1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/core/core.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pm_wakeup.h>
23 #include <linux/suspend.h>
24 #include <linux/fault-inject.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28
29 #include <linux/mmc/card.h>
30 #include <linux/mmc/host.h>
31 #include <linux/mmc/mmc.h>
32 #include <linux/mmc/sd.h>
33 #include <linux/mmc/slot-gpio.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/mmc.h>
37
38 #include "core.h"
39 #include "card.h"
40 #include "crypto.h"
41 #include "bus.h"
42 #include "host.h"
43 #include "sdio_bus.h"
44 #include "pwrseq.h"
45
46 #include "mmc_ops.h"
47 #include "sd_ops.h"
48 #include "sdio_ops.h"
49
50 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
51 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
52 #define SD_DISCARD_TIMEOUT_MS (250)
53
54 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
55
56 /*
57 * Enabling software CRCs on the data blocks can be a significant (30%)
58 * performance cost, and for other reasons may not always be desired.
59 * So we allow it it to be disabled.
60 */
61 bool use_spi_crc = 1;
62 module_param(use_spi_crc, bool, 0);
63
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)64 static int mmc_schedule_delayed_work(struct delayed_work *work,
65 unsigned long delay)
66 {
67 /*
68 * We use the system_freezable_wq, because of two reasons.
69 * First, it allows several works (not the same work item) to be
70 * executed simultaneously. Second, the queue becomes frozen when
71 * userspace becomes frozen during system PM.
72 */
73 return queue_delayed_work(system_freezable_wq, work, delay);
74 }
75
76 #ifdef CONFIG_FAIL_MMC_REQUEST
77
78 /*
79 * Internal function. Inject random data errors.
80 * If mmc_data is NULL no errors are injected.
81 */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)82 static void mmc_should_fail_request(struct mmc_host *host,
83 struct mmc_request *mrq)
84 {
85 struct mmc_command *cmd = mrq->cmd;
86 struct mmc_data *data = mrq->data;
87 static const int data_errors[] = {
88 -ETIMEDOUT,
89 -EILSEQ,
90 -EIO,
91 };
92
93 if (!data)
94 return;
95
96 if ((cmd && cmd->error) || data->error ||
97 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
98 return;
99
100 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
101 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
102 }
103
104 #else /* CONFIG_FAIL_MMC_REQUEST */
105
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)106 static inline void mmc_should_fail_request(struct mmc_host *host,
107 struct mmc_request *mrq)
108 {
109 }
110
111 #endif /* CONFIG_FAIL_MMC_REQUEST */
112
mmc_complete_cmd(struct mmc_request * mrq)113 static inline void mmc_complete_cmd(struct mmc_request *mrq)
114 {
115 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
116 complete_all(&mrq->cmd_completion);
117 }
118
mmc_command_done(struct mmc_host * host,struct mmc_request * mrq)119 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
120 {
121 if (!mrq->cap_cmd_during_tfr)
122 return;
123
124 mmc_complete_cmd(mrq);
125
126 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
127 mmc_hostname(host), mrq->cmd->opcode);
128 }
129 EXPORT_SYMBOL(mmc_command_done);
130
131 /**
132 * mmc_request_done - finish processing an MMC request
133 * @host: MMC host which completed request
134 * @mrq: MMC request which request
135 *
136 * MMC drivers should call this function when they have completed
137 * their processing of a request.
138 */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)139 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140 {
141 struct mmc_command *cmd = mrq->cmd;
142 int err = cmd->error;
143
144 /* Flag re-tuning needed on CRC errors */
145 if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
146 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
147 !host->retune_crc_disable &&
148 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
149 (mrq->data && mrq->data->error == -EILSEQ) ||
150 (mrq->stop && mrq->stop->error == -EILSEQ)))
151 mmc_retune_needed(host);
152
153 if (err && cmd->retries && mmc_host_is_spi(host)) {
154 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
155 cmd->retries = 0;
156 }
157
158 if (host->ongoing_mrq == mrq)
159 host->ongoing_mrq = NULL;
160
161 mmc_complete_cmd(mrq);
162
163 trace_mmc_request_done(host, mrq);
164
165 /*
166 * We list various conditions for the command to be considered
167 * properly done:
168 *
169 * - There was no error, OK fine then
170 * - We are not doing some kind of retry
171 * - The card was removed (...so just complete everything no matter
172 * if there are errors or retries)
173 */
174 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
175 mmc_should_fail_request(host, mrq);
176
177 if (!host->ongoing_mrq)
178 led_trigger_event(host->led, LED_OFF);
179
180 if (mrq->sbc) {
181 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
182 mmc_hostname(host), mrq->sbc->opcode,
183 mrq->sbc->error,
184 mrq->sbc->resp[0], mrq->sbc->resp[1],
185 mrq->sbc->resp[2], mrq->sbc->resp[3]);
186 }
187
188 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
189 mmc_hostname(host), cmd->opcode, err,
190 cmd->resp[0], cmd->resp[1],
191 cmd->resp[2], cmd->resp[3]);
192
193 if (mrq->data) {
194 pr_debug("%s: %d bytes transferred: %d\n",
195 mmc_hostname(host),
196 mrq->data->bytes_xfered, mrq->data->error);
197 }
198
199 if (mrq->stop) {
200 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
201 mmc_hostname(host), mrq->stop->opcode,
202 mrq->stop->error,
203 mrq->stop->resp[0], mrq->stop->resp[1],
204 mrq->stop->resp[2], mrq->stop->resp[3]);
205 }
206 }
207 /*
208 * Request starter must handle retries - see
209 * mmc_wait_for_req_done().
210 */
211 if (mrq->done)
212 mrq->done(mrq);
213 }
214
215 EXPORT_SYMBOL(mmc_request_done);
216
__mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)217 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
218 {
219 int err;
220
221 /* Assumes host controller has been runtime resumed by mmc_claim_host */
222 err = mmc_retune(host);
223 if (err) {
224 mrq->cmd->error = err;
225 mmc_request_done(host, mrq);
226 return;
227 }
228
229 /*
230 * For sdio rw commands we must wait for card busy otherwise some
231 * sdio devices won't work properly.
232 * And bypass I/O abort, reset and bus suspend operations.
233 */
234 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
235 host->ops->card_busy) {
236 int tries = 500; /* Wait aprox 500ms at maximum */
237
238 while (host->ops->card_busy(host) && --tries)
239 mmc_delay(1);
240
241 if (tries == 0) {
242 mrq->cmd->error = -EBUSY;
243 mmc_request_done(host, mrq);
244 return;
245 }
246 }
247
248 if (mrq->cap_cmd_during_tfr) {
249 host->ongoing_mrq = mrq;
250 /*
251 * Retry path could come through here without having waiting on
252 * cmd_completion, so ensure it is reinitialised.
253 */
254 reinit_completion(&mrq->cmd_completion);
255 }
256
257 trace_mmc_request_start(host, mrq);
258
259 if (host->cqe_on)
260 host->cqe_ops->cqe_off(host);
261
262 host->ops->request(host, mrq);
263 }
264
mmc_mrq_pr_debug(struct mmc_host * host,struct mmc_request * mrq,bool cqe)265 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
266 bool cqe)
267 {
268 if (mrq->sbc) {
269 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
270 mmc_hostname(host), mrq->sbc->opcode,
271 mrq->sbc->arg, mrq->sbc->flags);
272 }
273
274 if (mrq->cmd) {
275 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
276 mmc_hostname(host), cqe ? "CQE direct " : "",
277 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
278 } else if (cqe) {
279 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
280 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
281 }
282
283 if (mrq->data) {
284 pr_debug("%s: blksz %d blocks %d flags %08x "
285 "tsac %d ms nsac %d\n",
286 mmc_hostname(host), mrq->data->blksz,
287 mrq->data->blocks, mrq->data->flags,
288 mrq->data->timeout_ns / 1000000,
289 mrq->data->timeout_clks);
290 }
291
292 if (mrq->stop) {
293 pr_debug("%s: CMD%u arg %08x flags %08x\n",
294 mmc_hostname(host), mrq->stop->opcode,
295 mrq->stop->arg, mrq->stop->flags);
296 }
297 }
298
mmc_mrq_prep(struct mmc_host * host,struct mmc_request * mrq)299 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
300 {
301 unsigned int i, sz = 0;
302 struct scatterlist *sg;
303
304 if (mrq->cmd) {
305 mrq->cmd->error = 0;
306 mrq->cmd->mrq = mrq;
307 mrq->cmd->data = mrq->data;
308 }
309 if (mrq->sbc) {
310 mrq->sbc->error = 0;
311 mrq->sbc->mrq = mrq;
312 }
313 if (mrq->data) {
314 if (mrq->data->blksz > host->max_blk_size ||
315 mrq->data->blocks > host->max_blk_count ||
316 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
317 return -EINVAL;
318
319 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
320 sz += sg->length;
321 if (sz != mrq->data->blocks * mrq->data->blksz)
322 return -EINVAL;
323
324 mrq->data->error = 0;
325 mrq->data->mrq = mrq;
326 if (mrq->stop) {
327 mrq->data->stop = mrq->stop;
328 mrq->stop->error = 0;
329 mrq->stop->mrq = mrq;
330 }
331 }
332
333 return 0;
334 }
335
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)336 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
337 {
338 int err;
339
340 init_completion(&mrq->cmd_completion);
341
342 mmc_retune_hold(host);
343
344 if (mmc_card_removed(host->card))
345 return -ENOMEDIUM;
346
347 mmc_mrq_pr_debug(host, mrq, false);
348
349 WARN_ON(!host->claimed);
350
351 err = mmc_mrq_prep(host, mrq);
352 if (err)
353 return err;
354
355 led_trigger_event(host->led, LED_FULL);
356 __mmc_start_request(host, mrq);
357
358 return 0;
359 }
360 EXPORT_SYMBOL(mmc_start_request);
361
mmc_wait_done(struct mmc_request * mrq)362 static void mmc_wait_done(struct mmc_request *mrq)
363 {
364 complete(&mrq->completion);
365 }
366
mmc_wait_ongoing_tfr_cmd(struct mmc_host * host)367 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
368 {
369 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
370
371 /*
372 * If there is an ongoing transfer, wait for the command line to become
373 * available.
374 */
375 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
376 wait_for_completion(&ongoing_mrq->cmd_completion);
377 }
378
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)379 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
380 {
381 int err;
382
383 mmc_wait_ongoing_tfr_cmd(host);
384
385 init_completion(&mrq->completion);
386 mrq->done = mmc_wait_done;
387
388 err = mmc_start_request(host, mrq);
389 if (err) {
390 mrq->cmd->error = err;
391 mmc_complete_cmd(mrq);
392 complete(&mrq->completion);
393 }
394
395 return err;
396 }
397
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)398 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
399 {
400 struct mmc_command *cmd;
401
402 while (1) {
403 wait_for_completion(&mrq->completion);
404
405 cmd = mrq->cmd;
406
407 if (!cmd->error || !cmd->retries ||
408 mmc_card_removed(host->card))
409 break;
410
411 mmc_retune_recheck(host);
412
413 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
414 mmc_hostname(host), cmd->opcode, cmd->error);
415 cmd->retries--;
416 cmd->error = 0;
417 __mmc_start_request(host, mrq);
418 }
419
420 mmc_retune_release(host);
421 }
422 EXPORT_SYMBOL(mmc_wait_for_req_done);
423
424 /*
425 * mmc_cqe_start_req - Start a CQE request.
426 * @host: MMC host to start the request
427 * @mrq: request to start
428 *
429 * Start the request, re-tuning if needed and it is possible. Returns an error
430 * code if the request fails to start or -EBUSY if CQE is busy.
431 */
mmc_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)432 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
433 {
434 int err;
435
436 /*
437 * CQE cannot process re-tuning commands. Caller must hold retuning
438 * while CQE is in use. Re-tuning can happen here only when CQE has no
439 * active requests i.e. this is the first. Note, re-tuning will call
440 * ->cqe_off().
441 */
442 err = mmc_retune(host);
443 if (err)
444 goto out_err;
445
446 mrq->host = host;
447
448 mmc_mrq_pr_debug(host, mrq, true);
449
450 err = mmc_mrq_prep(host, mrq);
451 if (err)
452 goto out_err;
453
454 err = host->cqe_ops->cqe_request(host, mrq);
455 if (err)
456 goto out_err;
457
458 trace_mmc_request_start(host, mrq);
459
460 return 0;
461
462 out_err:
463 if (mrq->cmd) {
464 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
465 mmc_hostname(host), mrq->cmd->opcode, err);
466 } else {
467 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
468 mmc_hostname(host), mrq->tag, err);
469 }
470 return err;
471 }
472 EXPORT_SYMBOL(mmc_cqe_start_req);
473
474 /**
475 * mmc_cqe_request_done - CQE has finished processing an MMC request
476 * @host: MMC host which completed request
477 * @mrq: MMC request which completed
478 *
479 * CQE drivers should call this function when they have completed
480 * their processing of a request.
481 */
mmc_cqe_request_done(struct mmc_host * host,struct mmc_request * mrq)482 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
483 {
484 mmc_should_fail_request(host, mrq);
485
486 /* Flag re-tuning needed on CRC errors */
487 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
488 (mrq->data && mrq->data->error == -EILSEQ))
489 mmc_retune_needed(host);
490
491 trace_mmc_request_done(host, mrq);
492
493 if (mrq->cmd) {
494 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
495 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
496 } else {
497 pr_debug("%s: CQE transfer done tag %d\n",
498 mmc_hostname(host), mrq->tag);
499 }
500
501 if (mrq->data) {
502 pr_debug("%s: %d bytes transferred: %d\n",
503 mmc_hostname(host),
504 mrq->data->bytes_xfered, mrq->data->error);
505 }
506
507 mrq->done(mrq);
508 }
509 EXPORT_SYMBOL(mmc_cqe_request_done);
510
511 /**
512 * mmc_cqe_post_req - CQE post process of a completed MMC request
513 * @host: MMC host
514 * @mrq: MMC request to be processed
515 */
mmc_cqe_post_req(struct mmc_host * host,struct mmc_request * mrq)516 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
517 {
518 if (host->cqe_ops->cqe_post_req)
519 host->cqe_ops->cqe_post_req(host, mrq);
520 }
521 EXPORT_SYMBOL(mmc_cqe_post_req);
522
523 /* Arbitrary 1 second timeout */
524 #define MMC_CQE_RECOVERY_TIMEOUT 1000
525
526 /*
527 * mmc_cqe_recovery - Recover from CQE errors.
528 * @host: MMC host to recover
529 *
530 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
531 * in eMMC, and discarding the queue in CQE. CQE must call
532 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
533 * fails to discard its queue.
534 */
mmc_cqe_recovery(struct mmc_host * host)535 int mmc_cqe_recovery(struct mmc_host *host)
536 {
537 struct mmc_command cmd;
538 int err;
539
540 mmc_retune_hold_now(host);
541
542 /*
543 * Recovery is expected seldom, if at all, but it reduces performance,
544 * so make sure it is not completely silent.
545 */
546 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
547
548 host->cqe_ops->cqe_recovery_start(host);
549
550 memset(&cmd, 0, sizeof(cmd));
551 cmd.opcode = MMC_STOP_TRANSMISSION;
552 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
553 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
554 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
555 mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
556
557 mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, MMC_BUSY_IO);
558
559 memset(&cmd, 0, sizeof(cmd));
560 cmd.opcode = MMC_CMDQ_TASK_MGMT;
561 cmd.arg = 1; /* Discard entire queue */
562 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
563 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
564 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
565 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
566
567 host->cqe_ops->cqe_recovery_finish(host);
568
569 if (err)
570 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
571
572 mmc_retune_release(host);
573
574 return err;
575 }
576 EXPORT_SYMBOL(mmc_cqe_recovery);
577
578 /**
579 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
580 * @host: MMC host
581 * @mrq: MMC request
582 *
583 * mmc_is_req_done() is used with requests that have
584 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
585 * starting a request and before waiting for it to complete. That is,
586 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
587 * and before mmc_wait_for_req_done(). If it is called at other times the
588 * result is not meaningful.
589 */
mmc_is_req_done(struct mmc_host * host,struct mmc_request * mrq)590 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
591 {
592 return completion_done(&mrq->completion);
593 }
594 EXPORT_SYMBOL(mmc_is_req_done);
595
596 /**
597 * mmc_wait_for_req - start a request and wait for completion
598 * @host: MMC host to start command
599 * @mrq: MMC request to start
600 *
601 * Start a new MMC custom command request for a host, and wait
602 * for the command to complete. In the case of 'cap_cmd_during_tfr'
603 * requests, the transfer is ongoing and the caller can issue further
604 * commands that do not use the data lines, and then wait by calling
605 * mmc_wait_for_req_done().
606 * Does not attempt to parse the response.
607 */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)608 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
609 {
610 __mmc_start_req(host, mrq);
611
612 if (!mrq->cap_cmd_during_tfr)
613 mmc_wait_for_req_done(host, mrq);
614 }
615 EXPORT_SYMBOL(mmc_wait_for_req);
616
617 /**
618 * mmc_wait_for_cmd - start a command and wait for completion
619 * @host: MMC host to start command
620 * @cmd: MMC command to start
621 * @retries: maximum number of retries
622 *
623 * Start a new MMC command for a host, and wait for the command
624 * to complete. Return any error that occurred while the command
625 * was executing. Do not attempt to parse the response.
626 */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)627 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
628 {
629 struct mmc_request mrq = {};
630
631 WARN_ON(!host->claimed);
632
633 memset(cmd->resp, 0, sizeof(cmd->resp));
634 cmd->retries = retries;
635
636 mrq.cmd = cmd;
637 cmd->data = NULL;
638
639 mmc_wait_for_req(host, &mrq);
640
641 return cmd->error;
642 }
643
644 EXPORT_SYMBOL(mmc_wait_for_cmd);
645
646 /**
647 * mmc_set_data_timeout - set the timeout for a data command
648 * @data: data phase for command
649 * @card: the MMC card associated with the data transfer
650 *
651 * Computes the data timeout parameters according to the
652 * correct algorithm given the card type.
653 */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)654 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
655 {
656 unsigned int mult;
657
658 /*
659 * SDIO cards only define an upper 1 s limit on access.
660 */
661 if (mmc_card_sdio(card)) {
662 data->timeout_ns = 1000000000;
663 data->timeout_clks = 0;
664 return;
665 }
666
667 /*
668 * SD cards use a 100 multiplier rather than 10
669 */
670 mult = mmc_card_sd(card) ? 100 : 10;
671
672 /*
673 * Scale up the multiplier (and therefore the timeout) by
674 * the r2w factor for writes.
675 */
676 if (data->flags & MMC_DATA_WRITE)
677 mult <<= card->csd.r2w_factor;
678
679 data->timeout_ns = card->csd.taac_ns * mult;
680 data->timeout_clks = card->csd.taac_clks * mult;
681
682 /*
683 * SD cards also have an upper limit on the timeout.
684 */
685 if (mmc_card_sd(card)) {
686 unsigned int timeout_us, limit_us;
687
688 timeout_us = data->timeout_ns / 1000;
689 if (card->host->ios.clock)
690 timeout_us += data->timeout_clks * 1000 /
691 (card->host->ios.clock / 1000);
692
693 if (data->flags & MMC_DATA_WRITE)
694 /*
695 * The MMC spec "It is strongly recommended
696 * for hosts to implement more than 500ms
697 * timeout value even if the card indicates
698 * the 250ms maximum busy length." Even the
699 * previous value of 300ms is known to be
700 * insufficient for some cards.
701 */
702 limit_us = 3000000;
703 else
704 limit_us = 100000;
705
706 /*
707 * SDHC cards always use these fixed values.
708 */
709 if (timeout_us > limit_us) {
710 data->timeout_ns = limit_us * 1000;
711 data->timeout_clks = 0;
712 }
713
714 /* assign limit value if invalid */
715 if (timeout_us == 0)
716 data->timeout_ns = limit_us * 1000;
717 }
718
719 /*
720 * Some cards require longer data read timeout than indicated in CSD.
721 * Address this by setting the read timeout to a "reasonably high"
722 * value. For the cards tested, 600ms has proven enough. If necessary,
723 * this value can be increased if other problematic cards require this.
724 */
725 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
726 data->timeout_ns = 600000000;
727 data->timeout_clks = 0;
728 }
729
730 /*
731 * Some cards need very high timeouts if driven in SPI mode.
732 * The worst observed timeout was 900ms after writing a
733 * continuous stream of data until the internal logic
734 * overflowed.
735 */
736 if (mmc_host_is_spi(card->host)) {
737 if (data->flags & MMC_DATA_WRITE) {
738 if (data->timeout_ns < 1000000000)
739 data->timeout_ns = 1000000000; /* 1s */
740 } else {
741 if (data->timeout_ns < 100000000)
742 data->timeout_ns = 100000000; /* 100ms */
743 }
744 }
745 }
746 EXPORT_SYMBOL(mmc_set_data_timeout);
747
748 /*
749 * Allow claiming an already claimed host if the context is the same or there is
750 * no context but the task is the same.
751 */
mmc_ctx_matches(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)752 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
753 struct task_struct *task)
754 {
755 return host->claimer == ctx ||
756 (!ctx && task && host->claimer->task == task);
757 }
758
mmc_ctx_set_claimer(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)759 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
760 struct mmc_ctx *ctx,
761 struct task_struct *task)
762 {
763 if (!host->claimer) {
764 if (ctx)
765 host->claimer = ctx;
766 else
767 host->claimer = &host->default_ctx;
768 }
769 if (task)
770 host->claimer->task = task;
771 }
772
773 /**
774 * __mmc_claim_host - exclusively claim a host
775 * @host: mmc host to claim
776 * @ctx: context that claims the host or NULL in which case the default
777 * context will be used
778 * @abort: whether or not the operation should be aborted
779 *
780 * Claim a host for a set of operations. If @abort is non null and
781 * dereference a non-zero value then this will return prematurely with
782 * that non-zero value without acquiring the lock. Returns zero
783 * with the lock held otherwise.
784 */
__mmc_claim_host(struct mmc_host * host,struct mmc_ctx * ctx,atomic_t * abort)785 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
786 atomic_t *abort)
787 {
788 struct task_struct *task = ctx ? NULL : current;
789 DECLARE_WAITQUEUE(wait, current);
790 unsigned long flags;
791 int stop;
792 bool pm = false;
793
794 might_sleep();
795
796 add_wait_queue(&host->wq, &wait);
797 spin_lock_irqsave(&host->lock, flags);
798 while (1) {
799 set_current_state(TASK_UNINTERRUPTIBLE);
800 stop = abort ? atomic_read(abort) : 0;
801 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
802 break;
803 spin_unlock_irqrestore(&host->lock, flags);
804 schedule();
805 spin_lock_irqsave(&host->lock, flags);
806 }
807 set_current_state(TASK_RUNNING);
808 if (!stop) {
809 host->claimed = 1;
810 mmc_ctx_set_claimer(host, ctx, task);
811 host->claim_cnt += 1;
812 if (host->claim_cnt == 1)
813 pm = true;
814 } else
815 wake_up(&host->wq);
816 spin_unlock_irqrestore(&host->lock, flags);
817 remove_wait_queue(&host->wq, &wait);
818
819 if (pm)
820 pm_runtime_get_sync(mmc_dev(host));
821
822 return stop;
823 }
824 EXPORT_SYMBOL(__mmc_claim_host);
825
826 /**
827 * mmc_release_host - release a host
828 * @host: mmc host to release
829 *
830 * Release a MMC host, allowing others to claim the host
831 * for their operations.
832 */
mmc_release_host(struct mmc_host * host)833 void mmc_release_host(struct mmc_host *host)
834 {
835 unsigned long flags;
836
837 WARN_ON(!host->claimed);
838
839 spin_lock_irqsave(&host->lock, flags);
840 if (--host->claim_cnt) {
841 /* Release for nested claim */
842 spin_unlock_irqrestore(&host->lock, flags);
843 } else {
844 host->claimed = 0;
845 host->claimer->task = NULL;
846 host->claimer = NULL;
847 spin_unlock_irqrestore(&host->lock, flags);
848 wake_up(&host->wq);
849 pm_runtime_mark_last_busy(mmc_dev(host));
850 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
851 pm_runtime_put_sync_suspend(mmc_dev(host));
852 else
853 pm_runtime_put_autosuspend(mmc_dev(host));
854 }
855 }
856 EXPORT_SYMBOL(mmc_release_host);
857
858 /*
859 * This is a helper function, which fetches a runtime pm reference for the
860 * card device and also claims the host.
861 */
mmc_get_card(struct mmc_card * card,struct mmc_ctx * ctx)862 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
863 {
864 pm_runtime_get_sync(&card->dev);
865 __mmc_claim_host(card->host, ctx, NULL);
866 }
867 EXPORT_SYMBOL(mmc_get_card);
868
869 /*
870 * This is a helper function, which releases the host and drops the runtime
871 * pm reference for the card device.
872 */
mmc_put_card(struct mmc_card * card,struct mmc_ctx * ctx)873 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
874 {
875 struct mmc_host *host = card->host;
876
877 WARN_ON(ctx && host->claimer != ctx);
878
879 mmc_release_host(host);
880 pm_runtime_mark_last_busy(&card->dev);
881 pm_runtime_put_autosuspend(&card->dev);
882 }
883 EXPORT_SYMBOL(mmc_put_card);
884
885 /*
886 * Internal function that does the actual ios call to the host driver,
887 * optionally printing some debug output.
888 */
mmc_set_ios(struct mmc_host * host)889 static inline void mmc_set_ios(struct mmc_host *host)
890 {
891 struct mmc_ios *ios = &host->ios;
892
893 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
894 "width %u timing %u\n",
895 mmc_hostname(host), ios->clock, ios->bus_mode,
896 ios->power_mode, ios->chip_select, ios->vdd,
897 1 << ios->bus_width, ios->timing);
898
899 host->ops->set_ios(host, ios);
900 }
901
902 /*
903 * Control chip select pin on a host.
904 */
mmc_set_chip_select(struct mmc_host * host,int mode)905 void mmc_set_chip_select(struct mmc_host *host, int mode)
906 {
907 host->ios.chip_select = mode;
908 mmc_set_ios(host);
909 }
910
911 /*
912 * Sets the host clock to the highest possible frequency that
913 * is below "hz".
914 */
mmc_set_clock(struct mmc_host * host,unsigned int hz)915 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
916 {
917 WARN_ON(hz && hz < host->f_min);
918
919 if (hz > host->f_max)
920 hz = host->f_max;
921
922 host->ios.clock = hz;
923 mmc_set_ios(host);
924 }
925
mmc_execute_tuning(struct mmc_card * card)926 int mmc_execute_tuning(struct mmc_card *card)
927 {
928 struct mmc_host *host = card->host;
929 u32 opcode;
930 int err;
931
932 if (!host->ops->execute_tuning)
933 return 0;
934
935 if (host->cqe_on)
936 host->cqe_ops->cqe_off(host);
937
938 if (mmc_card_mmc(card))
939 opcode = MMC_SEND_TUNING_BLOCK_HS200;
940 else
941 opcode = MMC_SEND_TUNING_BLOCK;
942
943 err = host->ops->execute_tuning(host, opcode);
944
945 if (err) {
946 pr_err("%s: tuning execution failed: %d\n",
947 mmc_hostname(host), err);
948 } else {
949 host->retune_now = 0;
950 host->need_retune = 0;
951 mmc_retune_enable(host);
952 }
953
954 return err;
955 }
956
957 /*
958 * Change the bus mode (open drain/push-pull) of a host.
959 */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)960 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
961 {
962 host->ios.bus_mode = mode;
963 mmc_set_ios(host);
964 }
965
966 /*
967 * Change data bus width of a host.
968 */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)969 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
970 {
971 host->ios.bus_width = width;
972 mmc_set_ios(host);
973 }
974
975 /*
976 * Set initial state after a power cycle or a hw_reset.
977 */
mmc_set_initial_state(struct mmc_host * host)978 void mmc_set_initial_state(struct mmc_host *host)
979 {
980 if (host->cqe_on)
981 host->cqe_ops->cqe_off(host);
982
983 mmc_retune_disable(host);
984
985 if (mmc_host_is_spi(host))
986 host->ios.chip_select = MMC_CS_HIGH;
987 else
988 host->ios.chip_select = MMC_CS_DONTCARE;
989 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
990 host->ios.bus_width = MMC_BUS_WIDTH_1;
991 host->ios.timing = MMC_TIMING_LEGACY;
992 host->ios.drv_type = 0;
993 host->ios.enhanced_strobe = false;
994
995 /*
996 * Make sure we are in non-enhanced strobe mode before we
997 * actually enable it in ext_csd.
998 */
999 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1000 host->ops->hs400_enhanced_strobe)
1001 host->ops->hs400_enhanced_strobe(host, &host->ios);
1002
1003 mmc_set_ios(host);
1004
1005 mmc_crypto_set_initial_state(host);
1006 }
1007
1008 /**
1009 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1010 * @vdd: voltage (mV)
1011 * @low_bits: prefer low bits in boundary cases
1012 *
1013 * This function returns the OCR bit number according to the provided @vdd
1014 * value. If conversion is not possible a negative errno value returned.
1015 *
1016 * Depending on the @low_bits flag the function prefers low or high OCR bits
1017 * on boundary voltages. For example,
1018 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1019 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1020 *
1021 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1022 */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)1023 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1024 {
1025 const int max_bit = ilog2(MMC_VDD_35_36);
1026 int bit;
1027
1028 if (vdd < 1650 || vdd > 3600)
1029 return -EINVAL;
1030
1031 if (vdd >= 1650 && vdd <= 1950)
1032 return ilog2(MMC_VDD_165_195);
1033
1034 if (low_bits)
1035 vdd -= 1;
1036
1037 /* Base 2000 mV, step 100 mV, bit's base 8. */
1038 bit = (vdd - 2000) / 100 + 8;
1039 if (bit > max_bit)
1040 return max_bit;
1041 return bit;
1042 }
1043
1044 /**
1045 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1046 * @vdd_min: minimum voltage value (mV)
1047 * @vdd_max: maximum voltage value (mV)
1048 *
1049 * This function returns the OCR mask bits according to the provided @vdd_min
1050 * and @vdd_max values. If conversion is not possible the function returns 0.
1051 *
1052 * Notes wrt boundary cases:
1053 * This function sets the OCR bits for all boundary voltages, for example
1054 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1055 * MMC_VDD_34_35 mask.
1056 */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1057 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1058 {
1059 u32 mask = 0;
1060
1061 if (vdd_max < vdd_min)
1062 return 0;
1063
1064 /* Prefer high bits for the boundary vdd_max values. */
1065 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1066 if (vdd_max < 0)
1067 return 0;
1068
1069 /* Prefer low bits for the boundary vdd_min values. */
1070 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1071 if (vdd_min < 0)
1072 return 0;
1073
1074 /* Fill the mask, from max bit to min bit. */
1075 while (vdd_max >= vdd_min)
1076 mask |= 1 << vdd_max--;
1077
1078 return mask;
1079 }
1080
mmc_of_get_func_num(struct device_node * node)1081 static int mmc_of_get_func_num(struct device_node *node)
1082 {
1083 u32 reg;
1084 int ret;
1085
1086 ret = of_property_read_u32(node, "reg", ®);
1087 if (ret < 0)
1088 return ret;
1089
1090 return reg;
1091 }
1092
mmc_of_find_child_device(struct mmc_host * host,unsigned func_num)1093 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1094 unsigned func_num)
1095 {
1096 struct device_node *node;
1097
1098 if (!host->parent || !host->parent->of_node)
1099 return NULL;
1100
1101 for_each_child_of_node(host->parent->of_node, node) {
1102 if (mmc_of_get_func_num(node) == func_num)
1103 return node;
1104 }
1105
1106 return NULL;
1107 }
1108
1109 /*
1110 * Mask off any voltages we don't support and select
1111 * the lowest voltage
1112 */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1113 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1114 {
1115 int bit;
1116
1117 /*
1118 * Sanity check the voltages that the card claims to
1119 * support.
1120 */
1121 if (ocr & 0x7F) {
1122 dev_warn(mmc_dev(host),
1123 "card claims to support voltages below defined range\n");
1124 ocr &= ~0x7F;
1125 }
1126
1127 ocr &= host->ocr_avail;
1128 if (!ocr) {
1129 dev_warn(mmc_dev(host), "no support for card's volts\n");
1130 return 0;
1131 }
1132
1133 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1134 bit = ffs(ocr) - 1;
1135 ocr &= 3 << bit;
1136 mmc_power_cycle(host, ocr);
1137 } else {
1138 bit = fls(ocr) - 1;
1139 /*
1140 * The bit variable represents the highest voltage bit set in
1141 * the OCR register.
1142 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1143 * we must shift the mask '3' with (bit - 1).
1144 */
1145 ocr &= 3 << (bit - 1);
1146 if (bit != host->ios.vdd)
1147 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1148 }
1149
1150 return ocr;
1151 }
1152
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1153 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1154 {
1155 int err = 0;
1156 int old_signal_voltage = host->ios.signal_voltage;
1157
1158 host->ios.signal_voltage = signal_voltage;
1159 if (host->ops->start_signal_voltage_switch)
1160 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1161
1162 if (err)
1163 host->ios.signal_voltage = old_signal_voltage;
1164
1165 return err;
1166
1167 }
1168
mmc_set_initial_signal_voltage(struct mmc_host * host)1169 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1170 {
1171 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1172 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1173 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1174 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1175 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1176 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1177 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1178 }
1179
mmc_host_set_uhs_voltage(struct mmc_host * host)1180 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1181 {
1182 u32 clock;
1183
1184 /*
1185 * During a signal voltage level switch, the clock must be gated
1186 * for 5 ms according to the SD spec
1187 */
1188 clock = host->ios.clock;
1189 host->ios.clock = 0;
1190 mmc_set_ios(host);
1191
1192 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1193 return -EAGAIN;
1194
1195 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1196 mmc_delay(10);
1197 host->ios.clock = clock;
1198 mmc_set_ios(host);
1199
1200 return 0;
1201 }
1202
mmc_set_uhs_voltage(struct mmc_host * host,u32 ocr)1203 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1204 {
1205 struct mmc_command cmd = {};
1206 int err = 0;
1207
1208 /*
1209 * If we cannot switch voltages, return failure so the caller
1210 * can continue without UHS mode
1211 */
1212 if (!host->ops->start_signal_voltage_switch)
1213 return -EPERM;
1214 if (!host->ops->card_busy)
1215 pr_warn("%s: cannot verify signal voltage switch\n",
1216 mmc_hostname(host));
1217
1218 cmd.opcode = SD_SWITCH_VOLTAGE;
1219 cmd.arg = 0;
1220 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1221
1222 err = mmc_wait_for_cmd(host, &cmd, 0);
1223 if (err)
1224 goto power_cycle;
1225
1226 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1227 return -EIO;
1228
1229 /*
1230 * The card should drive cmd and dat[0:3] low immediately
1231 * after the response of cmd11, but wait 1 ms to be sure
1232 */
1233 mmc_delay(1);
1234 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1235 err = -EAGAIN;
1236 goto power_cycle;
1237 }
1238
1239 if (mmc_host_set_uhs_voltage(host)) {
1240 /*
1241 * Voltages may not have been switched, but we've already
1242 * sent CMD11, so a power cycle is required anyway
1243 */
1244 err = -EAGAIN;
1245 goto power_cycle;
1246 }
1247
1248 /* Wait for at least 1 ms according to spec */
1249 mmc_delay(1);
1250
1251 /*
1252 * Failure to switch is indicated by the card holding
1253 * dat[0:3] low
1254 */
1255 if (host->ops->card_busy && host->ops->card_busy(host))
1256 err = -EAGAIN;
1257
1258 power_cycle:
1259 if (err) {
1260 pr_debug("%s: Signal voltage switch failed, "
1261 "power cycling card\n", mmc_hostname(host));
1262 mmc_power_cycle(host, ocr);
1263 }
1264
1265 return err;
1266 }
1267
1268 /*
1269 * Select timing parameters for host.
1270 */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1271 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1272 {
1273 host->ios.timing = timing;
1274 mmc_set_ios(host);
1275 }
1276
1277 /*
1278 * Select appropriate driver type for host.
1279 */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1280 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1281 {
1282 host->ios.drv_type = drv_type;
1283 mmc_set_ios(host);
1284 }
1285
mmc_select_drive_strength(struct mmc_card * card,unsigned int max_dtr,int card_drv_type,int * drv_type)1286 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1287 int card_drv_type, int *drv_type)
1288 {
1289 struct mmc_host *host = card->host;
1290 int host_drv_type = SD_DRIVER_TYPE_B;
1291
1292 *drv_type = 0;
1293
1294 if (!host->ops->select_drive_strength)
1295 return 0;
1296
1297 /* Use SD definition of driver strength for hosts */
1298 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1299 host_drv_type |= SD_DRIVER_TYPE_A;
1300
1301 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1302 host_drv_type |= SD_DRIVER_TYPE_C;
1303
1304 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1305 host_drv_type |= SD_DRIVER_TYPE_D;
1306
1307 /*
1308 * The drive strength that the hardware can support
1309 * depends on the board design. Pass the appropriate
1310 * information and let the hardware specific code
1311 * return what is possible given the options
1312 */
1313 return host->ops->select_drive_strength(card, max_dtr,
1314 host_drv_type,
1315 card_drv_type,
1316 drv_type);
1317 }
1318
1319 /*
1320 * Apply power to the MMC stack. This is a two-stage process.
1321 * First, we enable power to the card without the clock running.
1322 * We then wait a bit for the power to stabilise. Finally,
1323 * enable the bus drivers and clock to the card.
1324 *
1325 * We must _NOT_ enable the clock prior to power stablising.
1326 *
1327 * If a host does all the power sequencing itself, ignore the
1328 * initial MMC_POWER_UP stage.
1329 */
mmc_power_up(struct mmc_host * host,u32 ocr)1330 void mmc_power_up(struct mmc_host *host, u32 ocr)
1331 {
1332 if (host->ios.power_mode == MMC_POWER_ON)
1333 return;
1334
1335 mmc_pwrseq_pre_power_on(host);
1336
1337 host->ios.vdd = fls(ocr) - 1;
1338 host->ios.power_mode = MMC_POWER_UP;
1339 /* Set initial state and call mmc_set_ios */
1340 mmc_set_initial_state(host);
1341
1342 mmc_set_initial_signal_voltage(host);
1343
1344 /*
1345 * This delay should be sufficient to allow the power supply
1346 * to reach the minimum voltage.
1347 */
1348 mmc_delay(host->ios.power_delay_ms);
1349
1350 mmc_pwrseq_post_power_on(host);
1351
1352 host->ios.clock = host->f_init;
1353
1354 host->ios.power_mode = MMC_POWER_ON;
1355 mmc_set_ios(host);
1356
1357 /*
1358 * This delay must be at least 74 clock sizes, or 1 ms, or the
1359 * time required to reach a stable voltage.
1360 */
1361 mmc_delay(host->ios.power_delay_ms);
1362 }
1363
mmc_power_off(struct mmc_host * host)1364 void mmc_power_off(struct mmc_host *host)
1365 {
1366 if (host->ios.power_mode == MMC_POWER_OFF)
1367 return;
1368
1369 mmc_pwrseq_power_off(host);
1370
1371 host->ios.clock = 0;
1372 host->ios.vdd = 0;
1373
1374 host->ios.power_mode = MMC_POWER_OFF;
1375 /* Set initial state and call mmc_set_ios */
1376 mmc_set_initial_state(host);
1377
1378 /*
1379 * Some configurations, such as the 802.11 SDIO card in the OLPC
1380 * XO-1.5, require a short delay after poweroff before the card
1381 * can be successfully turned on again.
1382 */
1383 mmc_delay(1);
1384 }
1385
mmc_power_cycle(struct mmc_host * host,u32 ocr)1386 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1387 {
1388 mmc_power_off(host);
1389 /* Wait at least 1 ms according to SD spec */
1390 mmc_delay(1);
1391 mmc_power_up(host, ocr);
1392 }
1393
1394 /*
1395 * Cleanup when the last reference to the bus operator is dropped.
1396 */
__mmc_release_bus(struct mmc_host * host)1397 static void __mmc_release_bus(struct mmc_host *host)
1398 {
1399 WARN_ON(!host->bus_dead);
1400
1401 host->bus_ops = NULL;
1402 }
1403
1404 /*
1405 * Increase reference count of bus operator
1406 */
mmc_bus_get(struct mmc_host * host)1407 static inline void mmc_bus_get(struct mmc_host *host)
1408 {
1409 unsigned long flags;
1410
1411 spin_lock_irqsave(&host->lock, flags);
1412 host->bus_refs++;
1413 spin_unlock_irqrestore(&host->lock, flags);
1414 }
1415
1416 /*
1417 * Decrease reference count of bus operator and free it if
1418 * it is the last reference.
1419 */
mmc_bus_put(struct mmc_host * host)1420 static inline void mmc_bus_put(struct mmc_host *host)
1421 {
1422 unsigned long flags;
1423
1424 spin_lock_irqsave(&host->lock, flags);
1425 host->bus_refs--;
1426 if ((host->bus_refs == 0) && host->bus_ops)
1427 __mmc_release_bus(host);
1428 spin_unlock_irqrestore(&host->lock, flags);
1429 }
1430
1431 /*
1432 * Assign a mmc bus handler to a host. Only one bus handler may control a
1433 * host at any given time.
1434 */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1435 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1436 {
1437 unsigned long flags;
1438
1439 WARN_ON(!host->claimed);
1440
1441 spin_lock_irqsave(&host->lock, flags);
1442
1443 WARN_ON(host->bus_ops);
1444 WARN_ON(host->bus_refs);
1445
1446 host->bus_ops = ops;
1447 host->bus_refs = 1;
1448 host->bus_dead = 0;
1449
1450 spin_unlock_irqrestore(&host->lock, flags);
1451 }
1452
1453 /*
1454 * Remove the current bus handler from a host.
1455 */
mmc_detach_bus(struct mmc_host * host)1456 void mmc_detach_bus(struct mmc_host *host)
1457 {
1458 unsigned long flags;
1459
1460 WARN_ON(!host->claimed);
1461 WARN_ON(!host->bus_ops);
1462
1463 spin_lock_irqsave(&host->lock, flags);
1464
1465 host->bus_dead = 1;
1466
1467 spin_unlock_irqrestore(&host->lock, flags);
1468
1469 mmc_bus_put(host);
1470 }
1471
_mmc_detect_change(struct mmc_host * host,unsigned long delay,bool cd_irq)1472 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1473 {
1474 /*
1475 * Prevent system sleep for 5s to allow user space to consume the
1476 * corresponding uevent. This is especially useful, when CD irq is used
1477 * as a system wakeup, but doesn't hurt in other cases.
1478 */
1479 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1480 __pm_wakeup_event(host->ws, 5000);
1481
1482 host->detect_change = 1;
1483 mmc_schedule_delayed_work(&host->detect, delay);
1484 }
1485
1486 /**
1487 * mmc_detect_change - process change of state on a MMC socket
1488 * @host: host which changed state.
1489 * @delay: optional delay to wait before detection (jiffies)
1490 *
1491 * MMC drivers should call this when they detect a card has been
1492 * inserted or removed. The MMC layer will confirm that any
1493 * present card is still functional, and initialize any newly
1494 * inserted.
1495 */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1496 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1497 {
1498 _mmc_detect_change(host, delay, true);
1499 }
1500 EXPORT_SYMBOL(mmc_detect_change);
1501
mmc_init_erase(struct mmc_card * card)1502 void mmc_init_erase(struct mmc_card *card)
1503 {
1504 unsigned int sz;
1505
1506 if (is_power_of_2(card->erase_size))
1507 card->erase_shift = ffs(card->erase_size) - 1;
1508 else
1509 card->erase_shift = 0;
1510
1511 /*
1512 * It is possible to erase an arbitrarily large area of an SD or MMC
1513 * card. That is not desirable because it can take a long time
1514 * (minutes) potentially delaying more important I/O, and also the
1515 * timeout calculations become increasingly hugely over-estimated.
1516 * Consequently, 'pref_erase' is defined as a guide to limit erases
1517 * to that size and alignment.
1518 *
1519 * For SD cards that define Allocation Unit size, limit erases to one
1520 * Allocation Unit at a time.
1521 * For MMC, have a stab at ai good value and for modern cards it will
1522 * end up being 4MiB. Note that if the value is too small, it can end
1523 * up taking longer to erase. Also note, erase_size is already set to
1524 * High Capacity Erase Size if available when this function is called.
1525 */
1526 if (mmc_card_sd(card) && card->ssr.au) {
1527 card->pref_erase = card->ssr.au;
1528 card->erase_shift = ffs(card->ssr.au) - 1;
1529 } else if (card->erase_size) {
1530 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1531 if (sz < 128)
1532 card->pref_erase = 512 * 1024 / 512;
1533 else if (sz < 512)
1534 card->pref_erase = 1024 * 1024 / 512;
1535 else if (sz < 1024)
1536 card->pref_erase = 2 * 1024 * 1024 / 512;
1537 else
1538 card->pref_erase = 4 * 1024 * 1024 / 512;
1539 if (card->pref_erase < card->erase_size)
1540 card->pref_erase = card->erase_size;
1541 else {
1542 sz = card->pref_erase % card->erase_size;
1543 if (sz)
1544 card->pref_erase += card->erase_size - sz;
1545 }
1546 } else
1547 card->pref_erase = 0;
1548 }
1549
is_trim_arg(unsigned int arg)1550 static bool is_trim_arg(unsigned int arg)
1551 {
1552 return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1553 }
1554
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1555 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1556 unsigned int arg, unsigned int qty)
1557 {
1558 unsigned int erase_timeout;
1559
1560 if (arg == MMC_DISCARD_ARG ||
1561 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1562 erase_timeout = card->ext_csd.trim_timeout;
1563 } else if (card->ext_csd.erase_group_def & 1) {
1564 /* High Capacity Erase Group Size uses HC timeouts */
1565 if (arg == MMC_TRIM_ARG)
1566 erase_timeout = card->ext_csd.trim_timeout;
1567 else
1568 erase_timeout = card->ext_csd.hc_erase_timeout;
1569 } else {
1570 /* CSD Erase Group Size uses write timeout */
1571 unsigned int mult = (10 << card->csd.r2w_factor);
1572 unsigned int timeout_clks = card->csd.taac_clks * mult;
1573 unsigned int timeout_us;
1574
1575 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1576 if (card->csd.taac_ns < 1000000)
1577 timeout_us = (card->csd.taac_ns * mult) / 1000;
1578 else
1579 timeout_us = (card->csd.taac_ns / 1000) * mult;
1580
1581 /*
1582 * ios.clock is only a target. The real clock rate might be
1583 * less but not that much less, so fudge it by multiplying by 2.
1584 */
1585 timeout_clks <<= 1;
1586 timeout_us += (timeout_clks * 1000) /
1587 (card->host->ios.clock / 1000);
1588
1589 erase_timeout = timeout_us / 1000;
1590
1591 /*
1592 * Theoretically, the calculation could underflow so round up
1593 * to 1ms in that case.
1594 */
1595 if (!erase_timeout)
1596 erase_timeout = 1;
1597 }
1598
1599 /* Multiplier for secure operations */
1600 if (arg & MMC_SECURE_ARGS) {
1601 if (arg == MMC_SECURE_ERASE_ARG)
1602 erase_timeout *= card->ext_csd.sec_erase_mult;
1603 else
1604 erase_timeout *= card->ext_csd.sec_trim_mult;
1605 }
1606
1607 erase_timeout *= qty;
1608
1609 /*
1610 * Ensure at least a 1 second timeout for SPI as per
1611 * 'mmc_set_data_timeout()'
1612 */
1613 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1614 erase_timeout = 1000;
1615
1616 return erase_timeout;
1617 }
1618
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1619 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1620 unsigned int arg,
1621 unsigned int qty)
1622 {
1623 unsigned int erase_timeout;
1624
1625 /* for DISCARD none of the below calculation applies.
1626 * the busy timeout is 250msec per discard command.
1627 */
1628 if (arg == SD_DISCARD_ARG)
1629 return SD_DISCARD_TIMEOUT_MS;
1630
1631 if (card->ssr.erase_timeout) {
1632 /* Erase timeout specified in SD Status Register (SSR) */
1633 erase_timeout = card->ssr.erase_timeout * qty +
1634 card->ssr.erase_offset;
1635 } else {
1636 /*
1637 * Erase timeout not specified in SD Status Register (SSR) so
1638 * use 250ms per write block.
1639 */
1640 erase_timeout = 250 * qty;
1641 }
1642
1643 /* Must not be less than 1 second */
1644 if (erase_timeout < 1000)
1645 erase_timeout = 1000;
1646
1647 return erase_timeout;
1648 }
1649
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1650 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1651 unsigned int arg,
1652 unsigned int qty)
1653 {
1654 if (mmc_card_sd(card))
1655 return mmc_sd_erase_timeout(card, arg, qty);
1656 else
1657 return mmc_mmc_erase_timeout(card, arg, qty);
1658 }
1659
mmc_do_erase(struct mmc_card * card,unsigned int from,unsigned int to,unsigned int arg)1660 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1661 unsigned int to, unsigned int arg)
1662 {
1663 struct mmc_command cmd = {};
1664 unsigned int qty = 0, busy_timeout = 0;
1665 bool use_r1b_resp = false;
1666 int err;
1667
1668 mmc_retune_hold(card->host);
1669
1670 /*
1671 * qty is used to calculate the erase timeout which depends on how many
1672 * erase groups (or allocation units in SD terminology) are affected.
1673 * We count erasing part of an erase group as one erase group.
1674 * For SD, the allocation units are always a power of 2. For MMC, the
1675 * erase group size is almost certainly also power of 2, but it does not
1676 * seem to insist on that in the JEDEC standard, so we fall back to
1677 * division in that case. SD may not specify an allocation unit size,
1678 * in which case the timeout is based on the number of write blocks.
1679 *
1680 * Note that the timeout for secure trim 2 will only be correct if the
1681 * number of erase groups specified is the same as the total of all
1682 * preceding secure trim 1 commands. Since the power may have been
1683 * lost since the secure trim 1 commands occurred, it is generally
1684 * impossible to calculate the secure trim 2 timeout correctly.
1685 */
1686 if (card->erase_shift)
1687 qty += ((to >> card->erase_shift) -
1688 (from >> card->erase_shift)) + 1;
1689 else if (mmc_card_sd(card))
1690 qty += to - from + 1;
1691 else
1692 qty += ((to / card->erase_size) -
1693 (from / card->erase_size)) + 1;
1694
1695 if (!mmc_card_blockaddr(card)) {
1696 from <<= 9;
1697 to <<= 9;
1698 }
1699
1700 if (mmc_card_sd(card))
1701 cmd.opcode = SD_ERASE_WR_BLK_START;
1702 else
1703 cmd.opcode = MMC_ERASE_GROUP_START;
1704 cmd.arg = from;
1705 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1706 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1707 if (err) {
1708 pr_err("mmc_erase: group start error %d, "
1709 "status %#x\n", err, cmd.resp[0]);
1710 err = -EIO;
1711 goto out;
1712 }
1713
1714 memset(&cmd, 0, sizeof(struct mmc_command));
1715 if (mmc_card_sd(card))
1716 cmd.opcode = SD_ERASE_WR_BLK_END;
1717 else
1718 cmd.opcode = MMC_ERASE_GROUP_END;
1719 cmd.arg = to;
1720 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1721 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1722 if (err) {
1723 pr_err("mmc_erase: group end error %d, status %#x\n",
1724 err, cmd.resp[0]);
1725 err = -EIO;
1726 goto out;
1727 }
1728
1729 memset(&cmd, 0, sizeof(struct mmc_command));
1730 cmd.opcode = MMC_ERASE;
1731 cmd.arg = arg;
1732 busy_timeout = mmc_erase_timeout(card, arg, qty);
1733 /*
1734 * If the host controller supports busy signalling and the timeout for
1735 * the erase operation does not exceed the max_busy_timeout, we should
1736 * use R1B response. Or we need to prevent the host from doing hw busy
1737 * detection, which is done by converting to a R1 response instead.
1738 * Note, some hosts requires R1B, which also means they are on their own
1739 * when it comes to deal with the busy timeout.
1740 */
1741 if (!(card->host->caps & MMC_CAP_NEED_RSP_BUSY) &&
1742 card->host->max_busy_timeout &&
1743 busy_timeout > card->host->max_busy_timeout) {
1744 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1745 } else {
1746 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1747 cmd.busy_timeout = busy_timeout;
1748 use_r1b_resp = true;
1749 }
1750
1751 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1752 if (err) {
1753 pr_err("mmc_erase: erase error %d, status %#x\n",
1754 err, cmd.resp[0]);
1755 err = -EIO;
1756 goto out;
1757 }
1758
1759 if (mmc_host_is_spi(card->host))
1760 goto out;
1761
1762 /*
1763 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1764 * shall be avoided.
1765 */
1766 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1767 goto out;
1768
1769 /* Let's poll to find out when the erase operation completes. */
1770 err = mmc_poll_for_busy(card, busy_timeout, MMC_BUSY_ERASE);
1771
1772 out:
1773 mmc_retune_release(card->host);
1774 return err;
1775 }
1776
mmc_align_erase_size(struct mmc_card * card,unsigned int * from,unsigned int * to,unsigned int nr)1777 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1778 unsigned int *from,
1779 unsigned int *to,
1780 unsigned int nr)
1781 {
1782 unsigned int from_new = *from, nr_new = nr, rem;
1783
1784 /*
1785 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1786 * to align the erase size efficiently.
1787 */
1788 if (is_power_of_2(card->erase_size)) {
1789 unsigned int temp = from_new;
1790
1791 from_new = round_up(temp, card->erase_size);
1792 rem = from_new - temp;
1793
1794 if (nr_new > rem)
1795 nr_new -= rem;
1796 else
1797 return 0;
1798
1799 nr_new = round_down(nr_new, card->erase_size);
1800 } else {
1801 rem = from_new % card->erase_size;
1802 if (rem) {
1803 rem = card->erase_size - rem;
1804 from_new += rem;
1805 if (nr_new > rem)
1806 nr_new -= rem;
1807 else
1808 return 0;
1809 }
1810
1811 rem = nr_new % card->erase_size;
1812 if (rem)
1813 nr_new -= rem;
1814 }
1815
1816 if (nr_new == 0)
1817 return 0;
1818
1819 *to = from_new + nr_new;
1820 *from = from_new;
1821
1822 return nr_new;
1823 }
1824
1825 /**
1826 * mmc_erase - erase sectors.
1827 * @card: card to erase
1828 * @from: first sector to erase
1829 * @nr: number of sectors to erase
1830 * @arg: erase command argument
1831 *
1832 * Caller must claim host before calling this function.
1833 */
mmc_erase(struct mmc_card * card,unsigned int from,unsigned int nr,unsigned int arg)1834 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1835 unsigned int arg)
1836 {
1837 unsigned int rem, to = from + nr;
1838 int err;
1839
1840 if (!(card->csd.cmdclass & CCC_ERASE))
1841 return -EOPNOTSUPP;
1842
1843 if (!card->erase_size)
1844 return -EOPNOTSUPP;
1845
1846 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1847 return -EOPNOTSUPP;
1848
1849 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1850 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1851 return -EOPNOTSUPP;
1852
1853 if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1854 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1855 return -EOPNOTSUPP;
1856
1857 if (arg == MMC_SECURE_ERASE_ARG) {
1858 if (from % card->erase_size || nr % card->erase_size)
1859 return -EINVAL;
1860 }
1861
1862 if (arg == MMC_ERASE_ARG)
1863 nr = mmc_align_erase_size(card, &from, &to, nr);
1864
1865 if (nr == 0)
1866 return 0;
1867
1868 if (to <= from)
1869 return -EINVAL;
1870
1871 /* 'from' and 'to' are inclusive */
1872 to -= 1;
1873
1874 /*
1875 * Special case where only one erase-group fits in the timeout budget:
1876 * If the region crosses an erase-group boundary on this particular
1877 * case, we will be trimming more than one erase-group which, does not
1878 * fit in the timeout budget of the controller, so we need to split it
1879 * and call mmc_do_erase() twice if necessary. This special case is
1880 * identified by the card->eg_boundary flag.
1881 */
1882 rem = card->erase_size - (from % card->erase_size);
1883 if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1884 err = mmc_do_erase(card, from, from + rem - 1, arg);
1885 from += rem;
1886 if ((err) || (to <= from))
1887 return err;
1888 }
1889
1890 return mmc_do_erase(card, from, to, arg);
1891 }
1892 EXPORT_SYMBOL(mmc_erase);
1893
mmc_can_erase(struct mmc_card * card)1894 int mmc_can_erase(struct mmc_card *card)
1895 {
1896 if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1897 return 1;
1898 return 0;
1899 }
1900 EXPORT_SYMBOL(mmc_can_erase);
1901
mmc_can_trim(struct mmc_card * card)1902 int mmc_can_trim(struct mmc_card *card)
1903 {
1904 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1905 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1906 return 1;
1907 return 0;
1908 }
1909 EXPORT_SYMBOL(mmc_can_trim);
1910
mmc_can_discard(struct mmc_card * card)1911 int mmc_can_discard(struct mmc_card *card)
1912 {
1913 /*
1914 * As there's no way to detect the discard support bit at v4.5
1915 * use the s/w feature support filed.
1916 */
1917 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1918 return 1;
1919 return 0;
1920 }
1921 EXPORT_SYMBOL(mmc_can_discard);
1922
mmc_can_sanitize(struct mmc_card * card)1923 int mmc_can_sanitize(struct mmc_card *card)
1924 {
1925 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1926 return 0;
1927 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1928 return 1;
1929 return 0;
1930 }
1931
mmc_can_secure_erase_trim(struct mmc_card * card)1932 int mmc_can_secure_erase_trim(struct mmc_card *card)
1933 {
1934 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1935 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1936 return 1;
1937 return 0;
1938 }
1939 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1940
mmc_erase_group_aligned(struct mmc_card * card,unsigned int from,unsigned int nr)1941 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1942 unsigned int nr)
1943 {
1944 if (!card->erase_size)
1945 return 0;
1946 if (from % card->erase_size || nr % card->erase_size)
1947 return 0;
1948 return 1;
1949 }
1950 EXPORT_SYMBOL(mmc_erase_group_aligned);
1951
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)1952 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1953 unsigned int arg)
1954 {
1955 struct mmc_host *host = card->host;
1956 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1957 unsigned int last_timeout = 0;
1958 unsigned int max_busy_timeout = host->max_busy_timeout ?
1959 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1960
1961 if (card->erase_shift) {
1962 max_qty = UINT_MAX >> card->erase_shift;
1963 min_qty = card->pref_erase >> card->erase_shift;
1964 } else if (mmc_card_sd(card)) {
1965 max_qty = UINT_MAX;
1966 min_qty = card->pref_erase;
1967 } else {
1968 max_qty = UINT_MAX / card->erase_size;
1969 min_qty = card->pref_erase / card->erase_size;
1970 }
1971
1972 /*
1973 * We should not only use 'host->max_busy_timeout' as the limitation
1974 * when deciding the max discard sectors. We should set a balance value
1975 * to improve the erase speed, and it can not get too long timeout at
1976 * the same time.
1977 *
1978 * Here we set 'card->pref_erase' as the minimal discard sectors no
1979 * matter what size of 'host->max_busy_timeout', but if the
1980 * 'host->max_busy_timeout' is large enough for more discard sectors,
1981 * then we can continue to increase the max discard sectors until we
1982 * get a balance value. In cases when the 'host->max_busy_timeout'
1983 * isn't specified, use the default max erase timeout.
1984 */
1985 do {
1986 y = 0;
1987 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1988 timeout = mmc_erase_timeout(card, arg, qty + x);
1989
1990 if (qty + x > min_qty && timeout > max_busy_timeout)
1991 break;
1992
1993 if (timeout < last_timeout)
1994 break;
1995 last_timeout = timeout;
1996 y = x;
1997 }
1998 qty += y;
1999 } while (y);
2000
2001 if (!qty)
2002 return 0;
2003
2004 /*
2005 * When specifying a sector range to trim, chances are we might cross
2006 * an erase-group boundary even if the amount of sectors is less than
2007 * one erase-group.
2008 * If we can only fit one erase-group in the controller timeout budget,
2009 * we have to care that erase-group boundaries are not crossed by a
2010 * single trim operation. We flag that special case with "eg_boundary".
2011 * In all other cases we can just decrement qty and pretend that we
2012 * always touch (qty + 1) erase-groups as a simple optimization.
2013 */
2014 if (qty == 1)
2015 card->eg_boundary = 1;
2016 else
2017 qty--;
2018
2019 /* Convert qty to sectors */
2020 if (card->erase_shift)
2021 max_discard = qty << card->erase_shift;
2022 else if (mmc_card_sd(card))
2023 max_discard = qty + 1;
2024 else
2025 max_discard = qty * card->erase_size;
2026
2027 return max_discard;
2028 }
2029
mmc_calc_max_discard(struct mmc_card * card)2030 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2031 {
2032 struct mmc_host *host = card->host;
2033 unsigned int max_discard, max_trim;
2034
2035 /*
2036 * Without erase_group_def set, MMC erase timeout depends on clock
2037 * frequence which can change. In that case, the best choice is
2038 * just the preferred erase size.
2039 */
2040 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2041 return card->pref_erase;
2042
2043 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2044 if (mmc_can_trim(card)) {
2045 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2046 if (max_trim < max_discard || max_discard == 0)
2047 max_discard = max_trim;
2048 } else if (max_discard < card->erase_size) {
2049 max_discard = 0;
2050 }
2051 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2052 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2053 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2054 return max_discard;
2055 }
2056 EXPORT_SYMBOL(mmc_calc_max_discard);
2057
mmc_card_is_blockaddr(struct mmc_card * card)2058 bool mmc_card_is_blockaddr(struct mmc_card *card)
2059 {
2060 return card ? mmc_card_blockaddr(card) : false;
2061 }
2062 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2063
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)2064 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2065 {
2066 struct mmc_command cmd = {};
2067
2068 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2069 mmc_card_hs400(card) || mmc_card_hs400es(card))
2070 return 0;
2071
2072 cmd.opcode = MMC_SET_BLOCKLEN;
2073 cmd.arg = blocklen;
2074 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2075 return mmc_wait_for_cmd(card->host, &cmd, 5);
2076 }
2077 EXPORT_SYMBOL(mmc_set_blocklen);
2078
mmc_hw_reset_for_init(struct mmc_host * host)2079 static void mmc_hw_reset_for_init(struct mmc_host *host)
2080 {
2081 mmc_pwrseq_reset(host);
2082
2083 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2084 return;
2085 host->ops->hw_reset(host);
2086 }
2087
2088 /**
2089 * mmc_hw_reset - reset the card in hardware
2090 * @host: MMC host to which the card is attached
2091 *
2092 * Hard reset the card. This function is only for upper layers, like the
2093 * block layer or card drivers. You cannot use it in host drivers (struct
2094 * mmc_card might be gone then).
2095 *
2096 * Return: 0 on success, -errno on failure
2097 */
mmc_hw_reset(struct mmc_host * host)2098 int mmc_hw_reset(struct mmc_host *host)
2099 {
2100 int ret;
2101
2102 if (!host->card)
2103 return -EINVAL;
2104
2105 mmc_bus_get(host);
2106 if (!host->bus_ops || host->bus_dead || !host->bus_ops->hw_reset) {
2107 mmc_bus_put(host);
2108 return -EOPNOTSUPP;
2109 }
2110
2111 ret = host->bus_ops->hw_reset(host);
2112 mmc_bus_put(host);
2113
2114 if (ret < 0)
2115 pr_warn("%s: tried to HW reset card, got error %d\n",
2116 mmc_hostname(host), ret);
2117
2118 return ret;
2119 }
2120 EXPORT_SYMBOL(mmc_hw_reset);
2121
mmc_sw_reset(struct mmc_host * host)2122 int mmc_sw_reset(struct mmc_host *host)
2123 {
2124 int ret;
2125
2126 if (!host->card)
2127 return -EINVAL;
2128
2129 mmc_bus_get(host);
2130 if (!host->bus_ops || host->bus_dead || !host->bus_ops->sw_reset) {
2131 mmc_bus_put(host);
2132 return -EOPNOTSUPP;
2133 }
2134
2135 ret = host->bus_ops->sw_reset(host);
2136 mmc_bus_put(host);
2137
2138 if (ret)
2139 pr_warn("%s: tried to SW reset card, got error %d\n",
2140 mmc_hostname(host), ret);
2141
2142 return ret;
2143 }
2144 EXPORT_SYMBOL(mmc_sw_reset);
2145
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2146 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2147 {
2148 host->f_init = freq;
2149
2150 pr_debug("%s: %s: trying to init card at %u Hz\n",
2151 mmc_hostname(host), __func__, host->f_init);
2152
2153 mmc_power_up(host, host->ocr_avail);
2154
2155 /*
2156 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2157 * do a hardware reset if possible.
2158 */
2159 mmc_hw_reset_for_init(host);
2160
2161 /*
2162 * sdio_reset sends CMD52 to reset card. Since we do not know
2163 * if the card is being re-initialized, just send it. CMD52
2164 * should be ignored by SD/eMMC cards.
2165 * Skip it if we already know that we do not support SDIO commands
2166 */
2167 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2168 sdio_reset(host);
2169
2170 mmc_go_idle(host);
2171
2172 if (!(host->caps2 & MMC_CAP2_NO_SD))
2173 mmc_send_if_cond(host, host->ocr_avail);
2174
2175 /* Order's important: probe SDIO, then SD, then MMC */
2176 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2177 if (!mmc_attach_sdio(host))
2178 return 0;
2179
2180 if (!(host->caps2 & MMC_CAP2_NO_SD))
2181 if (!mmc_attach_sd(host))
2182 return 0;
2183
2184 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2185 if (!mmc_attach_mmc(host))
2186 return 0;
2187
2188 mmc_power_off(host);
2189 return -EIO;
2190 }
2191
_mmc_detect_card_removed(struct mmc_host * host)2192 int _mmc_detect_card_removed(struct mmc_host *host)
2193 {
2194 int ret;
2195
2196 if (!host->card || mmc_card_removed(host->card))
2197 return 1;
2198
2199 ret = host->bus_ops->alive(host);
2200
2201 /*
2202 * Card detect status and alive check may be out of sync if card is
2203 * removed slowly, when card detect switch changes while card/slot
2204 * pads are still contacted in hardware (refer to "SD Card Mechanical
2205 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2206 * detect work 200ms later for this case.
2207 */
2208 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2209 mmc_detect_change(host, msecs_to_jiffies(200));
2210 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2211 }
2212
2213 if (ret) {
2214 mmc_card_set_removed(host->card);
2215 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2216 }
2217
2218 return ret;
2219 }
2220
mmc_detect_card_removed(struct mmc_host * host)2221 int mmc_detect_card_removed(struct mmc_host *host)
2222 {
2223 struct mmc_card *card = host->card;
2224 int ret;
2225
2226 WARN_ON(!host->claimed);
2227
2228 if (!card)
2229 return 1;
2230
2231 if (!mmc_card_is_removable(host))
2232 return 0;
2233
2234 ret = mmc_card_removed(card);
2235 /*
2236 * The card will be considered unchanged unless we have been asked to
2237 * detect a change or host requires polling to provide card detection.
2238 */
2239 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2240 return ret;
2241
2242 host->detect_change = 0;
2243 if (!ret) {
2244 ret = _mmc_detect_card_removed(host);
2245 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2246 /*
2247 * Schedule a detect work as soon as possible to let a
2248 * rescan handle the card removal.
2249 */
2250 cancel_delayed_work(&host->detect);
2251 _mmc_detect_change(host, 0, false);
2252 }
2253 }
2254
2255 return ret;
2256 }
2257 EXPORT_SYMBOL(mmc_detect_card_removed);
2258
mmc_rescan(struct work_struct * work)2259 void mmc_rescan(struct work_struct *work)
2260 {
2261 struct mmc_host *host =
2262 container_of(work, struct mmc_host, detect.work);
2263 int i;
2264
2265 if (host->rescan_disable)
2266 return;
2267
2268 /* If there is a non-removable card registered, only scan once */
2269 if (!mmc_card_is_removable(host) && host->rescan_entered)
2270 return;
2271 host->rescan_entered = 1;
2272
2273 if (host->trigger_card_event && host->ops->card_event) {
2274 mmc_claim_host(host);
2275 host->ops->card_event(host);
2276 mmc_release_host(host);
2277 host->trigger_card_event = false;
2278 }
2279
2280 mmc_bus_get(host);
2281
2282 /* Verify a registered card to be functional, else remove it. */
2283 if (host->bus_ops && !host->bus_dead)
2284 host->bus_ops->detect(host);
2285
2286 host->detect_change = 0;
2287
2288 /*
2289 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2290 * the card is no longer present.
2291 */
2292 mmc_bus_put(host);
2293 mmc_bus_get(host);
2294
2295 /* if there still is a card present, stop here */
2296 if (host->bus_ops != NULL) {
2297 mmc_bus_put(host);
2298 goto out;
2299 }
2300
2301 /*
2302 * Only we can add a new handler, so it's safe to
2303 * release the lock here.
2304 */
2305 mmc_bus_put(host);
2306
2307 mmc_claim_host(host);
2308 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2309 host->ops->get_cd(host) == 0) {
2310 mmc_power_off(host);
2311 mmc_release_host(host);
2312 goto out;
2313 }
2314
2315 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2316 unsigned int freq = freqs[i];
2317 if (freq > host->f_max) {
2318 if (i + 1 < ARRAY_SIZE(freqs))
2319 continue;
2320 freq = host->f_max;
2321 }
2322 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2323 break;
2324 if (freqs[i] <= host->f_min)
2325 break;
2326 }
2327 mmc_release_host(host);
2328
2329 out:
2330 if (host->caps & MMC_CAP_NEEDS_POLL)
2331 mmc_schedule_delayed_work(&host->detect, HZ);
2332 }
2333
mmc_start_host(struct mmc_host * host)2334 void mmc_start_host(struct mmc_host *host)
2335 {
2336 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2337 host->rescan_disable = 0;
2338
2339 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2340 mmc_claim_host(host);
2341 mmc_power_up(host, host->ocr_avail);
2342 mmc_release_host(host);
2343 }
2344
2345 mmc_gpiod_request_cd_irq(host);
2346 _mmc_detect_change(host, 0, false);
2347 }
2348
__mmc_stop_host(struct mmc_host * host)2349 void __mmc_stop_host(struct mmc_host *host)
2350 {
2351 if (host->slot.cd_irq >= 0) {
2352 mmc_gpio_set_cd_wake(host, false);
2353 disable_irq(host->slot.cd_irq);
2354 }
2355
2356 host->rescan_disable = 1;
2357 cancel_delayed_work_sync(&host->detect);
2358 }
2359
mmc_stop_host(struct mmc_host * host)2360 void mmc_stop_host(struct mmc_host *host)
2361 {
2362 __mmc_stop_host(host);
2363
2364 /* clear pm flags now and let card drivers set them as needed */
2365 host->pm_flags = 0;
2366
2367 mmc_bus_get(host);
2368 if (host->bus_ops && !host->bus_dead) {
2369 /* Calling bus_ops->remove() with a claimed host can deadlock */
2370 host->bus_ops->remove(host);
2371 mmc_claim_host(host);
2372 mmc_detach_bus(host);
2373 mmc_power_off(host);
2374 mmc_release_host(host);
2375 mmc_bus_put(host);
2376 return;
2377 }
2378 mmc_bus_put(host);
2379
2380 mmc_claim_host(host);
2381 mmc_power_off(host);
2382 mmc_release_host(host);
2383 }
2384
mmc_init(void)2385 static int __init mmc_init(void)
2386 {
2387 int ret;
2388
2389 ret = mmc_register_bus();
2390 if (ret)
2391 return ret;
2392
2393 ret = mmc_register_host_class();
2394 if (ret)
2395 goto unregister_bus;
2396
2397 ret = sdio_register_bus();
2398 if (ret)
2399 goto unregister_host_class;
2400
2401 return 0;
2402
2403 unregister_host_class:
2404 mmc_unregister_host_class();
2405 unregister_bus:
2406 mmc_unregister_bus();
2407 return ret;
2408 }
2409
mmc_exit(void)2410 static void __exit mmc_exit(void)
2411 {
2412 sdio_unregister_bus();
2413 mmc_unregister_host_class();
2414 mmc_unregister_bus();
2415 }
2416
2417 subsys_initcall(mmc_init);
2418 module_exit(mmc_exit);
2419
2420 MODULE_LICENSE("GPL");
2421