• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    drbd_worker.c
4 
5    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6 
7    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10 
11 
12 */
13 
14 #include <linux/module.h>
15 #include <linux/drbd.h>
16 #include <linux/sched/signal.h>
17 #include <linux/wait.h>
18 #include <linux/mm.h>
19 #include <linux/memcontrol.h>
20 #include <linux/mm_inline.h>
21 #include <linux/slab.h>
22 #include <linux/random.h>
23 #include <linux/string.h>
24 #include <linux/scatterlist.h>
25 #include <linux/part_stat.h>
26 
27 #include "drbd_int.h"
28 #include "drbd_protocol.h"
29 #include "drbd_req.h"
30 
31 static int make_ov_request(struct drbd_device *, int);
32 static int make_resync_request(struct drbd_device *, int);
33 
34 /* endio handlers:
35  *   drbd_md_endio (defined here)
36  *   drbd_request_endio (defined here)
37  *   drbd_peer_request_endio (defined here)
38  *   drbd_bm_endio (defined in drbd_bitmap.c)
39  *
40  * For all these callbacks, note the following:
41  * The callbacks will be called in irq context by the IDE drivers,
42  * and in Softirqs/Tasklets/BH context by the SCSI drivers.
43  * Try to get the locking right :)
44  *
45  */
46 
47 /* used for synchronous meta data and bitmap IO
48  * submitted by drbd_md_sync_page_io()
49  */
drbd_md_endio(struct bio * bio)50 void drbd_md_endio(struct bio *bio)
51 {
52 	struct drbd_device *device;
53 
54 	device = bio->bi_private;
55 	device->md_io.error = blk_status_to_errno(bio->bi_status);
56 
57 	/* special case: drbd_md_read() during drbd_adm_attach() */
58 	if (device->ldev)
59 		put_ldev(device);
60 	bio_put(bio);
61 
62 	/* We grabbed an extra reference in _drbd_md_sync_page_io() to be able
63 	 * to timeout on the lower level device, and eventually detach from it.
64 	 * If this io completion runs after that timeout expired, this
65 	 * drbd_md_put_buffer() may allow us to finally try and re-attach.
66 	 * During normal operation, this only puts that extra reference
67 	 * down to 1 again.
68 	 * Make sure we first drop the reference, and only then signal
69 	 * completion, or we may (in drbd_al_read_log()) cycle so fast into the
70 	 * next drbd_md_sync_page_io(), that we trigger the
71 	 * ASSERT(atomic_read(&device->md_io_in_use) == 1) there.
72 	 */
73 	drbd_md_put_buffer(device);
74 	device->md_io.done = 1;
75 	wake_up(&device->misc_wait);
76 }
77 
78 /* reads on behalf of the partner,
79  * "submitted" by the receiver
80  */
drbd_endio_read_sec_final(struct drbd_peer_request * peer_req)81 static void drbd_endio_read_sec_final(struct drbd_peer_request *peer_req) __releases(local)
82 {
83 	unsigned long flags = 0;
84 	struct drbd_peer_device *peer_device = peer_req->peer_device;
85 	struct drbd_device *device = peer_device->device;
86 
87 	spin_lock_irqsave(&device->resource->req_lock, flags);
88 	device->read_cnt += peer_req->i.size >> 9;
89 	list_del(&peer_req->w.list);
90 	if (list_empty(&device->read_ee))
91 		wake_up(&device->ee_wait);
92 	if (test_bit(__EE_WAS_ERROR, &peer_req->flags))
93 		__drbd_chk_io_error(device, DRBD_READ_ERROR);
94 	spin_unlock_irqrestore(&device->resource->req_lock, flags);
95 
96 	drbd_queue_work(&peer_device->connection->sender_work, &peer_req->w);
97 	put_ldev(device);
98 }
99 
100 /* writes on behalf of the partner, or resync writes,
101  * "submitted" by the receiver, final stage.  */
drbd_endio_write_sec_final(struct drbd_peer_request * peer_req)102 void drbd_endio_write_sec_final(struct drbd_peer_request *peer_req) __releases(local)
103 {
104 	unsigned long flags = 0;
105 	struct drbd_peer_device *peer_device = peer_req->peer_device;
106 	struct drbd_device *device = peer_device->device;
107 	struct drbd_connection *connection = peer_device->connection;
108 	struct drbd_interval i;
109 	int do_wake;
110 	u64 block_id;
111 	int do_al_complete_io;
112 
113 	/* after we moved peer_req to done_ee,
114 	 * we may no longer access it,
115 	 * it may be freed/reused already!
116 	 * (as soon as we release the req_lock) */
117 	i = peer_req->i;
118 	do_al_complete_io = peer_req->flags & EE_CALL_AL_COMPLETE_IO;
119 	block_id = peer_req->block_id;
120 	peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
121 
122 	if (peer_req->flags & EE_WAS_ERROR) {
123 		/* In protocol != C, we usually do not send write acks.
124 		 * In case of a write error, send the neg ack anyways. */
125 		if (!__test_and_set_bit(__EE_SEND_WRITE_ACK, &peer_req->flags))
126 			inc_unacked(device);
127 		drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size);
128 	}
129 
130 	spin_lock_irqsave(&device->resource->req_lock, flags);
131 	device->writ_cnt += peer_req->i.size >> 9;
132 	list_move_tail(&peer_req->w.list, &device->done_ee);
133 
134 	/*
135 	 * Do not remove from the write_requests tree here: we did not send the
136 	 * Ack yet and did not wake possibly waiting conflicting requests.
137 	 * Removed from the tree from "drbd_process_done_ee" within the
138 	 * appropriate dw.cb (e_end_block/e_end_resync_block) or from
139 	 * _drbd_clear_done_ee.
140 	 */
141 
142 	do_wake = list_empty(block_id == ID_SYNCER ? &device->sync_ee : &device->active_ee);
143 
144 	/* FIXME do we want to detach for failed REQ_OP_DISCARD?
145 	 * ((peer_req->flags & (EE_WAS_ERROR|EE_TRIM)) == EE_WAS_ERROR) */
146 	if (peer_req->flags & EE_WAS_ERROR)
147 		__drbd_chk_io_error(device, DRBD_WRITE_ERROR);
148 
149 	if (connection->cstate >= C_WF_REPORT_PARAMS) {
150 		kref_get(&device->kref); /* put is in drbd_send_acks_wf() */
151 		if (!queue_work(connection->ack_sender, &peer_device->send_acks_work))
152 			kref_put(&device->kref, drbd_destroy_device);
153 	}
154 	spin_unlock_irqrestore(&device->resource->req_lock, flags);
155 
156 	if (block_id == ID_SYNCER)
157 		drbd_rs_complete_io(device, i.sector);
158 
159 	if (do_wake)
160 		wake_up(&device->ee_wait);
161 
162 	if (do_al_complete_io)
163 		drbd_al_complete_io(device, &i);
164 
165 	put_ldev(device);
166 }
167 
168 /* writes on behalf of the partner, or resync writes,
169  * "submitted" by the receiver.
170  */
drbd_peer_request_endio(struct bio * bio)171 void drbd_peer_request_endio(struct bio *bio)
172 {
173 	struct drbd_peer_request *peer_req = bio->bi_private;
174 	struct drbd_device *device = peer_req->peer_device->device;
175 	bool is_write = bio_data_dir(bio) == WRITE;
176 	bool is_discard = bio_op(bio) == REQ_OP_WRITE_ZEROES ||
177 			  bio_op(bio) == REQ_OP_DISCARD;
178 
179 	if (bio->bi_status && __ratelimit(&drbd_ratelimit_state))
180 		drbd_warn(device, "%s: error=%d s=%llus\n",
181 				is_write ? (is_discard ? "discard" : "write")
182 					: "read", bio->bi_status,
183 				(unsigned long long)peer_req->i.sector);
184 
185 	if (bio->bi_status)
186 		set_bit(__EE_WAS_ERROR, &peer_req->flags);
187 
188 	bio_put(bio); /* no need for the bio anymore */
189 	if (atomic_dec_and_test(&peer_req->pending_bios)) {
190 		if (is_write)
191 			drbd_endio_write_sec_final(peer_req);
192 		else
193 			drbd_endio_read_sec_final(peer_req);
194 	}
195 }
196 
197 static void
drbd_panic_after_delayed_completion_of_aborted_request(struct drbd_device * device)198 drbd_panic_after_delayed_completion_of_aborted_request(struct drbd_device *device)
199 {
200 	panic("drbd%u %s/%u potential random memory corruption caused by delayed completion of aborted local request\n",
201 		device->minor, device->resource->name, device->vnr);
202 }
203 
204 /* read, readA or write requests on R_PRIMARY coming from drbd_make_request
205  */
drbd_request_endio(struct bio * bio)206 void drbd_request_endio(struct bio *bio)
207 {
208 	unsigned long flags;
209 	struct drbd_request *req = bio->bi_private;
210 	struct drbd_device *device = req->device;
211 	struct bio_and_error m;
212 	enum drbd_req_event what;
213 
214 	/* If this request was aborted locally before,
215 	 * but now was completed "successfully",
216 	 * chances are that this caused arbitrary data corruption.
217 	 *
218 	 * "aborting" requests, or force-detaching the disk, is intended for
219 	 * completely blocked/hung local backing devices which do no longer
220 	 * complete requests at all, not even do error completions.  In this
221 	 * situation, usually a hard-reset and failover is the only way out.
222 	 *
223 	 * By "aborting", basically faking a local error-completion,
224 	 * we allow for a more graceful swichover by cleanly migrating services.
225 	 * Still the affected node has to be rebooted "soon".
226 	 *
227 	 * By completing these requests, we allow the upper layers to re-use
228 	 * the associated data pages.
229 	 *
230 	 * If later the local backing device "recovers", and now DMAs some data
231 	 * from disk into the original request pages, in the best case it will
232 	 * just put random data into unused pages; but typically it will corrupt
233 	 * meanwhile completely unrelated data, causing all sorts of damage.
234 	 *
235 	 * Which means delayed successful completion,
236 	 * especially for READ requests,
237 	 * is a reason to panic().
238 	 *
239 	 * We assume that a delayed *error* completion is OK,
240 	 * though we still will complain noisily about it.
241 	 */
242 	if (unlikely(req->rq_state & RQ_LOCAL_ABORTED)) {
243 		if (__ratelimit(&drbd_ratelimit_state))
244 			drbd_emerg(device, "delayed completion of aborted local request; disk-timeout may be too aggressive\n");
245 
246 		if (!bio->bi_status)
247 			drbd_panic_after_delayed_completion_of_aborted_request(device);
248 	}
249 
250 	/* to avoid recursion in __req_mod */
251 	if (unlikely(bio->bi_status)) {
252 		switch (bio_op(bio)) {
253 		case REQ_OP_WRITE_ZEROES:
254 		case REQ_OP_DISCARD:
255 			if (bio->bi_status == BLK_STS_NOTSUPP)
256 				what = DISCARD_COMPLETED_NOTSUPP;
257 			else
258 				what = DISCARD_COMPLETED_WITH_ERROR;
259 			break;
260 		case REQ_OP_READ:
261 			if (bio->bi_opf & REQ_RAHEAD)
262 				what = READ_AHEAD_COMPLETED_WITH_ERROR;
263 			else
264 				what = READ_COMPLETED_WITH_ERROR;
265 			break;
266 		default:
267 			what = WRITE_COMPLETED_WITH_ERROR;
268 			break;
269 		}
270 	} else {
271 		what = COMPLETED_OK;
272 	}
273 
274 	req->private_bio = ERR_PTR(blk_status_to_errno(bio->bi_status));
275 	bio_put(bio);
276 
277 	/* not req_mod(), we need irqsave here! */
278 	spin_lock_irqsave(&device->resource->req_lock, flags);
279 	__req_mod(req, what, &m);
280 	spin_unlock_irqrestore(&device->resource->req_lock, flags);
281 	put_ldev(device);
282 
283 	if (m.bio)
284 		complete_master_bio(device, &m);
285 }
286 
drbd_csum_ee(struct crypto_shash * tfm,struct drbd_peer_request * peer_req,void * digest)287 void drbd_csum_ee(struct crypto_shash *tfm, struct drbd_peer_request *peer_req, void *digest)
288 {
289 	SHASH_DESC_ON_STACK(desc, tfm);
290 	struct page *page = peer_req->pages;
291 	struct page *tmp;
292 	unsigned len;
293 	void *src;
294 
295 	desc->tfm = tfm;
296 
297 	crypto_shash_init(desc);
298 
299 	src = kmap_atomic(page);
300 	while ((tmp = page_chain_next(page))) {
301 		/* all but the last page will be fully used */
302 		crypto_shash_update(desc, src, PAGE_SIZE);
303 		kunmap_atomic(src);
304 		page = tmp;
305 		src = kmap_atomic(page);
306 	}
307 	/* and now the last, possibly only partially used page */
308 	len = peer_req->i.size & (PAGE_SIZE - 1);
309 	crypto_shash_update(desc, src, len ?: PAGE_SIZE);
310 	kunmap_atomic(src);
311 
312 	crypto_shash_final(desc, digest);
313 	shash_desc_zero(desc);
314 }
315 
drbd_csum_bio(struct crypto_shash * tfm,struct bio * bio,void * digest)316 void drbd_csum_bio(struct crypto_shash *tfm, struct bio *bio, void *digest)
317 {
318 	SHASH_DESC_ON_STACK(desc, tfm);
319 	struct bio_vec bvec;
320 	struct bvec_iter iter;
321 
322 	desc->tfm = tfm;
323 
324 	crypto_shash_init(desc);
325 
326 	bio_for_each_segment(bvec, bio, iter) {
327 		u8 *src;
328 
329 		src = kmap_atomic(bvec.bv_page);
330 		crypto_shash_update(desc, src + bvec.bv_offset, bvec.bv_len);
331 		kunmap_atomic(src);
332 
333 		/* REQ_OP_WRITE_SAME has only one segment,
334 		 * checksum the payload only once. */
335 		if (bio_op(bio) == REQ_OP_WRITE_SAME)
336 			break;
337 	}
338 	crypto_shash_final(desc, digest);
339 	shash_desc_zero(desc);
340 }
341 
342 /* MAYBE merge common code with w_e_end_ov_req */
w_e_send_csum(struct drbd_work * w,int cancel)343 static int w_e_send_csum(struct drbd_work *w, int cancel)
344 {
345 	struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
346 	struct drbd_peer_device *peer_device = peer_req->peer_device;
347 	struct drbd_device *device = peer_device->device;
348 	int digest_size;
349 	void *digest;
350 	int err = 0;
351 
352 	if (unlikely(cancel))
353 		goto out;
354 
355 	if (unlikely((peer_req->flags & EE_WAS_ERROR) != 0))
356 		goto out;
357 
358 	digest_size = crypto_shash_digestsize(peer_device->connection->csums_tfm);
359 	digest = kmalloc(digest_size, GFP_NOIO);
360 	if (digest) {
361 		sector_t sector = peer_req->i.sector;
362 		unsigned int size = peer_req->i.size;
363 		drbd_csum_ee(peer_device->connection->csums_tfm, peer_req, digest);
364 		/* Free peer_req and pages before send.
365 		 * In case we block on congestion, we could otherwise run into
366 		 * some distributed deadlock, if the other side blocks on
367 		 * congestion as well, because our receiver blocks in
368 		 * drbd_alloc_pages due to pp_in_use > max_buffers. */
369 		drbd_free_peer_req(device, peer_req);
370 		peer_req = NULL;
371 		inc_rs_pending(device);
372 		err = drbd_send_drequest_csum(peer_device, sector, size,
373 					      digest, digest_size,
374 					      P_CSUM_RS_REQUEST);
375 		kfree(digest);
376 	} else {
377 		drbd_err(device, "kmalloc() of digest failed.\n");
378 		err = -ENOMEM;
379 	}
380 
381 out:
382 	if (peer_req)
383 		drbd_free_peer_req(device, peer_req);
384 
385 	if (unlikely(err))
386 		drbd_err(device, "drbd_send_drequest(..., csum) failed\n");
387 	return err;
388 }
389 
390 #define GFP_TRY	(__GFP_HIGHMEM | __GFP_NOWARN)
391 
read_for_csum(struct drbd_peer_device * peer_device,sector_t sector,int size)392 static int read_for_csum(struct drbd_peer_device *peer_device, sector_t sector, int size)
393 {
394 	struct drbd_device *device = peer_device->device;
395 	struct drbd_peer_request *peer_req;
396 
397 	if (!get_ldev(device))
398 		return -EIO;
399 
400 	/* GFP_TRY, because if there is no memory available right now, this may
401 	 * be rescheduled for later. It is "only" background resync, after all. */
402 	peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER /* unused */, sector,
403 				       size, size, GFP_TRY);
404 	if (!peer_req)
405 		goto defer;
406 
407 	peer_req->w.cb = w_e_send_csum;
408 	spin_lock_irq(&device->resource->req_lock);
409 	list_add_tail(&peer_req->w.list, &device->read_ee);
410 	spin_unlock_irq(&device->resource->req_lock);
411 
412 	atomic_add(size >> 9, &device->rs_sect_ev);
413 	if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ, 0,
414 				     DRBD_FAULT_RS_RD) == 0)
415 		return 0;
416 
417 	/* If it failed because of ENOMEM, retry should help.  If it failed
418 	 * because bio_add_page failed (probably broken lower level driver),
419 	 * retry may or may not help.
420 	 * If it does not, you may need to force disconnect. */
421 	spin_lock_irq(&device->resource->req_lock);
422 	list_del(&peer_req->w.list);
423 	spin_unlock_irq(&device->resource->req_lock);
424 
425 	drbd_free_peer_req(device, peer_req);
426 defer:
427 	put_ldev(device);
428 	return -EAGAIN;
429 }
430 
w_resync_timer(struct drbd_work * w,int cancel)431 int w_resync_timer(struct drbd_work *w, int cancel)
432 {
433 	struct drbd_device *device =
434 		container_of(w, struct drbd_device, resync_work);
435 
436 	switch (device->state.conn) {
437 	case C_VERIFY_S:
438 		make_ov_request(device, cancel);
439 		break;
440 	case C_SYNC_TARGET:
441 		make_resync_request(device, cancel);
442 		break;
443 	}
444 
445 	return 0;
446 }
447 
resync_timer_fn(struct timer_list * t)448 void resync_timer_fn(struct timer_list *t)
449 {
450 	struct drbd_device *device = from_timer(device, t, resync_timer);
451 
452 	drbd_queue_work_if_unqueued(
453 		&first_peer_device(device)->connection->sender_work,
454 		&device->resync_work);
455 }
456 
fifo_set(struct fifo_buffer * fb,int value)457 static void fifo_set(struct fifo_buffer *fb, int value)
458 {
459 	int i;
460 
461 	for (i = 0; i < fb->size; i++)
462 		fb->values[i] = value;
463 }
464 
fifo_push(struct fifo_buffer * fb,int value)465 static int fifo_push(struct fifo_buffer *fb, int value)
466 {
467 	int ov;
468 
469 	ov = fb->values[fb->head_index];
470 	fb->values[fb->head_index++] = value;
471 
472 	if (fb->head_index >= fb->size)
473 		fb->head_index = 0;
474 
475 	return ov;
476 }
477 
fifo_add_val(struct fifo_buffer * fb,int value)478 static void fifo_add_val(struct fifo_buffer *fb, int value)
479 {
480 	int i;
481 
482 	for (i = 0; i < fb->size; i++)
483 		fb->values[i] += value;
484 }
485 
fifo_alloc(unsigned int fifo_size)486 struct fifo_buffer *fifo_alloc(unsigned int fifo_size)
487 {
488 	struct fifo_buffer *fb;
489 
490 	fb = kzalloc(struct_size(fb, values, fifo_size), GFP_NOIO);
491 	if (!fb)
492 		return NULL;
493 
494 	fb->head_index = 0;
495 	fb->size = fifo_size;
496 	fb->total = 0;
497 
498 	return fb;
499 }
500 
drbd_rs_controller(struct drbd_device * device,unsigned int sect_in)501 static int drbd_rs_controller(struct drbd_device *device, unsigned int sect_in)
502 {
503 	struct disk_conf *dc;
504 	unsigned int want;     /* The number of sectors we want in-flight */
505 	int req_sect; /* Number of sectors to request in this turn */
506 	int correction; /* Number of sectors more we need in-flight */
507 	int cps; /* correction per invocation of drbd_rs_controller() */
508 	int steps; /* Number of time steps to plan ahead */
509 	int curr_corr;
510 	int max_sect;
511 	struct fifo_buffer *plan;
512 
513 	dc = rcu_dereference(device->ldev->disk_conf);
514 	plan = rcu_dereference(device->rs_plan_s);
515 
516 	steps = plan->size; /* (dc->c_plan_ahead * 10 * SLEEP_TIME) / HZ; */
517 
518 	if (device->rs_in_flight + sect_in == 0) { /* At start of resync */
519 		want = ((dc->resync_rate * 2 * SLEEP_TIME) / HZ) * steps;
520 	} else { /* normal path */
521 		want = dc->c_fill_target ? dc->c_fill_target :
522 			sect_in * dc->c_delay_target * HZ / (SLEEP_TIME * 10);
523 	}
524 
525 	correction = want - device->rs_in_flight - plan->total;
526 
527 	/* Plan ahead */
528 	cps = correction / steps;
529 	fifo_add_val(plan, cps);
530 	plan->total += cps * steps;
531 
532 	/* What we do in this step */
533 	curr_corr = fifo_push(plan, 0);
534 	plan->total -= curr_corr;
535 
536 	req_sect = sect_in + curr_corr;
537 	if (req_sect < 0)
538 		req_sect = 0;
539 
540 	max_sect = (dc->c_max_rate * 2 * SLEEP_TIME) / HZ;
541 	if (req_sect > max_sect)
542 		req_sect = max_sect;
543 
544 	/*
545 	drbd_warn(device, "si=%u if=%d wa=%u co=%d st=%d cps=%d pl=%d cc=%d rs=%d\n",
546 		 sect_in, device->rs_in_flight, want, correction,
547 		 steps, cps, device->rs_planed, curr_corr, req_sect);
548 	*/
549 
550 	return req_sect;
551 }
552 
drbd_rs_number_requests(struct drbd_device * device)553 static int drbd_rs_number_requests(struct drbd_device *device)
554 {
555 	unsigned int sect_in;  /* Number of sectors that came in since the last turn */
556 	int number, mxb;
557 
558 	sect_in = atomic_xchg(&device->rs_sect_in, 0);
559 	device->rs_in_flight -= sect_in;
560 
561 	rcu_read_lock();
562 	mxb = drbd_get_max_buffers(device) / 2;
563 	if (rcu_dereference(device->rs_plan_s)->size) {
564 		number = drbd_rs_controller(device, sect_in) >> (BM_BLOCK_SHIFT - 9);
565 		device->c_sync_rate = number * HZ * (BM_BLOCK_SIZE / 1024) / SLEEP_TIME;
566 	} else {
567 		device->c_sync_rate = rcu_dereference(device->ldev->disk_conf)->resync_rate;
568 		number = SLEEP_TIME * device->c_sync_rate  / ((BM_BLOCK_SIZE / 1024) * HZ);
569 	}
570 	rcu_read_unlock();
571 
572 	/* Don't have more than "max-buffers"/2 in-flight.
573 	 * Otherwise we may cause the remote site to stall on drbd_alloc_pages(),
574 	 * potentially causing a distributed deadlock on congestion during
575 	 * online-verify or (checksum-based) resync, if max-buffers,
576 	 * socket buffer sizes and resync rate settings are mis-configured. */
577 
578 	/* note that "number" is in units of "BM_BLOCK_SIZE" (which is 4k),
579 	 * mxb (as used here, and in drbd_alloc_pages on the peer) is
580 	 * "number of pages" (typically also 4k),
581 	 * but "rs_in_flight" is in "sectors" (512 Byte). */
582 	if (mxb - device->rs_in_flight/8 < number)
583 		number = mxb - device->rs_in_flight/8;
584 
585 	return number;
586 }
587 
make_resync_request(struct drbd_device * const device,int cancel)588 static int make_resync_request(struct drbd_device *const device, int cancel)
589 {
590 	struct drbd_peer_device *const peer_device = first_peer_device(device);
591 	struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL;
592 	unsigned long bit;
593 	sector_t sector;
594 	const sector_t capacity = get_capacity(device->vdisk);
595 	int max_bio_size;
596 	int number, rollback_i, size;
597 	int align, requeue = 0;
598 	int i = 0;
599 	int discard_granularity = 0;
600 
601 	if (unlikely(cancel))
602 		return 0;
603 
604 	if (device->rs_total == 0) {
605 		/* empty resync? */
606 		drbd_resync_finished(device);
607 		return 0;
608 	}
609 
610 	if (!get_ldev(device)) {
611 		/* Since we only need to access device->rsync a
612 		   get_ldev_if_state(device,D_FAILED) would be sufficient, but
613 		   to continue resync with a broken disk makes no sense at
614 		   all */
615 		drbd_err(device, "Disk broke down during resync!\n");
616 		return 0;
617 	}
618 
619 	if (connection->agreed_features & DRBD_FF_THIN_RESYNC) {
620 		rcu_read_lock();
621 		discard_granularity = rcu_dereference(device->ldev->disk_conf)->rs_discard_granularity;
622 		rcu_read_unlock();
623 	}
624 
625 	max_bio_size = queue_max_hw_sectors(device->rq_queue) << 9;
626 	number = drbd_rs_number_requests(device);
627 	if (number <= 0)
628 		goto requeue;
629 
630 	for (i = 0; i < number; i++) {
631 		/* Stop generating RS requests when half of the send buffer is filled,
632 		 * but notify TCP that we'd like to have more space. */
633 		mutex_lock(&connection->data.mutex);
634 		if (connection->data.socket) {
635 			struct sock *sk = connection->data.socket->sk;
636 			int queued = sk->sk_wmem_queued;
637 			int sndbuf = sk->sk_sndbuf;
638 			if (queued > sndbuf / 2) {
639 				requeue = 1;
640 				if (sk->sk_socket)
641 					set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
642 			}
643 		} else
644 			requeue = 1;
645 		mutex_unlock(&connection->data.mutex);
646 		if (requeue)
647 			goto requeue;
648 
649 next_sector:
650 		size = BM_BLOCK_SIZE;
651 		bit  = drbd_bm_find_next(device, device->bm_resync_fo);
652 
653 		if (bit == DRBD_END_OF_BITMAP) {
654 			device->bm_resync_fo = drbd_bm_bits(device);
655 			put_ldev(device);
656 			return 0;
657 		}
658 
659 		sector = BM_BIT_TO_SECT(bit);
660 
661 		if (drbd_try_rs_begin_io(device, sector)) {
662 			device->bm_resync_fo = bit;
663 			goto requeue;
664 		}
665 		device->bm_resync_fo = bit + 1;
666 
667 		if (unlikely(drbd_bm_test_bit(device, bit) == 0)) {
668 			drbd_rs_complete_io(device, sector);
669 			goto next_sector;
670 		}
671 
672 #if DRBD_MAX_BIO_SIZE > BM_BLOCK_SIZE
673 		/* try to find some adjacent bits.
674 		 * we stop if we have already the maximum req size.
675 		 *
676 		 * Additionally always align bigger requests, in order to
677 		 * be prepared for all stripe sizes of software RAIDs.
678 		 */
679 		align = 1;
680 		rollback_i = i;
681 		while (i < number) {
682 			if (size + BM_BLOCK_SIZE > max_bio_size)
683 				break;
684 
685 			/* Be always aligned */
686 			if (sector & ((1<<(align+3))-1))
687 				break;
688 
689 			if (discard_granularity && size == discard_granularity)
690 				break;
691 
692 			/* do not cross extent boundaries */
693 			if (((bit+1) & BM_BLOCKS_PER_BM_EXT_MASK) == 0)
694 				break;
695 			/* now, is it actually dirty, after all?
696 			 * caution, drbd_bm_test_bit is tri-state for some
697 			 * obscure reason; ( b == 0 ) would get the out-of-band
698 			 * only accidentally right because of the "oddly sized"
699 			 * adjustment below */
700 			if (drbd_bm_test_bit(device, bit+1) != 1)
701 				break;
702 			bit++;
703 			size += BM_BLOCK_SIZE;
704 			if ((BM_BLOCK_SIZE << align) <= size)
705 				align++;
706 			i++;
707 		}
708 		/* if we merged some,
709 		 * reset the offset to start the next drbd_bm_find_next from */
710 		if (size > BM_BLOCK_SIZE)
711 			device->bm_resync_fo = bit + 1;
712 #endif
713 
714 		/* adjust very last sectors, in case we are oddly sized */
715 		if (sector + (size>>9) > capacity)
716 			size = (capacity-sector)<<9;
717 
718 		if (device->use_csums) {
719 			switch (read_for_csum(peer_device, sector, size)) {
720 			case -EIO: /* Disk failure */
721 				put_ldev(device);
722 				return -EIO;
723 			case -EAGAIN: /* allocation failed, or ldev busy */
724 				drbd_rs_complete_io(device, sector);
725 				device->bm_resync_fo = BM_SECT_TO_BIT(sector);
726 				i = rollback_i;
727 				goto requeue;
728 			case 0:
729 				/* everything ok */
730 				break;
731 			default:
732 				BUG();
733 			}
734 		} else {
735 			int err;
736 
737 			inc_rs_pending(device);
738 			err = drbd_send_drequest(peer_device,
739 						 size == discard_granularity ? P_RS_THIN_REQ : P_RS_DATA_REQUEST,
740 						 sector, size, ID_SYNCER);
741 			if (err) {
742 				drbd_err(device, "drbd_send_drequest() failed, aborting...\n");
743 				dec_rs_pending(device);
744 				put_ldev(device);
745 				return err;
746 			}
747 		}
748 	}
749 
750 	if (device->bm_resync_fo >= drbd_bm_bits(device)) {
751 		/* last syncer _request_ was sent,
752 		 * but the P_RS_DATA_REPLY not yet received.  sync will end (and
753 		 * next sync group will resume), as soon as we receive the last
754 		 * resync data block, and the last bit is cleared.
755 		 * until then resync "work" is "inactive" ...
756 		 */
757 		put_ldev(device);
758 		return 0;
759 	}
760 
761  requeue:
762 	device->rs_in_flight += (i << (BM_BLOCK_SHIFT - 9));
763 	mod_timer(&device->resync_timer, jiffies + SLEEP_TIME);
764 	put_ldev(device);
765 	return 0;
766 }
767 
make_ov_request(struct drbd_device * device,int cancel)768 static int make_ov_request(struct drbd_device *device, int cancel)
769 {
770 	int number, i, size;
771 	sector_t sector;
772 	const sector_t capacity = get_capacity(device->vdisk);
773 	bool stop_sector_reached = false;
774 
775 	if (unlikely(cancel))
776 		return 1;
777 
778 	number = drbd_rs_number_requests(device);
779 
780 	sector = device->ov_position;
781 	for (i = 0; i < number; i++) {
782 		if (sector >= capacity)
783 			return 1;
784 
785 		/* We check for "finished" only in the reply path:
786 		 * w_e_end_ov_reply().
787 		 * We need to send at least one request out. */
788 		stop_sector_reached = i > 0
789 			&& verify_can_do_stop_sector(device)
790 			&& sector >= device->ov_stop_sector;
791 		if (stop_sector_reached)
792 			break;
793 
794 		size = BM_BLOCK_SIZE;
795 
796 		if (drbd_try_rs_begin_io(device, sector)) {
797 			device->ov_position = sector;
798 			goto requeue;
799 		}
800 
801 		if (sector + (size>>9) > capacity)
802 			size = (capacity-sector)<<9;
803 
804 		inc_rs_pending(device);
805 		if (drbd_send_ov_request(first_peer_device(device), sector, size)) {
806 			dec_rs_pending(device);
807 			return 0;
808 		}
809 		sector += BM_SECT_PER_BIT;
810 	}
811 	device->ov_position = sector;
812 
813  requeue:
814 	device->rs_in_flight += (i << (BM_BLOCK_SHIFT - 9));
815 	if (i == 0 || !stop_sector_reached)
816 		mod_timer(&device->resync_timer, jiffies + SLEEP_TIME);
817 	return 1;
818 }
819 
w_ov_finished(struct drbd_work * w,int cancel)820 int w_ov_finished(struct drbd_work *w, int cancel)
821 {
822 	struct drbd_device_work *dw =
823 		container_of(w, struct drbd_device_work, w);
824 	struct drbd_device *device = dw->device;
825 	kfree(dw);
826 	ov_out_of_sync_print(device);
827 	drbd_resync_finished(device);
828 
829 	return 0;
830 }
831 
w_resync_finished(struct drbd_work * w,int cancel)832 static int w_resync_finished(struct drbd_work *w, int cancel)
833 {
834 	struct drbd_device_work *dw =
835 		container_of(w, struct drbd_device_work, w);
836 	struct drbd_device *device = dw->device;
837 	kfree(dw);
838 
839 	drbd_resync_finished(device);
840 
841 	return 0;
842 }
843 
ping_peer(struct drbd_device * device)844 static void ping_peer(struct drbd_device *device)
845 {
846 	struct drbd_connection *connection = first_peer_device(device)->connection;
847 
848 	clear_bit(GOT_PING_ACK, &connection->flags);
849 	request_ping(connection);
850 	wait_event(connection->ping_wait,
851 		   test_bit(GOT_PING_ACK, &connection->flags) || device->state.conn < C_CONNECTED);
852 }
853 
drbd_resync_finished(struct drbd_device * device)854 int drbd_resync_finished(struct drbd_device *device)
855 {
856 	struct drbd_connection *connection = first_peer_device(device)->connection;
857 	unsigned long db, dt, dbdt;
858 	unsigned long n_oos;
859 	union drbd_state os, ns;
860 	struct drbd_device_work *dw;
861 	char *khelper_cmd = NULL;
862 	int verify_done = 0;
863 
864 	/* Remove all elements from the resync LRU. Since future actions
865 	 * might set bits in the (main) bitmap, then the entries in the
866 	 * resync LRU would be wrong. */
867 	if (drbd_rs_del_all(device)) {
868 		/* In case this is not possible now, most probably because
869 		 * there are P_RS_DATA_REPLY Packets lingering on the worker's
870 		 * queue (or even the read operations for those packets
871 		 * is not finished by now).   Retry in 100ms. */
872 
873 		schedule_timeout_interruptible(HZ / 10);
874 		dw = kmalloc(sizeof(struct drbd_device_work), GFP_ATOMIC);
875 		if (dw) {
876 			dw->w.cb = w_resync_finished;
877 			dw->device = device;
878 			drbd_queue_work(&connection->sender_work, &dw->w);
879 			return 1;
880 		}
881 		drbd_err(device, "Warn failed to drbd_rs_del_all() and to kmalloc(dw).\n");
882 	}
883 
884 	dt = (jiffies - device->rs_start - device->rs_paused) / HZ;
885 	if (dt <= 0)
886 		dt = 1;
887 
888 	db = device->rs_total;
889 	/* adjust for verify start and stop sectors, respective reached position */
890 	if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T)
891 		db -= device->ov_left;
892 
893 	dbdt = Bit2KB(db/dt);
894 	device->rs_paused /= HZ;
895 
896 	if (!get_ldev(device))
897 		goto out;
898 
899 	ping_peer(device);
900 
901 	spin_lock_irq(&device->resource->req_lock);
902 	os = drbd_read_state(device);
903 
904 	verify_done = (os.conn == C_VERIFY_S || os.conn == C_VERIFY_T);
905 
906 	/* This protects us against multiple calls (that can happen in the presence
907 	   of application IO), and against connectivity loss just before we arrive here. */
908 	if (os.conn <= C_CONNECTED)
909 		goto out_unlock;
910 
911 	ns = os;
912 	ns.conn = C_CONNECTED;
913 
914 	drbd_info(device, "%s done (total %lu sec; paused %lu sec; %lu K/sec)\n",
915 	     verify_done ? "Online verify" : "Resync",
916 	     dt + device->rs_paused, device->rs_paused, dbdt);
917 
918 	n_oos = drbd_bm_total_weight(device);
919 
920 	if (os.conn == C_VERIFY_S || os.conn == C_VERIFY_T) {
921 		if (n_oos) {
922 			drbd_alert(device, "Online verify found %lu %dk block out of sync!\n",
923 			      n_oos, Bit2KB(1));
924 			khelper_cmd = "out-of-sync";
925 		}
926 	} else {
927 		D_ASSERT(device, (n_oos - device->rs_failed) == 0);
928 
929 		if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T)
930 			khelper_cmd = "after-resync-target";
931 
932 		if (device->use_csums && device->rs_total) {
933 			const unsigned long s = device->rs_same_csum;
934 			const unsigned long t = device->rs_total;
935 			const int ratio =
936 				(t == 0)     ? 0 :
937 			(t < 100000) ? ((s*100)/t) : (s/(t/100));
938 			drbd_info(device, "%u %% had equal checksums, eliminated: %luK; "
939 			     "transferred %luK total %luK\n",
940 			     ratio,
941 			     Bit2KB(device->rs_same_csum),
942 			     Bit2KB(device->rs_total - device->rs_same_csum),
943 			     Bit2KB(device->rs_total));
944 		}
945 	}
946 
947 	if (device->rs_failed) {
948 		drbd_info(device, "            %lu failed blocks\n", device->rs_failed);
949 
950 		if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T) {
951 			ns.disk = D_INCONSISTENT;
952 			ns.pdsk = D_UP_TO_DATE;
953 		} else {
954 			ns.disk = D_UP_TO_DATE;
955 			ns.pdsk = D_INCONSISTENT;
956 		}
957 	} else {
958 		ns.disk = D_UP_TO_DATE;
959 		ns.pdsk = D_UP_TO_DATE;
960 
961 		if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T) {
962 			if (device->p_uuid) {
963 				int i;
964 				for (i = UI_BITMAP ; i <= UI_HISTORY_END ; i++)
965 					_drbd_uuid_set(device, i, device->p_uuid[i]);
966 				drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_CURRENT]);
967 				_drbd_uuid_set(device, UI_CURRENT, device->p_uuid[UI_CURRENT]);
968 			} else {
969 				drbd_err(device, "device->p_uuid is NULL! BUG\n");
970 			}
971 		}
972 
973 		if (!(os.conn == C_VERIFY_S || os.conn == C_VERIFY_T)) {
974 			/* for verify runs, we don't update uuids here,
975 			 * so there would be nothing to report. */
976 			drbd_uuid_set_bm(device, 0UL);
977 			drbd_print_uuids(device, "updated UUIDs");
978 			if (device->p_uuid) {
979 				/* Now the two UUID sets are equal, update what we
980 				 * know of the peer. */
981 				int i;
982 				for (i = UI_CURRENT ; i <= UI_HISTORY_END ; i++)
983 					device->p_uuid[i] = device->ldev->md.uuid[i];
984 			}
985 		}
986 	}
987 
988 	_drbd_set_state(device, ns, CS_VERBOSE, NULL);
989 out_unlock:
990 	spin_unlock_irq(&device->resource->req_lock);
991 
992 	/* If we have been sync source, and have an effective fencing-policy,
993 	 * once *all* volumes are back in sync, call "unfence". */
994 	if (os.conn == C_SYNC_SOURCE) {
995 		enum drbd_disk_state disk_state = D_MASK;
996 		enum drbd_disk_state pdsk_state = D_MASK;
997 		enum drbd_fencing_p fp = FP_DONT_CARE;
998 
999 		rcu_read_lock();
1000 		fp = rcu_dereference(device->ldev->disk_conf)->fencing;
1001 		if (fp != FP_DONT_CARE) {
1002 			struct drbd_peer_device *peer_device;
1003 			int vnr;
1004 			idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1005 				struct drbd_device *device = peer_device->device;
1006 				disk_state = min_t(enum drbd_disk_state, disk_state, device->state.disk);
1007 				pdsk_state = min_t(enum drbd_disk_state, pdsk_state, device->state.pdsk);
1008 			}
1009 		}
1010 		rcu_read_unlock();
1011 		if (disk_state == D_UP_TO_DATE && pdsk_state == D_UP_TO_DATE)
1012 			conn_khelper(connection, "unfence-peer");
1013 	}
1014 
1015 	put_ldev(device);
1016 out:
1017 	device->rs_total  = 0;
1018 	device->rs_failed = 0;
1019 	device->rs_paused = 0;
1020 
1021 	/* reset start sector, if we reached end of device */
1022 	if (verify_done && device->ov_left == 0)
1023 		device->ov_start_sector = 0;
1024 
1025 	drbd_md_sync(device);
1026 
1027 	if (khelper_cmd)
1028 		drbd_khelper(device, khelper_cmd);
1029 
1030 	return 1;
1031 }
1032 
1033 /* helper */
move_to_net_ee_or_free(struct drbd_device * device,struct drbd_peer_request * peer_req)1034 static void move_to_net_ee_or_free(struct drbd_device *device, struct drbd_peer_request *peer_req)
1035 {
1036 	if (drbd_peer_req_has_active_page(peer_req)) {
1037 		/* This might happen if sendpage() has not finished */
1038 		int i = (peer_req->i.size + PAGE_SIZE -1) >> PAGE_SHIFT;
1039 		atomic_add(i, &device->pp_in_use_by_net);
1040 		atomic_sub(i, &device->pp_in_use);
1041 		spin_lock_irq(&device->resource->req_lock);
1042 		list_add_tail(&peer_req->w.list, &device->net_ee);
1043 		spin_unlock_irq(&device->resource->req_lock);
1044 		wake_up(&drbd_pp_wait);
1045 	} else
1046 		drbd_free_peer_req(device, peer_req);
1047 }
1048 
1049 /**
1050  * w_e_end_data_req() - Worker callback, to send a P_DATA_REPLY packet in response to a P_DATA_REQUEST
1051  * @w:		work object.
1052  * @cancel:	The connection will be closed anyways
1053  */
w_e_end_data_req(struct drbd_work * w,int cancel)1054 int w_e_end_data_req(struct drbd_work *w, int cancel)
1055 {
1056 	struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1057 	struct drbd_peer_device *peer_device = peer_req->peer_device;
1058 	struct drbd_device *device = peer_device->device;
1059 	int err;
1060 
1061 	if (unlikely(cancel)) {
1062 		drbd_free_peer_req(device, peer_req);
1063 		dec_unacked(device);
1064 		return 0;
1065 	}
1066 
1067 	if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1068 		err = drbd_send_block(peer_device, P_DATA_REPLY, peer_req);
1069 	} else {
1070 		if (__ratelimit(&drbd_ratelimit_state))
1071 			drbd_err(device, "Sending NegDReply. sector=%llus.\n",
1072 			    (unsigned long long)peer_req->i.sector);
1073 
1074 		err = drbd_send_ack(peer_device, P_NEG_DREPLY, peer_req);
1075 	}
1076 
1077 	dec_unacked(device);
1078 
1079 	move_to_net_ee_or_free(device, peer_req);
1080 
1081 	if (unlikely(err))
1082 		drbd_err(device, "drbd_send_block() failed\n");
1083 	return err;
1084 }
1085 
all_zero(struct drbd_peer_request * peer_req)1086 static bool all_zero(struct drbd_peer_request *peer_req)
1087 {
1088 	struct page *page = peer_req->pages;
1089 	unsigned int len = peer_req->i.size;
1090 
1091 	page_chain_for_each(page) {
1092 		unsigned int l = min_t(unsigned int, len, PAGE_SIZE);
1093 		unsigned int i, words = l / sizeof(long);
1094 		unsigned long *d;
1095 
1096 		d = kmap_atomic(page);
1097 		for (i = 0; i < words; i++) {
1098 			if (d[i]) {
1099 				kunmap_atomic(d);
1100 				return false;
1101 			}
1102 		}
1103 		kunmap_atomic(d);
1104 		len -= l;
1105 	}
1106 
1107 	return true;
1108 }
1109 
1110 /**
1111  * w_e_end_rsdata_req() - Worker callback to send a P_RS_DATA_REPLY packet in response to a P_RS_DATA_REQUEST
1112  * @w:		work object.
1113  * @cancel:	The connection will be closed anyways
1114  */
w_e_end_rsdata_req(struct drbd_work * w,int cancel)1115 int w_e_end_rsdata_req(struct drbd_work *w, int cancel)
1116 {
1117 	struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1118 	struct drbd_peer_device *peer_device = peer_req->peer_device;
1119 	struct drbd_device *device = peer_device->device;
1120 	int err;
1121 
1122 	if (unlikely(cancel)) {
1123 		drbd_free_peer_req(device, peer_req);
1124 		dec_unacked(device);
1125 		return 0;
1126 	}
1127 
1128 	if (get_ldev_if_state(device, D_FAILED)) {
1129 		drbd_rs_complete_io(device, peer_req->i.sector);
1130 		put_ldev(device);
1131 	}
1132 
1133 	if (device->state.conn == C_AHEAD) {
1134 		err = drbd_send_ack(peer_device, P_RS_CANCEL, peer_req);
1135 	} else if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1136 		if (likely(device->state.pdsk >= D_INCONSISTENT)) {
1137 			inc_rs_pending(device);
1138 			if (peer_req->flags & EE_RS_THIN_REQ && all_zero(peer_req))
1139 				err = drbd_send_rs_deallocated(peer_device, peer_req);
1140 			else
1141 				err = drbd_send_block(peer_device, P_RS_DATA_REPLY, peer_req);
1142 		} else {
1143 			if (__ratelimit(&drbd_ratelimit_state))
1144 				drbd_err(device, "Not sending RSDataReply, "
1145 				    "partner DISKLESS!\n");
1146 			err = 0;
1147 		}
1148 	} else {
1149 		if (__ratelimit(&drbd_ratelimit_state))
1150 			drbd_err(device, "Sending NegRSDReply. sector %llus.\n",
1151 			    (unsigned long long)peer_req->i.sector);
1152 
1153 		err = drbd_send_ack(peer_device, P_NEG_RS_DREPLY, peer_req);
1154 
1155 		/* update resync data with failure */
1156 		drbd_rs_failed_io(device, peer_req->i.sector, peer_req->i.size);
1157 	}
1158 
1159 	dec_unacked(device);
1160 
1161 	move_to_net_ee_or_free(device, peer_req);
1162 
1163 	if (unlikely(err))
1164 		drbd_err(device, "drbd_send_block() failed\n");
1165 	return err;
1166 }
1167 
w_e_end_csum_rs_req(struct drbd_work * w,int cancel)1168 int w_e_end_csum_rs_req(struct drbd_work *w, int cancel)
1169 {
1170 	struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1171 	struct drbd_peer_device *peer_device = peer_req->peer_device;
1172 	struct drbd_device *device = peer_device->device;
1173 	struct digest_info *di;
1174 	int digest_size;
1175 	void *digest = NULL;
1176 	int err, eq = 0;
1177 
1178 	if (unlikely(cancel)) {
1179 		drbd_free_peer_req(device, peer_req);
1180 		dec_unacked(device);
1181 		return 0;
1182 	}
1183 
1184 	if (get_ldev(device)) {
1185 		drbd_rs_complete_io(device, peer_req->i.sector);
1186 		put_ldev(device);
1187 	}
1188 
1189 	di = peer_req->digest;
1190 
1191 	if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1192 		/* quick hack to try to avoid a race against reconfiguration.
1193 		 * a real fix would be much more involved,
1194 		 * introducing more locking mechanisms */
1195 		if (peer_device->connection->csums_tfm) {
1196 			digest_size = crypto_shash_digestsize(peer_device->connection->csums_tfm);
1197 			D_ASSERT(device, digest_size == di->digest_size);
1198 			digest = kmalloc(digest_size, GFP_NOIO);
1199 		}
1200 		if (digest) {
1201 			drbd_csum_ee(peer_device->connection->csums_tfm, peer_req, digest);
1202 			eq = !memcmp(digest, di->digest, digest_size);
1203 			kfree(digest);
1204 		}
1205 
1206 		if (eq) {
1207 			drbd_set_in_sync(device, peer_req->i.sector, peer_req->i.size);
1208 			/* rs_same_csums unit is BM_BLOCK_SIZE */
1209 			device->rs_same_csum += peer_req->i.size >> BM_BLOCK_SHIFT;
1210 			err = drbd_send_ack(peer_device, P_RS_IS_IN_SYNC, peer_req);
1211 		} else {
1212 			inc_rs_pending(device);
1213 			peer_req->block_id = ID_SYNCER; /* By setting block_id, digest pointer becomes invalid! */
1214 			peer_req->flags &= ~EE_HAS_DIGEST; /* This peer request no longer has a digest pointer */
1215 			kfree(di);
1216 			err = drbd_send_block(peer_device, P_RS_DATA_REPLY, peer_req);
1217 		}
1218 	} else {
1219 		err = drbd_send_ack(peer_device, P_NEG_RS_DREPLY, peer_req);
1220 		if (__ratelimit(&drbd_ratelimit_state))
1221 			drbd_err(device, "Sending NegDReply. I guess it gets messy.\n");
1222 	}
1223 
1224 	dec_unacked(device);
1225 	move_to_net_ee_or_free(device, peer_req);
1226 
1227 	if (unlikely(err))
1228 		drbd_err(device, "drbd_send_block/ack() failed\n");
1229 	return err;
1230 }
1231 
w_e_end_ov_req(struct drbd_work * w,int cancel)1232 int w_e_end_ov_req(struct drbd_work *w, int cancel)
1233 {
1234 	struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1235 	struct drbd_peer_device *peer_device = peer_req->peer_device;
1236 	struct drbd_device *device = peer_device->device;
1237 	sector_t sector = peer_req->i.sector;
1238 	unsigned int size = peer_req->i.size;
1239 	int digest_size;
1240 	void *digest;
1241 	int err = 0;
1242 
1243 	if (unlikely(cancel))
1244 		goto out;
1245 
1246 	digest_size = crypto_shash_digestsize(peer_device->connection->verify_tfm);
1247 	digest = kmalloc(digest_size, GFP_NOIO);
1248 	if (!digest) {
1249 		err = 1;	/* terminate the connection in case the allocation failed */
1250 		goto out;
1251 	}
1252 
1253 	if (likely(!(peer_req->flags & EE_WAS_ERROR)))
1254 		drbd_csum_ee(peer_device->connection->verify_tfm, peer_req, digest);
1255 	else
1256 		memset(digest, 0, digest_size);
1257 
1258 	/* Free e and pages before send.
1259 	 * In case we block on congestion, we could otherwise run into
1260 	 * some distributed deadlock, if the other side blocks on
1261 	 * congestion as well, because our receiver blocks in
1262 	 * drbd_alloc_pages due to pp_in_use > max_buffers. */
1263 	drbd_free_peer_req(device, peer_req);
1264 	peer_req = NULL;
1265 	inc_rs_pending(device);
1266 	err = drbd_send_drequest_csum(peer_device, sector, size, digest, digest_size, P_OV_REPLY);
1267 	if (err)
1268 		dec_rs_pending(device);
1269 	kfree(digest);
1270 
1271 out:
1272 	if (peer_req)
1273 		drbd_free_peer_req(device, peer_req);
1274 	dec_unacked(device);
1275 	return err;
1276 }
1277 
drbd_ov_out_of_sync_found(struct drbd_device * device,sector_t sector,int size)1278 void drbd_ov_out_of_sync_found(struct drbd_device *device, sector_t sector, int size)
1279 {
1280 	if (device->ov_last_oos_start + device->ov_last_oos_size == sector) {
1281 		device->ov_last_oos_size += size>>9;
1282 	} else {
1283 		device->ov_last_oos_start = sector;
1284 		device->ov_last_oos_size = size>>9;
1285 	}
1286 	drbd_set_out_of_sync(device, sector, size);
1287 }
1288 
w_e_end_ov_reply(struct drbd_work * w,int cancel)1289 int w_e_end_ov_reply(struct drbd_work *w, int cancel)
1290 {
1291 	struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1292 	struct drbd_peer_device *peer_device = peer_req->peer_device;
1293 	struct drbd_device *device = peer_device->device;
1294 	struct digest_info *di;
1295 	void *digest;
1296 	sector_t sector = peer_req->i.sector;
1297 	unsigned int size = peer_req->i.size;
1298 	int digest_size;
1299 	int err, eq = 0;
1300 	bool stop_sector_reached = false;
1301 
1302 	if (unlikely(cancel)) {
1303 		drbd_free_peer_req(device, peer_req);
1304 		dec_unacked(device);
1305 		return 0;
1306 	}
1307 
1308 	/* after "cancel", because after drbd_disconnect/drbd_rs_cancel_all
1309 	 * the resync lru has been cleaned up already */
1310 	if (get_ldev(device)) {
1311 		drbd_rs_complete_io(device, peer_req->i.sector);
1312 		put_ldev(device);
1313 	}
1314 
1315 	di = peer_req->digest;
1316 
1317 	if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1318 		digest_size = crypto_shash_digestsize(peer_device->connection->verify_tfm);
1319 		digest = kmalloc(digest_size, GFP_NOIO);
1320 		if (digest) {
1321 			drbd_csum_ee(peer_device->connection->verify_tfm, peer_req, digest);
1322 
1323 			D_ASSERT(device, digest_size == di->digest_size);
1324 			eq = !memcmp(digest, di->digest, digest_size);
1325 			kfree(digest);
1326 		}
1327 	}
1328 
1329 	/* Free peer_req and pages before send.
1330 	 * In case we block on congestion, we could otherwise run into
1331 	 * some distributed deadlock, if the other side blocks on
1332 	 * congestion as well, because our receiver blocks in
1333 	 * drbd_alloc_pages due to pp_in_use > max_buffers. */
1334 	drbd_free_peer_req(device, peer_req);
1335 	if (!eq)
1336 		drbd_ov_out_of_sync_found(device, sector, size);
1337 	else
1338 		ov_out_of_sync_print(device);
1339 
1340 	err = drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size,
1341 			       eq ? ID_IN_SYNC : ID_OUT_OF_SYNC);
1342 
1343 	dec_unacked(device);
1344 
1345 	--device->ov_left;
1346 
1347 	/* let's advance progress step marks only for every other megabyte */
1348 	if ((device->ov_left & 0x200) == 0x200)
1349 		drbd_advance_rs_marks(device, device->ov_left);
1350 
1351 	stop_sector_reached = verify_can_do_stop_sector(device) &&
1352 		(sector + (size>>9)) >= device->ov_stop_sector;
1353 
1354 	if (device->ov_left == 0 || stop_sector_reached) {
1355 		ov_out_of_sync_print(device);
1356 		drbd_resync_finished(device);
1357 	}
1358 
1359 	return err;
1360 }
1361 
1362 /* FIXME
1363  * We need to track the number of pending barrier acks,
1364  * and to be able to wait for them.
1365  * See also comment in drbd_adm_attach before drbd_suspend_io.
1366  */
drbd_send_barrier(struct drbd_connection * connection)1367 static int drbd_send_barrier(struct drbd_connection *connection)
1368 {
1369 	struct p_barrier *p;
1370 	struct drbd_socket *sock;
1371 
1372 	sock = &connection->data;
1373 	p = conn_prepare_command(connection, sock);
1374 	if (!p)
1375 		return -EIO;
1376 	p->barrier = connection->send.current_epoch_nr;
1377 	p->pad = 0;
1378 	connection->send.current_epoch_writes = 0;
1379 	connection->send.last_sent_barrier_jif = jiffies;
1380 
1381 	return conn_send_command(connection, sock, P_BARRIER, sizeof(*p), NULL, 0);
1382 }
1383 
pd_send_unplug_remote(struct drbd_peer_device * pd)1384 static int pd_send_unplug_remote(struct drbd_peer_device *pd)
1385 {
1386 	struct drbd_socket *sock = &pd->connection->data;
1387 	if (!drbd_prepare_command(pd, sock))
1388 		return -EIO;
1389 	return drbd_send_command(pd, sock, P_UNPLUG_REMOTE, 0, NULL, 0);
1390 }
1391 
w_send_write_hint(struct drbd_work * w,int cancel)1392 int w_send_write_hint(struct drbd_work *w, int cancel)
1393 {
1394 	struct drbd_device *device =
1395 		container_of(w, struct drbd_device, unplug_work);
1396 
1397 	if (cancel)
1398 		return 0;
1399 	return pd_send_unplug_remote(first_peer_device(device));
1400 }
1401 
re_init_if_first_write(struct drbd_connection * connection,unsigned int epoch)1402 static void re_init_if_first_write(struct drbd_connection *connection, unsigned int epoch)
1403 {
1404 	if (!connection->send.seen_any_write_yet) {
1405 		connection->send.seen_any_write_yet = true;
1406 		connection->send.current_epoch_nr = epoch;
1407 		connection->send.current_epoch_writes = 0;
1408 		connection->send.last_sent_barrier_jif = jiffies;
1409 	}
1410 }
1411 
maybe_send_barrier(struct drbd_connection * connection,unsigned int epoch)1412 static void maybe_send_barrier(struct drbd_connection *connection, unsigned int epoch)
1413 {
1414 	/* re-init if first write on this connection */
1415 	if (!connection->send.seen_any_write_yet)
1416 		return;
1417 	if (connection->send.current_epoch_nr != epoch) {
1418 		if (connection->send.current_epoch_writes)
1419 			drbd_send_barrier(connection);
1420 		connection->send.current_epoch_nr = epoch;
1421 	}
1422 }
1423 
w_send_out_of_sync(struct drbd_work * w,int cancel)1424 int w_send_out_of_sync(struct drbd_work *w, int cancel)
1425 {
1426 	struct drbd_request *req = container_of(w, struct drbd_request, w);
1427 	struct drbd_device *device = req->device;
1428 	struct drbd_peer_device *const peer_device = first_peer_device(device);
1429 	struct drbd_connection *const connection = peer_device->connection;
1430 	int err;
1431 
1432 	if (unlikely(cancel)) {
1433 		req_mod(req, SEND_CANCELED);
1434 		return 0;
1435 	}
1436 	req->pre_send_jif = jiffies;
1437 
1438 	/* this time, no connection->send.current_epoch_writes++;
1439 	 * If it was sent, it was the closing barrier for the last
1440 	 * replicated epoch, before we went into AHEAD mode.
1441 	 * No more barriers will be sent, until we leave AHEAD mode again. */
1442 	maybe_send_barrier(connection, req->epoch);
1443 
1444 	err = drbd_send_out_of_sync(peer_device, req);
1445 	req_mod(req, OOS_HANDED_TO_NETWORK);
1446 
1447 	return err;
1448 }
1449 
1450 /**
1451  * w_send_dblock() - Worker callback to send a P_DATA packet in order to mirror a write request
1452  * @w:		work object.
1453  * @cancel:	The connection will be closed anyways
1454  */
w_send_dblock(struct drbd_work * w,int cancel)1455 int w_send_dblock(struct drbd_work *w, int cancel)
1456 {
1457 	struct drbd_request *req = container_of(w, struct drbd_request, w);
1458 	struct drbd_device *device = req->device;
1459 	struct drbd_peer_device *const peer_device = first_peer_device(device);
1460 	struct drbd_connection *connection = peer_device->connection;
1461 	bool do_send_unplug = req->rq_state & RQ_UNPLUG;
1462 	int err;
1463 
1464 	if (unlikely(cancel)) {
1465 		req_mod(req, SEND_CANCELED);
1466 		return 0;
1467 	}
1468 	req->pre_send_jif = jiffies;
1469 
1470 	re_init_if_first_write(connection, req->epoch);
1471 	maybe_send_barrier(connection, req->epoch);
1472 	connection->send.current_epoch_writes++;
1473 
1474 	err = drbd_send_dblock(peer_device, req);
1475 	req_mod(req, err ? SEND_FAILED : HANDED_OVER_TO_NETWORK);
1476 
1477 	if (do_send_unplug && !err)
1478 		pd_send_unplug_remote(peer_device);
1479 
1480 	return err;
1481 }
1482 
1483 /**
1484  * w_send_read_req() - Worker callback to send a read request (P_DATA_REQUEST) packet
1485  * @w:		work object.
1486  * @cancel:	The connection will be closed anyways
1487  */
w_send_read_req(struct drbd_work * w,int cancel)1488 int w_send_read_req(struct drbd_work *w, int cancel)
1489 {
1490 	struct drbd_request *req = container_of(w, struct drbd_request, w);
1491 	struct drbd_device *device = req->device;
1492 	struct drbd_peer_device *const peer_device = first_peer_device(device);
1493 	struct drbd_connection *connection = peer_device->connection;
1494 	bool do_send_unplug = req->rq_state & RQ_UNPLUG;
1495 	int err;
1496 
1497 	if (unlikely(cancel)) {
1498 		req_mod(req, SEND_CANCELED);
1499 		return 0;
1500 	}
1501 	req->pre_send_jif = jiffies;
1502 
1503 	/* Even read requests may close a write epoch,
1504 	 * if there was any yet. */
1505 	maybe_send_barrier(connection, req->epoch);
1506 
1507 	err = drbd_send_drequest(peer_device, P_DATA_REQUEST, req->i.sector, req->i.size,
1508 				 (unsigned long)req);
1509 
1510 	req_mod(req, err ? SEND_FAILED : HANDED_OVER_TO_NETWORK);
1511 
1512 	if (do_send_unplug && !err)
1513 		pd_send_unplug_remote(peer_device);
1514 
1515 	return err;
1516 }
1517 
w_restart_disk_io(struct drbd_work * w,int cancel)1518 int w_restart_disk_io(struct drbd_work *w, int cancel)
1519 {
1520 	struct drbd_request *req = container_of(w, struct drbd_request, w);
1521 	struct drbd_device *device = req->device;
1522 
1523 	if (bio_data_dir(req->master_bio) == WRITE && req->rq_state & RQ_IN_ACT_LOG)
1524 		drbd_al_begin_io(device, &req->i);
1525 
1526 	drbd_req_make_private_bio(req, req->master_bio);
1527 	bio_set_dev(req->private_bio, device->ldev->backing_bdev);
1528 	submit_bio_noacct(req->private_bio);
1529 
1530 	return 0;
1531 }
1532 
_drbd_may_sync_now(struct drbd_device * device)1533 static int _drbd_may_sync_now(struct drbd_device *device)
1534 {
1535 	struct drbd_device *odev = device;
1536 	int resync_after;
1537 
1538 	while (1) {
1539 		if (!odev->ldev || odev->state.disk == D_DISKLESS)
1540 			return 1;
1541 		rcu_read_lock();
1542 		resync_after = rcu_dereference(odev->ldev->disk_conf)->resync_after;
1543 		rcu_read_unlock();
1544 		if (resync_after == -1)
1545 			return 1;
1546 		odev = minor_to_device(resync_after);
1547 		if (!odev)
1548 			return 1;
1549 		if ((odev->state.conn >= C_SYNC_SOURCE &&
1550 		     odev->state.conn <= C_PAUSED_SYNC_T) ||
1551 		    odev->state.aftr_isp || odev->state.peer_isp ||
1552 		    odev->state.user_isp)
1553 			return 0;
1554 	}
1555 }
1556 
1557 /**
1558  * drbd_pause_after() - Pause resync on all devices that may not resync now
1559  * @device:	DRBD device.
1560  *
1561  * Called from process context only (admin command and after_state_ch).
1562  */
drbd_pause_after(struct drbd_device * device)1563 static bool drbd_pause_after(struct drbd_device *device)
1564 {
1565 	bool changed = false;
1566 	struct drbd_device *odev;
1567 	int i;
1568 
1569 	rcu_read_lock();
1570 	idr_for_each_entry(&drbd_devices, odev, i) {
1571 		if (odev->state.conn == C_STANDALONE && odev->state.disk == D_DISKLESS)
1572 			continue;
1573 		if (!_drbd_may_sync_now(odev) &&
1574 		    _drbd_set_state(_NS(odev, aftr_isp, 1),
1575 				    CS_HARD, NULL) != SS_NOTHING_TO_DO)
1576 			changed = true;
1577 	}
1578 	rcu_read_unlock();
1579 
1580 	return changed;
1581 }
1582 
1583 /**
1584  * drbd_resume_next() - Resume resync on all devices that may resync now
1585  * @device:	DRBD device.
1586  *
1587  * Called from process context only (admin command and worker).
1588  */
drbd_resume_next(struct drbd_device * device)1589 static bool drbd_resume_next(struct drbd_device *device)
1590 {
1591 	bool changed = false;
1592 	struct drbd_device *odev;
1593 	int i;
1594 
1595 	rcu_read_lock();
1596 	idr_for_each_entry(&drbd_devices, odev, i) {
1597 		if (odev->state.conn == C_STANDALONE && odev->state.disk == D_DISKLESS)
1598 			continue;
1599 		if (odev->state.aftr_isp) {
1600 			if (_drbd_may_sync_now(odev) &&
1601 			    _drbd_set_state(_NS(odev, aftr_isp, 0),
1602 					    CS_HARD, NULL) != SS_NOTHING_TO_DO)
1603 				changed = true;
1604 		}
1605 	}
1606 	rcu_read_unlock();
1607 	return changed;
1608 }
1609 
resume_next_sg(struct drbd_device * device)1610 void resume_next_sg(struct drbd_device *device)
1611 {
1612 	lock_all_resources();
1613 	drbd_resume_next(device);
1614 	unlock_all_resources();
1615 }
1616 
suspend_other_sg(struct drbd_device * device)1617 void suspend_other_sg(struct drbd_device *device)
1618 {
1619 	lock_all_resources();
1620 	drbd_pause_after(device);
1621 	unlock_all_resources();
1622 }
1623 
1624 /* caller must lock_all_resources() */
drbd_resync_after_valid(struct drbd_device * device,int o_minor)1625 enum drbd_ret_code drbd_resync_after_valid(struct drbd_device *device, int o_minor)
1626 {
1627 	struct drbd_device *odev;
1628 	int resync_after;
1629 
1630 	if (o_minor == -1)
1631 		return NO_ERROR;
1632 	if (o_minor < -1 || o_minor > MINORMASK)
1633 		return ERR_RESYNC_AFTER;
1634 
1635 	/* check for loops */
1636 	odev = minor_to_device(o_minor);
1637 	while (1) {
1638 		if (odev == device)
1639 			return ERR_RESYNC_AFTER_CYCLE;
1640 
1641 		/* You are free to depend on diskless, non-existing,
1642 		 * or not yet/no longer existing minors.
1643 		 * We only reject dependency loops.
1644 		 * We cannot follow the dependency chain beyond a detached or
1645 		 * missing minor.
1646 		 */
1647 		if (!odev || !odev->ldev || odev->state.disk == D_DISKLESS)
1648 			return NO_ERROR;
1649 
1650 		rcu_read_lock();
1651 		resync_after = rcu_dereference(odev->ldev->disk_conf)->resync_after;
1652 		rcu_read_unlock();
1653 		/* dependency chain ends here, no cycles. */
1654 		if (resync_after == -1)
1655 			return NO_ERROR;
1656 
1657 		/* follow the dependency chain */
1658 		odev = minor_to_device(resync_after);
1659 	}
1660 }
1661 
1662 /* caller must lock_all_resources() */
drbd_resync_after_changed(struct drbd_device * device)1663 void drbd_resync_after_changed(struct drbd_device *device)
1664 {
1665 	int changed;
1666 
1667 	do {
1668 		changed  = drbd_pause_after(device);
1669 		changed |= drbd_resume_next(device);
1670 	} while (changed);
1671 }
1672 
drbd_rs_controller_reset(struct drbd_device * device)1673 void drbd_rs_controller_reset(struct drbd_device *device)
1674 {
1675 	struct gendisk *disk = device->ldev->backing_bdev->bd_disk;
1676 	struct fifo_buffer *plan;
1677 
1678 	atomic_set(&device->rs_sect_in, 0);
1679 	atomic_set(&device->rs_sect_ev, 0);
1680 	device->rs_in_flight = 0;
1681 	device->rs_last_events = (int)part_stat_read_accum(&disk->part0, sectors);
1682 
1683 	/* Updating the RCU protected object in place is necessary since
1684 	   this function gets called from atomic context.
1685 	   It is valid since all other updates also lead to an completely
1686 	   empty fifo */
1687 	rcu_read_lock();
1688 	plan = rcu_dereference(device->rs_plan_s);
1689 	plan->total = 0;
1690 	fifo_set(plan, 0);
1691 	rcu_read_unlock();
1692 }
1693 
start_resync_timer_fn(struct timer_list * t)1694 void start_resync_timer_fn(struct timer_list *t)
1695 {
1696 	struct drbd_device *device = from_timer(device, t, start_resync_timer);
1697 	drbd_device_post_work(device, RS_START);
1698 }
1699 
do_start_resync(struct drbd_device * device)1700 static void do_start_resync(struct drbd_device *device)
1701 {
1702 	if (atomic_read(&device->unacked_cnt) || atomic_read(&device->rs_pending_cnt)) {
1703 		drbd_warn(device, "postponing start_resync ...\n");
1704 		device->start_resync_timer.expires = jiffies + HZ/10;
1705 		add_timer(&device->start_resync_timer);
1706 		return;
1707 	}
1708 
1709 	drbd_start_resync(device, C_SYNC_SOURCE);
1710 	clear_bit(AHEAD_TO_SYNC_SOURCE, &device->flags);
1711 }
1712 
use_checksum_based_resync(struct drbd_connection * connection,struct drbd_device * device)1713 static bool use_checksum_based_resync(struct drbd_connection *connection, struct drbd_device *device)
1714 {
1715 	bool csums_after_crash_only;
1716 	rcu_read_lock();
1717 	csums_after_crash_only = rcu_dereference(connection->net_conf)->csums_after_crash_only;
1718 	rcu_read_unlock();
1719 	return connection->agreed_pro_version >= 89 &&		/* supported? */
1720 		connection->csums_tfm &&			/* configured? */
1721 		(csums_after_crash_only == false		/* use for each resync? */
1722 		 || test_bit(CRASHED_PRIMARY, &device->flags));	/* or only after Primary crash? */
1723 }
1724 
1725 /**
1726  * drbd_start_resync() - Start the resync process
1727  * @device:	DRBD device.
1728  * @side:	Either C_SYNC_SOURCE or C_SYNC_TARGET
1729  *
1730  * This function might bring you directly into one of the
1731  * C_PAUSED_SYNC_* states.
1732  */
drbd_start_resync(struct drbd_device * device,enum drbd_conns side)1733 void drbd_start_resync(struct drbd_device *device, enum drbd_conns side)
1734 {
1735 	struct drbd_peer_device *peer_device = first_peer_device(device);
1736 	struct drbd_connection *connection = peer_device ? peer_device->connection : NULL;
1737 	union drbd_state ns;
1738 	int r;
1739 
1740 	if (device->state.conn >= C_SYNC_SOURCE && device->state.conn < C_AHEAD) {
1741 		drbd_err(device, "Resync already running!\n");
1742 		return;
1743 	}
1744 
1745 	if (!connection) {
1746 		drbd_err(device, "No connection to peer, aborting!\n");
1747 		return;
1748 	}
1749 
1750 	if (!test_bit(B_RS_H_DONE, &device->flags)) {
1751 		if (side == C_SYNC_TARGET) {
1752 			/* Since application IO was locked out during C_WF_BITMAP_T and
1753 			   C_WF_SYNC_UUID we are still unmodified. Before going to C_SYNC_TARGET
1754 			   we check that we might make the data inconsistent. */
1755 			r = drbd_khelper(device, "before-resync-target");
1756 			r = (r >> 8) & 0xff;
1757 			if (r > 0) {
1758 				drbd_info(device, "before-resync-target handler returned %d, "
1759 					 "dropping connection.\n", r);
1760 				conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
1761 				return;
1762 			}
1763 		} else /* C_SYNC_SOURCE */ {
1764 			r = drbd_khelper(device, "before-resync-source");
1765 			r = (r >> 8) & 0xff;
1766 			if (r > 0) {
1767 				if (r == 3) {
1768 					drbd_info(device, "before-resync-source handler returned %d, "
1769 						 "ignoring. Old userland tools?", r);
1770 				} else {
1771 					drbd_info(device, "before-resync-source handler returned %d, "
1772 						 "dropping connection.\n", r);
1773 					conn_request_state(connection,
1774 							   NS(conn, C_DISCONNECTING), CS_HARD);
1775 					return;
1776 				}
1777 			}
1778 		}
1779 	}
1780 
1781 	if (current == connection->worker.task) {
1782 		/* The worker should not sleep waiting for state_mutex,
1783 		   that can take long */
1784 		if (!mutex_trylock(device->state_mutex)) {
1785 			set_bit(B_RS_H_DONE, &device->flags);
1786 			device->start_resync_timer.expires = jiffies + HZ/5;
1787 			add_timer(&device->start_resync_timer);
1788 			return;
1789 		}
1790 	} else {
1791 		mutex_lock(device->state_mutex);
1792 	}
1793 
1794 	lock_all_resources();
1795 	clear_bit(B_RS_H_DONE, &device->flags);
1796 	/* Did some connection breakage or IO error race with us? */
1797 	if (device->state.conn < C_CONNECTED
1798 	|| !get_ldev_if_state(device, D_NEGOTIATING)) {
1799 		unlock_all_resources();
1800 		goto out;
1801 	}
1802 
1803 	ns = drbd_read_state(device);
1804 
1805 	ns.aftr_isp = !_drbd_may_sync_now(device);
1806 
1807 	ns.conn = side;
1808 
1809 	if (side == C_SYNC_TARGET)
1810 		ns.disk = D_INCONSISTENT;
1811 	else /* side == C_SYNC_SOURCE */
1812 		ns.pdsk = D_INCONSISTENT;
1813 
1814 	r = _drbd_set_state(device, ns, CS_VERBOSE, NULL);
1815 	ns = drbd_read_state(device);
1816 
1817 	if (ns.conn < C_CONNECTED)
1818 		r = SS_UNKNOWN_ERROR;
1819 
1820 	if (r == SS_SUCCESS) {
1821 		unsigned long tw = drbd_bm_total_weight(device);
1822 		unsigned long now = jiffies;
1823 		int i;
1824 
1825 		device->rs_failed    = 0;
1826 		device->rs_paused    = 0;
1827 		device->rs_same_csum = 0;
1828 		device->rs_last_sect_ev = 0;
1829 		device->rs_total     = tw;
1830 		device->rs_start     = now;
1831 		for (i = 0; i < DRBD_SYNC_MARKS; i++) {
1832 			device->rs_mark_left[i] = tw;
1833 			device->rs_mark_time[i] = now;
1834 		}
1835 		drbd_pause_after(device);
1836 		/* Forget potentially stale cached per resync extent bit-counts.
1837 		 * Open coded drbd_rs_cancel_all(device), we already have IRQs
1838 		 * disabled, and know the disk state is ok. */
1839 		spin_lock(&device->al_lock);
1840 		lc_reset(device->resync);
1841 		device->resync_locked = 0;
1842 		device->resync_wenr = LC_FREE;
1843 		spin_unlock(&device->al_lock);
1844 	}
1845 	unlock_all_resources();
1846 
1847 	if (r == SS_SUCCESS) {
1848 		wake_up(&device->al_wait); /* for lc_reset() above */
1849 		/* reset rs_last_bcast when a resync or verify is started,
1850 		 * to deal with potential jiffies wrap. */
1851 		device->rs_last_bcast = jiffies - HZ;
1852 
1853 		drbd_info(device, "Began resync as %s (will sync %lu KB [%lu bits set]).\n",
1854 		     drbd_conn_str(ns.conn),
1855 		     (unsigned long) device->rs_total << (BM_BLOCK_SHIFT-10),
1856 		     (unsigned long) device->rs_total);
1857 		if (side == C_SYNC_TARGET) {
1858 			device->bm_resync_fo = 0;
1859 			device->use_csums = use_checksum_based_resync(connection, device);
1860 		} else {
1861 			device->use_csums = false;
1862 		}
1863 
1864 		/* Since protocol 96, we must serialize drbd_gen_and_send_sync_uuid
1865 		 * with w_send_oos, or the sync target will get confused as to
1866 		 * how much bits to resync.  We cannot do that always, because for an
1867 		 * empty resync and protocol < 95, we need to do it here, as we call
1868 		 * drbd_resync_finished from here in that case.
1869 		 * We drbd_gen_and_send_sync_uuid here for protocol < 96,
1870 		 * and from after_state_ch otherwise. */
1871 		if (side == C_SYNC_SOURCE && connection->agreed_pro_version < 96)
1872 			drbd_gen_and_send_sync_uuid(peer_device);
1873 
1874 		if (connection->agreed_pro_version < 95 && device->rs_total == 0) {
1875 			/* This still has a race (about when exactly the peers
1876 			 * detect connection loss) that can lead to a full sync
1877 			 * on next handshake. In 8.3.9 we fixed this with explicit
1878 			 * resync-finished notifications, but the fix
1879 			 * introduces a protocol change.  Sleeping for some
1880 			 * time longer than the ping interval + timeout on the
1881 			 * SyncSource, to give the SyncTarget the chance to
1882 			 * detect connection loss, then waiting for a ping
1883 			 * response (implicit in drbd_resync_finished) reduces
1884 			 * the race considerably, but does not solve it. */
1885 			if (side == C_SYNC_SOURCE) {
1886 				struct net_conf *nc;
1887 				int timeo;
1888 
1889 				rcu_read_lock();
1890 				nc = rcu_dereference(connection->net_conf);
1891 				timeo = nc->ping_int * HZ + nc->ping_timeo * HZ / 9;
1892 				rcu_read_unlock();
1893 				schedule_timeout_interruptible(timeo);
1894 			}
1895 			drbd_resync_finished(device);
1896 		}
1897 
1898 		drbd_rs_controller_reset(device);
1899 		/* ns.conn may already be != device->state.conn,
1900 		 * we may have been paused in between, or become paused until
1901 		 * the timer triggers.
1902 		 * No matter, that is handled in resync_timer_fn() */
1903 		if (ns.conn == C_SYNC_TARGET)
1904 			mod_timer(&device->resync_timer, jiffies);
1905 
1906 		drbd_md_sync(device);
1907 	}
1908 	put_ldev(device);
1909 out:
1910 	mutex_unlock(device->state_mutex);
1911 }
1912 
update_on_disk_bitmap(struct drbd_device * device,bool resync_done)1913 static void update_on_disk_bitmap(struct drbd_device *device, bool resync_done)
1914 {
1915 	struct sib_info sib = { .sib_reason = SIB_SYNC_PROGRESS, };
1916 	device->rs_last_bcast = jiffies;
1917 
1918 	if (!get_ldev(device))
1919 		return;
1920 
1921 	drbd_bm_write_lazy(device, 0);
1922 	if (resync_done && is_sync_state(device->state.conn))
1923 		drbd_resync_finished(device);
1924 
1925 	drbd_bcast_event(device, &sib);
1926 	/* update timestamp, in case it took a while to write out stuff */
1927 	device->rs_last_bcast = jiffies;
1928 	put_ldev(device);
1929 }
1930 
drbd_ldev_destroy(struct drbd_device * device)1931 static void drbd_ldev_destroy(struct drbd_device *device)
1932 {
1933 	lc_destroy(device->resync);
1934 	device->resync = NULL;
1935 	lc_destroy(device->act_log);
1936 	device->act_log = NULL;
1937 
1938 	__acquire(local);
1939 	drbd_backing_dev_free(device, device->ldev);
1940 	device->ldev = NULL;
1941 	__release(local);
1942 
1943 	clear_bit(GOING_DISKLESS, &device->flags);
1944 	wake_up(&device->misc_wait);
1945 }
1946 
go_diskless(struct drbd_device * device)1947 static void go_diskless(struct drbd_device *device)
1948 {
1949 	D_ASSERT(device, device->state.disk == D_FAILED);
1950 	/* we cannot assert local_cnt == 0 here, as get_ldev_if_state will
1951 	 * inc/dec it frequently. Once we are D_DISKLESS, no one will touch
1952 	 * the protected members anymore, though, so once put_ldev reaches zero
1953 	 * again, it will be safe to free them. */
1954 
1955 	/* Try to write changed bitmap pages, read errors may have just
1956 	 * set some bits outside the area covered by the activity log.
1957 	 *
1958 	 * If we have an IO error during the bitmap writeout,
1959 	 * we will want a full sync next time, just in case.
1960 	 * (Do we want a specific meta data flag for this?)
1961 	 *
1962 	 * If that does not make it to stable storage either,
1963 	 * we cannot do anything about that anymore.
1964 	 *
1965 	 * We still need to check if both bitmap and ldev are present, we may
1966 	 * end up here after a failed attach, before ldev was even assigned.
1967 	 */
1968 	if (device->bitmap && device->ldev) {
1969 		/* An interrupted resync or similar is allowed to recounts bits
1970 		 * while we detach.
1971 		 * Any modifications would not be expected anymore, though.
1972 		 */
1973 		if (drbd_bitmap_io_from_worker(device, drbd_bm_write,
1974 					"detach", BM_LOCKED_TEST_ALLOWED)) {
1975 			if (test_bit(WAS_READ_ERROR, &device->flags)) {
1976 				drbd_md_set_flag(device, MDF_FULL_SYNC);
1977 				drbd_md_sync(device);
1978 			}
1979 		}
1980 	}
1981 
1982 	drbd_force_state(device, NS(disk, D_DISKLESS));
1983 }
1984 
do_md_sync(struct drbd_device * device)1985 static int do_md_sync(struct drbd_device *device)
1986 {
1987 	drbd_warn(device, "md_sync_timer expired! Worker calls drbd_md_sync().\n");
1988 	drbd_md_sync(device);
1989 	return 0;
1990 }
1991 
1992 /* only called from drbd_worker thread, no locking */
__update_timing_details(struct drbd_thread_timing_details * tdp,unsigned int * cb_nr,void * cb,const char * fn,const unsigned int line)1993 void __update_timing_details(
1994 		struct drbd_thread_timing_details *tdp,
1995 		unsigned int *cb_nr,
1996 		void *cb,
1997 		const char *fn, const unsigned int line)
1998 {
1999 	unsigned int i = *cb_nr % DRBD_THREAD_DETAILS_HIST;
2000 	struct drbd_thread_timing_details *td = tdp + i;
2001 
2002 	td->start_jif = jiffies;
2003 	td->cb_addr = cb;
2004 	td->caller_fn = fn;
2005 	td->line = line;
2006 	td->cb_nr = *cb_nr;
2007 
2008 	i = (i+1) % DRBD_THREAD_DETAILS_HIST;
2009 	td = tdp + i;
2010 	memset(td, 0, sizeof(*td));
2011 
2012 	++(*cb_nr);
2013 }
2014 
do_device_work(struct drbd_device * device,const unsigned long todo)2015 static void do_device_work(struct drbd_device *device, const unsigned long todo)
2016 {
2017 	if (test_bit(MD_SYNC, &todo))
2018 		do_md_sync(device);
2019 	if (test_bit(RS_DONE, &todo) ||
2020 	    test_bit(RS_PROGRESS, &todo))
2021 		update_on_disk_bitmap(device, test_bit(RS_DONE, &todo));
2022 	if (test_bit(GO_DISKLESS, &todo))
2023 		go_diskless(device);
2024 	if (test_bit(DESTROY_DISK, &todo))
2025 		drbd_ldev_destroy(device);
2026 	if (test_bit(RS_START, &todo))
2027 		do_start_resync(device);
2028 }
2029 
2030 #define DRBD_DEVICE_WORK_MASK	\
2031 	((1UL << GO_DISKLESS)	\
2032 	|(1UL << DESTROY_DISK)	\
2033 	|(1UL << MD_SYNC)	\
2034 	|(1UL << RS_START)	\
2035 	|(1UL << RS_PROGRESS)	\
2036 	|(1UL << RS_DONE)	\
2037 	)
2038 
get_work_bits(unsigned long * flags)2039 static unsigned long get_work_bits(unsigned long *flags)
2040 {
2041 	unsigned long old, new;
2042 	do {
2043 		old = *flags;
2044 		new = old & ~DRBD_DEVICE_WORK_MASK;
2045 	} while (cmpxchg(flags, old, new) != old);
2046 	return old & DRBD_DEVICE_WORK_MASK;
2047 }
2048 
do_unqueued_work(struct drbd_connection * connection)2049 static void do_unqueued_work(struct drbd_connection *connection)
2050 {
2051 	struct drbd_peer_device *peer_device;
2052 	int vnr;
2053 
2054 	rcu_read_lock();
2055 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2056 		struct drbd_device *device = peer_device->device;
2057 		unsigned long todo = get_work_bits(&device->flags);
2058 		if (!todo)
2059 			continue;
2060 
2061 		kref_get(&device->kref);
2062 		rcu_read_unlock();
2063 		do_device_work(device, todo);
2064 		kref_put(&device->kref, drbd_destroy_device);
2065 		rcu_read_lock();
2066 	}
2067 	rcu_read_unlock();
2068 }
2069 
dequeue_work_batch(struct drbd_work_queue * queue,struct list_head * work_list)2070 static bool dequeue_work_batch(struct drbd_work_queue *queue, struct list_head *work_list)
2071 {
2072 	spin_lock_irq(&queue->q_lock);
2073 	list_splice_tail_init(&queue->q, work_list);
2074 	spin_unlock_irq(&queue->q_lock);
2075 	return !list_empty(work_list);
2076 }
2077 
wait_for_work(struct drbd_connection * connection,struct list_head * work_list)2078 static void wait_for_work(struct drbd_connection *connection, struct list_head *work_list)
2079 {
2080 	DEFINE_WAIT(wait);
2081 	struct net_conf *nc;
2082 	int uncork, cork;
2083 
2084 	dequeue_work_batch(&connection->sender_work, work_list);
2085 	if (!list_empty(work_list))
2086 		return;
2087 
2088 	/* Still nothing to do?
2089 	 * Maybe we still need to close the current epoch,
2090 	 * even if no new requests are queued yet.
2091 	 *
2092 	 * Also, poke TCP, just in case.
2093 	 * Then wait for new work (or signal). */
2094 	rcu_read_lock();
2095 	nc = rcu_dereference(connection->net_conf);
2096 	uncork = nc ? nc->tcp_cork : 0;
2097 	rcu_read_unlock();
2098 	if (uncork) {
2099 		mutex_lock(&connection->data.mutex);
2100 		if (connection->data.socket)
2101 			tcp_sock_set_cork(connection->data.socket->sk, false);
2102 		mutex_unlock(&connection->data.mutex);
2103 	}
2104 
2105 	for (;;) {
2106 		int send_barrier;
2107 		prepare_to_wait(&connection->sender_work.q_wait, &wait, TASK_INTERRUPTIBLE);
2108 		spin_lock_irq(&connection->resource->req_lock);
2109 		spin_lock(&connection->sender_work.q_lock);	/* FIXME get rid of this one? */
2110 		if (!list_empty(&connection->sender_work.q))
2111 			list_splice_tail_init(&connection->sender_work.q, work_list);
2112 		spin_unlock(&connection->sender_work.q_lock);	/* FIXME get rid of this one? */
2113 		if (!list_empty(work_list) || signal_pending(current)) {
2114 			spin_unlock_irq(&connection->resource->req_lock);
2115 			break;
2116 		}
2117 
2118 		/* We found nothing new to do, no to-be-communicated request,
2119 		 * no other work item.  We may still need to close the last
2120 		 * epoch.  Next incoming request epoch will be connection ->
2121 		 * current transfer log epoch number.  If that is different
2122 		 * from the epoch of the last request we communicated, it is
2123 		 * safe to send the epoch separating barrier now.
2124 		 */
2125 		send_barrier =
2126 			atomic_read(&connection->current_tle_nr) !=
2127 			connection->send.current_epoch_nr;
2128 		spin_unlock_irq(&connection->resource->req_lock);
2129 
2130 		if (send_barrier)
2131 			maybe_send_barrier(connection,
2132 					connection->send.current_epoch_nr + 1);
2133 
2134 		if (test_bit(DEVICE_WORK_PENDING, &connection->flags))
2135 			break;
2136 
2137 		/* drbd_send() may have called flush_signals() */
2138 		if (get_t_state(&connection->worker) != RUNNING)
2139 			break;
2140 
2141 		schedule();
2142 		/* may be woken up for other things but new work, too,
2143 		 * e.g. if the current epoch got closed.
2144 		 * In which case we send the barrier above. */
2145 	}
2146 	finish_wait(&connection->sender_work.q_wait, &wait);
2147 
2148 	/* someone may have changed the config while we have been waiting above. */
2149 	rcu_read_lock();
2150 	nc = rcu_dereference(connection->net_conf);
2151 	cork = nc ? nc->tcp_cork : 0;
2152 	rcu_read_unlock();
2153 	mutex_lock(&connection->data.mutex);
2154 	if (connection->data.socket) {
2155 		if (cork)
2156 			tcp_sock_set_cork(connection->data.socket->sk, true);
2157 		else if (!uncork)
2158 			tcp_sock_set_cork(connection->data.socket->sk, false);
2159 	}
2160 	mutex_unlock(&connection->data.mutex);
2161 }
2162 
drbd_worker(struct drbd_thread * thi)2163 int drbd_worker(struct drbd_thread *thi)
2164 {
2165 	struct drbd_connection *connection = thi->connection;
2166 	struct drbd_work *w = NULL;
2167 	struct drbd_peer_device *peer_device;
2168 	LIST_HEAD(work_list);
2169 	int vnr;
2170 
2171 	while (get_t_state(thi) == RUNNING) {
2172 		drbd_thread_current_set_cpu(thi);
2173 
2174 		if (list_empty(&work_list)) {
2175 			update_worker_timing_details(connection, wait_for_work);
2176 			wait_for_work(connection, &work_list);
2177 		}
2178 
2179 		if (test_and_clear_bit(DEVICE_WORK_PENDING, &connection->flags)) {
2180 			update_worker_timing_details(connection, do_unqueued_work);
2181 			do_unqueued_work(connection);
2182 		}
2183 
2184 		if (signal_pending(current)) {
2185 			flush_signals(current);
2186 			if (get_t_state(thi) == RUNNING) {
2187 				drbd_warn(connection, "Worker got an unexpected signal\n");
2188 				continue;
2189 			}
2190 			break;
2191 		}
2192 
2193 		if (get_t_state(thi) != RUNNING)
2194 			break;
2195 
2196 		if (!list_empty(&work_list)) {
2197 			w = list_first_entry(&work_list, struct drbd_work, list);
2198 			list_del_init(&w->list);
2199 			update_worker_timing_details(connection, w->cb);
2200 			if (w->cb(w, connection->cstate < C_WF_REPORT_PARAMS) == 0)
2201 				continue;
2202 			if (connection->cstate >= C_WF_REPORT_PARAMS)
2203 				conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
2204 		}
2205 	}
2206 
2207 	do {
2208 		if (test_and_clear_bit(DEVICE_WORK_PENDING, &connection->flags)) {
2209 			update_worker_timing_details(connection, do_unqueued_work);
2210 			do_unqueued_work(connection);
2211 		}
2212 		if (!list_empty(&work_list)) {
2213 			w = list_first_entry(&work_list, struct drbd_work, list);
2214 			list_del_init(&w->list);
2215 			update_worker_timing_details(connection, w->cb);
2216 			w->cb(w, 1);
2217 		} else
2218 			dequeue_work_batch(&connection->sender_work, &work_list);
2219 	} while (!list_empty(&work_list) || test_bit(DEVICE_WORK_PENDING, &connection->flags));
2220 
2221 	rcu_read_lock();
2222 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2223 		struct drbd_device *device = peer_device->device;
2224 		D_ASSERT(device, device->state.disk == D_DISKLESS && device->state.conn == C_STANDALONE);
2225 		kref_get(&device->kref);
2226 		rcu_read_unlock();
2227 		drbd_device_cleanup(device);
2228 		kref_put(&device->kref, drbd_destroy_device);
2229 		rcu_read_lock();
2230 	}
2231 	rcu_read_unlock();
2232 
2233 	return 0;
2234 }
2235