1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * FM Driver for Connectivity chip of Texas Instruments.
4 *
5 * This sub-module of FM driver is common for FM RX and TX
6 * functionality. This module is responsible for:
7 * 1) Forming group of Channel-8 commands to perform particular
8 * functionality (eg., frequency set require more than
9 * one Channel-8 command to be sent to the chip).
10 * 2) Sending each Channel-8 command to the chip and reading
11 * response back over Shared Transport.
12 * 3) Managing TX and RX Queues and Tasklets.
13 * 4) Handling FM Interrupt packet and taking appropriate action.
14 * 5) Loading FM firmware to the chip (common, FM TX, and FM RX
15 * firmware files based on mode selection)
16 *
17 * Copyright (C) 2011 Texas Instruments
18 * Author: Raja Mani <raja_mani@ti.com>
19 * Author: Manjunatha Halli <manjunatha_halli@ti.com>
20 */
21
22 #include <linux/delay.h>
23 #include <linux/firmware.h>
24 #include <linux/module.h>
25 #include <linux/nospec.h>
26
27 #include "fmdrv.h"
28 #include "fmdrv_v4l2.h"
29 #include "fmdrv_common.h"
30 #include <linux/ti_wilink_st.h>
31 #include "fmdrv_rx.h"
32 #include "fmdrv_tx.h"
33
34 /* Region info */
35 static struct region_info region_configs[] = {
36 /* Europe/US */
37 {
38 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
39 .bot_freq = 87500, /* 87.5 MHz */
40 .top_freq = 108000, /* 108 MHz */
41 .fm_band = 0,
42 },
43 /* Japan */
44 {
45 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
46 .bot_freq = 76000, /* 76 MHz */
47 .top_freq = 90000, /* 90 MHz */
48 .fm_band = 1,
49 },
50 };
51
52 /* Band selection */
53 static u8 default_radio_region; /* Europe/US */
54 module_param(default_radio_region, byte, 0);
55 MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan");
56
57 /* RDS buffer blocks */
58 static u32 default_rds_buf = 300;
59 module_param(default_rds_buf, uint, 0444);
60 MODULE_PARM_DESC(default_rds_buf, "RDS buffer entries");
61
62 /* Radio Nr */
63 static u32 radio_nr = -1;
64 module_param(radio_nr, int, 0444);
65 MODULE_PARM_DESC(radio_nr, "Radio Nr");
66
67 /* FM irq handlers forward declaration */
68 static void fm_irq_send_flag_getcmd(struct fmdev *);
69 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *);
70 static void fm_irq_handle_hw_malfunction(struct fmdev *);
71 static void fm_irq_handle_rds_start(struct fmdev *);
72 static void fm_irq_send_rdsdata_getcmd(struct fmdev *);
73 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *);
74 static void fm_irq_handle_rds_finish(struct fmdev *);
75 static void fm_irq_handle_tune_op_ended(struct fmdev *);
76 static void fm_irq_handle_power_enb(struct fmdev *);
77 static void fm_irq_handle_low_rssi_start(struct fmdev *);
78 static void fm_irq_afjump_set_pi(struct fmdev *);
79 static void fm_irq_handle_set_pi_resp(struct fmdev *);
80 static void fm_irq_afjump_set_pimask(struct fmdev *);
81 static void fm_irq_handle_set_pimask_resp(struct fmdev *);
82 static void fm_irq_afjump_setfreq(struct fmdev *);
83 static void fm_irq_handle_setfreq_resp(struct fmdev *);
84 static void fm_irq_afjump_enableint(struct fmdev *);
85 static void fm_irq_afjump_enableint_resp(struct fmdev *);
86 static void fm_irq_start_afjump(struct fmdev *);
87 static void fm_irq_handle_start_afjump_resp(struct fmdev *);
88 static void fm_irq_afjump_rd_freq(struct fmdev *);
89 static void fm_irq_afjump_rd_freq_resp(struct fmdev *);
90 static void fm_irq_handle_low_rssi_finish(struct fmdev *);
91 static void fm_irq_send_intmsk_cmd(struct fmdev *);
92 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *);
93
94 /*
95 * When FM common module receives interrupt packet, following handlers
96 * will be executed one after another to service the interrupt(s)
97 */
98 enum fmc_irq_handler_index {
99 FM_SEND_FLAG_GETCMD_IDX,
100 FM_HANDLE_FLAG_GETCMD_RESP_IDX,
101
102 /* HW malfunction irq handler */
103 FM_HW_MAL_FUNC_IDX,
104
105 /* RDS threshold reached irq handler */
106 FM_RDS_START_IDX,
107 FM_RDS_SEND_RDS_GETCMD_IDX,
108 FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX,
109 FM_RDS_FINISH_IDX,
110
111 /* Tune operation ended irq handler */
112 FM_HW_TUNE_OP_ENDED_IDX,
113
114 /* TX power enable irq handler */
115 FM_HW_POWER_ENB_IDX,
116
117 /* Low RSSI irq handler */
118 FM_LOW_RSSI_START_IDX,
119 FM_AF_JUMP_SETPI_IDX,
120 FM_AF_JUMP_HANDLE_SETPI_RESP_IDX,
121 FM_AF_JUMP_SETPI_MASK_IDX,
122 FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX,
123 FM_AF_JUMP_SET_AF_FREQ_IDX,
124 FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX,
125 FM_AF_JUMP_ENABLE_INT_IDX,
126 FM_AF_JUMP_ENABLE_INT_RESP_IDX,
127 FM_AF_JUMP_START_AFJUMP_IDX,
128 FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX,
129 FM_AF_JUMP_RD_FREQ_IDX,
130 FM_AF_JUMP_RD_FREQ_RESP_IDX,
131 FM_LOW_RSSI_FINISH_IDX,
132
133 /* Interrupt process post action */
134 FM_SEND_INTMSK_CMD_IDX,
135 FM_HANDLE_INTMSK_CMD_RESP_IDX,
136 };
137
138 /* FM interrupt handler table */
139 static int_handler_prototype int_handler_table[] = {
140 fm_irq_send_flag_getcmd,
141 fm_irq_handle_flag_getcmd_resp,
142 fm_irq_handle_hw_malfunction,
143 fm_irq_handle_rds_start, /* RDS threshold reached irq handler */
144 fm_irq_send_rdsdata_getcmd,
145 fm_irq_handle_rdsdata_getcmd_resp,
146 fm_irq_handle_rds_finish,
147 fm_irq_handle_tune_op_ended,
148 fm_irq_handle_power_enb, /* TX power enable irq handler */
149 fm_irq_handle_low_rssi_start,
150 fm_irq_afjump_set_pi,
151 fm_irq_handle_set_pi_resp,
152 fm_irq_afjump_set_pimask,
153 fm_irq_handle_set_pimask_resp,
154 fm_irq_afjump_setfreq,
155 fm_irq_handle_setfreq_resp,
156 fm_irq_afjump_enableint,
157 fm_irq_afjump_enableint_resp,
158 fm_irq_start_afjump,
159 fm_irq_handle_start_afjump_resp,
160 fm_irq_afjump_rd_freq,
161 fm_irq_afjump_rd_freq_resp,
162 fm_irq_handle_low_rssi_finish,
163 fm_irq_send_intmsk_cmd, /* Interrupt process post action */
164 fm_irq_handle_intmsk_cmd_resp
165 };
166
167 static long (*g_st_write) (struct sk_buff *skb);
168 static struct completion wait_for_fmdrv_reg_comp;
169
fm_irq_call(struct fmdev * fmdev)170 static inline void fm_irq_call(struct fmdev *fmdev)
171 {
172 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
173 }
174
175 /* Continue next function in interrupt handler table */
fm_irq_call_stage(struct fmdev * fmdev,u8 stage)176 static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage)
177 {
178 fmdev->irq_info.stage = stage;
179 fm_irq_call(fmdev);
180 }
181
fm_irq_timeout_stage(struct fmdev * fmdev,u8 stage)182 static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage)
183 {
184 fmdev->irq_info.stage = stage;
185 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
186 }
187
188 #ifdef FM_DUMP_TXRX_PKT
189 /* To dump outgoing FM Channel-8 packets */
dump_tx_skb_data(struct sk_buff * skb)190 inline void dump_tx_skb_data(struct sk_buff *skb)
191 {
192 int len, len_org;
193 u8 index;
194 struct fm_cmd_msg_hdr *cmd_hdr;
195
196 cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data;
197 printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x",
198 fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr,
199 cmd_hdr->len, cmd_hdr->op,
200 cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen);
201
202 len_org = skb->len - FM_CMD_MSG_HDR_SIZE;
203 if (len_org > 0) {
204 printk(KERN_CONT "\n data(%d): ", cmd_hdr->dlen);
205 len = min(len_org, 14);
206 for (index = 0; index < len; index++)
207 printk(KERN_CONT "%x ",
208 skb->data[FM_CMD_MSG_HDR_SIZE + index]);
209 printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
210 }
211 printk(KERN_CONT "\n");
212 }
213
214 /* To dump incoming FM Channel-8 packets */
dump_rx_skb_data(struct sk_buff * skb)215 inline void dump_rx_skb_data(struct sk_buff *skb)
216 {
217 int len, len_org;
218 u8 index;
219 struct fm_event_msg_hdr *evt_hdr;
220
221 evt_hdr = (struct fm_event_msg_hdr *)skb->data;
222 printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x opcode:%02x type:%s dlen:%02x",
223 evt_hdr->hdr, evt_hdr->len,
224 evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op,
225 (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen);
226
227 len_org = skb->len - FM_EVT_MSG_HDR_SIZE;
228 if (len_org > 0) {
229 printk(KERN_CONT "\n data(%d): ", evt_hdr->dlen);
230 len = min(len_org, 14);
231 for (index = 0; index < len; index++)
232 printk(KERN_CONT "%x ",
233 skb->data[FM_EVT_MSG_HDR_SIZE + index]);
234 printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
235 }
236 printk(KERN_CONT "\n");
237 }
238 #endif
239
fmc_update_region_info(struct fmdev * fmdev,u8 region_to_set)240 void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set)
241 {
242 fmdev->rx.region = region_configs[region_to_set];
243 }
244
245 /*
246 * FM common sub-module will schedule this tasklet whenever it receives
247 * FM packet from ST driver.
248 */
recv_tasklet(struct tasklet_struct * t)249 static void recv_tasklet(struct tasklet_struct *t)
250 {
251 struct fmdev *fmdev;
252 struct fm_irq *irq_info;
253 struct fm_event_msg_hdr *evt_hdr;
254 struct sk_buff *skb;
255 u8 num_fm_hci_cmds;
256 unsigned long flags;
257
258 fmdev = from_tasklet(fmdev, t, tx_task);
259 irq_info = &fmdev->irq_info;
260 /* Process all packets in the RX queue */
261 while ((skb = skb_dequeue(&fmdev->rx_q))) {
262 if (skb->len < sizeof(struct fm_event_msg_hdr)) {
263 fmerr("skb(%p) has only %d bytes, at least need %zu bytes to decode\n",
264 skb,
265 skb->len, sizeof(struct fm_event_msg_hdr));
266 kfree_skb(skb);
267 continue;
268 }
269
270 evt_hdr = (void *)skb->data;
271 num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds;
272
273 /* FM interrupt packet? */
274 if (evt_hdr->op == FM_INTERRUPT) {
275 /* FM interrupt handler started already? */
276 if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
277 set_bit(FM_INTTASK_RUNNING, &fmdev->flag);
278 if (irq_info->stage != 0) {
279 fmerr("Inval stage resetting to zero\n");
280 irq_info->stage = 0;
281 }
282
283 /*
284 * Execute first function in interrupt handler
285 * table.
286 */
287 irq_info->handlers[irq_info->stage](fmdev);
288 } else {
289 set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag);
290 }
291 kfree_skb(skb);
292 }
293 /* Anyone waiting for this with completion handler? */
294 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) {
295
296 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
297 fmdev->resp_skb = skb;
298 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
299 complete(fmdev->resp_comp);
300
301 fmdev->resp_comp = NULL;
302 atomic_set(&fmdev->tx_cnt, 1);
303 }
304 /* Is this for interrupt handler? */
305 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) {
306 if (fmdev->resp_skb != NULL)
307 fmerr("Response SKB ptr not NULL\n");
308
309 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
310 fmdev->resp_skb = skb;
311 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
312
313 /* Execute interrupt handler where state index points */
314 irq_info->handlers[irq_info->stage](fmdev);
315
316 kfree_skb(skb);
317 atomic_set(&fmdev->tx_cnt, 1);
318 } else {
319 fmerr("Nobody claimed SKB(%p),purging\n", skb);
320 }
321
322 /*
323 * Check flow control field. If Num_FM_HCI_Commands field is
324 * not zero, schedule FM TX tasklet.
325 */
326 if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt))
327 if (!skb_queue_empty(&fmdev->tx_q))
328 tasklet_schedule(&fmdev->tx_task);
329 }
330 }
331
332 /* FM send tasklet: is scheduled when FM packet has to be sent to chip */
send_tasklet(struct tasklet_struct * t)333 static void send_tasklet(struct tasklet_struct *t)
334 {
335 struct fmdev *fmdev;
336 struct sk_buff *skb;
337 int len;
338
339 fmdev = from_tasklet(fmdev, t, tx_task);
340
341 if (!atomic_read(&fmdev->tx_cnt))
342 return;
343
344 /* Check, is there any timeout happened to last transmitted packet */
345 if ((jiffies - fmdev->last_tx_jiffies) > FM_DRV_TX_TIMEOUT) {
346 fmerr("TX timeout occurred\n");
347 atomic_set(&fmdev->tx_cnt, 1);
348 }
349
350 /* Send queued FM TX packets */
351 skb = skb_dequeue(&fmdev->tx_q);
352 if (!skb)
353 return;
354
355 atomic_dec(&fmdev->tx_cnt);
356 fmdev->pre_op = fm_cb(skb)->fm_op;
357
358 if (fmdev->resp_comp != NULL)
359 fmerr("Response completion handler is not NULL\n");
360
361 fmdev->resp_comp = fm_cb(skb)->completion;
362
363 /* Write FM packet to ST driver */
364 len = g_st_write(skb);
365 if (len < 0) {
366 kfree_skb(skb);
367 fmdev->resp_comp = NULL;
368 fmerr("TX tasklet failed to send skb(%p)\n", skb);
369 atomic_set(&fmdev->tx_cnt, 1);
370 } else {
371 fmdev->last_tx_jiffies = jiffies;
372 }
373 }
374
375 /*
376 * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for
377 * transmission
378 */
fm_send_cmd(struct fmdev * fmdev,u8 fm_op,u16 type,void * payload,int payload_len,struct completion * wait_completion)379 static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
380 int payload_len, struct completion *wait_completion)
381 {
382 struct sk_buff *skb;
383 struct fm_cmd_msg_hdr *hdr;
384 int size;
385
386 if (fm_op >= FM_INTERRUPT) {
387 fmerr("Invalid fm opcode - %d\n", fm_op);
388 return -EINVAL;
389 }
390 if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) {
391 fmerr("Payload data is NULL during fw download\n");
392 return -EINVAL;
393 }
394 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag))
395 size =
396 FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len);
397 else
398 size = payload_len;
399
400 skb = alloc_skb(size, GFP_ATOMIC);
401 if (!skb) {
402 fmerr("No memory to create new SKB\n");
403 return -ENOMEM;
404 }
405 /*
406 * Don't fill FM header info for the commands which come from
407 * FM firmware file.
408 */
409 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) ||
410 test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
411 /* Fill command header info */
412 hdr = skb_put(skb, FM_CMD_MSG_HDR_SIZE);
413 hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER; /* 0x08 */
414
415 /* 3 (fm_opcode,rd_wr,dlen) + payload len) */
416 hdr->len = ((payload == NULL) ? 0 : payload_len) + 3;
417
418 /* FM opcode */
419 hdr->op = fm_op;
420
421 /* read/write type */
422 hdr->rd_wr = type;
423 hdr->dlen = payload_len;
424 fm_cb(skb)->fm_op = fm_op;
425
426 /*
427 * If firmware download has finished and the command is
428 * not a read command then payload is != NULL - a write
429 * command with u16 payload - convert to be16
430 */
431 if (payload != NULL)
432 *(__be16 *)payload = cpu_to_be16(*(u16 *)payload);
433
434 } else if (payload != NULL) {
435 fm_cb(skb)->fm_op = *((u8 *)payload + 2);
436 }
437 if (payload != NULL)
438 skb_put_data(skb, payload, payload_len);
439
440 fm_cb(skb)->completion = wait_completion;
441 skb_queue_tail(&fmdev->tx_q, skb);
442 tasklet_schedule(&fmdev->tx_task);
443
444 return 0;
445 }
446
447 /* Sends FM Channel-8 command to the chip and waits for the response */
fmc_send_cmd(struct fmdev * fmdev,u8 fm_op,u16 type,void * payload,unsigned int payload_len,void * response,int * response_len)448 int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
449 unsigned int payload_len, void *response, int *response_len)
450 {
451 struct sk_buff *skb;
452 struct fm_event_msg_hdr *evt_hdr;
453 unsigned long flags;
454 int ret;
455
456 init_completion(&fmdev->maintask_comp);
457 ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len,
458 &fmdev->maintask_comp);
459 if (ret)
460 return ret;
461
462 if (!wait_for_completion_timeout(&fmdev->maintask_comp,
463 FM_DRV_TX_TIMEOUT)) {
464 fmerr("Timeout(%d sec),didn't get regcompletion signal from RX tasklet\n",
465 jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000);
466 return -ETIMEDOUT;
467 }
468 if (!fmdev->resp_skb) {
469 fmerr("Response SKB is missing\n");
470 return -EFAULT;
471 }
472 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
473 skb = fmdev->resp_skb;
474 fmdev->resp_skb = NULL;
475 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
476
477 evt_hdr = (void *)skb->data;
478 if (evt_hdr->status != 0) {
479 fmerr("Received event pkt status(%d) is not zero\n",
480 evt_hdr->status);
481 kfree_skb(skb);
482 return -EIO;
483 }
484 /* Send response data to caller */
485 if (response != NULL && response_len != NULL && evt_hdr->dlen &&
486 evt_hdr->dlen <= payload_len) {
487 /* Skip header info and copy only response data */
488 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
489 memcpy(response, skb->data, evt_hdr->dlen);
490 *response_len = evt_hdr->dlen;
491 } else if (response_len != NULL && evt_hdr->dlen == 0) {
492 *response_len = 0;
493 }
494 kfree_skb(skb);
495
496 return 0;
497 }
498
499 /* --- Helper functions used in FM interrupt handlers ---*/
check_cmdresp_status(struct fmdev * fmdev,struct sk_buff ** skb)500 static inline int check_cmdresp_status(struct fmdev *fmdev,
501 struct sk_buff **skb)
502 {
503 struct fm_event_msg_hdr *fm_evt_hdr;
504 unsigned long flags;
505
506 del_timer(&fmdev->irq_info.timer);
507
508 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
509 *skb = fmdev->resp_skb;
510 fmdev->resp_skb = NULL;
511 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
512
513 fm_evt_hdr = (void *)(*skb)->data;
514 if (fm_evt_hdr->status != 0) {
515 fmerr("irq: opcode %x response status is not zero Initiating irq recovery process\n",
516 fm_evt_hdr->op);
517
518 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
519 return -1;
520 }
521
522 return 0;
523 }
524
fm_irq_common_cmd_resp_helper(struct fmdev * fmdev,u8 stage)525 static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage)
526 {
527 struct sk_buff *skb;
528
529 if (!check_cmdresp_status(fmdev, &skb))
530 fm_irq_call_stage(fmdev, stage);
531 }
532
533 /*
534 * Interrupt process timeout handler.
535 * One of the irq handler did not get proper response from the chip. So take
536 * recovery action here. FM interrupts are disabled in the beginning of
537 * interrupt process. Therefore reset stage index to re-enable default
538 * interrupts. So that next interrupt will be processed as usual.
539 */
int_timeout_handler(struct timer_list * t)540 static void int_timeout_handler(struct timer_list *t)
541 {
542 struct fmdev *fmdev;
543 struct fm_irq *fmirq;
544
545 fmdbg("irq: timeout,trying to re-enable fm interrupts\n");
546 fmdev = from_timer(fmdev, t, irq_info.timer);
547 fmirq = &fmdev->irq_info;
548 fmirq->retry++;
549
550 if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) {
551 /* Stop recovery action (interrupt reenable process) and
552 * reset stage index & retry count values */
553 fmirq->stage = 0;
554 fmirq->retry = 0;
555 fmerr("Recovery action failed duringirq processing, max retry reached\n");
556 return;
557 }
558 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
559 }
560
561 /* --------- FM interrupt handlers ------------*/
fm_irq_send_flag_getcmd(struct fmdev * fmdev)562 static void fm_irq_send_flag_getcmd(struct fmdev *fmdev)
563 {
564 u16 flag;
565
566 /* Send FLAG_GET command , to know the source of interrupt */
567 if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL))
568 fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX);
569 }
570
fm_irq_handle_flag_getcmd_resp(struct fmdev * fmdev)571 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev)
572 {
573 struct sk_buff *skb;
574 struct fm_event_msg_hdr *fm_evt_hdr;
575
576 if (check_cmdresp_status(fmdev, &skb))
577 return;
578
579 fm_evt_hdr = (void *)skb->data;
580 if (fm_evt_hdr->dlen > sizeof(fmdev->irq_info.flag))
581 return;
582
583 /* Skip header info and copy only response data */
584 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
585 memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen);
586
587 fmdev->irq_info.flag = be16_to_cpu((__force __be16)fmdev->irq_info.flag);
588 fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag);
589
590 /* Continue next function in interrupt handler table */
591 fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX);
592 }
593
fm_irq_handle_hw_malfunction(struct fmdev * fmdev)594 static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev)
595 {
596 if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask)
597 fmerr("irq: HW MAL int received - do nothing\n");
598
599 /* Continue next function in interrupt handler table */
600 fm_irq_call_stage(fmdev, FM_RDS_START_IDX);
601 }
602
fm_irq_handle_rds_start(struct fmdev * fmdev)603 static void fm_irq_handle_rds_start(struct fmdev *fmdev)
604 {
605 if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) {
606 fmdbg("irq: rds threshold reached\n");
607 fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX;
608 } else {
609 /* Continue next function in interrupt handler table */
610 fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX;
611 }
612
613 fm_irq_call(fmdev);
614 }
615
fm_irq_send_rdsdata_getcmd(struct fmdev * fmdev)616 static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev)
617 {
618 /* Send the command to read RDS data from the chip */
619 if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL,
620 (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL))
621 fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX);
622 }
623
624 /* Keeps track of current RX channel AF (Alternate Frequency) */
fm_rx_update_af_cache(struct fmdev * fmdev,u8 af)625 static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af)
626 {
627 struct tuned_station_info *stat_info = &fmdev->rx.stat_info;
628 u8 reg_idx = fmdev->rx.region.fm_band;
629 u8 index;
630 u32 freq;
631
632 /* First AF indicates the number of AF follows. Reset the list */
633 if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) {
634 fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1);
635 fmdev->rx.stat_info.afcache_size = 0;
636 fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max);
637 return;
638 }
639
640 if (af < FM_RDS_MIN_AF)
641 return;
642 if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF)
643 return;
644 if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN)
645 return;
646
647 freq = fmdev->rx.region.bot_freq + (af * 100);
648 if (freq == fmdev->rx.freq) {
649 fmdbg("Current freq(%d) is matching with received AF(%d)\n",
650 fmdev->rx.freq, freq);
651 return;
652 }
653 /* Do check in AF cache */
654 for (index = 0; index < stat_info->afcache_size; index++) {
655 if (stat_info->af_cache[index] == freq)
656 break;
657 }
658 /* Reached the limit of the list - ignore the next AF */
659 if (index == stat_info->af_list_max) {
660 fmdbg("AF cache is full\n");
661 return;
662 }
663 /*
664 * If we reached the end of the list then this AF is not
665 * in the list - add it.
666 */
667 if (index == stat_info->afcache_size) {
668 fmdbg("Storing AF %d to cache index %d\n", freq, index);
669 stat_info->af_cache[index] = freq;
670 stat_info->afcache_size++;
671 }
672 }
673
674 /*
675 * Converts RDS buffer data from big endian format
676 * to little endian format.
677 */
fm_rdsparse_swapbytes(struct fmdev * fmdev,struct fm_rdsdata_format * rds_format)678 static void fm_rdsparse_swapbytes(struct fmdev *fmdev,
679 struct fm_rdsdata_format *rds_format)
680 {
681 u8 index = 0;
682 u8 *rds_buff;
683
684 /*
685 * Since in Orca the 2 RDS Data bytes are in little endian and
686 * in Dolphin they are in big endian, the parsing of the RDS data
687 * is chip dependent
688 */
689 if (fmdev->asci_id != 0x6350) {
690 rds_buff = &rds_format->data.groupdatabuff.buff[0];
691 while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) {
692 swap(rds_buff[index], rds_buff[index + 1]);
693 index += 2;
694 }
695 }
696 }
697
fm_irq_handle_rdsdata_getcmd_resp(struct fmdev * fmdev)698 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev)
699 {
700 struct sk_buff *skb;
701 struct fm_rdsdata_format rds_fmt;
702 struct fm_rds *rds = &fmdev->rx.rds;
703 unsigned long group_idx, flags;
704 u8 *rds_data, meta_data, tmpbuf[FM_RDS_BLK_SIZE];
705 u8 type, blk_idx, idx;
706 u16 cur_picode;
707 u32 rds_len;
708
709 if (check_cmdresp_status(fmdev, &skb))
710 return;
711
712 /* Skip header info */
713 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
714 rds_data = skb->data;
715 rds_len = skb->len;
716
717 /* Parse the RDS data */
718 while (rds_len >= FM_RDS_BLK_SIZE) {
719 meta_data = rds_data[2];
720 /* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */
721 type = (meta_data & 0x07);
722
723 /* Transform the blk type into index sequence (0, 1, 2, 3, 4) */
724 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
725 fmdbg("Block index:%d(%s)\n", blk_idx,
726 (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok");
727
728 if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0)
729 break;
730
731 if (blk_idx > FM_RDS_BLK_IDX_D) {
732 fmdbg("Block sequence mismatch\n");
733 rds->last_blk_idx = -1;
734 break;
735 }
736
737 /* Skip checkword (control) byte and copy only data byte */
738 idx = array_index_nospec(blk_idx * (FM_RDS_BLK_SIZE - 1),
739 FM_RX_RDS_INFO_FIELD_MAX - (FM_RDS_BLK_SIZE - 1));
740
741 memcpy(&rds_fmt.data.groupdatabuff.buff[idx], rds_data,
742 FM_RDS_BLK_SIZE - 1);
743
744 rds->last_blk_idx = blk_idx;
745
746 /* If completed a whole group then handle it */
747 if (blk_idx == FM_RDS_BLK_IDX_D) {
748 fmdbg("Good block received\n");
749 fm_rdsparse_swapbytes(fmdev, &rds_fmt);
750
751 /*
752 * Extract PI code and store in local cache.
753 * We need this during AF switch processing.
754 */
755 cur_picode = be16_to_cpu((__force __be16)rds_fmt.data.groupgeneral.pidata);
756 if (fmdev->rx.stat_info.picode != cur_picode)
757 fmdev->rx.stat_info.picode = cur_picode;
758
759 fmdbg("picode:%d\n", cur_picode);
760
761 group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
762 fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2,
763 (group_idx % 2) ? "B" : "A");
764
765 group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
766 if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) {
767 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]);
768 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]);
769 }
770 }
771 rds_len -= FM_RDS_BLK_SIZE;
772 rds_data += FM_RDS_BLK_SIZE;
773 }
774
775 /* Copy raw rds data to internal rds buffer */
776 rds_data = skb->data;
777 rds_len = skb->len;
778
779 spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
780 while (rds_len > 0) {
781 /*
782 * Fill RDS buffer as per V4L2 specification.
783 * Store control byte
784 */
785 type = (rds_data[2] & 0x07);
786 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
787 tmpbuf[2] = blk_idx; /* Offset name */
788 tmpbuf[2] |= blk_idx << 3; /* Received offset */
789
790 /* Store data byte */
791 tmpbuf[0] = rds_data[0];
792 tmpbuf[1] = rds_data[1];
793
794 memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE);
795 rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size;
796
797 /* Check for overflow & start over */
798 if (rds->wr_idx == rds->rd_idx) {
799 fmdbg("RDS buffer overflow\n");
800 rds->wr_idx = 0;
801 rds->rd_idx = 0;
802 break;
803 }
804 rds_len -= FM_RDS_BLK_SIZE;
805 rds_data += FM_RDS_BLK_SIZE;
806 }
807 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
808
809 /* Wakeup read queue */
810 if (rds->wr_idx != rds->rd_idx)
811 wake_up_interruptible(&rds->read_queue);
812
813 fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX);
814 }
815
fm_irq_handle_rds_finish(struct fmdev * fmdev)816 static void fm_irq_handle_rds_finish(struct fmdev *fmdev)
817 {
818 fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX);
819 }
820
fm_irq_handle_tune_op_ended(struct fmdev * fmdev)821 static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev)
822 {
823 if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev->
824 irq_info.mask) {
825 fmdbg("irq: tune ended/bandlimit reached\n");
826 if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) {
827 fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX;
828 } else {
829 complete(&fmdev->maintask_comp);
830 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
831 }
832 } else
833 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
834
835 fm_irq_call(fmdev);
836 }
837
fm_irq_handle_power_enb(struct fmdev * fmdev)838 static void fm_irq_handle_power_enb(struct fmdev *fmdev)
839 {
840 if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) {
841 fmdbg("irq: Power Enabled/Disabled\n");
842 complete(&fmdev->maintask_comp);
843 }
844
845 fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX);
846 }
847
fm_irq_handle_low_rssi_start(struct fmdev * fmdev)848 static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev)
849 {
850 if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) &&
851 (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) &&
852 (fmdev->rx.freq != FM_UNDEFINED_FREQ) &&
853 (fmdev->rx.stat_info.afcache_size != 0)) {
854 fmdbg("irq: rssi level has fallen below threshold level\n");
855
856 /* Disable further low RSSI interrupts */
857 fmdev->irq_info.mask &= ~FM_LEV_EVENT;
858
859 fmdev->rx.afjump_idx = 0;
860 fmdev->rx.freq_before_jump = fmdev->rx.freq;
861 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
862 } else {
863 /* Continue next function in interrupt handler table */
864 fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX;
865 }
866
867 fm_irq_call(fmdev);
868 }
869
fm_irq_afjump_set_pi(struct fmdev * fmdev)870 static void fm_irq_afjump_set_pi(struct fmdev *fmdev)
871 {
872 u16 payload;
873
874 /* Set PI code - must be updated if the AF list is not empty */
875 payload = fmdev->rx.stat_info.picode;
876 if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL))
877 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX);
878 }
879
fm_irq_handle_set_pi_resp(struct fmdev * fmdev)880 static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev)
881 {
882 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX);
883 }
884
885 /*
886 * Set PI mask.
887 * 0xFFFF = Enable PI code matching
888 * 0x0000 = Disable PI code matching
889 */
fm_irq_afjump_set_pimask(struct fmdev * fmdev)890 static void fm_irq_afjump_set_pimask(struct fmdev *fmdev)
891 {
892 u16 payload;
893
894 payload = 0x0000;
895 if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
896 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX);
897 }
898
fm_irq_handle_set_pimask_resp(struct fmdev * fmdev)899 static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev)
900 {
901 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX);
902 }
903
fm_irq_afjump_setfreq(struct fmdev * fmdev)904 static void fm_irq_afjump_setfreq(struct fmdev *fmdev)
905 {
906 u16 frq_index;
907 u16 payload;
908
909 fmdbg("Switch to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]);
910 frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] -
911 fmdev->rx.region.bot_freq) / FM_FREQ_MUL;
912
913 payload = frq_index;
914 if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL))
915 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX);
916 }
917
fm_irq_handle_setfreq_resp(struct fmdev * fmdev)918 static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev)
919 {
920 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX);
921 }
922
fm_irq_afjump_enableint(struct fmdev * fmdev)923 static void fm_irq_afjump_enableint(struct fmdev *fmdev)
924 {
925 u16 payload;
926
927 /* Enable FR (tuning operation ended) interrupt */
928 payload = FM_FR_EVENT;
929 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
930 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX);
931 }
932
fm_irq_afjump_enableint_resp(struct fmdev * fmdev)933 static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev)
934 {
935 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX);
936 }
937
fm_irq_start_afjump(struct fmdev * fmdev)938 static void fm_irq_start_afjump(struct fmdev *fmdev)
939 {
940 u16 payload;
941
942 payload = FM_TUNER_AF_JUMP_MODE;
943 if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload,
944 sizeof(payload), NULL))
945 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX);
946 }
947
fm_irq_handle_start_afjump_resp(struct fmdev * fmdev)948 static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev)
949 {
950 struct sk_buff *skb;
951
952 if (check_cmdresp_status(fmdev, &skb))
953 return;
954
955 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
956 set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag);
957 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
958 }
959
fm_irq_afjump_rd_freq(struct fmdev * fmdev)960 static void fm_irq_afjump_rd_freq(struct fmdev *fmdev)
961 {
962 u16 payload;
963
964 if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL))
965 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX);
966 }
967
fm_irq_afjump_rd_freq_resp(struct fmdev * fmdev)968 static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev)
969 {
970 struct sk_buff *skb;
971 u16 read_freq;
972 u32 curr_freq, jumped_freq;
973
974 if (check_cmdresp_status(fmdev, &skb))
975 return;
976
977 /* Skip header info and copy only response data */
978 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
979 memcpy(&read_freq, skb->data, sizeof(read_freq));
980 read_freq = be16_to_cpu((__force __be16)read_freq);
981 curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL);
982
983 jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx];
984
985 /* If the frequency was changed the jump succeeded */
986 if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) {
987 fmdbg("Successfully switched to alternate freq %d\n", curr_freq);
988 fmdev->rx.freq = curr_freq;
989 fm_rx_reset_rds_cache(fmdev);
990
991 /* AF feature is on, enable low level RSSI interrupt */
992 if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON)
993 fmdev->irq_info.mask |= FM_LEV_EVENT;
994
995 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
996 } else { /* jump to the next freq in the AF list */
997 fmdev->rx.afjump_idx++;
998
999 /* If we reached the end of the list - stop searching */
1000 if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) {
1001 fmdbg("AF switch processing failed\n");
1002 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1003 } else { /* AF List is not over - try next one */
1004
1005 fmdbg("Trying next freq in AF cache\n");
1006 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
1007 }
1008 }
1009 fm_irq_call(fmdev);
1010 }
1011
fm_irq_handle_low_rssi_finish(struct fmdev * fmdev)1012 static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev)
1013 {
1014 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
1015 }
1016
fm_irq_send_intmsk_cmd(struct fmdev * fmdev)1017 static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev)
1018 {
1019 u16 payload;
1020
1021 /* Re-enable FM interrupts */
1022 payload = fmdev->irq_info.mask;
1023
1024 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload,
1025 sizeof(payload), NULL))
1026 fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX);
1027 }
1028
fm_irq_handle_intmsk_cmd_resp(struct fmdev * fmdev)1029 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev)
1030 {
1031 struct sk_buff *skb;
1032
1033 if (check_cmdresp_status(fmdev, &skb))
1034 return;
1035 /*
1036 * This is last function in interrupt table to be executed.
1037 * So, reset stage index to 0.
1038 */
1039 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
1040
1041 /* Start processing any pending interrupt */
1042 if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag))
1043 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
1044 else
1045 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
1046 }
1047
1048 /* Returns availability of RDS data in internal buffer */
fmc_is_rds_data_available(struct fmdev * fmdev,struct file * file,struct poll_table_struct * pts)1049 int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file,
1050 struct poll_table_struct *pts)
1051 {
1052 poll_wait(file, &fmdev->rx.rds.read_queue, pts);
1053 if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx)
1054 return 0;
1055
1056 return -EAGAIN;
1057 }
1058
1059 /* Copies RDS data from internal buffer to user buffer */
fmc_transfer_rds_from_internal_buff(struct fmdev * fmdev,struct file * file,u8 __user * buf,size_t count)1060 int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file,
1061 u8 __user *buf, size_t count)
1062 {
1063 u32 block_count;
1064 u8 tmpbuf[FM_RDS_BLK_SIZE];
1065 unsigned long flags;
1066 int ret;
1067
1068 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1069 if (file->f_flags & O_NONBLOCK)
1070 return -EWOULDBLOCK;
1071
1072 ret = wait_event_interruptible(fmdev->rx.rds.read_queue,
1073 (fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx));
1074 if (ret)
1075 return -EINTR;
1076 }
1077
1078 /* Calculate block count from byte count */
1079 count /= FM_RDS_BLK_SIZE;
1080 block_count = 0;
1081 ret = 0;
1082
1083 while (block_count < count) {
1084 spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
1085
1086 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1087 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1088 break;
1089 }
1090 memcpy(tmpbuf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx],
1091 FM_RDS_BLK_SIZE);
1092 fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE;
1093 if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size)
1094 fmdev->rx.rds.rd_idx = 0;
1095
1096 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1097
1098 if (copy_to_user(buf, tmpbuf, FM_RDS_BLK_SIZE))
1099 break;
1100
1101 block_count++;
1102 buf += FM_RDS_BLK_SIZE;
1103 ret += FM_RDS_BLK_SIZE;
1104 }
1105 return ret;
1106 }
1107
fmc_set_freq(struct fmdev * fmdev,u32 freq_to_set)1108 int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set)
1109 {
1110 switch (fmdev->curr_fmmode) {
1111 case FM_MODE_RX:
1112 return fm_rx_set_freq(fmdev, freq_to_set);
1113
1114 case FM_MODE_TX:
1115 return fm_tx_set_freq(fmdev, freq_to_set);
1116
1117 default:
1118 return -EINVAL;
1119 }
1120 }
1121
fmc_get_freq(struct fmdev * fmdev,u32 * cur_tuned_frq)1122 int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq)
1123 {
1124 if (fmdev->rx.freq == FM_UNDEFINED_FREQ) {
1125 fmerr("RX frequency is not set\n");
1126 return -EPERM;
1127 }
1128 if (cur_tuned_frq == NULL) {
1129 fmerr("Invalid memory\n");
1130 return -ENOMEM;
1131 }
1132
1133 switch (fmdev->curr_fmmode) {
1134 case FM_MODE_RX:
1135 *cur_tuned_frq = fmdev->rx.freq;
1136 return 0;
1137
1138 case FM_MODE_TX:
1139 *cur_tuned_frq = 0; /* TODO : Change this later */
1140 return 0;
1141
1142 default:
1143 return -EINVAL;
1144 }
1145
1146 }
1147
fmc_set_region(struct fmdev * fmdev,u8 region_to_set)1148 int fmc_set_region(struct fmdev *fmdev, u8 region_to_set)
1149 {
1150 switch (fmdev->curr_fmmode) {
1151 case FM_MODE_RX:
1152 return fm_rx_set_region(fmdev, region_to_set);
1153
1154 case FM_MODE_TX:
1155 return fm_tx_set_region(fmdev, region_to_set);
1156
1157 default:
1158 return -EINVAL;
1159 }
1160 }
1161
fmc_set_mute_mode(struct fmdev * fmdev,u8 mute_mode_toset)1162 int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset)
1163 {
1164 switch (fmdev->curr_fmmode) {
1165 case FM_MODE_RX:
1166 return fm_rx_set_mute_mode(fmdev, mute_mode_toset);
1167
1168 case FM_MODE_TX:
1169 return fm_tx_set_mute_mode(fmdev, mute_mode_toset);
1170
1171 default:
1172 return -EINVAL;
1173 }
1174 }
1175
fmc_set_stereo_mono(struct fmdev * fmdev,u16 mode)1176 int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode)
1177 {
1178 switch (fmdev->curr_fmmode) {
1179 case FM_MODE_RX:
1180 return fm_rx_set_stereo_mono(fmdev, mode);
1181
1182 case FM_MODE_TX:
1183 return fm_tx_set_stereo_mono(fmdev, mode);
1184
1185 default:
1186 return -EINVAL;
1187 }
1188 }
1189
fmc_set_rds_mode(struct fmdev * fmdev,u8 rds_en_dis)1190 int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis)
1191 {
1192 switch (fmdev->curr_fmmode) {
1193 case FM_MODE_RX:
1194 return fm_rx_set_rds_mode(fmdev, rds_en_dis);
1195
1196 case FM_MODE_TX:
1197 return fm_tx_set_rds_mode(fmdev, rds_en_dis);
1198
1199 default:
1200 return -EINVAL;
1201 }
1202 }
1203
1204 /* Sends power off command to the chip */
fm_power_down(struct fmdev * fmdev)1205 static int fm_power_down(struct fmdev *fmdev)
1206 {
1207 u16 payload;
1208 int ret;
1209
1210 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1211 fmerr("FM core is not ready\n");
1212 return -EPERM;
1213 }
1214 if (fmdev->curr_fmmode == FM_MODE_OFF) {
1215 fmdbg("FM chip is already in OFF state\n");
1216 return 0;
1217 }
1218
1219 payload = 0x0;
1220 ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1221 sizeof(payload), NULL, NULL);
1222 if (ret < 0)
1223 return ret;
1224
1225 return fmc_release(fmdev);
1226 }
1227
1228 /* Reads init command from FM firmware file and loads to the chip */
fm_download_firmware(struct fmdev * fmdev,const u8 * fw_name)1229 static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name)
1230 {
1231 const struct firmware *fw_entry;
1232 struct bts_header *fw_header;
1233 struct bts_action *action;
1234 struct bts_action_delay *delay;
1235 u8 *fw_data;
1236 int ret, fw_len, cmd_cnt;
1237
1238 cmd_cnt = 0;
1239 set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1240
1241 ret = request_firmware(&fw_entry, fw_name,
1242 &fmdev->radio_dev->dev);
1243 if (ret < 0) {
1244 fmerr("Unable to read firmware(%s) content\n", fw_name);
1245 return ret;
1246 }
1247 fmdbg("Firmware(%s) length : %zu bytes\n", fw_name, fw_entry->size);
1248
1249 fw_data = (void *)fw_entry->data;
1250 fw_len = fw_entry->size;
1251
1252 fw_header = (struct bts_header *)fw_data;
1253 if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) {
1254 fmerr("%s not a legal TI firmware file\n", fw_name);
1255 ret = -EINVAL;
1256 goto rel_fw;
1257 }
1258 fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic);
1259
1260 /* Skip file header info , we already verified it */
1261 fw_data += sizeof(struct bts_header);
1262 fw_len -= sizeof(struct bts_header);
1263
1264 while (fw_data && fw_len > 0) {
1265 action = (struct bts_action *)fw_data;
1266
1267 switch (action->type) {
1268 case ACTION_SEND_COMMAND: /* Send */
1269 ret = fmc_send_cmd(fmdev, 0, 0, action->data,
1270 action->size, NULL, NULL);
1271 if (ret)
1272 goto rel_fw;
1273
1274 cmd_cnt++;
1275 break;
1276
1277 case ACTION_DELAY: /* Delay */
1278 delay = (struct bts_action_delay *)action->data;
1279 mdelay(delay->msec);
1280 break;
1281 }
1282
1283 fw_data += (sizeof(struct bts_action) + (action->size));
1284 fw_len -= (sizeof(struct bts_action) + (action->size));
1285 }
1286 fmdbg("Firmware commands(%d) loaded to chip\n", cmd_cnt);
1287 rel_fw:
1288 release_firmware(fw_entry);
1289 clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1290
1291 return ret;
1292 }
1293
1294 /* Loads default RX configuration to the chip */
load_default_rx_configuration(struct fmdev * fmdev)1295 static int load_default_rx_configuration(struct fmdev *fmdev)
1296 {
1297 int ret;
1298
1299 ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME);
1300 if (ret < 0)
1301 return ret;
1302
1303 return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD);
1304 }
1305
1306 /* Does FM power on sequence */
fm_power_up(struct fmdev * fmdev,u8 mode)1307 static int fm_power_up(struct fmdev *fmdev, u8 mode)
1308 {
1309 u16 payload;
1310 __be16 asic_id = 0, asic_ver = 0;
1311 int resp_len, ret;
1312 u8 fw_name[50];
1313
1314 if (mode >= FM_MODE_ENTRY_MAX) {
1315 fmerr("Invalid firmware download option\n");
1316 return -EINVAL;
1317 }
1318
1319 /*
1320 * Initialize FM common module. FM GPIO toggling is
1321 * taken care in Shared Transport driver.
1322 */
1323 ret = fmc_prepare(fmdev);
1324 if (ret < 0) {
1325 fmerr("Unable to prepare FM Common\n");
1326 return ret;
1327 }
1328
1329 payload = FM_ENABLE;
1330 if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1331 sizeof(payload), NULL, NULL))
1332 goto rel;
1333
1334 /* Allow the chip to settle down in Channel-8 mode */
1335 msleep(20);
1336
1337 if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL,
1338 sizeof(asic_id), &asic_id, &resp_len))
1339 goto rel;
1340
1341 if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL,
1342 sizeof(asic_ver), &asic_ver, &resp_len))
1343 goto rel;
1344
1345 fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n",
1346 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1347
1348 sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START,
1349 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1350
1351 ret = fm_download_firmware(fmdev, fw_name);
1352 if (ret < 0) {
1353 fmdbg("Failed to download firmware file %s\n", fw_name);
1354 goto rel;
1355 }
1356 sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ?
1357 FM_RX_FW_FILE_START : FM_TX_FW_FILE_START,
1358 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1359
1360 ret = fm_download_firmware(fmdev, fw_name);
1361 if (ret < 0) {
1362 fmdbg("Failed to download firmware file %s\n", fw_name);
1363 goto rel;
1364 } else
1365 return ret;
1366 rel:
1367 return fmc_release(fmdev);
1368 }
1369
1370 /* Set FM Modes(TX, RX, OFF) */
fmc_set_mode(struct fmdev * fmdev,u8 fm_mode)1371 int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode)
1372 {
1373 int ret = 0;
1374
1375 if (fm_mode >= FM_MODE_ENTRY_MAX) {
1376 fmerr("Invalid FM mode\n");
1377 return -EINVAL;
1378 }
1379 if (fmdev->curr_fmmode == fm_mode) {
1380 fmdbg("Already fm is in mode(%d)\n", fm_mode);
1381 return ret;
1382 }
1383
1384 switch (fm_mode) {
1385 case FM_MODE_OFF: /* OFF Mode */
1386 ret = fm_power_down(fmdev);
1387 if (ret < 0) {
1388 fmerr("Failed to set OFF mode\n");
1389 return ret;
1390 }
1391 break;
1392
1393 case FM_MODE_TX: /* TX Mode */
1394 case FM_MODE_RX: /* RX Mode */
1395 /* Power down before switching to TX or RX mode */
1396 if (fmdev->curr_fmmode != FM_MODE_OFF) {
1397 ret = fm_power_down(fmdev);
1398 if (ret < 0) {
1399 fmerr("Failed to set OFF mode\n");
1400 return ret;
1401 }
1402 msleep(30);
1403 }
1404 ret = fm_power_up(fmdev, fm_mode);
1405 if (ret < 0) {
1406 fmerr("Failed to load firmware\n");
1407 return ret;
1408 }
1409 }
1410 fmdev->curr_fmmode = fm_mode;
1411
1412 /* Set default configuration */
1413 if (fmdev->curr_fmmode == FM_MODE_RX) {
1414 fmdbg("Loading default rx configuration..\n");
1415 ret = load_default_rx_configuration(fmdev);
1416 if (ret < 0)
1417 fmerr("Failed to load default values\n");
1418 }
1419
1420 return ret;
1421 }
1422
1423 /* Returns current FM mode (TX, RX, OFF) */
fmc_get_mode(struct fmdev * fmdev,u8 * fmmode)1424 int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode)
1425 {
1426 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1427 fmerr("FM core is not ready\n");
1428 return -EPERM;
1429 }
1430 if (fmmode == NULL) {
1431 fmerr("Invalid memory\n");
1432 return -ENOMEM;
1433 }
1434
1435 *fmmode = fmdev->curr_fmmode;
1436 return 0;
1437 }
1438
1439 /* Called by ST layer when FM packet is available */
fm_st_receive(void * arg,struct sk_buff * skb)1440 static long fm_st_receive(void *arg, struct sk_buff *skb)
1441 {
1442 struct fmdev *fmdev;
1443
1444 fmdev = (struct fmdev *)arg;
1445
1446 if (skb == NULL) {
1447 fmerr("Invalid SKB received from ST\n");
1448 return -EFAULT;
1449 }
1450
1451 if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) {
1452 fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb);
1453 return -EINVAL;
1454 }
1455
1456 memcpy(skb_push(skb, 1), &skb->cb[0], 1);
1457 skb_queue_tail(&fmdev->rx_q, skb);
1458 tasklet_schedule(&fmdev->rx_task);
1459
1460 return 0;
1461 }
1462
1463 /*
1464 * Called by ST layer to indicate protocol registration completion
1465 * status.
1466 */
fm_st_reg_comp_cb(void * arg,int data)1467 static void fm_st_reg_comp_cb(void *arg, int data)
1468 {
1469 struct fmdev *fmdev;
1470
1471 fmdev = (struct fmdev *)arg;
1472 fmdev->streg_cbdata = data;
1473 complete(&wait_for_fmdrv_reg_comp);
1474 }
1475
1476 /*
1477 * This function will be called from FM V4L2 open function.
1478 * Register with ST driver and initialize driver data.
1479 */
fmc_prepare(struct fmdev * fmdev)1480 int fmc_prepare(struct fmdev *fmdev)
1481 {
1482 static struct st_proto_s fm_st_proto;
1483 int ret;
1484
1485 if (test_bit(FM_CORE_READY, &fmdev->flag)) {
1486 fmdbg("FM Core is already up\n");
1487 return 0;
1488 }
1489
1490 memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1491 fm_st_proto.recv = fm_st_receive;
1492 fm_st_proto.match_packet = NULL;
1493 fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb;
1494 fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */
1495 fm_st_proto.priv_data = fmdev;
1496 fm_st_proto.chnl_id = 0x08;
1497 fm_st_proto.max_frame_size = 0xff;
1498 fm_st_proto.hdr_len = 1;
1499 fm_st_proto.offset_len_in_hdr = 0;
1500 fm_st_proto.len_size = 1;
1501 fm_st_proto.reserve = 1;
1502
1503 ret = st_register(&fm_st_proto);
1504 if (ret == -EINPROGRESS) {
1505 init_completion(&wait_for_fmdrv_reg_comp);
1506 fmdev->streg_cbdata = -EINPROGRESS;
1507 fmdbg("%s waiting for ST reg completion signal\n", __func__);
1508
1509 if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp,
1510 FM_ST_REG_TIMEOUT)) {
1511 fmerr("Timeout(%d sec), didn't get reg completion signal from ST\n",
1512 jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000);
1513 return -ETIMEDOUT;
1514 }
1515 if (fmdev->streg_cbdata != 0) {
1516 fmerr("ST reg comp CB called with error status %d\n",
1517 fmdev->streg_cbdata);
1518 return -EAGAIN;
1519 }
1520
1521 ret = 0;
1522 } else if (ret < 0) {
1523 fmerr("st_register failed %d\n", ret);
1524 return -EAGAIN;
1525 }
1526
1527 if (fm_st_proto.write != NULL) {
1528 g_st_write = fm_st_proto.write;
1529 } else {
1530 fmerr("Failed to get ST write func pointer\n");
1531 ret = st_unregister(&fm_st_proto);
1532 if (ret < 0)
1533 fmerr("st_unregister failed %d\n", ret);
1534 return -EAGAIN;
1535 }
1536
1537 spin_lock_init(&fmdev->rds_buff_lock);
1538 spin_lock_init(&fmdev->resp_skb_lock);
1539
1540 /* Initialize TX queue and TX tasklet */
1541 skb_queue_head_init(&fmdev->tx_q);
1542 tasklet_setup(&fmdev->tx_task, send_tasklet);
1543
1544 /* Initialize RX Queue and RX tasklet */
1545 skb_queue_head_init(&fmdev->rx_q);
1546 tasklet_setup(&fmdev->rx_task, recv_tasklet);
1547
1548 fmdev->irq_info.stage = 0;
1549 atomic_set(&fmdev->tx_cnt, 1);
1550 fmdev->resp_comp = NULL;
1551
1552 timer_setup(&fmdev->irq_info.timer, int_timeout_handler, 0);
1553 /*TODO: add FM_STIC_EVENT later */
1554 fmdev->irq_info.mask = FM_MAL_EVENT;
1555
1556 /* Region info */
1557 fmdev->rx.region = region_configs[default_radio_region];
1558
1559 fmdev->rx.mute_mode = FM_MUTE_OFF;
1560 fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF;
1561 fmdev->rx.rds.flag = FM_RDS_DISABLE;
1562 fmdev->rx.freq = FM_UNDEFINED_FREQ;
1563 fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS;
1564 fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF;
1565 fmdev->irq_info.retry = 0;
1566
1567 fm_rx_reset_rds_cache(fmdev);
1568 init_waitqueue_head(&fmdev->rx.rds.read_queue);
1569
1570 fm_rx_reset_station_info(fmdev);
1571 set_bit(FM_CORE_READY, &fmdev->flag);
1572
1573 return ret;
1574 }
1575
1576 /*
1577 * This function will be called from FM V4L2 release function.
1578 * Unregister from ST driver.
1579 */
fmc_release(struct fmdev * fmdev)1580 int fmc_release(struct fmdev *fmdev)
1581 {
1582 static struct st_proto_s fm_st_proto;
1583 int ret;
1584
1585 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1586 fmdbg("FM Core is already down\n");
1587 return 0;
1588 }
1589 /* Service pending read */
1590 wake_up_interruptible(&fmdev->rx.rds.read_queue);
1591
1592 tasklet_kill(&fmdev->tx_task);
1593 tasklet_kill(&fmdev->rx_task);
1594
1595 skb_queue_purge(&fmdev->tx_q);
1596 skb_queue_purge(&fmdev->rx_q);
1597
1598 fmdev->resp_comp = NULL;
1599 fmdev->rx.freq = 0;
1600
1601 memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1602 fm_st_proto.chnl_id = 0x08;
1603
1604 ret = st_unregister(&fm_st_proto);
1605
1606 if (ret < 0)
1607 fmerr("Failed to de-register FM from ST %d\n", ret);
1608 else
1609 fmdbg("Successfully unregistered from ST\n");
1610
1611 clear_bit(FM_CORE_READY, &fmdev->flag);
1612 return ret;
1613 }
1614
1615 /*
1616 * Module init function. Ask FM V4L module to register video device.
1617 * Allocate memory for FM driver context and RX RDS buffer.
1618 */
fm_drv_init(void)1619 static int __init fm_drv_init(void)
1620 {
1621 struct fmdev *fmdev = NULL;
1622 int ret = -ENOMEM;
1623
1624 fmdbg("FM driver version %s\n", FM_DRV_VERSION);
1625
1626 fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL);
1627 if (NULL == fmdev) {
1628 fmerr("Can't allocate operation structure memory\n");
1629 return ret;
1630 }
1631 fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE;
1632 fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL);
1633 if (NULL == fmdev->rx.rds.buff) {
1634 fmerr("Can't allocate rds ring buffer\n");
1635 goto rel_dev;
1636 }
1637
1638 ret = fm_v4l2_init_video_device(fmdev, radio_nr);
1639 if (ret < 0)
1640 goto rel_rdsbuf;
1641
1642 fmdev->irq_info.handlers = int_handler_table;
1643 fmdev->curr_fmmode = FM_MODE_OFF;
1644 fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF;
1645 fmdev->tx_data.preemph = FM_TX_PREEMPH_50US;
1646 return ret;
1647
1648 rel_rdsbuf:
1649 kfree(fmdev->rx.rds.buff);
1650 rel_dev:
1651 kfree(fmdev);
1652
1653 return ret;
1654 }
1655
1656 /* Module exit function. Ask FM V4L module to unregister video device */
fm_drv_exit(void)1657 static void __exit fm_drv_exit(void)
1658 {
1659 struct fmdev *fmdev = NULL;
1660
1661 fmdev = fm_v4l2_deinit_video_device();
1662 if (fmdev != NULL) {
1663 kfree(fmdev->rx.rds.buff);
1664 kfree(fmdev);
1665 }
1666 }
1667
1668 module_init(fm_drv_init);
1669 module_exit(fm_drv_exit);
1670
1671 /* ------------- Module Info ------------- */
1672 MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>");
1673 MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION);
1674 MODULE_VERSION(FM_DRV_VERSION);
1675 MODULE_LICENSE("GPL");
1676