, bus->rd_ind);
1522 }
1523
1524 /* Address sent and requested stall occurred (Master mode) */
npcm_i2c_irq_handle_stall_after_start(struct npcm_i2c * bus)1525 static void npcm_i2c_irq_handle_stall_after_start(struct npcm_i2c *bus)
1526 {
1527 if (npcm_i2c_is_quick(bus)) {
1528 bus->state = I2C_STOP_PENDING;
1529 bus->stop_ind = I2C_MASTER_DONE_IND;
1530 npcm_i2c_eob_int(bus, true);
1531 npcm_i2c_master_stop(bus);
1532 } else if ((bus->rd_size == 1) && !bus->read_block_use) {
1533 /*
1534 * Receiving one byte only - set NACK after ensuring
1535 * slave ACKed the address byte.
1536 */
1537 npcm_i2c_nack(bus);
1538 }
1539
1540 /* Reset stall-after-address-byte */
1541 npcm_i2c_stall_after_start(bus, false);
1542
1543 /* Clear stall only after setting STOP */
1544 iowrite8(NPCM_I2CST_STASTR, bus->reg + NPCM_I2CST);
1545 }
1546
1547 /* SDA status is set - TX or RX, master */
npcm_i2c_irq_handle_sda(struct npcm_i2c * bus,u8 i2cst)1548 static void npcm_i2c_irq_handle_sda(struct npcm_i2c *bus, u8 i2cst)
1549 {
1550 u8 fif_cts;
1551
1552 if (!npcm_i2c_is_master(bus))
1553 return;
1554
1555 if (bus->state == I2C_IDLE) {
1556 bus->stop_ind = I2C_WAKE_UP_IND;
1557
1558 if (npcm_i2c_is_quick(bus) || bus->read_block_use)
1559 /*
1560 * Need to stall after successful
1561 * completion of sending address byte
1562 */
1563 npcm_i2c_stall_after_start(bus, true);
1564 else
1565 npcm_i2c_stall_after_start(bus, false);
1566
1567 /*
1568 * Receiving one byte only - stall after successful completion
1569 * of sending address byte If we NACK here, and slave doesn't
1570 * ACK the address, we might unintentionally NACK the next
1571 * multi-byte read
1572 */
1573 if (bus->wr_size == 0 && bus->rd_size == 1)
1574 npcm_i2c_stall_after_start(bus, true);
1575
1576 /* Initiate I2C master tx */
1577
1578 /* select bank 1 for FIFO regs */
1579 npcm_i2c_select_bank(bus, I2C_BANK_1);
1580
1581 fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1582 fif_cts = fif_cts & ~NPCM_I2CFIF_CTS_SLVRSTR;
1583
1584 /* clear FIFO and relevant status bits. */
1585 fif_cts = fif_cts | NPCM_I2CFIF_CTS_CLR_FIFO;
1586 iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1587
1588 /* re-enable */
1589 fif_cts = fif_cts | NPCM_I2CFIF_CTS_RXF_TXE;
1590 iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1591
1592 /*
1593 * Configure the FIFO threshold:
1594 * according to the needed # of bytes to read.
1595 * Note: due to HW limitation can't config the rx fifo before it
1596 * got and ACK on the restart. LAST bit will not be reset unless
1597 * RX completed. It will stay set on the next tx.
1598 */
1599 if (bus->wr_size)
1600 npcm_i2c_set_fifo(bus, -1, bus->wr_size);
1601 else
1602 npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1603
1604 bus->state = I2C_OPER_STARTED;
1605
1606 if (npcm_i2c_is_quick(bus) || bus->wr_size)
1607 npcm_i2c_wr_byte(bus, bus->dest_addr);
1608 else
1609 npcm_i2c_wr_byte(bus, bus->dest_addr | BIT(0));
1610 /* SDA interrupt, after start\restart */
1611 } else {
1612 if (NPCM_I2CST_XMIT & i2cst) {
1613 bus->operation = I2C_WRITE_OPER;
1614 npcm_i2c_irq_master_handler_write(bus);
1615 } else {
1616 bus->operation = I2C_READ_OPER;
1617 npcm_i2c_irq_master_handler_read(bus);
1618 }
1619 }
1620 }
1621
npcm_i2c_int_master_handler(struct npcm_i2c * bus)1622 static int npcm_i2c_int_master_handler(struct npcm_i2c *bus)
1623 {
1624 u8 i2cst;
1625 int ret = -EIO;
1626
1627 i2cst = ioread8(bus->reg + NPCM_I2CST);
1628
1629 if (FIELD_GET(NPCM_I2CST_NMATCH, i2cst)) {
1630 npcm_i2c_irq_handle_nmatch(bus);
1631 return 0;
1632 }
1633 /* A NACK has occurred */
1634 if (FIELD_GET(NPCM_I2CST_NEGACK, i2cst)) {
1635 npcm_i2c_irq_handle_nack(bus);
1636 return 0;
1637 }
1638
1639 /* Master mode: a Bus Error has been identified */
1640 if (FIELD_GET(NPCM_I2CST_BER, i2cst)) {
1641 npcm_i2c_irq_handle_ber(bus);
1642 return 0;
1643 }
1644
1645 /* EOB: a master End Of Busy (meaning STOP completed) */
1646 if ((FIELD_GET(NPCM_I2CCTL1_EOBINTE,
1647 ioread8(bus->reg + NPCM_I2CCTL1)) == 1) &&
1648 (FIELD_GET(NPCM_I2CCST3_EO_BUSY,
1649 ioread8(bus->reg + NPCM_I2CCST3)))) {
1650 npcm_i2c_irq_handle_eob(bus);
1651 return 0;
1652 }
1653
1654 /* Address sent and requested stall occurred (Master mode) */
1655 if (FIELD_GET(NPCM_I2CST_STASTR, i2cst)) {
1656 npcm_i2c_irq_handle_stall_after_start(bus);
1657 ret = 0;
1658 }
1659
1660 /* SDA status is set - TX or RX, master */
1661 if (FIELD_GET(NPCM_I2CST_SDAST, i2cst) ||
1662 (bus->fifo_use &&
1663 (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1664 npcm_i2c_irq_handle_sda(bus, i2cst);
1665 ret = 0;
1666 }
1667
1668 return ret;
1669 }
1670
1671 /* recovery using TGCLK functionality of the module */
npcm_i2c_recovery_tgclk(struct i2c_adapter * _adap)1672 static int npcm_i2c_recovery_tgclk(struct i2c_adapter *_adap)
1673 {
1674 u8 val;
1675 u8 fif_cts;
1676 bool done = false;
1677 int status = -ENOTRECOVERABLE;
1678 struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1679 /* Allow 3 bytes (27 toggles) to be read from the slave: */
1680 int iter = 27;
1681
1682 if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1)) {
1683 dev_dbg(bus->dev, "bus%d-0x%x recovery skipped, bus not stuck",
1684 bus->num, bus->dest_addr);
1685 npcm_i2c_reset(bus);
1686 return 0;
1687 }
1688
1689 npcm_i2c_int_enable(bus, false);
1690 npcm_i2c_disable(bus);
1691 npcm_i2c_enable(bus);
1692 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1693 npcm_i2c_clear_tx_fifo(bus);
1694 npcm_i2c_clear_rx_fifo(bus);
1695 iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1696 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1697 npcm_i2c_stall_after_start(bus, false);
1698
1699 /* select bank 1 for FIFO regs */
1700 npcm_i2c_select_bank(bus, I2C_BANK_1);
1701
1702 /* clear FIFO and relevant status bits. */
1703 fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1704 fif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
1705 fif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
1706 iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1707 npcm_i2c_set_fifo(bus, -1, 0);
1708
1709 /* Repeat the following sequence until SDA is released */
1710 do {
1711 /* Issue a single SCL toggle */
1712 iowrite8(NPCM_I2CCST_TGSCL, bus->reg + NPCM_I2CCST);
1713 usleep_range(20, 30);
1714 /* If SDA line is inactive (high), stop */
1715 if (npcm_i2c_get_SDA(_adap)) {
1716 done = true;
1717 status = 0;
1718 }
1719 } while (!done && iter--);
1720
1721 /* If SDA line is released: send start-addr-stop, to re-sync. */
1722 if (npcm_i2c_get_SDA(_adap)) {
1723 /* Send an address byte in write direction: */
1724 npcm_i2c_wr_byte(bus, bus->dest_addr);
1725 npcm_i2c_master_start(bus);
1726 /* Wait until START condition is sent */
1727 status = readx_poll_timeout(npcm_i2c_get_SCL, _adap, val, !val,
1728 20, 200);
1729 /* If START condition was sent */
1730 if (npcm_i2c_is_master(bus) > 0) {
1731 usleep_range(20, 30);
1732 npcm_i2c_master_stop(bus);
1733 usleep_range(200, 500);
1734 }
1735 }
1736 npcm_i2c_reset(bus);
1737 npcm_i2c_int_enable(bus, true);
1738
1739 if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1))
1740 status = 0;
1741 else
1742 status = -ENOTRECOVERABLE;
1743 if (status) {
1744 if (bus->rec_fail_cnt < ULLONG_MAX)
1745 bus->rec_fail_cnt++;
1746 } else {
1747 if (bus->rec_succ_cnt < ULLONG_MAX)
1748 bus->rec_succ_cnt++;
1749 }
1750 return status;
1751 }
1752
1753 /* recovery using bit banging functionality of the module */
npcm_i2c_recovery_init(struct i2c_adapter * _adap)1754 static void npcm_i2c_recovery_init(struct i2c_adapter *_adap)
1755 {
1756 struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1757 struct i2c_bus_recovery_info *rinfo = &bus->rinfo;
1758
1759 rinfo->recover_bus = npcm_i2c_recovery_tgclk;
1760
1761 /*
1762 * npcm i2c HW allows direct reading of SCL and SDA.
1763 * However, it does not support setting SCL and SDA directly.
1764 * The recovery function can togle SCL when SDA is low (but not set)
1765 * Getter functions used internally, and can be used externaly.
1766 */
1767 rinfo->get_scl = npcm_i2c_get_SCL;
1768 rinfo->get_sda = npcm_i2c_get_SDA;
1769 _adap->bus_recovery_info = rinfo;
1770 }
1771
1772 /* SCLFRQ min/max field values */
1773 #define SCLFRQ_MIN 10
1774 #define SCLFRQ_MAX 511
1775 #define clk_coef(freq, mul) DIV_ROUND_UP((freq) * (mul), 1000000)
1776
1777 /*
1778 * npcm_i2c_init_clk: init HW timing parameters.
1779 * NPCM7XX i2c module timing parameters are depenent on module core clk (APB)
1780 * and bus frequency.
1781 * 100kHz bus requires tSCL = 4 * SCLFRQ * tCLK. LT and HT are simetric.
1782 * 400kHz bus requires assymetric HT and LT. A different equation is recomended
1783 * by the HW designer, given core clock range (equations in comments below).
1784 *
1785 */
npcm_i2c_init_clk(struct npcm_i2c * bus,u32 bus_freq_hz)1786 static int npcm_i2c_init_clk(struct npcm_i2c *bus, u32 bus_freq_hz)
1787 {
1788 u32 k1 = 0;
1789 u32 k2 = 0;
1790 u8 dbnct = 0;
1791 u32 sclfrq = 0;
1792 u8 hldt = 7;
1793 u8 fast_mode = 0;
1794 u32 src_clk_khz;
1795 u32 bus_freq_khz;
1796
1797 src_clk_khz = bus->apb_clk / 1000;
1798 bus_freq_khz = bus_freq_hz / 1000;
1799 bus->bus_freq = bus_freq_hz;
1800
1801 /* 100KHz and below: */
1802 if (bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ) {
1803 sclfrq = src_clk_khz / (bus_freq_khz * 4);
1804
1805 if (sclfrq < SCLFRQ_MIN || sclfrq > SCLFRQ_MAX)
1806 return -EDOM;
1807
1808 if (src_clk_khz >= 40000)
1809 hldt = 17;
1810 else if (src_clk_khz >= 12500)
1811 hldt = 15;
1812 else
1813 hldt = 7;
1814 }
1815
1816 /* 400KHz: */
1817 else if (bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ) {
1818 sclfrq = 0;
1819 fast_mode = I2CCTL3_400K_MODE;
1820
1821 if (src_clk_khz < 7500)
1822 /* 400KHZ cannot be supported for core clock < 7.5MHz */
1823 return -EDOM;
1824
1825 else if (src_clk_khz >= 50000) {
1826 k1 = 80;
1827 k2 = 48;
1828 hldt = 12;
1829 dbnct = 7;
1830 }
1831
1832 /* Master or Slave with frequency > 25MHz */
1833 else if (src_clk_khz > 25000) {
1834 hldt = clk_coef(src_clk_khz, 300) + 7;
1835 k1 = clk_coef(src_clk_khz, 1600);
1836 k2 = clk_coef(src_clk_khz, 900);
1837 }
1838 }
1839
1840 /* 1MHz: */
1841 else if (bus_freq_hz <= I2C_MAX_FAST_MODE_PLUS_FREQ) {
1842 sclfrq = 0;
1843 fast_mode = I2CCTL3_400K_MODE;
1844
1845 /* 1MHZ cannot be supported for core clock < 24 MHz */
1846 if (src_clk_khz < 24000)
1847 return -EDOM;
1848
1849 k1 = clk_coef(src_clk_khz, 620);
1850 k2 = clk_coef(src_clk_khz, 380);
1851
1852 /* Core clk > 40 MHz */
1853 if (src_clk_khz > 40000) {
1854 /*
1855 * Set HLDT:
1856 * SDA hold time: (HLDT-7) * T(CLK) >= 120
1857 * HLDT = 120/T(CLK) + 7 = 120 * FREQ(CLK) + 7
1858 */
1859 hldt = clk_coef(src_clk_khz, 120) + 7;
1860 } else {
1861 hldt = 7;
1862 dbnct = 2;
1863 }
1864 }
1865
1866 /* Frequency larger than 1 MHz is not supported */
1867 else
1868 return -EINVAL;
1869
1870 if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1871 k1 = round_up(k1, 2);
1872 k2 = round_up(k2 + 1, 2);
1873 if (k1 < SCLFRQ_MIN || k1 > SCLFRQ_MAX ||
1874 k2 < SCLFRQ_MIN || k2 > SCLFRQ_MAX)
1875 return -EDOM;
1876 }
1877
1878 /* write sclfrq value. bits [6:0] are in I2CCTL2 reg */
1879 iowrite8(FIELD_PREP(I2CCTL2_SCLFRQ6_0, sclfrq & 0x7F),
1880 bus->reg + NPCM_I2CCTL2);
1881
1882 /* bits [8:7] are in I2CCTL3 reg */
1883 iowrite8(fast_mode | FIELD_PREP(I2CCTL3_SCLFRQ8_7, (sclfrq >> 7) & 0x3),
1884 bus->reg + NPCM_I2CCTL3);
1885
1886 /* Select Bank 0 to access NPCM_I2CCTL4/NPCM_I2CCTL5 */
1887 npcm_i2c_select_bank(bus, I2C_BANK_0);
1888
1889 if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1890 /*
1891 * Set SCL Low/High Time:
1892 * k1 = 2 * SCLLT7-0 -> Low Time = k1 / 2
1893 * k2 = 2 * SCLLT7-0 -> High Time = k2 / 2
1894 */
1895 iowrite8(k1 / 2, bus->reg + NPCM_I2CSCLLT);
1896 iowrite8(k2 / 2, bus->reg + NPCM_I2CSCLHT);
1897
1898 iowrite8(dbnct, bus->reg + NPCM_I2CCTL5);
1899 }
1900
1901 iowrite8(hldt, bus->reg + NPCM_I2CCTL4);
1902
1903 /* Return to Bank 1, and stay there by default: */
1904 npcm_i2c_select_bank(bus, I2C_BANK_1);
1905
1906 return 0;
1907 }
1908
npcm_i2c_init_module(struct npcm_i2c * bus,enum i2c_mode mode,u32 bus_freq_hz)1909 static int npcm_i2c_init_module(struct npcm_i2c *bus, enum i2c_mode mode,
1910 u32 bus_freq_hz)
1911 {
1912 u8 val;
1913 int ret;
1914
1915 /* Check whether module already enabled or frequency is out of bounds */
1916 if ((bus->state != I2C_DISABLE && bus->state != I2C_IDLE) ||
1917 bus_freq_hz < I2C_FREQ_MIN_HZ || bus_freq_hz > I2C_FREQ_MAX_HZ)
1918 return -EINVAL;
1919
1920 npcm_i2c_int_enable(bus, false);
1921 npcm_i2c_disable(bus);
1922
1923 /* Configure FIFO mode : */
1924 if (FIELD_GET(I2C_VER_FIFO_EN, ioread8(bus->reg + I2C_VER))) {
1925 bus->fifo_use = true;
1926 npcm_i2c_select_bank(bus, I2C_BANK_0);
1927 val = ioread8(bus->reg + NPCM_I2CFIF_CTL);
1928 val |= NPCM_I2CFIF_CTL_FIFO_EN;
1929 iowrite8(val, bus->reg + NPCM_I2CFIF_CTL);
1930 npcm_i2c_select_bank(bus, I2C_BANK_1);
1931 } else {
1932 bus->fifo_use = false;
1933 }
1934
1935 /* Configure I2C module clock frequency */
1936 ret = npcm_i2c_init_clk(bus, bus_freq_hz);
1937 if (ret) {
1938 dev_err(bus->dev, "npcm_i2c_init_clk failed\n");
1939 return ret;
1940 }
1941
1942 /* Enable module (before configuring CTL1) */
1943 npcm_i2c_enable(bus);
1944 bus->state = I2C_IDLE;
1945 val = ioread8(bus->reg + NPCM_I2CCTL1);
1946 val = (val | NPCM_I2CCTL1_NMINTE) & ~NPCM_I2CCTL1_RWS;
1947 iowrite8(val, bus->reg + NPCM_I2CCTL1);
1948
1949 npcm_i2c_reset(bus);
1950
1951 /* check HW is OK: SDA and SCL should be high at this point. */
1952 if ((npcm_i2c_get_SDA(&bus->adap) == 0) || (npcm_i2c_get_SCL(&bus->adap) == 0)) {
1953 dev_err(bus->dev, "I2C%d init fail: lines are low\n", bus->num);
1954 dev_err(bus->dev, "SDA=%d SCL=%d\n", npcm_i2c_get_SDA(&bus->adap),
1955 npcm_i2c_get_SCL(&bus->adap));
1956 return -ENXIO;
1957 }
1958
1959 npcm_i2c_int_enable(bus, true);
1960 return 0;
1961 }
1962
__npcm_i2c_init(struct npcm_i2c * bus,struct platform_device * pdev)1963 static int __npcm_i2c_init(struct npcm_i2c *bus, struct platform_device *pdev)
1964 {
1965 u32 clk_freq_hz;
1966 int ret;
1967
1968 /* Initialize the internal data structures */
1969 bus->state = I2C_DISABLE;
1970 bus->master_or_slave = I2C_SLAVE;
1971 bus->int_time_stamp = 0;
1972 #if IS_ENABLED(CONFIG_I2C_SLAVE)
1973 bus->slave = NULL;
1974 #endif
1975
1976 ret = device_property_read_u32(&pdev->dev, "clock-frequency",
1977 &clk_freq_hz);
1978 if (ret) {
1979 dev_info(&pdev->dev, "Could not read clock-frequency property");
1980 clk_freq_hz = I2C_MAX_STANDARD_MODE_FREQ;
1981 }
1982
1983 ret = npcm_i2c_init_module(bus, I2C_MASTER, clk_freq_hz);
1984 if (ret) {
1985 dev_err(&pdev->dev, "npcm_i2c_init_module failed\n");
1986 return ret;
1987 }
1988
1989 return 0;
1990 }
1991
npcm_i2c_bus_irq(int irq,void * dev_id)1992 static irqreturn_t npcm_i2c_bus_irq(int irq, void *dev_id)
1993 {
1994 struct npcm_i2c *bus = dev_id;
1995
1996 if (npcm_i2c_is_master(bus))
1997 bus->master_or_slave = I2C_MASTER;
1998
1999 if (bus->master_or_slave == I2C_MASTER) {
2000 bus->int_time_stamp = jiffies;
2001 if (!npcm_i2c_int_master_handler(bus))
2002 return IRQ_HANDLED;
2003 }
2004 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2005 if (bus->slave) {
2006 bus->master_or_slave = I2C_SLAVE;
2007 if (npcm_i2c_int_slave_handler(bus))
2008 return IRQ_HANDLED;
2009 }
2010 #endif
2011 /* clear status bits for spurious interrupts */
2012 npcm_i2c_clear_master_status(bus);
2013
2014 return IRQ_HANDLED;
2015 }
2016
npcm_i2c_master_start_xmit(struct npcm_i2c * bus,u8 slave_addr,u16 nwrite,u16 nread,u8 * write_data,u8 * read_data,bool use_PEC,bool use_read_block)2017 static bool npcm_i2c_master_start_xmit(struct npcm_i2c *bus,
2018 u8 slave_addr, u16 nwrite, u16 nread,
2019 u8 *write_data, u8 *read_data,
2020 bool use_PEC, bool use_read_block)
2021 {
2022 if (bus->state != I2C_IDLE) {
2023 bus->cmd_err = -EBUSY;
2024 return false;
2025 }
2026 bus->dest_addr = slave_addr << 1;
2027 bus->wr_buf = write_data;
2028 bus->wr_size = nwrite;
2029 bus->wr_ind = 0;
2030 bus->rd_buf = read_data;
2031 bus->rd_size = nread;
2032 bus->rd_ind = 0;
2033 bus->PEC_use = 0;
2034
2035 /* for tx PEC is appended to buffer from i2c IF. PEC flag is ignored */
2036 if (nread)
2037 bus->PEC_use = use_PEC;
2038
2039 bus->read_block_use = use_read_block;
2040 if (nread && !nwrite)
2041 bus->operation = I2C_READ_OPER;
2042 else
2043 bus->operation = I2C_WRITE_OPER;
2044 if (bus->fifo_use) {
2045 u8 i2cfif_cts;
2046
2047 npcm_i2c_select_bank(bus, I2C_BANK_1);
2048 /* clear FIFO and relevant status bits. */
2049 i2cfif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
2050 i2cfif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
2051 i2cfif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
2052 iowrite8(i2cfif_cts, bus->reg + NPCM_I2CFIF_CTS);
2053 }
2054
2055 bus->state = I2C_IDLE;
2056 npcm_i2c_stall_after_start(bus, true);
2057 npcm_i2c_master_start(bus);
2058 return true;
2059 }
2060
npcm_i2c_master_xfer(struct i2c_adapter * adap,struct i2c_msg * msgs,int num)2061 static int npcm_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
2062 int num)
2063 {
2064 struct npcm_i2c *bus = container_of(adap, struct npcm_i2c, adap);
2065 struct i2c_msg *msg0, *msg1;
2066 unsigned long time_left, flags;
2067 u16 nwrite, nread;
2068 u8 *write_data, *read_data;
2069 u8 slave_addr;
2070 unsigned long timeout;
2071 bool read_block = false;
2072 bool read_PEC = false;
2073 u8 bus_busy;
2074 unsigned long timeout_usec;
2075
2076 if (bus->state == I2C_DISABLE) {
2077 dev_err(bus->dev, "I2C%d module is disabled", bus->num);
2078 return -EINVAL;
2079 }
2080
2081 msg0 = &msgs[0];
2082 slave_addr = msg0->addr;
2083 if (msg0->flags & I2C_M_RD) { /* read */
2084 nwrite = 0;
2085 write_data = NULL;
2086 read_data = msg0->buf;
2087 if (msg0->flags & I2C_M_RECV_LEN) {
2088 nread = 1;
2089 read_block = true;
2090 if (msg0->flags & I2C_CLIENT_PEC)
2091 read_PEC = true;
2092 } else {
2093 nread = msg0->len;
2094 }
2095 } else { /* write */
2096 nwrite = msg0->len;
2097 write_data = msg0->buf;
2098 nread = 0;
2099 read_data = NULL;
2100 if (num == 2) {
2101 msg1 = &msgs[1];
2102 read_data = msg1->buf;
2103 if (msg1->flags & I2C_M_RECV_LEN) {
2104 nread = 1;
2105 read_block = true;
2106 if (msg1->flags & I2C_CLIENT_PEC)
2107 read_PEC = true;
2108 } else {
2109 nread = msg1->len;
2110 read_block = false;
2111 }
2112 }
2113 }
2114
2115 /*
2116 * Adaptive TimeOut: estimated time in usec + 100% margin:
2117 * 2: double the timeout for clock stretching case
2118 * 9: bits per transaction (including the ack/nack)
2119 */
2120 timeout_usec = (2 * 9 * USEC_PER_SEC / bus->bus_freq) * (2 + nread + nwrite);
2121 timeout = max_t(unsigned long, bus->adap.timeout, usecs_to_jiffies(timeout_usec));
2122 if (nwrite >= 32 * 1024 || nread >= 32 * 1024) {
2123 dev_err(bus->dev, "i2c%d buffer too big\n", bus->num);
2124 return -EINVAL;
2125 }
2126
2127 time_left = jiffies + timeout + 1;
2128 do {
2129 /*
2130 * we must clear slave address immediately when the bus is not
2131 * busy, so we spinlock it, but we don't keep the lock for the
2132 * entire while since it is too long.
2133 */
2134 spin_lock_irqsave(&bus->lock, flags);
2135 bus_busy = ioread8(bus->reg + NPCM_I2CCST) & NPCM_I2CCST_BB;
2136 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2137 if (!bus_busy && bus->slave)
2138 iowrite8((bus->slave->addr & 0x7F),
2139 bus->reg + NPCM_I2CADDR1);
2140 #endif
2141 spin_unlock_irqrestore(&bus->lock, flags);
2142
2143 } while (time_is_after_jiffies(time_left) && bus_busy);
2144
2145 if (bus_busy) {
2146 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
2147 npcm_i2c_reset(bus);
2148 i2c_recover_bus(adap);
2149 return -EAGAIN;
2150 }
2151
2152 npcm_i2c_init_params(bus);
2153 bus->dest_addr = slave_addr;
2154 bus->msgs = msgs;
2155 bus->msgs_num = num;
2156 bus->cmd_err = 0;
2157 bus->read_block_use = read_block;
2158
2159 reinit_completion(&bus->cmd_complete);
2160
2161 npcm_i2c_int_enable(bus, true);
2162
2163 if (npcm_i2c_master_start_xmit(bus, slave_addr, nwrite, nread,
2164 write_data, read_data, read_PEC,
2165 read_block)) {
2166 time_left = wait_for_completion_timeout(&bus->cmd_complete,
2167 timeout);
2168
2169 if (time_left == 0) {
2170 if (bus->timeout_cnt < ULLONG_MAX)
2171 bus->timeout_cnt++;
2172 if (bus->master_or_slave == I2C_MASTER) {
2173 i2c_recover_bus(adap);
2174 bus->cmd_err = -EIO;
2175 bus->state = I2C_IDLE;
2176 }
2177 }
2178 }
2179
2180 /* if there was BER, check if need to recover the bus: */
2181 if (bus->cmd_err == -EAGAIN)
2182 bus->cmd_err = i2c_recover_bus(adap);
2183
2184 /*
2185 * After any type of error, check if LAST bit is still set,
2186 * due to a HW issue.
2187 * It cannot be cleared without resetting the module.
2188 */
2189 else if (bus->cmd_err &&
2190 (NPCM_I2CRXF_CTL_LAST_PEC & ioread8(bus->reg + NPCM_I2CRXF_CTL)))
2191 npcm_i2c_reset(bus);
2192
2193 /* after any xfer, successful or not, stall and EOB must be disabled */
2194 npcm_i2c_stall_after_start(bus, false);
2195 npcm_i2c_eob_int(bus, false);
2196
2197 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2198 /* reenable slave if it was enabled */
2199 if (bus->slave)
2200 iowrite8((bus->slave->addr & 0x7F) | NPCM_I2CADDR_SAEN,
2201 bus->reg + NPCM_I2CADDR1);
2202 #else
2203 npcm_i2c_int_enable(bus, false);
2204 #endif
2205 return bus->cmd_err;
2206 }
2207
npcm_i2c_functionality(struct i2c_adapter * adap)2208 static u32 npcm_i2c_functionality(struct i2c_adapter *adap)
2209 {
2210 return I2C_FUNC_I2C |
2211 I2C_FUNC_SMBUS_EMUL |
2212 I2C_FUNC_SMBUS_BLOCK_DATA |
2213 I2C_FUNC_SMBUS_PEC |
2214 I2C_FUNC_SLAVE;
2215 }
2216
2217 static const struct i2c_adapter_quirks npcm_i2c_quirks = {
2218 .max_read_len = 32768,
2219 .max_write_len = 32768,
2220 .flags = I2C_AQ_COMB_WRITE_THEN_READ,
2221 };
2222
2223 static const struct i2c_algorithm npcm_i2c_algo = {
2224 .master_xfer = npcm_i2c_master_xfer,
2225 .functionality = npcm_i2c_functionality,
2226 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2227 .reg_slave = npcm_i2c_reg_slave,
2228 .unreg_slave = npcm_i2c_unreg_slave,
2229 #endif
2230 };
2231
2232 /* i2c debugfs directory: used to keep health monitor of i2c devices */
2233 static struct dentry *npcm_i2c_debugfs_dir;
2234
npcm_i2c_init_debugfs(struct platform_device * pdev,struct npcm_i2c * bus)2235 static void npcm_i2c_init_debugfs(struct platform_device *pdev,
2236 struct npcm_i2c *bus)
2237 {
2238 struct dentry *d;
2239
2240 if (!npcm_i2c_debugfs_dir)
2241 return;
2242 d = debugfs_create_dir(dev_name(&pdev->dev), npcm_i2c_debugfs_dir);
2243 if (IS_ERR_OR_NULL(d))
2244 return;
2245 debugfs_create_u64("ber_cnt", 0444, d, &bus->ber_cnt);
2246 debugfs_create_u64("nack_cnt", 0444, d, &bus->nack_cnt);
2247 debugfs_create_u64("rec_succ_cnt", 0444, d, &bus->rec_succ_cnt);
2248 debugfs_create_u64("rec_fail_cnt", 0444, d, &bus->rec_fail_cnt);
2249 debugfs_create_u64("timeout_cnt", 0444, d, &bus->timeout_cnt);
2250
2251 bus->debugfs = d;
2252 }
2253
npcm_i2c_probe_bus(struct platform_device * pdev)2254 static int npcm_i2c_probe_bus(struct platform_device *pdev)
2255 {
2256 struct npcm_i2c *bus;
2257 struct i2c_adapter *adap;
2258 struct clk *i2c_clk;
2259 static struct regmap *gcr_regmap;
2260 static struct regmap *clk_regmap;
2261 int irq;
2262 int ret;
2263
2264 bus = devm_kzalloc(&pdev->dev, sizeof(*bus), GFP_KERNEL);
2265 if (!bus)
2266 return -ENOMEM;
2267
2268 bus->dev = &pdev->dev;
2269
2270 bus->num = of_alias_get_id(pdev->dev.of_node, "i2c");
2271 /* core clk must be acquired to calculate module timing settings */
2272 i2c_clk = devm_clk_get(&pdev->dev, NULL);
2273 if (IS_ERR(i2c_clk))
2274 return PTR_ERR(i2c_clk);
2275 bus->apb_clk = clk_get_rate(i2c_clk);
2276
2277 gcr_regmap = syscon_regmap_lookup_by_compatible("nuvoton,npcm750-gcr");
2278 if (IS_ERR(gcr_regmap))
2279 return PTR_ERR(gcr_regmap);
2280 regmap_write(gcr_regmap, NPCM_I2CSEGCTL, NPCM_I2CSEGCTL_INIT_VAL);
2281
2282 clk_regmap = syscon_regmap_lookup_by_compatible("nuvoton,npcm750-clk");
2283 if (IS_ERR(clk_regmap))
2284 return PTR_ERR(clk_regmap);
2285
2286 bus->reg = devm_platform_ioremap_resource(pdev, 0);
2287 if (IS_ERR(bus->reg))
2288 return PTR_ERR(bus->reg);
2289
2290 spin_lock_init(&bus->lock);
2291 init_completion(&bus->cmd_complete);
2292
2293 adap = &bus->adap;
2294 adap->owner = THIS_MODULE;
2295 adap->retries = 3;
2296 adap->timeout = msecs_to_jiffies(35);
2297 adap->algo = &npcm_i2c_algo;
2298 adap->quirks = &npcm_i2c_quirks;
2299 adap->algo_data = bus;
2300 adap->dev.parent = &pdev->dev;
2301 adap->dev.of_node = pdev->dev.of_node;
2302 adap->nr = pdev->id;
2303
2304 irq = platform_get_irq(pdev, 0);
2305 if (irq < 0)
2306 return irq;
2307
2308 ret = devm_request_irq(bus->dev, irq, npcm_i2c_bus_irq, 0,
2309 dev_name(bus->dev), bus);
2310 if (ret)
2311 return ret;
2312
2313 ret = __npcm_i2c_init(bus, pdev);
2314 if (ret)
2315 return ret;
2316
2317 npcm_i2c_recovery_init(adap);
2318
2319 i2c_set_adapdata(adap, bus);
2320
2321 snprintf(bus->adap.name, sizeof(bus->adap.name), "npcm_i2c_%d",
2322 bus->num);
2323 ret = i2c_add_numbered_adapter(&bus->adap);
2324 if (ret)
2325 return ret;
2326
2327 platform_set_drvdata(pdev, bus);
2328 npcm_i2c_init_debugfs(pdev, bus);
2329 return 0;
2330 }
2331
npcm_i2c_remove_bus(struct platform_device * pdev)2332 static int npcm_i2c_remove_bus(struct platform_device *pdev)
2333 {
2334 unsigned long lock_flags;
2335 struct npcm_i2c *bus = platform_get_drvdata(pdev);
2336
2337 debugfs_remove_recursive(bus->debugfs);
2338 spin_lock_irqsave(&bus->lock, lock_flags);
2339 npcm_i2c_disable(bus);
2340 spin_unlock_irqrestore(&bus->lock, lock_flags);
2341 i2c_del_adapter(&bus->adap);
2342 return 0;
2343 }
2344
2345 static const struct of_device_id npcm_i2c_bus_of_table[] = {
2346 { .compatible = "nuvoton,npcm750-i2c", },
2347 {}
2348 };
2349 MODULE_DEVICE_TABLE(of, npcm_i2c_bus_of_table);
2350
2351 static struct platform_driver npcm_i2c_bus_driver = {
2352 .probe = npcm_i2c_probe_bus,
2353 .remove = npcm_i2c_remove_bus,
2354 .driver = {
2355 .name = "nuvoton-i2c",
2356 .of_match_table = npcm_i2c_bus_of_table,
2357 }
2358 };
2359
npcm_i2c_init(void)2360 static int __init npcm_i2c_init(void)
2361 {
2362 int ret;
2363
2364 npcm_i2c_debugfs_dir = debugfs_create_dir("npcm_i2c", NULL);
2365
2366 ret = platform_driver_register(&npcm_i2c_bus_driver);
2367 if (ret) {
2368 debugfs_remove_recursive(npcm_i2c_debugfs_dir);
2369 return ret;
2370 }
2371
2372 return 0;
2373 }
2374 module_init(npcm_i2c_init);
2375
npcm_i2c_exit(void)2376 static void __exit npcm_i2c_exit(void)
2377 {
2378 platform_driver_unregister(&npcm_i2c_bus_driver);
2379 debugfs_remove_recursive(npcm_i2c_debugfs_dir);
2380 }
2381 module_exit(npcm_i2c_exit);
2382
2383 MODULE_AUTHOR("Avi Fishman <avi.fishman@gmail.com>");
2384 MODULE_AUTHOR("Tali Perry <tali.perry@nuvoton.com>");
2385 MODULE_AUTHOR("Tyrone Ting <kfting@nuvoton.com>");
2386 MODULE_DESCRIPTION("Nuvoton I2C Bus Driver");
2387 MODULE_LICENSE("GPL v2");
2388