• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/core.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9  */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pm_wakeup.h>
23 #include <linux/suspend.h>
24 #include <linux/fault-inject.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28 
29 #include <linux/mmc/card.h>
30 #include <linux/mmc/host.h>
31 #include <linux/mmc/mmc.h>
32 #include <linux/mmc/sd.h>
33 #include <linux/mmc/slot-gpio.h>
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/mmc.h>
37 
38 #include "core.h"
39 #include "card.h"
40 #include "crypto.h"
41 #include "bus.h"
42 #include "host.h"
43 #include "sdio_bus.h"
44 #include "pwrseq.h"
45 
46 #include "mmc_ops.h"
47 #include "sd_ops.h"
48 #include "sdio_ops.h"
49 
50 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
51 #define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
52 #define SD_DISCARD_TIMEOUT_MS	(250)
53 
54 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
55 
56 /*
57  * Enabling software CRCs on the data blocks can be a significant (30%)
58  * performance cost, and for other reasons may not always be desired.
59  * So we allow it it to be disabled.
60  */
61 bool use_spi_crc = 1;
62 module_param(use_spi_crc, bool, 0);
63 
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)64 static int mmc_schedule_delayed_work(struct delayed_work *work,
65 				     unsigned long delay)
66 {
67 	/*
68 	 * We use the system_freezable_wq, because of two reasons.
69 	 * First, it allows several works (not the same work item) to be
70 	 * executed simultaneously. Second, the queue becomes frozen when
71 	 * userspace becomes frozen during system PM.
72 	 */
73 	return queue_delayed_work(system_freezable_wq, work, delay);
74 }
75 
76 #ifdef CONFIG_FAIL_MMC_REQUEST
77 
78 /*
79  * Internal function. Inject random data errors.
80  * If mmc_data is NULL no errors are injected.
81  */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)82 static void mmc_should_fail_request(struct mmc_host *host,
83 				    struct mmc_request *mrq)
84 {
85 	struct mmc_command *cmd = mrq->cmd;
86 	struct mmc_data *data = mrq->data;
87 	static const int data_errors[] = {
88 		-ETIMEDOUT,
89 		-EILSEQ,
90 		-EIO,
91 	};
92 
93 	if (!data)
94 		return;
95 
96 	if ((cmd && cmd->error) || data->error ||
97 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
98 		return;
99 
100 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
101 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
102 }
103 
104 #else /* CONFIG_FAIL_MMC_REQUEST */
105 
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)106 static inline void mmc_should_fail_request(struct mmc_host *host,
107 					   struct mmc_request *mrq)
108 {
109 }
110 
111 #endif /* CONFIG_FAIL_MMC_REQUEST */
112 
mmc_complete_cmd(struct mmc_request * mrq)113 static inline void mmc_complete_cmd(struct mmc_request *mrq)
114 {
115 	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
116 		complete_all(&mrq->cmd_completion);
117 }
118 
mmc_command_done(struct mmc_host * host,struct mmc_request * mrq)119 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
120 {
121 	if (!mrq->cap_cmd_during_tfr)
122 		return;
123 
124 	mmc_complete_cmd(mrq);
125 
126 	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
127 		 mmc_hostname(host), mrq->cmd->opcode);
128 }
129 EXPORT_SYMBOL(mmc_command_done);
130 
131 /**
132  *	mmc_request_done - finish processing an MMC request
133  *	@host: MMC host which completed request
134  *	@mrq: MMC request which request
135  *
136  *	MMC drivers should call this function when they have completed
137  *	their processing of a request.
138  */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)139 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140 {
141 	struct mmc_command *cmd = mrq->cmd;
142 	int err = cmd->error;
143 
144 	/* Flag re-tuning needed on CRC errors */
145 	if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
146 	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
147 	    !host->retune_crc_disable &&
148 	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
149 	    (mrq->data && mrq->data->error == -EILSEQ) ||
150 	    (mrq->stop && mrq->stop->error == -EILSEQ)))
151 		mmc_retune_needed(host);
152 
153 	if (err && cmd->retries && mmc_host_is_spi(host)) {
154 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
155 			cmd->retries = 0;
156 	}
157 
158 	if (host->ongoing_mrq == mrq)
159 		host->ongoing_mrq = NULL;
160 
161 	mmc_complete_cmd(mrq);
162 
163 	trace_mmc_request_done(host, mrq);
164 
165 	/*
166 	 * We list various conditions for the command to be considered
167 	 * properly done:
168 	 *
169 	 * - There was no error, OK fine then
170 	 * - We are not doing some kind of retry
171 	 * - The card was removed (...so just complete everything no matter
172 	 *   if there are errors or retries)
173 	 */
174 	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
175 		mmc_should_fail_request(host, mrq);
176 
177 		if (!host->ongoing_mrq)
178 			led_trigger_event(host->led, LED_OFF);
179 
180 		if (mrq->sbc) {
181 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
182 				mmc_hostname(host), mrq->sbc->opcode,
183 				mrq->sbc->error,
184 				mrq->sbc->resp[0], mrq->sbc->resp[1],
185 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
186 		}
187 
188 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
189 			mmc_hostname(host), cmd->opcode, err,
190 			cmd->resp[0], cmd->resp[1],
191 			cmd->resp[2], cmd->resp[3]);
192 
193 		if (mrq->data) {
194 			pr_debug("%s:     %d bytes transferred: %d\n",
195 				mmc_hostname(host),
196 				mrq->data->bytes_xfered, mrq->data->error);
197 		}
198 
199 		if (mrq->stop) {
200 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
201 				mmc_hostname(host), mrq->stop->opcode,
202 				mrq->stop->error,
203 				mrq->stop->resp[0], mrq->stop->resp[1],
204 				mrq->stop->resp[2], mrq->stop->resp[3]);
205 		}
206 	}
207 	/*
208 	 * Request starter must handle retries - see
209 	 * mmc_wait_for_req_done().
210 	 */
211 	if (mrq->done)
212 		mrq->done(mrq);
213 }
214 
215 EXPORT_SYMBOL(mmc_request_done);
216 
__mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)217 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
218 {
219 	int err;
220 
221 	/* Assumes host controller has been runtime resumed by mmc_claim_host */
222 	err = mmc_retune(host);
223 	if (err) {
224 		mrq->cmd->error = err;
225 		mmc_request_done(host, mrq);
226 		return;
227 	}
228 
229 	/*
230 	 * For sdio rw commands we must wait for card busy otherwise some
231 	 * sdio devices won't work properly.
232 	 * And bypass I/O abort, reset and bus suspend operations.
233 	 */
234 	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
235 	    host->ops->card_busy) {
236 		int tries = 500; /* Wait aprox 500ms at maximum */
237 
238 		while (host->ops->card_busy(host) && --tries)
239 			mmc_delay(1);
240 
241 		if (tries == 0) {
242 			mrq->cmd->error = -EBUSY;
243 			mmc_request_done(host, mrq);
244 			return;
245 		}
246 	}
247 
248 	if (mrq->cap_cmd_during_tfr) {
249 		host->ongoing_mrq = mrq;
250 		/*
251 		 * Retry path could come through here without having waiting on
252 		 * cmd_completion, so ensure it is reinitialised.
253 		 */
254 		reinit_completion(&mrq->cmd_completion);
255 	}
256 
257 	trace_mmc_request_start(host, mrq);
258 
259 	if (host->cqe_on)
260 		host->cqe_ops->cqe_off(host);
261 
262 	host->ops->request(host, mrq);
263 }
264 
mmc_mrq_pr_debug(struct mmc_host * host,struct mmc_request * mrq,bool cqe)265 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
266 			     bool cqe)
267 {
268 	if (mrq->sbc) {
269 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
270 			 mmc_hostname(host), mrq->sbc->opcode,
271 			 mrq->sbc->arg, mrq->sbc->flags);
272 	}
273 
274 	if (mrq->cmd) {
275 		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
276 			 mmc_hostname(host), cqe ? "CQE direct " : "",
277 			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
278 	} else if (cqe) {
279 		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
280 			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
281 	}
282 
283 	if (mrq->data) {
284 		pr_debug("%s:     blksz %d blocks %d flags %08x "
285 			"tsac %d ms nsac %d\n",
286 			mmc_hostname(host), mrq->data->blksz,
287 			mrq->data->blocks, mrq->data->flags,
288 			mrq->data->timeout_ns / 1000000,
289 			mrq->data->timeout_clks);
290 	}
291 
292 	if (mrq->stop) {
293 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
294 			 mmc_hostname(host), mrq->stop->opcode,
295 			 mrq->stop->arg, mrq->stop->flags);
296 	}
297 }
298 
mmc_mrq_prep(struct mmc_host * host,struct mmc_request * mrq)299 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
300 {
301 	unsigned int i, sz = 0;
302 	struct scatterlist *sg;
303 
304 	if (mrq->cmd) {
305 		mrq->cmd->error = 0;
306 		mrq->cmd->mrq = mrq;
307 		mrq->cmd->data = mrq->data;
308 	}
309 	if (mrq->sbc) {
310 		mrq->sbc->error = 0;
311 		mrq->sbc->mrq = mrq;
312 	}
313 	if (mrq->data) {
314 		if (mrq->data->blksz > host->max_blk_size ||
315 		    mrq->data->blocks > host->max_blk_count ||
316 		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
317 			return -EINVAL;
318 
319 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
320 			sz += sg->length;
321 		if (sz != mrq->data->blocks * mrq->data->blksz)
322 			return -EINVAL;
323 
324 		mrq->data->error = 0;
325 		mrq->data->mrq = mrq;
326 		if (mrq->stop) {
327 			mrq->data->stop = mrq->stop;
328 			mrq->stop->error = 0;
329 			mrq->stop->mrq = mrq;
330 		}
331 	}
332 
333 	return 0;
334 }
335 
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)336 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
337 {
338 	int err;
339 
340 	init_completion(&mrq->cmd_completion);
341 
342 	mmc_retune_hold(host);
343 
344 	if (mmc_card_removed(host->card))
345 		return -ENOMEDIUM;
346 
347 	mmc_mrq_pr_debug(host, mrq, false);
348 
349 	WARN_ON(!host->claimed);
350 
351 	err = mmc_mrq_prep(host, mrq);
352 	if (err)
353 		return err;
354 
355 	led_trigger_event(host->led, LED_FULL);
356 	__mmc_start_request(host, mrq);
357 
358 	return 0;
359 }
360 EXPORT_SYMBOL(mmc_start_request);
361 
mmc_wait_done(struct mmc_request * mrq)362 static void mmc_wait_done(struct mmc_request *mrq)
363 {
364 	complete(&mrq->completion);
365 }
366 
mmc_wait_ongoing_tfr_cmd(struct mmc_host * host)367 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
368 {
369 	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
370 
371 	/*
372 	 * If there is an ongoing transfer, wait for the command line to become
373 	 * available.
374 	 */
375 	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
376 		wait_for_completion(&ongoing_mrq->cmd_completion);
377 }
378 
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)379 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
380 {
381 	int err;
382 
383 	mmc_wait_ongoing_tfr_cmd(host);
384 
385 	init_completion(&mrq->completion);
386 	mrq->done = mmc_wait_done;
387 
388 	err = mmc_start_request(host, mrq);
389 	if (err) {
390 		mrq->cmd->error = err;
391 		mmc_complete_cmd(mrq);
392 		complete(&mrq->completion);
393 	}
394 
395 	return err;
396 }
397 
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)398 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
399 {
400 	struct mmc_command *cmd;
401 
402 	while (1) {
403 		wait_for_completion(&mrq->completion);
404 
405 		cmd = mrq->cmd;
406 
407 		if (!cmd->error || !cmd->retries ||
408 		    mmc_card_removed(host->card))
409 			break;
410 
411 		mmc_retune_recheck(host);
412 
413 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
414 			 mmc_hostname(host), cmd->opcode, cmd->error);
415 		cmd->retries--;
416 		cmd->error = 0;
417 		__mmc_start_request(host, mrq);
418 	}
419 
420 	mmc_retune_release(host);
421 }
422 EXPORT_SYMBOL(mmc_wait_for_req_done);
423 
424 /*
425  * mmc_cqe_start_req - Start a CQE request.
426  * @host: MMC host to start the request
427  * @mrq: request to start
428  *
429  * Start the request, re-tuning if needed and it is possible. Returns an error
430  * code if the request fails to start or -EBUSY if CQE is busy.
431  */
mmc_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)432 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
433 {
434 	int err;
435 
436 	/*
437 	 * CQE cannot process re-tuning commands. Caller must hold retuning
438 	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
439 	 * active requests i.e. this is the first.  Note, re-tuning will call
440 	 * ->cqe_off().
441 	 */
442 	err = mmc_retune(host);
443 	if (err)
444 		goto out_err;
445 
446 	mrq->host = host;
447 
448 	mmc_mrq_pr_debug(host, mrq, true);
449 
450 	err = mmc_mrq_prep(host, mrq);
451 	if (err)
452 		goto out_err;
453 
454 	err = host->cqe_ops->cqe_request(host, mrq);
455 	if (err)
456 		goto out_err;
457 
458 	trace_mmc_request_start(host, mrq);
459 
460 	return 0;
461 
462 out_err:
463 	if (mrq->cmd) {
464 		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
465 			 mmc_hostname(host), mrq->cmd->opcode, err);
466 	} else {
467 		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
468 			 mmc_hostname(host), mrq->tag, err);
469 	}
470 	return err;
471 }
472 EXPORT_SYMBOL(mmc_cqe_start_req);
473 
474 /**
475  *	mmc_cqe_request_done - CQE has finished processing an MMC request
476  *	@host: MMC host which completed request
477  *	@mrq: MMC request which completed
478  *
479  *	CQE drivers should call this function when they have completed
480  *	their processing of a request.
481  */
mmc_cqe_request_done(struct mmc_host * host,struct mmc_request * mrq)482 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
483 {
484 	mmc_should_fail_request(host, mrq);
485 
486 	/* Flag re-tuning needed on CRC errors */
487 	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
488 	    (mrq->data && mrq->data->error == -EILSEQ))
489 		mmc_retune_needed(host);
490 
491 	trace_mmc_request_done(host, mrq);
492 
493 	if (mrq->cmd) {
494 		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
495 			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
496 	} else {
497 		pr_debug("%s: CQE transfer done tag %d\n",
498 			 mmc_hostname(host), mrq->tag);
499 	}
500 
501 	if (mrq->data) {
502 		pr_debug("%s:     %d bytes transferred: %d\n",
503 			 mmc_hostname(host),
504 			 mrq->data->bytes_xfered, mrq->data->error);
505 	}
506 
507 	mrq->done(mrq);
508 }
509 EXPORT_SYMBOL(mmc_cqe_request_done);
510 
511 /**
512  *	mmc_cqe_post_req - CQE post process of a completed MMC request
513  *	@host: MMC host
514  *	@mrq: MMC request to be processed
515  */
mmc_cqe_post_req(struct mmc_host * host,struct mmc_request * mrq)516 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
517 {
518 	if (host->cqe_ops->cqe_post_req)
519 		host->cqe_ops->cqe_post_req(host, mrq);
520 }
521 EXPORT_SYMBOL(mmc_cqe_post_req);
522 
523 /* Arbitrary 1 second timeout */
524 #define MMC_CQE_RECOVERY_TIMEOUT	1000
525 
526 /*
527  * mmc_cqe_recovery - Recover from CQE errors.
528  * @host: MMC host to recover
529  *
530  * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
531  * in eMMC, and discarding the queue in CQE. CQE must call
532  * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
533  * fails to discard its queue.
534  */
mmc_cqe_recovery(struct mmc_host * host)535 int mmc_cqe_recovery(struct mmc_host *host)
536 {
537 	struct mmc_command cmd;
538 	int err;
539 
540 	mmc_retune_hold_now(host);
541 
542 	/*
543 	 * Recovery is expected seldom, if at all, but it reduces performance,
544 	 * so make sure it is not completely silent.
545 	 */
546 	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
547 
548 	host->cqe_ops->cqe_recovery_start(host);
549 
550 	memset(&cmd, 0, sizeof(cmd));
551 	cmd.opcode       = MMC_STOP_TRANSMISSION;
552 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
553 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
554 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
555 	mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
556 
557 	mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, MMC_BUSY_IO);
558 
559 	memset(&cmd, 0, sizeof(cmd));
560 	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
561 	cmd.arg          = 1; /* Discard entire queue */
562 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
563 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
564 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
565 	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
566 
567 	host->cqe_ops->cqe_recovery_finish(host);
568 
569 	if (err)
570 		err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
571 
572 	mmc_retune_release(host);
573 
574 	return err;
575 }
576 EXPORT_SYMBOL(mmc_cqe_recovery);
577 
578 /**
579  *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
580  *	@host: MMC host
581  *	@mrq: MMC request
582  *
583  *	mmc_is_req_done() is used with requests that have
584  *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
585  *	starting a request and before waiting for it to complete. That is,
586  *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
587  *	and before mmc_wait_for_req_done(). If it is called at other times the
588  *	result is not meaningful.
589  */
mmc_is_req_done(struct mmc_host * host,struct mmc_request * mrq)590 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
591 {
592 	return completion_done(&mrq->completion);
593 }
594 EXPORT_SYMBOL(mmc_is_req_done);
595 
596 /**
597  *	mmc_wait_for_req - start a request and wait for completion
598  *	@host: MMC host to start command
599  *	@mrq: MMC request to start
600  *
601  *	Start a new MMC custom command request for a host, and wait
602  *	for the command to complete. In the case of 'cap_cmd_during_tfr'
603  *	requests, the transfer is ongoing and the caller can issue further
604  *	commands that do not use the data lines, and then wait by calling
605  *	mmc_wait_for_req_done().
606  *	Does not attempt to parse the response.
607  */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)608 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
609 {
610 	__mmc_start_req(host, mrq);
611 
612 	if (!mrq->cap_cmd_during_tfr)
613 		mmc_wait_for_req_done(host, mrq);
614 }
615 EXPORT_SYMBOL(mmc_wait_for_req);
616 
617 /**
618  *	mmc_wait_for_cmd - start a command and wait for completion
619  *	@host: MMC host to start command
620  *	@cmd: MMC command to start
621  *	@retries: maximum number of retries
622  *
623  *	Start a new MMC command for a host, and wait for the command
624  *	to complete.  Return any error that occurred while the command
625  *	was executing.  Do not attempt to parse the response.
626  */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)627 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
628 {
629 	struct mmc_request mrq = {};
630 
631 	WARN_ON(!host->claimed);
632 
633 	memset(cmd->resp, 0, sizeof(cmd->resp));
634 	cmd->retries = retries;
635 
636 	mrq.cmd = cmd;
637 	cmd->data = NULL;
638 
639 	mmc_wait_for_req(host, &mrq);
640 
641 	return cmd->error;
642 }
643 
644 EXPORT_SYMBOL(mmc_wait_for_cmd);
645 
646 /**
647  *	mmc_set_data_timeout - set the timeout for a data command
648  *	@data: data phase for command
649  *	@card: the MMC card associated with the data transfer
650  *
651  *	Computes the data timeout parameters according to the
652  *	correct algorithm given the card type.
653  */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)654 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
655 {
656 	unsigned int mult;
657 
658 	/*
659 	 * SDIO cards only define an upper 1 s limit on access.
660 	 */
661 	if (mmc_card_sdio(card)) {
662 		data->timeout_ns = 1000000000;
663 		data->timeout_clks = 0;
664 		return;
665 	}
666 
667 	/*
668 	 * SD cards use a 100 multiplier rather than 10
669 	 */
670 	mult = mmc_card_sd(card) ? 100 : 10;
671 
672 	/*
673 	 * Scale up the multiplier (and therefore the timeout) by
674 	 * the r2w factor for writes.
675 	 */
676 	if (data->flags & MMC_DATA_WRITE)
677 		mult <<= card->csd.r2w_factor;
678 
679 	data->timeout_ns = card->csd.taac_ns * mult;
680 	data->timeout_clks = card->csd.taac_clks * mult;
681 
682 	/*
683 	 * SD cards also have an upper limit on the timeout.
684 	 */
685 	if (mmc_card_sd(card)) {
686 		unsigned int timeout_us, limit_us;
687 
688 		timeout_us = data->timeout_ns / 1000;
689 		if (card->host->ios.clock)
690 			timeout_us += data->timeout_clks * 1000 /
691 				(card->host->ios.clock / 1000);
692 
693 		if (data->flags & MMC_DATA_WRITE)
694 			/*
695 			 * The MMC spec "It is strongly recommended
696 			 * for hosts to implement more than 500ms
697 			 * timeout value even if the card indicates
698 			 * the 250ms maximum busy length."  Even the
699 			 * previous value of 300ms is known to be
700 			 * insufficient for some cards.
701 			 */
702 			limit_us = 3000000;
703 		else
704 			limit_us = 100000;
705 
706 		/*
707 		 * SDHC cards always use these fixed values.
708 		 */
709 		if (timeout_us > limit_us) {
710 			data->timeout_ns = limit_us * 1000;
711 			data->timeout_clks = 0;
712 		}
713 
714 		/* assign limit value if invalid */
715 		if (timeout_us == 0)
716 			data->timeout_ns = limit_us * 1000;
717 	}
718 
719 	/*
720 	 * Some cards require longer data read timeout than indicated in CSD.
721 	 * Address this by setting the read timeout to a "reasonably high"
722 	 * value. For the cards tested, 600ms has proven enough. If necessary,
723 	 * this value can be increased if other problematic cards require this.
724 	 */
725 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
726 		data->timeout_ns = 600000000;
727 		data->timeout_clks = 0;
728 	}
729 
730 	/*
731 	 * Some cards need very high timeouts if driven in SPI mode.
732 	 * The worst observed timeout was 900ms after writing a
733 	 * continuous stream of data until the internal logic
734 	 * overflowed.
735 	 */
736 	if (mmc_host_is_spi(card->host)) {
737 		if (data->flags & MMC_DATA_WRITE) {
738 			if (data->timeout_ns < 1000000000)
739 				data->timeout_ns = 1000000000;	/* 1s */
740 		} else {
741 			if (data->timeout_ns < 100000000)
742 				data->timeout_ns =  100000000;	/* 100ms */
743 		}
744 	}
745 }
746 EXPORT_SYMBOL(mmc_set_data_timeout);
747 
748 /*
749  * Allow claiming an already claimed host if the context is the same or there is
750  * no context but the task is the same.
751  */
mmc_ctx_matches(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)752 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
753 				   struct task_struct *task)
754 {
755 	return host->claimer == ctx ||
756 	       (!ctx && task && host->claimer->task == task);
757 }
758 
mmc_ctx_set_claimer(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)759 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
760 				       struct mmc_ctx *ctx,
761 				       struct task_struct *task)
762 {
763 	if (!host->claimer) {
764 		if (ctx)
765 			host->claimer = ctx;
766 		else
767 			host->claimer = &host->default_ctx;
768 	}
769 	if (task)
770 		host->claimer->task = task;
771 }
772 
773 /**
774  *	__mmc_claim_host - exclusively claim a host
775  *	@host: mmc host to claim
776  *	@ctx: context that claims the host or NULL in which case the default
777  *	context will be used
778  *	@abort: whether or not the operation should be aborted
779  *
780  *	Claim a host for a set of operations.  If @abort is non null and
781  *	dereference a non-zero value then this will return prematurely with
782  *	that non-zero value without acquiring the lock.  Returns zero
783  *	with the lock held otherwise.
784  */
__mmc_claim_host(struct mmc_host * host,struct mmc_ctx * ctx,atomic_t * abort)785 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
786 		     atomic_t *abort)
787 {
788 	struct task_struct *task = ctx ? NULL : current;
789 	DECLARE_WAITQUEUE(wait, current);
790 	unsigned long flags;
791 	int stop;
792 	bool pm = false;
793 
794 	might_sleep();
795 
796 	add_wait_queue(&host->wq, &wait);
797 	spin_lock_irqsave(&host->lock, flags);
798 	while (1) {
799 		set_current_state(TASK_UNINTERRUPTIBLE);
800 		stop = abort ? atomic_read(abort) : 0;
801 		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
802 			break;
803 		spin_unlock_irqrestore(&host->lock, flags);
804 		schedule();
805 		spin_lock_irqsave(&host->lock, flags);
806 	}
807 	set_current_state(TASK_RUNNING);
808 	if (!stop) {
809 		host->claimed = 1;
810 		mmc_ctx_set_claimer(host, ctx, task);
811 		host->claim_cnt += 1;
812 		if (host->claim_cnt == 1)
813 			pm = true;
814 	} else
815 		wake_up(&host->wq);
816 	spin_unlock_irqrestore(&host->lock, flags);
817 	remove_wait_queue(&host->wq, &wait);
818 
819 	if (pm)
820 		pm_runtime_get_sync(mmc_dev(host));
821 
822 	return stop;
823 }
824 EXPORT_SYMBOL(__mmc_claim_host);
825 
826 /**
827  *	mmc_release_host - release a host
828  *	@host: mmc host to release
829  *
830  *	Release a MMC host, allowing others to claim the host
831  *	for their operations.
832  */
mmc_release_host(struct mmc_host * host)833 void mmc_release_host(struct mmc_host *host)
834 {
835 	unsigned long flags;
836 
837 	WARN_ON(!host->claimed);
838 
839 	spin_lock_irqsave(&host->lock, flags);
840 	if (--host->claim_cnt) {
841 		/* Release for nested claim */
842 		spin_unlock_irqrestore(&host->lock, flags);
843 	} else {
844 		host->claimed = 0;
845 		host->claimer->task = NULL;
846 		host->claimer = NULL;
847 		spin_unlock_irqrestore(&host->lock, flags);
848 		wake_up(&host->wq);
849 		pm_runtime_mark_last_busy(mmc_dev(host));
850 		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
851 			pm_runtime_put_sync_suspend(mmc_dev(host));
852 		else
853 			pm_runtime_put_autosuspend(mmc_dev(host));
854 	}
855 }
856 EXPORT_SYMBOL(mmc_release_host);
857 
858 /*
859  * This is a helper function, which fetches a runtime pm reference for the
860  * card device and also claims the host.
861  */
mmc_get_card(struct mmc_card * card,struct mmc_ctx * ctx)862 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
863 {
864 	pm_runtime_get_sync(&card->dev);
865 	__mmc_claim_host(card->host, ctx, NULL);
866 }
867 EXPORT_SYMBOL(mmc_get_card);
868 
869 /*
870  * This is a helper function, which releases the host and drops the runtime
871  * pm reference for the card device.
872  */
mmc_put_card(struct mmc_card * card,struct mmc_ctx * ctx)873 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
874 {
875 	struct mmc_host *host = card->host;
876 
877 	WARN_ON(ctx && host->claimer != ctx);
878 
879 	mmc_release_host(host);
880 	pm_runtime_mark_last_busy(&card->dev);
881 	pm_runtime_put_autosuspend(&card->dev);
882 }
883 EXPORT_SYMBOL(mmc_put_card);
884 
885 /*
886  * Internal function that does the actual ios call to the host driver,
887  * optionally printing some debug output.
888  */
mmc_set_ios(struct mmc_host * host)889 static inline void mmc_set_ios(struct mmc_host *host)
890 {
891 	struct mmc_ios *ios = &host->ios;
892 
893 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
894 		"width %u timing %u\n",
895 		 mmc_hostname(host), ios->clock, ios->bus_mode,
896 		 ios->power_mode, ios->chip_select, ios->vdd,
897 		 1 << ios->bus_width, ios->timing);
898 
899 	host->ops->set_ios(host, ios);
900 }
901 
902 /*
903  * Control chip select pin on a host.
904  */
mmc_set_chip_select(struct mmc_host * host,int mode)905 void mmc_set_chip_select(struct mmc_host *host, int mode)
906 {
907 	host->ios.chip_select = mode;
908 	mmc_set_ios(host);
909 }
910 
911 /*
912  * Sets the host clock to the highest possible frequency that
913  * is below "hz".
914  */
mmc_set_clock(struct mmc_host * host,unsigned int hz)915 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
916 {
917 	WARN_ON(hz && hz < host->f_min);
918 
919 	if (hz > host->f_max)
920 		hz = host->f_max;
921 
922 	host->ios.clock = hz;
923 	mmc_set_ios(host);
924 }
925 
mmc_execute_tuning(struct mmc_card * card)926 int mmc_execute_tuning(struct mmc_card *card)
927 {
928 	struct mmc_host *host = card->host;
929 	u32 opcode;
930 	int err;
931 
932 	if (!host->ops->execute_tuning)
933 		return 0;
934 
935 	if (host->cqe_on)
936 		host->cqe_ops->cqe_off(host);
937 
938 	if (mmc_card_mmc(card))
939 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
940 	else
941 		opcode = MMC_SEND_TUNING_BLOCK;
942 
943 	err = host->ops->execute_tuning(host, opcode);
944 
945 	if (err) {
946 		pr_err("%s: tuning execution failed: %d\n",
947 			mmc_hostname(host), err);
948 	} else {
949 		host->retune_now = 0;
950 		host->need_retune = 0;
951 		mmc_retune_enable(host);
952 	}
953 
954 	return err;
955 }
956 
957 /*
958  * Change the bus mode (open drain/push-pull) of a host.
959  */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)960 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
961 {
962 	host->ios.bus_mode = mode;
963 	mmc_set_ios(host);
964 }
965 
966 /*
967  * Change data bus width of a host.
968  */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)969 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
970 {
971 	host->ios.bus_width = width;
972 	mmc_set_ios(host);
973 }
974 
975 /*
976  * Set initial state after a power cycle or a hw_reset.
977  */
mmc_set_initial_state(struct mmc_host * host)978 void mmc_set_initial_state(struct mmc_host *host)
979 {
980 	if (host->cqe_on)
981 		host->cqe_ops->cqe_off(host);
982 
983 	mmc_retune_disable(host);
984 
985 	if (mmc_host_is_spi(host))
986 		host->ios.chip_select = MMC_CS_HIGH;
987 	else
988 		host->ios.chip_select = MMC_CS_DONTCARE;
989 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
990 	host->ios.bus_width = MMC_BUS_WIDTH_1;
991 	host->ios.timing = MMC_TIMING_LEGACY;
992 	host->ios.drv_type = 0;
993 	host->ios.enhanced_strobe = false;
994 
995 	/*
996 	 * Make sure we are in non-enhanced strobe mode before we
997 	 * actually enable it in ext_csd.
998 	 */
999 	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1000 	     host->ops->hs400_enhanced_strobe)
1001 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1002 
1003 	mmc_set_ios(host);
1004 
1005 	mmc_crypto_set_initial_state(host);
1006 }
1007 
1008 /**
1009  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1010  * @vdd:	voltage (mV)
1011  * @low_bits:	prefer low bits in boundary cases
1012  *
1013  * This function returns the OCR bit number according to the provided @vdd
1014  * value. If conversion is not possible a negative errno value returned.
1015  *
1016  * Depending on the @low_bits flag the function prefers low or high OCR bits
1017  * on boundary voltages. For example,
1018  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1019  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1020  *
1021  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1022  */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)1023 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1024 {
1025 	const int max_bit = ilog2(MMC_VDD_35_36);
1026 	int bit;
1027 
1028 	if (vdd < 1650 || vdd > 3600)
1029 		return -EINVAL;
1030 
1031 	if (vdd >= 1650 && vdd <= 1950)
1032 		return ilog2(MMC_VDD_165_195);
1033 
1034 	if (low_bits)
1035 		vdd -= 1;
1036 
1037 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1038 	bit = (vdd - 2000) / 100 + 8;
1039 	if (bit > max_bit)
1040 		return max_bit;
1041 	return bit;
1042 }
1043 
1044 /**
1045  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1046  * @vdd_min:	minimum voltage value (mV)
1047  * @vdd_max:	maximum voltage value (mV)
1048  *
1049  * This function returns the OCR mask bits according to the provided @vdd_min
1050  * and @vdd_max values. If conversion is not possible the function returns 0.
1051  *
1052  * Notes wrt boundary cases:
1053  * This function sets the OCR bits for all boundary voltages, for example
1054  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1055  * MMC_VDD_34_35 mask.
1056  */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1057 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1058 {
1059 	u32 mask = 0;
1060 
1061 	if (vdd_max < vdd_min)
1062 		return 0;
1063 
1064 	/* Prefer high bits for the boundary vdd_max values. */
1065 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1066 	if (vdd_max < 0)
1067 		return 0;
1068 
1069 	/* Prefer low bits for the boundary vdd_min values. */
1070 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1071 	if (vdd_min < 0)
1072 		return 0;
1073 
1074 	/* Fill the mask, from max bit to min bit. */
1075 	while (vdd_max >= vdd_min)
1076 		mask |= 1 << vdd_max--;
1077 
1078 	return mask;
1079 }
1080 
mmc_of_get_func_num(struct device_node * node)1081 static int mmc_of_get_func_num(struct device_node *node)
1082 {
1083 	u32 reg;
1084 	int ret;
1085 
1086 	ret = of_property_read_u32(node, "reg", &reg);
1087 	if (ret < 0)
1088 		return ret;
1089 
1090 	return reg;
1091 }
1092 
mmc_of_find_child_device(struct mmc_host * host,unsigned func_num)1093 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1094 		unsigned func_num)
1095 {
1096 	struct device_node *node;
1097 
1098 	if (!host->parent || !host->parent->of_node)
1099 		return NULL;
1100 
1101 	for_each_child_of_node(host->parent->of_node, node) {
1102 		if (mmc_of_get_func_num(node) == func_num)
1103 			return node;
1104 	}
1105 
1106 	return NULL;
1107 }
1108 
1109 /*
1110  * Mask off any voltages we don't support and select
1111  * the lowest voltage
1112  */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1113 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1114 {
1115 	int bit;
1116 
1117 	/*
1118 	 * Sanity check the voltages that the card claims to
1119 	 * support.
1120 	 */
1121 	if (ocr & 0x7F) {
1122 		dev_warn(mmc_dev(host),
1123 		"card claims to support voltages below defined range\n");
1124 		ocr &= ~0x7F;
1125 	}
1126 
1127 	ocr &= host->ocr_avail;
1128 	if (!ocr) {
1129 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1130 		return 0;
1131 	}
1132 
1133 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1134 		bit = ffs(ocr) - 1;
1135 		ocr &= 3 << bit;
1136 		mmc_power_cycle(host, ocr);
1137 	} else {
1138 		bit = fls(ocr) - 1;
1139 		/*
1140 		 * The bit variable represents the highest voltage bit set in
1141 		 * the OCR register.
1142 		 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1143 		 * we must shift the mask '3' with (bit - 1).
1144 		 */
1145 		ocr &= 3 << (bit - 1);
1146 		if (bit != host->ios.vdd)
1147 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1148 	}
1149 
1150 	return ocr;
1151 }
1152 
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1153 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1154 {
1155 	int err = 0;
1156 	int old_signal_voltage = host->ios.signal_voltage;
1157 
1158 	host->ios.signal_voltage = signal_voltage;
1159 	if (host->ops->start_signal_voltage_switch)
1160 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1161 
1162 	if (err)
1163 		host->ios.signal_voltage = old_signal_voltage;
1164 
1165 	return err;
1166 
1167 }
1168 
mmc_set_initial_signal_voltage(struct mmc_host * host)1169 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1170 {
1171 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1172 	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1173 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1174 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1175 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1176 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1177 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1178 }
1179 
mmc_host_set_uhs_voltage(struct mmc_host * host)1180 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1181 {
1182 	u32 clock;
1183 
1184 	/*
1185 	 * During a signal voltage level switch, the clock must be gated
1186 	 * for 5 ms according to the SD spec
1187 	 */
1188 	clock = host->ios.clock;
1189 	host->ios.clock = 0;
1190 	mmc_set_ios(host);
1191 
1192 	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1193 		return -EAGAIN;
1194 
1195 	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1196 	mmc_delay(10);
1197 	host->ios.clock = clock;
1198 	mmc_set_ios(host);
1199 
1200 	return 0;
1201 }
1202 
mmc_set_uhs_voltage(struct mmc_host * host,u32 ocr)1203 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1204 {
1205 	struct mmc_command cmd = {};
1206 	int err = 0;
1207 
1208 	/*
1209 	 * If we cannot switch voltages, return failure so the caller
1210 	 * can continue without UHS mode
1211 	 */
1212 	if (!host->ops->start_signal_voltage_switch)
1213 		return -EPERM;
1214 	if (!host->ops->card_busy)
1215 		pr_warn("%s: cannot verify signal voltage switch\n",
1216 			mmc_hostname(host));
1217 
1218 	cmd.opcode = SD_SWITCH_VOLTAGE;
1219 	cmd.arg = 0;
1220 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1221 
1222 	err = mmc_wait_for_cmd(host, &cmd, 0);
1223 	if (err)
1224 		goto power_cycle;
1225 
1226 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1227 		return -EIO;
1228 
1229 	/*
1230 	 * The card should drive cmd and dat[0:3] low immediately
1231 	 * after the response of cmd11, but wait 1 ms to be sure
1232 	 */
1233 	mmc_delay(1);
1234 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1235 		err = -EAGAIN;
1236 		goto power_cycle;
1237 	}
1238 
1239 	if (mmc_host_set_uhs_voltage(host)) {
1240 		/*
1241 		 * Voltages may not have been switched, but we've already
1242 		 * sent CMD11, so a power cycle is required anyway
1243 		 */
1244 		err = -EAGAIN;
1245 		goto power_cycle;
1246 	}
1247 
1248 	/* Wait for at least 1 ms according to spec */
1249 	mmc_delay(1);
1250 
1251 	/*
1252 	 * Failure to switch is indicated by the card holding
1253 	 * dat[0:3] low
1254 	 */
1255 	if (host->ops->card_busy && host->ops->card_busy(host))
1256 		err = -EAGAIN;
1257 
1258 power_cycle:
1259 	if (err) {
1260 		pr_debug("%s: Signal voltage switch failed, "
1261 			"power cycling card\n", mmc_hostname(host));
1262 		mmc_power_cycle(host, ocr);
1263 	}
1264 
1265 	return err;
1266 }
1267 
1268 /*
1269  * Select timing parameters for host.
1270  */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1271 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1272 {
1273 	host->ios.timing = timing;
1274 	mmc_set_ios(host);
1275 }
1276 
1277 /*
1278  * Select appropriate driver type for host.
1279  */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1280 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1281 {
1282 	host->ios.drv_type = drv_type;
1283 	mmc_set_ios(host);
1284 }
1285 
mmc_select_drive_strength(struct mmc_card * card,unsigned int max_dtr,int card_drv_type,int * drv_type)1286 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1287 			      int card_drv_type, int *drv_type)
1288 {
1289 	struct mmc_host *host = card->host;
1290 	int host_drv_type = SD_DRIVER_TYPE_B;
1291 
1292 	*drv_type = 0;
1293 
1294 	if (!host->ops->select_drive_strength)
1295 		return 0;
1296 
1297 	/* Use SD definition of driver strength for hosts */
1298 	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1299 		host_drv_type |= SD_DRIVER_TYPE_A;
1300 
1301 	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1302 		host_drv_type |= SD_DRIVER_TYPE_C;
1303 
1304 	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1305 		host_drv_type |= SD_DRIVER_TYPE_D;
1306 
1307 	/*
1308 	 * The drive strength that the hardware can support
1309 	 * depends on the board design.  Pass the appropriate
1310 	 * information and let the hardware specific code
1311 	 * return what is possible given the options
1312 	 */
1313 	return host->ops->select_drive_strength(card, max_dtr,
1314 						host_drv_type,
1315 						card_drv_type,
1316 						drv_type);
1317 }
1318 
1319 /*
1320  * Apply power to the MMC stack.  This is a two-stage process.
1321  * First, we enable power to the card without the clock running.
1322  * We then wait a bit for the power to stabilise.  Finally,
1323  * enable the bus drivers and clock to the card.
1324  *
1325  * We must _NOT_ enable the clock prior to power stablising.
1326  *
1327  * If a host does all the power sequencing itself, ignore the
1328  * initial MMC_POWER_UP stage.
1329  */
mmc_power_up(struct mmc_host * host,u32 ocr)1330 void mmc_power_up(struct mmc_host *host, u32 ocr)
1331 {
1332 	if (host->ios.power_mode == MMC_POWER_ON)
1333 		return;
1334 
1335 	mmc_pwrseq_pre_power_on(host);
1336 
1337 	host->ios.vdd = fls(ocr) - 1;
1338 	host->ios.power_mode = MMC_POWER_UP;
1339 	/* Set initial state and call mmc_set_ios */
1340 	mmc_set_initial_state(host);
1341 
1342 	mmc_set_initial_signal_voltage(host);
1343 
1344 	/*
1345 	 * This delay should be sufficient to allow the power supply
1346 	 * to reach the minimum voltage.
1347 	 */
1348 	mmc_delay(host->ios.power_delay_ms);
1349 
1350 	mmc_pwrseq_post_power_on(host);
1351 
1352 	host->ios.clock = host->f_init;
1353 
1354 	host->ios.power_mode = MMC_POWER_ON;
1355 	mmc_set_ios(host);
1356 
1357 	/*
1358 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1359 	 * time required to reach a stable voltage.
1360 	 */
1361 	mmc_delay(host->ios.power_delay_ms);
1362 }
1363 
mmc_power_off(struct mmc_host * host)1364 void mmc_power_off(struct mmc_host *host)
1365 {
1366 	if (host->ios.power_mode == MMC_POWER_OFF)
1367 		return;
1368 
1369 	mmc_pwrseq_power_off(host);
1370 
1371 	host->ios.clock = 0;
1372 	host->ios.vdd = 0;
1373 
1374 	host->ios.power_mode = MMC_POWER_OFF;
1375 	/* Set initial state and call mmc_set_ios */
1376 	mmc_set_initial_state(host);
1377 
1378 	/*
1379 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1380 	 * XO-1.5, require a short delay after poweroff before the card
1381 	 * can be successfully turned on again.
1382 	 */
1383 	mmc_delay(1);
1384 }
1385 
mmc_power_cycle(struct mmc_host * host,u32 ocr)1386 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1387 {
1388 	mmc_power_off(host);
1389 	/* Wait at least 1 ms according to SD spec */
1390 	mmc_delay(1);
1391 	mmc_power_up(host, ocr);
1392 }
1393 
1394 /*
1395  * Cleanup when the last reference to the bus operator is dropped.
1396  */
__mmc_release_bus(struct mmc_host * host)1397 static void __mmc_release_bus(struct mmc_host *host)
1398 {
1399 	WARN_ON(!host->bus_dead);
1400 
1401 	host->bus_ops = NULL;
1402 }
1403 
1404 /*
1405  * Increase reference count of bus operator
1406  */
mmc_bus_get(struct mmc_host * host)1407 static inline void mmc_bus_get(struct mmc_host *host)
1408 {
1409 	unsigned long flags;
1410 
1411 	spin_lock_irqsave(&host->lock, flags);
1412 	host->bus_refs++;
1413 	spin_unlock_irqrestore(&host->lock, flags);
1414 }
1415 
1416 /*
1417  * Decrease reference count of bus operator and free it if
1418  * it is the last reference.
1419  */
mmc_bus_put(struct mmc_host * host)1420 static inline void mmc_bus_put(struct mmc_host *host)
1421 {
1422 	unsigned long flags;
1423 
1424 	spin_lock_irqsave(&host->lock, flags);
1425 	host->bus_refs--;
1426 	if ((host->bus_refs == 0) && host->bus_ops)
1427 		__mmc_release_bus(host);
1428 	spin_unlock_irqrestore(&host->lock, flags);
1429 }
1430 
1431 /*
1432  * Assign a mmc bus handler to a host. Only one bus handler may control a
1433  * host at any given time.
1434  */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1435 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1436 {
1437 	unsigned long flags;
1438 
1439 	WARN_ON(!host->claimed);
1440 
1441 	spin_lock_irqsave(&host->lock, flags);
1442 
1443 	WARN_ON(host->bus_ops);
1444 	WARN_ON(host->bus_refs);
1445 
1446 	host->bus_ops = ops;
1447 	host->bus_refs = 1;
1448 	host->bus_dead = 0;
1449 
1450 	spin_unlock_irqrestore(&host->lock, flags);
1451 }
1452 
1453 /*
1454  * Remove the current bus handler from a host.
1455  */
mmc_detach_bus(struct mmc_host * host)1456 void mmc_detach_bus(struct mmc_host *host)
1457 {
1458 	unsigned long flags;
1459 
1460 	WARN_ON(!host->claimed);
1461 	WARN_ON(!host->bus_ops);
1462 
1463 	spin_lock_irqsave(&host->lock, flags);
1464 
1465 	host->bus_dead = 1;
1466 
1467 	spin_unlock_irqrestore(&host->lock, flags);
1468 
1469 	mmc_bus_put(host);
1470 }
1471 
_mmc_detect_change(struct mmc_host * host,unsigned long delay,bool cd_irq)1472 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1473 {
1474 	/*
1475 	 * Prevent system sleep for 5s to allow user space to consume the
1476 	 * corresponding uevent. This is especially useful, when CD irq is used
1477 	 * as a system wakeup, but doesn't hurt in other cases.
1478 	 */
1479 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1480 		__pm_wakeup_event(host->ws, 5000);
1481 
1482 	host->detect_change = 1;
1483 	mmc_schedule_delayed_work(&host->detect, delay);
1484 }
1485 
1486 /**
1487  *	mmc_detect_change - process change of state on a MMC socket
1488  *	@host: host which changed state.
1489  *	@delay: optional delay to wait before detection (jiffies)
1490  *
1491  *	MMC drivers should call this when they detect a card has been
1492  *	inserted or removed. The MMC layer will confirm that any
1493  *	present card is still functional, and initialize any newly
1494  *	inserted.
1495  */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1496 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1497 {
1498 	_mmc_detect_change(host, delay, true);
1499 }
1500 EXPORT_SYMBOL(mmc_detect_change);
1501 
mmc_init_erase(struct mmc_card * card)1502 void mmc_init_erase(struct mmc_card *card)
1503 {
1504 	unsigned int sz;
1505 
1506 	if (is_power_of_2(card->erase_size))
1507 		card->erase_shift = ffs(card->erase_size) - 1;
1508 	else
1509 		card->erase_shift = 0;
1510 
1511 	/*
1512 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1513 	 * card.  That is not desirable because it can take a long time
1514 	 * (minutes) potentially delaying more important I/O, and also the
1515 	 * timeout calculations become increasingly hugely over-estimated.
1516 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1517 	 * to that size and alignment.
1518 	 *
1519 	 * For SD cards that define Allocation Unit size, limit erases to one
1520 	 * Allocation Unit at a time.
1521 	 * For MMC, have a stab at ai good value and for modern cards it will
1522 	 * end up being 4MiB. Note that if the value is too small, it can end
1523 	 * up taking longer to erase. Also note, erase_size is already set to
1524 	 * High Capacity Erase Size if available when this function is called.
1525 	 */
1526 	if (mmc_card_sd(card) && card->ssr.au) {
1527 		card->pref_erase = card->ssr.au;
1528 		card->erase_shift = ffs(card->ssr.au) - 1;
1529 	} else if (card->erase_size) {
1530 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1531 		if (sz < 128)
1532 			card->pref_erase = 512 * 1024 / 512;
1533 		else if (sz < 512)
1534 			card->pref_erase = 1024 * 1024 / 512;
1535 		else if (sz < 1024)
1536 			card->pref_erase = 2 * 1024 * 1024 / 512;
1537 		else
1538 			card->pref_erase = 4 * 1024 * 1024 / 512;
1539 		if (card->pref_erase < card->erase_size)
1540 			card->pref_erase = card->erase_size;
1541 		else {
1542 			sz = card->pref_erase % card->erase_size;
1543 			if (sz)
1544 				card->pref_erase += card->erase_size - sz;
1545 		}
1546 	} else
1547 		card->pref_erase = 0;
1548 }
1549 
is_trim_arg(unsigned int arg)1550 static bool is_trim_arg(unsigned int arg)
1551 {
1552 	return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1553 }
1554 
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1555 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1556 				          unsigned int arg, unsigned int qty)
1557 {
1558 	unsigned int erase_timeout;
1559 
1560 	if (arg == MMC_DISCARD_ARG ||
1561 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1562 		erase_timeout = card->ext_csd.trim_timeout;
1563 	} else if (card->ext_csd.erase_group_def & 1) {
1564 		/* High Capacity Erase Group Size uses HC timeouts */
1565 		if (arg == MMC_TRIM_ARG)
1566 			erase_timeout = card->ext_csd.trim_timeout;
1567 		else
1568 			erase_timeout = card->ext_csd.hc_erase_timeout;
1569 	} else {
1570 		/* CSD Erase Group Size uses write timeout */
1571 		unsigned int mult = (10 << card->csd.r2w_factor);
1572 		unsigned int timeout_clks = card->csd.taac_clks * mult;
1573 		unsigned int timeout_us;
1574 
1575 		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1576 		if (card->csd.taac_ns < 1000000)
1577 			timeout_us = (card->csd.taac_ns * mult) / 1000;
1578 		else
1579 			timeout_us = (card->csd.taac_ns / 1000) * mult;
1580 
1581 		/*
1582 		 * ios.clock is only a target.  The real clock rate might be
1583 		 * less but not that much less, so fudge it by multiplying by 2.
1584 		 */
1585 		timeout_clks <<= 1;
1586 		timeout_us += (timeout_clks * 1000) /
1587 			      (card->host->ios.clock / 1000);
1588 
1589 		erase_timeout = timeout_us / 1000;
1590 
1591 		/*
1592 		 * Theoretically, the calculation could underflow so round up
1593 		 * to 1ms in that case.
1594 		 */
1595 		if (!erase_timeout)
1596 			erase_timeout = 1;
1597 	}
1598 
1599 	/* Multiplier for secure operations */
1600 	if (arg & MMC_SECURE_ARGS) {
1601 		if (arg == MMC_SECURE_ERASE_ARG)
1602 			erase_timeout *= card->ext_csd.sec_erase_mult;
1603 		else
1604 			erase_timeout *= card->ext_csd.sec_trim_mult;
1605 	}
1606 
1607 	erase_timeout *= qty;
1608 
1609 	/*
1610 	 * Ensure at least a 1 second timeout for SPI as per
1611 	 * 'mmc_set_data_timeout()'
1612 	 */
1613 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1614 		erase_timeout = 1000;
1615 
1616 	return erase_timeout;
1617 }
1618 
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1619 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1620 					 unsigned int arg,
1621 					 unsigned int qty)
1622 {
1623 	unsigned int erase_timeout;
1624 
1625 	/* for DISCARD none of the below calculation applies.
1626 	 * the busy timeout is 250msec per discard command.
1627 	 */
1628 	if (arg == SD_DISCARD_ARG)
1629 		return SD_DISCARD_TIMEOUT_MS;
1630 
1631 	if (card->ssr.erase_timeout) {
1632 		/* Erase timeout specified in SD Status Register (SSR) */
1633 		erase_timeout = card->ssr.erase_timeout * qty +
1634 				card->ssr.erase_offset;
1635 	} else {
1636 		/*
1637 		 * Erase timeout not specified in SD Status Register (SSR) so
1638 		 * use 250ms per write block.
1639 		 */
1640 		erase_timeout = 250 * qty;
1641 	}
1642 
1643 	/* Must not be less than 1 second */
1644 	if (erase_timeout < 1000)
1645 		erase_timeout = 1000;
1646 
1647 	return erase_timeout;
1648 }
1649 
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1650 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1651 				      unsigned int arg,
1652 				      unsigned int qty)
1653 {
1654 	if (mmc_card_sd(card))
1655 		return mmc_sd_erase_timeout(card, arg, qty);
1656 	else
1657 		return mmc_mmc_erase_timeout(card, arg, qty);
1658 }
1659 
mmc_do_erase(struct mmc_card * card,unsigned int from,unsigned int to,unsigned int arg)1660 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1661 			unsigned int to, unsigned int arg)
1662 {
1663 	struct mmc_command cmd = {};
1664 	unsigned int qty = 0, busy_timeout = 0;
1665 	bool use_r1b_resp = false;
1666 	int err;
1667 
1668 	mmc_retune_hold(card->host);
1669 
1670 	/*
1671 	 * qty is used to calculate the erase timeout which depends on how many
1672 	 * erase groups (or allocation units in SD terminology) are affected.
1673 	 * We count erasing part of an erase group as one erase group.
1674 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1675 	 * erase group size is almost certainly also power of 2, but it does not
1676 	 * seem to insist on that in the JEDEC standard, so we fall back to
1677 	 * division in that case.  SD may not specify an allocation unit size,
1678 	 * in which case the timeout is based on the number of write blocks.
1679 	 *
1680 	 * Note that the timeout for secure trim 2 will only be correct if the
1681 	 * number of erase groups specified is the same as the total of all
1682 	 * preceding secure trim 1 commands.  Since the power may have been
1683 	 * lost since the secure trim 1 commands occurred, it is generally
1684 	 * impossible to calculate the secure trim 2 timeout correctly.
1685 	 */
1686 	if (card->erase_shift)
1687 		qty += ((to >> card->erase_shift) -
1688 			(from >> card->erase_shift)) + 1;
1689 	else if (mmc_card_sd(card))
1690 		qty += to - from + 1;
1691 	else
1692 		qty += ((to / card->erase_size) -
1693 			(from / card->erase_size)) + 1;
1694 
1695 	if (!mmc_card_blockaddr(card)) {
1696 		from <<= 9;
1697 		to <<= 9;
1698 	}
1699 
1700 	if (mmc_card_sd(card))
1701 		cmd.opcode = SD_ERASE_WR_BLK_START;
1702 	else
1703 		cmd.opcode = MMC_ERASE_GROUP_START;
1704 	cmd.arg = from;
1705 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1706 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1707 	if (err) {
1708 		pr_err("mmc_erase: group start error %d, "
1709 		       "status %#x\n", err, cmd.resp[0]);
1710 		err = -EIO;
1711 		goto out;
1712 	}
1713 
1714 	memset(&cmd, 0, sizeof(struct mmc_command));
1715 	if (mmc_card_sd(card))
1716 		cmd.opcode = SD_ERASE_WR_BLK_END;
1717 	else
1718 		cmd.opcode = MMC_ERASE_GROUP_END;
1719 	cmd.arg = to;
1720 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1721 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1722 	if (err) {
1723 		pr_err("mmc_erase: group end error %d, status %#x\n",
1724 		       err, cmd.resp[0]);
1725 		err = -EIO;
1726 		goto out;
1727 	}
1728 
1729 	memset(&cmd, 0, sizeof(struct mmc_command));
1730 	cmd.opcode = MMC_ERASE;
1731 	cmd.arg = arg;
1732 	busy_timeout = mmc_erase_timeout(card, arg, qty);
1733 	/*
1734 	 * If the host controller supports busy signalling and the timeout for
1735 	 * the erase operation does not exceed the max_busy_timeout, we should
1736 	 * use R1B response. Or we need to prevent the host from doing hw busy
1737 	 * detection, which is done by converting to a R1 response instead.
1738 	 * Note, some hosts requires R1B, which also means they are on their own
1739 	 * when it comes to deal with the busy timeout.
1740 	 */
1741 	if (!(card->host->caps & MMC_CAP_NEED_RSP_BUSY) &&
1742 	    card->host->max_busy_timeout &&
1743 	    busy_timeout > card->host->max_busy_timeout) {
1744 		cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1745 	} else {
1746 		cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1747 		cmd.busy_timeout = busy_timeout;
1748 		use_r1b_resp = true;
1749 	}
1750 
1751 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1752 	if (err) {
1753 		pr_err("mmc_erase: erase error %d, status %#x\n",
1754 		       err, cmd.resp[0]);
1755 		err = -EIO;
1756 		goto out;
1757 	}
1758 
1759 	if (mmc_host_is_spi(card->host))
1760 		goto out;
1761 
1762 	/*
1763 	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1764 	 * shall be avoided.
1765 	 */
1766 	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1767 		goto out;
1768 
1769 	/* Let's poll to find out when the erase operation completes. */
1770 	err = mmc_poll_for_busy(card, busy_timeout, MMC_BUSY_ERASE);
1771 
1772 out:
1773 	mmc_retune_release(card->host);
1774 	return err;
1775 }
1776 
mmc_align_erase_size(struct mmc_card * card,unsigned int * from,unsigned int * to,unsigned int nr)1777 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1778 					 unsigned int *from,
1779 					 unsigned int *to,
1780 					 unsigned int nr)
1781 {
1782 	unsigned int from_new = *from, nr_new = nr, rem;
1783 
1784 	/*
1785 	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1786 	 * to align the erase size efficiently.
1787 	 */
1788 	if (is_power_of_2(card->erase_size)) {
1789 		unsigned int temp = from_new;
1790 
1791 		from_new = round_up(temp, card->erase_size);
1792 		rem = from_new - temp;
1793 
1794 		if (nr_new > rem)
1795 			nr_new -= rem;
1796 		else
1797 			return 0;
1798 
1799 		nr_new = round_down(nr_new, card->erase_size);
1800 	} else {
1801 		rem = from_new % card->erase_size;
1802 		if (rem) {
1803 			rem = card->erase_size - rem;
1804 			from_new += rem;
1805 			if (nr_new > rem)
1806 				nr_new -= rem;
1807 			else
1808 				return 0;
1809 		}
1810 
1811 		rem = nr_new % card->erase_size;
1812 		if (rem)
1813 			nr_new -= rem;
1814 	}
1815 
1816 	if (nr_new == 0)
1817 		return 0;
1818 
1819 	*to = from_new + nr_new;
1820 	*from = from_new;
1821 
1822 	return nr_new;
1823 }
1824 
1825 /**
1826  * mmc_erase - erase sectors.
1827  * @card: card to erase
1828  * @from: first sector to erase
1829  * @nr: number of sectors to erase
1830  * @arg: erase command argument
1831  *
1832  * Caller must claim host before calling this function.
1833  */
mmc_erase(struct mmc_card * card,unsigned int from,unsigned int nr,unsigned int arg)1834 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1835 	      unsigned int arg)
1836 {
1837 	unsigned int rem, to = from + nr;
1838 	int err;
1839 
1840 	if (!(card->csd.cmdclass & CCC_ERASE))
1841 		return -EOPNOTSUPP;
1842 
1843 	if (!card->erase_size)
1844 		return -EOPNOTSUPP;
1845 
1846 	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1847 		return -EOPNOTSUPP;
1848 
1849 	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1850 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1851 		return -EOPNOTSUPP;
1852 
1853 	if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1854 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1855 		return -EOPNOTSUPP;
1856 
1857 	if (arg == MMC_SECURE_ERASE_ARG) {
1858 		if (from % card->erase_size || nr % card->erase_size)
1859 			return -EINVAL;
1860 	}
1861 
1862 	if (arg == MMC_ERASE_ARG)
1863 		nr = mmc_align_erase_size(card, &from, &to, nr);
1864 
1865 	if (nr == 0)
1866 		return 0;
1867 
1868 	if (to <= from)
1869 		return -EINVAL;
1870 
1871 	/* 'from' and 'to' are inclusive */
1872 	to -= 1;
1873 
1874 	/*
1875 	 * Special case where only one erase-group fits in the timeout budget:
1876 	 * If the region crosses an erase-group boundary on this particular
1877 	 * case, we will be trimming more than one erase-group which, does not
1878 	 * fit in the timeout budget of the controller, so we need to split it
1879 	 * and call mmc_do_erase() twice if necessary. This special case is
1880 	 * identified by the card->eg_boundary flag.
1881 	 */
1882 	rem = card->erase_size - (from % card->erase_size);
1883 	if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1884 		err = mmc_do_erase(card, from, from + rem - 1, arg);
1885 		from += rem;
1886 		if ((err) || (to <= from))
1887 			return err;
1888 	}
1889 
1890 	return mmc_do_erase(card, from, to, arg);
1891 }
1892 EXPORT_SYMBOL(mmc_erase);
1893 
mmc_can_erase(struct mmc_card * card)1894 int mmc_can_erase(struct mmc_card *card)
1895 {
1896 	if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1897 		return 1;
1898 	return 0;
1899 }
1900 EXPORT_SYMBOL(mmc_can_erase);
1901 
mmc_can_trim(struct mmc_card * card)1902 int mmc_can_trim(struct mmc_card *card)
1903 {
1904 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1905 	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1906 		return 1;
1907 	return 0;
1908 }
1909 EXPORT_SYMBOL(mmc_can_trim);
1910 
mmc_can_discard(struct mmc_card * card)1911 int mmc_can_discard(struct mmc_card *card)
1912 {
1913 	/*
1914 	 * As there's no way to detect the discard support bit at v4.5
1915 	 * use the s/w feature support filed.
1916 	 */
1917 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1918 		return 1;
1919 	return 0;
1920 }
1921 EXPORT_SYMBOL(mmc_can_discard);
1922 
mmc_can_sanitize(struct mmc_card * card)1923 int mmc_can_sanitize(struct mmc_card *card)
1924 {
1925 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1926 		return 0;
1927 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1928 		return 1;
1929 	return 0;
1930 }
1931 
mmc_can_secure_erase_trim(struct mmc_card * card)1932 int mmc_can_secure_erase_trim(struct mmc_card *card)
1933 {
1934 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1935 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1936 		return 1;
1937 	return 0;
1938 }
1939 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1940 
mmc_erase_group_aligned(struct mmc_card * card,unsigned int from,unsigned int nr)1941 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1942 			    unsigned int nr)
1943 {
1944 	if (!card->erase_size)
1945 		return 0;
1946 	if (from % card->erase_size || nr % card->erase_size)
1947 		return 0;
1948 	return 1;
1949 }
1950 EXPORT_SYMBOL(mmc_erase_group_aligned);
1951 
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)1952 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1953 					    unsigned int arg)
1954 {
1955 	struct mmc_host *host = card->host;
1956 	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1957 	unsigned int last_timeout = 0;
1958 	unsigned int max_busy_timeout = host->max_busy_timeout ?
1959 			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1960 
1961 	if (card->erase_shift) {
1962 		max_qty = UINT_MAX >> card->erase_shift;
1963 		min_qty = card->pref_erase >> card->erase_shift;
1964 	} else if (mmc_card_sd(card)) {
1965 		max_qty = UINT_MAX;
1966 		min_qty = card->pref_erase;
1967 	} else {
1968 		max_qty = UINT_MAX / card->erase_size;
1969 		min_qty = card->pref_erase / card->erase_size;
1970 	}
1971 
1972 	/*
1973 	 * We should not only use 'host->max_busy_timeout' as the limitation
1974 	 * when deciding the max discard sectors. We should set a balance value
1975 	 * to improve the erase speed, and it can not get too long timeout at
1976 	 * the same time.
1977 	 *
1978 	 * Here we set 'card->pref_erase' as the minimal discard sectors no
1979 	 * matter what size of 'host->max_busy_timeout', but if the
1980 	 * 'host->max_busy_timeout' is large enough for more discard sectors,
1981 	 * then we can continue to increase the max discard sectors until we
1982 	 * get a balance value. In cases when the 'host->max_busy_timeout'
1983 	 * isn't specified, use the default max erase timeout.
1984 	 */
1985 	do {
1986 		y = 0;
1987 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1988 			timeout = mmc_erase_timeout(card, arg, qty + x);
1989 
1990 			if (qty + x > min_qty && timeout > max_busy_timeout)
1991 				break;
1992 
1993 			if (timeout < last_timeout)
1994 				break;
1995 			last_timeout = timeout;
1996 			y = x;
1997 		}
1998 		qty += y;
1999 	} while (y);
2000 
2001 	if (!qty)
2002 		return 0;
2003 
2004 	/*
2005 	 * When specifying a sector range to trim, chances are we might cross
2006 	 * an erase-group boundary even if the amount of sectors is less than
2007 	 * one erase-group.
2008 	 * If we can only fit one erase-group in the controller timeout budget,
2009 	 * we have to care that erase-group boundaries are not crossed by a
2010 	 * single trim operation. We flag that special case with "eg_boundary".
2011 	 * In all other cases we can just decrement qty and pretend that we
2012 	 * always touch (qty + 1) erase-groups as a simple optimization.
2013 	 */
2014 	if (qty == 1)
2015 		card->eg_boundary = 1;
2016 	else
2017 		qty--;
2018 
2019 	/* Convert qty to sectors */
2020 	if (card->erase_shift)
2021 		max_discard = qty << card->erase_shift;
2022 	else if (mmc_card_sd(card))
2023 		max_discard = qty + 1;
2024 	else
2025 		max_discard = qty * card->erase_size;
2026 
2027 	return max_discard;
2028 }
2029 
mmc_calc_max_discard(struct mmc_card * card)2030 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2031 {
2032 	struct mmc_host *host = card->host;
2033 	unsigned int max_discard, max_trim;
2034 
2035 	/*
2036 	 * Without erase_group_def set, MMC erase timeout depends on clock
2037 	 * frequence which can change.  In that case, the best choice is
2038 	 * just the preferred erase size.
2039 	 */
2040 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2041 		return card->pref_erase;
2042 
2043 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2044 	if (mmc_can_trim(card)) {
2045 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2046 		if (max_trim < max_discard || max_discard == 0)
2047 			max_discard = max_trim;
2048 	} else if (max_discard < card->erase_size) {
2049 		max_discard = 0;
2050 	}
2051 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2052 		mmc_hostname(host), max_discard, host->max_busy_timeout ?
2053 		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2054 	return max_discard;
2055 }
2056 EXPORT_SYMBOL(mmc_calc_max_discard);
2057 
mmc_card_is_blockaddr(struct mmc_card * card)2058 bool mmc_card_is_blockaddr(struct mmc_card *card)
2059 {
2060 	return card ? mmc_card_blockaddr(card) : false;
2061 }
2062 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2063 
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)2064 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2065 {
2066 	struct mmc_command cmd = {};
2067 
2068 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2069 	    mmc_card_hs400(card) || mmc_card_hs400es(card))
2070 		return 0;
2071 
2072 	cmd.opcode = MMC_SET_BLOCKLEN;
2073 	cmd.arg = blocklen;
2074 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2075 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2076 }
2077 EXPORT_SYMBOL(mmc_set_blocklen);
2078 
mmc_hw_reset_for_init(struct mmc_host * host)2079 static void mmc_hw_reset_for_init(struct mmc_host *host)
2080 {
2081 	mmc_pwrseq_reset(host);
2082 
2083 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2084 		return;
2085 	host->ops->hw_reset(host);
2086 }
2087 
2088 /**
2089  * mmc_hw_reset - reset the card in hardware
2090  * @host: MMC host to which the card is attached
2091  *
2092  * Hard reset the card. This function is only for upper layers, like the
2093  * block layer or card drivers. You cannot use it in host drivers (struct
2094  * mmc_card might be gone then).
2095  *
2096  * Return: 0 on success, -errno on failure
2097  */
mmc_hw_reset(struct mmc_host * host)2098 int mmc_hw_reset(struct mmc_host *host)
2099 {
2100 	int ret;
2101 
2102 	if (!host->card)
2103 		return -EINVAL;
2104 
2105 	mmc_bus_get(host);
2106 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->hw_reset) {
2107 		mmc_bus_put(host);
2108 		return -EOPNOTSUPP;
2109 	}
2110 
2111 	ret = host->bus_ops->hw_reset(host);
2112 	mmc_bus_put(host);
2113 
2114 	if (ret < 0)
2115 		pr_warn("%s: tried to HW reset card, got error %d\n",
2116 			mmc_hostname(host), ret);
2117 
2118 	return ret;
2119 }
2120 EXPORT_SYMBOL(mmc_hw_reset);
2121 
mmc_sw_reset(struct mmc_host * host)2122 int mmc_sw_reset(struct mmc_host *host)
2123 {
2124 	int ret;
2125 
2126 	if (!host->card)
2127 		return -EINVAL;
2128 
2129 	mmc_bus_get(host);
2130 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->sw_reset) {
2131 		mmc_bus_put(host);
2132 		return -EOPNOTSUPP;
2133 	}
2134 
2135 	ret = host->bus_ops->sw_reset(host);
2136 	mmc_bus_put(host);
2137 
2138 	if (ret)
2139 		pr_warn("%s: tried to SW reset card, got error %d\n",
2140 			mmc_hostname(host), ret);
2141 
2142 	return ret;
2143 }
2144 EXPORT_SYMBOL(mmc_sw_reset);
2145 
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2146 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2147 {
2148 	host->f_init = freq;
2149 
2150 	pr_debug("%s: %s: trying to init card at %u Hz\n",
2151 		mmc_hostname(host), __func__, host->f_init);
2152 
2153 	mmc_power_up(host, host->ocr_avail);
2154 
2155 	/*
2156 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2157 	 * do a hardware reset if possible.
2158 	 */
2159 	mmc_hw_reset_for_init(host);
2160 
2161 	/*
2162 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2163 	 * if the card is being re-initialized, just send it.  CMD52
2164 	 * should be ignored by SD/eMMC cards.
2165 	 * Skip it if we already know that we do not support SDIO commands
2166 	 */
2167 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2168 		sdio_reset(host);
2169 
2170 	mmc_go_idle(host);
2171 
2172 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2173 		mmc_send_if_cond(host, host->ocr_avail);
2174 
2175 	/* Order's important: probe SDIO, then SD, then MMC */
2176 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2177 		if (!mmc_attach_sdio(host))
2178 			return 0;
2179 
2180 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2181 		if (!mmc_attach_sd(host))
2182 			return 0;
2183 
2184 	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2185 		if (!mmc_attach_mmc(host))
2186 			return 0;
2187 
2188 	mmc_power_off(host);
2189 	return -EIO;
2190 }
2191 
_mmc_detect_card_removed(struct mmc_host * host)2192 int _mmc_detect_card_removed(struct mmc_host *host)
2193 {
2194 	int ret;
2195 
2196 	if (!host->card || mmc_card_removed(host->card))
2197 		return 1;
2198 
2199 	ret = host->bus_ops->alive(host);
2200 
2201 	/*
2202 	 * Card detect status and alive check may be out of sync if card is
2203 	 * removed slowly, when card detect switch changes while card/slot
2204 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2205 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2206 	 * detect work 200ms later for this case.
2207 	 */
2208 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2209 		mmc_detect_change(host, msecs_to_jiffies(200));
2210 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2211 	}
2212 
2213 	if (ret) {
2214 		mmc_card_set_removed(host->card);
2215 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2216 	}
2217 
2218 	return ret;
2219 }
2220 
mmc_detect_card_removed(struct mmc_host * host)2221 int mmc_detect_card_removed(struct mmc_host *host)
2222 {
2223 	struct mmc_card *card = host->card;
2224 	int ret;
2225 
2226 	WARN_ON(!host->claimed);
2227 
2228 	if (!card)
2229 		return 1;
2230 
2231 	if (!mmc_card_is_removable(host))
2232 		return 0;
2233 
2234 	ret = mmc_card_removed(card);
2235 	/*
2236 	 * The card will be considered unchanged unless we have been asked to
2237 	 * detect a change or host requires polling to provide card detection.
2238 	 */
2239 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2240 		return ret;
2241 
2242 	host->detect_change = 0;
2243 	if (!ret) {
2244 		ret = _mmc_detect_card_removed(host);
2245 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2246 			/*
2247 			 * Schedule a detect work as soon as possible to let a
2248 			 * rescan handle the card removal.
2249 			 */
2250 			cancel_delayed_work(&host->detect);
2251 			_mmc_detect_change(host, 0, false);
2252 		}
2253 	}
2254 
2255 	return ret;
2256 }
2257 EXPORT_SYMBOL(mmc_detect_card_removed);
2258 
mmc_rescan(struct work_struct * work)2259 void mmc_rescan(struct work_struct *work)
2260 {
2261 	struct mmc_host *host =
2262 		container_of(work, struct mmc_host, detect.work);
2263 	int i;
2264 
2265 	if (host->rescan_disable)
2266 		return;
2267 
2268 	/* If there is a non-removable card registered, only scan once */
2269 	if (!mmc_card_is_removable(host) && host->rescan_entered)
2270 		return;
2271 	host->rescan_entered = 1;
2272 
2273 	if (host->trigger_card_event && host->ops->card_event) {
2274 		mmc_claim_host(host);
2275 		host->ops->card_event(host);
2276 		mmc_release_host(host);
2277 		host->trigger_card_event = false;
2278 	}
2279 
2280 	mmc_bus_get(host);
2281 
2282 	/* Verify a registered card to be functional, else remove it. */
2283 	if (host->bus_ops && !host->bus_dead)
2284 		host->bus_ops->detect(host);
2285 
2286 	host->detect_change = 0;
2287 
2288 	/*
2289 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2290 	 * the card is no longer present.
2291 	 */
2292 	mmc_bus_put(host);
2293 	mmc_bus_get(host);
2294 
2295 	/* if there still is a card present, stop here */
2296 	if (host->bus_ops != NULL) {
2297 		mmc_bus_put(host);
2298 		goto out;
2299 	}
2300 
2301 	/*
2302 	 * Only we can add a new handler, so it's safe to
2303 	 * release the lock here.
2304 	 */
2305 	mmc_bus_put(host);
2306 
2307 	mmc_claim_host(host);
2308 	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2309 			host->ops->get_cd(host) == 0) {
2310 		mmc_power_off(host);
2311 		mmc_release_host(host);
2312 		goto out;
2313 	}
2314 
2315 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2316 		unsigned int freq = freqs[i];
2317 		if (freq > host->f_max) {
2318 			if (i + 1 < ARRAY_SIZE(freqs))
2319 				continue;
2320 			freq = host->f_max;
2321 		}
2322 		if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2323 			break;
2324 		if (freqs[i] <= host->f_min)
2325 			break;
2326 	}
2327 	mmc_release_host(host);
2328 
2329  out:
2330 	if (host->caps & MMC_CAP_NEEDS_POLL)
2331 		mmc_schedule_delayed_work(&host->detect, HZ);
2332 }
2333 
mmc_start_host(struct mmc_host * host)2334 void mmc_start_host(struct mmc_host *host)
2335 {
2336 	host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2337 	host->rescan_disable = 0;
2338 
2339 	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2340 		mmc_claim_host(host);
2341 		mmc_power_up(host, host->ocr_avail);
2342 		mmc_release_host(host);
2343 	}
2344 
2345 	mmc_gpiod_request_cd_irq(host);
2346 	_mmc_detect_change(host, 0, false);
2347 }
2348 
__mmc_stop_host(struct mmc_host * host)2349 void __mmc_stop_host(struct mmc_host *host)
2350 {
2351 	if (host->slot.cd_irq >= 0) {
2352 		mmc_gpio_set_cd_wake(host, false);
2353 		disable_irq(host->slot.cd_irq);
2354 	}
2355 
2356 	host->rescan_disable = 1;
2357 	cancel_delayed_work_sync(&host->detect);
2358 }
2359 
mmc_stop_host(struct mmc_host * host)2360 void mmc_stop_host(struct mmc_host *host)
2361 {
2362 	__mmc_stop_host(host);
2363 
2364 	/* clear pm flags now and let card drivers set them as needed */
2365 	host->pm_flags = 0;
2366 
2367 	mmc_bus_get(host);
2368 	if (host->bus_ops && !host->bus_dead) {
2369 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2370 		host->bus_ops->remove(host);
2371 		mmc_claim_host(host);
2372 		mmc_detach_bus(host);
2373 		mmc_power_off(host);
2374 		mmc_release_host(host);
2375 		mmc_bus_put(host);
2376 		return;
2377 	}
2378 	mmc_bus_put(host);
2379 
2380 	mmc_claim_host(host);
2381 	mmc_power_off(host);
2382 	mmc_release_host(host);
2383 }
2384 
mmc_init(void)2385 static int __init mmc_init(void)
2386 {
2387 	int ret;
2388 
2389 	ret = mmc_register_bus();
2390 	if (ret)
2391 		return ret;
2392 
2393 	ret = mmc_register_host_class();
2394 	if (ret)
2395 		goto unregister_bus;
2396 
2397 	ret = sdio_register_bus();
2398 	if (ret)
2399 		goto unregister_host_class;
2400 
2401 	return 0;
2402 
2403 unregister_host_class:
2404 	mmc_unregister_host_class();
2405 unregister_bus:
2406 	mmc_unregister_bus();
2407 	return ret;
2408 }
2409 
mmc_exit(void)2410 static void __exit mmc_exit(void)
2411 {
2412 	sdio_unregister_bus();
2413 	mmc_unregister_host_class();
2414 	mmc_unregister_bus();
2415 }
2416 
2417 subsys_initcall(mmc_init);
2418 module_exit(mmc_exit);
2419 
2420 MODULE_LICENSE("GPL");
2421